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Abstract16

In this paper we present several methods to identify precursors that show great promise17

for early predictions of solar flare events. A data pre-processing pipeline is built to ex-18

tract useful data from multiple sources, Geostationary Operational Environmental Satel-19

lites (GOES) and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Im-20

ager (HMI), to prepare inputs for machine learning algorithms. Two classification mod-21

els are presented: classification of flares from quiet times for active regions and classi-22

fication of strong versus weak flare events. We adopt deep learning algorithms to cap-23

ture both spatial and temporal information from HMI magnetogram data. Effective fea-24

ture extraction and feature selection with raw magnetogram data using deep learning25

and statistical algorithms enable us to train classification models to achieve almost as26

good performance as using active region parameters provided in HMI/Space-Weather27

HMI-Active Region Patch (SHARP) data files. Case studies show a significant increase28

in the prediction score around 20 hours before strong solar flare events.29

1 Introduction30

Observations have established that solar eruptions are all associated with highly31

nonpotential magnetic fields that store the necessary free energy. The most energetic flares32

come from the intense kilogauss fields of Active Regions (ARs), where free energy is stored33

with field-aligned electric currents. Magnetic energy release occurs across an enormous34

range of scales from the most energetic flares (1032−33 erg) associated with high-speed35

Corona Mass Ejections (CMEs) down to ever-present nano-flares possibly heating the36

quiet corona (1022−24 erg). According to the NOAA Space Weather Scales (2018), dur-37

ing solar cycle 24, there were > 2000 M flares, while there were less than 180 X flares.38

The complexity of solar flares and the infrequent occurrence of energetic events makes39

fast and accurate predictions of the time and intensity multiple hours/days ahead an ex-40

tremely challenging task. What exacerbates the situation for data-driven methods is the41

computational cost required to process the high-resolution and high cadence observations42

over an extended period of time. In the last few years, predictions of flares with data-43

driven approaches are getting more attention.44

Machine learning algorithms have been applied to solar eruptions only some two45

decades after ML algorithms were used to investigate the terrestrial impacts of solar storms.46

Several teams (Ahmed et al., 2013; Huang et al., 2018; Song et al., 2008; Yu, Huang, Wang,47

& Cui, 2009; Yuan, Shih, Jing, & Wang, 2010) have forecast solar flares by using ma-48

chine learning algorithms trained with parameters calculated from maps of the line-of-49

sight (LOS) component of the photospheric magnetic field observed by the Michelson50

Doppler Imager (MDI) instrument aboard the SOHO (Solar & Heliospheric Observatory)51

spacecraft. Boucheron, Al-Ghraibah, and McAteer (2015) adopt the support vector ma-52

chine for time series classification with the MDI data from 2000 to 2010. However, these53

studies rely on proxies found to be correlated to the nonpotential magnetic fields with54

strong shear measured by vector magnetographs.55

Studies followed which applied the full vector magnetic field observations. Barnes,56

Leka, Schumer, and Della-Rose (2007) were the first to use vector magnetograms to in-57

vestigate solar flare forecasting using a statistical classifier, which outperforms the NOAA’s58

SWPC prediction results (Crown, 2012; Jolliffe & Stephenson, 2012). Bobra and Cou-59

vidat (2015) followed this with the first solar flare forecast using machine learning al-60

gorithms trained with parameters calculated from vector magnetic fields observed with61

the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI). The62

magnetic field maps used in this case are spatially restricted to the near proximity of ARs,63

so called Space-weather HMI Active Region Patches, or SHARPs (Bobra et al., 2014).64

The FLARECAST framework, an automated forecasting system, (http://flarecast65

.eu/) was developed by a European consortium (Florios et al., 2018). Nishizuka, Sug-66
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iura, Kubo, Den, and Ishii (2018) developed a solar flare prediction model using a deep67

neural network (DNN). Further, Muranushi et al. (2016) attempted the real time auto-68

mated forecast of solar flares with deep learning approaches. For a comprehensive re-69

view, see Leka and Barnes (2018) and Camporeale (2019).70

Solar flares show dynamic behavior observed in the chromosphere, transition re-71

gion and low corona (Benz, 2016) that many studies have shown have a statistical cor-72

relation with flare production. These observations provide significantly more data for build-73

ing a predictive model that uses images made across multiple wavelengths. Nishizuka74

et al. (2017) were the first to use machine learning algorithms to predict solar flares by75

not only parameterizing photospheric magnetograms but also using images of the chro-76

mosphere. Finally, Jonas, Bobra, Shankar, Hoeksema, and Recht (2018) were the first77

to predict solar flares by using a machine learning algorithm along with maps of the pho-78

tosphere, chromosphere, transition region, and corona, which is comparable in perfor-79

mance with the models of Bobra and Couvidat (2015) and Nishizuka et al. (2017).80

In this paper, we discuss the performances of our adopted machine learning algo-81

rithms for time series classification and feature extraction based on image reconstruc-82

tion, using HMI/SHARP patches and GOES data from May 1, 2010 to June 20, 2018,83

toward encouraging solar flare (predictive) classifications. We use a Long Short Term84

Memory (LSTM) model (Gers, Schmidhuber, & Cummins, 1999; Hochreiter & Schmid-85

huber, 1997) to classify solar flare events (B/C/M/X class) versus non-flare and strong86

flare (M/X class) versus weak flare (B class) using SHARP parameters several hours/days87

prior to the start or time of peak intensity of the event. These SHARP parameters may88

be thought of as handcrafted features in machine learning in that they are selected based89

on physical understanding of quantities related to flare production (see Bobra et al. (2014)90

and references therein; Leka and Barnes (2003) and references therein). In this case, they91

include a hierarchy of quantities characterizing the observed magnetic field such as mag-92

netic flux, electric currents and current helicity. The LSTM model predicts binary out-93

comes using trained nonlinear transformations of input parameters and is shown to work94

for accurate classifications for time-series data (Goodfellow, Bengio, & Courville, 2016),95

including natural language text compression and speech recognition (Graves et al., 2009;96

Graves, Mohamed, & Hinton, 2013). It should be noted that in the majority of previ-97

ous work, static features are used for predictions, whereas in this paper we use time se-98

ries for predictions and account for time-dependency instead of simply stacking up fea-99

tures from multiple time points and ignoring the sequential nature of the features, as is100

done in Boucheron et al. (2015) and Leka, Barnes, and Wagner (2018). Features from101

multiple time points, when vectorized, are typically regarded as “independent” or “pair-102

wise dependent” features/dimensions by most machine learning algorithms; whereas time103

series of features preserve the temporal structure, which could possibly be learned by ap-104

propriately training machine learning algorithms. We then perform binary classification105

of strong/weak flares, replacing the SHARP parameters with machine-learned features.106

This includes three steps:107

1. We derive features from vector magnetogram maps using the autoencoder, a deep108

learning technique that derives essential features to reconstruct images;109

2. We apply the marginal screening technique to remove redundant features for so-110

lar flare classification, which turns out to help avoid over-fitting effectively; and111

3. We train the LSTM model using the remaining features for classifications.112

Our approach incurs differences in data preparation for machine learning tasks such that113

our results are not directly comparable with some examples in the literature (see Barnes114

et al. (2016); Jolliffe and Stephenson (2012) for discussions on validation science).115

The remainder of the paper is organized as follows. We describe our general method-116

ology in Section 2: including descriptions of the machine learning algorithms, data pro-117
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cessing pipeline and data preparation for machine learning tasks, and evaluation met-118

rics. In Section 3, we present our results for flare classifications, with SHARP param-119

eters, and with machine-derived features; and we illustrate the flare classification mod-120

els with several case studies. We conclude the paper in Section 4 with discussions of our121

promising results and future work.122

2 Methodology123

We provide a detailed description of the data pre-processing pipeline in Section 2.1,124

while data preparation in the form of various training/testing sample splitting routines125

are discussed in Section 2.2, positive and negative classes are defined in Section 2.3, and126

metrics for evaluating different machine learning algorithms are given in Section 2.4, re-127

spectively. Finally, Section 2.5 gives a brief introduction to machine learning.128

2.1 Data Pre-processing Pipeline129

Our models use a time series of flare events from the NOAA Geostationary Oper-130

ational Environmental Satellites (GOES) flare list (Garcia, 1994). Classification is used131

for predicting discrete responses such as no flare (“quiet time” of an AR), any flare (B/C/M/X132

class), weak flare (B class) or strong flare (M/X class). We use GOES data observed from133

