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Abstract Multiple studies have reported either isotropic or trapped pitch angle distributions of
high-energy (>100 eV) electrons on closed crustal field lines on the dayside of Mars. These pitch angle
distributions are not to be expected from collisional scattering and conservation of adiabatic invariants
alone. We use 2 years of data from the Mars Atmosphere and Volatile EvolutioN mission to analyze the
pitch angle distributions of superthermal electrons on dayside-closed crustal magnetic fields and compare
to results from an electron transport model. Low-energy electrons (10–60 eV) have pitch angle
distributions in agreement with modeling results, while high-energy electrons (100–500 eV) do not.
High-energy electrons have a flux peak at perpendicular pitch angles which suggests there is a ubiquitous
energization process occurring on crustal fields. Wave-particle interactions seem to be the most likely
candidate. Trapping of high-energy electrons may impact the nightside ionosphere dynamics.

Plain Language Summary Superthermal electrons are electrons with energies between 1
and 1,000 eV and can be produced from ionizing a neutral atmospheric molecule (photoelectron). These
electrons are efficient at shifting energy around in space environments due to their high speeds and their
ability to interact with the more ubiquitous lower energy (thermal) plasma. Past studies have investigated
the distribution of photoelectrons on the crustal magnetic fields of Mars, and they do not always agree with
past modeling results and a basic understanding of electron transport. In this study, we use data from the
Mars Atmosphere and Volatile EvolutioN mission in order to understand the distribution of these electrons
throughout the Mars space environment, previously impossible due to spacecraft orbits. We find that the
lower energy electrons (10–60 eV) behave as expected but the higher-energy electrons (100–500 eV) do not.
We find that the type of distribution statistically seen by Mars Atmosphere and Volatile EvolutioN for these
high-energy electrons suggests that a ubiquitous energization process is occurring on the dayside crustal
magnetic fields of Mars. We consider multiple physical processes capable of producing such observed
distributions and conclude that wave-particle interactions are the most likely candidate.

1. Introduction/Motivation
Superthermal electrons (1–1,000 eV) are an important population of particles common throughout the solar
system. They are excellent at shifting energy from one place to another in space environments through
interactions with the bulk thermal plasma. Photoelectrons are one population of superthermal electrons,
produced through ionization of neutral particles, and have been studied extensively at Earth, Mars, and
Venus and even moons such as Titan (see Coates et al., 2011, for a review). Photoelectrons have a distinct
energy spectrum that allows them to be readily identified in the data. One characteristic of the photoelectron
energy spectrum includes flux peaks in the 20- to 30-eV range determined by the dominant atmospheric
neutrals. At Mars, the primary peaks occur at 22.29 eV (O) and at 22.69 and 27.02 eV (CO2). Other unique
features of the photoelectron energy spectrum at Mars include the “photoelectron knee” at∼60 eV as a result
in a drop in ionizing solar radiation (a characteristic shared by photoelectrons at other solar system bodies as
well), a flux peak due to carbon Auger electrons at ∼250 eV visible in measurements during times of intense
photoelectron fluxes Xu et al. (2018) and another flux peak at 500 eV due to oxygen Auger electrons. These
distinct spectral features have allowed studies of the Mars space environment such as Xu et al. (2014), Shane
et al. (2016), and Xu et al. (2017) to determine whether a measurement is observing photoelectrons or solar
wind electrons.
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Pitch angle distributions (PADs; Brain et al., 2007; Weber et al., 2017) and energy spectra (Frahm, Sharber,
et al., 2006; Frahm, Winningham, et al., 2006; Liemohn et al., 2006) of superthermal electrons can be used to
infer magnetic topology. More recently, Xu et al. (2017, 2019) have utilized both to more accurately determine
the magnetic topology in the Mars space environment. Liemohn et al. (2003) used a superthermal elec-
tron transport model (Khazanov et al., 1993; Khazanov & Liemohn, 1995; Xu & Liemohn, 2015) to perform
data-model comparisons with Mars Global Surveyor (MGS) observations, and at low energies (<100 eV),
the model-calculated PADs agreed with MGS results. However, MGS measured isotropic PADs for electrons
with >100 eV, while the model calculated a source cone PAD at these energies. This was a case study com-
parison, and it demonstrated that the model is missing a physical process that produced the observed MGS
measurement. Brain et al. (2007) performed a statistical study of 115 eV PADs with MGS data and found that
on the dayside, isotropic and trapped (two-sided loss cone) distributions are common on closed crustal field
lines, in agreement with the case study of Liemohn et al. (2003). It should be noted that Brain et al. (2007)
was using PADs to classify magnetic topology; however, a source cone distribution was not among the com-
mon distributions used to do so. In fact, they reported that only 2.8% of the PADs they used on the dayside
had a two-sided source cone. These studies suggest that there are unstudied physical processes produc-
ing isotropic and trapped distributions on closed crustal field lines, as conservation of adiabatic invariants
and collisional scattering predicts a source cone distribution. More recently, Soobiah et al. (2014) observed
field-aligned low-energy electrons and trapped high-energy electrons inside of an ionospheric flux rope and,
during times of radial field lines, with low-energy PADs that indicate they are open. The electron impact
ionization cross sections for the primary upper atmosphere neutral species, CO2 and O, peak around 100 eV
(Itikawa, 2002; Thompson et al., 1995). Therefore, any pitch angle scattering or energy diffusion affecting
electrons at these energies will affect the ionosphere below.

