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Abstract

Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines
vegetation types and drives ecosystem functioning. We use the multivariate structural trait compo-
sition of vegetation canopies to classify ecosystems within a global canopy structure spectrum.
Across the temperate forest sub-set of this spectrum, we assess gradients in canopy structural
traits, characterise canopy structural types (CST) and evaluate drivers and functional conse-
quences of canopy structural variation. We derive CSTs from multivariate canopy structure data,
illustrating variation along three primary structural axes and resolution into six largely distinct
and functionally relevant CSTs. Our results illustrate that within-ecosystem successional processes
and disturbance legacies can produce variation in canopy structure similar to that associated with
sub-continental variation in forest types and eco-climatic zones. The potential to classify ecosys-
tems into CSTs based on suites of structural traits represents an important advance in understand-
ing and modelling structure–function relationships in vegetated ecosystems.
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INTRODUCTION

The structural characteristics of vegetation canopies are a
defining feature of terrestrial ecosystems and a fundamental
driver of ecosystem functioning (Ishii et al. 2004). Canopy
structure is an emergent property of the organisation of vege-
tation elements, at leaf to crown scales, by plant individuals
and communities with variable crown architecture and shade
tolerance (Parker et al. 1989; Hardiman et al. 2013a; Fotis
et al. 2018). The development of these emergent canopy struc-
tures is driven by optimisation of leaf to canopy resource use
efficiency and by competition among individuals, within the
biotic and abiotic constraints determined by the broader con-
text in which the ecosystem is situated (Niinemets 2007; Ishii
& Asano 2010). As an emergent property of vegetated ecosys-
tems, canopy structure integrates ecologically important char-
acteristics of individuals, species, communities, ecosystems
and biophysical regions (e.g. Aber et al. 1982; Ellsworth &
Reich 1993; Ishii et al. 2004). For this reason, characterisation
of broad, readily categorisable vegetation structural types has
been a focus of the foundational work of biogeography, ecol-
ogy and remote sensing (Whittaker 1970; Running et al. 1995;
Box 1996).
Quantification of canopy structure is highly important in

studying terrestrial ecosystems both because of its role as an
integrator of ecological factors and as a basis for studying
fundamental structure–function relationships. Canopy

structure is most commonly quantified using the density met-
ric ‘leaf area index’ (LAI), which has become ubiquitous
because of its combination of relative simplicity (in quantifica-
tion and application) and potential for predicting ecosystem
functioning (e.g. Reich 2012). However, vegetation canopies
are inherently three-dimensional (3D) and the integrated verti-
cal and horizontal arrangement of canopy elements provides
additional predictive capacity on ecosystem processes and
functions such as light harvesting and light use efficiency
(LUE; Ellsworth & Reich 1993; Ishii & Asano 2010; Fotis &
Curtis 2017; Atkins et al. 2018b), air movement (Reich et al.
1990; Parker et al. 2004b; Maurer et al. 2015), vertical temper-
ature and humidity gradients (Niinemets 2007), productivity
(Hardiman et al. 2011; Cushman & Kellner 2019; Gough
et al. 2019), and disturbance resilience (Gough et al. 2013;
Hardiman et al. 2013b; Fahey et al. 2016). There is no widely
accepted framework or set of metrics to characterise the 3D
structure of vegetation canopies (Nadkarni et al. 2008). This
fact is not surprising given that a broad definition of canopy
structure incorporates several disparate concepts describing
the spatial positioning of canopy elements or open space, and
also because there has been limited work pairing functional
data with integrative measures as a way of testing their func-
tional significance (Atkins et al., 2018c).
The wide variety of canopy structure metrics that have been

described (including LAI) can be viewed as structural ‘traits’
of vegetation canopies (Reich 2012). However, recognising
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that individual aspects of canopy structure (e.g. height, LAI)
do not fully describe functionally relevant variation in struc-
ture among canopies, we propose a multivariate, trait-based
approach to the study of variation in canopy structure among
vegetated ecosystems. The multivariate structural trait compo-
sition of a canopy can be used to place vegetated ecosystems
within a hypothesised global canopy structure spectrum
(Fig. 1). Characterisation of terrestrial vegetation types has
long been strongly focused on vegetation structure (alongside
aspects of phenology and general physiognomy; Bailey 2009),
and the general canopy structural types (CSTs) that make up
this spectrum are the basis for global to regional-scale vegeta-
tion classifications (e.g. grasslands vs. savannas vs. tropical
forests; Fig. 1a; Whittaker 1970). These vegetation structural
types can be viewed as an agglomeration of canopy traits
describing the arrangement of vegetation elements in canopy
space and generally relate to three primary components of
variation: canopy height, vertical layering and horizontal
openness/patchiness (Aber et al. 1982; Brokaw & Lent 1999;
Ehbrecht et al. 2016; Paynter et al. 2018; Cushman & Kellner
2019), as well as higher-order metrics that combine or describe
variation in these traits to characterise the arrangement of
canopy elements in two-dimensional (2D) or 3D space (Hardi-
man et al. 2011; Chen et al. 2012; Seidel et al. 2016).
The structure of vegetation canopies has an inherent spatial