2010-05-01 to 2018-06-20 (Garcia, 1994) over which time there are 12, 012 solar flares listed134

with class, start, end, and peak intensity time of each event. Flares of A class are omit-135

ted because their energy level is so low that they are frequently below the background136

brightness of the AR and consequently not counted in the GOES catalog. The same is137

true of many B flares. If all were counted, the number of B flares would certainly out-138

number the C flares.139

The flare events are then matched to the SHARP vector field data patches provided140

by the Joint Science Operations Center (JSOC) website. While the GOES flares are iden-141

tified strictly with NOAA ARs, the SHARP patches are designed to include complete142

ARs and sets of ARs, so frequently a single HARP has multiple ARs, but it is unexpected143

that a single AR is split between HARPs (Todd Hoeksema, private communication). Our144

examination shows that 20% of SHARP patches include components from multiple ARs.145

This leads to a potential error where we may miss flare events occurring from within the146

SHARP but are attributed to a minor AR that was not counted. In the future, we will147

address the multiple-ARs-one-HARP problem by cutting the HARP regions into mul-148

tiple ARs manually and then recalculating the SHARP parameters for each AR.149

The SHARP patches contain 2-D photospheric maps of 3 orthogonal magnetic field150

components observed with 1.0 arcsecond spatial resolution (0.5 arcsecond pixel size) and151

provided with a time cadence of 12 minutes (Bobra et al., 2014; Hoeksema et al., 2014).152

From these data, parameters are calculated to specifically capture the structure and com-153

plexity of the magnetic field. As discussed in Leka and Barnes (2003) and Bobra et al.154

(2014), the parameters are designed to assess the flaring potential of ARs and are thus155

strongly representative of the total free energy of the magnetic field. The free energy,156

in turn, is related to the electric currents flowing through the photosphere into the corona,157

which are proportional to the curl of the field (∇×B). These whole-active-region mag-158

netic quantities can be effectively used as predictors of flares and also CMEs (cf. Bobra159

& Couvidat, 2015; Falconer, 2001; Falconer, Moore, & Gary, 2002, 2003, 2006; Leka &160

Barnes, 2003; Schrijver, 2007). The SHARP parameters that we use are listed in Table 1161

and further described in Bobra et al. (2014). In addition, we also use NPIX, the num-162

ber of pixels in a SHARP image, as a parameter.163

We recognize that these SHARP parameters are correlated with each other, in fact,164

some are highly correlated (even repetitive). Fig. 1 gives the sample correlations of these165

features from all B/C/M/X flares. In a PCA (principal component analysis, Pearson (1901))166
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Table 1: List of SHARP parameters and brief descriptions.

Parameter Description

TOTUSJH: Total unsigned current helicity

TOTUSJZ: Total unsigned vertical current

SAVNCPP: Sum of the modulus of the net current per polarity

USFLUX: Total unsigned flux

ABSNJZH: Absolute value of the net current helicity

TOTPOT: Proxy for total photospheric magnetic free energy density

SIZE ACR: De-projected area of active pixels (Bz magnitude larger than
noise threshold) on image in micro-hemisphere (defined as
one millionth of half the surface of the Sun)

NACR: The number of strong LoS magnetic-field pixels in the patch

MEANPOT: Proxy for mean photospheric excess magnetic energy density

SIZE: Projected area of the image in micro-hemispheres

MEANJZH: Current helicity (Bz contribution)

SHRGT45: Fraction of area with shear > 45◦

MEANSHR: Mean shear angle

MEANJZD: Vertical current density

MEANALP: Characteristic twist parameter, α

MEANGBT: Horizontal gradient of total field

MEANGAM: Mean angle of field from radial

MEANGBZ: Horizontal gradient of vertical field

MEANGBH: Horizontal gradient of horizontal field

study, we find that the first 7 principal components (linear combinations of these fea-167

tures) explain more than 95% of the variability of the 20 features. Therefore, we do ob-168

tain an efficient dimension reduction via the PCA study: Using these 7 principal com-169

ponent is good enough for the subsequent machine learning task as opposed to the orig-170

inal 20 features. We have compared the performance of the machine learning tasks us-171

ing all original 20 features as opposed to using these 7 principal components in Sections 3.2172

and 3.5. Note that this is important to recognize because highly correlated (or redun-173

dant) features might cause various problems in the machine learning algorithm, such as174

non-identifiability and overfitting, both of which are results of the machine being “con-175

fused” about two almost identical variables, especially when evaluating which one is more176

important (a notion called variable importance in the machine learning literature, which177

we will talk about in Section 3.3). This is a common problem in machine learning and178

is also acknowledged in previous studies of solar flare predictions, see e.g. Bobra and Cou-179

vidat (2015); Florios et al. (2018); Leka and Barnes (2003); Tang, Alelyani, and Liu (2014);180

Toloşi and Lengauer (2011) for more discussions.181

We built a data preparation pipeline that identifies SDO/HMI SHARP patches as-182

sociated with solar flare events at any specified level as recorded in the GOES data set,183

and downloads the SHARP data files including the 3-component magnetogram data and184

the SHARP parameters for a specified number of hours prior to a solar flare event. The185

four steps are described as follows.186

1. We first set a time range and download the whole GOES X-ray flare record. The187

queried items are: class and strength, NOAA AR number, event date, and the start,188

peak intensity, and end times of flare events.189
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2. For each record in the GOES data set, we query the JSOC for the SHARP data190

with the end time equal to the flare peak intensity and decide the start time of191

the query based on how many frames we need with a 1 hour cadence.192

3. We use the NOAA AR number in the GOES data set, provided 3 criteria are sat-193

isfied: (1) the NOAA number in the HARP record is the same as that in the GOES194

record; (2) the location of the AR is within ±68 deg from the central meridian (in195

order to avoid projection effects (Bobra & Couvidat, 2015)); (3) the time is be-196

fore the peak intensity time.197

4. Finally, we download the data from JSOC based on SHARP number, cadence and198

the specified time frame.199

Fig. 1: Sample correlations of the features from all flare events that we consider.

The data pre-processing pipeline described above gives us the list of flare events200

(of B/C/M/X classes), together with the time series of features (SHARP parameters)201

and the magnetic images. Now we describe how we feed these values into machine learn-202

ing algorithms and on what the performance metrics are based.203

2.2 Details on Data Preparation: Training/Testing Splitting204

In order to properly calibrate the performance of the machine learning algorithms,205

we need to split the samples (flare events) into a training set and a testing set. The train-206

ing data is used to train the machine learning models; and the testing data, which does207
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not overlap with the training data, serves the purpose of calibrating the out-of-sample208

performance of the machine learning algorithms. We consistently take the ratio of train-209

ing and testing samples to be 2 : 1 for all models presented throughout the paper.210

Our default choice is the Random-Splitting scheme, which randomly selects flare211

events in the training and testing data. We run the random splitting 20 times for each212

model to guarantee the robustness and consistency of the results. This scheme does not213

take into account which AR a flare event is from, nor the year in which a flare event hap-214

pened. Therefore, we also explore and test out other possible training/testing splitting215

methods: split-by-year and split-by-active-region. Table 2 lists the number of flares of216

each class, i.e. B/C/M/X flares from 1100 ARs, recorded by the GOES data set corre-217

sponding to each year 2010 to 2018. Among the 1100 ARs that we process based on the218

GOES data set, the minimum number of flare events is 1 per AR and the maximum num-219

ber of flare events is 141 per AR (given by AR 12297); 208 of the 1100 ARs have a strong220

flare (M/X class) associated. The results of all the alternative training/testing splitting221

methods, which we summarize in Appendix B, turn out to be similar to the results based222

on random splitting we present in Section 3.2 for strong/weak flare classification and Sec-223

tion 3.5 for case studies.224

We test out two different sample splitting strategies based on Split-by-Year. (1)225

We randomly select several years’ samples as the test set with the guarantee that the226

test samples are around 66% of all the samples. (2) We train with data from solar cy-227

cle 24, from years 2010-2013, when the sunspot activities see an increase and stabilize228

at maximum; and test on data from years 2014-2018, when the sunspot activities see a229

decrease. We test out several different configurations based on Split-by-Active-Region.230

