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Summary

Fewmethods are currently available for group sequential analysis of recurrent events
data subject to a terminal event in the clinical trial setting. This research helps fill
this gap by developing a completely nonparametric group sequential monitoring pro-
cedure for use with the two-sample Tayob and Murray1 statistic. Advantages of the
Tayob and Murray statistic include high power to detect treatment differences when
there is correlation between recurrent event times or between recurrent and terminal
events in an individual. This statistic does not suffer bias from dependent censoring,
regardless of the correlation between event times in an individual. This manuscript
briefly reviews the Tayob and Murray statistic, develops and describes how to use
methods for its group sequential analysis, and through simulation compares its oper-
ating characteristics with those of Cook and Lawless2, which is currently in use as the
only available nonparametric method for group sequential analysis of recurrent event
data. The merits of our proposed approach are most clearly demonstrated when gap
times between recurrent events are correlated; when gap times between events are
independent the Cook and Lawless method is difficult to beat. Simulations demon-
strate that as correlation between recurrent event times grows, the reduction in power
using the Cook and Lawless approach is substantial when compared to our method.
Finally, we use our method to analyze recurrent acute exacerbation outcomes from
the Azithromycin in COPD Trial.
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1 INTRODUCTION

Consider the typical setting for a two-arm clinical trial of a chronic, slowly progressing terminal disease. Several lung diseases
fall into this category including Interstitial Pulmonary Fibrosis (IPF), Chronic Obstructive Pulmonary Disease (COPD) and
Cystic Fibrosis (CF), among others. Pulmonary exacerbations are a common recurrent event in these patients, with some patients
also experiencing terminal events. The Azithromycin in COPDTrial (NACT) is one of many clinical trials following this pattern.
More generally, patients may experience a mixture distribution of important, potentially recurring, signals of disease progression
during follow-up. In IPF studies, for example, patients are considered progressors if they experience an acute exacerbation, a
10% decline in forced vital capacity (FVC), a 15% decline in diffusing capacity of the lung for carbon monoxide (DLCO), lung
transplantation or death, where these latter two events are each considered terminal for lung outcome follow-up. Clinical research
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design is often based on time to the first occurrence of a recurrent event or the first event from a list of potentially recurring
progression outcomes.
There are advantages and disadvantages to following only the first time-to-event. The most obvious advantage is the existence

of several methods for group sequential clinical trial design and analysis of censored survival data that are applicable to a single
time-to-event or time-to-combined-endpoint3,4,5,6,7. An obvious disadvantage, however, is the loss of information from ignoring
progression events after the first that occurs for each patient. Consider Figure 1, which shows progression endpoints from an IPF
patient followed as part of the COMET study (Correlating Outcome Measures to Estimate Time to progression in IPF8). This
patient’s first observed progression endpoint involves a decline in DLCO. An analysis based only on the first time-to-combined
endpoint will ignore information on the subsequent progression endpoints, acute exacerbation and death.
Although there are several available methods for conducting two-sample tests of recurrent event data when a single analysis

is conducted (based on, for example, Andersen and Gil (1982)9, Lin et al. (2000)10, Prentice et al. (1981)11, Ghosh and Lin
(2000)12 or Tayob and Murray (2014)1), there is little available methodology for conducting group sequential analysis in this
setting. The most highly cited method was introduced by Cook and Lawless2, who developed nonparametric group sequential
methods for pseudo-score statistics monitored over time. Their method does not introduce any assumptions regarding the depen-
dence structure between recurrent event times and is framed to perform well when the cumulative mean number of events is
proportional over time. Cook et al.13 later extended this method to settings with multiple treatment periods. A parametric group
sequential data analysis approach was put forward by Jiang14, who assumed local Poisson processes that allow event rates to
change over time as well as a frailty parameter to address correlation between event times.
Recognizing that nonparametric methods are vastly preferred in clinical trial settings subject to approval by regulatory agen-

cies, and following the example of Cook and Lawless in this regard, this manuscript aims to contribute new group sequential
methodology for the recurrent event setting without introducing assumptions that could adversely affect the interpretation of
the observed data. In particular, we develop nonparametric group sequential methods for monitoring the Tayob and Murray
statistic1 in the recurrent events setting subject to a terminating event. In framing their statistic, recurrent event outcomes are
restructured into a series of censored longitudinal times-to-first-event in regularly spaced short-term (length �) follow-up win-
dows for each patient. Their test then compares the difference between overall �-restricted mean event-times between groups. In
the case of a single analysis, Tayob and Murray demonstrated nice operating characteristics of their statistic in analyzing a mix-
ture of recurrent and terminal events, with superior performance to methods of Lin et al.10 and Ghosh and Lin12 when recurrent
and terminal events were correlated. The development of group sequential methods for this nonparametric statistic will improve
the current arsenal of statistical methods for clinical trial monitoring.
The remainder of this manuscript is organized as follows. Section 2 defines notation required to repurpose traditional recurrent

events data available at analysis time s into a series of censored longitudinal times-to-first event in regularly spaced short-term
(length �) follow-up windows for each patient. Section 3 briefly reviews the Tayob and Murray two-sample testing procedure
in the case of a single analysis. Section 4 extends methodology to the group sequential setting. Section 5 describes simulated
operating characteristics of our method compared to that of Cook and Lawless2. We demonstrate the method using data from
the Azithromycin in COPD Trial. Discussion follows in Section 7.