dimension constrained by several biotic factors (e.g. crown

form, plant height and leaf angles; Horn 1971; Givnish 1982;
Anten 2004; Verbeeck et al., 2019), but is perhaps most fun-
damentally defined by the scale of individual leaves, which are
ultimately the unit of allocation for organisms exploring
canopy space and optimising light capture and resource use
(Hikosaka & Anten 2012; Niinemets 2012). Leaf size is rela-
tively consistent across plants that vary in overall size by sev-
eral orders of magnitude, and so is the amount of space that
can be filled or explored by those leaves (Fotis & Curtis
2017). Variation among ecosystems in total height, vertical
layering and horizontal openness, therefore, affects the poten-
tial for complex arrangement of leaf area in space and differ-
entiation in canopy structural characteristics (Ishii et al. 2004;
Fotis et al. 2018). Less complex (i.e. shorter, more horizon-
tally and vertically uniform) canopies inherently have less
canopy space that can be explored to promote optimal light
harvesting and drive differential interception of diffuse radia-
tion (Montgomery & Chazdon 2001; Fotis & Curtis 2017).
Therefore, a framework separating ecosystems based on total
canopy height and vertical layering has grounding in alloca-
tion and optimisation theories (Anten 2004; Hikosaka &
Anten 2012; Niinemets 2012), as well as copious evidence to
support functional importance (e.g. Ishii & Asano 2010;
Hardiman et al. 2011).
A canopy structural trait-based classification system can be

viewed as analogous to other trait-focused frameworks for

Figure 1 Illustration of the proposed (a) global canopy structure spectrum and (b) the sub-set of temperate forest canopy structure that was evaluated in

the present study with hypothesised canopy structural types represented by forest illustrations. The conceptual model presented here separates ecosystems

based on canopy height and horizontal and vertical complexity because these factors are most commonly used to delineate vegetation types and have been

previously related to ecosystem functioning. The characterisation of canopies as more or less complex focuses on the interspersion of open space within the

canopy volume that allows transmission/movement of energy or material and also provides potentially explorable space for placement of new leaf area.

The temperate forest sub-set is depicted without canopy height as an axis to reflect the expected lower importance of this variable as a delineating factor

among temperate tree-dominated ecosystems, which all have relatively similar total canopy height (vs. a prairie-forest comparison).

© 2019 John Wiley & Sons Ltd/CNRS

2050 R. T. Fahey et al. Letter



classifying vegetated ecosystems, such as plant functional
types (PFT; Box 1996; Bugmann 1996) or the global leaf eco-
nomics, wood economics and leaf size spectrums (Westoby &
Wright 2003; Wright et al. 2004; Chave et al. 2009; Wright
et al. 2017). Canopy structural traits and types likely embody
functional information not currently represented by conven-
tional forest types (which are often qualitatively assigned),
PFTs based on growth forms/leaf habits or non-integrative
leaf and plant traits. A quantitative framework for character-
ising canopy structure could aid in isolating the role that
physical structure plays in mediating ecosystem functional
responses and thus has direct implications not only for vegeta-
tion and ecosystem modelling (Hurtt et al. 2010) but also for
testing underlying basic ecological assumptions of structure–
function relationships (Ishii et al. 2004).
Differentiation of broad vegetation structural types is dri-

ven by biophysical and environmental factors such as season-
ality and temperature gradients (Fig. 1a) and characteristics
of the regional-scale biota (e.g. gamma diversity; Prentice
et al. 1992; Box 1996). However, the arrangement of ecosys-
tems among and within these broad categories of CSTs is also
likely to be related to fine-scale environmental variation (e.g.
soil water holding capacity, topography; Aber et al. 1982;
Jucker et al. 2018), species, crown type, PFT, and trait com-
position of the local community (Ishii & Asano 2010; Ver-
beeck et al., 2019), stand to landscape-level community
characteristics (e.g. alpha and beta diversity; Dial et al. 2004;
Jucker et al. 2015) and historical factors such as successional
processes and disturbance legacies (Scheuermann et al. 2018).
Understanding how CSTs develop and how they vary within
and among vegetation types and eco-climatic domains is
essential to assessing structure–function relationships broadly
and modelling the distribution of these relationships across
landscapes.
Here, we explore the foundational ecological topic of con-

