
UNIT 11.3Thermal Methods for the Analysis of RNA
Folding Pathways

RNAs form a remarkable variety of struc-
tures based on standard Watson-Crick helices,
noncanonical pairings (e.g., as found in some
internal and hairpin loops; Heus and Pardi,
1991; Correll et al., 1997), and tertiary interac-
tions that join a loop or bulge to another part of
the RNA. An objective of current RNA physical
studies is to identify noncanonical and tertiary
folding motifs and evaluate the factors respon-
sible for their stability. Thermal melting analy-
sis was used in the 1970s to establish the exist-
ence of a distinct set of tertiary interactions in
transfer RNAs (Cole et al., 1972; Römer and
Hach, 1975; Stein and Crothers, 1976) and has
become a useful tool for examining the folding
of unusual RNA structures up to ∼100 nucleo-
tides in length.

Suppose one has identified an RNA or RNA
fragment that adopts a specific, functional con-
formation, e.g., the minimal sequence contain-
ing a ribozyme activity or a protein recognition
site. The first task in determining the RNA
structure is to devise a model of the secondary
structure. A good approximation of canonical
base pairing in an RNA is fairly easy to obtain
from a combination of comparative sequence
analysis (Gutell et al., 1992), computer predic-
tion programs based on nearest-neighbor ther-
modynamic parameters (Zuker, 1989; Serra
and Turner, 1995; UNIT 11.2), and “structure map-
ping” experiments (Ehresmann et al., 1987).
Compensatory base changes may be able to
establish the existence of specific helix seg-
ments required for function (Tang and Draper,
1989). At this point, it is worthwhile asking
whether the deduced secondary structure ac-
counts for all the intramolecular interactions of
the RNA, or whether noncanonical and tertiary
interactions might make the structure much
more stable than predicted, or link parts of the
structure in unexpected ways. One may also be
interested in determining, as an aid to further
structural or functional analysis, the pH, salt,
and temperature ranges under which the RNA
adopts a stably folded structure. Relatively sim-
ple melting experiments can answer these ques-
tions, and more extensive melting analysis can
frequently provide a complete unfolding path-
way for an RNA.

This unit describes procedures for applying
melting analysis to an RNA. The discussion
assumes that the secondary structure has al-

ready been established by a combination of
prediction and experiment (see Chapter 6). Af-
ter comments on sample preparation and instru-
mentation, a framework for describing the ther-
mal denaturation of an RNA that unfolds in
several steps is derived. An analysis of transfer
RNA unfolding then illustrates the application
of this framework to UV and calorimetry data
sets and also shows how error analysis can point
out uncertainties in the derived thermodynamic
parameters. Lastly, comments are offered on
experiments that can resolve ambiguities in the
thermodynamic analysis and help identify un-
folding transitions with specific structures in
the unfolding pathway.

EXPERIMENTAL
CONSIDERATIONS

RNA Samples
Transcription of DNA templates by T7 RNA

polymerase (UNIT 9.3) is the easiest route to
milligram quantities of RNAs longer than 15 to
20 nucleotides; methods have been reviewed
elsewhere (Draper et al., 1988; Gurevich,
1996). Chemical synthesis is preferred for
shorter RNAs, and may be necessary if modi-
fied nucleotides are required (Scaringe et al.,
1990; Goodwin et al., 1996; APPENDIX 3C; also
see Chapter 3).

Aggregation of RNAs is a common prob-
lem, particularly in the presence of Mg2+, and
samples should always be checked for the pres-
ence of multimers by nondenaturing gel elec-
trophoresis (Chory and Pollard, 2000). A buffer
of 100 mM potassium acetate and 30 mM Tris
acetate (pH 7.3), with or without 5 mM mag-
nesium acetate, is convenient (Gluick et al.,
1997). Weak multimerization that is not de-
tected by gel electrophoresis will appear as a
concentration dependence of the melting tem-
peratures. UV melting curves are typically ob-
tained at RNA concentrations on the order of 5
to 10 µg/mL, while calorimetry requires about
two orders of magnitude higher concentrations.
Thus, comparison of melting temperatures in
the two experiments should reveal problems
with weak intermolecular interactions.

Buffers for melting experiments should
have small ionization enthalpies to avoid large
pH changes with temperature. Tris should be
avoided on this account; phosphate or cacody-
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late salts are preferred. Some of the Good buff-
ers (Good and Izawa, 1972; APPENDIX 2A) are
suitable for UV absorbance.

UV Absorbance
Commercial UV spectrophotometers are

available with accessories for collecting UV
absorbance as a function of temperature, or a
programmable water bath and temperature
probe may be added to instruments with suit-
ably thermostatted cells. Refer to UNIT 7.3 for
experimental details of UV absorbance melting
curves. Peltier devices may seem more conven-
ient than circulating water baths for tempera-
ture control, but usually have a limited tempera-
ture range (e.g., 10° to 80°C) and a relatively
short lifetime when repeatedly cycled over the
full range. Instruments with a five- or six-cell
carriage that can be automatically cycled for
measurement will speed up data collection by
a corresponding factor. The cells must be suf-
ficiently surrounded by the heating block that
large temperature gradients do not develop.
Lastly, a temperature probe should be placed
inside a dummy cuvette, and not in the heating
block itself. The temperature difference be-
tween the block and the cuvette interior should
not exceed ∼5°C at the highest temperatures.

It is important to test for reversibility of the
melting curve by running both heating and
cooling experiments on the same sample. Fold-
ing kinetics at low temperatures can be slow
(for example, see Gluick et al., 1997), and Mg2+

ion–induced hydrolysis of RNA at high tem-
peratures is also a common problem. The latter
can be minimized by using the lowest Mg2+ ion
concentrations possible, and by working in a
neutral to acid pH range (i.e., 6.0 to 7.0).