Prior to the splitting of test and training, we conduct a normalization step, which is de-231

signed to examine whether the model training is dominated by any particularly active-232

flaring AR. This is done by randomly selecting a limited number (which we call a “cap”)233

of flares from each AR. The cap is set to be 2,3,4,5,10,15, and infinity (when we consider234

all flares). Table 3 gives the total number of ARs that have 1, 2, 3, 4, 5, or > 5 strong235

or weak flare events that we consider, which is from the GOES data set. We note that236

here the number of B flares is under-recorded in the GOES data set, which is due to the237

fact that the B flares are not recorded when the ARs sustained emission exceeds the level238

of B flares. The number of ARs with a large number of flare events is not many, thus239

the possibility of flares from a single AR dominating the inference is not likely. Never-240

theless, we test out our classification model with different “cap” numbers to rule out that241

possibility. We randomly select 67% of the ARs (635 in total) as the “training ARs” and242

the remaining 33% of the ARs as the “testing ARs”. All observations for a chosen AR243

(with a maximum number of flare events bounded by the cap) are put either in the train-244

ing or testing set, based on whether the AR is a “training AR” or a “testing AR”. See245

Appendix B for detailed results for both Split-by-Year and Split-by-Active-Region.246

Furthermore, we normalize the data by subtracting the mean and dividing by the247

standard deviation of the training data, which is the most commonly adopted normal-248

ization method in practice (Hastie, Tibshirani, & Friedman, 2009, Section 7.10), before249

training the machine learning algorithms. We apply the same normalization to the test-250

Table 2: The number of flares of B/C/M/X class recorded in each year from 2010-05-01 to
2018-06-20 in the GOES data set.

Class/Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

X 0 9 7 12 16 2 0 4 0 50

M 0 106 124 97 194 128 15 37 0 701

C 1 1002 1115 1197 1626 1275 294 229 11 6750

B 19 665 475 469 184 446 757 620 207 3842
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Table 3: Number of ARs (ARs) corresponding to the specified number (1, 2, 3, 4, 5, and > 5) of
weak (B) and strong (M/X) flare events for each AR recorded in the GOES data set.

Number of M/X Flares 1 2 3 4 5 > 5

Number of ARs 60 31 13 10 7 29

Number of B Flares 1 2 3 4 5 > 5

Number of ARs 321 148 51 19 2 0

ing data. Since the inputs of our machine learning algorithms are time series of SHARP251

parameters, we perform a global normalization of the whole time series of each feature:252

so as not to lose information in the normalization step.253

2.3 Details on Data Preparation: Defining Positive/Negative Class254

In a binary classification task, such as strong/weak flare classification, to give sen-255

sible results, we need to prepare the data by defining the positive class (e.g. strong flares256

of M/X class) and negative class (e.g. weak flares of B class) properly to train and test257

the machine learning algorithm. Different preparations of positive and negative class could258

lead to different results (in terms of the metrics defined in Section 2.4), thus it is impor-259

tant to describe clearly what is done in this step. This is also the crucial step that makes260

different machine learning results noncomparable: if two researchers choose disparate pos-261

itive/negative class preparations, the corresponding results cannot be compared fairly.262

Clearly stating the data preparation, such as sample selection, for each machine learn-263

ing tasks is a key step toward reproducibility of our results.264

In our strong/weak flare classification models, we feed time series of features, for265

both the positive class (strong flares of M/X class) and negative class (weak flares of B266

class), into the machine learning algorithms. Therefore, it is important that the time se-267

ries do not overlap significantly: otherwise, the features from the overlapping time points268

appear both in the positive and negative class, making it harder for the machine to dif-269

ferentiate. Besides, the forecasting window matters. For example, when we train a model270

to predict 72 hours ahead of an M/X flare, if a B flare happens within this 72 hour win-271

dow, then the precursors that the machine could possibly find are predictive for both the272

M/X flares and B flares. Therefore, in our preparation of the positive and negative classes273

for the machine learning algorithms, we need to take all of these situations into account.274

Intuitively, the longer the time series we use, and/or the longer the forecasting time, the275

more stringent the condition for selecting the positive and negative classes becomes. We276

will elaborate this again for strong/weak flare classifications and case studies in Section277

3. To make the results transparent and reproducible, we list the number of flare events278

of each class we use for training and testing the machine learning algorithms in Section279

3 when we present our results.280

2.4 Evaluation Metrics for Classification Algorithms281

Given that solar flare events, especially the intense ones, are relatively “rare”, i.e.282

the “positive class” (a solar flare event) is much smaller than the “negative class” (no283

solar flare event), we need evaluation metrics to quantify how well our models fit both284

the “positive class” and the “negative class”. We use the following four metrics to eval-285

uate our binary classifiers: the F1 score, which is the harmonic mean of Precision and286

Recall, with the best value at 1 and worst at 0; the true skill statistic (TSS); and the Hei-287

dke skill scores (HSS1 and HSS2). See Bobra and Couvidat (2015) for definitions of HSS1288

and HSS2. We note that in the space weather community HSS2 is referred to as the Hei-289

dke skill score (cf. Pulkkinen et al., 2013). The higher the metrics (i.e. closer to 1), the290

better the classifier. See Florios et al. (2018) for detailed descriptions for these skill scores.291
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Visually, we use the ROC (receiver operating characteristic) curves and the AUC (area292

under the ROC curves) values to examine the performances of the binary classifications293

presented in this paper (see Fawcett, 2006, for an introduction to ROC analysis).294

In the binary classification models, the raw output is a classification score that takes295

values between 0 and 1. This value represents the probability of the correct answer be-296

ing positive (e.g. a strong flare in the strong/weak flare classification). We choose a de-297

fault threshold, 0.5, for determining the predicted outcome. For example, we assign a298

predicted strong flare if the classification score is above 0.5 and a predicted weak flare299

if the classification score is below 0.5, in the strong/weak flare classification model.300

2.5 Machine Learning and Statistical Algorithms301

We give a brief introduction to the deep learning algorithms that we use to per-302

form automatic feature extraction from HMI magnetograms (autoencoder for image re-303

construction, marginal screening for feature selection) and solar flare classifications for304

time series observations (long short term memory networks).305

Long Short Term Memory (LSTM) networks have been an effective solution to a306

wide range of “sequence prediction problems” such as image captioning, language trans-307

lation, and handwriting recognition (Graves et al., 2009, 2013). The LSTM network is308

a special kind of Recurrent Neural Networks (RNN) and it was first introduced by Hochre-309

iter and Schmidhuber (1997) and improved by Gers et al. (1999). It has internal con-310

textual state cells that serve as memory cells, enabling information to flow from one step311

to the next. Thus, LSTM is capable of handling both short- and long-term dependen-312

cies. The LSTM network learns when to remember and when to forget through their for-313

get gate weights. Consequently, the time dependency, whether short- or long-term, is also314

learned through the training of the algorithm.315

The autoencoder (Kingma & Welling, 2013; Liou, Cheng, Liou, & Liou, 2014) neu-316

ral network is an unsupervised learning algorithm that applies back propagation to learn317

structures of the input data such that the input and output are almost identical. The318

autoencoder network consists of the encoder, which transforms the input to “code”, i.e.319

features, and the decoder, which transforms the “code” to the output (Goodfellow et al.,320

2016, Chapter 14). The autoencoder is applied in our context to derive a relatively low-321

dimensional (vector) representation of the magnetogram field images (HMI images).322

Recall that our final objective is not magnetogram field image reconstruction. In-323

stead, we are interested in classification: classifying large solar flare events versus weak/none324

solar flare events using features extracted from images. Therefore, we perform marginal325

screening to get rid of redundant features, which incurs over-fitting (i.e. worse perfor-326

mance), for the classification purpose (see Fan & Lv, 2008; Fan, Samworth, & Wu, 2009;327

