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ENUMERATION OF SELF-CONVERSE DIGRAPHS

F. HABARY and E. M. PALMER

How many digraphs are isomorphic with their own converses? Our
object is to derive a formula for the counting polynomial dp'(x) which has
as the coefficient of afl, the number of " self-converse " digraphs with
p points and q lines. Such a digraph D has the property that its converse
digraph D' (obtained from D by reversing the orientation of all lines)
is isomorphic to D. The derivation uses the classical enumeration theorem
of Polya [9] as applied to a restriction of the power group [6] wherein the
permutations act only on 1-1 functions.

1. Self-converse digraphs. A directed graph D (or more briefly a digraph)
consists of a finite set V of points vl!v2, ...,vp together with a prescribed
collection of ordered pairs of distinct points of V; see [5]. Each such
ordered pair (u, v) is called a directed line and is usually denoted by uv.
The point u is adjacent to v and v is adjacent from u. The converse D' of D
is the digraph with the same set of points as D and in which u is adjacent
to v if and only if v is adjacent to u in D. A digraph and its converse are
shown in Fig. 1.

\> A

Fig. 1.

If D and its converse 1)' are isomorphic, written Dc^D', then D is
called self-converse. All of the self-converse digraphs with three points are
shown in Fig. 2.

Fig. 2.
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Thus the counting polynomial which enumerates these self-converse
digraphs is

ds' (x) =

The complement D of D has the same set of points as D and in it u
is adjacent to v if and only if u is not adjacent to v in D. The next result,
which appears in [3], is simple but useful.

THEOREM 1. (D)' = (D1), i.e., the converse and the complement of a
digraph commute.

An immediate consequence of Theorem 1 accounts for the symmetry of
the coefficients of dp'(x).

COROLLARY la. A digraph is self-converse if and only if its complement is.

2. Restriction of the power group. Let A be a permutation group of
order | A | acting on the set X of d objects. For each permutation a. in A,
letjk(a) be the number of cycles of length k in the disjoint cycle decomposi-
tion of a.

The cycle index Z(A) of A is the polynomial in the variables av a2, . • •,  ad

denned by

\-A\ aeA k=l

For any polynomial h(x) in the variable x, we denote by ZlA, h(x)\
the polynomial obtained from Z(A) on replacing each ak by h(xk).

We also find the next formula useful (see [7]):

Ji(a*)=S«/.(a). (2)
s\k

Let B be another permutation group acting on the set Y of e objects.
Then as defined in [6], the power group BA acts on Yx, the functions from
X into Y. For each pair of permutations a in A and /3 in B there is a unique
permutation, written (a; /3), in BA such that for each function / in Yx

and all x in X,
(a; flf(x)=ff(*x). (3)

Suppose d ̂  e and denote by B*A the permutation group obtained from
BA by restricting its permutations to the 1-1 functions in Yx. Let m
be the degree of B*A, so that m = e(e— l)...(e — d+ 1).

It is easy to show that the order, | B*A|, of B*A is \B\ \A\ unless A
and B are both S2. In this case /S2*

sa is also 82.
Let the cycle index of B*A be the polynomial in the variables

cx,ct, ...,cm given by

2
(a; p)el
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The formulas which give the numbers jk(a; /?) in terms of jk(at) and

JkiP) a r e

M*; j8) = ft (kW>'It'  (ifc(j8) -«)), (4)
fc=l \ s=0 V ' /

where by convention, the product over s is 1 if  jk(«.) = 0; and for k > 1.

j fc(a; 0)= -L 2> (—) ^(a-; ,8s), (5)
K sift: \ S /

and yu. denotes the familiar Mobius function ; see Rota [11] for a modern
treatment.