Renaturation of an RNA preparation before
every experiment is necessary to avoid kinetic
artifacts. Rather than devise renaturation pro-
tocols for each new RNA and salt concentra-
tion, the authors have used the following pro-
tocol for data collection. RNA samples are
diluted into the desired buffers in stoppered
cuvettes and then incubated for 15 min at 70°C
in the spectrophotometer. The temperature is
then ramped at 0.8° to 1°C/min to ∼10°C, and
then up to ∼90°C, while temperature and absor-
bance at 260 nm are read every 0.4°C. In some
cases, it may be necessary to slow the tempera-
ture ramp at temperatures less than ∼20°C to
achieve equilibrium. Example data are shown
in Figure 11.3.1, panel A. The first unfolding
transition in this RNA is a set of tertiary inter-
actions whose stability is of interest. The coin-
cidence of the heating and cooling curves dem-
onstrate reversibility, and the two curves pro-
vide duplicate sets of data in the temperature
range of most interest.

Scanning Calorimetry
Prior to calorimetry experiments (see UNIT 7.4

for experimental details), it is advisable to thor-
oughly wash the cells to remove any trace of
ribonuclease. A series of extensive rinses with
RNase ZAP (Ambion), hot soapy water (using
a commercial dishwashing soap such as Dove),
and distilled water is adequate for this purpose.
The amount of RNA needed for an experiment
depends on the number of transitions and their
enthalpies; typically ∼1.0 mg/ml is used with
the most sensitive calorimeters now available
from MicroCal and CSC, though 0.2 mg/ml
may be adequate for RNAs with single, sharp
transitions. After thorough dialysis of the sam-

A B

Figure 11.3.1 UV absorbance melting curve. (A) Cooling curve (starting at ∼70°C, filled symbols)
and heating curve (open symbols) for the same RNA sample. (B) First derivative calculated for the
data set shown in panel A, using linear regression and a window size of 4°C.
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ple against the desired buffer, two or three
baseline scans using the dialysis buffer should
be run. These ought to be reproducible. If not,
check for degradation of buffer components.
The sample should be renatured before being
run; 65°C for 15 min, followed by slow cooling,
is adequate for most RNAs, but higher tempera-
tures or longer times may be needed. Renatu-
ration conditions should be surveyed by UV
experiments prior to calorimetry. A tempera-
ture ramp of 1°C/min is sufficiently slow for
most RNAs; again, experience with UV melt-
ing experiments will indicate what ramp speed
is appropriate.

Calculations of transition enthalpies depend
on accurate measurements of RNA concentra-
tion in the calorimetry sample. It is therefore
advisable to determine the extinction coeffi-
cient of the RNA under the buffer conditions
used for the experiment. To do this, prepare an
RNA sample and a buffer blank in stoppered
cuvettes. After measuring the absorbance of the
sample, add concentrated NaOH to a final con-
centration of 1 M and incubate at 37°C over-
night. Check for evaporation by weighing the
cuvettes before and after incubation. The ex-
tinction of the RNA can then be calculated from
the absorbance of the hydrolyzed sample and
extinction coefficients of the mononucleotides
in alkali (ε260 × 103 values are: AMP, 15.0;
GMP, 11.2; CMP, 7.6; and UMP, 7.4).

THEORETICAL BACKGROUND

Sequential Unfolding Model
This section presents a framework for de-

scribing RNA unfolding as a function of tem-
perature. To a good approximation, most short
RNA hairpins unfold in a two-state manner, i.e.,
no partially unfolded intermediates are found
in significant concentrations at equilibrium.
The equilibrium between RNA in its fully
folded, native structure (N) and fully unfolded
RNA (U) is then simply:

N �
K

 U

Equation 11.3.1

Because the enthalpy change (∆H) for un-
folding is positive, an increase in temperature
drives the reaction to the unfolded state. The Tm

of the reaction is the temperature at which half
of the molecules are unfolded, [N] = [U] and
K  = 1. From this definition and the van’t Hoff
relation for the temperature dependence of K,
dln(K)/d(1/T) = ∆H/R, where R is the ideal gas

constant, the expression for K can be written
as:

K = exp 




∆H
R

 


1
Tm

 − 
1
T




 




Equation 11.3.2

A melting curve is simply a plot of the
fraction of molecules that are unfolded as a
function of temperature, or:

FU = 
[U]

[U] + [N]
 = 

K
1 + K

Equation 11.3.3

Thus, there are two variables, ∆H and Tm,
that describe the melting curve for a simple
hairpin, and from which the equilibrium con-
stant K can be calculated at any temperature.
The ∆H found from application of Equations
11.3.2 and 11.3.3 to a melting curve is called a
two-state or van’t Hoff enthalpy. Note that ∆H
is assumed to be independent of temperature.

RNAs larger than hairpins unfold in several
steps; for example, there may be several helical
segments separated by internal loops or junc-
tions loops, and, of particular interest, addi-
tional tertiary interactions that “cross-link” dif-
ferent loops and/or helical segments. In the
latter case, it may be obligatory that a set of
tertiary interactions unfold before helical seg-
ments:

T �
K1

 S1 �
K2

 S2 �
K3

 S3 . . . Sn �
Kn+1

 U

Equation 11.3.4

In this sequential unfolding scheme, T is the
completely folded RNA, with intact tertiary
interactions, and the S states are RNAs with
successively fewer helical segments. Studies of
tRNA unfolding in the 1970s showed that its
unfolding pathway was best analyzed by a
sequential model, with a total of four steps—
i.e., tertiary structure plus one of the cloverleaf
stems in the first step, followed by the remain-
ing three cloverleaf stems in order of their
stabilities (Stein and Crothers, 1976).

The alternative to a sequential unfolding
pathway is one in which each set of interactions
unfolds independently, for example, a series of
hairpins linked by single-stranded RNA and
having no interactions with each other. It can
be shown that use of a sequential pathway to
analyze an independently unfolding RNA will,
in most cases, yield an excellent approximation
of the unfolding thermodynamics. Since most
RNAs will probably unfold by a mixed path-
way, in which the first, tertiary unfolding step
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is obligatory, but subsequent melting of secon-
dary structures may be largely independent, it
is reasonable to use a sequential pathway for an
initial analysis in most cases. This point has
been considered in some detail by Draper and
Gluick (1995), who found that the errors ex-
pected in using a sequential pathway to model
independent unfolding are on the order of only
5%.

