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36 Abstract

37 Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines 

38 vegetation types and drives ecosystem functioning. We use the multivariate structural trait 

39 composition of vegetation canopies to classify ecosystems within a global canopy structure 

40 spectrum. Across the temperate forest subset of this spectrum we assess gradients in canopy 

41 structural traits, characterize canopy structural types (CST), and evaluate drivers and functional 

42 consequences of canopy structural variation. We derive CSTs from multivariate canopy structure 

43 data, illustrating variation along three primary structural axes and resolution into six largely 

44 distinct and functionally relevant CSTs. Our results illustrate that within-ecosystem successional 

45 processes and disturbance legacies can produce variation in canopy structure similar to that 

46 associated with sub-continental variation in forest types and ecoclimatic zones. The potential to 

47 classify ecosystems into CSTs based on suites of structural traits represents an important advance 

48 in understanding and modeling structure-function relationships in vegetated ecosystems. 

49

50 Introduction

51 The structural characteristics of vegetation canopies are a defining feature of terrestrial 

52 ecosystems and a fundamental driver of ecosystem functioning (Ishii et al. 2004). Canopy 

53 structure is an emergent property of the organization of vegetation elements, at leaf to crown 

54 scales, by plant individuals and communities with variable crown architecture and shade 

55 tolerance (Parker et al. 1989; Hardiman et al. 2013a; Fotis et al. 2018). The development of 

56 these emergent canopy structures is driven by optimization of leaf to canopy resource use 

57 efficiency and by competition among individuals, within the biotic and abiotic constraints 

58 determined by the broader context in which the ecosystem is situated (Niinemets 2007; Ishii & 

59 Asano 2010). As an emergent property of vegetated ecosystems, canopy structure integrates 

60 ecologically important characteristics of individuals, species, communities, ecosystems, and 
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61 biophysical regions (e.g., Aber et al. 1982; Ellsworth & Reich 1993; Ishii et al. 2004). For this 

62 reason, characterization of broad, readily categorizable vegetation structural types has been a 

63 focus of the foundational work of biogeography, ecology, and remote sensing (Whittaker 1970; 

64 Running et al. 1995; Box 1996). 

65 Quantification of canopy structure is highly important in studying terrestrial ecosystems both 

66 because of its role as an integrator of ecological factors, and as a basis for studying fundamental 

67 structure-function relationships. Canopy structure is most commonly quantified using the density 

68 metric “leaf area index” (LAI), which has become ubiquitous because of its combination of 

69 relative simplicity (in quantification and application) and potential for predicting ecosystem 

70 functioning (e.g., Reich 2012). However, vegetation canopies are inherently three-dimensional 

71 and the integrated vertical and horizontal arrangement of canopy elements provides additional 

72 predictive capacity on ecosystem processes and functions such as light harvesting and light use 

73 efficiency (Ellsworth & Reich 1993; Ishii & Asano 2010; Fotis & Curtis 2017; Atkins et al. 

74 2018b), air movement (Reich et al. 1990; Parker et al. 2004b; Maurer et al. 2015), vertical 

75 temperature and humidity gradients (Niinemets 2007), productivity (Hardiman et al. 2011; 

76 Cushman & Kellner 2019; Gough et al. 2019), and disturbance resilience (Gough et al. 2013; 

77 Hardiman et al. 2013b; Fahey et al. 2016). There is not a widely accepted framework or set of 

78 metrics to characterize the 3D structure of vegetation canopies (Nadkarni et al. 2008). This fact 

79 is not surprising given that a broad definition of canopy structure incorporates several disparate 

80 concepts describing the spatial positioning of canopy elements or open space, and also because 

81 there has been limited work pairing functional data with integrative measures as a way of testing 

82 their functional significance (Atkins et al. 2018c). 

83 The wide variety of canopy structure metrics that have been described (including LAI) can be 

84 viewed as structural “traits” of vegetation canopies (Reich 2012). However, recognizing that 

85 individual aspects of canopy structure (e.g., height, LAI) do not fully describe functionally-

86 relevant variation in structure among canopies, we propose a multivariate, trait-based approach 

87 to the study of variation in canopy structure among vegetated ecosystems. The multivariate 

88 structural trait composition of a canopy can be used to place vegetated ecosystems within a 

89 hypothesized global canopy structure spectrum (Fig. 1). Characterization of terrestrial vegetation 

90 types has long been strongly focused on vegetation structure (alongside aspects of phenology and 

91 general physiognomy; Bailey 2009), and the general canopy structural types that make up this 
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92 spectrum are the basis for global to regional scale vegetation classifications (e.g., grasslands vs. 

93 savannas vs. tropical forests; Fig. 1a; Whittaker 1970). These vegetation structural types can be 

94 viewed as an agglomeration of canopy traits describing the arrangement of vegetation elements 

95 in canopy space and generally relate to three primary components of variation; canopy height, 

96 vertical layering, and horizontal openness/patchiness (Aber et al. 1982; Brokaw & Lent 1999; 

97 Ehbrecht et al. 2016; Paynter et al. 2018; Cushman & Kellner 2019), as well as higher order 

98 metrics that combine or describe variation in these traits to characterize the arrangement of 

99 canopy elements in 2D or 3D space (Hardiman et al. 2011; Chen et al. 2012; Seidel et al. 2016). 