Tibshirani, Hastie, Narasimhan, & Chu, 2003; Zhao, Xu, & Wang, 2017, for similar ideas328

applied to other models, including regression models). This method is typically used for329

genetic studies where thousands of genes (features) are considered for a disease/no-disease330

outcome whereas only a few genes are relevant for predicting the disease status, see e.g.331

the example in Hong, Wang, and He (2016). The marginal screening procedure goes as332

follows: we take one feature at a time and perform a two-sample t-test for testing the333

significance of the feature with respect to the binary outcome (e.g. strong versus weak334

flare); if the test turns out to be significant, we keep the feature; otherwise, the feature335

is deleted. We choose the significance value (p-value threshold) based on cross-validation336

of the classification results in the training data.337

On the machine learning part, our approaches enjoy the following nice properties.338
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1. We perform feature extraction directly from HMI images using the deep learning339

algorithm autoencoder, as opposed to calculating various physical quantities from340

the observed AR magnetic field.341

2. We perform classification-oriented feature selection based on marginal screening,342

which effectively avoids over-fitting with a large number of features extracted.343

3. In our classification model, we adopt the LSTM, which is also used in Muranushi344

et al. (2016), that inputs time series data. This takes into account the time evo-345

lution information instead of stationary features widely used in the literature for346

solar flare classifications as described in Section 1.347

4. We compare the performance of the classification models using machine extracted348

features with those trained using SHARP parameters, which shows that poten-349

tially we could derive new features with machine-learning algorithms yet to be cap-350

tured by well-known physical quantities (SHARP parameters).351

5. We demonstrate the effectiveness and great potential of the proposed methods for352

early identification of precursors for strong flares by studying out-of-sample pre-353

diction performances of trained models on four representative ARs.354

3 Results355

We give the results of the solar flare classifications in this section. Section 3.1 gives356

the results for the binary classification of “solar flare events of any class” against “no so-357

lar flare events.” We also include a strong flare versus no flare classification, as in Bo-358

bra and Couvidat (2015), in Section 3.1. We present the classification of strong and weak359

flares using SHARP parameters in Section 3.2, discuss the feature importance in Sec-360

tion 3.3, and then use features learned directly from HMI magnetogram images in Sec-361

tion 3.4. Case studies of strong/weak flare classification are given in Section 3.5.362

3.1 Flare/Non-Flare Classification with SHARP Parameters363

We train an LSTM model for classifying flares of any intensity (positive class) against364

non-flares (negative class), using 20 SHARP parameters (listed in Section 2.1) at 1/3/6/12/24/48365

hours preceding a solar flare event, at 1 hour cadence. Fig. 2 shows a flowchart of LSTM366

for classifications with SHARP parameters. As reflected in Fig. 2, there are two LSTM367

layers, each of which contains a set of recurrently connected memory blocks. For each368

of the memory blocks (the green ‘LSTM1’ or ‘LSTM2’ boxes in Fig. 2), it takes the cur-369

rent input xt, previous output ht−1, and previous memory ct−1, and generates a new out-370

put ht and memory ct; see the detailed depiction of a memory block at the top of Fig. 2.371

Finally, since we are dealing with a binary classification problem, we adopt the sigmoid372

activation function as a dense output layer (the right purple blocks in Fig. 2). The pos-373

itive class consists of any solar flare (B/C/M/X) from the 239 HARP regions. The mem-374

bers of the negative class are randomly selected to make sure that no flare event hap-375

pens within ±48 hours. After this selection, we will take into account around 100 ARs376

with around 200 flare/non-flare events for each forecasting window, which denotes the377

number of hours before the flare event (for the accurate numbers please see Table 4). Note378

that the flares are rare and there are too many “non-flares”. We randomly choose a sub-379

set of the non-flares to match the number of flares for training and testing.380

Table 4: The numbers of flares, non-flares, and ARs for each forecasting window (in hours, given
in the first row) for M/X flare predictive classification model.

Forecasting Window 1h 3h 6h 12h 24h 48h 72h

Number of Flares 259 259 253 250 244 206 176

Number of Non-Flares 259 259 253 250 244 206 176

Number of ARs 122 122 119 117 112 91 81
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∫· · ·

· · ·

Fig. 2: Flowchart of LSTM for classification using SHARP parameters from HMI/SDO
header file (some are listed in the box at the bottom). These features can be replaced by
other features, e.g. machined-learned features, see Section 3.4.

Table 5: First flare (of any class) classification results with 20 SHARP parameters.

Metric Number of hours before the first B/C/M/X flare

1h 3h 6h 12h 24h

Precision 0.72 0.73 0.71 0.69 0.68

Recall 0.69 0.71 0.68 0.66 0.48

F1 Score 0.70 0.72 0.69 0.67 0.55

HSS1 0.41 0.45 0.39 0.36 0.24

HSS2 0.43 0.45 0.39 0.36 0.25

TSS 0.43 0.45 0.40 0.36 0.25

We use a two layer stacked LSTM architecture with 50 cells in each layer. We choose381

a 50% drop out rate in both layers to prevent over-fitting. The first LSTM layer provides382

a sequence output rather than a single output to feed into the second LSTM layer. A383

dense layer is added at the end with the sigmoid activation function that could gener-384

ate a continuous value between 0 and 1 representing solar flare event probability. We uti-385

lize the binary cross-entropy as the loss function and the Adam optimization algorithm (Kingma386

& Ba, 2014). We note that only in this subsection, flare/non-flare classification with SHARP387

parameters, we use 1 hour data for the LSTM models, which is a degenerate case since388

the input is a ‘time series’ of one time point instead of multiple time points (used in later389

subsections). Table 5 gives the results for classifying “solar flare event (of B/C/M/X class)”390

against “no solar flare event” 1/3/6/12/24/48 hours prior to the start time of a solar flare391

event. See the left panel in Fig. 3 for corresponding ROC curves with AUC.392
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We also train an LSTM model that predicts strong flares (M/X class) from quiet393

times, which are hard to distinguish from B flares. The positive class is sampled from394

exactly 1/3/6/12/24/48/72 hours before the first strong flare event, and the negative class395

is sampled randomly from the time period of 48 hours prior to the first M/X flare event.396

Table 6 gives the detailed results, where metrics, such as precision, are higher than those397

in Table 5, which makes intuitive sense because it is much easier to tell strong flares from398

quiet times rather than weak flares from quiet times.399

Table 6: First strong flare (M/X class) classification results with 20 SHARP parameters.

Metric Number of hours before the first strong flare

1h 3h 6h 12h 24h 48h 72h

Precision 0.93 0.93 0.91 0.92 0.89 0.88 0.86

Recall 0.88 0.87 0.85 0.85 0.77 0.72 0.68

F1 Score 0.90 0.90 0.88 0.88 0.83 0.79 0.76

HSS1 0.81 0.80 0.77 0.77 0.68 0.62 0.57

HSS2 0.81 0.79 0.77 0.77 0.68 0.62 0.56

TSS 0.81 0.80 0.77 0.77 0.68 0.62 0.56

As we can see in Fig. 3, the closer to the event time, the better the classification.400

Moreover, the event is much more predictive within 12 hours before the event. The rapid401

rise in predictive performance is consistent with the evolutionary timescale of ARs and402

suggests that within a period of 12− 24 hours, there is an observational signature in-403

dicating that a physical threshold has been passed at which point the flare becomes in-404

evitable. An example of such behavior is suggested by Schrijver (2007) who noted M and405

X flares occurring within 24 hours for ARs that have attained 1021 Mx of unsigned flux406

within 15 Mm of a strong polarity inversion line. This further suggests that physical pro-407

cesses lead to a catastrophic loss of equilibrium following a buildup of energy, as has been408

suggested for a number of CME models (cf. Forbes & Isenberg, 1991; Manchester, 2003).409

For periods longer than 24 hours, from the available observations, it may be physically410

impossible to make flare predictive classifications with high accuracy.411

Furthermore, we train an LSTM model to predict, 24 hours ahead of time, whether412

an M/X flare occurs as opposed to no flare, as in Bobra and Couvidat (2015). The data413

are processed similarly as in Bobra and Couvidat (2015). All data are sampled from the414

208 ARs that produced M/X solar flare events. The positive class is sampled exactly 24415

Fig. 3: ROC curve of LSTM model on M/X flare/non-flare classification with
1/3/6/12/24-hour prediction (left panel) and first M/x flare/non-flare classification with
1/6/12/24/48/72-hour prediction (right panel).
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hours prior to the time of the peak intensity of the event, and the negative class is sam-416

pled randomly from the period that no flare event would happen in the next 1/3/6/12/24/48417

hours. Table 7 gives the detailed results. As we can see from Table 7, the farther away418

from the M/X class event the negative class is selected, the better classifications we can419

get: the farther away from the M/X event, the “quieter” the region is in the negative420

class, thus the discrepancy between positive and negative events is larger. The key dif-421

ference between the results in Table 7 and Table 6 is how the negative class is determined/sampled,422

though both of them are aimed at predicting strong flares from non-flares. The sample423

selection mechanism behind Table 6 shall give worse classifications but is less restrictive424

for the negative class as compared to the sample selection mechanism behind Table 7.425

These results again confirm our earlier comment that sample selection mechanism is im-426

portant and it is essential to detail it for reproducibility of ML results.427

Table 7: Strong Flare/Non-Flare 24-hour ahead of event classification results with 20 SHARP
parameters. Each column represents the different mechanisms of selecting the negative class: no
flare event happens in 1/3/6/12/24/48 hours.