2 NOTATION

We borrow notation from Tayob and Murray1, additionally embedding a ’calendar time’ scale parameter, s, to allow for terms
that change according to analysis time. For simplicity, we assume that s indexes time from initiation of the overall study rather
than an actual calendar date. Patient entry times and interim analysis times are both described on this time scale. A separate
’study time’ scale, indexed by t, denotes time from a participant’s entry to the study. Participants’ time at risk, duration of
follow-up as well as times to recurrent and terminating events are measured on this time scale.
We temporarily submerge notation corresponding to treatment group g, initially focusing on the one-sample case. Suppose

i = 1,… , N patients enter a clinical trial at calendar times E1, E2, ..., EN . Interim analyses of accumulated data are planned at
calendar times, s = s1, s2, ..., sK . Let n(s) =

∑N
i=1 I(Ei ≤ s) index the number of accrued individuals at interim analysis time,

s, with n(s) = N for s ≥ max(E1,… , EN ).
Recurrent events for individual i occur at times Ti1 < Ti2 < ⋯ < TiJi−1 on the study time scale, with a terminating event at

time TiJi . For each individual, i, Vi is a loss-to-follow-up time measured from study entry. The censoring random variable that
also incorporates administrative censoring, Ci(s) = min(Vi, s − Ei), updates at each analysis time, s. Recurrent and terminal

This article is protected by copyright. All rights reserved.



3

events for participant i are subject to independent censoring by Ci(s). However, an arbitrary dependence structure is allowed
between all events Tij1 and Tij2 , j1 ≠ j2, taken from patient i. In particular, the multivariate distribution of gap times for each
patient i, {Ti1, Ti2 − Ti1,… , TiJi−1 − TiJi−2}, is not constrained to an independent covariance structure.
Traditionally observed data for patients accrued prior to analysis time s is recorded as Xij(s) = min{Tij , Ci(s)}, j =

1,… , J̃i(s) and �ij(s) = I{Tij ≤ Ci(s)}, j = 1,… , J̃i(s), where J̃i(s) ≤ Ji is the number of observed event times. However,
the Tayob and Murray statistic reorganizes the observed data into �-length, potentially overlapping, follow-up windows starting
at regularly-spaced study times t ∈ {t1, t2,… , tb} with t1 = 0 and b equal to the ceiling of s∕a, so that tb does not exceed the
available follow-up at analysis time s. Within each �-length follow-up window, the first �-restricted time-to-event is recorded,
along with the corresponding censoring indicator.
For each individual i, a notational bookkeeper that updates at each analysis time s, �i(s, t) = min{j = 1,… , J̃i(s) ∶ Xij(s) ≥

t}, indexes the time-to-first-event in a follow-up window starting at t from the original sequence of observed events. Using this
index simplifies notation for the time-to-first event in this window at analysis time s,Xi(s, t) = Xi�i(s,t)(s)−t and its corresponding
failure indicator �i(s, t) = �i�i(s,t)(s).
Tayob and Murray discuss advantages of this data restructuring at length. In short, a rather complex correlated gaptime data

structure that is subject to dependent censoring by Ci(s) is converted to a well-behaved longitudinal outcomes dataset that is
subject to independent censoring by Ci(s). One feature that emerges as a consequence of this data restructuring is the possibility
that a recurrent event is tagged in more than one follow-up window for analysis. Hence careful attention to the correlation
structure that takes this additional complexity into account is implemented. There is also the possibility of a recurrent event
being excluded from the analysis, which can be mitigated by more frequently spaced window start times, t.
In a special case with exponentially distributed gap times between events, Xia andMurray15 quantified the average proportion

of recurrent events captured in at least one follow-up window when traditional recurrent event data is restructured in the manner
of Tayob and Murray. This proportion approaches one as the equal spacing between follow-up window start times, a = tj −
tj−1, j = 2,… , b, approaches zero. However, the computational burden associated with very small a led to their recommendation
that a be a fraction of the anticipated mean recurrent event time in the control group. In particular, their rule of thumb suggested
a = 1∕2 or 1∕3 of the control group mean recurrent event time would tend to capture 80% and 90% of the events, respectively,
in the case of exponentially distributed gap times between events.
To solidify some of the notation presented above, consider Figures 2 and 3. In Figure 2, which is indexed by study time,