Now we justify formula (4). Suppose/is a 1-1 function in Yx which is
fixed by the permutation (a; j3). Let zk be any cycle of length k in the
disjoint cycle decomposition of a. Since / is fixed by (a; j8), / must map
the elements permuted by zk onto the elements permuted by some cycle zs

in the disjoint cycle decomposition of /?. Since/is 1—1, we must have k = s,
and hence ^(oc) ^jk(fi) for each k. Also there are exactly k ways in which
/ can map the elements of zk onto the k elements permuted by the cycle
of j8. The elements permuted by another cycle of length k in a must be
mapped by / onto the elements of one of the remaining jk(fi) — 1 cycles
of the same length in j8, again in one of k ways. Thus the contribution to
jifa; jS) of the cycles of length k is

Formula (4) follows immediately; it is implicit in de Bruijn [1].
Since it is easily verified from the definition of (a; (8) that

(afc; fik)= (a; j3)fc, (2) may be used to express ^(oc*; fik) in terms of the
numbers js(*x;  j3) with s\k, and on applying the Mobius inversion formula
[11], we obtain (5). The expressions j x(as; j8s) occurring in (5) can be
evaluated with the aid of (4).

3. Enumeration of digraphs. Since we will use the counting polynomial
dp(x) which enumerates digraphs, we give a brief explanation of the
formula derived in [2] for dp(x).

For convenience, let X={1, 2, ...,p}. The set of ordered pairs (i,j)
of distinct elements of X is denoted by Xl2]. Let the symmetric group of
degree p, denoted by Sp, act on X. The reduced ordered pair group Sp

l2\
defined in [4], acts on Xm, and each of its permutations is induced by a
permutation in Sp. That is, for each permutation a in Sp, if a' is the
induced permutation in Sp

[2\ then for all (i, j), a.'(i, j) = (ai, a.j).
An application of Polya's theorem gives the next theorem, which was

presented in [2], together with an explicit formula for Z(SJ®).
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THEOREM 2. The counting polynomial dp(x) which enumerates digraphs
on p points is

(6)

4. Enumeration of digraphs up to conversion. Two digraphs Dx and Z>2

with the same set of points are equivalent up to conversion if  either D^D^
or Z Y s D2. Our objective here is to find a formula for cp(x), the counting
polynomial which enumerates digraphs with p points up to conversion.
To do this, we must find, as in the case for digraphs, the appropriate
permutation group to which Polya's theorem may be applied.

Let $2 act on {1, 2} and consider the power group Sp
s  ̂ acting on

X^1'2>, the functions from {1, 2} into X. Observe the natural correspondence
between the elements of X[21 and the 1-1 functions in X{1-2J. Each ordered
pair (i, j) in X[2]  corresponds to the function in X(1> 2> which sends 1 to i
and 2 to j . Thus we may consider the restricted power group 8p*

s* as
acting on the elements of Xl2]. More specifically the permutations of
Sp*

s*  consist of ordered pairs (a; /?) of permutations a in S2 and /? in Sp

so that for any (i, j) in -X"[2],

Now let E2 be the identity group acting on the set Y — {0, 1}. Consider
the power group E2

T with T — Sp*
s$ acting on Yxm, the functions from

X t2] into Y. Each function / in Yxi2i represents a digraph whose points
are the elements of X = {1, 2, ..., pj, in which i is adjacent to^' whenever
f(i ! j)=l.  Thus the elements 0 and 1 of Y indicate the absence or presence
of directed lines.

Let /x and f2 be two functions in Yx[2\ and let their digraphs be Dr

and D2 respectively. Then D1 s D2 or D1 eg D2 if  and only if  there is a
permutation y in E2

T with T = Bp*
s2 such that yfx =f2. This follows from

the fact that for y = (a; fi), the digraph of yfx is isomorphic to Z>x or J ) /
according as a is (1) (2) or (12).

Thus equivalence of digraphs up to conversion corresponds to equi-
valence of functions in Yxm determined by the power group E2

T with
T = 8p*

s:
Now applying Polya's theorem, we obtain the desired result.