100 The structure of vegetation canopies has an inherent spatial dimension constrained by several 

101 biotic factors (e.g., crown form, plant height, and leaf angles; Horn 1971; Givnish 1982; Anten 

102 2004; Verbeeck et al. 2019), but is perhaps most fundamentally defined by the scale of 

103 individual leaves, which are ultimately the unit of allocation for organisms exploring canopy 

104 space and optimizing light capture and resource use (Hikosaka & Anten 2012; Niinemets 2012). 

105 Leaf size is relatively consistent across plants that vary in overall size by several orders of 

106 magnitude, and so is the amount of space that can be filled or explored by those leaves (Fotis & 

107 Curtis 2017). Variation among ecosystems in total height, vertical layering, and horizontal 

108 openness, therefore, affects the potential for complex arrangement of leaf area in space and 

109 differentiation in canopy structural characteristics (Ishii et al. 2004; Fotis et al. 2018). Less 

110 complex (i.e., shorter, more horizontally and vertically uniform) canopies inherently have less 

111 canopy space that can be explored to promote optimal light harvesting and drive differential 

112 interception of diffuse radiation (Montgomery & Chazdon 2001; Fotis & Curtis 2017). 

113 Therefore, a framework separating ecosystems based on total canopy height and vertical layering 

114 has grounding in allocation and optimization theories (Anten 2004; Hikosaka & Anten 2012; 

115 Niinemets 2012), as well as copious evidence to support functional importance (e.g., Ishii & 

116 Asano 2010; Hardiman et al. 2011). 

117 A canopy structural trait-based classification system can be viewed as analogous to other trait-

118 focused frameworks for classifying vegetated ecosystems, such as plant functional types (PFT; 

119 Box 1996; Bugmann 1996) or the global leaf economics, wood economics, and leaf size 

120 spectrums (Westoby & Wright 2003; Wright et al. 2004; Chave et al. 2009; Wright et al. 2017). 

121 Canopy structural traits and types likely embody functional information not currently represented 

122 by conventional forest types (which are often qualitatively assigned), PFTs based on growth 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

123 forms/leaf habits, or non-integrative leaf and plant traits. A quantitative framework for 

124 characterizing canopy structure could aid in isolating the role that physical structure plays in 

125 mediating ecosystem functional responses and thus has direct implications not only for 

126 vegetation and ecosystem modeling (Hurtt et al. 2010), but also for testing underlying basic 

127 ecological assumptions of structure-function relationships (Ishii et al. 2004).

128 Differentiation of broad vegetation structural types is driven by biophysical and 

129 environmental factors such as seasonality and temperature gradients (Fig. 1a) and characteristics 

130 of the regional-scale biota (e.g., gamma diversity; Prentice et al. 1992; Box 1996). However, the 

131 arrangement of ecosystems among and within these broad categories of canopy structural types 

132 is also likely to be related to fine-scale environmental variation (e.g., soil water holding capacity, 

133 topography; Aber et al. 1982; Jucker et al. 2018), species, crown type, plant functional type, and 

134 trait composition of the local community (Ishii & Asano 2010; Verbeeck et al. 2019), stand to 

135 landscape-level community characteristics (e.g., alpha and beta diversity; Dial et al. 2004; Jucker 

136 et al. 2015), and historical factors such as successional processes and disturbance legacies 

137 (Scheuermann et al. 2018). Understanding how canopy structural types develop and how they 

138 vary within and among vegetation types and ecoclimatic domains is essential to assessing 

139 structure-function relationships broadly and modeling the distribution of these relationships 

140 across landscapes.  

141 Here we explore the foundational ecological topic of conceptualizing and characterizing 

142 vegetation canopy structure, using novel analytic methods and an extensive, sub-continental-

143 scale data set that combines detailed canopy structure data with information on environmental 

144 gradients, community composition, and ecosystem processes and functions. Our overall research 

145 goal was to quantify a spectrum of potential canopy structural types (CST) that characterize 

146 hypothesized variation among temperate forest ecosystems as a subset of a global canopy 

147 structure spectrum (Fig. 1b). Our specific research objectives were to: 1) describe variation 

148 among a broad suite of canopy structural traits across large, heterogeneous data sets, 2) 

149 implement and test a novel method and framework for deriving synthetic canopy structure 

150 gradients and CSTs, and 3) assess potential drivers and importance of variation in canopy 

151 structure by relating CSTs to environmental gradients, community composition, and ecosystem 

152 functioning. To address this goal we developed and tested multivariate analytical frameworks for 

153 deriving synthetic canopy structural complexity gradients and generalized CSTs, based on 
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154 approaches adopted from analysis of ecological communities. We utilized datasets representing a 

155 range of spatial scales (sub-continental, landscape, and stand) and different dominant gradients 

156 driving variation in vegetation characteristics (ecoclimatic domains, landscape ecosystems, 

157 successional stages, and disturbance severity). 

