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ABSTRACT

Radiation therapy treatments for cancer aim to deliver a toxic dose of radiation to malignant

tumors, while controlling the dose to healthy tissues and organs. In external beam therapy, radiation

is delivered by a linear accelerator, and a Multileaf Collimator (MLC) is used to change the shape

of the beam opening, or aperture. A treatment plan for each patient is designed by specifying the

apertures and timing and source intensity decisions for each beam angle used in the treatment.

Mathematical optimization models are commonly used in modern radiation treatment planning,

and rely on mathematical models of the dose distribution delivered to the patient by the portions

of the beams exposed by the apertures.

Volumetric Modulated Arc Therapy (VMAT) and Tomotherapy are two of the highly utilized

forms of external-beam radiation therapy, each with unique features of the MLCs. For both modal-

ities, the current standard treatment planning methodology is prone to creating a discrepancy be-

tween the doses that are intended, and the doses that are actually delivered to the patient. The goal

of our research is to develop improved treatment planning strategies that reduce this divergence.

In tomotherapy, the MLC consists of binary leaves alternating between fully open and closed

states, while the beam traces a helicoidal trajectory around the patient. Dosimetric discrepan-

cies in tomotherapy have been attributed to the lack of accurate models of leaf motion and dose

delivery during leaf transitions between states, with their impact exacerbated by short leaf open

times (LOTs). Moreover, the discretization of beam motion currently used for dose calculations

is relatively coarse, which also contributes to the dosimetric errors. We propose a new treatment

xv



planning delivery and modeling paradigm for tomotherapy that allows us to impose lower bounds

on minimum and average LOTs, while allowing for arbitrarily finer discretization of beam motion

— both features absent from existing approaches.

VMAT treatments use a rectangular MLC, with leaves that can open and close partially, creating

complex two-dimensional aperture shapes, while the beam moves along pre-specified trajectories,

or arcs. Current VMAT treatment planning approaches tend to create plans with complex and ir-

regular apertures with small areas and excessive edge lengths. The dose delivery models for such

apertures are less accurate than for apertures with simpler, rounder shapes; therefore discrepancies

between planned and delivered dose are frequently observed in VMAT treatments as well. Our pro-

posed optimization model for VMAT treatment planning considers a tradeoff between the quality

of the planned treatment with respect to the clinical goals and a penalty on irregularly-shaped aper-

tures. This model extends and combines a VMAT planning model with a new edge metric penalty

with favorable mathematical properties compared to penalties studied in the literature. Due to the

complexities of VMAT delivery, the resulting optimization models require development of heuris-

tic solution approaches. We develop a significant extension of a heuristic algorithm for VMAT

treatment planning applicable to the new model.

We test the models and algorithms proposed in this thesis on clinical cases, demonstrating im-

provements in treatment characteristics of the resulting treatment plans — LOTs and discretization

levels in tomotherapy and aperture shape metrics in VMAT. While the precise reductions in dosi-

metric discrepancies resulting from these changes will need to be confirmed by dosimetric studies,

these favorable characteristics should lead to clinical treatments that are more effective and safer

for the patients.
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CHAPTER 1

Introduction

This dissertation proposes new treatment planning methodologies for two approaches to delivery

of external beam radiation for cancer treatment: Volumetric Modulated Arc Therapy (VMAT) and

tomotherapy. In both delivery approaches, the current standard treatment planning methodology is

prone to creating a discrepancy between the doses that are intended, and the doses that are actu-

ally delivered to the patient. The goal of our research is to develop improved treatment planning

strategies that reduce this divergence.

We begin this chapter by providing an overview of radiation therapy treatments (Section 1.1) and

treatment planning (Section 1.2). In the subsequent sections, we provide some additional details

of VMAT and tomotherapy treatments delivery.

Following this introduction, Chapters 2 and 3 of this dissertation, dealing with our contributions

to tomotherapy and VMAT treatment planning, respectively, are independent of each other. In par-

ticular, each chapter begins with a more detailed description of the radiation delivery mechanism

for the specific treatment modality and its specific properties and features that can lead to the afore-

mentioned discrepancies between planned and delivered dose distributions; we then propose new

types of optimization models for treatment planning that can reduce the presence of these features.

We proceed by discussing solution methods for the proposed models, and test them on clinical

cases. We conclude in Chapter 4 by summarizing our contributions and proposing directions for

future investigations.

1



1.1 Radiation Therapy

The goal of radiation therapy is to deliver a toxic dose of radiation to malignant targets, while si-

multaneously controlling the dose to each healthy Organ at Risk (OAR) (Hawkins, 1994). Healthy

tissue recovers quicker than cancerous lesions, and therefore radiation oncologists break up the

treatment into several fractions. This fractionation of the treatment allows healthy tissue the op-

portunity to heal and regenerate, while a toxic, destructive dose is delivered to cancerous tissue

before the lesions can regrow.

Radiation therapy can be delivered either internally or externally. Internal radiation therapy is

also known as brachytherapy.1 It is an invasive procedure in which small radioactive sources are

implanted at the treatment location or inserted via catheters. External beam photon radiation ther-

apy is non-invasive. In this dissertation, we focus on x-ray, or photon beam, treatments involving

dose delivery from a Linear Accelator (LINAC), which distributes ionizing radiation through the

relevant portion of the patient’s body.2 The LINAC accelerates subatomic particles and allows

these particles to collide with “heavy” metals in order to produce high energy rays. These rays

(beams) are formed into the desired shapes by a Multi-Leaf Collimator (MLC), which rests inside

the gantry that rotates around the patient. An MLC consists of a set of pairs of “leaves” which can

be moved in and out of the beam field, modulating the radiation. The opening of the beam surface

created by specific leaf positions is referred to as an aperture. See Figure 1.1 for an illustration of

the treatment gantry and an MLC.

The beam is directed at the patient who is positioned on the treatment couch; see Figure 1.2.

During treatment, the gantry rotates around the patient; the couch can stay stationary or it may

move or rotate as well. The specifics of the movement of the gantry and the motion of the MLC

leaves depend on the treatment modality. In particular, treatment machines illustrated in Figures 1.1

and 1.2 are used for Intensity-Modulated Radiation Therapy (IMRT) and VMAT. Tomotherapy is

1Brachys is the Greek root for “short-distance.”
2Other external beam radiation modalities include proton and gamma ray therapies.
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(a) A gantry rotates around the couch where the
patient is placed during treatment. The MLC
is located inside the opening at the end of the
gantry.

(b) An MLC is a set of leaves that close and
open, i.e., move in and out of the beam opening,
creating an aperture.

Figure 1.1: An illustration of the LINAC delivery system and an MLC.

a modality that involves coordinated movements of the gantry and the couch to create a helical

gantry trajectory relative to the patient, and a binary MLC illustrated later on in this chapter.

1.2 Treatment Planning

A patient referred for external-beam radiation therapy begins the treatment by undergoing imaging;

Computed Tomography (CT) uses x-rays to generate cross-sectional images of the body, Magnetic

Resonance Imaging (MRI) uses powerful magnetic fields to achieve a similar goal. A patient can

also undergo a preliminary ultrasound that uses high-frequency waves to produce images (sono-

grams) of the region of interest. After data acquisition, physicians use the images to identify and

contour the relevant structures, i.e., the OARs and the targets, either manually or with the aid of

software. Each target can be a visible malignant Gross Target Volume (GTV), or a Planning Target

Volume (PTV), which contains the GTV and a region surrounding it to account for cancer tissue

spread and geometric uncertainties. A decision is made regarding the number, individual goals,

and timing of fractions, the desired doses to the targets, and safe doses to healthy structures that

the radiation oncologist recommends. For example, in a spine case, the dosimetric requirements

might be as follows:
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Figure 1.2: A patient positioned on the couch, ready for treatment. (Source: Varian Medical
Systems, Inc.)

• PTV: Minimum dose≥37 Gy; Maximum dose≤47 Gy, D90≥44 Gy

• Spinal Cord: Maximum dose≤31 Gy

• Esophagus: D50≤27 Gy

• Trachea: Maximum dose≤36 Gy,

where Gray (Gy) is the unit of dose delivered, and expressions DX refer to the Dose Volume

Histogram (DVH) metrics (e.g., in the above example, 90% of the PTV, by volume, should receive

the dose of at least 44 Gy).

The goal of treatment planning is to determine a treatment plan, i.e., the specifics of delivery

of radiation to the particular patient, that adheres to the above treatment goals and is consistent

with the capabilities of the treatment modality and equipment used. Depending on the type of

cancer and the treatment modality, several particular challenges may arise during treatment plan-

ning: accounting for organ function information, uncertainties in inter-fraction motion, changes
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(a) A discretized organ at risk: A 3D model of a
lung. (Source: Marias et al., 2011.)

(b) The gantry path is discretized into control
points (VMAT) or projections (tomotherapy).

Figure 1.3: Discretization in treatment planning: discretization of the patient’s body and discretiza-
tion of the gantry path.

in patient geometry between fractions, intra-fraction motion such as breathing, natural tissue in-

homogeneities such as denser bony regions, or porous sectors in the lung, and ensuring sufficient

accuracy of dose calculations during the planning process. It is the latter that we strive to address

and improve in this dissertation by proposing new modeling approaches for optimization-based

treatment planning. All of our proposed models address planning of the total treatment; we as-

sume that an appropriate fractionation schedule will be determined as a post-processing step.

To estimate the delivered dose during the treatment planning process, the treatment volume of

the patient’s body is discretized into small 3-dimensional voxels (sometimes also referred to as

“points”). Each of these voxels is contained in one or more structures. The typical voxel size is

about 1 or 2 cubic millimeters for cases that require extreme precision, such as brain tumors, and

up to 1 cubic centimeter for simpler cases, such as prostate cancer. We show a schematic of a

discretized lung in Figure 1.3a. The dose delivered to the patient is represented as a vector of doses

received by the voxels, each of which is calculated as a sum of contributions to the dose from the

exposed portions of the beam, with the gantry positioned at different angles with respect to the

patient.

The nature of the gantry movements is dictated by the treatment modality. The more traditional
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IMRT approach, for example, uses a limited number of static beam angles. The gantry remains

stationary at each beam angle while the MLC leaves are repositioned to modulate the beam inten-

sity by exposing different apertures for different amounts of time. A common treatment planning

technique for IMRT is the so-called Fluence-Map Optimization (FMO), in which the surface of

the beam is discretized into rectangular beamlets, and the intensity (via duration of exposure) of

each beamlet at each angle is determined independently. After FMO planning is performed, a leaf-

sequencing algorithm identifies several apertures that, when exposed one after the other, achieve

the different beamlet intensities. (An alternative approach to IMRT treatment planning is Direct

Aperture Optimization (DAO), which, as the name suggests, directly chooses specific apertures

and corresponding intensities.) The width of the beamlets corresponds to the width of the MLC

leaves, and the length of the beamlets is chosen based on the desired discretization density.

In IMRT, the dose is calculated as the sum of contributions of individual beamlets from each

beam angle. In FMO, for each beamlet-voxel pair at a beam angle, a dose deposition coefficient,

which is the dose that is deposited in the voxel from this beamlet at unit intensity, is pre-calculated

using advanced Monte Carlo simulation of particles at the sub-atomic level. The contribution of

the beamlet to the voxel’s dose is then proportional to the total time this beamlet is exposed by the

MLC, with the dose deposition coefficient serving as the coefficient of proportionality. In FMO

and other aperture-based treatment planning approaches, the dose deposition coefficient for an

aperture-voxel pair is often approximated by the sum of coefficients of beamlets exposed within

the aperture. Although more direct, aperture-specific, methods based on Monte Carlo simulation

also exist, their use during treatment planning is often too computationally demanding, and instead

they are used as a Quality Assurance (QA) step afterwards.

In practice, IMRT has limitations, including long delivery times necessitated by the large num-

ber of apertures needed to produce complex fluence profiles at each beam angle, and high Monitor

Units (MU) (a measure of the total output of the machine during treatment). This concern can be

addressed in VMAT and tomotherapy treatments, where, unlike in IMRT, the gantry continuously
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moves relative to the patient, and the MLC leaves change positions while the gantry is in motion.

For the purposes of treatment planning, the path of the gantry around the patient is also discretized,

as illustrated in Figure 1.3b. In VMAT, the discretization points are referred to as “control points,”

while in tomotherapy they are typically called “projections.” (Following the conventions of each

treatment modality, we will use the terms beam angles, control points, and projections when dis-

cussing IMRT, VMAT, and tomotherapy treatments, respectively.) A common discretization-based

dose calculation approach uses the contribution to the dose from a stationary aperture at an indi-

vidual control point as an approximation of the contribution made as the gantry moves from this

control point to the next; as long as the discretization of the gantry trajectory is sufficiently fine,

this provides a sufficiently accurate approximation.

Radiation treatment planning via mathematical optimization has gained prominence both in re-

search and clinical practice, and some forms of it have been adopted by commercial treatment plan-

ning systems. There are many optimization modeling approaches proposed for treatment planning,

chosen based on the unique characteristics of each treatment modality and the available software

capabilities. A survey by Romeijn and Dempsey (2008) provides a comprehensive, if slightly

outdated, overview of optimization models used in IMRT planning; we will review the relevant

literature for VMAT and tomotherapy planning in the forthcoming sections.

In the following sections, we provide some additional details of delivery paradigms and treat-

ment planning in VMAT and tomotherapy. We begin by discussing VMAT in Section 1.3, due to

its similarities to the concepts discussed so far, and address tomotherapy in Section 1.4.