Metric Selection Mechanisms of the Negative Class

1h 3h 6h 12h 24h 48h

Precision 0.89 0.90 0.90 0.90 0.93 0.95

Recall 0.79 0.79 0.80 0.82 0.87 0.90

F1 Score 0.84 0.84 0.84 0.86 0.90 0.93

HSS1 0.69 0.70 0.71 0.73 0.81 0.86

HSS2 0.69 0.70 0.71 0.73 0.80 0.86

TSS 0.69 0.70 0.71 0.73 0.80 0.86

3.2 Strong/Weak Flare Classification with SHARP Parameters428

The Flare/Non-Flare model trained in Section 3.1 predicts whether a flare is hap-429

pening or not. Next, we train a model that classifies whether it is a strong flare (M/X430

class) or a weak flare (B class), given that a flare is happening. Note that we exclude431

the C flares here due to the fact that C flares could be arbitrarily close to strong B flares432

or weak M flares, making the classes highly indistinguishable. We first show the results433

of classifying M/X flares versus B flares using the SHARP parameters, and then the re-434

sults using features obtained via the autoencoder followed by feature selection See Sec-435

tion 2.5 for detailed descriptions of the algorithms.436

In total, as recorded in the GOES data set, we have 751 strong flares and 3842 weak437

flares (see Table 2). As mentioned in Section 2, there are multiple flare events per AR438

and the flare events sometimes can be close to each other in time. To make sure that the439

time series of the flares are not overlapping in the training data, so that we are not us-440

ing the same data point twice, we need to further prepare the data for training and test-441

ing by eliminating the overlapping events (see Section 2.3). The principle that we fol-442

low is to keep as many strong flares (the rarer class) as possible and randomly select one443

when two flares of the same class “overlap”. Finally, see Table 8 for the detailed num-444

bers of flare events and ARs corresponding to different number of hours before the first445

strong flare and the number of hours of data used to train and test the model.446

Table 9 gives the strong and weak (M/X versus B class) flare classification results447

with 20 SHARP parameters described in Section 2.1. We use 12 hours of data t hours448

before an event, at a 1 hour cadence, to classify the flare events; t = 1/6/12/24/48/72449

hours, corresponding to the last six columns in the table.450

Fig. 4 compares the F1 score and other metrics for strong/weak flare classification.451

We describe the rough trend that we observe based on the results given in Fig. 4 while452
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Table 8: Number of flare events and ARs corresponding to different number of hours before the
first strong flare and the number of hours of data used to train and test the model.

Hours Before an Event 1 hour 6 hours 12 hours

Hours of Data for Training 1 6 12 24 1 6 12 24 1 6 12 24

Num. Strong Flares 585 579 565 543 579 565 559 529 565 559 546 510

Num. Weak Flares 851 838 814 768 838 817 794 749 814 794 769 726

Num. ARs 632 628 618 606 628 619 612 601 618 612 608 588

Hours Before an Event 24 hours 48 hours 72 hours

Hours of Data for Training 1 6 12 24 1 6 12 24 1 6 12 24

Num. Strong Flares 543 529 510 480 475 463 453 423 422 412 403 382

Num. Weak Flares 768 749 726 669 660 631 609 564 560 545 524 476

Num. ARs 606 601 588 567 563 552 542 520 518 512 504 485

Table 9: Strong and weak flare classification results from the LSTM model trained with 12 hours
of data 1/6/12/24/48/72 hours (corresponding to the last six columns) prior to the flare event,
using 20 SHARP parameters.

Metric Number of Hours before Event

1h 6h 12h 24h 48h 72h

Precision 0.90 0.89 0.89 0.88 0.83 0.79

Recall 0.86 0.84 0.81 0.77 0.73 0.76

F1 Score 0.88 0.86 0.85 0.82 0.77 0.77

HSS1 0.76 0.73 0.70 0.67 0.57 0.56

HSS2 0.79 0.77 0.74 0.71 0.62 0.59

TSS 0.79 0.77 0.74 0.70 0.61 0.59

we acknowledge that these trends have not been verified rigorously due to the fact that453

different samples are used to train/test for different forecasting windows in this work.454

Overall, the classification accuracy appears to be lower when predicting longer time ahead455

of an event. This is also exemplified in the ROC curves and AUC (area under the ROC456

curve) values given in the left panel of Fig. 5, in which one hour’s data is used for 1/6/12/24/48457

hours’ predictions. The AUC values of 48-hour prediction is much smaller than 24 hours’458

predictions, both of which are much smaller than 1/6/12 hours’ predictions, where the459

latter three are not significantly different from each other.460

3.3 Feature Importance for Strong/Weak Flare Classification461

Next we examine how these 20 SHARP parameters contribute to the classification462

model. This is related to the notion of variable importance, which is a widely adopted463

measure that represents the statistical significance of each feature in a model (Garson,464

1991; Goh, 1995). Recall from Section 2.1 that the SHARP parameters are not indepen-465

dent features: USFLUX, TOTUSJZ, TOTUSJH, TOTPOT are highly correlated (with466

correlations ranging from 0.87 to 0.99); MEANPOT, SHRGT45, MEANSHR, MEANGAM467

are highly correlated (with correlations ranging from 0.8 to 0.99); SAVNCPP and AB-468

SNJZH are highly correlated (with correlation 0.95); MEANALP and MEANJZH are469

highly correlated (with correlation 0.96); MEANGBZ and MEANGBT are highly cor-470

related (with correlation 0.99). For these highly correlated features, as long as one of them471

is picked up as “important”, all of the highly correlated ones are almost equally “impor-472

tant”. Note that in the situation with highly correlated features, variable importance473

could become highly unstable. We take the backward elimination method as an exam-474

ple. In each training/testing cycle of backward elimination, we begin with all the fea-475

tures and delete one feature at each step, till all features are eliminated. Which feature476
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Fig. 4: The performance metrics on strong and weak flare event classification using
LSTM with 20 SHARP parameters from HMI/SDO header file. For each panel, the indi-
vidual titles gives the forecasting window, i.e. number of hours’ prediction. The x-axis for
every panel, shared by the upper and lower panels, is the number of hours of data (1, 6,
12, 24 hours from left to right) used to train and test the model.

Fig. 5: ROC curve of LSTM model using 20 SHARP parameters (left panel) and
machine-learned features using autoencoder (right panel) for strong/weak flare event
classification (1/6/12/24/48 hours prior to event labeled with different colors and line
types) with 1 hour data.

is being deleted at each step can be determined by an exhaustive search of which one,477

among the remaining ones, upon removal, incurs the largest performance drop. However,478

when features are highly correlated, the resulting selected “important” features are not479

stable across different training/testing cycles: for two highly correlated features, one of480

them might be identified as “important” and the other identified as “unimportant” by481

the backward elimination method.482

To address the feature importance problem and mitigate the difficulties incurred483

by the high correlations, we divide the 20 features into four groups, where features within484

each group are highly correlated with each other. The dividing of the groups is based485
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on the block structure in the correlation matrix of the 20 features, as shown in Fig. 1,486

which have some physical similarities. Group 1 contains USFLUX, TOTUSJZ, TOTUSJH,487