different spacing of follow-up windows (a = 50, 100 and 200 days) are shown for the example COMET patient previously
mentioned in the introduction. The choice of a = 200 days results in two observed events being included in the analysis, the
DLCO decline at 105 days and the acute exacerbation at 298 days. However the death at 331 days is overlooked in the analysis
since it is not the first event to be observed in either of the follow-up windows starting at zero or 200 days. Both a = 50 and
a = 100 days capture all three events in the analysis.
Moving forward with a = 100 in Figure 3, and superimposing calendar time s in addition to study time t, we see the patient

entering the study atEi = 15 days from the initiation of the study in calendar time. The first interim analysis is conducted at s1 =
157 days in calendar time, at which time only a single event has been observed at Ti1 = 105 days from study entry. The patient’s
data is administratively censored at Ci(157) = 142 days. The traditional version of the recurrent events data at this analysis time
is {[Xi1(157) = 105, �i1(157) = 1]; [Xi2(157) = 142, �i1(157) = 0]}, so that J̃i(157) = 2. At analysis time s1 = 157 days, the
longitudinal data structure imposed by Tayob and Murray has two data triplets from follow-up windows starting at t = 0 and
t = 100: {�i(157, 0) = 1, Xi(157, 0) = 105, �i(157, 0) = 1} and {�i(157, 100) = 1, Xi(157, 100) = 5, �i(157, 100) = 1}, so that
the Ti1 = 105 event is captured as the first observed event in each of these two follow-up windows.
At the second analysis time at s2 = 369 days, administrative censoring for patient i is updated to Ci(369) = 354. The

traditional recurrent events data becomes {[Xi1(369) = 105, �i1(369) = 1]; [Xi2(369) = 298, �i2(369) = 1]; [Xi3(369) =
331, �i3(369) = 1]}, so that J̃i(369) = 3. The restructured longitudinal dataset includes data from 4 follow-up windows starting
at t = 0, 100, 200 and 300 yielding the data triplets {[�i(369, 0) = 1, Xi(369, 0) = 105, �i(369, 0) = 1]; [�i(369, 100) = 1,
Xi(369, 100) = 5, �i(369, 100) = 1]; [�i(369, 200) = 2,Xi(369, 200) = 98, �i(369, 200) = 1]; [�i(369, 300) = 3,Xi(369, 300) =
31, �i(369, 300) = 1]}.
We now define the counting and at risk processes corresponding to the restructured longitudinal dataset at interim analysis

time, s. For a follow-up window starting at time t, u indexes time from t in that window. For any individual i with Ei < s,
Ni(s, t, u) = I{Xi(s, t) ≤ u, �i(s, t) = 1} is the event counting process for the time to first event in the follow-up window
starting at time t. The corresponding at risk process is Yi(s, t, u) = I{Xi(s, t) ≥ u}. Let N(s, t, u) =

∑n(s)
i=1 Ni(s, t, u) and

Y (s, t, u) =
∑n(s)
i=1 Yi(s, t, u) sum these processes across individuals entered by interim analysis time s.
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At interim analysis s, let Ni(s, u) =
∑b
j=1Ni(s, tj , u) count the observed times-to-first-event across the b follow-up windows

attributed to individual i that are seen prior to window time u; the corresponding at risk process is Yi(s, u) =
∑b
j=1 Yi(s, tj , u).

Pooling time-to-first event data across all follow-up windows and all individuals observed at interim analysis time s, we define
N(s, u) =

∑n(s)
i=1 Ni(s, u) and Y (s, u) =

∑n(s)
i=1 Yi(s, u).

It will be convenient to also index hazard functions according to the three time indices {s, t, u}. At analysis time s, let hazard
function

�(s, t, u) = lim
Δu→0

[Pr{u ≤ Xi(s, t) < u + Δu, �i(s, t) = 1|Xi(s, t) ≥ u}∕Δu].

The index, s, can be dropped as superfluous in the first term, i.e., �(s, t, u) = �(t, u). This is not true for the hazard function cor-
responding to the mixture distribution of times-to-first event contributed from the various follow-up windows from individuals
at analysis time s, �W (s, u).

�W (s, u) =

∑b
j=1 �(s, tj , u)Pr{Xi(s, tj) ≥ u}
∑b
l=1 Pr{Xi(s, tl) ≥ u}

.

Because �W (s, u) is a function of Pr{Xi(s, t) ≥ u}, this term can potentially change as more follow-up information accumulates
at later interim analyses.

3 NONPARAMETRIC TWO-SAMPLE TESTS FOR RECURRENT EVENTS AND
TERMINAL EVENTS AT SINGLE ANALYSIS TIME

In this section, we review the Tayob and Murray test statistic, introducing additional notation for when a single analysis is
performed at, say, calendar time s. Subscripts g = 1, 2, indicate treatment group when used with notation from the last section.
Throughout the following, random variables from different treatment groups are assumed to be independent of one another. Later
in section 4, we extend these methods to the case where more than one analysis is performed at calendar times s1, s2,… , sK in
the group sequential clinical trial setting.
The estimated overall �-restricted mean time-to-first-event for treatment group g based on the restructured longitudinal dataset

available at analysis time s is

�̂g(s, �) =

�

∫
0

exp

⎧

⎪

⎨

⎪

⎩

−

u2

∫
0

dNg(s, u1)
Yg(s, u1)

⎫

⎪

⎬

⎪

⎭

du2,

which consistently estimates the mean of this mixture distribution of �-restricted times-to-first-event, i.e., �g(s, �) =
∫ �
0 exp

{

− ∫ u2
0 �Wg (s, u1)du1

}

du2.
Let �g(s) be the proportion of individuals in group g at analysis time s, with consistent estimate �̂g(s) = ng(s)∕{n1(s)+n2(s)}.