158

159 Material and methods

160 Study systems and sampling methods

161 To analyze patterns of variation in canopy structure we utilized four data sets spanning 

162 different dominant gradients (environmental, successional, and disturbance) and a range of 

163 spatial scales (stand to sub-continental). Three data sets were focused on the University of 

164 Michigan Biological Station (UMBS) in northern lower Michigan, USA. The UMBS area has a 

165 mean annual temperature of 5.5°C and a mean annual precipitation of 817 mm. Forests in the 

166 area are primarily ~100 years old, but old forest (200+ years) remnants are also present (Gough 

167 et al. 2007). The first UMBS data set (“UMBS-LE”) was a landscape-scale (~4000ha) plot 

168 network originally utilized to characterize Landscape Ecosystem types (Pearsall 1995). The 

169 second UMBS data set (“UMBS-Chrono”) included three experimental chronosequences 

170 consisting of 15 forest stands varying from 17 to 180 years of age and differing in type and 

171 severity of establishing disturbance (clear-cut vs. clear-cut and burned) and forest type 

172 (deciduous broadleaf dominated vs. evergreen needle-leaf dominated; Scheuermann et al. 2018). 

173 The third UMBS data set (“UMBS-FASET”) was a 39 ha experimental disturbance where 39% 

174 of pre-treatment basal area (range of 9-69% at the plot-level) was removed through stem-girdling 

175 of early-successional species (Gough et al. 2013).

176 The final data set was a sub-continental-scale network of study areas primarily focused on 

177 National Ecological Observatory Network (NEON) sites, but also including a mixture of Long 

178 Term Ecological Research (LTER) sites, AmeriFlux sites, and university field stations (hereafter 

179 referred to as “LQ-NEON”) (Atkins et al. 2018b). For this data set 13 sites were sampled across 

180 the eastern US (Table 1) spanning broad gradients in latitude (29.7 – 46.3°N), climate (mean 

181 annual temperature: 4.5 – 20.0°C, mean annual precipitation: 800 – 1475mm yr-1), forest type 

182 (USDA Forest Service Types: oak-pine, oak-hickory, maple-beech-birch, aspen-birch, longleaf-

183 slash pine, loblolly-shortleaf pine; Ruefenacht et al. 2008) and 6 NEON ecoclimatic domains: 
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184 Northeast, Great Lakes, Mid-Atlantic, Appalachians and Cumberland Plateau, Ozarks Complex, 

185 and Southeast (Kao et al. 2012). 

186 The number and characteristics of previously established sample plots varied among data sets 

187 (Table 1), but canopy structure sampling was conducted with a consistent methodology. Canopy 

188 structure was analyzed using below-canopy lidar scan data collected using the portable canopy 

189 lidar system (PCL; Parker et al. 2004a). PCL transects of 30-50m in length were located in each 

190 plot; total transect length and number of transects were specific to plot type (Table S1), but were 

191 sufficient to characterize canopy structural variability based on prior work (Hardiman et al. 

192 2018). We utilized the forestr package (Atkins et al. 2018a) in R (v. 3.5.0) to process raw PCL 

193 scan data into 1 x 1m grids of vegetation area index (VAI) from which we derived canopy 

194 structure metrics. In prior work we developed a suite of 23 structural metrics (Table S2) that 

195 span a gradient of dimensionality and encompass the range of canopy structural descriptions 

196 found in the literature, describing functionally meaningful aspects of canopy density, cover, 

197 arrangement, height, and variability (Ehbrecht et al. 2017; Atkins et al. 2018b). These canopy 

198 structural traits are relatable to the canopy structure spectrum proposed in Fig. 1, with 6 traits 

199 describing vertical complexity (e.g., effective number of layers, rugosity), 10 conveying canopy 

200 density or openness (e.g., vegetation area index, gap fraction), and 8 describing measures of 

201 canopy height (maximum canopy height, mean vegetation height; Table S2). We used the multi-

202 variate composition of these canopy structural traits for each plot to describe canopy 

203 characteristics and derive canopy structural types as described below. Additional data on 

204 environmental factors, community characteristics, and stand structure were used as predictors in 

205 analyzing drivers of canopy structure and assessing relationships with ecosystem functioning 

206 (Table S3).   