1.3 VMAT Delivery Systems

VMAT radiation therapy delivery system was initially proposed by Yu (1995) under the moniker

of Intensity-Modulated Arc Therapy, or IMAT. VMAT is delivered by LINAC systems similar to

those used in IMRT (in fact, several delivery systems on the market are capable of delivering both
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Figure 1.4: A typical LINAC system for VMAT

IMRT and VMAT treatments), but unlike the “step-and-shoot” IMRT delivery from a small number

of stationary gantry angles, VMAT treatments are delivered by a continuously rotating gantry.

The gantry is equipped with a rectangular MLC that can be used to change the beam aperture

dynamically. The leaves can move in and out of the beam opening and are capable of creating

complex two-dimensional shapes (see Figure 1.5b for another illustration). The high precision of

continuously moving MLC leaves combined with continuous delivery allows for highly conformal

treatments with faster treatment times than IMRT, allowing VMAT treatments to be used in the

most complex cases. The VMAT couch lacks horizontal displacement, but can rotate as shown

in Figure 1.4, or can be stationary for a coplanar treatment. As opposed to the helical trajectory

outlined by the tomotherapy LINAC, the VMAT gantry moves along a trajectory lying on a sphere

around the patient, centered on the target. VMAT allows the delivery from non-coplanar angles,

which is an advantage over tomotherapy (see Section 1.4). We will primarily focus on coplanar

single-arcs VMAT treatments, where the couch remains stationary and the gantry rotates, tracing

a circular trajectory, or arc, around the patient one or multiple times. Multi-arc treatments, with
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(a) Binary Multi-Leaf Collimator (tomotherapy); each leaf is ei-
ther completely open or closed.

(b) Multi-Leaf Collimator (VMAT);
leaves can create complex shapes.

Figure 1.5: Comparison of tomotherapy and VMAT MLCs.

a couch in a different position for each arc, are conceptually similar, and will be explored in

Section 3.4.

As we already mentioned, for treatment planning purposes, the trajectory of the gantry in a

VMAT treatment is discretized into control points. A treatment plan is typically given by speci-

fying an aperture (i.e., an MLC configuration), intensity of radiation source, and gantry rotation

speed (equivalently, exposure time) at each control point. The delivery machine then uses interpo-

lation to specify behavior along the continuous treatment path.

Several optimization algorithms for VMAT treatment planning have been developed, mostly

considering one of two general approaches. The first approach is to use two-stage arc-based mod-

els. In the first stage, the “ideal” beam profiles for all control points are determined, often using

an IMRT-style fluence-map optimization model. In the second stage, arc-sequencing (a process

similar to leaf-sequencing in IMRT, but applied to an arc) takes place in order to construct a deliv-

erable VMAT treatment that approximates the “ideal” treatment obtained in stage one. Cao et al.

(2009), Craft et al. (2012), Wala et al. (2012), Salari et al. (2012), and Papp and Unkelbach (2014)

create different algorithms to perform this second step. The second approach to VMAT treatment

planning is to use direct control point-based decisions, in which each aperture at every control

point is designed to take into account the particular LINAC constraints. One of these approaches

uses column generation-type heuristics that add or replace an aperture at a different control point

in every iteration (see, e.g., Men et al., 2010; Peng et al., 2012, 2015). Another approach works on
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Figure 1.6: Gantry rotation and couch movement in tomotherapy.

multiple control points simultaneously; this leads to a column-and-row generation approach such

as Mahnam et al. (2017). Our algorithmic approach presented in Chapter 3 generalizes and refines

the column generation heuristic of Peng et al. (2012).

1.4 Tomotherapy Delivery Systems

Tomotherapy combines the accuracy of computed tomography with the power of intensity-modulated

radiation therapy. It shares the continuous gantry motion paradigm of VMAT, but has many unique

characteristics. During treatment, the gantry rotates around a fixed axis, while the couch moves

along a straight line perpendicular to the gantry’s plane of movement. As a result, tomotherapy

displays a characteristic helicoidal delivery pattern shown in Figure 1.6.

Tomotherapy can be a very accurate treatment modality that allows the treatment of large re-

gions, or regions with several lesions. Its computed tomography capabilities allow the verification

of the location of each tumor before treatment, reducing geometric uncertainties in treatment de-

livery.

Tomotherapy is affected by steep gradients in dose delivery, which complicates calculations of

dose deposition coefficients. Another difference related to the beam is the source-to-axis distance,
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(a) Aperture from Front of LINAC. (b) Binary MLC shapes the “fan” beam.

Figure 1.7: Aperture modulation with a binary colimator.

at 85 cm, shorter than for IMRT and VMAT (usually 100 cm). Other distinctive features of to-

motherapy include the absence of a flattening filter3 or a beam hardener,4 and lack of an electron

stopper. Together, these features deliver higher energy production at the center of the beam. The

radiation beam in tomotherapy is therefore significantly different from other treatment modalities

in which flat isodoses are achieved. The features of the beam, however, have been studied exten-

sively, among others, by Jeraj et al. (2004); Sterpin et al. (2008); Seco and Verhaegen (2013), and

we can assume that Monte Carlo simulations that model the beam fairly accurately are available.

Instead of rectangular beams and two-dimensional apertures used in IMRT and VMAT treat-

ments, tomotherapy uses a narrow beam and a binary MLC modulating it. Figure 1.5 shows an

illustration of the latter and provides a side-by-side comparison with the former. Figure 1.7 pro-

vides a more detailed schematic depiction of modulation of the beam by a binary MLC. As the

gantry traces the helicoidal trajectory around the patient, each leaf is dynamically opened and

closed. The name “binary” stems from the fact that a leaf cannot be opened or closed part-way; it

can only be in one of two states, open or closed (i.e., on or off). In standard models of tomotherapy

delivery, and in treatment planning approaches, changes in leaf state are assumed to happen instan-

3The flattening filter is a conic piece of equipment that flattens the dose uniformly across the whole aperture.
Tomotherapy does not require a uniform beam intensity because the collimators can achieve the desired uniformity.
Moreover, by not using a flattening filter, medical physicists and dosimetrists can engineer a more homogeneous
energy spectrum, without any loss of intensity in the process.

4The beam hardener filters out lower intensities of the beam, leaving only the “hardest” components.
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taneously. As we will discuss in Section 2.2, this assumption leads to dosimetric inaccuracies in

tomotherapy treatment planning.

There are certain additional inherent disadvantages to tomotherapy, including an excessive num-

ber of leaf pulsations (i.e., changes in leaf status during treatment), the requirement of extra beam-

on time, short leaf-opening times, and more extended delivery periods that cause the machine

components to wear out (Kampfer et al., 2011). We believe that our approach to modeling and

delivering tomotherapy treatment introduced in Chapter 2 has the potential to tackle many of these

problems.
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CHAPTER 2

A Proposal for Tomotherapy Treatment Delivery and

Planning Enhancement

2.1 Introduction

Tomotherapy (literally, “slice therapy,” Mackie et al., 1993) is a technique for delivering external

beam radiation that combines the power of intensity-modulated radiation therapy and the accuracy

of computerized tomography, which allows concurrent accurate tomographic setup verifications.

Tomotherapy enables the treatment of a wide target area due to the axial movement of the couch;

this characteristic makes it ideal for the treatment of either larger targets or more significant min-

istrations that contain several targets.

During tomotherapy treatment, a ring gantry rotates around a fixed axis at a speed of 1 to 10 rev-

olutions per minute (Webb, 2001), while the couch moves along the straight line perpendicular to

the gantry’s plane of movement. Originally intended to remove the possibility of collision between

the patient and the treatment unit (Mackie et al., 1993), tomotherapy displays the characteristic

helicoidal delivery pattern shown in Figure 2.1. The beam used in tomotherapy is narrow, and it is

modulated with a pneumatic binary Multi-Leaf Collimator, in which each leaf can be in one of two

states, open or closed (i.e., on or off). Thus, in tomotherapy, beamlets have a length equal to the

length of the leaves. The collimator usually consists of 64 leaves (each leaf is usually 6 mm wide
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Figure 2.1: Gantry rotation and couch movement in tomotherapy create a helicoidal delivery pat-
tern.

and anywhere from 10 to 50 mm long). While earlier versions of tomotherapy equipment only al-

lowed leaf lengths of 1, 2.5, or 5 cm that were fixed at the start of each treatment, the latest version

known as “TomoEdge” allows a dynamical change of leaf length during treatment; however, this

feature is beyond the scope of our analysis, which focuses on the more traditional delivery systems.

The gantry and MLC mechanism are illustrated in Figures 2.2a and 2.2b. To fix ideas, with respect

to the 3D coordinate system, we say that the gantry’s plane of movement, or the treatment plane, is

the X–Z plane orthogonal to the direction of couch movement, Y . The MLC is aligned parallel to

the treatment plane so that the MLC leaves travel in the Y -direction when they open and close. We

also define the slice width as the longitudinal extent (i.e., in the Y -direction) of the portion of the

treated area of the patient’s body covered by the beam emanating from the MLC with the gantry in

a fixed position and the leaves opened (Langen et al., 2010).

A final feature in tomotherapy modeling is the pitch: the ratio of couch translation per rotation to

the slice width. The study of Kissick et al. (2005) recommends pitch values in the set 0.86
N

for some

N ∈ N, where lower values are better, since, according to Westerly et al. (2009), “conventional

thinking suggests that increasing the pitch may result in a loss of longitudinal resolution in the

dose distribution.” A pitch taking any of the aforementioned values muffles the appearance of the
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(a) Each rotation of the gantry is discretized into 51 projec-
tions.

(b) Binary MLC shapes the “fan” beam.

Figure 2.2: Tomotherapy delivery: gantry rotation and aperture modulation with a binary collima-
tor.

so-called thread effect, which refers to a disadvantageous helicoidal thread-like pattern in dose

delivery attributed to the mismatch of helical beams. The values 0.86
N

have been further confirmed

by Chen et al. (2011), emphasizing that correct optimization makes the thread effect disappear.

A first sketch of a practical design of the tomotherapy machine can be traced back to Mackie

et al. (1993). It took seven years until the first tomotherapy LINAC prototype entered the clinical

setting in the early 2000’s (Sheng, 2017). Shepard et al. (2000) suggested iterative methodologies

for treatment planning optimization, and Lu (2010) proposed a non-voxel broad-beam (NVBB)

IMRT approach.

As in other treatment modalities, traditional tomotherapy treatment planning models use the

discretization of the patient’s structures into voxels. A precursor of those methodologies is the

treatment in Mackie et al. (1985). According to Grigorov et al. (2003), conventional tomotherapy

delivery methodologies today rely on the discretization of the helicoidal trajectory into projections.

As mentioned in Chapter 1, a projection is the tomotherapy-specific term equivalent to a control

point or a beam angle. In conventional approaches to tomotherapy, it is common to divide the

trajectory into 51 projections per 360◦ rotation. Each projection has an associated set of binary

leaves, and for each leaf-projection combination (i.e., beamlet), there is a specification of leaf

opening and closing times. Furthermore, the projection encompasses an associated collection of

pre-calculated coefficients that indicate how much dose is deposited from each leaf to each voxel;
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these dose coefficients are assumed to remain constant throughout the projection. The computation

of these coefficients uses the nuclear physical properties of the beam, and Monte-Carlo simulations

supply these coefficient values (Seco and Verhaegen, 2013).

It should be noted that physical limitations of the LINAC require all leaves to remain closed for

a few seconds at the beginning of the helicoidal treatment. According to Langen et al. (2010), the

leaves must be closed for 10 seconds at the beginning of each treatment until the LINAC output

stabilizes. This can be accomplished in the treatment planning models by initiating the indexing

of the projections at the first discretization point where the leaves are allowed to open, 10 seconds

into the gantry’s rotation.

Tomotherapy treatments have certain inherent disadvantages, including the inability to deliver

from all non-coplanar directions, an excessive number of leaf pulsations, i.e., leaf openings and

closings, the longer beam-on time, and overall wearing out of the systems (Kampfer et al., 2011),

in spite of newer in-house LINACs that slightly reduce the wear-and-tear, by virtue of a reduction

of voltage output from 6 MV to 5.2-5.7 MV (Sheng, 2017).1 Standard models of tomotherapy

delivery, and thus treatment planning approaches, assume that changes in leaf state happen instan-

taneously. However, this assumption is not accurate, as opening and closing each leaf pair takes

about 20 milliseconds, which results in inaccurate estimates of delivered doses. We believe there

is room for improvement, and our approach to modeling and delivering tomotherapy treatments

has the potential to tackle some of these problems. We will expand on some of these issues in the

next section, and in the following sections we propose alternative tomotherapy treatment planning

approaches based on mixed integer optimization models.

1Further reductions seem attractive but are not possible because “energies lower than 6 MV have low x-ray pro-
duction per incident electron” (Mackie et al., 1993).
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2.2 The Conventional Tomotherapy Delivery Approach and its

Flaws

In the conventional tomotherapy delivery, the LINAC is set to produce a constant fluence rate of

850 cGy per min (Sheng, 2017). The modulation at each projection is accomplished by open-

ing each leaf of the MLC for varying amounts of time as the gantry passes through the 7.06◦

(7.06◦ ≈ 360◦

51
) arc segment associated with the projection; see Figure 2.3. Thus, mathematically,

treatment planning essentially uses a Fluence Map Optimization model, i.e., by controlling leaf

opening times, different fluences for beamlets within each projection can be achieved. The result-

ing treatment is delivered at the slowest necessary constant pre-determined gantry rotation speed.

The standard tomotherapy paradigm requires that a leaf that opens is closed during that same pro-

jection. When a centered target, large or small, is being treated, leaf-opening events at neighboring

projections can be merged, e.g., the opening of a leaf at projection 1 can be timed to occur towards

the end of the corresponding arc segment, while the opening of the same leaf at projection 2 can be

timed to occur towards the beginning of the following arc segment; these can be combined into a

single leaf opening per two segments in order to increase the overall leaf-opening-time and reduce

the number of leaf pulsations. However, such merges are not recommended when treating small

off-centered targets due to the “blurring effect” (Sheng, 2017).