At analysis time, s, the Tayob and Murray statistic tests the null hypothesis,H0 ∶ �1(s, �) = �2(s, �), using

T (s) =

√

n1(s)n2(s)
n1(s) + n2(s)

{�̂1(s, �) − �̂2(s, �)},

which underH0 converges asymptotically to a mean zero Normal distribution with variance

�2(s)�21(s) + �1(s)�
2
2(s),

where

�̂2g (s) =
ng(s)
∑

i=1
[zi{�̂g(s, �)} − z̄{�̂g(s, �)}]2∕[ng(s) − 1],

zi{�̂g(s, �)} =
b
∑

l=1
zil{�̂g(s, �)},

z̄{�̂g(s, �)} =
ng(s)
∑

i=1
zi{�̂g(s, �)}∕ng(s)
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and zil{�̂g(s, �)} =
�

∫
0

exp

⎧

⎪

⎨

⎪

⎩

−

u2

∫
0

dNg(s, u1)
Yg(s, u1)

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

u2

∫
0

dNgi(s, tl, u1) − Ygi(s, tl, u1)
dNg(s,u1)
Yg(s,u1)

Yg(s, u1)∕ng(s)

⎫

⎪

⎬

⎪

⎭

du2. (1)

An approximate 1 − � level confidence interval for the average treatment difference in �-restricted times-to-first-event,
�1(s, �) − �2(s, �), becomes

{�̂1(s, �) − �̂2(s, �)} ±1−�∕2 ×
√

�̂21(s)∕n1(s) + �̂
2
2(s)∕n2(s),

where 1−�∕2 is the 100 × (1 − �∕2)% quantile of the standard Normal distribution. For finite sample sizes and a single planned
analysis at time s, the standardized test statistic

T̃ (s) =
T (s)

√

�̂2(s)�̂21(s) + �̂1(s)�̂
2
2(s)

=

√

n1(s)n2(s)
n2(s)�̂21(s) + n1(s)�̂

2
2(s)

{�̂1(s, �) − �̂2(s, �)}

follows an approximate Normal(0,1) distribution, with critical values of ± 1.96 conferring an overall type I error of 5%. In
the special case where only the first time-to-event is used in the analysis, a test statistic and corresponding group sequential
monitoring procedure was developed by (author?) 7 . However, there is no group sequential method available for the setting
with recurrent events available, which is what we develop in the following section.

4 MORE THAN ONE ANALYSIS AT CALENDAR TIMES, S1, S2,… , SK

In this section, we extend methodology for the Tayob and Murray statistic to the group sequential setting. At each analysis time
s the standardized test statistic, T̃ (s), is evaluated and a decision to either end the trial early or continue is made based on upper
and lower critical values, cL(s) and cU (s), respectively. With K > 1 planned analyses, critical values

{

cL(s1), cU (s1)
}

,… ,
{

cL(sK ), cU (sK )
}

corresponding to test statistics, T̃K =
{

T̃ (s1),… , T̃ (sK )
}

, must be carefully chosen to preserve an overall
type I error of � 16,17. Type I error spending functions are the most common approach for designating type I error to be used
at interim analyses so that no more than � type I error is used throughout the clinical trial18,19. The O’Brien-Fleming (OF)
spending function, �OF (
) = 2 − 2Φ(1−�∕2∕

√


), proposed by Lan and DeMets is the most common spending function used
in practice, although the only requirement for a spending function, �(
), is that it be monotonically increasing over (0, �) as 

increases from zero to one.
Information-based type I error spending takes the spending function parameter, 
 , to be the proportion of statistical information

available at interim analysis time sk relative to the information that will be available at the final analysis at time sK , k = 1,… , K .
To our knowledge, the two-sample logrank test is the only group sequentially monitored statistic for time-to-event data where
this information proportion reduces to a simple calculation; in this case 
 is a ratio of observed events at sk to the number
of events used in powering the study. For the Tayob and Murray statistic, the proportion of information at analysis time sk is
V arT (sK )∕V arT (sk), where V arT (sK ) can be estimated via simulation using distributional and design assumptions used in
powering the trial.
A common simplistic surrogate for statistical information is to use the proportion of calendar time that has passed at analysis

time s relative to the planned duration of the trial. The method for estimating 
 at each analysis time may affect study power, but
typically to a less extent than the choice of spending function20. For simplicity, we use the calendar time surrogate for statistical
information in our simulation and example sections. The type I error level is maintained for any spending function where at the
final analysis, 
 = 1.
Derivation of critical values for the ktℎ interim analysis also requires knowledge of the multivariate distribution of T̃k =