207

208 Data analysis

209 Our analysis utilized techniques often applied to understanding ecological communities, 

210 recognizing that analysis of multi-factor canopy structure data, canopy traits, and derivation of 

211 CSTs has much in common with analysis of species traits and delineation of vegetation 

212 communities – namely high dimensionality and strong intercorrelations. To better understand the 

213 primary gradients in canopy structure within and across data sets, we performed ordination 

214 analysis on matrices of all 24 canopy structure metrics. Ordination was conducted using Non-
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215 metric Multidimensional Scaling (NMS) in PC-ORD v.5.31 (McCune & Mefford 2006) with 

216 Sorensen’s distance measure and the ‘‘slow-and-thorough’’ auto-pilot setting, using 250 runs of 

217 real data and 250 Monte Carlo randomizations to assess the robustness of the solution (McCune 

218 & Grace 2002). Ordination was conducted on a matrix with all canopy structure metrics first 

219 relativized to the maximum value that the metric obtained to scale all metrics equivalently. We 

220 also included a second matrix of environmental and site information to enable creation of bi-plot 

221 and categorical overlays. We tested for differences among groupings in each data set (Landscape 

222 Ecosystem types, Ecoclimatic Domains, stand ages, and disturbance severity groups; Table S3) 

223 in multivariate suites of canopy structure metrics using Multiple Response Permutation 

224 Procedure (MRPP) with Sorensen’s distance measure in PC-ORD (McCune & Grace 2002).

225 To produce data-driven CSTs we performed hierarchical agglomerative clustering on matrices 

226 of canopy structure metrics. Clustering was performed with PC-ORD using Ward’s Method and 

227 Euclidean distance measures (McCune & Grace 2002). Optimal cluster grouping level was 

228 determined by conducting Indicator Species Analysis and deriving mean p-values for indicator 

229 values across all metrics for each level of grouping (McCune & Grace 2002). The grouping level 

230 with the lowest mean p-value was selected as the optimal grouping level for the data set and 

231 clusters identified at this grouping level were utilized as the CSTs. We then evaluated which 

232 metrics were most strongly associated with each CST based on the results of the Indicator 

233 Species analysis for the final grouping level. Plant Functional Type (PFT) classifications were 

234 produced for the LQ-NEON plots using an equivalent methodology and based on published 

235 species PFT classifications (Bugmann 1996; see Supporting Information 1) 

236 To evaluate how CSTs were related to the primary gradients (community, environmental, 

237 successional, disturbance) represented in each data set, we conducted a classification tree 

238 analysis. We evaluated which predictors (Table S3) were most influential on the separation of 

239 plots into distinct CSTs for each data set using the Random Forest algorithm (Breiman 2001), 

240 which produces a series of iterative decision trees using binary, recursive partitioning based on 

241 predictor values and known classes (Cutler et al. 2007). We evaluated the classification accuracy 

242 of the models based on the out of bag error calculation (OOB) and evaluated the relative strength 

243 of individual predictors based on the mean decrease in accuracy associated with trees from which 

244 each predictor was removed. The predictors with greatest influence on accuracy across all trees 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

245 were considered the most influential factors in driving CST differentiation. All analyses were 

246 conducted using the randomForest package (Liaw & Wiener 2018) in R (v. 3.5.0).

247 To explore relationships of CSTs with ecosystem processes and functioning we utilized plot-

248 level light interception (fraction of photosynthetically active radiation absorbed by the canopy; 

249 fPAR), wood net primary productivity (NPPw), and light use efficiency (LUE, as NPPw/fPAR; 

250 Hardiman et al. 2013b) data that were available for a subset of the NEON plots (Supporting 

251 Information 2; also Atkins et al. 2018b). We utilized generalized linear models to evaluate 

252 variation in these factors across CSTs and to assess the effect that adding CSTs and PFTs to a 

253 model including only Ecoclimatic Domain had on model performance. All analysis was 

254 conducted using PROC GLM in SAS v. 9.4 (SAS-Institute 2013).    

255

256 Results

257 Multivariate analysis of canopy structure metrics

258 Concurrent ordination of all four data sets illustrated strong gradients in canopy structure that 

259 aligned primarily along two axes associated with canopy density/openness (VAI and gap 

260 fraction) and vertical heterogeneity (Fig. 2). The NMS ordination had a three dimensional 

261 solution that was highly significant relative to randomized data (p = 0.004, mean stress = 6.56) 

262 and explained a large majority of the variance in the original data matrix (98.1%; mostly on axes 

263 1 and 2 - 54.1 and 28.6% respectively). Axis 1 was strongly related to metrics associated with 

264 canopy area/density (e.g., mean VAI: r = -0.85; full list of correlations in Table S5) and canopy 

265 cover/openness (e.g., sky fraction: r = 0.90). Axis 2 was strongly related to metrics relating 

266 canopy vertical heterogeneity (e.g., SD of vertical return height: r = -0.86) and canopy height 

267 distribution (e.g., height of maximum return density: r = -0.77). Axis 3 explained a minor 

268 component of the variation in the original data matrix (15.4%), and was most strongly related to 

269 maximum canopy height (r = -0.93).

270 Patterns within the individual data sets illustrated distinct variation across analysis scales and 

271 in relation to environmental, disturbance, and successional gradients (Fig. 3). Although there was 

272 some evidence of separation among ecoclimatic domains in multivariate structure space (MRPP: 

273 A = 0.33, p < 0.001), there was also significant overlap of domains within the ordination (Fig. 

274 3a). For the landscape-scale UMBS-LE data set, there was significant but weak (A = 0.13, p 

275 <0.001) evidence of separation among the primary geomorphic landforms (Fig. 3b) and stronger 
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276 separation among the more specific Landscape Ecosystem types (MRPP: A = 0.26, p < 0.001). 