Equation 11.3.3, which gives the fraction of
unfolded RNA as a function of temperature for
a single unfolding step, now must be modified
to account for multiple transitions. It is conven-
ient to use a partition function to do this. If the
fully folded RNA in Equation 11.3.4, state T,
is assigned as the reference state with a statis-
tical weight of 1, the partition function Q for
this sequential pathway is:

Q = 1 + K1 + K1K2 + K1K2K3 . . .

Equation 11.3.5

From the definition of equilibrium con-
stants, each successive term represents the ratio
of the concentrations of states S1, S2...Sn to that
of state T. Q is therefore a sum of the relative
probabilities of finding all of the different pos-
sible conformations of the RNA. The fraction
of RNAs in which any particular helices are
unfolded can be easily calculated from Q. For
example, the fraction (F) of RNAs with only
the tertiary structure and the first set of secon-
dary interactions unfolded would be:

F2 = 
K1K2

Q

Equation 11.3.6

Each K in Equations 11.3.5 and 11.3.6 rep-
resents a single two-state transition, and has a
temperature dependence with an associated ∆H
and Tm (as in Equation 11.3.2). Readers unfa-
miliar with the use of partition functions to
describe conformational equilibria may wish to
consult Wyman and Gill (1990) for a detailed
discussion.

Equations 11.3.2, 11.3.4, and 11.3.5 are all
that are needed to describe the unfolding of
many complex RNAs. The two simplifying
assumptions that have been made are (i) the
RNA unfolds in a sequential manner, and (ii)
each transition is two-state. These assumptions
were adequate for analysis of tRNA unfolding
(Crothers et al., 1974; Stein and Crothers,
1976), and are a good starting place for the
analysis of any RNA thought to have a well-de-
fined structure. Specific application of these
equations to UV hyperchromicity and cal-

orimetry experiments are developed in the next
two sections.

UV Melting Profiles
In a plot of absorbance versus temperature,

it is usually difficult to pick out individual
melting transitions or to see changes in transi-
tion Tm and sharpness between different plots.
For this reason, the first step in analyzing UV
melting data is to take the first derivative of the
absorbance with respect to temperature; indi-
vidual transitions then appear as peaks that are
more easily distinguished. Two methods are
available to do this. The simplest is to define a
temperature “window,” W, usually between 4°
and 6°C. For each absorbance data point, a
linear least-squares line is fit to all the points
within ±W/2°C. The slopes of the lines are
plotted as the derivative; an example curve is
shown in Figure 11.3.1, panel B. The potential
disadvantage of this method is that very sharp
melting transitions may be flattened and the
associated ∆H will be underestimated. A
method that avoids this problem is the Savitsky-
Golay convolution (Press et al., 1992). If the
data points are evenly spaced in temperature (or
have been made evenly spaced by interpola-
tion), then a polynomial fit to the points in a
temperature window can be found by multiply-
ing the points by a matrix of appropriate
weights. Using a second-order polynomial, de-
rivatives of very sharp transitions are accurately
calculated. A disadvantage of this method is
that broad transitions are smoothed much less
effectively than by linear regression. The
authors’ experience has been that RNA melting
transitions are rarely sharp enough to warrant
fitting a second-order polynomial.

The authors usually normalize the absor-
bance and derivative curves, so that melts done
with different RNA concentrations can be di-
rectly compared. This is simply done by divid-
ing all the absorbance readings by the absor-
bance at some arbitrarily chosen temperature.
A low temperature at which the RNA is com-
pletely folded is preferable, as the absorbance
readings at very high temperatures can be vari-
able due to RNA hydrolysis. All the points
within ±W/2°C of the chosen normalization
temperature are averaged.

In order to analyze an absorbance melting
curve, Equation 11.3.6 of the preceding section
(which gives the fraction of molecules with a
specific structure unfolded) must be modified
to relate fraction unfolding to hyperchromicity.
First, each unfolding transition must be as-
signed a hyperchromicity (i.e., the ratio of un-
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folded- to folded-state absorbance), and the
contribution of each transition to the overall
hyperchromicity summed. The complete
equation is:

∆At = 
∆A1K1

Q
 + 

(∆A1 + ∆A2)K1K2

Q
    

    + 
(∆A1 + ∆A2 + ∆A3)K1K2K3

Q
 + . . . .

Equation 11.3.7

where ∆At is the total fractional hyper-
chromicity (the same as the normalized absor-
bance) and ∆A1, ∆A2...∆An are the fractional
hyperchromicities associated with each spe-
cific transition K1, K2...Kn. Q is the partition
function for sequential unfolding, Equation
11.3.5. Each term in the numerator represents
the hyperchromicity associated with a succes-
sive unfolded state in Equation 11.3.4.

Upper- and lower-temperature baselines
must be added to Equation 11.3.7, as the absor-
bances of completely folded or completely un-
folded RNA are usually weakly temperature-
dependent. After all base pairs are broken at
high temperature, the absorbance continues to
increase with temperature as bases unstack fur-
ther. This increase is approximately linear over
normally accessible temperature ranges. There
is usually a similar increase in absorbance at
low temperatures as base-pair stacking within
helices decreases with temperature. (RNAs
with stable tertiary structures tend to have tem-
perature-independent absorbances at low tem-
peratures, perhaps because the additional struc-
ture reduces motions within helices.) In the case
of a single unfolding transition, the baselines
are taken into account by the following equa-
tion (Albergo et al., 1981; Petersheim and
Turner, 1983):

A = BF 


1
1 + K




 + BU 



K
1 + K





BF = AF,0 + mF(T ); BU = AU,0 + mU(T )