The work done by Liemohn et al. (2003) revealed the need to study the PADs of superthermal electrons on
closed field lines at Mars. Brain et al. (2007) furthered this need by reporting that the dominant PAD on
dayside-closed crustal fields for electrons with 115 eV were isotropic and trapped distributions. However,
the Brain et al. (2007) study used MGS data that was locked in an orbit at roughly 400 km and 2 a.m./p.m.
local time. This study takes advantage of the precessing elliptical orbit of the Mars Atmosphere and Volatile
EvolutioN (MAVEN) mission (Jakosky et al., 2015), which allows sampling of the different regions of the
Martian space environment in order to better understand the physics that control the superthermal electron
PADs on dayside-closed crustal field lines.

2. Data and Filtering
Over 2 years of data collected from the Solar Wind Electron Analyzer (Mitchell et al., 2016) and Magnetome-
ter (Connerney et al., 2015) spanning the time range 1 December 2014 to 30 December 2016 are used in this
study to obtain a clearer picture of the behavior of photoelectrons on dayside-closed crustal field lines. Each
PAD is mapped onto a common pitch angle grid of 18 bins each with bin width of 10◦. We limit ourselves to
energies below 500 eV as there are few photoelectrons with energies greater than this.

Modified pitch angles (Xu et al., 2014; Shane et al., 2016) are used to provide more information about
the direction that the electrons are traveling, specifically if the electrons are directed toward or away from
the planet. If the magnetic elevation angle is greater than zero, the pitch angles are flipped (i.e., modified
pitch angle = 180◦− pitch angle, if Belev > 0). Electrons with modified pitch angles of 0–90◦ have some
guiding-center velocity component in the direction of the planet, and electrons with modified pitch angles
of 90–180◦ have some guiding-center velocity component directed away from the planet.

In order to ensure that the measurements being used are observing electrons on dayside-closed field lines
and not other field line topographies, multiple filtering criteria are enforced. First, a lower altitude limit
is set to 200 km to only include measurements above the photoelectron exobase where the electrons are
magnetized (Xu et al., 2016). Second, the solar zenith angle is required to be less than 90◦ to include only
dayside observations. We also require that the shape parameter (Xu et al., 2017) in both source cones is
required to be less than one. This criterion is used to filter for closed crustal magnetic fields by examining
the low-energy (20–80 eV) and field-aligned (0–30, 150–180 pitch angle) electron energy spectrum. No infor-
mation of higher-energy electrons and those with perpendicular pitch angles is used. However, this only
indicates that the “ends” of the magnetic field lie below the superthermal electron exobase. While this is
true for all closed crustal field structures, draped field lines deeply embedded in the ionosphere may also
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Figure 1. Superthermal electron transport model results of photoelectron pitch angle distributions at three
representative locations along a crustal dipole-like magnetic field line: (a) near the exobase, (b) above the exobase, and
(c) at the top of the field line. (d) Normalized pitch angle distributions for electrons with energy = 50 eV at each
altitude.