ceptualising and characterising vegetation canopy structure,
using novel analytic methods and an extensive, sub-continen-
tal-scale data set that combines detailed canopy structure data
with information on environmental gradients, community
composition, and ecosystem processes and functions. Our
overall research goal was to quantify a spectrum of potential
CST that characterise hypothesised variation among temper-
ate forest ecosystems as a sub-set of a global canopy structure
spectrum (Fig. 1b). Our specific research objectives were to (1)
describe variation among a broad suite of canopy structural
traits across large, heterogeneous data sets, (2) implement and
test a novel method and framework for deriving synthetic
canopy structure gradients and CSTs and (3) assess potential
drivers and importance of variation in canopy structure by
relating CSTs to environmental gradients, community compo-
sition and ecosystem functioning. To address this goal, we
developed and tested multivariate analytical frameworks for
deriving synthetic canopy structural complexity gradients and
generalised CSTs, based on approaches adopted from analysis
of ecological communities. We utilised data sets representing a
range of spatial scales (sub-continental, landscape and stand)
and different dominant gradients driving variation in vegeta-
tion characteristics (eco-climatic domains, landscape ecosys-
tems, successional stages and disturbance severity).

MATERIALS AND METHODS

Study systems and sampling methods

To analyse patterns of variation in canopy structure, we uti-
lised four data sets spanning different dominant gradients (en-
vironmental, successional, and disturbance) and a range of
spatial scales (stand to sub-continental). Three data sets were
focused on the University of Michigan Biological Station
(UMBS) in northern lower Michigan, USA. The UMBS area
has a mean annual temperature of 5.5 °C and a mean annual
precipitation of 817 mm. Forests in the area are primarily c.
100 years old, but old forest (200+ years) remnants are also
present (Gough et al. 2007). The first UMBS data set
(‘UMBS-LE’) was a landscape-scale (c. 4000 ha) plot network
originally utilised to characterise landscape ecosystem types
(Pearsall 1995). The second UMBS data set (‘UMBS-
Chrono’) included three experimental chronosequences con-
sisting of 15 forest stands varying from 17 to 180 years of age
and differing in type and severity of establishing disturbance
(clear-cut vs. clear-cut and burned) and forest type (deciduous
broadleaf dominated vs. evergreen needle-leaf dominated;
Scheuermann et al. 2018). The third UMBS data set (‘UMBS-
FASET’) was a 39 ha experimental disturbance, where 39%
of pre-treatment basal area (range of 9–69% at the plot level)
was removed through stem-girdling of early-successional spe-
cies (Gough et al. 2013).
The final data set was a sub-continental-scale network of

study areas primarily focused on National Ecological Obser-
vatory Network (NEON) sites but also including a mixture of
Long Term Ecological Research (LTER) sites, AmeriFlux
sites and university field stations (hereafter referred to as ‘LQ-
NEON’) (Atkins et al. 2018b). For this data set, 13 sites were
sampled across the eastern US (Table 1) spanning broad
gradients in latitude (29.7–46.3 °N), climate (mean annual
temperature: 4.5–20.0 °C, mean annual precipitation: 800–
1475 mm year�1), forest type (USDA Forest Service Types:
oak-pine, oak-hickory, maple-beech-birch, aspen-birch, lon-
gleaf-slash pine, loblolly shortleaf pine; Ruefenacht et al.
2008) and six NEON eco-climatic domains: Northeast, Great
Lakes, Mid-Atlantic, Appalachians and Cumberland Plateau,
Ozarks Complex, and Southeast (Kao et al. 2012).
The number and characteristics of previously established

sample plots varied among data sets (Table 1), but canopy
structure sampling was conducted with a consistent methodol-
ogy. Canopy structure was analysed using below-canopy lidar
scan data collected using the portable canopy lidar system
(PCL; Parker et al. 2004a). PCL transects of 30–50 m in
length were located in each plot; total transect length and
number of transects were specific to plot type (Table S1), but
were sufficient to characterise canopy structural variability
based on prior work (Hardiman et al. 2018). We utilised the
forestr package (Atkins et al. 2018a) in R (v. 3.5.0) to process
raw PCL scan data into 1 9 1 m grids of vegetation area
index (VAI) from which we derived canopy structure metrics.
In prior work, we developed a suite of 23 structural metrics
(Table S2) that span a gradient of dimensionality and encom-
pass the range of canopy structural descriptions found in the
literature, describing functionally meaningful aspects of
canopy density, cover, arrangement, height and variability
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(Ehbrecht et al. 2017; Atkins et al. 2018b). These canopy
structural traits are relatable to the canopy structure spectrum
proposed in Fig. 1, with six traits describing vertical complex-
ity (e.g. effective number of layers, rugosity), 10 conveying
canopy density or openness (e.g. VAI, gap fraction) and 8
describing measures of canopy height (maximum canopy
height, mean vegetation height; Table S2). We used the multi-
variate composition of these canopy structural traits for each
plot to describe canopy characteristics and derive CSTs as
described below. Additional data on environmental factors,
community characteristics and stand structure were used as
predictors in analysing drivers of canopy structure and assess-
ing relationships with ecosystem functioning (Table S3).