Equation 11.3.8

BF and BU are the low- and high-temperature
baselines, respectively. AF,0 and AU,0 are the
absorbances of folded and unfolded RNA ex-
trapolated to a reference temperature (e.g., 0°C)
and it is assumed that the baselines are linear,
with slopes mF and mU. With multiple unfolding
transitions, it is not as clear how to devise
appropriate baselines for intermediate states.
Fortunately, it is only necessary to fit the high-
and low-temperature baselines, because calcu-
lated values for enthalpies are quite insensitive

to the choice of baselines for folding interme-
diates, as long as the baseline values are in
between the high and low temperature values.
The authors have found the following formula
convenient in carrying out least-squares fits; it
uses the enthalpy of a transition to calculate a
weighted average of the high- and low-transi-
tion baselines (∆Htot is the total enthalpy of
unfolding for the RNA):

B = BF +                 

  




BU − BF

∆Htot




 




∆H1K1 + (∆H1 + ∆H2)K1K2 . . .
Q





Equation 11.3.9

The sum of Equations 11.3.7 and 11.3.9,
(∆At + B), can be fit to a melting profile using
standard nonlinear regression methods; the
authors’ programs use the Levenburg-Mar-
quardt algorithm (Press et al., 1992). Only the
three variables associated with each transition
(∆A, ∆H, and Tm) are fitted, and it is left to the
user to provide high- and low-temperature
baselines, either from linear least-squares
analysis of the absorbance data or from expe-
rience. It should be noted that, when fitting
curves to normalized first-derivative melting
profiles, only the two slopes, mF(T) and mU(T),
are needed, and not AF,0 or AU,0.

In RNAs with several unfolding transitions,
the breadth and spacing of the transitions are
frequently such that some of the peaks are not
individually resolved. In that case, it may not
be obvious how many transitions should be fit
to the melting profile because, unless the Tm of
each transition is fixed by a separate maximum
in the melting profile, there are usually too
many degrees of freedom (three variables per
transition) to obtain a unique fit. This problem
can sometimes be circumvented by collecting
data at two different wavelengths. RNA struc-
tures frequently differ in their hyperchromici-
ties at different wavelengths; G-C rich helices,
for instance, have much larger hyperchromici-
ties at 280 nm than do A-U rich helices (Puglisi
and Tinoco, 1989). One then has to fit two
melting curves simultaneously, using the same
set of ∆H and Tm values for each curve but
allowing for different hyperchromicities.
While this approach may still result in ambi-
guities, the benefits of a two-wavelength
analysis can be substantial and the experi-
ment should always be tried. An example of
two-wavelength analysis applied to transfer
RNA melting is shown in a following section,
and more extensive methods for ascertaining
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and improving the reliability of a fit are also
discussed  below.

Calorimetry
Calorimetry experiments detect enthalpy di-

rectly. The equations used to describe RNA
unfolding are similar to those discussed above
for absorbance, with ∆H replacing hyper-
chromicity. Thus, Equation 11.3.7 for sequen-
tial unfolding becomes:

∆H(T ) = 
∆H1K1

Q
 + 

(∆H1 + ∆H2)K1K2

Q
    

   + 
(∆H1 + ∆H2 + ∆H3)K1K2K3

Q
 +  . . .

Equation 11.3.10

where ∆H(T) is the total enthalpy change in
going from fully folded RNA to the collection
of partially unfolded molecules at temperature
T. The actual measurement made is the heat
capacity of the RNA, ∆CP(T) = [∂∆H(T)/∂T]P,
so it is the first derivative of Equation 11.3.10
that is fit to the data.

The elimination of hyperchromicities as un-
known parameters in Equation 11.3.10 simpli-
fies its use for fitting data. Unfortunately, this
advantage is partially offset by new parameters
that must be introduced to describe the cal-
orimetry baseline. To see this, first consider a
single, two-state unfolding reaction. The com-
pletely general equation for the heat capacity
curve is:

Cp = CF 


1
1 + K




 + CU 



K
1 + K




 + 





∆H

RT2




 

K

(1 + K)2

Equation 11.3.11

The last term is the temperature derivative of
Equation 11.3.10 for a single transition. CF and
CU are the intrinsic heat capacities of the native
and unfolded states, and generally have small
temperature dependencies:

CF = CF,0 + 


dCF

dT



 (T − T0)

CU = CU,0 + 


dCU

dT



 (T − T0)

Equation 11.3.12

where CF,0 and CU,0 are the heat capacities at
reference temperature T0. Equations 11.3.11
and 11.3.12 are similar to Equation 11.3.8 for
an absorbance melting curve, with heat capac-
ity replacing absorbance in the description of
the baseline. In both sets of equations, six
variables need to be specified (for a heat capac-
ity curve, the variables are ∆H, Tm, CF,0, CU,0,

and the temperature dependencies of the last
two variables). It is possible to extract all of
these parameters from a heat-capacity curve
that extends over a large enough temperature
range.

Problems arise when the overall change in
heat capacity between native and unfolded
RNA, ∆CP = CU,0 − CF,0, is significant and there
are several overlapping transitions. In princi-
ple, each folding intermediate has an associated
heat capacity, CI,0, and a temperature depend-
ence of the heat capacity, dCI/dT. The latter
value is usually small, and can be assigned an
arbitrary value in between those of the native
and unfolded states without introducing signifi-
cant error. The difficulty comes in determina-
tion of CI,0, as illustrated in Figure 11.3.2 for a
heat-capacity curve with overlapping transi-
tions. Very different baselines and total enthal-
pies of unfolding are calculated, depending on
whether CI,0 is close to CF,0 (giving a larger total
∆H) or CU,0 (smaller total ∆H). This is a similar
problem to that encountered with absorbance
melting curves, i.e., three variables associated
with each unfolding transition (in this case, ∆H,
Tm, and CI,0) is, in many cases, too many de-
grees of freedom to fit a unique curve to a data
set.