The conventional approach to both treatment delivery and planning endures some limitations.

As mentioned above, in the conventional approach, each leaf that opens has to close within that

very same projection (unless the aforementioned pairwise merging is deployed, in which case it

has to close within the next projection). As mentioned earlier, a factor contributing to the discrep-

ancy in dose calculation is leaf speed. Despite of the commonly-made assumption to the contrary,

the pneumatic mechanism that closes and opens each leaf does not change the leaf state instanta-

neously. As a matter of fact, each leaf event takes roughly 20 msec, which means that it takes a

total of 40 msec to open and close a leaf in each projection. It is challenging to properly account
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Figure 2.3: Conventional tomotherapy treatment planning requires each leaf to open and close at
every projection. Transition times in purple shown to scale.

for dose delivery during this time, which can have a significant impact on the overall accuracy of

dose calculations. Typically, each gantry rotation takes 15 seconds, which means it is spending

roughly 300 milliseconds on each projection. Thus, 40 milliseconds out of 300 milliseconds, or

roughly 13.3% of the time, is spent in a state that’s difficult to model. If we compare the time a

leaf spends in transition to the time it stays open, the ratio is even larger, especially for shorter

opening times. This uncertainty could potentially translate into a discrepancy in computed dose

vs. actual dose that is more than 3%, which is the acceptance criterion used for QA according to

Westerly et al. (2009). The TomoTherapy Hi-Art II Treatment Planning System (TPS) partially

accounts for this effect, but its calculations are based on assumptions of linearity (i.e., constant

velocity) of leaf motion and uniformity of all leaves; neither of these assumptions hold in practice

(see, for example, Figure 4 of Westerly et al., 2009 for an illustration of deviations from the linear

model of various leaves in the MLC of a test tomotherapy machine). In the same paper, the authors

measure a discrepancy between the theoretical dose and the dose that gets delivered to several pa-

tients.2 Using 3D-Megavoltage Computed Tomography (MVCT) imaging, they determine that the

source of the discrepancy is the short lengths of time that the leaves stay open. Short Leaf-Opening

Time (LOT) tends to aggravate this discrepancy for reasons mentioned above.

2The authors measured discrepancy on a water phantom with the use of ion chambers.
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Note that, according to the recommended protocols from Task Group 148 (Langen et al., 2010),

namely, “leaf opening times shorter than 20 ms are deleted from the control sinogram3 since they

are too small in relationship to the actual leaf transition times,” dosimetrists must check the new

dose distribution that removes the short leaf opening times, and verify if the treatment should still

be approved.

In order to control the dose discrepancies, the authors in Westerly et al. (2009) propose having

longer LOTs (if possible, longer than 100 milliseconds); the authors rely on an increase in the pitch

to achieve that goal.4 Increasing the pitch makes the arc length of the helix described by the gantry

around the patient shorter, forcing the machine to deliver more dose at every projection, which,

in turn, is accomplished by keeping the leaves open for longer periods of time. Unfortunately,

increasing the pitch decreases dose homogeneity (Langen et al., 2010) and causes loss of longitu-

dinal resolution. Furthermore, when the dose per fraction is higher than 2 Gy, it is recommended

to reduce the pitch below 0.2. This is well below the 0.287 value proposed by Westerly et al.

(2009), although it is partially justified by the results from Gutiérrez et al. (2007) which claims

that increasing the pitch does not have a significant effect if the slice width is smaller than 1 cm.

Besides dose discrepancies, there exists a concern for the excessive wear-and-tear of the machine

due to the numerous leaf-state changes in treatments where pulsations occur at almost every single

projection. The original sketches of Mackie et al. (1993) estimated mean time between failures of

the collimator to be about twelve months. In recent years, the wear-and-tear has been shown to

decrease the expected lifetime of the linear accelerator (Kampfer et al., 2011). If it is possible to

reduce the number of pulsations, we would be able to increase the reliability of the collimator, the

lifetime of the machine, and the overall safety of the radiation treatment process. We can indirectly

achieve this by increasing the average LOT, since the number of pulsations is in the denominator

of this indicator. Another concern has to do with case resolution: current methodology pegs the

3See Section 2.5.1.2 for an explanation of the term.
4Recall that the pitch is defined as the ratio of the couch translation per rotation to the slice width.
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number of projections at 51 per rotation cycle, or approximately 7◦, leading to the aforementioned

beamlet blurring effect. Increasing the resolution of projections per rotation would allow for more

precise calculation of the dose deposition coefficients, but doing so under the prevailing paradigm

of a full leaf pulsation in each projection where the leaf opens would result in an increase in the

number of pulsations and shorter LOTs. A model that allows a refinement of the resolution without

decreasing the length of leaf-opening events would be preferred.

We think it is essential for the practitioners to have the freedom to choose whatever pitch is

considered appropriate according to the particular case recommendations. Moreover, the impact

of pitch increase on LOTs is only indirect and is hard to predict. In the forthcoming proposed

treatment planning models, we use integer programming techniques to explicitly control leaf events

and constrain LOTs, while leaving the door open to increases in the resolution of gantry rotation

discretizations without the negative consequences discussed above.

2.3 Optimization Models for Tomotherapy Treatment Planning

In this section, we present several optimization models for tomotherapy treatment planning. We

first present a model reflecting the traditional treatment paradigm, and then propose two models

applicable if a new delivery paradigm is adopted.

All of our optimization models share some common notation. In all of them, we use the follow-

ing parameters and variables (additional notation for each model will be introduced separately):

Parameters:

• P — the number of projections in the gantry trajectory; we denote [P ] = 1, . . . , P and

assume projection p = 1 is the first projection along the gantry’s trajectory where the leaves

can be open

• L — the number of leaves in the binary MLC; we denote [L] = 1, . . . , L
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• V — the set of voxels

• t̄ — time for the gantry to traverse each projection (we assume gantry rotation speed and

number of projections per rotation has been fixed, and t̄ has been pre-calculated based on

those settings)

• Dlvp — dose deposition coefficient for leaf l at projection p and voxel v (dose delivered per

millisecond of leaf opening)

• TA — lower bound on the average LOT

• TM — lower bound on the minimum LOT

Variables:

• zv — dose delivered to voxel v

• tlp — time leaf l stays open at projection p

• βlp = 1 if leaf l is open for all or part of projection p; 0 otherwise

In all of our models, we will calculate the dose to each voxel as a sum of contributions from all

leaf openings at all control points (Gibbons et al., 2009). Moreover, all of our optimization models

will use the same objective function, F (z), which evaluates treatment quality based on the dose

distribution vector z ∈ R|V|+ .

2.3.1 FMO-style Treatment Planning Model

In the FMO-style treatment planning model, suitable for the traditional delivery paradigm, we

determine the opening time of each leaf at each projection independently. The model is as follows:
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minimize
tlp,zv ,βlp

F (z) (2.1a)

subject to zv =
∑
l∈[L]

∑
p∈[P ]

Dlvptlp, v ∈ V (2.1b)

TMβlp ≤ tlp ≤ t̄ βlp, l ∈ [L], p ∈ [P ] (2.1c)

βlp binary, l ∈ [L], p ∈ [P ].

Here, constraints (2.1b) define doses as the sums of contributions from individual leafs at various

projections. Each constraint in (2.1c) connects the values of tlp and βlp and ensures that the time

a leaf stays open at a projection, if it is positive, does not exceed the time spent at the projection

and is no shorter than the required per-projection minimum, TM . If no such minimum is imposed

by the planning system, i.e., TM = 0, then we can eliminate all β variables from the model by

setting them to 1, and the resulting model will have linear inequality and equality constraints in

continuous variables only — this is the simplest of the models we consider. On the other hand,

in the spirit of Langen et al. (2010) , it may be desirable to impose a lower bound of TM = 20

milliseconds on positive leaf opening time at each projection, to ensure that a leaf opening included

in the proposed treatment plan does not get eliminated by the tomotherapy delivery system. The

resulting mixed integer programming problem represents a slight improvement of the simplest

FMO-style treatment planning model. If desired, this model can be augmented to include a lower

bound on the average LOT:

∑
l∈[L]

∑
p∈[P ]

tlp ≥ TA

∑
l∈[L]

∑
p∈[P ]

βlp

 . (2.2)
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2.3.2 New Delivery and Treatment Planning Paradigms

Westerly et al. (2009) suggests that increasing the average LOT of a treatment is a good approach

for dose discrepancy control. While the average LOT may be a good proxy for individual LOTs,

it does not account for the entire distribution of LOTs used in the treatment. For example, it is

entirely possible that only a few LOTs become longer while the rest of the LOTs remain short. In

our new proposed tomotherapy treatment planning models, we can incorporate lower bounds on

minimum and/or average LOTs. By explicitly controlling these delivery metrics, we can improve

delivery characteristics of the planned treatment.

To make use of our proposed treatment planning models, a new tomotherapy delivery paradigm

needs to be adopted. In particular, in our models we do away with the assumption that a leaf

opened at a projection must be closed within the same projection. In the first of our models (which

we refer to as the “simple model”), we explicitly assume that merging of leaf opening times at

the boundary of adjacent odd-even projection pairs occurs, as discussed in Section 2.2. The lower

bounds on minimum and average LOTs in the context of this model cannot exceed 2t̄, i.e., the

combined time of two adjacent projections.

The latter consideration is a limitation of this model, especially if a significant increase in min-

imum or average LOTs is desired, and/or if a finer discretization of the gantry trajectory is being

used (thus decreasing the value of t̄). Therefore, we propose a second treatment paradigm, in

which a leaf, once opened, can stay open for an arbitrary number of projections within the gantry

trajectory, and an optimization model for treatment planning in this context, which we call the

“detailed model.”

Each model uses different additional binary variables to keep track of projections in which the

leaves open and/or close.
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2.3.2.1 Simple Model: Odd-Even Projection Pairing

To review, the model is this section is built upon the following assumptions:

1. If a leaf is open for all or part of projection p, we assume the opening occurs at the end of

the projection if p is odd, and at the beginning of the projection if p is even.

2. The duration of two projections exceeds the lower bound on the minimum LOT, i.e., 2t̄ ≥

TM . This implies that minimum LOT constraints can be satisfied by tlp + tl p+1.

3. The duration of two projections also exceeds the lower bound on average LOT, i.e., 2t̄ ≥ TA,

for the same reason.

For simplicity of presentation, we will assume that the overall number of projections, P , is even.

The model uses the following additional set of variables:

• γlp = 1 if βlp = 1, or βl p+1 = 1, or both; 0 otherwise, for p odd,

and is given by:

minimize
tlp,zv
γlp,βlp

F (z) (2.3a)

subject to zv =
∑
l∈[L]

∑
p∈[P ]

Dlvptlp, v ∈ V (2.3b)

0 ≤ tlp ≤ t̄ βlp, l ∈ [L], p ∈ [P ] (2.3c)

γlp ≤ βlp + βl p+1 ≤ 2γlp, l ∈ [L], p ∈ [P ] is odd (2.3d)

tlp + tl p+1 ≥ TMγlp, l ∈ [L], p ∈ [P ] is odd (2.3e)

∑
l∈[L]

∑
p∈[P ]

tlp ≥ TA

∑
l∈[L]

∑
p∈[P ] is odd

γlp

 (2.3f)

βlp, γlp binary, l ∈ [L], p ∈ [P ].
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Here, constraints (2.3c) ensure that the time a leaf stays open at a projection is nonnegative and

does not exceed the time spent at the projection, and is positive only if βlp = 1. Constraints (2.3d)

connect the values of β’s and γ’s. Constraints (2.3e) ensure that the combined LOT of an odd-even

projection pair meets the corresponding lower bound whenever it is nonzero. Constraint (2.3f)

ensures that the average LOT satisfies the corresponding lower bound.

Note that, in the above model, the lower bound on the LOT is imposed on tlp + tl p+1, where p is

odd (assuming one or both of the values of t are positive), and the average LOT is also calculated

based on the above “paired” values of individual LOTs. In particular, each combination of an odd-

even projection pair where the leaf is open in one or both projections is considered to be a separate

leaf opening. These calculations will not be accurate in some situations where a leaf’s open time

is equal to t̄, i.e., the leaf remains open for an entire projection. We expect this model to perform

reasonably well if t̄ is large relative to TM and TA, to the extent that makes it unlikely that many

leaves will be open for entire projections. After a solution to the treatment planning optimization

problem is obtained, accurate LOT statistics should be computed based on actual values of t, rather

than based on projection pairings.

Another observation is that the above model does not enforce the condition that βlp = 1 only if

tlp > 0. Indeed, the combination βlp = 1 and tlp = 0 is allowed by the model, but this is without

loss of generality or optimality. To see this, suppose a solution (t, β, γ) satisfies constraints (2.3),

and consider another solution, (t, β̃, γ̃), which has been updated by setting β̃lp := 1 if and only if

tlp = 1 and γ̃lp := 1 if and only if β̃lp = 1 and/or β̃l p+1 = 1 when p is odd. This new solution

satisfies constraints (2.3c) and (2.3d) by construction. Notice also that β̃ ≤ β and γ̃ ≤ γ, and so

the right-hand sides of constraints (2.3e) and (2.3f) may decrease after this update, while their left-

hand sides will stay the same, i.e., these constraints will also be satisfied by the updated solution.

