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Key Points: 

 The Cyclone Global Navigation Satellite System satellite constellation data is used to 

map inland water bodies.  

 We propose an algorithm to process this new data and create watermasks of rivers and 

lakes.  

 The data combined with this method can be applied to monitor short-term events such as 

seasonal flooding. 

 

 

Abstract 

The Cyclone Global Navigation Satellite System (CYGNSS) is a new constellation of eight low 

earth orbiting spacecrafts that receive both direct and reflected signals from GPS satellites. 

Coherent reflection of the GPS signal from standing water over land results in a high surface 

reflectivity (SR) signal in the CYGNSS data. An image processing algorithm is presented which 

leverages the SR signal to produce a watermask of inland waterbodies at 0.01
o 
 0.01

o
 spatial 

resolution. The watermask is compared to hand-drawn maps of inland waterbodies, as well as to 

the MODIS watermask product. We find that the CYGNSS watermask provides accurate, time-

varying maps that are able to resolve changes in lake and river position and extent. With 

CYGNSS’ short return time, watermasks can be generated using as little as half a month of data 

to produce near-real time maps of flooding events.  
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1. Introduction 

The position of waterbodies is a defining characteristic of any landscape, yet the inherent 

changes in waterbody extent and position is key to the ecosystems they are part of [Leira et al., 

2008]. Mapping waterbodies at the global scale presents a unique challenge because of the 

variety of terrains and water surface characteristics found around the world [Alsdorf et al., 2007]. 

Two main watermask products are currently available. The Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Water Mask (MOD44W, 

https://lpdaac.usgs.gov/products/mod44wv006/) Version 6 data product provides a yearly global 

map of surface water at 250 meter spatial resolution between 2000 and 2015 [Carroll et al., 

2017]. This product is widely used to mask waterbodies in other remote sensing products. Based 

on Landsat data, the “Pekel” watermask (https://global-surface-water.appspot.com/download) 

provides yearly masks at 30-meter resolution from 1982 to 2018 [Pekel et al., 2016]. Both 

products are based on optical remote sensing and are not able to detect water under vegetation or 

clouds. This is a significant limitation in tropical areas such as the Amazon, because many small 

streams are fully covered by vegetation. Clouds can also be an issue in these areas, since cloud 

cover can approach 100% during the rainy season [Martins et al., 2018], leading to watermasks 

biased towards dry season water levels. Finally, the slow return time and the need to assimilate 

multiple overpasses to generate cloud-free maps limits the frequency of these maps to a yearly 

time scale.  

 Launched in December 2016, the Cyclone Global Navigation Satellite System 

(CYGNSS) is a constellation of eight low earth orbiting spacecraft receiving both direct and 

reflected signals from Global Positioning System (GPS) satellites [Ruf et al., 2016]. GPS 

satellites operate at a frequency of 1.575 GHz (L-band), allowing the CYGNSS satellites to see 

through cloud, rain, and all but the densest of vegetation canopies [Li et al, 2019]. Designed to 

estimate wind speed over oceans, CYGNSS also proved to be highly sensitive to both standing 

water over land [Chew et al., 2018 ; Ruf et al., 2018] and soil moisture [Chew et al., 2016 ; Chew 

& Small, 2018 ; Ruf et al., 2018].  Standing water has a particularly strong signal because flat 

surfaces such as the calm waters of a lake or a slow flowing river will produce coherent specular 

scattering that generates a much larger signal than the diffuse scattering coming from 

surrounding land or oceans [Ruf et al., 2018]. In addition, because of the GPS’ operating 

frequency, the signal is only partially attenuated by vegetation, and rivers or lake under canopies 

can still be detected by CYGNSS [Ruf et al., 2018].  