{

T̃ (s1),… , T̃ (sk)
}

, (k = 1,… , K). Let Σk be the k × k covariance matrix for T̃k, so that the kst1 , k
nd
2 element �k1k2 of this

matrix is Cov
{

T̃ (sk1), T̃ (sk2)
}

, k1, k2 ≤ k. Because each test statistic has already been standardized to have variance 1.0, Σk
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is also a correlation matrix for T̃k. In Appendix A of Supplementary Materials, we prove that the multivariate distribution of
T̃k is a mean zero Normal distribution with elements �k1k2 of its covariance matrix Σk that can be estimated with

�̂k1k2 ={�̂2(sk1)�̃
2
1(sk1) + �̂1(sk1)�̃

2
2(sk1)}

− 1
2 {�̂2(sk2)�̂

2
1(sk2) + �̂1(sk2)�̂

2
2(sk2)}

− 1
2

×
2
∑

g=1

√

�̂3−g(sk1)�̂3−g(sk2) ̂g(sk1 , sk2)
( ng(sk1 )

∑

i=1
{ng(sk1) − 1}

−1

×
[

z̃i{�̂g(sk1 , �)} − ̄̃z{�̂g(sk1 , �)}
] [

zi{�̂g(sk2 , �)} − z̄{�̂g(sk2 , �)}
]

)

(2)

where �̂g , �̂2g (sk2), zi{�̂g(sk2 , �)} and z̄{�̂g(sk2 , �)} have been defined in Section 3, and are estimated here using data available
at s = sk2 . We also define  ̂g(sk1 , sk2) = ng(sk1)∕ng(sk2) and

z̃ij{�̂g(sk1 , �)} =

�

∫
0

exp{−

u2

∫
0

dNg(sk1 , u1)
Yg(sk1 , u1)

}

[ u2

∫
0

⎧

⎪

⎨

⎪

⎩

b
∑

l=1

⎛

⎜

⎜

⎝

ng(sk2 )
∑

i=1
I{Tgi ≥ u1 + tl}

ng(sk1 )
∑

i′=1
I{Cgi′(sk1) ≥ u1 + tl}

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj , u1)

{

dNgi(sk2 , tj , u1)
Ygi(sk2 , tj , u1)

−
dNg(sk1 , u1)
Yg(sk1 , u1)

}]

du2.

So that we replace the zij{�̂g(sk1 , �)} terms in �̂2g (sk1), zi{�̂g(sk1 , �)} and z̄{�̂g(sk1 , �)} with z̃ij{�̂g(sk1 , �)} to obtain �̃2g (sk1),
z̃i{�̂g(sk1 , �)} and ̄̃z{�̂g(sk1 , �)}. The purpose of these latter substitutions is to estimate quantities that are not parameterized for
a particular analysis time s with the more complete data available at the latter analysis time, sk2 .
Estimation of null hypothesis percentiles involved in critical value calculations can be accommodated using either numer-

ical integration techniques applied to the joint null hypothesis distribution or simulation techniques based on multivariate
replicates from this joint distribution. For instance, suppose an OF spending function is chosen with spending function param-
eters (
1,… , 
k−1) at analysis times (s1,… , sk−1). At analysis time sk, the upper critical boundary, cU (sk), is based on the
1− �OF (
k)−�OF (
k−1)

1−�OF (
k−1)
percentile of the null hypothesis conditional distribution of |T̃ (sk)| given critical boundaries were not crossed

at prior interim analyses by T̃ (s1),… , T̃ (sk−1). For symmetric critical boundaries we use cL(sk) = −cU (sk).
In simulation and example sections of this manuscript, critical boundaries are simulated. In particular, for critical values at

analysis time sk, we generateH = 1 million mean zero multivariate normal iterates,
{

Zℎ(s1),… , Zℎ(sk)
}

, ℎ = 1,… ,H , with
correlation (covariance) matrix Σk. Among the subset, (sk−1), of these iterates that fail to reject the null hypothesis at previous
analyses from s1 to sk−1, we estimate cU (sk) = −cU (sk) with the 1 − �OF (
k)−�OF (
k−1)

1−�OF (
k−1)
percentile of |Zℎ(sk)|. In our simulations,

H = 1 million successfully estimated the very small percentiles used by the OF spending function.