A small ∆Cp is expected for RNA unfolding,
due to the temperature dependence of base
stacking; the fully unfolded, single-stranded
state of an RNA will have less base stacking
(and less enthalpy) at higher temperatures.
Thus, RNA unfolding reactions will yield pro-
gressively larger ∆H values as the temperature
of the measurement is raised; this temperature
dependence of ∆H gives a positive ∆CP to any
RNA unfolding. The effect is small, on the
order of 0.1 kcal/mol per base pair in short
helices (Freier et al., 1983; Petersheim and
Turner, 1983). However, the authors find the
heat capacity baseline problem can be a serious
problem for larger RNAs with multiple unfold-
ing transitions, for two reasons: (i) when melt-
ing takes place over a wide temperature range,
small adjustments in the Cp values associated
with each transition can have a significant effect
on the total enthalpy, even if the overall ∆CP is
relatively small; (ii) in some situations, the
overall ∆CP of unfolding an RNA tertiary struc-
ture is quite substantial, i.e., much larger than
∆CP for unfolding a protein of similar molecu-
lar weight (Laing and Draper, 1994). Though
the curve in Figure 11.3.2 might seem an exag-
gerated case, it is in fact based on actual data
and is a realistic illustration of problems that
may be encountered. Why some RNAs have
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dramatically larger ∆CP compared to others is
not presently understood.

EXAMPLE ANALYSIS: tRNA
UNFOLDING

Analysis of melting data requires consider-
able effort to ensure that a useful thermody-
namic description of the unfolding has been
obtained. As an example of problems that may
be encountered, this section describes the
analysis of transfer RNA melting data and cal-
culations that test the reliability of a proposed
fit. The next section describes experiments that
can further test a proposed melting pathway.

Initial Fitting of The UV Melting
Profile

Figure 11.3.3, panel A, shows the UV melt-
ing profile of yeast tRNAPhe at 260 and 280 nm.
The data clearly distinguish three transitions
with different ratios of hyperchromicities at the
two wavelengths, and a least-squares fitting
program readily finds three sets of transition
parameters that give an excellent fit to the data.
Note that the low- and high-temperature baseli-
nes were fixed manually, and not by the fitting
program; the transition parameters are rela-
tively insensitive to the exact baseline values
chosen.

The first test of a fit is whether the total
unfolding enthalpy is consistent with the RNA

secondary structure. From compiled nearest-
neighbor base-stacking enthalpies (Serra and
Turner, 1995), the four tRNAPhe cloverleaf heli-
ces alone are predicted to have a total unfolding
enthalpy of 190 kcal/mol. “Dangling bases” at
the ends of helices and coaxial stacking of
helices could add as much as 43 kcal/mol (Serra
and Turner, 1995), and further stacking of bases
within the anticodon loop and tertiary structure
could also add a significant amount of enthalpy.
The total enthalpy change associated with the
three transitions in Figure 11.3.3, panel A, ∼140
kcal/mol, is thus much too small to be consis-
tent with unfolding of the tRNA.

When four transitions are used, the fitting
program converges on the set of transitions
shown in Figure 11.3.3, panel B. The total
enthalpy is now 232 kcal/mol, more in line with
the expected value, and the fit has improved
significantly (2.7-fold smaller value for χ2).
Further tests are now needed to see if this fit is
unique and if all variables are well determined.

Determining if an optimum fit has been
found

With a large number of variables, it is quite
possible for a least-squares fitting routine to
converge on a local minimum, rather than the
actual optimum set of parameters. To circum-
vent this problem, the fitting program can be
run a large number of times (>100) using ran-
domized initial values of the parameters. Start-
ing with the transition parameters of the fit in
Figure 11.3.3, panel B, a random number gen-
erator was used to increase or decrease ∆H and
∆A values by factors of up to 4, and varied Tm

values by ±5°C. Forty-seven of the 100 trials
converged; one had a larger value for χ2, and
the rest had χ2 values not significantly different
from that of the fit shown in Figure 11.3.3, panel
B. From several such sets of trials, using differ-
ent ranges of the transition parameters, it is
clear that a better fit (smaller χ2 value) has not
been missed; however, some of the parameters
varied substantially. ∆H3, for instance, has a
range of 14 to 167 kcal/mol. This suggests that
the two melting profiles do not have sufficient
information to constrain all parameters for four
melting transitions.

Determining if the data support unique
values for all of the parameters

The problem of whether all the transition
parameters are well constrained by a set of
melting profiles can be approached by “boot-
strap” analysis (Press et al., 1992). This is a
Monte Carlo method, in which synthetic data

Figure 11.3.2 The baseline problem in fitting
heat-capacity data. The heat-capacity curve
was generated using Equation 11.3.10 and
three transitions with total enthalpy 150
kcal/mol and overall ∆Cp 5 cal/mol⋅K. The two
different baselines were obtained from fits of
the heat capacity curve with three transitions
(∆H = 135 kcal/mol) or four transitions (thinner
line; ∆H = 173 kcal/mol); there was no signifi-
cant difference in the quality of the fits to the
data.
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sets are generated by randomly drawing the
same number of points from the original data
set as contained in that set. Some points will be
duplicated, and other points will be missing;
different optimum fits will be found for each
synthetic set, as the data points will be differ-
ently weighted. Statistics compiled on a large
number (200 to 1000) of such trials give the
confidence intervals for any one variable. A
useful aspect of this analysis is the ability to ask
whether different variables are correlated. If
changes in one fit parameter are paralleled by
changes in another parameter, then the data
contain insufficient information to specify
unique values of both parameters.

In this analysis, 500 synthetic data sets were
generated from the two melting profiles in Fig-

ure 11.3.3B, and the linear correlation coeffi-
cients of each fit parameter versus all other
parameters were obtained. These values are
summarized in Table 11.3.1. All coefficients
with absolute values greater than 0.8 are in
boldface. The last two lines of the table give the
average and standard deviation (1σ) for each
parameter. There are a large number of strong
correlations. Particularly worrisome are ∆H3,
A2603, and A2803, which strongly correlate
with a number of parameters and also have
unusually large standard deviations. A plot of
∆H3 versus A2603 is in Figure 11.3.2C; it is
clear from the wide range of values and strong
correlation (R = 0.95) that the enthalpy and
hyperchromicity of transition 3 are not uniquely
determined. The authors conclude that the UV
melting data sets have enough information to
constrain three melting transitions, but not
enough information to determine four transi-
tions. Additional data are needed to interpret the
unfolding thermodynamics.