The footprint of a single CYGNSS return will depend on the incidence angle and the relative 

contribution from diffuse and specular scattering. Over land, the footprint cross-track is 

estimated to be between 0.5 and 1 km depending on the incidence angle and the along-track 

resolution is estimated to be 7 km (3.5 km since July 2019). The ability to resolve smooth, small 

water features is enhanced by the large difference in reflected signal strength between coherent 

and incoherent scatterers.  Coherent scattering from smooth surfaces is typically ~30 dB stronger 

than incoherent scattering from rough surfaces, provided the smooth surface extends over the 

complete first Fresnel zone (~0.5x0.5 km
2
) [Geremia-Nievinski et al., 2016 ; Camps, 

2019].  Waterbodies which are significantly smaller in size can also be resolved since their 

scattered signal strength is reduced by the fractional aerial extent of the water body relative to the 

first Fresnel zone. For example, the signal scattered from a 0.1x0.1 km
2
 water body would still 

be ~16 dB stronger than that scattered incoherently from the rough surface surrounding the small 

water body. Because the CYGNSS signal over land is affected by surface type and roughness, 

soil and vegetation water content, and vegetation density, the signal-to-noise ratio (SNR) of the 
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reflected signal that is actually measured by CYGNSS is highly variable, making it difficult to 

capture waterbodies globally, especially small ones, using only a thresholding method. Here, we 

propose an algorithm to clean and process CYGNSS SNR data and produce a reliable global 

watermask over the full latitudinal extent of CYGNSS coverage from about 40
o
 N to 40

o 
S. 

 

2. Materials and Methods 

The entire analysis described in the following sections was done in Python 3.0. An example code 

is provided in the Supporting Information. 

2.1 CYGNSS data and SNR correction  

Here we use version 2.1 of the CYGNSS Level 1 data (available online at: 

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1). In particular, we use the DDM SNR 

derived from the delay-Doppler Maps (DDM) recorded by CYGNSS. The SNR is corrected for 

transmitted power, receiving and GPS antenna gains, as well as for transmitter-to-specular-point 

and specular-point-to-receiver ranges. We tested corrections adapted to both coherent and diffuse 

scattering and found that the former correction was better at removing the dependence of the data 

on the different parameters (Fig. 1). The expression for corrected surface reflectivity for the 

coherent component of the scattered power is [Chew et al., 2018]: 

 

                  
                     ( )           (           )

         (  )   
 

where   
  is the transmitted power (in dBW),    and    are the receiving and transmitter antenna 

gains (in dB), respectively,   is the GPS wavelength (equal to 0.19 m), and TxSP and SPRx are 

the distances between the transmitter and the specular point and the specular point and the 

receiver (in meters), respectively. In the case of the diffuse scattering correction, the expression 

becomes:  
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         (  )  
 

where the effect of the ranges is modified according to the bistatic radar equation for diffuse 

scattering [Ulaby et al., 2014]. Figure 1 shows the dependency of the SNR,          , and 

           on transmitted power, antenna gains, and ranges. The surface reflectivity shows a 

smaller dependence on these parameters after correcting for them using the coherent component 

of the scattered power (          ) than when using           and we therefore use the 

correction            in the following.  

 

Parameter 
 

Description Algorithm step Value range 
 

Value step 

Tr Cluster removal - threshold value B 10 - 20 2 

Cs Cluster removal - cluster size B, D 4 - 24 2 

Bs STD box size D 10 - 150 20 

Ds Segmentation – diffusion parameter E 0 - 220 20 

 

Table 1.  Algorithm parameters described in sections 2.2 to 2.5 and the ranges tested for each of them during the parameter 

estimation phase described in section 2.6. 
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As in [Chew et al., 2018], the mean of the bottom 5% of SR values is removed to produce maps 

in a more intuitive range of dB values. Ocean data is removed using quality flags. All the track-

based SR CYGNSS data for the year 2018 is then combined and gridded into a 0.01
o 
 0.01

o
 

grid. At this resolution, samples from a single track fall into different grid cells. When multiple 

samples from different tracks fall within the same grid cell, we use the average of all the samples 

within that cell. The use of the median, peak, and 90
th

 percentile values was also explored, but 

because of the low number of data point per cell (maximum 12), we found only small differences 

between use of the difference statistics. At this resolution, more than 76% of the map’s grid cells 

have data. Cells without data are assigned to Not-A-Number (NaN). 