TOTPOT and USFLUX, which are the total unsigned magnetic flux, electric current and488

current helicity and total potential energy, respectively. The latter three quantities are489

representative to differing degrees of the magnetic free energy. Group 2 contains SAVNCPP490

and ABSNJZH, which are the net electric current per polarity and the absolute value491

of the net current helicity. These quantities are distinguished as integrated absolute val-492

ues of the current and current helicity. Group 3 contains three similar measures of AR493

area: SIZE ACR, NPIX and SIZE, but also contains NACR (number of strong magnetic-494

field pixels in the patch), which is more representative of magnetic flux. Group 4 con-495

tains features representative of the average density of the free energy. These four groups496

are determined based on diagonal blocks in the correlation table (see Fig. 1).497

We explain our methodology via a concrete example, strong/weak flare classifica-498

tion using 24 hours’ data (time series of SHARP parameters) for 6-hour predictions, as499

illustrated in Fig. 6. We begin with the LSTM with all of the features, which gives a base-500

line testing accuracy, 90.70%, as shown by the gray horizontal line in Fig. 6. Here the501

accuracy refers to the total number of correctly classified events divided by the total num-502

ber of events (in the testing set). We train the LSTM model with only one group of fea-503

tures at a time and report the corresponding accuracy for the four groups, which are 87.99±504

1.16%, 83.34±1.14%, 83.18±1.66%, and 82.34±1.49%, respectively; see the red, green,505

blue and yellow blocks in Fig. 6. Finally, we train the LSTM model with each feature506

alone, and report the corresponding testing accuracy, see the individual bars correspond-507

ing to each feature in Fig. 6 and their error bars given by the black vertical bars, obtained508

through training the model with each feature 20 times with different random seeds.509
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Fig. 6: Feature importance considering correlations among features for the 6-hour ahead
strong/weak flare classification using 24-hour long time series of SHARP features. The
testing accuracy with all features is 90.70 ± 1.58%. The four groups of correlated features
are labeled with red, green, blue and yellow colors, respectively, where on top of each col-
ored block, the testing accuracy using the corresponding group of features alone is given.
Each individual bar, together with the vertical black error bar, corresponds to the testing
accuracy when we include only one feature in the LSTM model.

We can see from Fig. 6 that TOTUSJH (total unsigned current helicity, which in-510

dicates that the energy buildup due to the twist and shear of the magnetic field provides511

the energy erupted by the flares) and SAVNCPP (sum of the modulus of the net cur-512

rent per polarity) are important features for constructing precursors for strong solar flare513

events, which confirms earlier studies. Of course, the features that are highly correlated514
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with these two features can be considered as “almost equally important”. This result is515

consistent with alternative methods that we tried on variable importance quantification,516

including the backward elimination (Gregorutti, Michel, & Saint-Pierre, 2017) and sim-517

ple hypothesis testing methods (Saeys, Inza, & Larrañaga, 2007). We do not detail these518

alternative procedures since they give the same conclusions as the one described above.519

3.4 Strong/Weak Flare Classification with Machine-Derived Features520

In place of using the SHARP parameters, we will attempt to use the features ex-521

tracted by a machine learning algorithm from the raw magnetic field images directly. Po-522

tentially this could give essential insight toward building new important features for so-523

lar flare predictions. We perform feature extraction via the autoencoder, as described524

in Section 2.5. This is inspired by the VGG-16 architectures (Simonyan & Zisserman,525

2015) with a total of 20 layers (10 layers for encoder and 10 layers for decoder). The build-526

ing blocks are:527

1. a convolution layer (kernel size 3×3, with same padding), the resulting output528

is of the same dimension with user specified number of channels,529

2. a max pooling layer (pooling size 2×2 with stride 2×2, and same padding), the530

resulting output is of half the dimension with the same number of channels, and531

3. an unpooling layer (resizing image through bilinear interpolation), the resulting532

output is of user specified dimension with the same number of channels.533

The final pooling layer of the encoder resizes the encoded image linearly to a constant534

size 8 × 16 × 512. Consequently, 65, 536 features are extracted from the input image,535

regardless of the input dimension of the image. This creates the same number of features536

for input images of any size, which makes subsequent machine learning algorithms much537

easier to implement. Fig. 7 illustrates the structure of the adopted autoencoder.538

Fig. 7: Structure of autoencoder on HMI images (3 components of the magnetic field).
The numbers at the bottom corresponds to the dimensions at the encoding and decod-
ing layers. We elaborate how we convert the HMI images to the final hidden layer (and
reconstruct the HMI images using this hidden layer) of size 512× 16× 8.

Each input image is normalized before any encoding with the default Tensorflow539

image normalization, which effectively converts the data to mean 0 and standard devi-540

ation 1. Batch normalization (Ioffe & Szegedy, 2015) is applied for all the weights in-541

volved in convolution operations. For the activation function, we use the standard ReLu542

nonlinearity after each convolutional layer except for the final output layer. We add an543

additional L2 regularization for all the convolution operations with tensorflow built in544

tuning for the hyperperameter λ. The initialization of weights are given by Gaussian ran-545

dom variables with mean 0 and standard deviation 10−3. This is a sensitive part of the546

algorithm that requires tuning. We adopt the Stochastic Gradient Descent (SGD) al-547

gorithm, the Adam Optimizer (Kingma & Ba, 2014), with default coefficients, β1 = 0.9, β2 =548

0.999, ε = 10−8, where β1 is the exponential decay rate for first moment estimate, β2549
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is the exponential decay rate for the second moment estimate, and ε is a parameter for550

numerical stability. For the learning rate we initialize it to 0.01, and decay it exponen-551

tially (by the scale of half) every 40 epochs. The loss function is given by Pixel by Pixel552

square difference across all channels:
∑

i,j,k(x
(k)
ij −x̂

(k)
ij )2, where x

(k)
ij is the pixel value553

of kth channel at pixel index i, j, and x̂ij is the reconstructed image. Fig. 8 demonstrates554

the reconstructed images against the observed images of the three components of the mag-555

netic field from HMI/SDO data, using several randomly chosen ARs.556

(a) (d)

(b)

(f)

(e)

(c)

Fig. 8: Demonstration of reconstructed images against original images (three components
of the magnetic field data from HMI/SDO ARs, corresponding to the three columns in
each panel) of several randomly selected ARs using the autoencoder. The AR numbers,
dates (year.month.day), and times (hour:minute:second) of the images are given in the
individual title of each panel. And the color scale on the right-hand-side of each panel
reflects the strength of the three magnetic field components Br, Bt, Bp (in Gauss).

As described in Section 2.5, we need to perform feature selection prior to fitting557

the LSTM predictive classification model. The feature selection is based on marginally558

performing two-sample t-tests, and the thresholding p-value is a tuning parameter based559

on cross-validation of performance scores that we choose. Fig. 9 shows the classification560

results using features selected from the autoencoder, with various thresholding p-values,561

corresponding to each forecasting window (number of hours ahead of events). We can562

see that the performance improves significantly with the feature selection as opposed to563

using all of the features from the autoencoder, which corresponds to the p-value thresh-564

old equal to 0, the last column of each panel in Fig. 9. For example, for 3 hour predic-565

tion, we choose TSS as the performance score, which corresponds to the dashed black566

lines; then the p−value threshold 10−3, corresponding to 5, 835 features, gives the max-567

imum TSS value. Therefore, we are able to reduce the number of features from 65, 536568

to 5, 835 (more than 10 folds) with a much higher TSS score.569

Now we briefly explain why the performance for binary classification is improved570

after using the marginal screening method (based on p-values) to select a smaller num-571

ber of features from all the 65,536 features given by the autoencoder. The p-values here572

are serving the purpose of “identifying the useful features for strong/weak flare classi-573

fication” from the feature pool extracted from the autoencoder, which is actually deriv-574

ing features to reconstruct the image. A significant p-value (the significance level is a575

tuning parameter) indicates the “usefulness” of the corresponding feature. In statistics,576

many redundant useless features could result in poor classification results, especially in577

the case that we are faced with: the number of features is much larger than the num-578

ber of events (M/X or B flares) that we consider (see Section 2.5 for references). There-579

fore, this feature selection technique that we are using conveys two messages: first, we580
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Fig. 9: Selection of threshold for p-values for marginal screening of features de-
rived from autoencoders. For each panel, the x-axis is on the log10 scale of thresh-
olds for p-values of selected features and the y-axis shows the corresponding met-
rics. The corresponding number of features for the p-value orders from −9 to 0 are
855, 1045, 1320, 1728, 2453, 3669, 5835, 10160, 20047, 65536.