5 SIMULATIONS

Simulations were conducted to compare operating characteristics in the group sequential setting for (1) the Tayob and Murray1

(TM) test using our proposed methodology with � = 12 months, (2) the Cook and Lawless2 (CL) cumulative mean test and (3)
a logrank (LR) analysis of the first time-to-event. Each tabulated result is based on 1000 iterations of the simulation approaches
described below.
We assume a 48-month clinical trial with annual interim analyses scheduled at s = {12, 24, 36, 48} months from the start of

the study. One hundred patients per treatment group are enrolled, half at baseline, with the remainder accrued uniformly over the
first 24 months. Participants are administratively censored according to the analysis time, with no additional loss-to-follow-up
otherwise. An O’Brien-Fleming (OF) type I error spending function is used to determine group sequential stopping rules with
an overall type I error of 0.05, where the spending function parameter, 
, was taken to be the proportion of calendar time used
by analysis time s of the planned 48 months.
Within each patient, we generate a dependence structure between events using a Gaussian copula approach21. This approach

induces correlation between gap times Tij − Tij−1 for j = 2,… , Ji − 1 as well as correlation between each gap time and
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the terminating event TiJi . We first simulate mean zero multivariate normal random variables {Ui1, Ui2,… , Ui200, Vi}, with
covariance matrix satisfying V ar(Vi) = V ar(Uij) = 1 for j = 1,… , 200, with �1 parameterizing the correlation between Uij
and Uij′, for j ≠ j′, and �2 parameterizing the correlation between Uij and Vi for j = 1,… , 200. In addition to the setting with
independence between all recurrent and terminal events (�1 = �2 = 0), low (0.3), medium (0.5) and high (0.7) values of �1 and
�2 are explored. We then use the probability integral transform method to convert the multivariate normal random variables
to correlated Uniform(0,1) random variables and then to correlated exponential random variables. The simulated exponentially
distributed random variable originating from Vi becomes the terminal event and the remaining exponentially distributed events
become gap times between recurrent events, with Ji−1 counting the recurrent events prior to the terminating event for individual
i; simulated events that occur beyond the terminal event for a participant are discarded.
For the control group, recurrent events are simulated to occur every 3 months on average, subject to a terminal event with

a mean of 36 months. Following the rule of thumb from Xia and Murray (2018)15 for this control group event rate, follow-up
windows for the TM method are initiated every 1.5 months so that t1 = 0, t2 = 1.5, t3 = 3, t4 = 4.5,… , tb = s months. The
experimental group experiences a treatment benefit in terms of both the terminal and recurrent event rates, with recurrent events
occurring every 4.3 months on average and a mean time to terminating event of 51.4 months.
Under the null hypothesis, for all group sequentially monitored test statistics and all correlation structures, simulated overall

type I error was within expected simulation error of the desired 0.05 level. With independently generated event times, overall
type I errors were 0.054, 0.054 and 0.041 for the group sequentially monitored TM, CL and LR statistics, respectively. Table 1
displays overall type I error simulation results assuming different combinations of low, medium and high correlation between
an individual’s event times.
Cumulative power for detecting the alternative hypothesis at each analysis time, in the special case of independently generated

recurrent and terminal event times, is shown in Appendix B Figure S1 of Supplementary Materials. Simulated power for the
group sequentially monitored CL statistic (triangles) was highest in this case, followed closely by the TM statistic (circles) and
distantly by the LR method (+).
For correlated recurrent and terminal event settings simulated assuming the alternative hypothesis, Figure 4 displays power for

group sequentially monitored TM, CL and LR statistics. Panels moving from top to bottom in this figure correspond to increasing
levels of correlation between recurrent events in an individual. Panels moving from left to right in this figure correspond to
increasing levels of correlation between recurrent and terminal events. For any particular panel, simulated power is displayed
on the vertical axis; the horizontal axis is interim analysis time (s = 12, 24, 36 or 48 months). For each of these correlation
structures, the power of the group sequentially monitored TM statistic approximates or exceeds the power of the CL and LR
methods.
The group sequentially monitored logrank test only uses the first time-to-event in each individual, and therefore is not affected

by correlation between event times as simulated in the various panels of Figure 4. Because the logrank test’s simulated power
dynamic is similar from panel to panel of Figure 4, merely reflecting simulation variability across the scenarios, it is helpful in
spotting changes in the behavior of the group sequentially monitored TM and CL methods. The power dynamics of these latter
group sequentially monitored statistics change according to the degree of statistical information gained from the additionally
incorporated recurrent and terminal events.
For the TM statistic, only modest changes in power dynamics are seen within any row of Figure 4, likely because of the

small relative role terminal events (4.6-8.1% of simulated events) play in these analyses compared to the role of the recurrent
events (91.9-95.4% of simulated events). As correlation between recurrent events increases, the statistical information in the
longitudinally constructed censored event times used by the TMmethod decreases. Hence the power of the TM statistic decreases
when moving from top to bottom panels in Figure 4.
The power dynamic of the group sequentially monitored CL statistic is strongly impacted by the correlation structure between