Calorimetry Analysis
Calorimetry provides additional informa-

tion that can be used to interpret the UV melting
profile. Figure 11.3.4 shows a heat capacity
curve for tRNAPhe under the same buffer con-
ditions as used for the UV melting experiment
in Figure 11.3.3. As discussed above, the un-
certainty in analyzing these data is interpolation
of a baseline. For this curve, the authors used
the following procedure:

1. Low- and high-temperature baselines
were determined by linear least-squares fitting
of data over 10°C ranges (10° to 20°C and 90°
to 100°C).

2. An initial set of transition parameters
(including Cp values that determine the base-
line) was obtained by a fitting routine that
apportions the overall ∆Cp between the transi-
tions according to their enthalpies (χ2 = 6.05;
total ∆H = 239.6 kcal/mol). A minimum of four
transitions was required to fit the data reason-
ably.

3. Fitting was continued after relaxing the
constraint in step 2 (above) and substituting the
constraint that ∆Cp from one transition to the
next must be positive; a slightly better fit was
obtained (χ2 = 5.72; total ∆H = 241.9 kcal/mol).

4. The fit parameters were randomly varied
(as described above for UV melting profiles) to
see if significantly different baselines could be
drawn, subject to the constraint that ∆Cp values
must be positive. Of 107 converged fits, none
was a significantly improved fit (minimum χ2 =
5.71). Among these fits, the maximum and

A

B

C

Figure 11.3.3 UV analysis of yeast tRNAPhe

melting (buffer contained 100 mM KCl and 5
mM potassium cacodylate). (A) Fit obtained
assuming three sequential transitions (Equa-
tion 11.3.7). Data were obtained at 260 nm
(open symbols) and 280 nm (closed symbols).
(B) Fit of four sequential transitions to the same
data set as in panel A. (C) Correlation plot, ∆H3

versus A2603, for the four transition fit (Table
11.3.1).
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minimum total ∆H differed by only 9 kcal/mol
(236.3 to 245.2); these curves have the most
extreme possible positions of the baseline (Fig.
11.3.4). This source of error is probably com-
parable to the reproducibility of the heat capac-
ity curve.

5. Bootstrap analysis showed no significant
correlations between parameters, and small
confidence intervals.

The relatively small ∆Cp for tRNA melting
is well within the range expected for unfolding
of the four cloverleaf helical segments, and is
small enough that uncertainties in the Cp values
contribute less than ±2% to the overall error in
measuring unfolding ∆H. Note that the assump-
tion that ∆Cp > 0 for any one transition is
essential; otherwise, there is not enough infor-
mation in the curve to determine the parameters
of all four transitions. Since the source of ∆Cp

in this example is the temperature-dependent
stacking of bases in the unfolded state, it is
reasonable to assume ∆Cp > 0. In another RNA
examined by the authors, ∆Cp is on the order
of 5 kcal/mol-K. The assumption of positive
∆Cp values is then made with less confidence,
since the origin of the large ∆Cp is unknown.

Agreement of UV Melting and
Calorimetry Data Sets

A simple test for consistency between UV
and heat capacity data sets is to refit the UV
data using fixed enthalpy and Tm values from
the calorimetry analysis. When the calorimetric
parameters obtained in Figure 11.3.4 were ap-
plied to the UV data in Figure 11.3.3, the
hyperchromicities adjusted to give an excellent

fit. A more general method is simply to fit both
UV and heat capacity data sets simultaneously.
Bootstrap error analysis can then be run on the
combined data sets. With the tRNAPhe data, the
parameters obtained are very close to those
found by analysis of the calorimetry data alone,
and the only significant differences from the UV
analysis are the enthalpies of transitions 2 and 3.

Computer Programs
Global Melt Fit, a program for simultaneous

curve fitting of UV absorbance and calorimetry
data sets, and for applying bootstrap analysis,
is available on the Web (http://www.jhu.edu/
∼chem/draper/) or from the authors.

EXPERIMENTAL TESTS OF AN
UNFOLDING PATHWAY

An analysis of UV and calorimetry data will
invariably yield a set of two-state unfolding
transitions whose total enthalpy is at least as
large as the predicted nearest-neighbor base-
stacking enthalpy. The next question is the
physical significance of the transitions, i.e., can
individual transitions be identified with spe-
cific structures? Though it might seem that each
transition should correspond to the unfolding
of a single helical segment or set of tertiary
interactions, there is no reason why this has to
be true. Secondary structure units may melt in
different orders by several pathways, so that the
unfolding pathway is branched instead of
strictly sequential. A single “state” in the se-
quential unfolding analysis may then represent
a mixture of partially unfolded states that have
about the same stability (Laing and Draper,

Figure 11.3.4 Calorimetry analysis of tRNAPhe under the same buffer conditions as in Figure
11.3.3. The solid curves represent the total Cp, baseline, and individual transitions for the fit with
the smallest total enthalpy: ∆H1 = 48.7; Tm1 = 40.5; Cp1 = 3.95; ∆H2 = 82.9; Tm2 = 53.2; Cp2 = 4.70;
∆H3 = 56.7; Tm3 = 59.1; Cp3 = 5.37; ∆H4 = 49.0; Tm4 = 70.0; Cp4 = 5.39 (∆H in kcal/mol, Tm in °C,
and Cp in kcal/mol-K). The dashed line is the baseline for a fit with the largest overall enthalpy, and
differs principally in its smaller value for Cp3 (4.83).
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1994; Draper and Gluick, 1995). An additional
problem is whether the two-state assumption is
warranted for a transition. This section suggests
additional experiments that can test a hypothe-
sized unfolding mechanism.