do not need so many features to achieve good performance; second, removing useless fea-581

tures actually improves the performance and suggests the possibility of identifying machine-582

derived physically meaningful features.583

The right panel in Fig. 5 in Section 3.2 shows the ROC curve of strong/weak flare584

classifications using features derived from the autoencoder with feature selection p-value585

threshold set at 10−3. Different line types/colors correspond to 1/3/6/12 hours of pre-586

diction. Note that we only train the autoencoder with time series of 12 hours (data from587

0-12 hours prior to an event with cadence 1 hour is used to train the autoencoder), thus588

we cannot make predictions longer than 12 hours. However, the LSTM model with the589

machine derived features can be readily adapted to any desired number of hours of fore-590

casting window, similar to the LSTM models with SHARP parameters trained in Sec-591

tion 3.2. As we can see from Fig. 5, the AUC for 1/6/12 hour predictive classifications592

are (0.959, 0.957, 0.956) with SHARP parameters and (0.957, 0.931, 0.943) with features593

derived from autoencoder. This shows that the latter performs the same as if not worse594

than the former, according to AUC. Note that in the autoencoder model, the AUC is595

not monotonic as a function of the forecasting window since the marginal screening step,596

which is performed separately for each forecasting window, incurs extra heterogeneity.597

3.5 Case Study on Flare Classification598

We randomly choose four ARs (with NOAA AR numbers 11158, 11165, 11532, 11513)599

to show our LSTM model Strong/Weak flare (Section 3.2) classification scores time pe-600

riods ranging from very beginning until the final strong, M/X class flare events (see Fig. 10).601

Note that in our data extraction pipeline, we do not fetch data from the period when602

strong and weak flare events heavily overlap (we do not consider this scenario yet in the603

current LSTM model). Thus the number of available ARs with long time range data be-604

fore the M/X class event is not many. These classification scores, though obtained from605

a strong/weak flare classification model (instead of an operational flare prediction model),606

already show an increasing pattern as we approach around 20 hours prior to the final607

M/X class event.608
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Here are more details on model training and calculation of the classification scores.609

Both the strong and weak flares are sampled 1 hour prior to the flare event at a 1 hour610

cadence, which gives 721 strong flares and 721 weak flares for training the LSTM model611

for strong/weak flare classification. Note that we use the same number of strong flares612

and weak flares (a simple random sample from all) here. This in fact gives a conserva-613

tive demonstration of our algorithm: assuming no prior knowledge about the solar physics614

and no learned knowledge about the rareness of the strong events (i.e., the sample un-615

balance problem), we show how the ML algorithm we train can differentiate strong flares616

from others. After training the LSTM models for strong/weak flare classification (see617

Section 3.2 for details of the structure of the LSTM model), we save the weight param-618

eters and use them to predict scores (between [0, 1]) representing the probability that619

there will be a (strong) flare event happening at each future time point by feeding the620

current data features into the trained model. These “weight parameters” actually refer621

to the trained nonlinear transformations of the SHARP features in the LSTM model.622

In essence, we save our trained model and use it as a black box for calculating the clas-623

sification scores for the four ARs that we test on.624

AR 11158

C-class !ares

19.6 h M2.2M6.6

p
ro

b
a

b
ili

ty

1.0

0.8

0.0

0.2

0.4

0.6

AR 11165

C-class !ares

24.1 h M1.5M1.5

p
ro

b
a

b
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

AR 11513

C-class !ares

19.2 h M2.4 M2.2 M1.0 M1.6 M2.8 M1.1

0 20 40 60 80 100 120
time(hours)

p
ro

b
a

b
ili

ty

0 20 40 60 80 100 120
time(hours)

p
ro

b
a

b
ili

ty

M2.7 M6.1 M2.343.5 h

C-class !ares

AR 11532

1.0

0.8

0.0

0.2

0.4

0.6

1.0

0.8

0.0

0.2

0.4

0.6

Fig. 10: Case studies on four ARs 120 hours prior to the peak intensity time of M/X
events at 2011-02-14 17:26:00 (AR11158), 2011-03-07 21:50:00 (AR11165), 2012-07-02
00:35:00 (AR11513), and 2012-07-29 06:22:00 (AR11532). Strong/Weak flare classification
LSTM model is used to predict the probability (classification score) of a M/X class event
happening at a specific time (blue curve) with observed C and M flare events with green
and red colors, respectively. The classification scores go higher when we get closer to the
M/X class event and a sharp or gradual transition of the classification score happens
around a day ahead of the first strong flare.

In Fig. 10, we compare the sequence of classification scores (blue solid line) with625

the time of observed flare events (red for M flares and green for C flares) for each of the626

four ARs (with NOAA AR numbers 11158, 11165, 11513 and 11532) from the GOES data627

set to check the validity of the predictions, i.e. whether the classification scores increase628

prior to any (strong) flare event. The end time of each case (AR) that we consider here629

is given by the peak intensity of M flares at 2011-02-14 17:26:00 (AR11158), 2011-03-630

07 21:50:00 (AR11165), 2012-07-02 00:35:00 (AR11513), and 2012-07-29 06:22:00 (AR11532).631

We note that these four ARs were excluded from the training of the classification model.632

It should also be noted that due to the rotation of the sun, an AR cannot be seen for633

more than approximately 350 hours at a time. The 100 consecutive SDO/HMI features634

with a cadence of 1 hour cover a very significant fraction of this AR visibility.635
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Furthermore, Fig. 11 shows box plots of the classification scores 1/3/6/12/24 hours636

prior to a “quiet time” (first five columns) and “active time” (time of peak intensity of637

strong flare events, last five columns), for the four ARs in the entire time range: year638

2010 to year 2018. We define a certain time as “quiet time” if there is no strong flare639

before or after 24 hours. We can see from this figure that the classification scores are well-640

separated by 0.5 for the “quiet time” and “active time”, which further validates our con-641

struction of precursors for strong solar flare events using the LSTM model.642

q1 q3 q6 q12 q24 a1 a3 a6 a12 a24
0.0

0.2

0.4

0.6

0.8

1.0
prediction score prior to 1,3,6,12,24h: quiet time vs active time

Fig. 11: Boxplots of the classification scores for the case studies done for the four ARs
over the entire observed time range. The X-axis label stands for q (quiet time, first five
columns) or a (active time, last five columns) with [1,3,6,12,24] hours’ predictions. The
Y-axis label is the corresponding classification score.

Our preliminary results indicate that with the time-dependent learning process, the643

machine learning algorithm identified examples of a large gradient in the classification644

score approximately 20-24 hours before a large (M/X class) flare. At this point, we can-645

not translate this result to physical understanding of the flare initiation mechanism. This646

work will be the subject of a subsequent publication. The result is highly encouraging647

in the sense that we seem to have shown the existence of some physical parameter com-648

bination that is capable of detecting strong flares by a significant time in advance for sev-649

eral ARs.650

4 Conclusions and Future Work651

We have presented machine learning algorithms that give encouraging results in652

classification of strong and weak solar flare events and in detecting efficient precursors653

for strong flares, using the SDO/HMI vector magnetograms and/or SHARP parameters.654

This work serves as our first attempt toward early predictions of strong solar flare events.655

To summarize, we developed a flexible pre-processing pipeline to prepare data from656

multiple sources (GOES, HMI/SDO) for subsequent machine learning algorithms. Then657

we trained the LSTM model to perform two classification tasks: flare/no-flare and strong/weak658

flare classification. We use SHARP parameters primarily for the two classification mod-659

els. Beyond using derived quantities, i.e. SHARP parameters, we apply the autoencoder660

to extract features directly from images of all components of the magnetic field. Feature661

selection is performed to get rid of redundant noisy features that may harm subsequent662

classifications. We then show that these machine-derived features can predict/classify663

almost as well as the SHARP parameters derived from physical understanding.664

Compared with previous results, our methodology and the results presented in this665

paper stand out in several aspects.666
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1. We train models with 1/3/6/12/24/48/72-hour forecasting windows of flare events,667

instead of a single fixed forecasting window of 24 hours. We discover the interest-668

ing and physically meaningful phenomenon of the “phase transition” of around669

24-hour predictions: for shorter forecasting windows, the performance of classi-670

fication does not vary too much and for longer forecasting windows, the perfor-671

mance (or capability) of classification drops quite noticeably. This corresponds to672

the underlying physics: the energy build-up takes around 12 to 24 hours for a so-673

lar flare event, which we discuss in detail in Section 3.1 (where the references are674

given). Further investigations will study the cause and effect of this “phase tran-675

sition phenomenon”, both from a physics perspective and a machine learning per-676

spective.677

2. We train multiple models to perform a sequence of predictive classification tasks678

(M/X flare/weak flare classification), and finally combine them to obtain encour-679

aging results. This has not been done before as far as the authors have been able680

to find in the literature. The decomposition of the challenging task of solar flare681

predictive classification into several smaller/easier tasks enabled us to assess the682

possibility and limitations of using HMI data for the precise classification of so-683

lar flare events. This serves as a great first step toward using more advanced ma-684

chine learning and statistical analysis techniques to finally enable efficient and ac-685

curate real-time solar flare forecasting.686

3. The modeling techniques that we use give us high-quality classification results in687

terms of HSS and TSS scores, metrics that are commonly adopted in the field. The688