 
Fig. 1.  Dependence of the uncorrected SNR data (left column), coherent-correction SR (central column), and diffuse-correction 

SR (right column) with (from top to bottom): transmitted power, receiving antenna gain, GPS antenna gain, distance between the 

transmitter and the specular point, and distance between the specular point and the receiver. We find that the coherent correction 

is better at removing the dependence of the data on these various parameters. Data used here is all CYGNSS land measurements 

for October through December 2018. 
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Fig. 2.  Evolution of a map of a section of river in the Congo Basin 

showing how each stage of the algorithm modifies the initial picture. a) 

Shows the surface reflectivity SR corrected for coherent scattering. Bb) 

After high SR clusters have been removed. c) After NaNs have been 

filled. d1) After transforming the SR map into an STD map, removing 

high value clusters (d2) and filling in NaNs (d3). e) shows the final 

result of the random walker segmentation performed on d3, with water 

showing in black and dry land in white. 

A

B

C

D1

D2

D3

E

2◦S

0◦

2◦N

17◦E 19◦E 21◦E 23◦E 25◦E
− 2.0

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

S
ta

n
d
ar

d
d
ev

ia
ti

o
n
s

2◦S

0◦

2◦N

17◦E 19◦E 21◦E 23◦E 25◦E
0

5

10

15

20

25

S
u
rf

ac
e

R
efl

ec
ti
v
it
y

(d
B

)

2.2 Isolated pixel removal 

Because of the spatial sampling properties of 

the CYGNSS data (samples taken along one-

dimensional swaths that are referred to as 

“tracks”) as well as the multiple CYGNSS 

and GPS satellites, we find that some tracks 

have a very high SR that appears to be track-

based and not related to surface properties. 

These high SR tracks are likely due to 

variations in GPS power [Wang et al., 2019] 

and will be corrected for in upcoming 

versions of the data. To remove these here, 

we identified small, isolated clusters of very 

high SR and removed them. To do so, we 

first choose a threshold value, Tr, and 

transform the SR map into a binary map with 

values over or under Tr. We then use the 

measurements.label function within 

the SciPy library 

(https://www.scipy.org/scipylib/index.html) 

to identify clusters of high SR values. Based 

on a binary image where pixels with a SR 

value above Tr are set to 1 and pixels below Tr are set to 0, the function identifies all the 

individual clusters in the image and labels each of them using a different integer. It is then easy 

to count the number of elements in a cluster. Clusters with a number of elements below a value 

Cs are assigned to NaN. 

 

2.3 NaN removal 

To fill in the NaNs left by the incomplete grid cell filling and the removal of high SR clusters, 

we use the nearest neighbor interpolation from the SciPy library to assign values to each gridcell 

containing a NaN. 

 

2.4 Standard deviation map 

One of the defining features of waterbodies in the CYGNSS data is that they stand out from the 

background SR values of their surroundings. We therefore transform our map of SR values into a 

map of standard deviation (STD) values. To do so, we determine the average SR within a square 

box of size Bs centered around each grid cell. We then estimate how many standard deviations 

above or below the average the grid cell is. Each grid cell therefore gets assigned the value -2, -1, 

0, 1, or 2, indicating how many standard deviations above or below the box average the cell is.  

  

Because this step generates a lot of speckle within the image, i.e. new clusters of high STD 

values, we proceed again to apply the steps described in Sections 2.2 and 2.3. When removing 

high SNR clusters, the threshold value is set to 0 in this case, indicating that any small cluster of 

values which are 1 or 2 STD above the average will be removed. The size of the cluster is kept to 

Cs. 
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2.5 Random walker segmentation 

Finally, we segment the STD map into water and dry land using the random_walker 

segmentation function from the scikit-image library for Python [van der Walt et al., 2014]. 

