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Abstract  
Developable surfaces based on closed-shape, planar, rotationally symmetric kirigami (RSK) 

sheets approximate three-dimensional, globally curved surfaces upon (reversible) out-of-

plane deflection. The distribution of stress and strain across the structure is characterized 

experimentally and by finite element analysis as a function of the material and cut 

parameters, enabling the integration with strain gauges to produce a wearable, conformal 

patch that can capture complex, multi-axis motion. Using the patch, real-time tracking of 

shoulder joint and muscle behavior is demonstrated. The facile fabrication and unique 

properties of the RSK structures potentially enables wearable, textile-integrated joint 

monitoring for athletic training, wellness, rehabilitation, feedback control for augmented 

mobility, motion of soft and traditional robotics, and other applications.  
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1. Introduction 

Wearable activity and heart monitors have proliferated in the marketplace, creating an 

unprecedented data stream and opportunities for improving cardiovascular health and athletic 

performance. Joint movement, however, remains poorly quantified, while joint injuries 

dramatically impair function and raise the cost of healthcare. Nearly two million people in the 

U.S. enter the medical system just for rotator cuff injuries, with corresponding repair 

surgeries exceeding $3 billion per year,
[1]

 while the annual market for orthopedic braces 

exceeds $5 billion. Over 120 million Americans (one in two adults) are affected by painful or 

disabling bone, joint or muscular conditions,
[2]

 which often occur from improper positioning 

during active and/or passive activities, (e.g. weight-lifting, sitting, and sleeping with bad 

posture). The cost of treatment and lost wages is estimated at over $200 billion.
[2, 3]

 

Therefore, development of tools for in situ assessment and better understanding of joint 

movement could unlock a new frontier of using body kinematics to improve health span, 

athletic performance, gesture control of motion assistive devices, and enable many other 

applications. 

Measurements of joint function typically involve the manual use of a goniometer to 

determine the range of motion.
[4]

 Some joints (e.g. shoulder) exhibit complex motion that is 
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poorly assessed by a simple goniometer, in which the accuracy can vary by as much as 

45%.
[5, 6]

 In sports, exercise, common tasks, and post-injury recovery in particular, the 

process for achieving a desired range of motion requires professional assessment
[5]

 and a 

strict rehabilitation regimen,
[7]

 often hampered by poor adherence, resulting in poor patient 

outcomes. The ability to quantify movement of key joints during activity can dramatically 

improve outcomes for rehabilitation and boost athletic performance. However, directly 

monitoring and providing feedback on joint movement during an activity, unobtrusively and 

cost effectively, remain a major challenge.
[8-10]

  

Currently, tracking motion or deducing impact stresses is performed using camera motion 

tracking systems
[11, 12]

 or inertial measurement units (IMUs) that consist of an accelerometer, 

gyroscope, and magnetometer, typically packaged in a rigid brace or integrated within a band 

or suit.
[13-15]

 In an attempt to improve the wearable aspect of the sensors, collection of 

positional data has been shown using conductive textiles, where special fibers integrated into 

the textile are the sensing elements.
[16-21]

 However, the sensing is based on stretching of the 

fibers, typically unidirectional and poorly suited for integration with substantially rigid 

electronic components that do not tolerate well to repeated mechanical deformation. 

Furthermore, the integration of electronic function into textiles remains a non-standard, 

expensive process. Instead, an approach is needed where the device is flexible and curved, 

conforming to the body surface in use, yet is also flat and non-stretchable during fabrication 

to be compatible with dominant, scalable manufacturing and integration processes for 

electronics.   