277 Within the UMBS-Chrono data set there was very strong evidence for differentiation among age 

278 classes (MRPP: A = 0.64, p < 0.001), but the chronosequence types (disturbance type, forest 

279 type) were not as strongly separated (MRPP; A = 0.28, p < 0.001; Fig. 3c). For the experimental 

280 FASET disturbance there was little evidence of separation among disturbance severity groups in 

281 the ordination space (Fig. 3d; MRPP: A = 0.11, p = 0.02). 

282

283 Derivation of canopy structural types

284 Cluster analysis for the combined data sets indicated six relatively distinct canopy structural 

285 types (CSTs), each represented across multiple data sets, and which generally aligned with the 

286 hypothesized canopy structure spectrum presented in Fig. 1. Incremental Indicator Analysis on 

287 the agglomerative clustering results suggested pruning the dendrogram at 6 clusters based on the 

288 minimum mean p-value in the set (across cluster levels 2-7; mean p = 0.0002; Table S4). 

289 Clusters generally aligned with those predicted in Fig. 1, with the exception being that no forests 

290 were found to have very high openness/low density and high vertical heterogeneity. Three of the 

291 CSTs (clusters 1, 78, and 166) had strong indicator traits in the Indicator Analysis (standard 

292 deviation >1.0; Table S6).

293

294 Relationships between CST and environmental and community characteristics

295 The strongest environmental and community predictors of CSTs differed among the data sets 

296 and largely matched the gradients represented by the data sets. For the LQ-NEON data set the 

297 estimated error rate for classification (OOB error rate) was 52.2%, indicating limited potential to 

298 predict CSTs at the sub-continental scale. The most important predictors of CSTs in the NEON 

299 data were species composition and annual growing degree day accumulation, reflecting macro-

300 scale differentiation in forest type and eco-climatic domains (Fig. 4a). For the UMBS-LE data 

301 the error rate was estimated at 26.7%, with Landscape Ecosystem type, elevation, and soil 

302 drainage as the most important predictors, reflecting variation in physiographic factors across a 

303 landscape with limited differentiation in composition and diversity among stands (Fig. 4b; 

304 Pearsall 1995). For the UMBS-Chrono data the error rate was estimated at 6.9% and CSTs were 

305 most strongly predicted by stand age, which reflects the strong impact of successional 

306 development on stand structure (Fig. 4c). Finally, for UMBS-FASET the classification error rate 
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307 was estimated as 31.6% and the most important predictor was species composition, and to a 

308 lesser extent disturbance severity, reflecting the limited impact of the moderate severity 

309 disturbance on overall canopy structure (Fig. 4d). In the NEON data set CSTs were significantly 

310 associated with plant functional types based on contingency table analysis (X2 df=16 = 99.8, p 

311 <0.001). However, there was representation of multiple CSTs across all but one of the PFTs, and 

312 all but one of the CSTs likewise included multiple PFTs (Supplement; Table S8). 

313

314 Forest productivity in relation to CSTs, PFTs, and Ecoclimatic Domains

315 Plot-level wood NPP (F4,92 = 7.39, p < 0.001), light interception (fPAR; F4,56 = 21.76, p < 

316 0.001), and light use efficiency (F4,56 = 2.93, p =0.029) all differed significantly across CSTs 

317 (Table 2). For NPPw the model that included only Domain explained 49% of the variation in 

318 plot-level NPPw, and the addition of CSTs increased the explanatory power to 59%. A Domain-

319 only model explained 79% of the variance in fPAR and the addition of CSTs improved the 

320 model slightly (R2 = 0.82). For LUE a Domain-only model explained 49% of the variance and 

321 the addition of CSTs to the model increased the explanatory power substantially (R2 = 0.66). In 

322 each case the addition of CSTs added equivalent or greater explanatory power relative to the 

323 addition of PFTs (Table 2). Also, for each factor models that included interactions of PFTs and 

324 CSTs alongside Domains had the greatest explanatory power (Table 2). 

325

326 Discussion

327 Our findings demonstrate the potential for deriving functionally relevant canopy structural 

328 types and gradients from multivariate canopy structural data, using temperate mixed coniferous-

329 deciduous forests as a model system. The broad range of forests represented by our sub-

330 continental data set represent a subset of a global spectrum of vegetation structural types (Fig. 1), 

331 and were characterized by 2-3 primary gradients in canopy structure variability. These gradients 

332 were driven by variation not only in canopy density (i.e., LAI), but also vertical canopy layering, 

333 horizontal heterogeneity in canopy density, and the integrative three-dimensional arrangement of 

334 canopy elements in vertical and horizontal space (Fig. 2). The multi-variate canopy structural 

335 types derived here delineate forests based on integration of these characteristics and capture 

336 variation in canopy structure not characterized by conventional categories of structure based on 

337 PFTs, canopy density, or vertical layering. 
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338 The most important canopy structure gradient driving separation among forests was 