Moreover, since the values of t are unchanged, the dose distribution resulting from this plan, and

its objective value, remain the same.
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2.3.3 Detailed Model

In this model, we will use additional binary decision variables blp, mlp, elp, along with βlp, to

provide a more precise calculation of LOTs, as well as to allow for direct optimization of the

timing of leaf opening within a projection. In this model, we use the following conventions and

make the following assumptions:

1. In every projection, the leaf is either closed, i.e., tlp = 0, or tlp > 0 and one and only one of

the variables blp, mlp, elp is equal to 1 (we refer to the latter cases as projection having type

b, m, or e).

2. If mlp = 1, then the leaf is open for the entire projection (the converse, however, need not be

true — see below).

3. In the projection where a leaf opens, we assume that it opens towards the end of the projec-

tion and set elp = 1; it is possible that the leaf opens at the very beginning of the projection,

i.e., tlp = t̄. This projection might (or might not) be followed by a sequence of projections

of type m, and the sequence might (or might not) conclude by one projection where the leaf

is open in the beginning and closes at or before the end of the projection (again, we allow for

the possibility that tlp = t̄ in this case). Schematically, “valid” sequences of leaf behavior

during each opening can be: e, eb, em, emb, emm, emmb, em . . .m, em . . .mb. (In the

following, we often refer to leaf opening sequences of projections, or sometimes simply to

sequences.) Given this structure, the total number of leaf openings can be obtained by taking

the sum of “e” variables.

4. The duration of a projection exceeds the lower bound on the minimum LOT, i.e., t̄ ≥ TM .

This assumption implies that minimum LOT constraints only need to be explicitly imposed

on sequences of the form e and eb; for sequences that include one or more projections of

type m the lower bound will be satisfied automatically. Notice that in this model, we do not
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need to have a similar assumption regarding the lower bound on the average LOT TA.

The model uses the following additional set of variables:

• blp, mlp, elp — these variables are equal to 1 if the leaf l opens in the beginning, “middle,”

and end of the projection, respectively,

and is given by:

minimize
tlp,zv

elp,mlp,blp,βlp

F (z) (2.4a)

subject to zv =
∑
l=∈[L]

∑
p∈[P ]

Dlvptlp, v ∈ V (2.4b)

t̄ mlp ≤ tlp ≤ t̄ βlp, l ∈ [L], p ∈ [P ] (2.4c)

elp +mlp + blp = βlp, l ∈ [L], p ∈ [P ] (2.4d)

mlp ≤ ml p−1 + el p−1, l ∈ [L], p ∈ [P ] \ {1} (2.4e)

blp ≤ ml p−1 + el p−1, l ∈ [L], p ∈ [P ] \ {1} (2.4f)

tlp + tl p+1 ≥ TM(elp + bl p+1 − 1), l ∈ [L], p ∈ [P − 1] (2.4g)

tlp ≥ TM(elp + el p+1 − βl p+1), l ∈ [L], p ∈ [P − 1] (2.4h)

∑
l∈[L]

∑
p∈[P ]

tlp ≥ TA

∑
l∈[L]

∑
p∈[P ]

elp

 (2.4i)

βlp, mlp, elp, blp binary, l ∈ [L], p ∈ [P ].

Here, constraints (2.4c) ensure that the time a leaf stays open at a projection is nonnegative and

does not exceed the time spent at the projection; they incorporate forcing constraints that ensure

positivity only if βlp = 1 and that, if the projection has type m, the leaf stays open for the entire

projection.
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Constraints (2.4d) specify that each projection where a leaf is “open” must have one of three

types: e, m, or b.

The next group of constraints ensures that each projection in which a leaf is open is classified as

type e, m, or b according to the stated assumptions. In particular, if projection p has type m then

projection p − 1 must have type e or m (constraints (2.4e)), and if it has type b then p − 1 must

have type e or m (constraints (2.4f)).

Each of the constraints (2.4g) ensures that the combined LOT of the projection sequence of the

form eb, if one starts at projection p, satisfies the corresponding lower bound. The right-hand side

of the constraint is equal to TM if both elp and bl p+1 are equal to one, and is 0 or negative otherwise.

Similarly, each of the constraints (2.4h) ensures that the LOT of each projection sequence of

the form e, if one starts at projection p, satisfies the corresponding lower bound. This constraint

requires a somewhat more detailed explanation. (We will drop the subscript l in this paragraph to

make the explanation more concise.) First, if ep = 0, then a new leaf opening sequence does not

start at projection p, which can happen in two scenarios: either the leaf is closed at p, or it is open,

but the opening occurred prior to p, and so projection p has type m or b rather than e. In the former

scenario, either a new leaf opening starts in projection p + 1, in which case βp+1 = ep+1 = 1,

or the leaf remains closed in projection p + 1, in which case βp+1 = ep+1 = 0 — in both of

these cases, the right-hand side of the constraint evaluates to 0. In the latter scenario, in projection

p + 1 the leaf may be closed (βp+1 = ep+1 = 0) or open with βp+1 = ep+1 = 1 (i.e., a new leaf

opening sequence starts) or with βp+1 = 1 and ep+1 = 0 (i.e., the current leaf opening sequence

continues) — in each case, the right-hand side of the constraint is 0 or negative. Summarizing, if

ep = 0, then the lower bound constraint on tp is not enforced (correctly). On the other hand, if

ep = 1, then a new leaf opening sequence starts at projection p. Again, there are two scenarios to

consider: the sequence does or does not continue in projection p + 1. In the former scenario, we

have βp+1 = 1 and ep+1 = 0, so the right-hand side of the constraint is 0 and the lower bound on

tp is not enforced (correctly). In the latter scenario, we have βp+1 = ep+1 = 0 if the leaf is closed
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in the next projection, or βp+1 = ep+1 = 1 if a new sequence starts — in both cases, the sequence

that started in p indeed has form e, and the lower bound on tp is enforced (correctly).

Constraint (2.4i) ensures that the average LOT satisfies the corresponding lower bound.

Note that the above model does not enforce the condition that βlp = 1 only if tlp > 0. Indeed, the

combination βlp = 1 and tlp = 0 (i.e., a “phantom” β) is allowed by the model, but this is without

loss of generality or optimality. To see this, suppose a solution (t, β, e,m, b) satisfies constraints

(2.4), and consider another solution, (t, β̃, ẽ, m̃, b̃), which has been updated by setting β̃lp := 1 if

and only if tlp > 0, setting ẽlp := 1 if:

1. elp = 1 and β̃lp = 1

2. mlp = 1 and elp = 1 and ẽlp = 0 (a sequence of type em . . .m is preceded by a “phantom”

e)

3. elp−1 = 1 and tlp−1 = 0 and blp = 1 (a sequence “eb” when b is preceded by a “phantom” e),

and 0 otherwise, by setting m̃lp := 1 if mlp = 1 and tlp−1 > 0, and m̃lp := 0 otherwise. Finally,

b̃lp := 1 if and only if blp = 1 and β̃lp = 1 and b̃lp := 0 otherwise. This new solution satisfies

constraints (2.4b), (2.4c) and (2.4d) by construction. Constraint (2.4e) is also satisfied because in

case a leading e is removed, the next m will be replaced by a new leading e and m will always

be preceded by an e or an m. Constraint (2.4f) is satisfied using a similar argument. Constraint

(2.4g) will be satisfied whenever a sequence eb becomes ẽb̃ and it will also be satisfied in case

it becomes ẽ, since all contribution was attributed to the b segment (tlp was zero). In addition,

constraint (2.4h) will be satisfied because if we have a sequence of type ẽ it means that it is derived

from a sequence of type e that fulfills this constraint already, or it is constructed from a sequence of

type eb, in which case the projection of type b will satisfy the constraint by itself. Constraint (2.4i)

will also be satisfied because the right-hand side can only decrease (total number of openings can

only decrease).
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Note also that, similarly to the model (2.4), this model can underestimate the minimum or av-

erage LOT of a treatment plan; a post-processing step can be used to update the final plan metrics

based on values of t.

Recall that this model assumes that t̄ ≥ TM . This supposition is not unreasonable to make with

51 projections per rotation of the gantry, where t̄ at the fastest rotation speeds would translate to

approximately 300 milliseconds. Even a refinement of 153 projections per gantry rotation would

result in t̄ of approximately 100 milliseconds. However, faster gantry speeds or finer grids of

projections could violate this assumption. It is possible to modify the above model in case this

problem arises by including additional constraints on durations of longer (in terms of the number

of projections) sequences. For example, suppose t̄ < TM ≤ 2t̄, i.e., a sequence of the type em

or emb may be too short to satisfy the lower bound on LOT, but any sequence with 2 or more m-

projections is guaranteed to be sufficiently long. Then the model should be augmented by adding

constraints that enforce the lower bound for the sequences of these two types, similarly to (2.4g)

and (2.4h).

2.4 Implementation

We tested the treatment planning models presented in Section 2.3 on several instances derived from

a clinical prostate cancer case at various discretization resolutions. In this section, we discuss some

informative details of our implementation.

2.4.1 Objective Function

The objective function F (z) used in our models was implemented to be a convex, smooth piece-

wise quadratic function designed to guide the treatment towards satisfying physician’s goals; sim-

ilar models have been used in many prior studies including Peng et al. (2012); Peng (2013); Peng
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Figure 2.4: An illustration of a typical term of function F (z) of (2.5) that includes penalties for
both over- and under-dosing a voxel in a target structure.

et al. (2015); Long (2015). This objective function has the form:

F (z) =
∑
v∈V

(
uv(zv − tv,1)2

+ + ov(tv,2 − zv)2
+

)
. (2.5)

Here, 0 ≤ tv,2 ≤ tv,1 are lower and upper thresholds, respectively, for the dose to voxel v, and

uv and ov are weights associated with the (quadratic) penalty for, respectively, under-dosing and

over-dosing the voxel. The values of these parameters are typically consistent for voxels inside

each structure. For OARs, only over-doses are penalized, and so the lower thresholds are set to

0 (and commonly, so are the upper thresholds). For target structures, the parameters are selected

to strongly penalize under-doses; for clinical reasons, over-doses are often penalized as well, but

usually with ov < uv. An illustration of a typical term of the function associated with a target voxel

is illustrated in Figure 2.4.

The values of coefficients in F (z) are, clearly, specific to the particular treatment site and the

OARs adjacent to the target. They are also often patient-specific; for example, uv and ov are
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often linked to the number of voxels in each structure. Moreover, the particular patient geometry

often demands that the weights as well as the threshold values are tweaked by trial-and-error until

the solution to the optimization problem achieves an adequate treatment. After initial values are

selected and the corresponding treatment is found, the treatment planner and the physician assess

the treatment, and the parameters are adjusted with the goal of improving its deficient aspects; the

process repeats until the physician concludes that the dose distribution is satisfactory.

2.4.2 Solver Options

Using the objective function defined by (2.5), we implemented the resulting mixed-integer quadratic

programming models of Section 2.3 using Python 3.7, and used Gurobi 7.5.2 (Gurobi Optimiza-

tion, LLC) as the solver.5

Due to the computational complexities inherent to Mixed-Integer Programming (MIP), it is im-

portant to emphasize the implementation of optimization strategies tailored for the particular prob-

lem at hand in order to achieve reasonable running times. We found that Gurobi struggled to solve

larger-scale instances of our problems (especially problem (2.4)) until an appropriate combination

of setting was discovered. We therefore include an overview of the options we have tried. While

our discussion is focused on the specifics of Gurobi options (as discussed in Gurobi Optimization,

2018), other commercial solvers, such as, e.g., CPLEX, use similar concepts and paradigms for

solving these types of problems, and can be similarly tuned to improve their performance; the

details and specific options available would, of course, be different.

Gurobi optimizer for mixed-integer quadratic problems consists of four steps: a pre-solve, so-

lution of the root relaxation, an application of a Branch-and-Cut algorithm, and a summary stage.

The performance and impact of the pre-solve step varies greatly for each problem instance, and the

root relaxation solution step does not involve many control parameters besides CutPasses; there-

5We observed that specifying the models using AMPL modeling language required slightly less computing time,
but Python proved to be more conducive to experimenting with various versions of the models.
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fore, most of our strategies for improving solution times using the available options were focused

on the Branch-and-Cut stage. In the end, we noted the CutPasses parameter to be of little or no

impact, and most of the run time was spent on solving the root relaxations, and so we anticipate

that computational performance of the solver could have been improved if the solver allowed to

incorporate an algorithm for solving the root relaxation that is specifically tailored to our problems.

2.4.3 Standard Solver Parameters

Many solver parameters are “standard,” i.e., their presence is common in most solvers for mixed

integer programs. For example, empirical exploration in Gurobi was coerced to feasibility by a

tightening of the default FeasibilityTol parameter from 10−6 to 10−7. However, tightening the

feasibility tolerance increases running time; we reduced this negative impact by modifying the

high-level optimizer solution strategy parameter MIPFocus. After the optimizer has done some

work, we can further modify the strategy, and move from finding the best lower bound to finding

better feasible solutions using the parameters ImproveStartGap and ImproveStartTime. In Gurobi,

these parameters trigger a change of the strategy when we achieve a particular MIP gap, or when

some time has already passed. We use both of these triggers in our optimization runs.

2.4.4 Branching Priorities

The combinatorial structure of the model can sometimes be used to speed up its solution by

specifying a particular branching priority strategy for its variables. For the detailed model (2.4),

we were able to achieve a speedup of the Branch-and-Cut solution stage by prioritizing branch-

ing on fractional values of variables βlp’s, since setting βlp = 0 immediately fixes the values

elp = mlp = blp = 0, removing several potential branches from the tree. A similar argument shows

that the next highest priority should be given to elp’s, since setting elp = 0 reduces uncertainty

about the values of bl p+1 and ml p+1 for the next projection. We set these priorities by assigning

33



appropriate values of Gurobi parameters BranchPriority for each family of variables.