Image segmentation is the identification of multiple units within an image (in our case dry land 

and water) and many approaches exist to do so, for example using thresholding or edge detection 

techniques [Shapiro, 1992].  The random walker method was chosen because it is especially 

good at segmenting noisy images, as is the case here. For this step of the algorithm, two values 

are chosen: a high threshold value HT and a low threshold LT. Each pixel at or lower than LT 

will be labeled with an LT marker. Similarly, each pixel at or higher than HT will be labeled with 

an HT marker. Here we choose HT to be 1, and LT to be 0. The markers are then allowed to 

diffuse anisotropically, with diffusion being more difficult across strong gradients. The diffusion 

strength is set by parameter Ds. Each unlabeled pixel is assigned the label of the marker that 

reaches it first. Oceans are labeled with a third, unique label. A more detailed description can be 

found in [Grady, 2006] and example code can be found on the scikit-image page 

(https://scikit-image.org/). 

2.6 Parameter estimation 

In order to estimate the optimal set of parameters (see Table 1), we generate hand-drawn 

watermasks which are used as the training sets and that we then compare to our generated 

watermasks using a range of parameter values for Tr, Cs, Bs, and Ds (Table 1). The training masks 

are generated at 0.01
o 
 0.01

o
 resolution using CYGNSS SR images and manually identifying 

features such as rivers and lakes. We estimate false positive (FPR, pixels wrongly identified as 

water) and false negative rates (FNR, pixels wrongly identified as dry land). We choose the final 

set of parameters that yields the lowest  

  √          

in order to take into account both over- and under-estimation of the amount of water in a scene. 

To estimate the performance of our watermask, we compare it to the most recent MODIS 

watermask. 

 

3. Results 

The intermediate steps of the watermask algorithm for a region in the Congo Basin that includes 

a river is illustrated in Fig. 2. In this example, a river is running from top to bottom on the right 

half of the image. The background in Fig. 2a shows pixels with high SR values intersperse 

throughout that are effectively eliminated in Fig. 2b. Noisy pixels reappear in the background 

after the image has been filled-in (Fig. 2c) and transformed into an STD map (Fig. 2d1). After a 

second round of pixel removal and filling-in, the random walker segmentation partitions the 

image between water and dry land (Fig. 2e).  

The algorithm also performs well when tested on large areas, such as the Congo or Amazon 

Basins (Fig. 3). Overall, we find that the rate of false positives is very low (0.32 %), but smaller 

tributaries are not captured as well by the algorithm, leading to a higher rate of false negatives 

(0.67 %). For the examples shown here, we found that the best set of parameters is Tr = 10, Cs = 

8, Bs = 150, and Ds = 140 with E = 0.75. This set of parameters was obtained by testing all the 

parameters for the ranges described in Table 1, comparing them to hand-drawn masks of the 
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Amazon and Congo Basins, and minimizing parameter E as described in Section 2.6. These 

parameters were then used to produce masks in other areas, as shown in Figure 4.  

 

4. Discussion 

 

4.1 Comparison to MODIS watermask product  

One of the main objectives of this work is to demonstrate the ability of the new algorithm to 

provide watermasks that can be updated on a timely basis using CYGNSS data with its frequent 

revisit time. Currently, the most commonly used product to mask waterbodies for remote sensing 

data analysis is the MODIS watermask [Carroll et al., 2017]. Fig. 3 (top left) presents the 

MODIS watermask for the same region of the Congo Basin considered in the other panels of Fig. 

3 with the CYGNSS watermask. While the MODIS watermask has finer details (the resolution is 

250 m) about the rivers it captures, we find that most of the smaller tributaries clearly identified 

by our algorithm are missing in the MODIS watermask. Since the latter is based on optical 

remote sensing, one possible reason is that vegetation is blocking the view to these tributaries, 

making it impossible for MODIS to “see” them. Thanks to its long wavelength (19 cm), 

CYGNSS is capable of penetrating even dense vegetation to provide information about standing 

water and soil moisture beneath the canopy. Another possible source of divergence is that the 

MODIS watermask shown here is for the year 2015 (most recent year available in the dataset) 

whereas the CYGNSS mask was generated using data form 2018.   A comparison with the Pekel 

watermask [Pekel et al., 2016] (not shown) indicates that it is more detailed than both the 

MODIS and the CYGNSS watermasks. However, the Pekel watermask format and large file size 

 
Fig. 3.  Multiple views of the Congo Basin. Top left: MODIS watermask for the year 2015, with water in black and dry land in 

white. Top right: corrected CYGNSS SR map. Bottom left: CYGNSS watermask, with water in black and dry land in white. 