Data analysis

Our analysis utilised techniques often applied to understand-
ing ecological communities, recognising that analysis of multi-
factor canopy structure data, canopy traits and derivation of
CSTs has much in common with analysis of species traits and
delineation of vegetation communities – namely high dimen-
sionality and strong intercorrelations. To better understand
the primary gradients in canopy structure within and across
data sets, we performed ordination analysis on matrices of all
24 canopy structure metrics. Ordination was conducted using
non-metric multidimensional scaling (NMS) in PC-ORD
v.5.31 (McCune & Mefford 2006) with Sorensen’s distance
measure and the ‘slow-and-thorough’ auto-pilot setting, using
250 runs of real data and 250 Monte Carlo randomisations to

assess the robustness of the solution (McCune & Grace 2002).
Ordination was conducted on a matrix with all canopy struc-
ture metrics first relativised to the maximum value that the
metric obtained to scale all metrics equivalently. We also
included a second matrix of environmental and site informa-
tion to enable creation of bi-plot and categorical overlays. We
tested for differences among groupings in each data set (land-
scape ecosystem types, Eco-climatic domains, stand ages and
disturbance severity groups; Table S3) in multivariate suites of
canopy structure metrics using multiple response permutation
procedure (MRPP) with Sorensen’s distance measure in PC-
ORD (McCune & Grace 2002).
To produce data-driven CSTs, we performed hierarchical

agglomerative clustering on matrices of canopy structure met-
rics. Clustering was performed with PC-ORD using Ward’s
Method and Euclidean distance measures (McCune & Grace
2002). Optimal cluster grouping level was determined by con-
ducting indicator species analysis and deriving mean p values
for indicator values across all metrics for each level of group-
ing (McCune & Grace 2002). The grouping level with the low-
est mean p value was selected as the optimal grouping level
for the data set and clusters identified at this grouping level
were utilised as the CSTs. We then evaluated which metrics
were most strongly associated with each CST based on the
results of the indicator species analysis for the final grouping
level. Plant functional type classifications were produced for
the LQ-NEON plots using an equivalent methodology and
based on published species PFT classifications (Bugmann
1996; see Supporting Information 1)
To evaluate how CSTs were related to the primary gradi-

ents (community, environmental, successional and distur-
bance) represented in each data set, we conducted a
classification tree analysis. We evaluated which predictors
(Table S3) were most influential on the separation of plots
into distinct CSTs for each data set using the Random Forest
algorithm (Breiman 2001), which produces a series of iterative
decision trees using binary, recursive partitioning based on
predictor values and known classes (Cutler et al. 2007). We
evaluated the classification accuracy of the models based on
the out of bag error calculation (OOB) and evaluated the rel-
ative strength of individual predictors based on the mean
decrease in accuracy associated with trees from which each
predictor was removed. The predictors with greatest influence
on accuracy across all trees were considered the most influen-
tial factors in driving CST differentiation. All analyses were
conducted using the randomForest package (Liaw & Wiener
2018) in R (v. 3.5.0).
To explore relationships of CSTs with ecosystem processes

and functioning, we utilised plot-level light interception (frac-
tion of photosynthetically active radiation absorbed by the
canopy; fPAR), wood net primary productivity (NPPw) and
LUE (as NPPw/fPAR; Hardiman et al. 2013b) data that were
available for a sub-set of the NEON plots (Supporting Infor-
mation 2; also Atkins et al. 2018b). We utilised generalised
linear models to evaluate variation in these factors across
CSTs and to assess the effect that adding CSTs and PFTs to
a model including only eco-climatic domain had on model
performance. All analysis was conducted using PROC GLM
in SAS v. 9.4 (SAS-Institute (2013)).

Table 1 Characteristics of individual data sets, including component study

sites within sub-continental data set (LQ-NEON data set) collected at

National Ecological Observatory Network (NEON) and other university

(UNIV) or USDA Forest Service (USFS) sites, and three plot networks

at the University of Michigan Biological Station (UMBS)

Data set/site Domain

No.