2.4.5 The Partition Heuristic

We found the partition heuristic to be very useful for both models. The partition heuristic splits the

variables into several groups and runs a Large-Neighborhood Search (LNS) algorithm on each of

these groups by fixing the values of the variables outside the group, and solving the resulting sub-

problem for the variables in the group. This heuristic has the potential to become very expensive

if not specified carefully. The following choices we instrumental in improving performance.

The number of groups G should be related to the number of threads available in the computer.

Our machine had 12 threads, and therefore, it made sense to create 12 groups. G = 24, 36, 48, . . .

would also have been reasonable.

In defining the groups, we took advantage of the progressive nature of the helical gantry path,

and grouped variables according to their natural location in the patient’s body. Group 1 contained

variables corresponding to projections closer to the patient’s head, and group #G — closer to their

feet, i.e., we assigned all binary variables corresponding to projection p to group g =
⌈
p/P

G

⌉
.

We assigned all z’s as shared variables to all groups. It is possible we would have achieved

further speed-ups if we instead had partitioned these variables to different groups as well, by asso-

ciating a portion of z variables to their “closest” group of projections, either in terms of physical

location or in terms of the relative magnitude of dose deposition coefficients.

We set the parameter partitionPlace to 30, so the partition heuristic runs at the following steps

of the optimization:

1. Before the root relaxation is solved

2. At the start of the root cut loop

3. At the end of the root cut loop
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4. At the nodes of the branch-and-cut search

2.4.6 Hints

Hints bestow the model with a high-quality indication of the value that a variable might take. These

hints impact the heuristics and branching decisions when the solver is exploring the search tree.

High-quality hints enhance the exploration of high-quality integer solutions.

We used as our hints the values of the variables in the optimal solutions of continuous relax-

ations of our models, i.e., convex continuous optimization problems obtained by replacing binary

restrictions on the variables by lower and upper bounds of 0 and 1, respectively. These relaxed

models were easily solved (within a few seconds), and their solutions provided reasonable hints

that sped up the subsequent runtimes of mixed-integer models. The nonlinear solver we selected

to solve the relaxation in order to obtain the hints was different to the one used within Gurobi’s

MIP solver to tackle the root relaxation. Gurobi adds cuts to the root node relaxation problem; the

addition of cuts speeds up the subsequent Branch-and-Cut step of the soluion process, but makes

the root node relaxation solution time significantly longer.

2.4.7 Warm Start

Further enhancement to solution times of our models can be obtained by providing a warm start

solution, i.e., a feasible solution which can be used by the branching algorithm to prune tree nodes

by bound at earlier stages of the algorithm.

To create such a warm start solution, we created a smaller instance of the problem by using a

courser discretization in the voxel space, a process referred to as downsampling, while keeping the

same number of projections, and deriving the dose deposition coefficients for the downsampled

model based on the original values. (For instance, in the prostate case discussed in Section 2.5, the

full resolution instance consists of 16,677 voxels, and by downsampling, we created an instance
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with 1,385.)

By solving the downsampled instance, we obtain feasible values of projection-indexed variables,

say, β̂lp, m̂lp, êlp, b̂lp, t̂lp in the detailed model. We can then calculate the corresponding values of

ẑv in the full resolution, making the combined vector a feasible solution that can be used as a warm

start for the full resolution model.

Experiments indicate an improvement of more than 25% in the running time when this warm

start is implemented together with the partition heuristic above. Experiments also show that the

partition heuristic is necessary in order to take full advantage of the warm start, given the nonlinear

nature of the problem.

Since the low-resolution problem is itself a nonlinear mixed-integer program, we can further

improve the running time of the overall scheme by providing it with hints as well. In extreme

cases, i.e., when solutions to even higher-resolution instances with more voxels are desired, we

envision the creation of nested warm starts.

2.5 Experiments and Results

We evaluated the models proposed in the previous section on a dataset provided by our collabora-

tors at the UT Southwestern Medical Center Department of Radiation Oncology. The preprocess-

ing step which included data acquisition, contouring, and calculation of the dose deposition coef-

ficients Dlvp was performed using UT Southwestern’s Collapsed Cone Convolution/Superposition

Algorithm (CCC) algorithm on GPU’s. The dataset’s leaf length is 2.5 cm and the pitch is 0.287 =

0.86/3. We will assume a gantry speed of 4 rotations per minute in order to mimic the experiments

of Westerly et al. (2009).

The dataset was based on a clinical prostate case. The number of structures in the case is 19

and the treatment goals are set to satisfy not only the Radiation Therapy Oncology Group (RTOG)

requirements presented in Table 2.1, but also some stricter restrictions on the rectum dose from the
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Goal Delivered
Target Dose 78 Gy
Target Hot Spot 99% below 83 Gy
Target Cold Spot 99% above 73 Gy
Rectum 50% below 60 Gy
Bladder 50% below 45 Gy
Bladder 95% below 80 Gy
Penile Bulb 50% below 51 Gy

Table 2.1: Goals of the prostate case according to RTOG requirements.

literature. According to research by Biegala and Hydzik (2016), 50% of the rectum should get a

dose smaller than 35Gy, and 17% should get less than 65Gy. The rectum-associated restrictions

are medically the most difficult to satisfy, and therefore, the rectum is identified in the literature as

the dose-limiting organ in prostate radiotherapy (De Meerleer et al., 2004).

We performed experiments on two different representations of the above case. The main differ-

ence between the representations is the discretization of the gantry trajectory into 51 projections

per rotation in the first instance and 153 projections per rotation in the second. The voxel dis-

cretization was also slightly different, with 16,677 voxels in the first instance and 16,686 voxels in

the second.

2.5.1 Treatment Plan Evaluation Tools

Before presenting our experiments, we first describe the visual tools we will use to evaluate and

compare their results, namely, DVH plots (Section 2.5.1.1), the sinograms (Section 2.5.1.2), and

the LOT histograms (Section 2.5.1.3).

2.5.1.1 Dose Volume Histogram (DVH) Plots

The DVH plots are one of the most commonly used tools for displaying a quantitative summary of

dose distributions in different structures. The DVH plot is a set of curves, each curve corresponding
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Figure 2.5: DVH plots of planned doses resulting from the FMO model for the prostate case with
51 projections per gantry rotation.

to a different structure of interest, on a plane formed by the dose (horizontal axis) and the Fractional

Volume (vertical axis). For each structure, a point on the corresponding curve is the percentage of

the structure receiving a specific dose or higher. DVH curves are monotonically non-increasing.

One of the goals of radiation therapy planning is to design a treatment that delivers high doses

to the targets; therefore, we would like to see the DVH curves corresponding to targets that stay to

the right of the OAR’s DVH curves. A good treatment will generally display a rapidly decreasing,

almost vertical, curve around the target dose. Another goal of radiation therapy is to deliver low

doses to the OARs. Typically, OAR DVH curves will gravitate towards the left of the graph.

Figure 2.5 shows an example of a DVH plot of a dose distribution for a prostate case (namely, the

planned dose distribution of a treatment plan obtained with the FMO model for the case with 51

projections per gantry rotation).

We will use DVH plots to visualize results in Chapter 3 as well.
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2.5.1.2 Sinograms

In tomotherapy, a sinogram is a 2D array that is used as a visualization tool of the treatment itself

(rather than the dose delivered to the patient). Depending on the treatment paradigm used, the

visual conventions of the sinograms have to be adjusted. To depict the conventional treatments, the

Planned Fluence Sinogram is typically used, whereas to illustrate the treatments developed by our

proposed approaches, we used the Leaf Control Sinogram.

Planned Fluence Sinogram Traditionally, the sinogram is used to represent the measurements

collected at the LINAC’s exit detector, registering the fluence delivered from every single leaf at

every single projection. The sinogram’s trail corresponds to the orders passed as an input to the

planning system. In the academic setting, the sinogram is a 2D plot with the axes corresponding

to the projections and the leaves, respectively (different authors make different choices regarding

whether the projections will be displayed along the horizontal or vertical axis). In the conventional

approach, the sinogram takes the form of a heatmap, where each color pixel represents the LOT

of the corresponding projection-leaf combination. The sinogram plot shows the evolution of each

leaf across projections, with black pixels indicating that the leaf was closed, and colored pixels

indicating open leaves and the LOT of the corresponding beamlets.

Leaf Control sinogram. For the treatments delivered with our proposed approach, the above

form of sinograms is not particularly useful, since we allow the leaves to stay open longer than

the time it takes to traverse a projection. Instead, we will use what we termed the leaf control

sinogram to visualize treatments. This sinogram has leaves plotted along one axis, and the time it

takes for the gantry to traverse its trajectory — against the other. For each leaf, we use a color to

visualize when it is open. Projections can provide a grid on the time axis, but otherwise the leaf

contol sinogram is independent of the density of projections discretization. Another useful feature

of this type of sinogram is that it can be used to compare two different treatments by overlaying

two sinograms using different colors in the same plot. Figure 2.15 provides an example of such a
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comparison; we discuss it in detail in the following section.

2.5.1.3 Leaf Open Times Histograms

As we have already mentioned, the goal of our proposed alternative approaches to tomotherapy

treatment planning is to increase leaf opening times during delivery in order to decrease dosimetric

errors. We will use traditional histogram plots to visualize distributions of LOTs (across all leaves

and all projections) we obtain; see Figure 2.6 for an example.

2.5.2 Prostate Case Results

Unless mentioned otherwise, we used the full voxel resolution for each of the two cases (or, more

precisely, two representations of the same clinical case, with 51 and 153 projections per rotation,

respectively). The parameters of the objective function F (z) were chosen by manual trial-and-error

iteration based on the solutions to the FMO model (2.1) with TM = 20 milliseconds.

We ran our experiments on a desktop powered by an Intel CoreTM i7-8700 CPU at 3.20GHz,

with six cores and 12 logical processors, and 64 Gb of RAM.

2.5.2.1 Analysis of Case 1: 51 Projections per Gantry Rotation

The solution to the FMO model with TM = TA = 0 has an average leaf opening time of 125

milliseconds; this is very similar to the average of 132 milliseconds for such cases found in the

literature (Westerly et al., 2009) due to attenuation in the prostatic region. The LOT histogram

resulting from the FMO model with TM = 20 milliseconds and TA = 0 is shown in Figure 2.6. It

generates a plan with the average LOT of 220 milliseconds.

We next compare the plan obtained as a solution to the Simple model (2.3) with TM = 20

milliseconds and TA = 170 milliseconds to the FMO solution with TM = 20 milliseconds and

TA = 0. As depicted in Figure 2.7, the planned dose distributions produced by the two models are
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Figure 2.6: LOT histogram of prostate case plan with 51 projections per rotation resulting from
the FMO model with TM = 20 milliseconds and TA = 0.

nearly identical. It should be emphasized that all the DVH plots presented in this chapter (as well

as Chapter 3) are created using planned dose distributions of the proposed treatments, whereas

delivered dose distributions will deviate from the planned ones. Moreover, since the treatments re-

sulting from different planning and delivery paradigms will have different delivery characteristics,

these dose discrepancies will be different as well; if our proposed approaches indeed produce pans

that have better delivery characteristics, their delivered doses should adhere to the planned ones

more closely.

In this and forthcoming experiments we used TA = 170 in the constraint on average LOT in

all instances of Simple and Detailed models. The main reason for this choice was our desire to

explicitly require a reasonably high average LOT that was enforceable in the experiments with both

51 and 153 projections per rotation, for the sake of making comparisons. In the latter instances,

the Simple model would only allow LOTs of at most 200 milliseconds, and we chose the lower

bound on the average LOT to be slightly smaller than that.
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Figure 2.7: Dose-Volume Histogram comparison of prostate case plans with 51 projections per
rotation, resulting from the FMO (continuous curves) and Simple (dotted curves) models, both
with TM = 20 milliseconds and TA = 170 milliseconds in the Simple model.

Finally, we compared solutions to the Simple model and the Detailed model (2.4), both using

parameter values TA = 170 milliseconds and TM = 20 milliseconds. We compare the resulting

treatments using a leaf control sinogram in Figure 2.8: we use blue color to represent LOTs in

the plan obtained by the Simple model and red color to represent LOTs in the plan obtained by

the Detailed model. Consequently, purple color represents the regions where LOTs are common to

both models. The sinogram comparison shows that the plans produced by the two models are fairly

similar. Furthermore, the DVH plots show that both treatments produce almost identical planned

dose distributions, as shown in Figure 2.9, which also closely resemble the FMO dose distribution

in Figure 2.5.

In view of the similarity of the sinograms, it is unsurprising that the LOT histograms also look

very similar; see Figure 2.10. The average LOTs obtained with the Simple and Detailed mod-

els were 360.8 milliseconds and 388.5 milliseconds, respectively (by comparison, recall that the

average LOTs obtained with the FMO model with TM = 0 and TM = 20 were 125 and 220 mil-

42



20 40 60 80 100 120 140 160
time in seconds

le
av

es

Sinogram Comparison of Odd-Even Model vs. Detailed Model

Figure 2.8: Leaf Control Sinogram comparison of prostate case plans with 51 projections per
rotation, resulting from the Simple and Detailed models with TA = 170 milliseconds and TM = 20
milliseconds. Blue color represents LOTs in the Simple model, red color represents LOTs in the
Detailed model, and purple color represents the regions with LOTs common to both models.
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Figure 2.9: Dose-Volume Histogram comparison of prostate case plans with 51 projections per
rotation, resulting from the Simple (continuous curves) and Detailed (dotted curves) models with
TA = 170 milliseconds and TM = 20 milliseconds. Despite close similarities, there are, in fact,
small differences between the two sets of DVH plots.
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Figure 2.10: LOT histograms of prostate case plans with 51 projections per rotation, resulting
from the Simple and Detailed models with TA = 170 milliseconds and TM = 20 milliseconds; (a)
Simple model, (b) Detailed model.

liseconds, respectively). To summarize, for the case with 51 projections per rotation, the Simple

and Detailed models produce nearly-identical treatment plans, both in terms of LOT distributions

and DVH plots (of planned dose distributions), the latter of which are also nearly identical to the

planned DHV plot obtained from the FMO model solution.