To resolve the conflicting design requirements stated above, we use macro- and mesoscale 

closed-shape, planar kirigami structures, nominally with rotational symmetry, such as shown 

in Figure 1. Kirigami (Japanese art of cutting) has increasingly been used to engineer global 

elasticity in materials.
[22-25]

 The addition of cutting allows for greater control over the 

geometric design and system behavior.
[26]

 Recently, this has been leveraged to enable 

locomotion via soft actuators
[27]

 and flexible electronics.
[28-31]

 While technologies to generate 

patterns and functional coatings in two dimensions are now highly evolved, the structures 

examined here are easily generated at the application-appropriate length scales using a laser 

or die cutter. As the structure is displaced normal to its original plane, concentric rings 

defined by the cut lengths bend to create a combination of saddles with alternating positive 

and negative Gaussian curvatures. A sufficiently dense and appropriately configured cut 

pattern enables the structure to achieve large deflections and to conform to an envelope shape 

of complex curvature. We leverage the alternating local curvature – and therefore strain – to 

strategically place strain sensors and enable the quantification of joint movement.  

 

2. Results and Discussion 

Cut patterns were designed by following the contours of objects to enable wrinkle-free 3D 

transformations of planar sheets, allowing them to assume globally curved surfaces. For 

demonstration, cut patterns were tuned to match the curvatures of an orange and acorn 

squash (Figures 1a and 1b, respectively). The deformation behavior of these nominally 

rotationally symmetric kirigami (RSK) structures is governed by the radial spacing (w), 

angular spacing (ф), and the number of cuts along the perimeter of each concentric circle 

(Npc) (Figure S1). A classification system used to define the rotational symmetry of these 

patterns based on Npc is shown in Figure S2. The cut patterns made in this study remain 

circular or ellipsoidal, symmetric about the central axis. 
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The basic element of RSK structures can be discretized by a series of beams, in which the 

segments between the cuts act as hinges, creating saddle points, as shown in Figure 1c, in 

which the color bar represents displacement in millimeters. Test specimens were made here 

using laser-cut polyethylene terephthalate (PET) sheets for convenience and cost-

effectiveness, sufficient to represent the behavior of other materials, e.g. such as those used 

for flexible printed circuit boards. (While circular and ellipsoidal cuts are analyzed here, it is 

understood that other base cut patterns may be used to better tune the deformed structure 

to the curvature, as represented in more detail in Figure S3.)  

2.1.    Mechanical Testing 

The mechanical response of the RSK platform was modeled using finite element analysis 

(FEA), in which cross-plane, uniaxial forces were applied, and then plotting the logarithmic 

force versus displacement (Figure 2). The FEA models match well with experimental results 

in the linear elastic regime, as the comparison of out-of-plane behavior in the inset images 

of Figure 2 shows. The RSK structure can undergo large global displacements to beyond 

1,500x its original profile, as shown in the second inset of Figure 2. (A simplified model of 

the structure’s behavior assumes segments of rings in which the total displacement of the 

structure is the summation of the displacement of each ring, as represented in the model in 

Figure S4. The more rings within a given area and perimeter, the larger the linear 

displacement limit of the spring.) Note that while the regimes in the force versus 

displacement plots are designated as linear or nonlinear, from close examination of the 

deformation, it’s clear that most of the strain and stress (Figure S5) is localized to the cut 

ends, which are thus more prone to plastic deformation. Indeed, beyond a displacement of 

approximately 90 mm for the structure in Figure 2, slight deviation between our FEA and 

experiment begins, attributed to the FEA models’ assumption of purely elastic behavior, 

which has neglected plastic strain or strain-hardening that may occur at large 

displacements.  

Figure 3 plots experimentally quantify force versus displacement to demonstrate the 

influence of w, ф, and Npc on the mechanical properties. For constant angular and radial 

spacing, as the number of cuts along the perimeter increases, so too does the force required 

to displace the structure (Figure 3a). Similarly, increasing ф (Figure 3b) or increasing w 

(Figure 3c) requires more force to deflect the spring. Cantilever beam theory can be used to 

gain a better intuition of how the spaces between cuts act as beams and how beam 

geometry influences the mechanical properties such as yield displacement, as shown in 

Figure S6,32 albeit in the elastic regime in the strict sense. The smaller the number of cuts in 

the radial direction, or the larger the number of azimuthal cuts, the stiffer the beams and 

thus the higher the overall stiffness of the RSK structure in cross-plane deformation.  