share this characteristic. Therefore, a fourth criteria is set that the magnetic field magnitude must be greater
than 20 nT to attempt to avoid this scenario. This is by no means a perfect filter, but a higher threshold
would start to exclude crustal fields. Lastly, to avoid spacecraft potential issues, a filter is set to only include
data when the spacecraft potential (calculated using publicly available MAVEN software) is between −1 and
+3 V. After filtering, the data set includes ∼296,000 PAD observations each with accompanying magnetic
field and ephemeris information.

3. Expected Distribution With Only Collisional Scattering: Model Results
A superthermal electron transport model (STET; Khazanov et al., 1993; Khazanov & Liemohn, 1995;
Liemohn et al., 2003; Xu & Liemohn, 2015) is utilized to demonstrate the expected dayside superthermal
photoelectron distribution on a closed dipole-like symmetric crustal field line with collisions as the only
scattering process. The types of collisions included in the model are collisions with thermal electrons and
ions, elastic collisions with neutrals, inelastic excitation scattering with neutrals, and inelastic ionization
scattering with neutrals. Figure 1 shows the PADs of superthermal electrons at multiple locations along a
field line at 45◦ solar zenith angle: near the superthermal electron exobase (Figure 1a), a position well above
the exobase (Figure 1b), and at the top of the field line (Figure 1c). Below and near the exobase, collisions
dominate, and electrons are isotropic in pitch angle regardless of energy (Figure 1a). Above the exobase,
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Figure 2. Normalized pitch angle distributions of photoelectrons for (a) low and (b) high energies. The error bars
include both measurement and statistical sources of error and are contained within each data marker.

the electrons are magnetized, and collisions play a reducing role as the altitude increases. Collision fre-
quencies (Coulomb and elastic collisions with neutrals) are proportional to E−2 where E is the energy of
the electron, and this effect can be seen in Figure 1b and more noticeably in Figure 1c. It is easier to see
in Figure 1c because the more pronounced source cone allows any scattering into the trapped region to be
more noticeable. As an electron travels up the field line, the magnetic field strength decreases. In order to
conserve the first adiabatic invariant, the pitch angle of the electron becomes more field aligned produc-
ing the anisotropy seen in Figures 1b and 1c. Figure 1d plots the normalized PAD for photoelectrons with
E = 50 eV at each altitude (vertical slices at 50 eV through each plot). The source cone is more pronounced
as altitude increases, that is, the ratio of field-aligned flux to perpendicular flux increases with altitude. This
is due to the combined effects of adiabatic invariant conservation and the insignificance of collisions at high
altitudes. Different energy electrons will have the same trend in altitude, and higher-energy electrons will
experience more anisotropy as collisional effects are less important. The y axis scale used here in Figure 1d is
chosen to match the rest of this paper for easier comparison. The normalized flux value at pitch angle = 90◦

and at altitude = 500 km drops to 0.0025.

Note that these PADs will change with solar conditions, atmospheric densities, and/or magnetic field con-
figurations. The specific magnetic field strengths and background thermal electron densities used are given
above each subplot. Different solar conditions and atmospheric densities will move the location of the
exobase, affecting where collisions play an important role in controlling the PADs of photoelectrons. Alter-
ing the magnetic field configuration may have multiple effects. The ratio of Blocal and Bexobase determines the
size of the source cone at any given location along the field line. A field line that is longer horizontally will
force electrons to travel longer distances through high-density parts of the atmosphere allowing for more
collisions. However, none of these changes will affect the trends in altitude or energy described above. Only
the magnitude of the fluxes will be changed and the degree to which the PADs evolve in altitude/energy.
We will use this representative example as a baseline, and any deviation seen in the data implies missing
physics in the model and a lack of understanding of the Martian space environment.