Substitution of Base Pairs
Substitution of a helix A-U base pair with a

G-C pair, or vice versa, destabilizes or stabilizes
the helix by a predictable amount (Serra and
Turner, 1995). The resulting change in helix Tm

is usually several degrees, which can be easily
detected in a melting experiment. If the unfold-
ing pathway is simple (i.e., branches are not
significantly populated) then the ∆H and Tm of
only a single transition will change signifi-
cantly in the mutant. Doing this kind of experi-
ment for each helix in the secondary structure
is a rigorous test of the unfolding pathway.

Similar substitution experiments can be
done for sets of tertiary interactions, if specific
bondings are known or suspected. Too little is
known about tertiary structure to predict the
outcome of such an experiment quantitatively,
but it can be useful as a way to confirm the
existence of an interaction within a tertiary
structure and to probe the range of substitutions
that can be accommodated by a structure. Such
experiments have been done for a base pair
linking D and variable loops within tRNA ter-
tiary structure (Hou et al., 1995), and for a
putative base triple interaction in a ribosomal
RNA fragment (Conn et al., 1998).

Any time a variant RNA is made, the new
sequence should be run through a program
that predicts secondary structure, such as
Mulfold (Zuker, 1989; see also http://www.
rpi.edu/∼zukerm/). It is not uncommon that a
one- or two-base sequence change favors an
alternative secondary structure with very dif-
ferent unfolding properties.

Melting of Subfragments
Larger RNAs can usually be divided into

several smaller fragments that should retain the
same secondary structure as the larger fragment
under study (Liang and Draper, 1994; Gluick
and Draper, 1997). The melting behavior of
such small fragments, with only one or two
transitions, is usually easy to analyze and
should correspond to transition(s) in the melt-
ing of the larger RNA. This is a particularly
useful way to find out if the two-state approxi-
mation is valid for a specific helix. Note that
coaxial stacking and simple entropic effects
may alter the stability of a helix when it is taken

out of context of a larger, extended hairpin
(Draper and Gluick, 1995).

Deviations from Two-State Behavior
The model developed above for RNA unfold-

ing assumes that the RNA behaves as a collection
of two-state unfolding events. This assumption is
difficult to test rigorously. The usual criterion for
two-state behavior is that ∆H calculated from
van’t Hoff analysis of the unfolding (as described
above, Equation 11.3.3) agrees with the cal-
orimetric ∆H measured from the area under the
heat-capacity curve. Only in the case of a small
RNA with a single transition, or an RNA with
very well-resolved transitions, is it possible to
carry out this quantitative test. But frequently an
RNA can be divided into several segments which
can be individually tested (see above).

Deviations from two-state behavior can be
anticipated from the sequence of a helix. Using
nearest-neighbor base-stacking parameters and
loop entropies (Serra and Turner, 1995), a sepa-
rate equilibrium constant can be calculated for
removal of each successive base pair from
either end of a helical segment (the so-called
“zipper” model of duplex unwinding). The
terms for the fully folded state and all the
partially unfolded states are then included in a
partition function (Equation 11.3.5), and the
melting curve is predicted. If the two-state
approximation is valid, the calculated curve
will not deviate much from a curve predicted
using only a single equilibrium constant for
folded and unfolded forms. Long helices (more
than 6 to 8 base pairs), or helices containing
runs of A-U or G-U pairs, tend to “fray” sig-
nificantly. Fraying may be substantially re-
duced when the helix is adjacent to loops or
helices in a larger structure.

An example in which deviations from two-
state behavior were identified is an RNA
pseudoknot that contains two coaxially stacked
helices (Gluick and Draper, 1997). This RNA
melted in two well-resolved transitions. How-
ever, the heat capacity curve could only be fit
with three two-state transitions; the two peaks
of the melting curve were associated with large
enthalpy transitions, and a third transition of
much lower enthalpy was spread between the
two main transitions. Several clues suggested
that the low enthalpy transition might be an
artifact of non-two-state behavior:

1. The total enthalpy calculated from two-
state analysis of UV melting curves increased
with salt concentration, even though the en-
thalpy of helix unfolding is usually inde-
pendent of salt (Williams et al., 1985). Higher
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salt concentrations can reduce the proportion
of molecules with “frayed” helices, promoting
two-state melting.

2. An RNA fragment representing hairpin 1
of the pseudoknot melted in a transition with
lower Tm at 260 than at 280 nm. This suggested
that some A-U pairs (with larger hyperchromi-
cities at 260 nm) melted before G-C pairs.

3. The two-state enthalpies of both compo-
nent hairpins increased with salt concentration.

The UV and heat-capacity melting profiles
of the pseudoknot could be fit simultaneously
with two transitions if the ratio of van’t Hoff
and calorimetric ∆H values, ∆HvH/∆Hcal, were
included to allow the transitions to be broader
than expected based on the total enthalpy of
unfolding. This ratio is a measure of the
deviation from two-state behavior, and ap-
proaches 1 for a perfectly two-state transition.
For the two transitions of the pseudoknot, the
ratios varied from 0.68 to nearly 1, depending
on the salt concentration (Gluick and Draper,
1997).

LITERATURE CITED
Albergo, D.D., Marky, L.A., Breslauer, K.J. and

Turner, D.H. 1981. Thermodynamics of (dG-
dC)3 double-helix formation in water and deute-
rium oxide. Biochemistry 20:1409-1413.

Chory, J. and Pollard, J.D. Jr. 2000. Separation of
small DNA fragments by conventional gel elec-
trophoresis. In Current Protocols in Molecular
Biology (F.M. Ausubel, R. Brent, R.E. Kingston,
D.D. Moore, J.G. Seidman, J.A. Smith, and K.
Struhl, eds.) pp. 2.7.1.-2.7.8. John Wiley & Sons,
New York.