339 associated with vegetation density and horizontal heterogeneity in canopy openness (Fig. 2). This 

340 finding illustrates that, although canopy density is an important factor separating canopy 

341 structural types, additional variation associated with horizontal heterogeneity in the placement of 

342 leaf area is necessary to describe even the first axis of variation in canopy structure. This pattern 

343 aligned with our hypothesized canopy structure spectrum (Fig. 1), and is indicative of 

344 fundamental differences in vegetation density and gap fraction among forest types ranging from 

345 dense, closed-canopy forests to open savannas/barrens. Our results also illustrate strong 

346 separation related to vertical variability in canopy density and layering (Fig. 2), but also 

347 demonstrate that these integrative traits are not redundant with canopy height (Parker & Brown 

348 2000; Ehbrecht et al. 2016). The importance of the vertical dimension generally matched our 

349 expectation, but separation of this variation into two somewhat orthogonal axes (~70% 

350 orthogonal) did not entirely match the hypothesized framework for temperate forests (Fig. 1b).

351 Data-driven classification of canopy structure produced 6 relatively distinct canopy structural 

352 types (CSTs), which were largely consistent with expectations (Fig. 1), demonstrating expected 

353 separation of open-canopied forests from dense, closed canopy forests and tall, many-layered 

354 forests from those with shorter, single-layered canopies (Leiterer et al. 2015; Moran et al. 2018). 

355 However, the actual CSTs suggested by the data were somewhat more nuanced than the broad 

356 characterization represented in Fig. 1. For example, the separation of tall forests into top-heavy, 

357 two-layered canopies and similarly tall, broadly vertically stratified forests was not represented 

358 in Fig. 1, but is a tenet of forest stand dynamics and silviculture (Franklin & Van Pelt 2004). 

359 There were also some “missing” CSTs, most notably the lack of differentiation of open canopied 

360 forests based on vertical variability (i.e., along Axis 2 or 3), which could be related to the 

361 absence of very tall or very short open-canopied forests (represented in the upper and lower left 

362 quadrants of Fig. 1b) in our data set (e.g., no scrub barrens).

363 Our findings highlight the variable role of factors such as climatic gradients, disturbance 

364 history, and community assembly in driving the development of canopy structure across scales 

365 and ecosystems (Ishii & Asano 2010; Jucker et al. 2015; Scheuermann et al. 2018). At the sub-

366 continental-scale, there was significant multivariate separation among ecoclimatic zones and 

367 forest types in canopy structure, likely reflecting a combination of regional environmental 

368 variation and species pools (Prentice et al. 1992), and supporting the basis for hierarchical 
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369 ecosystem classifications defined according to these factors (e.g., Bailey 2004). A large body of 

370 prior work has recognized linkages between species composition and diversity and canopy 

371 structure (e.g., Dial et al. 2004; Vojtech et al. 2008; Fahey et al. 2015; Jucker et al. 2015; Fotis 

372 et al. 2018), but the distinct role of community assembly of species and related functional traits 

373 in driving multidimensional canopy structural variability is largely unresolved (Ishii et al. 2004; 

374 Hikosaka & Anten 2012; Jucker et al. 2015). 

375 However, although CSTs varied across ecoclimatic domains, our results also illustrated 

376 substantial variation in canopy structure within domains and plant functional types (PFTs; Fig. 

377 3a; Table S8). Such variation is not currently represented in broad scale PFT-based frameworks 

378 for classifying vegetation structure or models that rely on these frameworks (Hurtt et al. 2010). 

379 Landscape scale variation in canopy structure was of relatively similar magnitude to that 

380 observed at the sub-continental scale (Fig. 3). For example, plots in the landscape-scale UMBS-

381 LE data set showed separation into four different CSTs (Fig 3b), reflecting the strong influence 

382 that fine-grain variation in physiographic factors can have on canopy structural development and 

383 that CSTs are integrators of these environmental factors (Aber et al. 1982; Dial et al. 2004; Kane 

384 et al. 2010; Nave et al. 2017; Jucker et al. 2018). In addition, the successional chronosequences 

385 at UMBS spanned 5 CSTs and included variation, largely driven by stand age, equivalent to that 

386 present in the entire subcontinental LQ-NEON data set. There was a consistent successional 

387 trajectory in canopy structure (and sequence of CSTs) across forest types and severities of 

388 initiating disturbance (Fig. 3c), and our findings support several prior studies that have illustrated 

389 disturbance legacies on stand to landscape-level canopy structure (Kane et al. 2010; Hardiman et 

390 al. 2013a; Scheuermann et al. 2018). However, the effects of the moderate FASET disturbance 

391 on forest canopy structure were highly variable (Fig. 3d), and did not generally override pre-

392 disturbance variation in canopy structure (Gough et al. 2013; Stuart-Haëntjens et al. 2015).

393 Our results indicate that CSTs can provide additional explanatory power beyond that of broad 

394 ecoclimatic domains and forest functional types in predicting ecosystem processes and functions. 