4. Statistical Results
4.1. Energy Dependence
Figure 2 shows the average normalized PAD over the 2-year filtered data set for low energies (10–60 eV;
Figure 2a) and high energies (100–500 eV; Figure 2b). Each curve in Figure 2 is normalized by the average
flux in that energy channel over the 2-year period. Both measurement and statistical errors are accounted
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Figure 3. Normalized pitch angle distributions of (a) low- and (b) high-energy photoelectrons as a function of altitude.
The error bars include both measurement and statistical sources of error and are contained within each data marker.

for, but due to the large sample size, these errors are small and within the circle markers. The dichotomy
between low and high energies is evident from the figure. Low-energy photoelectrons, on average, have a
source cone distribution. From section 3, this is what we would expect on a closed crustal field line with only
collisional scattering. STET predicts that high-energy photoelectrons should have a more pronounced source
cone distribution. Instead, the high-energy photoelectrons measured by MAVEN have a peak in flux at per-
pendicular pitch angles. Previously, Liemohn et al. (2003) suggested that an energy-dependent pitch angle
scattering process is responsible for producing the isotropic high-energy distributions seen by MGS. These
results indicate otherwise, as pitch angle scattering processes will isotropize the distribution, not produce a
peak at perpendicular pitch angles. One method of forming this distribution is on the nightside of Mars as
the crustal field foot points are no longer sunlit, and therefore, the source of electrons has been removed (loss
cone distribution). The photoelectrons at field-aligned pitch angles are lost first through energy transfer with
the thermal population, and only the trapped particles remain (Shane et al., 2016). However, we have fil-
tered for dayside observations where the source cone is filled with photoelectrons. Therefore, there must be
an energization process occurring ubiquitously in the Martian ionosphere/magnetosphere in order to pro-
duce the average distribution observed for high-energy photoelectrons. Another interesting feature to note
is the asymmetry about 90◦ pitch angle. There are more high-energy electrons with a velocity component
toward the planet than away from it.

4.2. Altitude Dependence
Figure 3 shows how the normalized energy-averaged PADs change with altitude for low- (Figure 3a) and
high-energy (Figure 3b) photoelectrons. Flux measurements in each energy channel are normalized by the
average flux for that energy for all measurements in each altitude range. The energy channels are then aver-
aged together to produce the curves shown. Low-energy photoelectrons at altitudes just above the exobase
(200–300 km) are close to being isotropic. As the altitude increases, the average PAD of low-energy pho-
toelectrons changes from isotropic to a source cone distribution. This source cone distribution becomes
more distinct the higher the altitude, in agreement with the results from section 3. High-energy photo-
electrons are also close to being isotropic at low altitudes. However, there is an asymmetry about 90◦ with
more high-energy electrons that have a velocity component toward the planet. At higher altitudes, the PAD
of high-energy photoelectrons becomes perpendicularly peaked, while the ratio of perpendicular flux to
field-aligned flux gets larger. Additionally, the asymmetry about 90◦ pitch angle also gets bigger the higher
the altitude. Of course, these statistical results combine measurements from many magnetic field lines and
atmospheric profiles so a binning by magnetic elevation angle was also performed (results not shown) and
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Figure 4. Time series of (a) electric wave power spectra from the Langmuir Probes and Waves instrument,
(b) normalized high-energy photoelectron pitch angle distributions, and (c) normalized low-energy photoelectron pitch
angle distributions. The white dashed line marks the observation at 04:06:33 with the complete energy-pitch angle
distribution at this time shown in (d) and the normalized energy-averaged pitch angle distributions shown in (e).

the perpendicular peak exists on both horizontal and vertical field lines. The peak is narrower and more
pronounced on vertical field lines; however, this can be explained by adiabatic motion.