2.2.    RSK structure as platform for sensing 
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We take advantage of the alternating curvatures exhibited by the structure and introduce 

electronic components in the regions suitable to their deformation requirements and 

tolerances. For example, rigid sensors can be placed between the cut ends on the kirigami 

sheet, where there is minimal curvature upon deflection. Strain gauges, on the other hand, 

can be placed at points of greater local curvature (e.g. near the start of the cut). This 

integration principle allows the RSK structures to act as a multi-functional platform for the 

placements of a variety of otherwise substantially rigid or flexible sensor components. As a 

proof-of-concept, simple strain gauges are embedded on the RSK platform, oriented off-axis 

to each other, located near the cut ends (see schematic in Figure 4a). The combined 

substrate and strain gauges are adhered onto the shoulder using a stretchy fabric adhesive 

used often in physical therapy; a cross-section is represented in Figure 4b. The placement of 

the sensors at the start and end of the cuts helps maximize the signal, as shown in Figure 4c, 

where a sub-unit ring is deformed using FEA, with force applied at the cut ends in the inner 

part of the ring; an orange box indicates the location of the sensors. (A more detailed 

representation of the model is shown in Figure S4.) In Figure 4d, the platform is shown 

placed on the shoulder of a user, where SG# represents a linear strain gauge. The flexible 

adhesive was omitted in the images in Figure 4d to show how the RSK device assumes the 

topology of the subject’s shoulder, and how the sensor platform is oriented along the top of 

the shoulder.  

To capture shoulder joint motions, one strain gauge is positioned outside of the acromion, 

in the vicinity of the greater tubercle of humerus/deltoid to capture the significant change in 

elevation upon raising the arm. Another sensor is placed along the back of the shoulder (e.g. 

along or near the supraspinatus or infraspinatus) to capture arm movement across the 

body. The cut pattern used for this subject has a radial spacing of w = 1 mm, (except for the 

spacing of the rings that hold the strain sensors), an angular spacing of ф = 5 mm, and Npc = 

2 (two cuts along the perimeter). Narrow yet long beams allow for the structure to be 

flexible enough to adapt to changes in the surface topology of the shoulder as the arm 

moves. The cut pattern can also be tuned to match variations in shoulder geometries – e.g. 

for broader shoulders an increase in the number of rings. 

The device shown in Figure 4d was placed on the shoulder, and the subject performed 

various motions. The strain gauges experience changes in the local strain, altering their 

electrical resistance, captured by a control unit. An example of the collected and processed 

data is shown in Figure 5, where the correlation is made between the position of the limbs 

(and joint), and signals from the sensor(s) as the subject raises the arm up and down 

following the humeral elevation plane. (For corroboration by conventional multi-point 

motion tracking, trackers were placed in specific locations on the user’s body to accurately 

track the positions of the upper body via a 19-camera motion capturing system that 

surrounds the user.)12 The coordinate system used to define the angular positions of the 

shoulder are depicted in the left skeleton diagram in Figure 5a. The humeral elevation angle 
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is based on the plane parallel to the side of the body, humeral plane of elevation is the 

plane from the top view of the shoulder, and rotation of the shoulder joint, shown in Figure 

S7 and described more fully in Ref. [11].  

The skeletal representations of the user performing the raising arm motion, obtained by the 

camera tracking system, demonstrates the neutral position (left) and arm raised to 140o 

(right). A 3-dimensional plot of the elevation angle captured by the camera system is shown 

in Figure 5b, plotted against the resistance of two strain gauges, and versus time. The 

humeral plane of elevation angle and rotation remained relatively stable as the arm was 

raised and lowered along the humeral elevation angle ( ), with slight changes due to human 

error. The plateau sections in the beginning and end of the motion correspond to the 

subject standing still in the neutral position, with the arm by the side against the body, as 

indicate in the top panel of Figure 5c. The device maintains good contact with the shoulder 

throughout the motion as shown when the arm is raised at 79o and 120o in the middle and 

bottom images of Figure 5c, respectively. Since the adhesive tape is applied when the arm is 

in the neutral state, at higher elevation angles the adhesive tape begins to fold in the areas 

not occupied by the sensor platform. Nevertheless, the device maintained conformability to 

the shoulder. Overall, the correspondence between the motion performed and the change 

in resistance is evident with respect to the elevation angle and permits the use of strain 

gauge signals to compute motion.  