Plots Type Citation

LQ-NEON 156 Atkins

et al. (2018b)

Arnot forest Northeast 10 UNIV

Bartlett EF Northeast 15 NEON*,†
Fernow EF Appalachian 13 USFS

Great smoky Mtns. Appalachian 10 NEON*,†
Harvard forest Northeast 19 NEON*,†
Mountain Lake BS Appalachian 10 NEON

Ordway Swisher BS Southeast 24 NEON*,†
Smithsonian CBI Mid-Atlantic 6 NEON*,†
Smithsonian ERC Mid-Atlantic 13 NEON*,†
Talladega NF Ozarks 12 NEON*,†
Treehaven Great Lakes 10 NEON*,†
Univ. Notre

Dame ERC

Great Lakes 8 NEON*,†

UVA Obs. Hill Mid-Atlantic 6 UNIV

UMBS LE Great Lakes 91 Pearsall (1995)

UMBS FASET Great Lakes 19 Gough

et al. (2013)

UMBS Chrono Great Lakes 41 Scheuermann

et al. (2018)

*NPPw data available.

†fPAR and LUE data available.
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RESULTS

Multivariate analysis of canopy structure metrics

Concurrent ordination of all four data sets illustrated strong
gradients in canopy structure that aligned primarily along two
axes associated with canopy density/openness (VAI and gap
fraction) and vertical heterogeneity (Fig. 2). The NMS ordina-
tion had a 3D solution that was highly significant relative to
randomised data (P = 0.004, mean stress = 6.56) and
explained a large majority of the variance in the original data
matrix (98.1%; mostly on axes 1 and 2–54.1% and 28.6%,
respectively). Axis 1 was strongly related to metrics associated
with canopy area/density (e.g. mean VAI: r = �0.85; full list
of correlations in Table S5) and canopy cover/openness (e.g.
sky fraction: r = 0.90). Axis 2 was strongly related to metrics
relating canopy vertical heterogeneity (e.g. SD of vertical
return height: r = �0.86) and canopy height distribution (e.g.
height of maximum return density: r = �0.77). Axis 3
explained a minor component of the variation in the original
data matrix (15.4%) and was most strongly related to maxi-
mum canopy height (r = �0.93).
Patterns within the individual data sets illustrated distinct

variation across analysis scales and in relation to environmen-
tal, disturbance and successional gradients (Fig. 3). Although
there was some evidence of separation among eco-climatic
domains in multivariate structure space (MRPP: A = 0.33,
P < 0.001), there was also significant overlap of domains
within the ordination (Fig. 3a). For the landscape-scale
UMBS-LE data set, there was significant but weak (A = 0.13,
P < 0.001) evidence of separation among the primary geomor-
phic landforms (Fig. 3b) and stronger separation among the
more specific landscape ecosystem types (MRPP: A = 0.26,
P < 0.001). Within the UMBS-Chrono data set, there was
very strong evidence for differentiation among age classes
(MRPP: A = 0.64, P < 0.001), but the chronosequence types

(disturbance type, forest type) were not as strongly separated
(MRPP; A = 0.28, P < 0.001; Fig. 3c). For the experimental
FASET disturbance, there was little evidence of separation
among disturbance severity groups in the ordination space
(Fig. 3d; MRPP: A = 0.11, P = 0.02).

Derivation of CSTs

Cluster analysis for the combined data sets indicated six rela-
tively distinct CSTs, each represented across multiple data
sets, and which generally aligned with the hypothesised
canopy structure spectrum presented in Fig. 1. Incremental
indicator analysis on the agglomerative clustering results sug-
gested pruning the dendrogram at six clusters based on the
minimum mean P value in the set (across cluster levels 2–7;
mean P = 0.0002; Table S4). Clusters generally aligned with
those predicted in Fig. 1, with the exception being that no for-
ests were found to have very high openness/low density and
high vertical heterogeneity. Three of the CSTs (clusters 1, 78
and 166) had strong indicator traits in the indicator analysis
(standard deviation >1.0; Table S6).

Relationships between CST and environmental and community

characteristics

The strongest environmental and community predictors of
CSTs differed among the data sets and largely matched the
gradients represented by the data sets. For the LQ-NEON
data set, the estimated error rate for classification (OOB error
rate) was 52.2%, indicating limited potential to predict CSTs
at the sub-continental scale. The most important predictors of
CSTs in the NEON data were species composition and annual
growing degree day accumulation, reflecting macro-scale dif-
ferentiation in forest type and eco-climatic domains (Fig. 4a).
For the UMBS-LE data, the error rate was estimated at

Figure 2 Graphic illustrating position of all study plots in multidimensional canopy structure space based on non-metric multidimensional scaling

ordination with overlay of canopy structural types resulting from hierarchical agglomerative clustering. Dominant traits driving separation among plots are

indicated for each axis (full list of correlations between traits and axes included in Table S5).
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26.7%, with landscape ecosystem type, elevation and soil drai-
nage as the most important predictors, reflecting variation in
physiographic factors across a landscape with limited differenti-
ation in composition and diversity among stands (Fig. 4b; Pear-
sall 1995). For the UMBS-Chrono data, the error rate was
estimated at 6.9% and CSTs were most strongly predicted by
stand age, which reflects the strong impact of successional devel-
opment on stand structure (Fig. 4c). Finally, for UMBS-
FASET, the classification error rate was estimated as 31.6% and
the most important predictor was species composition, and to a
lesser extent disturbance severity, reflecting the limited impact of
the moderate severity disturbance on overall canopy structure
(Fig. 4d). In the NEON data set, CSTs were significantly associ-
ated with PFTs based on contingency table analysis (X2

d.f.=16 = 99.8, P < 0.001). However, there was representation of
multiple CSTs across all but one of the PFTs, and all but one of
the CSTs likewise included multiple PFTs (Table S8).