THEOREM 3. The counting polynomial cp(x) which enumerates digraphs
up to conversion is

(8)

Formulas (1), (4) and (5) can be used to express the cycle index of any
restricted power group B*A. But in the special case A = 82 and B = 8p,
a more explicit formula can be given.
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For each permutation a in 8p, the partition of a is denoted by
(j)=(j vj2, •••tjp),  where jk is the number of disjoint cycles of length
k in a. Then the contribution to Z(Sp*

si) of I (12); a) is

II  a f̂-* 2 II at^'-a^-a^-^^ 1", (9)
A; odd feeven

where rj(A) = l if A/2 is an odd integer and 0 otherwise, and d(r, s) and
m(r, s) are the g.c.d. and l.c.m. respectively.

Hence the cycle index of SP*S*  can be expressed as

(10)

5. Enumeration of self-converse digraphs. Now we make the simple
observation for self-converse digraphs which corresponds to that made by
Read [10] for self-complementary graphs. Namely, the polynomial
2cp(x) counts each digraph twice if it is self-converse and once if not.
Hence the polynomial 2cp(x) — dp(x) counts each self-converse digraph
just once. Thus we have

dp'(x) = 2cp(x)-dp(x). (11)

This together with formulas (6) and (8) gives the next result.

THEOREM 4. The counting polynomial dp (x) for self-converse digraphs is

, l+x). (12)

To use formula (12) for dp'(x) let F{Sp*
s*)= — £ /(a). By

P- aeSp

F(Sp*
s2, l+x) we mean the polynomial obtained by replacing each

variable ak in F(8p*
s*) by 1 +xk. Combining Theorem 4 and formula (10)

for Z(8p*
si) we obtain

dp'(x) = F(Sp*
s*,l  + x). (13)

To illustrate, we develop the polynomial da'(x) for the self-converse
digraphs on three points, shown in Fig. 2. The cycle index of the
symmetric group S3 is

From this and formula (9) for I (a.), we have

s a2
a + 2a,).
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Formula (13) gives

l+a;2)2 + 2(

Similarly formula (13) gives for p = 4:

+ 10z7 + 9a;8 + 5a;9 + 3x10 + x11 + x12.

These coefficients may be checked by examining the diagrams of the
four point digraphs in [8]. In Fig. 3 we show the five self-converse digraphs
with four points and three lines.

Fig. 3.

6. Self-converse relations. A slight modification of formula (12) results
in the polynomial rp'(x) that enumerates self-converse digraphs in which
loops are permitted. Digraphs with loops are, of course, just relations.
It is easy to see how the power group 8P

S*  can be used to count such digraphs
up to conversion. The ordered pair group Sp

2 acts on all ordered pairs as
induced by the symmetric group Sp. As shown in [2], the polynomial
rp (x) which counts relations is

rp{x) = Z{Sp\l+x). (14)

Then rp (x) is given by

rp'(x) = 2Z(S/*,l+x)-Z(SpM+x). (15)

To use equation (15), for each permutation a in Sp we let

(16)

Then the cycle index of the power group Sp
sv can be expressed by

Now let G(Sp
s*) = —j  2 J(a). Then the formula for rp (x) can be written

(18)
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7. Self-converse digraphs with p points. Let dp be the total number of
self-converse digraphs with p points. Then, referring to (12), we see that
dp' = dp'(l). In order to express a formula for dp' in relatively manageable
form, we introduce the following notation. For each a in Sp, let

+ 2 d(2,m(r,s))d(r,s)jrjs. (19)

Since the replacement in (13) and (9) of each ak in F(Sp*^) by 2 gives
dp'(\), we have

(20)

A similar formula is easily obtained for the total number rp of self-
converse relations with p points.

To compute these numbers, we use the fact that the number of permuta-

tions in 8p with partition (j) is p\ I ( II hik j k \ J. Here are the totals for
j>=l tod. / U = 1 '

p

<v
1

1

2

2

3

8

3

10

44

4

70

436

5

709

7176

6

47,960

484,256

8. Unsolved problem. How many self-converse oriented graphs (directed
graphs with no symmetric pairs of lines) are there with a given number
of points and lines ?
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