events. Whereas in Supplemental Figure S1 (with all independent events), the CL test statistic has the largest power of the
methods shown, power for the CL statistic erodes substantially as correlation between recurrent events increases. In the bottom
row panels of Figure 4, the LR test outperforms the CL test even though the LR test is only using the first observed event-time
per individual. Upon further exploration of the simulated CL test statistics, the explanation for this power dynamic rests in the
variability of the number of events per individual that the CL test statistic is built from. The patient to patient variability in the
observed number of events increases as the correlation between recurrent events increases, causing the variance of the mean
number of cumulative events to increase, and the CL test to lose power. Intuitively, increasing correlation drives the total number
of observed events higher in patients with a tendency for short times-to-event. Similarly, increasing correlation drives the total
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number of observed events lower for individuals with a tendency towards long times-to-event. Taking both of these patterns into
account, the range of the observed number of events widens as correlation between events increases.
Panels in the middle row of Figure 4 show power for the CL test improving from the worst of the three methods (in the

case with medium correlation between recurrent events and low correlation between recurrent and terminal events) to power
nearly identical to the TM method (in the case with medium correlation between recurrent events and high correlation between
recurrent and terminal events). Moving left to right the variability in the number of observed events per individual is stabilizing
in this row of figures. Those with a tendency towards short times-to-event are experiencing a terminal event before their total
count gets very high. Similarly, those with a tendency towards longer times-to-event are experiencing longer times to accumulate
these event counts before a terminal event. A similar pattern is observed, to a lesser extent, in the lower right panel of Figure 4,
where the power of the CL method increases a bit compared to its power dynamics as shown in panels to its left.
Additional simulation results are available in Appendix C of Supplementary Materials. The special case with a single time-to-

event, studied via the censored longitudinal framework, is shown for comparison in Figure S2. Group sequential monitoring in
this special case was previously developed by Xia et al.7. When considering only single time-to-event group sequential methods,
Xia et al.7 gives a good summary of pros and cons to using the censored longitudinal data paradigm for analyses. When recurrent
event data is available, the analyses that use this extra information outperform methods that use only a single time-to-event.
In Figure S3, we evaluate the impact of choosing different window lengths, �, on the performance of our group sequentially
monitored test statistic. In this figure, the choice of � shows minimal impact on study power. We recommend that � be chosen to
give interpretations of interest particular to the research setting where the method is applied. For example, � = 6 or 12 months
would address the average recurrence-free time during those respective lengths of follow-up.

6 EXAMPLE

The Azithromycin in COPD Trial22 randomized 1117 patients with a history of acute exacerbations to 250 mg daily of
azithromycin or placebo. The original group sequential monitoring plan for this study was based on a logrank analysis of the
time-to-first acute exacerbation or death, with few of these events anticipated to be deaths (around 4.4% of enrolled patients at
approximately one year of follow-up). Interim analyses were conducted every 6 months with overall type I error for the trial
controlled via an O’Brien-Fleming spending function. Conditional power analyses were additionally provided to the Data and
Safety Monitoring Committee. To make this example more interesting, we restrict attention to 381 patients accrued during the
first year of follow-up. In constructing the TM statistic, we use � = 6 months and, following Xia and Murray (2018)15, initiate
follow-up windows every 2 months (approximately one third of the historic mean time to exacerbation in this population).
Figure 5 shows the estimated days free of acute exacerbation or death per 6-months of follow-up, based on the TM statis-

tic, at each of the interim analysis times. Group sequential boundaries based on the O’Brien-Fleming spending function
are superimposed with an overall type I error of 5%. These boundaries are presented on the scale of the observed effect
size needed for the trial to stop early, which can be calculated as cU (s)

√

�̂21(s)∕n1(s) + �̂
2
2(s)∕n2(s) for upper bound and for

cL(s)
√

�̂21(s)∕n1(s) + �̂
2
2(s)∕n2(s) lower bound, where cU (s) and cL(s) are critical values for the standardized test statistics as

described in Section 4. A recommended stopping boundary for safety with spending function, �JT (
) = 0.2
1.5, is superimposed
in Figure 5. This boundary is a special case of a Jennison and Turnbull23 boundary that we have personalized to stop at the
first interim analysis if the standardized test statistic exceeds a 1.96 critical boundary in favor of the placebo group. The overall
probability of stopping for a safety signal based on this boundary is 20% under the null hypothesis of no treatment effect.
The TM test statistic recommends stopping the trial in favor of the azithromycin arm at the 3rd interim analysis (18 months

into the study). For comparison, standardized TM, CL and logrank test statistics and corresponding stopping boundaries are
displayed in Figure 6. The CL stops at the 4th interim analysis (2 years into the study) with 59 additional acute exacerbations
and 4 additional deaths observed compared to the TM-based group sequential analysis. The logrank analysis of time-to-first
event does not detect a significant benefit of azithromycin in this subset of patients from the original study.