LSTM model that we use for predicting the outcome of a time series observation689

not only takes care of the “stationary features” (which are the features adopted690

in most of the work in the literature, such as predictions using the SVM, random691

forest, penalized regression), but also takes care of the time evolution of features/images.692

4. We use the autoencoders to automatically extract features from images, in addi-693

tion to using physical quantities from the magnetograms. These quantities (SHARP694

parameters here) are derived from physical understanding and have been used suc-695

cessfully in many previous examples, e.g. Barnes et al. (2007); Bobra and Cou-696

vidat (2015); Falconer (2001); Leka and Barnes (2003). It is very encouraging that697

our machine-derived features can be used to predict/classify almost as well as the698

SHARP parameters. In fact, these parameters represent an incomplete understand-699

ing of solar flare events, which the autoencoder features may surpass. First, the700

most valuable parameters for prediction in our study, SAVNCPP and TOTUSJH,701

are scalar values representing integrals of electric current and current helicity, re-702

spectively. While much of the information regarding the spatial distribution of the703

magnetogram has been lost in these variables, it remains fully available to the au-704

toencoded features. Refining the use of the autoencoder will be left for further in-705

vestigations in our ongoing/future work.706

5. In our handful of case studies, the strong flare (M/X class) classification scores707

showed a sharp (or gradual) increase at least 20h−25h before the first large flare.708

This implies that there is a still unexplored (probably nonlinear) combination of709

the SHARP parameters that exhibits a runaway effect about a day before large710

solar flares. In the future we intend to further explore this exciting result from both711

the machine learning and physics perspective. It is our hope that eventually this712

discovery might lead to flare forecasts with lead times greater than one hour.713

Our ongoing and future work includes (a) combining features from the Atmospheric714

Imaging Assembly (AIA) data with the current feature set, (b) connecting machine-learned715

features to derived quantifies (such as the SHARP parameters) to facilitate scientific dis-716

coveries of new physically meaningful features, and (c) training physically based machine717

learning models for accurate estimation of flare event time and flare event intensity. The718

last one will potentially lead to operational flare forecasting.719
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Appendix A Tables of Confusion Matrices735

We give confusion matrices (Provost & Kohavi, 1998), i.e. list the numbers of TP736

(true positives), FN (false negatives), TN (true negatives) and FP (false positives), for737

the classification results in Sections 3.1 and 3.2. We run the machine learning algorithms738

20 times with different seeds, thus the mean, minimum and maximum values are given739

in Table 10, 11, and 12. This show the robustness and replicability of our results.740

Table 10: Flare/Non-Flare classification confusion matrix with 20 SHARP parameters. This
corresponds to Table 5.

Forecasting Window Contingency Table (mean [min, max])

TP FN TN FP

1 hr 53.0 [39,62] 23.8 [12,34] 60.0 [49,72] 21.2 [15,33]

3 hr 54.9 [49,66] 22.6 [11,33] 57.4 [51,64] 20.2 [11,31]

6 hr 51.1 [41,61] 24.1 [17,33] 53.5 [42,60] 21.3 [11,33]

12 hr 47.1 [40,54] 24.3 [13,32] 49.2 [40,57] 21.5 [14,31]

24 hr 29.4 [17,40] 32.5 [16,50] 47.8 [40,53] 14.3 [5,25]

48 hr 24.9 [15,34] 16.1 [6,28] 26.2 [19,34] 13.9 [5,23]

Table 11: First Strong Flare/Non-Flare classification confusion matrix with 20 SHARP parame-
ters. This corresponds to Table 6.

Forecasting Window Contingency Table (mean [min, max])

TP FN TN FP

1 hr 113.3 [107,120] 16.2 [11,24] 120.9 [109,128] 8.7 [3,16]

3 hr 114.1 [102,125] 17.8 [9,27] 116.5 [106,127] 8.7 [4,14]

6 hr 106.7 [95,115] 18.2 [13,24] 117.6 [107,125] 10.6 [5,18]

12 hr 106.3 [91,118] 19.0 [10,27] 115.1 [100,125] 9.7 [6,17]

24 hr 93.1 [76,103] 27.9 [20,39] 112.2 [100,124] 11.0 [5,19]

48 hr 72.8 [63,79] 28.2 [32,39] 94.6 [83,106] 10.4 [2,25]

72 hr 61.8 [54,74] 28.9 [18,36] 75.1 [68,82] 10.2 [6,19]
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Table 12: Strong/Weak flare classification confusion matrix with 20 SHARP parameters. This
corresponds to Table 9.

Forecasting Window Contingency Table (mean [min, max])

TP FN TN FP

1 hr 161.4 [144,176] 27.3 [17,40] 247.8 [230,265] 18.6 [7,28]

6 hr 153.4 [131,169] 29.3 [22,45] 244.1 [229,264] 19.4 [12,28]

12 hr 145.9 [133,161] 34.1 [25,43] 234.2 [216,250] 18.9 [11,27]

24 hr 128.5 [116,144] 39.2 [27,57] 221.6 [206,240] 16.8 [9,27]

48 hr 106.3 [90,118] 39.5 [27,56] 166.8 [155,191] 22.5 [11,35]

72 hr 87.4 [80,101] 27.2 [17,38] 115.8 [99,123] 23.7 [13,36]

Appendix B Additional Results741

In this Section, we give results of strong/weak flare classifications based on alter-742

native sample-splitting methods described in Section 2.2: split-by-active-region (includ-743

ing correcting for over-representation of certain highly flaring ARs) and split-by-year (that744

considers solar active phase and decaying phase). For all the figures in this Section, “pre-745

diction period” refers to the number of hours prior to a flare event, i.e. X hours predic-746

tion, with X = 1/6/12/24/48/72.747

Table 13: Proportion of positive class (strong flares) in training and testing data, in the format
of mean ± standard deviation, for different cap values we specify in the split-by-active-region, see
Section 2.2.

Cap Training (Mean ± Std.) Testing (Mean ± Std. )

2 0.298 ± 0.019 0.669 ± 0.139
3 0.343 ± 0.023 0.741 ± 0.141
4 0.399 ± 0.032 0.716 ± 0.174
5 0.459 ± 0.029 0.608 ± 0.108
10 0.569 ± 0.044 0.651 ± 0.143
15 0.619 ± 0.043 0.673 ± 0.113
∞ 0.693 ± 0.071 0.680 ± 0.146

Fig. 12: Performance scores from split-by-active-regions (with no cap on the number of
events per AR), as described in Section 2.2, are displayed in the same way as in Fig. 4 in
Section 3.2 in the main text.
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Fig. 13: Performance scores from split-by-active-regions (with cap = 2, i.e. the number of
events per AR is less than or equal to 2), as described in Section 2.2, are displayed in the
same way as in Fig. 4 in Section 3.2 in the main text.

Fig. 14: Performance scores from split-by-year randomly, as described in Section 2.2, are
displayed in the same way as in Fig. 4 in Section 3.2 in the main text.

Fig. 15: Performance scores from split-by-year (training with solar climbing and maxi-
mum and testing with solar declining phase), as described in Section 2.2, are displayed in
the same way as in Fig. 4 in Section 3.2 in the main text.
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The positive and negative classes are not balanced for the training and testing data748

when we put caps on the number of flare events per AR. We give the proportion of the749

positive class in the training & testing data for all values of caps that we test in Table 13.750
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