Forest productivity in relation to CSTs, PFTs and eco-climatic

domains

Plot-level wood NPP (F4,92 = 7.39, P < 0.001), light intercep-
tion (fPAR; F4,56 = 21.76, P < 0.001) and LUE (F4,56 = 2.93,

P = 0.029) all differed significantly across CSTs (Table 2). For
NPPw, the model that included only domain explained 49%
of the variation in plot-level NPPw, and the addition of CSTs
increased the explanatory power to 59%. A domain-only
model explained 79% of the variance in fPAR and the addi-
tion of CSTs improved the model slightly (R2 = 0.82). For
LUE, a domain-only model explained 49% of the variance
and the addition of CSTs to the model increased the explana-
tory power substantially (R2 = 0.66). In each case, the addi-
tion of CSTs added equivalent or greater explanatory power
relative to the addition of PFTs (Table 2). Also, for each fac-
tor models that included interactions of PFTs and CSTs
alongside domains had the greatest explanatory power
(Table 2).

DISCUSSION

Our findings demonstrate the potential for deriving function-
ally relevant CSTs and gradients from multivariate canopy
structural data, using temperate mixed coniferous-deciduous
forests as a model system. The broad range of forests repre-
sented by our sub-continental data set represent a sub-set of a
global spectrum of vegetation structural types (Fig. 1) and

Figure 3 Illustration of plots for each individual data set indicating position of plots in multidimensional canopy structure space. Each panel indicates the

same non-metric multidimensional scaling ordination result, but with only the plots for specific data sets illustrated: (a) sub-continental LQ-NEON data set

with plot symbols coded by NEON eco-climatic domain, (b) landscape-scale UMBS-LE data set with plot symbols coded by geomorphic landform, (c)

successional chronosequences in the UMBS-Chrono data set with plot symbols coded by chronosequence type, and (d) experimental disturbance of the

UMBS-FASET data set with symbols coded by disturbance severity and pre- and post-disturbance plots locations connected by vectors. Details of

individual data sets and groupings included in the text.
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Figure 4 Ranking of predictors in random forest classification tree models for classifying individual plots from four primary data sets (panels a–d same as

Fig. 3) into canopy structural types based on mean decrease in accuracy associated with trees from which each predictor was removed. ‘SPNMS’ refers to

axes from ordinations of plots by species composition, ‘GDD’ – annual growing degree day accumulation, ‘MAT’ – mean annual temperature, ‘Diversity’–
Simpson’s Index of species diversity, ‘Domain’ – NEON eco-climatic domain, ‘LE_Type’ – landscape ecosystem type for plots from Pearsall (1995),

‘Drainage’ – NRCS soil drainage class, ‘Heatload’ – heat load index calculated using slope and aspect based on methods of McCune and Keon (2002),

‘Chr_Type’ – refers to chronosequence type as described in text, ‘DistSev’ – disturbance severity based on proportion of basal area removed, ‘SiteProd’ –
pre-disturbance net primary productivity.
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were characterised by two to three primary gradients in
canopy structure variability. These gradients were driven by
variation not only in canopy density (i.e. LAI) but also verti-
cal canopy layering, horizontal heterogeneity in canopy den-
sity and the integrative 3D arrangement of canopy elements in
vertical and horizontal space (Fig. 2). The multivariate CSTs
derived here delineate forests based on integration of these
characteristics and capture variation in canopy structure not
characterised by conventional categories of structure based on
PFTs, canopy density or vertical layering.
The most important canopy structure gradient driving sepa-

ration among forests was associated with vegetation density
and horizontal heterogeneity in canopy openness (Fig. 2). This
finding illustrates that, although canopy density is an impor-
tant factor separating CSTs, additional variation associated
with horizontal heterogeneity in the placement of leaf area is
necessary to describe even the first axis of variation in canopy
structure. This pattern aligned with our hypothesised canopy
structure spectrum (Fig. 1) and is indicative of fundamental
differences in vegetation density and gap fraction among for-
est types ranging from dense, closed-canopy forests to open
savannas/barrens. Our results also illustrate strong separation
related to vertical variability in canopy density and layering
(Fig. 2) but also demonstrate that these integrative traits are
not redundant with canopy height (Parker & Brown 2000;
Ehbrecht et al. 2016). The importance of the vertical dimen-
sion generally matched our expectation, but separation of this
variation into two somewhat orthogonal axes (c. 70%