395 The importance of CSTs was especially apparent when assessed within domains, suggesting that 

396 variation in canopy physical structure could be an particularly important predictor of functioning 

397 at the landscape scale within regions (Cushman & Kellner 2019). Although individual canopy 

398 traits have previously been shown to be highly influential on ecosystem functions (Reich 2012; 

399 Atkins et al. 2018b; Jucker et al. 2018), a focus on multivariate suites of canopy traits could help 
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400 further elucidate fundamental ecological mechanisms underpinning ecosystem structure-function 

401 relationships and isolate the distinct role of physical structure (e.g., relative to species and 

402 functional diversity and environmental gradients) in driving ecosystem functioning. However, 

403 further research is needed to fully characterize the potential relevance of CSTs across multiple 

404 vegetation types and ecosystem functions. 

405 The characterization of CSTs and their role in fundamental structure-function relationships 

406 provides a basis for studying the mechanistic underpinnings of these relationships (Gough et al. 

407 2016; Fotis & Curtis 2017; Atkins et al. 2018b) and could, thus, be highly useful to terrestrial 

408 ecosystem modeling (Hurtt et al. 2010; Shugart et al. 2010). Canopy structural traits or types 

409 could be incorporated alongside (or in place of) conventional measures of structure such as LAI, 

410 leaf traits, and PFTs in ecosystem models or integrated with these factors (e.g., vertical 

411 heterogeneity in SLA or leaf N; Niinemets 2007). The inclusion of derived CSTs in ecosystem 

412 models could also improve mechanistic fidelity without requiring ingestion of computationally 

413 intractable spatially explicit canopy structural data. In addition, understanding and 

414 characterization of the effects of disturbances that do not significantly alter total leaf area or 

415 species and trait composition could be greatly improved by analyzing shifts in canopy structural 

416 traits or CSTs (Seidl et al. 2014; Gough et al. 2016; Scheuermann et al. 2018). 

417 Derivation of canopy structural traits and CSTs is also an important step in fully utilizing data 

418 being provided by emerging and rapidly expanding technologies such as terrestrial laser scanning 

419 and aerial and satellite waveform lidar (Ilangakoon et al. 2018; Paynter et al. 2018). In the near 

420 term, lidar-based canopy structural data will have increasing geographic coverage and 

421 availability from a variety of sources including the NASA Global Ecosystem Dynamics 

422 Investigation satellite, NEON Aerial Observation Platform, and UAV platforms. Widespread 

423 adoption of technologies and analysis techniques focused on quantifying and classifying canopy 

424 structure across vegetated ecosystems could represent a paradigm shift in terrestrial ecosystem 

425 ecology (Danson et al. 2018), and implementation of canopy trait-based framework for 

426 describing canopy structural variation is an important step in that direction.

427

428 Conclusions 

429 Implementation of a multivariate, quantitative structural trait-based framework to describe 

430 canopy structure variation across vegetated ecosystems represents an important advance in 
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431 understanding the functional role of canopy structure, evaluating factors that drive emergence of 

432 canopy structures and forest functional types, and meaningfully representing canopy structure in 

433 models. Augmenting traditional descriptors of vegetation structure and composition with an 

434 integrative canopy trait framework that describes functionally relevant characteristics of the 

435 canopy provides a foundation for testing the functional significance of canopy structure via 

436 empirical and modeling approaches (Hurtt et al. 2010). Use of CSTs as a basis for future work 

437 could substantially improve our ability to elucidate basic structure-function relationships in 

438 terrestrial ecosystems (Atkins et al. 2018b), predict ecosystem functions such as wildlife habitat 

439 (e.g., Barnes et al. 2016) and carbon sequestration (Gough et al. 2016), and design and 

440 implement management practices focused on promoting ecosystem complexity and resilience 

441 (Fahey et al. 2018). 

442
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660 Table 1. Characteristics of individual data sets, including component study sites within sub-continental 

661 data set (LQ-NEON dataset) collected at National Ecological Observatory Network (NEON) and other 

662 university (UNIV) or USDA Forest Service (USFS) sites, and three plot networks at the University of 

663 Michigan Biological Station (UMBS).  

Data set/Site Domain # Plots Type Citation

LQ-NEON 156 Atkins et al. 2018b

Arnot Forest Northeast 10 UNIV

Bartlett EF Northeast 15 NEON*^

Fernow EF Appalachian 13 USFS

Great Smoky Mtns. Appalachian 10 NEON*^

Harvard Forest Northeast 19 NEON*^

Mountain Lake BS Appalachian 10 NEON

Ordway Swisher BS Southeast 24 NEON*^

Smithsonian CBI Mid-Atlantic 6 NEON*^
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Smithsonian ERC Mid-Atlantic 13 NEON*

Talladega NF Ozarks 12 NEON*^

Treehaven Great Lakes 10 NEON*^

Univ. Notre Dame ERC Great Lakes 8 NEON*^

UVA Obs. Hill Mid-Atlantic 6 UNIV

UMBS LE Great Lakes 91 Pearsall 1995

UMBS FASET Great Lakes 19 Gough et al. 2013

UMBS Chrono Great Lakes 41 Scheuermann et al. 2018

664 * NPPw data available

665 ^ fPAR and LUE data available

666

667 Table 2. Results of generalized linear modeling analysis on relationships of wood net primary 

668 productivity (NPPw), light interception (fraction of photosynthetically active radiation absorbed; fPAR), 

669 and light use efficiency (LUE as NPPw/fPAR) with ecoclimatic domains, plant functional types (PFT), 

670 and canopy structural types (CST) for a subset of the National Ecological Observatory Network sites 

671 included in the overall analysis. All analysis was conducted using PROC GLM in SAS v9.4. 