Figure 6 captures the signals produced by other various shoulder motions, including 

circumduction and rotation. Figure 6a shows the subject circling the arm backwards along 

the humeral elevation plane. SG1 more closely follows the motion corresponding to changes 

in the elevation angle, because it is located parallel to the beam bending in the direction of 

the performed motion. The angular velocity of the arm during these tests ranged from 0.16 

to 1.7 rad/s. In addition to sensing relative changes in angular position, it also indicates 

acceleration as depicted in Figure 6b. The sequence starts with the user in a neutral position 

and then proceeds to run (in place), eventually slowing down to a walk and finishing back to 

the neutral position. (A supplemental video showing the skeleton movement in real time 

synchronized to the ΔR/R plots of Figures 5b, 6a, and 6b can be found in the Supplemental 

section, and may help gain a better sense of the characteristics of the elevation change, 

circumduction, and running sequences.)  

Intriguingly, the RSK sensing device can also detect muscle flexion and contraction 

associated with more subtle movements, including those of other joints in the arm. For 

example, changes in resistance are prominent during wrist rotation, which is controlled by 

muscles surrounding the shoulder (Figure 6c). For the wrist rotation activity, the subject 

raised the arm forward 90o from the body, horizontal to the floor, and rotated the wrist 

back and forth, causing the muscles in the shoulder to flex and contract. Changes in 

resistance and the associated angular positions associated with the motion of shrugging 
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shoulders at various speeds are depicted in Figure 6d and for moving the arm across the 

body in Figure S8.  

3. Summary and Conclusions 

Planar, developable, rotationally symmetric kirigami structures were demonstrated to closely 

conform to surfaces with complex 3-dimensional curvature. The impact of cut geometry on 

the mechanical behavior of the cut structure was quantified using experiments and FEA. The 

alternating local Gaussian curvature – and therefore strain – between cuts was used to 

strategically place strain gauges on the RSK structure, permitting the direct monitoring of 

motion of a complex joint (shoulder) in a unique, markerless motion tracking system. Simple, 

commercially available linear strain gauges were used to create a sensing device in a wired 

configuration, but scalable, monolithic integration using this platform can be cost-effective
28

 

and would facilitate the use of additional sensors, wireless communications and power 

transfer. These results indicate that the RSK structures constitute a highly promising platform 

for the integration of a variety of sensing technologies in a wearable form factor for highly 

modular and multi-functional health and movement monitoring devices, using well-

established manufacturing processes. 

4. Materials and Methods 

4.1.    Fabrication of RSK springs and acrylic rings using laser cutter 

The circular kirigami patterns were fabricated by cutting 8.5” x 11” sheets of polyester 

terephthalate (PET), 901 Highland Laser Printer Film (3M, 90 μm) with a 50 W Universal 

Laser Systems CO2 laser cutter (5% power, 10% speed, 1.5” optics. The Young’s Modulus 

and Poisson’s ratio of the film is 2.2 GPa and 0.37, respectively. The overall diameter of the 

patterns was 75 mm, with the largest cut radius at 27 mm. For the data collected in Figures 4-

6, the overall diameter of the patterns was 48 mm. For mechanical testing, two rings were cut 

from Optically Clear Cast Acrylic Sheets (McMaster-Carr, 7/64” thick) with the laser cutter 

(100% power, 5% speed, 2.0” optics) to hold and align the RSK springs during experimental 

tests. The noise within the experimental data at lower forces is due to the resolution of the 

equipment and the plotted data is smoothed in OriginPro. 

4.2.    Mechanical Testing of RSK springs 

The force and displacement curves were obtained at a strain rate of 5 mm/s via a TA.XTPlus 

Texture Analyzer (Texture Technologies, Hamilton, Massachusetts, USA) with a 30 kgf load 

cell and the Exponent (Texture Technologies, Hamilton, Massachusetts, USA) software 

package.  