The reduction in leaf pulsation events (i.e., the total number of times the leaves open and close

during a treatment) is a welcome byproduct of increasing LOTs, since reducing the number of pul-

sations reduces the wear-and-tear of the multileaf collimator. Table 2.2 summarizes the number of

pulsation events in the plans obtained by the four models we have discussed, showing a significant

decrease obtained by the proposed models.

Exercise # Events
FMO (No constraints) 4958
FMO TM = 20 msecs, TA = 0 3199
Simple model TM = 20 msecs, TA = 170 msecs 1952
Detailed model TM = 20 msecs, TA = 170 msecs 1680

Table 2.2: Number of leaf pulsation events in the plans with 51 projections per rotation.
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In this instance, it took us 28,934 seconds, or about 8 hours, to solve the Simple model within

a 0.001% optimality gap. The Detailed model took 163,194 seconds (over 2 days!) to achieve

a 0.001% optimality gap; within 5 hours, the optimality gap in this model was 10%, and the

corresponding solution was quite reasonable. Since the Simple model in this case obtained nearly

identical results in terms of DVH plots and LOT statistics in less time than the Detailed model, for

the 51 projection case with 20 millisecond minimum LOT, the Simple model appears sufficient.

2.5.2.2 Increasing Minimum and Average LOTs

As discussed in the previous section, the average LOT attained by solutions to both the Simple and

the Detailed models already exceed the lower bound of 170 milliseconds imposed as a constraint.

Some lower bound constraints on the individual LOTs were active, as the histograms in Figure 2.10

indicate. However, if higher minimum LOT is desired, the value of TM can still be increased

with negligible impact on the dose, as shown in the DVH plot in Figure 2.11, where we compare

treatment plans with a minimum LOT TM of 20 milliseconds and 40 milliseconds, and TA = 170

milliseconds.

Despite the similarities in DVH plots and average LOTs (which were 385 milliseconds and 330

milliseconds in the solutions to instances with TM = 20 milliseconds and TM = 40 milliseconds,

respectively), there is a noticeable impact on the distribution of LOTs, as shown in Figure 2.12.

The treatment plan obtained by setting TM = 40 milliseconds included leaf opening sequences

that were up to 4 projections long. This “chaining” of projections would not have been possible in

the Simple model, since it allows merging of only up to two projections.

The DVH plots start showing small differences when we compare the solutions to the Simple

and Detailed models using 153 projections per rotation; see Figure 2.13. The LOT histograms are

of these two plans are quite different, as shown in Figure 2.14 (note that the horizontal axes of

the two histograms have different scales). Notice that the solution to the Simple model contains
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Figure 2.11: DVH comparison of prostate case with 51 projections per rotation, resulting from the
Detailed model with TM = 20 milliseconds (dotted curve) and TM = 40 milliseconds (continuous
curve). Both instances used TA = 170 milliseconds and were solved to achieve a 0.01% optimality
gap.
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Figure 2.12: LOT histograms of prostate case plans with 51 projections per rotation, resulting from
the Detailed model with TA = 170 milliseconds and (a) TM = 20 milliseconds and (b) TM = 40
milliseconds.
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Figure 2.13: DVH comparison of prostate case with 153 projections per rotation, resulting from
the Simple (continuous curves) and Detailed (dotted curves) models with TM = 20 milliseconds
and TA = 170 milliseconds. Both instances were solved to achieve a 0.01% optimality gap. Some
differences in the DVH plots are more prominent, especially for the rectum.

many leaf opening times that are equal to the maximum possible (2t̄ = 200 milliseconds with 153

projections per rotation), whereas the Detailed model does not have this limitation. Moreover, the

average LOT constraint becomes binding in the solution to the Simple model, while the average

LOT attained by the solution to the Detailed model is similar to the solutions obtained using 51

projections per rotation.

2.5.2.3 Discrepancies between Planned and Delivered Doses

At present, we don’t have the tools to provide a precise estimate of the expected reduction in the

discrepancy between the delivered and planned doses resulting from using our models for treatment

planning. However, we hypothesize that the increase in the average LOT can be a predictor of

significant improvement. Recall that our Simple model in the case with 51 projections per rotation

achieved an increase of 188% in average LOT compared to the FMO model with TM = 0, or 64%
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Figure 2.14: LOT histograms of prostate case plans with 153 projections per rotation, resulting
from the Simple and Detailed models with TM = 20 milliseconds and TA = 170 milliseconds; (a)
Simple model, (b) Detailed model.

compared to the FMO model with TM = 20, without changing the pitch. For comparison, Westerly

et al. (2009) achieved increases in average LOT ranging from 29.8% to 83.1% by increasing the

pitch, which can have detrimental effects of its own. They conclude that the reduction of point

dose discrepancies (points where the delivered dose deviated from the plan by more than 3%) was

at least 68%.6 We conclude that our reduction in dose discrepancies is likely to be at least as high,

if not higher than that.

Moreover, our proposed models, especially the Detailed model, allow for refinement in the

discretization of the gantry trajectory into projections without affecting the delivery characteristics

of the resulting treatment plans, which can further reduce dose discrepancies due to “blurring” (see

Section 2.6.2 for further discussion).

6Table 4 in Westerly et al. (2009) presents a case where the proportion of point dose discrepancies at the 3% level
decreased from 4.96% to 1.59%. For another case in the same table, the decrease is from 4.47% to 0.06%: a near
complete elimination of dose discrepancies that will cause a treatment plan to fail QA.
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Instances and parameters root relaxation branch-and-cut branch-and-cut
time to 10% gap time to 1% gap

Simple 51 v=8340
mLOT=20msec aLOT=170msec 2306 3064 3065.45
Simple 51 v=8340
mLOT=30msec aLOT=170msec 2260 3164 8691
Simple 51 v=16677
mLOT=20msec aLOT=170msec 7568 11353 28934
Detailed 51 v=8340
mLOT=20msec aLOT=170msec 18554 19302 37837
Detailed v=8340
51 mLOT=40msec aLOT=170msec 10431 37305
Detailed 51 v=16677
mLOT=20msec aLOT=170msec 9753 18762 163194
Detailed 153 v=8344
mLOT=20msec aLOT=170ms 120857 173984 309523
Simple 153 v=16686
mLOT=20msec aLOT=170msec 320730 389211
Detailed 153 v=16686
mLOT=20msec aLOT=170msec 320730 389211

Table 2.3: Solution times of instances of Simple and Detailed models, in cumulative seconds since
the beginning of the root relaxation phase. Here, mLOT = TM , aLOT= TA, v = number of voxels,
and all times are shown in seconds

2.5.3 Running Times

Table 2.3 contains a representative summary of the solution times of several instances of Simple

and Detailed model at different stages of the solution process. We include results for the down-

sampled instances that were used to generate warm start solutions.

Whenever the Simple model and the Detailed model were compared, the former solved faster,

which is to be expected due to its simplicity. The case with 51 projections per rotation can be solved

at full voxel resolution within a 10% optimality gap in 11,353 seconds (3:10 hours). The cause of

the “gridlock” for all instances is the time it takes to solve the root relaxation. We experimented

with a reduction in the parameter CutPasses and Cuts, but got negligible improvement. It should be

noted that the implementation of the solver for convex quadratic MIP in Gurobi currently provides
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only one algorithm option for solving the root relaxation, which we have found to be significantly

inferior to many other algorithms for solving convex quadratic programs (including the algorithm

we used to solve the relaxation outside of the Gurobi’s Quadratic MIP solver to provide hints, as

discussed in Section 2.4.6). An alternative solver with greater flexibility at this step would likely be

able to achieve significantly faster solution times of instances of both Simple and Detailed models.

The sinogram in Figure 2.15 provides some insights into the quality of warm start solutions

obtained by the procedure described in Section 2.4.7. We considered an instance of the Simple

model with 51 projections per rotation and TM = 20 milliseconds and TA = 170 milliseconds.

Recall that we used the solution to the instance with low voxel resolution (1385 voxels) as a warm

start for solving the instance with high voxel resolution (16677 voxels). In the sinogram, the leaf

opening times in the solution for the low-resolution instance are shown in red, high-resolution

instance — in blue, and common leaf opening times are shown in purple. The presense of purple

segments suggests the usefulness of a warm start; however, there are still significant differences

between the warm start and ultimate solutions.

2.6 Discussion

2.6.1 Modulation Factor

The tomotherapy delivery LINAC uses constant rotational periods fixed ex-ante. Under the stan-

dard paradigm, the longest leaf opening time is essential because longer maximum leaf opening

times demand proportionally slower rotational speeds. The standard paradigm defines the Modula-

tion Factor as the ratio of maximum leaf opening time to the average of all non-zero leaf opening

times. While higher values allow “greater variation in the leaf opening time” (Sheng, 2017), practi-

cal studies suggest that modulation factors below 2.5 are the recommended values for most cancer

sites (Westerly et al., 2009). Plans with large modulation factors are less efficient than plans with
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Figure 2.15: Leaf Control Sinogram comparison of solutions to instances of the Simple model with
TM = 20 milliseconds and TA = 170 with low (red) and high (blue) voxel resolutions.
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small modulation factors, because they require higher monitor units and produce more leakage and

longer treatment times.

In our approach, the concept of the modulation factor becomes irrelevant for two reasons. First,

we assume an a priori determined speed of the gantry that is not going to be influenced by a

modulation factor. Second, the modulation factor loses its meaning when leaves are allowed to stay

open longer than a single projection. Since a leaf-opening event can span more than one projection,

high modulation factor in the new paradigm is not an indication that the machine should slow down

its rotational speed. Furthermore, we are allowed to preserve greater variation in the leaf opening

time mentioned above. All these considerations make the modulation factor obsolete under the

new paradigm.

2.6.2 Resolution Increase Capabilities

The standard number of projections per gantry rotation is 51. Each of these projections spans

roughly 7.06◦, and while not a consequence of any particular physical limitations of the tomother-

apy machine per se (see Zhao et al., 2008, who write, “the helical tomotherapy unit may deliver

radiation continuously over a full rotation”), this number of projections is now standard in all re-

search and practice since the publication of Olivera et al. (1998). The Hi-Art TPS software uses

a sinogram input with 51 projections as default which increases the popularity of this choice even

further, although earlier models used to divide the arc into a different number of projections, some

of which may be more intuitive, such as the 32 and 64 projection inverse-planning algorithms of

Holmes et al. (1995), or the 72 5◦-projections used by Kapatoes et al. (1999).

Some research articles have suggested that 51 projections per gantry rotation may be too coarse

for some cancer sites where this discretization has been used. Yang et al. (2012) finds a 2◦ separa-

tion between control points to be the only acceptable level for QA evaluations in VMAT treatments.

For tomotherapy, among others, Hardcastle et al. (2012) cite a 2011 field safety notice from To-
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moTherapy identifying a deficiency in the dose calculation for 51-projection treatment planning

systems, especially in high-dose treatments with small, off-axis targets, due to what they called

dose blurring resulting from the approximation of the 7.06◦ arcs by static gantry angles. As a

remedy, they proposed “supersampling” of the gantry trajectory by virtue of tripling the number

of projections. Stambaugh et al. (2015) also suggest further subdivision of each traditional pro-

jection into 2 or 3 projections to deal with this issue (102 or 153 projections per gantry rotation,

respectively). Tudor and Thomas (2013) suggested that only a subdivision of 5 subprojections is

acceptable for critical cases. They suggested a non-homogeneous distribution of gantry projec-

tions: 51 projections per rotation in non-critical regions, and 255 projections per rotation in critical

segments of the gantry trip.

However, due to the requirement of closing every leaf whenever it opens during the same pro-

jection under the conventional treatment planning approach, increasing the projection resolution

would have the unpleasant effect of shortening leaf opening times. In contrast, the new treatment

planning and delivery paradigms we propose, especially the Detailed model, can increase the pro-

jection resolution while maintaining desired minimal and average LOTs. For the users, the only

changes required are a different form sinogram specification, and several types of sinogram can be

reported as output (Van Dyk, 1999).

2.7 Conclusions

The current tomotherapy standard for radiation therapy treatment assumes instantaneous leaf open-

ings and closings. The helical Tomotherapy planning system partially solves this problem by mod-

eling the pneumatic movement of the leaf with a constant speed. The LINAC MLC mechanism is

rather precise in this endeavor.

Unfortunately, this approximation does not entirely solve the problem. The leaf movement

is not exactly linear but has an acceleration/deceleration profile that is very difficult to model;
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moreover, different leaves in a typical MLC have different motion patterns. These nonlinearities

and distinctions accumulate and can create discrepancies in the dose delivery to the patient.

Moreover, the treatment delivery paradigm, and the corresponding treatment planning models,

require excessive leaf pulsations, not only increasing the number of leaf transition events and as-

sociated errors, but also damaging the machinery. Other problems encountered in the conventional

delivery include the insufficient resolution of the trajectory of the gantry. Paradoxically, we cannot

refine this resolution without creating even more leaf opening and closing events.