Model - NPP R2 RMSE F df p

Domain 0.49 4.13 7.39 5,91 <0.001

CST 0.24 3.26 7.20 4,92 <0.001

CST (Domain) 0.59 3.41 17.52 16,80 <0.001

PFT 0.44 3.56 17.88 4,92 <0.001

PFT (Domain) 0.59 3.20 9.19 13,83 <0.001

CST*PFT (Domain) 0.68 3.11 5.40 27,69 <0.001

Model - fPAR R2 RMSE F df p

Domain 0.79 0.13 40.75 5,55 <0.001

CST 0.61 0.17 21.76 4,56 <0.001

CST (Domain) 0.82 0.12 14.97 12,48 <0.001

PFT 0.67 0.16 28.44 4,56 <0.001

PFT (Domain) 0.83 0.12 19.44 12,48 <0.001

CST*PFT (Domain) 0.85 0.13 10.09 22,38 <0.001

Model - LUE R2 RMSE F df p

Domain 0.49 3.24 10.77 5,55 <0.001

CST 0.17 4.11 2.93 4,56 0.029

CST (Domain) 0.66 2.89 6.44 12,48 <0.001

PFT 0.39 3.51 9.17 4,56 <0.001

PFT (Domain) 0.60 3.07 6.06 12,48 <0.001
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CST*PFT (Domain) 0.75 2.73 5.25 22,38 <0.001

672

673 Figures 

674

675 Figure 1. Illustration of the proposed (a) global canopy structure spectrum and (b) the sub-set of 

676 temperate forest canopy structure that was evaluated in the present study with hypothesized canopy 

677 structural types represented by forest illustrations. The conceptual model presented here separates 

678 ecosystems based on canopy height and horizontal and vertical complexity because these factors are most 

679 commonly used to delineate vegetation types and have been previously related to ecosystem functioning. 

680 The characterization of canopies as more or less complex focuses on the interspersion of open space 

681 within the canopy volume that allows transmission/movement of energy or material and also provides 

682 potentially explorable space for placement of new leaf area. The temperate forest subset is depicted 

683 without canopy height as an axis to reflect the expected lower importance of this variable as a delineating 

684 factor among temperate tree-dominated ecosystems, which all have relatively similar total canopy height 

685 (vs. a prairie-forest comparison).
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687

688 Figure 2. Graphic illustrating position of all study plots in multidimensional canopy structure space based 

689 on non-metric multidimensional scaling ordination with overlay of canopy structural types resulting from 

690 hierarchical agglomerative clustering. Dominant traits driving separation among plots are indicated for 

691 each axis (full list of correlations between traits and axes included in Supplementary Material Table S5). 
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692

693 Figure 3. Illustration of plots for each individual data set indicating position of plots in multidimensional canopy structure space. Each panel 

694 indicates the same non-metric multidimensional scaling ordination result, but with only the plots for specific data sets illustrated: a) sub-

695 continental LQ-NEON data set with plot symbols coded by NEON ecoclimatic domain, b) landscape-scale UMBS-LE data set with plot symbols 

696 coded by geomorphic landform, c) successional chronosequences in the UMBS-Chrono data set with plot symbols coded by chronosequence type, 
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697 and d) experimental disturbance of the UMBS-FASET data set with symbols coded by disturbance severity and pre – and post-disturbance plots 

698 locations connected by vectors. Details of individual data sets and groupings included in text. 
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699

700 Figure 4. Ranking of predictors in random forest classification tree models for classifying individual plots 

701 from four primary data sets (panels a-d same as Fig. 3) into canopy structural types based on mean 

702 decrease in accuracy associated with trees from which each predictor was removed. “SPNMS” refers to 

703 axes from ordinations of plots by species composition, “GDD” – annual growing degree day 

704 accumulation, “MAT” – mean annual temperature, “Diversity” - Simpson’s Index of species diversity, 

705 “Domain” – NEON ecoclimatic domain, “LE_Type” – Landscape Ecosystem type for plots from Pearsall 

706 (1995), “Drainage” – NRCS soil drainage class, “Heatload” – heat load index calculated using slope and 
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707 aspect based on methods of McCune and Keon (2002), “Chr_Type” – refers to chronosequence type as 

708 described in text, “DistSev” – disturbance severity based on proportion of basal area removed, “SiteProd” 

709 – pre-disturbance net primary productivity.  
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