orthogonal) did not entirely match the hypothesised frame-
work for temperate forests (Fig. 1b).
Data-driven classification of canopy structure produced six

relatively distinct CSTs, which were largely consistent with
expectations (Fig. 1), demonstrating expected separation of
open-canopied forests from dense, closed-canopy forests and
tall, many-layered forests from those with shorter, single-lay-
ered canopies (Leiterer et al. 2015; Moran et al. 2018). How-
ever, the actual CSTs suggested by the data were somewhat
more nuanced than the broad characterisation represented in
Fig. 1. For example, the separation of tall forests into top-
heavy, two-layered canopies and similarly tall, broadly verti-
cally stratified forests was not represented in Fig. 1, but is a
tenet of forest stand dynamics and silviculture (Franklin &
Van Pelt 2004). There were also some ‘missing’ CSTs, most
notably the lack of differentiation of open-canopied forests
based on vertical variability (i.e. along Axis 2 or 3), which
could be related to the absence of very tall or very short
open-canopied forests (represented in the upper and lower left
quadrants of Fig. 1b) in our data set (e.g. no scrub barrens).
Our findings highlight the variable role of factors such as

climatic gradients, disturbance history and community assem-
bly in driving the development of canopy structure across
scales and ecosystems (Ishii & Asano 2010; Jucker et al. 2015;
Scheuermann et al. 2018). At the sub-continental scale, there
was significant multivariate separation among eco-climatic
zones and forest types in canopy structure, likely reflecting a
combination of regional environmental variation and species
pools (Prentice et al. 1992), and supporting the basis for hier-
archical ecosystem classifications defined according to these
factors (e.g. Bailey 2004). A large body of prior work has
recognised linkages between species composition and diversity
and canopy structure (e.g. Dial et al. 2004; Vojtech et al.
2008; Fahey et al. 2015; Jucker et al. 2015; Fotis et al. 2018),
but the distinct role of community assembly of species and
related functional traits in driving multidimensional canopy
structural variability is largely unresolved (Ishii et al. 2004;
Hikosaka & Anten 2012; Jucker et al. 2015).
However, although CSTs varied across eco-climatic

domains, our results also illustrated substantial variation in
canopy structure within domains and PFTs (Fig. 3a;
Table S8). Such variation is not currently represented in
broad scale PFT-based frameworks for classifying vegetation
structure or models that rely on these frameworks (Hurtt
et al. 2010). Landscape-scale variation in canopy structure
was of relatively similar magnitude to that observed at the
sub-continental scale (Fig. 3). For example, plots in the land-
scape-scale UMBS-LE data set showed separation into four
different CSTs (Fig 3b), reflecting the strong influence that
fine-grain variation in physiographic factors can have on
canopy structural development and that CSTs are integrators
of these environmental factors (Aber et al. 1982; Dial et al.
2004; Kane et al. 2010; Nave et al. 2017; Jucker et al. 2018).
In addition, the successional chronosequences at UMBS
spanned five CSTs and included variation, largely driven by
stand age, equivalent to that present in the entire sub-conti-
nental LQ-NEON data set. There was a consistent succes-
sional trajectory in canopy structure (and sequence of CSTs)
across forest types and severities of initiating disturbance