Our new proposed paradigms address these problems by giving us the freedom to keep the

leaves open for more than one projection, by cutting down on short leaf-opening times, and by

opening the door for a smooth transition into high-resolution models. We have introduced two

treatment planning optimization models under these paradigms. The first one achieves satisfactory

practical results with faster computational times. The second model is a detailed version that

achieves slightly better results with a more substantial computational burden. The first model can

be implemented today and can have immediate impacts on Tomotherapy planning dose inaccuracy

reduction. The second model looks forward into the near future and can only be deployed today

on the simplest cases. The ultimate benefits to the patients will be the increased reliability in the

radiation therapy treatments and control of side effects due to dose miscalculations.

To conclude, our work:

• Improves the delivery characteristics of treatment plans, namely,

– increases leaf opening times by explicitly constraining minimum and average LOT, and

– reduces the number of leaf pulsations, increasing the life expectancy of the multileaf

collimator (Mackie et al., 1993),

which can reduce discrepancies between the planned dose and the dose delivered to the

patient;
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• Allows unlimited refinement of projections, this will reduce the resolution-related dose dis-

crepancies (Tudor and Thomas, 2013).
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CHAPTER 3

VMAT with Aperture Control

3.1 Introduction

The utilization of Volumetric Modulated Arc Therapy (VMAT) has substantially increased since

it was introduced into clinical use over a decade ago. Compared to the more traditional IMRT

treatments using a limited number of fixed beam angles, VMAT can frequently deliver shorter

treatments using fewer Monitor Units (MUs) without sacrificing conformity and other measures of

treatment quality.

Since VMAT involves aperture shaping during continuous motion of the gantry along the treat-

ment arc(s), it requires more complex approaches to treatment planning, many aspects of which

still stand to be improved. For example, current approaches to treatment planning do not take into

account the impact of the shapes of the apertures. Irregularly-shaped apertures such as those in

Figure 3.1a add to the complexity of the treatment, making it more challenging to calculate dose

deposition coefficients. This possible complexity of aperture shapes, the speed and acceleration

of MLC leaves, and the tongue and groove effect, among other factors, can potentially produce

errors in the calculation of the dose that is actually delivered to the patient (Ezzell et al., 2003;

Fredh et al., 2013; Heilemann et al., 2013; Hwang et al., 2014; Park et al., 2015a,b). Our goal is

to develop improved optimization-based treatment planning methods that reduce the discrepancy

between the dose that is planned to be delivered and the dose that is actually delivered to the pa-
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(a) Example of an irregular aperture shape. (b) A desirable rounded and large shape.

Figure 3.1: Comparison of an irregular and a rounded aperture shape.

tient, by directly incorporating a metric related to complexity of aperture shapes into the objective

function.

Excessive aperture shape complexity results in decreased dosimetric accuracy (Bush et al., 2010)

and requires higher MLC positioning precision (Das et al., 2008; Oliver et al., 2010). Small

aperture sizes correlate to irregular aperture shapes; Fog et al. (2011) reports that for such apertures,

maximum dose and the overall width of the penumbra were underestimated by wide margins.

Moreover, the problem is more pronounced in VMAT than it is in IMRT (Du et al., 2014), making

complexity in VMAT treatments even more relevant.

Several complexity measures attempt to predict individual aperture dose accuracy: The Mod-

ulation Complexity Score (MCS) proposed by McNiven et al. (2010), and the MCS applied to

VMAT (MCSv) proposed by Masi et al. (2013), consolidate Treatment Planning System (TPS)

information such as leaf positions, aperture weight, field irregularity and area into a single score;

unfortunately these metrics “perform poorly” in some particular sites (McGarry et al., 2011). Du

et al. (2014) proposed an aperture irregularity (AI) metric calculated based on aperture area (AA)

and aperture perimeter (AP): AI = AP2

4πAA , which is similar to the Edge Metric (EM) proposed by

Younge et al. (2012), and to the “circumference/area” metric proposed by Götstedt Julia Karlsson

Hauer (2015). Carlsson (2008) proposes a different metric based on the ratio of differences of leaf

overlaps.
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In order to gauge the impact of aperture shape complexity on the final treatment quality, some of

these metrics have already been tallied with actual QA results (Agnew et al., 2014). McGarry et al.

(2011) and Crowe et al. (2015) compared their measures of complexity for anatomically different

treatment sites with a corresponding QA measure. Younge et al. (2012) shows, via dosimetric

validation of their EM measure, that it is a good predictor of dose calculation inaccuracies. We

use this metric as our benchmark because their analysis suggests that “the majority of the error is

concentrated on the edges of the apertures defined by the MLC leaves.”

The current claim is that: “Influencing the optimizer by integrating complexity metrics into the

cost function has been little explored and requires more investigations” (Chiavassa et al., 2019).

The few investigations of the matter so far include Carlsson (2008), which used a “step-and-shoot”

optimization that included their leaf overlap measure to generate round apertures that correlate well

with the general circumference/area measures, and Younge et al. (2012), which uses a local search

to incrementally modify the aperture shape. A more straightforward approach includes limiting

the beam intensity in order to force the creation of larger and rounder apertures (Broderick et al.,

2009), but this presents a significant limitation to the treatment.

We propose an approach for integrating an aperture complexity metric into the objective function

of an optimization-based treatment planning method by extending the VMAT treatment planning

approach of Peng et al. (2012). We will first define a modification of the edge metric and the

resulting penalty function, and then explicitly incorporate this aperture shape penalty into the cost

function. We will also adapt the column-generation heuristic of Peng et al. (2012) to our model,

and finally, we will report some computational experiments and compare our edge metric to the

one proposed by Younge et al. (2012).
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Figure 3.2: Example of an aperture illustrating vertical (stipples) and horizontal (dash-dot-dot)
components of leaf edges contributing to the perimeter of the aperture.

3.2 Methods

3.2.1 A New Aperture-Edge Penalty

We will extend upon previous work on aperture penalization (Younge et al., 2012) and incorporate

a comparable metric into our treatment planning approach. This aperture-edge metric will penalize

excessive perimeter of the aperture relative to its area. Our goal is to include this aperture-edge

metric in our optimization objective to explicitly control the aperture shape as part of treatment

planning.

An aperture A in the multi-leaf collimator is determined by the configuration of the leaves. Let

us denote the number of leaf pairs, or rows, in the MLC by M . We denote the position of the left

and right leaves in rowm by lm and rm, respectively, as shown in Figure 3.2, where lm, rm ∈ [0, N ],

and N is the number of beamlets in each MLC row. The area of the aperture can be computed as

area(A) = b

M∑
m=1

(rm − lm), (3.1)

where b is the width of each leaf. The aperture perimeter can be computed as the sum of the vertical
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(µ) and the horizontal (λ) leaf-edge components, as illustrated in Figure 3.2. In particular, we can

calculate µ(A) as

µ(A) =
M∑
m=1

2bτm, (3.2)

where τm is a binary indicator, signifying whether the leaf pair in row m is open or closed. In

turn, λ(A) can be calculated based on the location of endpoints of left and right leaves within the

aperture as the sum of all the row-by-row horizontal perimeter components:

λ(A) = (r1 − l1) +
M∑
m=2

(|lm − lm−1|+ |rm − rm−1| − 2(lm−1 − rm)+−

− 2(lm − rm−1)+) + (rM − lM), (3.3)

where a+ = max(0, a). This formula takes into account any possible interdigitation, i.e., situations

where rm < lm+1 so that the right leaf in row m protrudes over the left leaf in row m + 1, or

situations where lm > rm+1. Figure 3.2 shows an example of interdigitation between the third and

fourth rows.

Younge et al. (2012) introduced their Edge Metric, or EM, to quantify, in their words, “the

amount of ‘edge’ in the aperture,” namely,

PY (A) =
C̃1µ(A) + C̃2λ(A)

area(A)
, (3.4)

where C̃1 and C̃2 are nonnegative parameters separating the contribution of leaf ends and sides

into two individual terms, which, according to the authors, allows the user to “tailor the penalty

depending on where dose calculation errors are observed for individual apertures,” and a penalty

term

C

K∑
k=1

WkPY (Ak), (3.5)

with appropriate weights Wk that remove the bias to the regularization of apertures with the lowest
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monitor units, and overall weight C, which can be added to the overall optimization objective

for treatment planning (here, k = 1, . . . , K are the control points used in the treatment). The

penalty (3.5) was then added to the dose-related cost function, and an in-house treatment planning

system described in Fraass et al. (2012) was used to improve the combined objective function

by performing local search on the positions of endpoints of individual leaves. For an appropriate

selection of the scaling parameter C, the resulting plans for a representative paraspinal Stereotactic

Body Radiation Therapy (SBRT) case showed an improvement in aperture shapes, along with a

reduction in MUs, without significant decrease in the plan quality.

However, the mathematical structure of the edge metric PY , which is not additive by MLC row,

precludes its use within a wider class of VMAT treatment planning algorithms. To address this, we

propose a modified edge metric, defined as

P (A) = C1µ(A) + C2λ(A)− C3area(A), (3.6)

where C1, C2, and C3 are non-negative parameters that reflect the relative importance of the con-

tributions of the corresponding terms. Similarly to PY (A), P (A) is an increasing function of the

perimeter and a decreasing function of the area of the aperture (note, however, that it can take on

positive or negative values). A penalty term defined similarly to equation (3.5) is additive by MLC

row, and can be added to the treatment planning objective function as discussed in the following

sections.

3.2.2 Treatment Planning Problem Formulation

For simplicity of presentation, we will focus the discussion in this section on single-arc treatments,

and discuss modifications for a multi-arc treatment separately. We discretize the trajectory of the

gantry into K control points; it is sometimes convenient for notational purposes to also consider

a “dummy” control point K + 1 at the end of the trajectory. Let δk denote the angular distance
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between consecutive control points k and k + 1 (in degrees, or degs). At each control point k =

1, . . . , K, we will specify an aperture,Ak, and a fluence rate yk (in MU deg−1). A VMAT treatment

plan can be constructed by interpolating the leaf positions in the MLC between the control points

so that they match the specified apertures when the gantry reaches each control point. As discussed

in Chapter 1, we represent the dose distribution delivered to the patient by the vector z, where each

component zv represents the dose to voxel v ∈ V .

We formulate the VMAT treatment planning problem with aperture shape penalties as the fol-

lowing optimization problem, referred to as the Master Problem:

(MP) minimize
yk,Ak:k∈{1,...,K}

zv :v∈V

F (z) + C
K∑
k=1

P (Ak)δkyk (3.7a)

subject to zv =
K∑
k=1

Dkv(Ak)δkyk v ∈ V (3.7b)

yk ∈ [0, Y ] k = 1, . . . , K (3.7c)

S ≤ SUk,k+1(Ak, Ak+1) k = 1, . . . , K (3.7d)

Ak ∈ A k = 1, . . . , K. (3.7e)

The objective function (3.7a) is a weighted sum of the function F (z), which evaluates treatment

quality based on the dose distribution z, and a penalty term associated with the shapes of apertures

used at each control point. Similarly to equation (3.5), we multiply each individual term P (Ak)

by the weight equal to the fluence ykδk (in MU) specified at control point k, because any delivery

errors due to an irregular shape of the aperture will be exacerbated by high monitor units associated

with the control point. The parameter C ≥ 0 is a scaling parameter that balances the relative

importance of the two penalty components in the overall objective function. We will refer to the

function
K∑
k=1

P (Ak)δkyk (3.8)
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as the modified edge metric penalty, and to its counterpart based on the metric PY (·), namely,

K∑
k=1

PY (Ak)δkyk, (3.9)

as the edge metric penalty.

The addition of the aperture shape penalty to objective function is the main distinction between

the problem (3.7a)–(3.7e) and the master problem in Peng et al. (2012); Peng (2013), and it neces-

sitates modifications in the solution approach explored in the rest of this section.

The “dose deposition coefficient” Dkv(Ak) in constraints (3.7b) denotes the dose received by

voxel v from aperture Ak at control point k at unit fluence. To calculate doses zv, v ∈ V , in

constraints (3.7b) we rely on a commonly-used approximation in which it is assumed that the

aperture Ak, the fluence rate yk, and the coefficient Dkv(Ak) remain constant as the gantry travels

between control points k and k + 1. As long as the discretization of the gantry trajectory into

control points is such that the angular distances δk are small, this approximation is sufficiently

accurate (Otto, 2008; Zwan et al., 2016).

Constraints (3.7c) indicate that the fluence rate at each control point is nonnegative and bounded

above by Y ; the upper bound is a reflection of the delivery machine’s maximum dose rate and

gantry rotation speed S (in deg s−1).

Constraints (3.7e) indicate that each selected aperture belongs to the set A of deliverable aper-

tures in the MLC system. In particular, we will assume that any aperture with non-overlaping

leaf positions in each row is deliverable, and, unless stated otherwise, there are no restrictions on

interdigitation in the adjacent rows.

Finally, constraints (3.7d) enforce compatibility of apertures at adjacent control points. This

concept is illustrated in Figure 3.3. The MLC system imposes an upper bound on the leaf travel

speed within the collimator. Thus, for the leaves to be able to move from their positions in Ak at

control point k to their positions in Ak+1 at control point k + 1, the gantry travel time between
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Figure 3.3: The compatibility constraint (3.7d) ensures that neighboring apertures remain “reach-
able” given the gantry rotation speed and constraints on the speed of movement of the MLC leaves.

control points k and k+ 1 needs to be sufficiently long to allow the leaves to complete the required

movement; equivalently, the gantry needs to travel sufficiently slowly. We follow Peng et al. (2012)

and denote by SUk,k+1(Ak, Ak+1) the maximum gantry speed that would allow enough time for the

leaves to complete the required motion; the apertures Ak at k and Ak+1 at k + 1 are compatible if

this speed is bounded below by the actual gantry rotation speed, S.