7 DISCUSSION

In this paper, we develop a new nonparametric tool for group sequentially monitoring clinical trials based on recurrent event
outcomes subject to a terminal event. Our method is appropriate and robust for events that are correlated within individual or
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for completely independent event times. Treatment effects observed across analysis times are simple to interpret. In addition to
plots showing stopping boundaries based on standardized test statistics, we display observed data and stopping boundaries on
the scale of the needed effect size for the trial to stop.
Statistical literature for nonparametric group sequential monitoring of clinical trials is currently dominated by single time-to-

event analyses. In the recurrent events setting, many researchers still design their trials using only the first time-to-event because
of the availability of software, or in some cases because of concern that strong assumptions are required for recurrent event
analyses to be valid.
This, of course, is a shame because (1) there is quite a nice existing nonparametric method for group sequential monitoring of

recurrent events data available from Cook and Lawless (1996)2 that is being under-utilized in clinical trial design in our opinion.
This method is also appropriate for correlated events within an individual and performs particularly well when events from the
same individual are independent. (2) Clinical trial designs that do not take advantage of events that occur after the first observed
event are statistically inefficient, which has financial implications for the overall cost of a clinical trial.
In developing group sequential methodology relating to the Tayob and Murray statistic, we hope to enrich needed literature

in this area. Our method performs particularly well when events times within an individual are correlated, and is competitive
with the Cook and Lawless method when events are independent.
With continually improving treatments for those with chronic disease, trials are becoming more dependent on surrogate

outcomes and combined endpoints rather than mortality alone. Many of these events are recurrent in nature. This trend is likely
to continue as lifetimes are successfully extended and as time pressure for faster drug approval increases.We strongly believe that
in settings of chronic disease, clinical trial design and analysis should move towards recurrent events methods that incorporate a
mixture of disease progression events over time; that this should be the default design choice in understanding a patient’s disease
burden.
Choice of progression events to include in the (recurrent) composite endpoint must be done with care, as the TM statistic

currently gives similar importance to each type of progression when assessing treatment benefit. A future research direction is
how one might take into account the very real scenario where progression events differ in severity. Of course, in settings where
serious mortality rates continue to be seen, mortality analyses should continue as the preferred analysis for making therapeutic
recommendations. However, in settings where mortality is less commonly seen, our method is an attractive choice for pursuing
therapies that extend time free from progression events.
In any clinical trial setting, the treatment effect may change over time; this is a common scenario that a group sequential

monitoring tool should be able to address. The TM statistic is based on restricted means with no expectation that the treatment
differences will follow any particular parametric or semiparametric pattern over time. In the original Tayob and Murray (2014)1
article, simulations show how the statistic performs when there are delayed treatment effects, short-term treatment effects and
Weibull distributed crossing hazards. Supplementary materials of the Tayob Murray article (Figure 2) show how one might
graphically display �−restricted means over the follow-up period when there are crossing hazards. These graphical displays
could be provided to data monitoring committees along with the group sequential boundaries we provide in this manuscript.
We end this manuscript with a reminder that when reporting an observed treatment effect or confidence interval from a

group sequentially monitored trial that stopped early for perceived benefit, the estimate of treatment benefit from the trial may
be inflated in finite samples. While several authors have pursued bias correction methods, for example Tsiatis et al. (1984)24,
Whitehead (1986)25, Emerson and Fleming (1990)26, Liu and Hall (1999)27, Molenberghs et al. (2014)28, others have argued
that higher mean squared error of bias-corrected estimates make bias correction unappealing (and unnecessary) in practice29,
particularly if using a conservative O’Brien-Fleming type I error spending approach.
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FIGURE 3 Notation for An Example Individual, with Random Variables Given in Detail.
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FIGURE 4 Cumulative Power at Each Analysis Time by Varying Levels of Correlation Between Recurrent Events (Rows) and
Correlation between Recurrent and Terminal Events (Columns).

(TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test.)
† Data is not shown for the case with low �1 and high �2 since this covariance structure was difficult to construct. Intuitively, it
is difficult to have gap times weakly correlated with one another and at the same time all highly correlated with the terminal
event time.
∗ Low, medium to high correlations between recurrent events are generated from �1 = 0.3, 0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated from �2 = 0.3, 0.5 and 0.7, respectively.
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TABLE 1 Overall type I error by varying levels of correlation between recurrent events (rows) and correlation between recurrent
and terminal events (columns).

Correlation between
recurrent and terminal events&

Test Low Medium High
TM 0.053 0.050

Low CL 0.050 0.050 NA†
LR 0.048 0.041

Correlation TM 0.055 0.058 0.044
between Medium CL 0.039 0.045 0.038

recurrent events∗ LR 0.051 0.055 0.057

TM 0.058 0.056 0.051
High CL 0.040 0.048 0.045

LR 0.054 0.048 0.058

(TM: Tayob and Murray (2014) test; CL: Cook and Lawless (1996) test; LR: log-rank test.)
† Data is not shown for the case with low �1 and high �2 since this covariance structure was difficult to construct. Intuitively, it
is difficult to have gap times weakly correlated with one another and at the same time all highly correlated with the terminal
event time.
∗ Low, medium to high correlations between recurrent events are generated from �1 = 0.3, 0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated from �2 = 0.3, 0.5 and 0.7, respectively.
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