Cole, P.E., Yang, S.K., and Crothers, D.M. 1972.
Conformational changes of transfer ribonucleic
acid: Equilibrium phase diagrams. Biochemistry
11:4358-4368.

Conn, G.L., Gutell, R.R., and Draper, D.E. 1998. A
functional ribosomal RNA tertiary structure in-
volves a base triple interaction. Biochemistry
37:11980-11988.

Correll, C.C., Freeborn, B., Moore, P.B. and Steitz,
T.A. 1997. Metals, motifs, and recognition in the
crystal structure of a 5S rRNA domain. Cell
91:705-711.

Crothers, D.M., Cole, P.E., Hilbers, C.W. and Shul-
man, R.G. 1974. The molecular mechanism of
thermal unfolding of Escherichia coli formyl-
methionine transfer RNA. J. Mol. Biol. 87:63-88.

Draper, D.E. and Gluick, T.C. 1995. Melting studies
of RNA unfolding and RNA-ligand interactions.
Methods Enzymol. 250:281-305.

Draper, D.E., White, S.A., and Kean, J.M. 1988.
Preparation of specific ribosomal RNA frag-
ments. Methods Enzymol. 164:221-237.

Ehresmann, C., Baudin, F., Mougel, M., Romby, P.,
Ebel, J.-P., and Ehresmann, B. 1987. Probing the
structure of RNAs in solution. Nucl. Acids Res.
15:9109-9128.

Freier, S.M., Burger, B.J., Alkema, D., Neilson, T.
and Turner, D.H. 1983. Effects of 3′ dangling end
stacking on the stability of GGCC and CCGG
double helices. Biochemistry 22:6198-6202.

Gluick, T.C. and Draper, D.E. 1997. Folding of an
mRNA pseudoknot required for stop codon
readthrough: Effects of mono- and divalent ions
on stability. Biochemistry 36:16173-16186.

Gluick, T.C., Gerstner, R.G. and Draper, D.E. 1997.
Effects of Mg2+, K+, and H+ on an equilibrium
between alternative conformations of an RNA
pseudoknot. J. Mol. Biol. 270:451-463.

Good, N.E. and Izawa, S. 1972. Hydrogen ion buff-
ers. Methods Enzymol. 24:53-68.

Goodwin, J.T., Osborne, S.E., Scholle, E.J., and
Glick, G.D. 1996. Design, synthesis, and analy-
sis of yeast tRNAPhe analogs possessing intra-
and inter-helical disulfide cross-links. J. Am.
Chem. Soc. 118:5207-5215.

Gurevich, V.V. 1996. Use of bacteriophage RNA
polymerase in RNA synthesis. Methods Enzy-
mol. 275:382-397.

Gutell, R.R., Power, A., Hertz, G.Z., Putz, E.J., and
Stormo, G.D. 1992. Identifying constraints on
the higher-order structure of RNA: Continued
development and application of comparative se-
quence analysis methods. Nucl. Acids Res.
20:5785-5795.

Heus, H.A. and Pardi, R. 1991. Structural features
that give rise to the unusual stability of RNA
hairpins containing GNRA loops. Science
252:191-194.

Hou, Y.M., Sterner, T. and Jansen, M. 1995. Permu-
tation of a pair of tertiary nucleotides in a transfer
RNA. Biochemistry 34:2978-2984.

Laing, L.G. and Draper, D.E. 1994. Thermodynam-
ics of RNA folding in a highly conserved ribo-
somal RNA domain. J. Mol. Biol. 237:560-576.

Petersheim, M. and Turner, D.H. 1983. Base-stack-
ing and base-pairing contributions to helix sta-
bility: Thermodynamics of double-helix forma-
tion with CCGG, CCGGp,CCGGAp, CCGGUp,
and ACCGGUp. Biochemistry 22:265-263.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and
Flannery, B.P. 1992. Numerical Recipes in C.
Cambridge University Press, Cambridge.

Puglisi, J.D. and Tinoco, I., Jr. 1989. Absorbance
melting curves of RNA. Methods Enzymol.
180:304.

Römer, R. and Hach, R. 1975. tRNA conformation
and magnesium binding: A study of yeast pheny-
lalanine-specific tRNA by a fluorescent indica-
tor and differential melting curves. Eur. J. Bio-
chem. 55:271-284.

Supplement 2 Current Protocols in Nucleic Acid Chemistry

11.3.12

Thermal Methods
for the Analysis of

RNA Folding
Pathways 



Scaringe, S.A., Francklyn, C. and Usman, N. 1990.
Chemical synthesis of biologically active oli-
goribonucleotides using beta-cyanoethyl pro-
tected ribonucleoside phosphoramidites. Nucl.
Acids Res. 18:5433-441.

Serra, M.J. and Turner, D.H. 1995. Predicting ther-
modynamic properties of RNA. Methods Enzy-
mol. 259:242-261.

Stein, A. and Crothers, D.M. 1976. Conformational
changes of transfer RNA: The role of magne-
sium(II). Biochemistry 15:160-167.

Tang, C.K. and Draper, D.E. 1989. An unusual
mRNA pseudoknot structure is recognized by a
protein translational repressor. Cell 57:531-536.

Williams, A.P., Longfellow, C.E., Freier, S.M., Kier-
zek, R. and Turner, D.H. 1985. Laser tempera-
ture-jump, spectroscopic, and thermodynamic
study of salt effects on duplex formation by
dGCATGC. Biochemistry 28:4283-4291.

Wyman, J. and Gill, S. 1990. Binding and Linkage.
Functional Chemistry of Biological Macromole-
cules. University Science Books, Mill Valley, Calif.

Zuker, M. 1989. On finding all suboptimal foldings
of an RNA molecule. Science 244:48-52.

Contributed by David E. Draper,
 Yury V. Bukhman, and Thomas C. Gluick
Johns Hopkins University
Baltimore, Maryland

Current Protocols in Nucleic Acid Chemistry Supplement 2

11.3.13

RNA Folding
Pathways