4.3.    Finite element modeling of RSK springs 

The software package Abaqus was used to model the elastic behavior of the RSK springs, 

based on the static, general method with a 6-node linear triangular prism element (C3D6) 

mesh construction, using the non-linear geometry option. The matrix storage is unsymmetric 

and the time incrementation step is 0.003 to 1 with a step size of 1x10
-36

. Pinned boundary 

conditions are used and the concentrated point loads are applied to the springs, as 

demonstrated in Figure S4.  
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4.4.    Tracking sensor 

PET was laser-cut as mentioned above according to the measured geometry of the subject’s 

shoulder. Linear strain gauges (350 Ω resistance, 2.14 gauge factor) from Omega Engineering 

were bonded to PET using Devcon high-strength five-minute epoxy and cured for one hour at 

room temperature. Wires were then soldered onto the leads. The kirigami platform was 

adhered to the body while the subject was standing in a neutral position, using the flexible 

adhesive fabric KT Tape™. Markers were placed at specific locations on the subject’s upper 

limbs for the camera motion tracking system.  

4.5.    Measurement of tracking sensor 

The electrical resistance of each of the strain gauges was recorded using Agilent 4155 

semiconductor parameter analyzer (3.3 V and 9.9 mA input).  Simultaneously, the reflective 

markers on the body were tracked using a 19-camera motion capture system, Cortex, (Motion 

Analysis Corporation, Santa Rosa, CA) which captured data at 100 Hz.
12

 The joint angles 

were calculated in Visual 3D based on joint centers and local coordinate system as delineated 

in Engdahl’s study.
12 
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Figure 1. RSK structures approximating different curved surfaces. a) RSK springs assume 

the shape of an orange and (b) an acorn squash; schematic of cut pattern on left and physical 

model on right. c) Baseline cut pattern delineating the cut parameters and deformation states 

of the physical and FEA model displaced to 50mm (color bar indicates displacement in mm).  
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Figure 2. Experimental and FEA force-displacement curve for baseline pattern. Overlaid 

images above the curve show experimental and FEA samples deflected at 29 mm. Insets to 

the right and below depicts FEA results at a large displacement of 152 mm and closeup image 

of local strain, at a concentrated force of 5 N; color bar represents logarithmic strain [%].  
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Figure 3. Logarithmic force versus displacement of various cut patterns. The mechanical 

properties are depicted comparing different cut patterns. Varying (a) number of cuts 

along the perimeter, (b) angular spacing, and (c) radial spacing. 
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Figure 4. Placement of strain sensors on RSK platform. a) top view of cut kirigami spring 

based on geometry of shoulder. b) Cross-sectional view of RSK-based device depicting the 

locations of sensing elements with respect to the kirigami platform, flexible adhesive, and 

skin. c) Sub-unit ring deformed shows the placement of strain sensors placed at the 

maximum degrees of curvature, which is at the start and ends of the cuts. d) Top and front 

view of device with bonded strain gauges placed on subject’s shoulder without adhesive 

tape. 
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Figure 5. Tracking motion of raising and lowering arm. a) Skeleton representation of body at 

neutral position and skeleton with arm raised up to 140
o
 with coordinate system used by the 

image processing software and elevation angle, θ. b) 3D plot representing elevation angle as a 

function of change of resistance and time in seconds. c) Kirigami sensing device at 0
0
, 79

o
, 

and 120
o
, represented in (i), (ii), and (iii), respectively. 
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Figure 6. Changes in resistance and corresponding angular positions as various motions are 

performed. From left to right: schematic of motion performed, plot of change of resistance 

versus time for two linear strain gauges placed on the RSK substrate, and a plot of the angular 

positions as a function of time. The three defining planes and axis of motion is plane of 

elevation angle, elevation angle, and rotation. a) Arm circle backwards, (b) running, (c) arm 

rotation, and (d) shrugging shoulders.  
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