Table 2 Results of generalised linear modelling analysis on relationships

of wood net primary productivity (NPPw), light interception (fraction of

photosynthetically active radiation absorbed; fPAR) and light use effi-

ciency (LUE as NPPw/fPAR) with eco-climatic domains, plant functional

types (PFT) and canopy structural types for a sub-set of the National

Ecological Observatory Network sites included in the overall analysis. All

analysis was conducted using PROC GLM in SAS v9.4

Model – NPP R2 RMSE F d.f. P

Domain 0.49 4.13 7.39 5,91 < 0.001

CST 0.24 3.26 7.20 4,92 < 0.001

CST (Domain) 0.59 3.41 17.52 16,80 < 0.001

PFT 0.44 3.56 17.88 4,92 < 0.001

PFT (Domain) 0.59 3.20 9.19 13,83 < 0.001

CST*PFT (Domain) 0.68 3.11 5.40 27,69 < 0.001

Model – fPAR R2 RMSE F d.f. P

Domain 0.79 0.13 40.75 5,55 < 0.001

CST 0.61 0.17 21.76 4,56 < 0.001

CST (Domain) 0.82 0.12 14.97 12,48 < 0.001

PFT 0.67 0.16 28.44 4,56 < 0.001

PFT (Domain) 0.83 0.12 19.44 12,48 < 0.001

CST*PFT (Domain) 0.85 0.13 10.09 22,38 < 0.001

Model – LUE R2 RMSE F d.f. P

Domain 0.49 3.24 10.77 5,55 < 0.001

CST 0.17 4.11 2.93 4,56 0.029

CST (Domain) 0.66 2.89 6.44 12,48 < 0.001

PFT 0.39 3.51 9.17 4,56 < 0.001

PFT (Domain) 0.60 3.07 6.06 12,48 < 0.001

CST*PFT (Domain) 0.75 2.73 5.25 22,38 < 0.001
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(Fig. 3c), and our findings support several prior studies that
have illustrated disturbance legacies on stand to landscape-
level canopy structure (Kane et al. 2010; Hardiman et al.
2013a; Scheuermann et al. 2018). However, the effects of the
moderate FASET disturbance on forest canopy structure were
highly variable (Fig. 3d) and did not generally override pre-
disturbance variation in canopy structure (Gough et al. 2013;
Stuart-Ha€entjens et al. 2015).
Our results indicate that CSTs can provide additional

explanatory power beyond that of broad eco-climatic domains
and forest functional types in predicting ecosystem processes
and functions. The importance of CSTs was especially appar-
ent when assessed within domains, suggesting that variation
in canopy physical structure could be an particularly impor-
tant predictor of functioning at the landscape scale within
regions (Cushman & Kellner 2019). Although individual
canopy traits have previously been shown to be highly influ-
ential on ecosystem functions (Reich 2012; Atkins et al.
2018b; Jucker et al. 2018), a focus on multivariate suites of
canopy traits could help further elucidate fundamental ecolog-
ical mechanisms underpinning ecosystem structure–function
relationships and isolate the distinct role of physical structure
(e.g. relative to species and functional diversity and environ-
mental gradients) in driving ecosystem functioning. However,
further research is needed to fully characterise the potential
relevance of CSTs across multiple vegetation types and
ecosystem functions.
The characterisation of CSTs and their role in fundamental

structure–function relationships provides a basis for studying
the mechanistic underpinnings of these relationships (Gough
et al. 2016; Fotis & Curtis 2017; Atkins et al. 2018b) and
could, thus, be highly useful to terrestrial ecosystem modelling
(Hurtt et al. 2010; Shugart et al. 2010). Canopy structural
traits or types could be incorporated alongside (or in place of)
conventional measures of structure such as LAI, leaf traits
and PFTs in ecosystem models or integrated with these fac-
tors (e.g. vertical heterogeneity in SLA or leaf N; Niinemets
2007). The inclusion of derived CSTs in ecosystem models
could also improve mechanistic fidelity without requiring
ingestion of computationally intractable spatially explicit
canopy structural data. In addition, understanding and char-
acterisation of the effects of disturbances that do not signifi-
cantly alter total leaf area or species and trait composition
could be greatly improved by analysing shifts in canopy struc-
tural traits or CSTs (Seidl et al. 2014; Gough et al. 2016;
Scheuermann et al. 2018).
Derivation of canopy structural traits and CSTs is also an

important step in fully utilising data being provided by emerg-
ing and rapidly expanding technologies such as terrestrial
laser scanning and aerial and satellite waveform lidar (Ilan-
gakoon et al. 2018; Paynter et al. 2018). In the near term,
lidar-based canopy structural data will have increasing geo-
graphical coverage and availability from a variety of sources
including the NASA Global Ecosystem Dynamics Investiga-
tion satellite, NEON Aerial Observation Platform and UAV
platforms. Widespread adoption of technologies and analysis
techniques focused on quantifying and classifying canopy
structure across vegetated ecosystems could represent a para-
digm shift in terrestrial ecosystem ecology (Danson et al.

2018), and implementation of canopy trait-based framework
for describing canopy structural variation is an important step
in that direction.

CONCLUSIONS

Implementation of a multivariate, quantitative structural trait-
based framework to describe canopy structure variation across
vegetated ecosystems represents an important advance in
understanding the functional role of canopy structure, evalu-
ating factors that drive emergence of canopy structures and
forest functional types, and meaningfully representing canopy
structure in models. Augmenting traditional descriptors of
vegetation structure and composition with an integrative
canopy trait framework that describes functionally relevant
characteristics of the canopy provides a foundation for testing
the functional significance of canopy structure via empirical
and modelling approaches (Hurtt et al. 2010). Use of CSTs as
a basis for future work could substantially improve our ability
to elucidate basic structure–function relationships in terrestrial
ecosystems (Atkins et al. 2018b), predict ecosystem functions
such as wildlife habitat (e.g. Barnes et al. 2016) and carbon
sequestration (Gough et al. 2016), and design and implement
management practices focused on promoting ecosystem com-
plexity and resilience (Fahey et al. 2018).
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