5. Example Pad
Figure 4 plots an example MAVEN observation from 24 May 2015. These measurements took place on the
dawn side of the planet (7 local time and 77◦ solar zenith angle) and over the strong crustal magnetic fields
in the southern hemisphere (50◦S, 150◦E). Figures 4a–4c plot time series of the electric field wave power
measured by the Langmuir Probes and Waves (LPW) instrument (Andersson et al., 2015) in passive mode,
the normalized high-energy electron PAD, and the normalized low-energy electron PAD, respectively, over a
∼3-min period. Note that Figures 4b and 4c have different color bar scales. The shape parameter is less than 1
in all directions (including trapped electrons) for this time period (photoelectrons dominate the low-energy
distribution; see Xu et al., 2017, for details), indicating that these measurements all took place on closed
crustal field structures.

As altitude increases (right to left of Figures 4a–4c), the low-energy electron source cone becomes deeper, in
agreement with the general trend of modeling results and the statistical averages, from 04:07:50 to 04:06:45.
The artificial diagonal line seen on top of this natural source cone is due to sunlight contamination. The
high-energy electrons have more noise than the lower energies and are isotropic. During this time period,
the magnetic elevation angle rotates from horizontal (∼20◦ at 04:07:50) to near-vertical (∼80◦ at 04:06:45).
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Around 04:06:45, the low-energy electrons form a loss cone distribution, with more flux away from the planet
than toward. The low-energy electrons then transition into a slightly asymmetric source cone with more flux
toward the planet than away from 04:06:30 to 04:06:40. At the same time, the high-energy electrons have
an intense flux increase at perpendicular pitch angles. The full energy-pitch angle distribution at 04:06:33
(indicated by the dashed white line) is shown in Figure 4d, and the normalized energy-averaged PAD is
displayed in Figure 4e (vertical slices through Figures 4b and 4c). The exact values do not match as different
normalization factors are used between Figures 4b and 4c and Figure 4e. Throughout these observations,
LPW measured wave activity in the 2- to 30-Hz range. These frequencies lie between the local ion (<0.1 Hz)
and electron gyrofrequency (>1,000 Hz) for this time period. At higher altitudes (>405 km), the high-energy
electrons again are isotropic, the low-energy electrons have a source cone distribution, and the magnetic
elevation angle rotates from vertical ∼80◦ at 04:06:45) to horizontal (∼20◦ at 04:05:10).

Coinciding with the acute flux increase of perpendicular high-energy electrons is a burst of electric field
wave activity measured by LPW. Examining the magnetic field reveals many fluctuations across this time
period; however, no distinct frequency stands out when a fast Fourier transform is performed. More analysis
should be done on this time period to investigate the physics, but this is beyond the scope of this study and
is left for future work. The purpose of this example is to demonstrate that the 2-year statistical averages of
low- and high-energy PADs can be observed in any given observation.

6. Discussion and Conclusion
One process that could form the distributions observed for high-energy photoelectrons is magnetic pump-
ing (Borovsky, 1986). Magnetic pumping is the result of two different waves effects on a particle population.
A compressional magnetosonic wave will compress and relax the plasma due to E×B drift provided the fre-
quency of the wave is small such that the first adiabatic invariant is conserved. If another wave (in cyclotron
resonance with the particles) is also present and is actively pitch angle scattering the particle population,
then the compression/relaxation cycle of the particles is interrupted and particles may gain energy from the
compressional wave. At Mars, the compressional waves could come from pressure variations in the solar
wind, causing the crustal fields to compress and relax. Weber et al. (2019) recently observed that during
periods of high solar wind pressure, statistically, closed fields are seen less often, and draped fields are seen
more often than during periods of low solar wind pressure. Due to the locality of the crustal fields, a local
time effect is expected to be observed if magnetic pumping is the dominant process. A crustal field recently
rotated onto the dayside will have experienced no pumping during night and no perpendicular peak should
exist. In contrast, a crustal field on the dusk side will have experienced magnetic pumping throughout the
day, and the effects should be maximized. No local time effect can be seen in the data (supporting informa-
tion Figure S1), and therefore, we do not expect this to be the dominant process affecting the high-energy
electron PADs.