Bottom right: map showing the comparison between the MODIS and the CYGNSS watermasks where pixels identified as water 

in CYGNSS but not in MODIS (false positive) are shown in blue, and pixels identified as dry land in CYGNSS but not in 

MODIS(false negative) are shown in red.  
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make it difficult to use at a global scale for remote sensing applications and is more adapted for 

long-term surface hydrology monitoring. 

 

4.2 Potential applications 

One of the key characteristics of the CYGNSS data is its short return time, with an average 

revisit time of 3 hr (median) and 7 hr (mean) for a 25km grid [Ruf et al., 2018]. Hydrologic 

phenomena happening at short timescales can therefore be monitored using CYGNSS data. For 

example, the seasonality of the flooding in the Okavango Delta in Botswana [McCarthy et al., 

2000] can be seen in the CYGNSS watermask, with the winter map (Fig. 4) showing only the 

main tributaries running through the delta, whereas the summer map displays widespread 

flooding from upstream spring rainfall. Shorter-lived events, such as floods or drought, can in 

principle also be monitored using CYGNSS data combined with the present algorithm. However, 

the CYGNSS track-based sampling system means that reducing the sampling temporal scale 

implies increasing the spatial scale in order to obtain a sufficient sampling density [Bussy-Virat 

et al., 2019]. 

 

4.1 Future directions 

While the algorithm performs well in natural systems, we should note that it has trouble 

identifying waterbodies in areas with a large range of soil water content within a small area, such 

as a lake surrounded by irrigated croplands in an otherwise arid area with low soil moisture and 

vegetation. A possible approach to help resolve this issue is the generation of long-term maps of 

inland waterbodies based on multiple years of data. These maps could then serve as the baseline 

for shorter timescale “anomaly maps” to look for deviations from the long-term position of the 

waterbodies. In the case of a lake with irrigated croplands, this method would help identify the 

actual position of the lake, since the croplands are only irrigated on a seasonal basis and the 

position of the lake within the cropland could be inferred from the analysis of a longer dataset.  

 

The present algorithm can be also applied to data on shorter timescales in order to provide 

watermasks of events at yearly, seasonal, monthly, and even bi-weekly timescales. However, 

additional work is needed to determine the exact spatial scale of each of these products. In 

particular, it will depend on the algorithm’s ability to identify features with a higher number of 

unsampled pixels. Finally, the method presented here has the potential to be used to develop a 

watermask product that could be used to mask waterbodies in other remote sensing datasets or 

 
Fig. 4.  Seasonal watermasks of the Okavango Delta in Botswana. This seasonal delta is dry with rivers running through it during 

most of the year (December-January-February, left panel) but floods in June-July-August (JJA, right panel) after the spring 

rainfall upstream reaches the delta. 
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monitor temporal changes in a waterbody’s position and extent. However, more validation work 

will be needed to achieve the standards of an official data product.             

5. Conclusions 

The presented algorithm combines existing computer vision tools to clean and enhance CYGNSS 

maps of surface reflectivity in order to identify, map, and resolve changes in the position of 

inland waterbodies such as lakes and rivers. We find that the algorithm performs well over 

natural ecosystems and is capable of identifying small tributaries that were missing from the 

MODIS watermask product, possibly due to the presence of vegetation blocking the view of the 

river at optical wavelengths, an issue that does not exist for CYGNSS thanks to its long radio 

wavelength. The algorithm can be used to make maps on short timescales using monthly or 

seasonal data to monitor short-term hydrologic phenomena such as seasonal flooding.  

 

Supporting Information 

 

Supporting information include an example code in Python as well as a data file necessary to run 

the code. Readers can use the code to explore the effects of the various parameters in Table 1. 
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