Another process that could produce the observed distributions of high-energy photoelectrons on
dayside-closed crustal field lines is adiabatic heating due to cross field drifts. On closed field lines, the
gradient-curvature drift will be azimuthal, not radial, and would therefore not typically move electrons into
regions of higher field strength. Provided the motional electric field and crustal field lines are in the correct
orientation, solar wind electrons can E × B drift across field lines and onto a closed crustal field structure.
However, Figures 2 and 3 are 2-year average distributions, and the angle between any individual crustal
field line and the motional electric field is not constant enough for E × B drift to be the dominant process
to form the flux peak at perpendicular pitch angles. Although a magnetosheath or external source of elec-
trons can explain both the altitude dependence and the asymmetry in fluxes with respect to the planet, it
seems unlikely that this is the dominant mechanism due to two issues. First, there is a lack of a known
supply mechanism to the closed crustal field line, though wave-particle interactions in the sheath may scat-
ter particles onto closed field lines. Second, the PADs of high-energy electrons on deep closed field lines
(|B| > 50 nT,Belev < 45◦, and altitude > 400 km to minimize collisional effects) still exhibit a perpendicu-
lar peak. Furthermore, whatever mechanism would be supplying external electrons would need to be local
time independent as the perpendicular peak is seen immediately on the dawn side.

The most likely process that is producing the observed statistical distributions are wave-particle interactions.
Whistler mode waves are an example of an energy-dependent scattering mechanism and have recently been
observed at Mars (Harada et al., 2016; Fowler et al., 2018). These right-handed circularly polarized waves
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occur between the local ion and electron gyrofrequency and will interact with different populations of elec-
trons in energy-pitch angle space depending on the background plasma conditions (thermal electron density
and magnetic field magnitude) and on the wave parameters (wave frequency and wave normal angle distri-
butions). These waves can both pitch angle scatter and energy diffuse and are a good candidate process for
producing the observed distributions. While pitch angle scattering may be occurring, the dominant process
seems to be energization of locally gyrating low-energy electrons up to hundreds of electronvolts. Whistler
waves are capable of preferentially energizing these electrons. The example shown in section 5 supports this
explanation with both electric and magnetic variations observed between the local ion and electron gyrofre-
quency; however, it is by no means conclusive. Whistler mode waves are generated when a temperature
anisotropy occurs (Te⟂ > Te||). From a single spacecraft pass, it is difficult to determine the location of wave
generation, direction of propagation, and region of interaction. For example, the increase in perpendicu-
lar flux may have generated whistler waves instead of being the result of them, as was observed by Fowler
et al. (2018).

More work needs to be done in investigating the PADs of superthermal electrons on dayside-closed crustal
field lines at Mars. Statistical averages from MAVEN measurements show that low-energy electrons behave
as if collisional scattering and conservation of the first adiabatic invariant are the only processes that control
their distribution. High-energy electrons on the other hand have an average distribution that cannot be
explained by these two processes alone. A flux peak at perpendicular pitch angles indicates that a ubiquitous
energization process is occurring on dayside-closed crustal field lines with wave-particle interactions being
the most likely candidate. It is difficult at the moment to explain the asymmetry with respect to the planet
with wave-particle interactions. An external source of electrons can explain this; however, this explanation
suffers due to the lack of a known supply mechanism. The modification of electron PADs at these high
energies is of direct importance to the energy budget in the Martian space environment. With ionization
cross sections peaking at these energies for the main neutral species, this energization process may affect the
ionosphere below. However, the energized electrons are outside the loss cone and low-energy electrons may
still dominate the electron impact ionization due to higher fluxes. This will be especially important on the
nightside as trapped electrons on closed field lines live longer (Shane et al., 2016) and will be able to deposit
their energy deeper into the nightside ionosphere. Furthermore, these results show that there are unstudied
physical processes occurring in the Martian space environment on dayside-closed crustal field lines.
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