Note that, although in the formulation of (MP) we have assumed that the gantry travels at a

constant speed, this assumption can be relaxed after the treatment plan — i.e., values of Ak and yk

for k = 1, . . . , K — has been specified. In particular, it may be possible to increase gantry travel

speed between some control points, and thus reduce treatment duration, as long as the source dose

rate is adjusted accordingly to maintain the same fluence rate and the chosen speed is still bounded

above by SUk,k+1(Ak, Ak+1) for each k. (See Peng et al., 2012 for a detailed discussion.)

The problem (MP) is not convex, this means it is impossible to solve by conventional direct

methods. The impact of the decision variables Ak, k = 1, . . . , K on the objective and constraint

functions is difficult to characterize. Therefore, in the remainder of this section we propose a

column-generation-based heuristic to solve the problem approximately. Two optimization prob-

lems serve as the building blocks of this iterative heuristic: the restricted master problem, and the

pricing problem. We motivate and formulate these problems, and describe methods for solving

them, in the following two subsections, before discussing our main algorithm. While the moti-
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vation behind both problems is similar to that of Peng et al. (2012), we present their derivations

for completeness, and note that the details of the pricing problem are more complex due to the

presence of the shape penalty term in the master problem (3.7).

3.2.3 The Restricted Master Problem

Given a set of control points C ⊆ {1, . . . , K} and corresponding apertures Āk, k ∈ C, the restricted

master problem (RMP(C)) is designed to determine the optimal fluence rates yk, k ∈ C, associated

with those apertures, assuming that yk = 0 for k 6∈ C:

(RMP(C)) minimize
yk,k∈C
zv ,v∈V

F (z) + C
∑
k∈C

P (Āk)δkyk (3.10a)

subject to zv =
∑
k∈C

Dkv(Āk)δkyk v ∈ V (3.10b)

yk ∈ [0, Y ] k ∈ C. (3.10c)

Note that, since the apertures Āk, k ∈ C are given as an input to (RMP(C)), it is a continuous

optimization problem in the variables (y, z), and is a convex optimization problem as long as

the function F (z) is convex. Moreover, as long as the apertures Āk, k ∈ C are deliverable and

compatible with each other, any feasible solution of (RMP(C)) corresponds to a deliverable VMAT

treatment plan, where the apertures at each control point k 6∈ C can be defined by interpolating leaf

positions at appropriate control points in C and setting fluence rates to 0.

3.2.4 The Pricing Problem

Suppose (ȳk, k ∈ C; z̄) is an optimal solution to (RMP(C)) with C ( {1, . . . , K} and Āk, k ∈ C.

The goal of the pricing problem at the control point c 6∈ C is to determine whether the treatment

can be improved by the addition of some aperture with a positive fluence at c.
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3.2.4.1 Formulation of the Pricing Problem

To derive the objective function of the pricing problem we first consider a conceptual “intermedi-

ate” version of the master problem (cf. Peng, 2013):

(MI) minimize
z, y

F (z) + C
∑
k∈C

P (Āk)δkyk + C
∑
k 6∈C

∑
A∈A

P (A)δkykA

subject to zv =
∑
k∈C

Dkv(Āk)δkyk +
∑
k 6∈C

∑
A∈A

Dkv(A)δkykA v ∈ V (πv)

yk ≥ 0 k ∈ C (ρk)

yk ≤ Y k ∈ C (γk)∑
A∈A

ykA ≤ Y k 6∈ C (γk)

ykA ≥ 0 k 6∈ C, A ∈ A. (βk(A))

(3.11)

In (MI), the apertures at control points k ∈ C are given and fixed, and for each control points k 6∈ C,

all possible apertures, and their associated fluence rates, are included in the problem, subject to an

upper bound of Y on the total fluence rate at each control point. The optimal solution of (MI) is

not intended to correspond to a deliverable VMAT treatment plan — in fact, this problem is not

meant to be solved, but instead, the analysis of its optimality conditions will help us motivate the

pricing problem.

Associating multipliers indicated in equation (3.11) in parentheses with constraints of (MI), we
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can write the Lagrangian for this problem as

L(yk, γk, ρk, ykA, γk, βk(A), zv) = F (z) + C
∑
k∈C

P (Āk)δkyk + C
∑
k 6∈C

∑
A∈A

P (A)δkykA+

+
∑
v∈V

πv

(
zv −

∑
k∈C

Dkv(Āk)δkyk −
∑
k 6∈C

∑
A∈A

Dkv(A)δkykA

)
−

−
∑
k∈C

ρkyk +
∑
k∈C

γk (yk − Y ) +
∑
k 6∈C

γk

(∑
A∈A

ykA − Y

)
−

−
∑
k 6∈C
A∈A

βk(A)ykA.

(3.12)

First-order KKT conditions are necessary and, if F (z) is convex, sufficient for optimality for (MI)

(see, for instance, Bazaraa et al., 2006). These conditions are:

∂ L
∂zv

=
∂F (z)

∂zv
+ πv = 0 v ∈ V (3.13a)

∂ L
∂yk

= CδkP (Āk)−
∑
v∈V

πvDkv(Āk)δk − ρk + γk = 0 k ∈ C (3.13b)

γk(yk − Y U) = 0 k ∈ C (3.13c)

ρkyk = 0 k ∈ C (3.13d)

γk ≥ 0 k ∈ C (3.13e)

ρk ≥ 0 k ∈ C (3.13f)

∂ L
∂ykA

= CδkP (A)−
∑
v∈V

πvDkv(A)δk − βk(A) + γk = 0 k 6∈ C, A ∈ A (3.13g)

γk

(∑
A∈A

ykA − Y

)
= 0 k 6∈ C (3.13h)

βk(A)ykA = 0 k 6∈ C, A ∈ A (3.13i)

γk ≥ 0 k 6∈ C (3.13j)
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βk(A) ≥ 0 k 6∈ C, A ∈ A, (3.13k)

along with feasibility conditions for (MI).

Suppose (ȳk, k ∈ C; z̄) is an optimal solution to (RMP(C)), along with associated KKT mul-

tipliers π̄ and ρ̄k, γ̄k, k ∈ C (in particular, π̄ = −∇F (z̄)). Together, they automatically satisfy

conditions (3.13a)–(3.13f). We can naturally extend this solution to a feasible solution to (MI) by

setting ykA = 0 for k 6∈ C, A ∈ A, and set γk = 0 for k 6∈ C in order to satisfy equations (3.13h)

and (3.13j); note that constraint (3.13i) is satisfied automatically. It remains to verify whether

conditions (3.13k) are satisfied for βk(A)’s defined based on constraint (3.13g). If this is the case,

the current solution is optimal for (MP). If not, there exists a control point c 6∈ C and an aperture

A ∈ A such that

βc(A) = CδcP (A)−
∑
v∈V

π̄vDcv(A)δc (3.14)

is negative. βc(A) can be interpreted as a price, or marginal value, of aperture A ∈ A at control

point c 6∈ C, and its negative value suggests that the objective value of (MI), and hence (MP), can

be improved if the fluence rate associated with this aperture is increased from the current value of

0.

Motivated by the above discussion, the goal of the pricing problem at c 6∈ C is to minimize βc(A)

given by equation (3.14) over all apertures A ∈ A that are compatible with the already-specified

apertures Āk, k ∈ C. Following Peng et al. (2012), we ensure aperture compatibility by imposing

the following constraints in the specification of the pricing problem (PPc) at control point c:

(PPc) β?c = min βc(A) (3.15a)

subject to A ∈ A (3.15b)

S ≤ SUc,c+(A,Ac+) (3.15c)

S ≤ SUc−,c(Ac− , A). (3.15d)
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Here, c− is the predecessor of c in C, i.e., the control point in C with the largest index smaller than

c, and c+ is the successor of c in C, defined similarly. (If c has no predecessor and/or successor in

C, the corresponding constraint can be dropped from the formulation.)

To derive an explicit mathematical representation of the constraints of (3.15b), recall from Sec-

tion 3.2.1 that any apertureA can be represented by vectors~l and ~r, which are, respectively, vectors

of positions of left and right leaves in the collimator forming this aperture. Assuming that inter-

digitation is allowed, constraint (3.15b) is equivalent to the linear inequalities

0 ≤ lm ≤ rm ≤ N, m = 1, . . . ,M. (3.16)

Constraints (3.15c) and (3.15d), which ensure compatibility of the aperture with the rest of the

plan, can be interpreted as constrains on leaf positions, dictated by the gantry travel speed S and

upper bound on the leaf travel speed v (in beamlets ×s−1):

|lc+m − lm| ≤
vδcc+

S
, |rc+m − rm| ≤

vδcc+

S
, m = 1, . . . ,M, (3.17)

where δcc+ =
∑c+−1

k=c δk is the angular distance between control points c and c+ and (~lc+ , ~rc+) are

the leaf positions in the aperture Āc+ , and

|lc−m − lm| ≤
vδc−c
S

, |rc−m − rm| ≤
vδc−c
S

, m = 1, . . . ,M, (3.18)

where δc−c =
∑c−1

k=c− δk is the angular distance between control points c− and c and (~lc− , ~rc−) are

the leaf positions in the aperture Āc− . (If c+ or c− are not defined for c, the corresponding bounds

on lm and rm should be omitted.)

Constraints (3.16)–(3.18) can be combined to derive lower and upper bounds (lm, l̄m) and (rm, r̄m)

on the positions of, respectively, the left and the right leaf in row m of the aperture at control point
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c. We can therefore restate the pricing problem at control point c as

(PPc) β?c = min βc(~l, ~r) (3.19a)

subject to lm ≤ rm m = 1, . . . ,M (3.19b)

lm ≤ lm ≤ l̄m m = 1, . . . ,M (3.19c)

rm ≤ rm ≤ r̄m m = 1, . . . ,M. (3.19d)

Note that, as long as apertures Āc− and Āc+ at control points c− and c+, respectively, are deliverable

apertures and are compatible with each other, (PPc) specified in problem (3.19) is feasible. Indeed,

consider (lm, rm) = (l̃m, r̃m) obtained by interpolating positions of corresponding leaves between

control points c− and c+, assuming that each leaf moves at a constant speed as the gantry travels

between these control points:

l̃m = lc−m +
lc+m − lc−m

δc−c+
· δc−c, r̃m = rc−m +

rc+m − rc−m
δc−c+

· δc−c, (3.20)

where δc−c+ =
∑c+−1

k=c− δk is the angular distance between control points c− and c+. Then, if

apertures at control points c− and c+ were chosen to be deliverable and compatible with each

other, then leaf positions l̃m and r̃m satisfy appropriate constraints (3.19).

3.2.5 Solving the Pricing Problem

The pricing problem (PPc) can be solved approximately using an approach that builds on the

one first described in Romeijn et al. (2005) (however, the method described here is more in-

volved since it needs to account for the added complexity due to the presence of the edge penalty

P (A) = P (~l, ~r) in the objective function). We will describe an approach for approximately solving

(PPc) by providing an approximate reformulation as a shortest path problem in a directed acyclic

network, which can then be solved using, e.g., a Dynamic Programming algorithm. The refor-
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source m=2m=1 m=3 sink

Figure 3.4: Illustration of a network constructed to solve the pricing problem for the case M = 3
rows in the MLC.

mulation takes advantage of the common approximation of the dose deposition coefficients by

constant values within their beamlet domains, and the consequent piece-wise linear characteristics

of the pricing problem’s objective function, and explores most of the critical values of the (PPc)

objective, corresponding to the breakpoints of such functions, while limiting the size of the under-

lying network to achieve a reasonable tradeoff between solution quality and computational effort

required to achieve it.

3.2.5.1 Network Representation

The network consists of M +2 layers. The first and the last layer contain one node each, called the

source and the sink, respectively. The intermediate layers correspond to rows m = 1, . . . ,M of

the MLC, and each node in layer m corresponds to a possible position of the left and right leaves,

lm and rm, in that row; thus, we index each node by the triple (m, lm, rm). (We will address the

issue of which nodes, i.e., which combinations of leaf positions, should be included in each layer

later on.) Each node is connected by a directed arc to each node in the subsequent layer. Figure 3.4

illustrates this construction for the case M = 3.

Note that every directed path from the source to the sink in this network passes through a se-

72



quence of nodes of the form (1, l1, r1), (2, l2, r2), . . . , (M, lM , rM), and thus can be interpreted as

an aperture.

We can associate costs with the arcs of this network so that the total cost of the arcs in each

path from the source to the sink is equal to the value of βc(·) associated with the corresponding

aperture. Substituting equation (3.6) into (3.14), we can write

βc(A) = βc(~l, ~r) = δc

[
C(C1µ(~l, ~r) + C2λ(~l, ~r)− C3area(~l, ~r))−

∑
v∈V

π̄vDcv(~l, ~r)

]
,

where area(~l, ~r), µ(~l, ~r), and λ(~l, ~r) are defined by equations (3.1), (3.2), and (3.3), respectively.

Moreover, if we use the common representation

Dcv(~l, ~r) =
M∑
m=1

Dcmv(lm, rm), (3.21)

where Dcmv(lm, rm) is the dose deposition coefficient for voxel v and control point c associated

with “row aperture” (lm, rm) in row m (i.e., an aperture where all rows except for m are closed,

and the left and right leaves in row m are positioned at lm and rm, respectively), we can represent

the last term in the square brackets above as

−
∑
v∈V

π̄vDcv(~l, ~r) = −
M∑
m=1

∑
v∈V

π̄vDcmv(lm, rm). (3.22)

Thus, we will define the costs of the arcs in the network as follows (we omit the multiplicative

constant δc they all have in common):

• arcs between the source and nodes (1, l1, r1) in layer 1:

C (2C1bτ1 + C2(r1 − l1)− C3b(r1 − l1))−
∑
v∈V

π̄vDc1v(l1, r1) (3.23)
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• arcs between nodes (m− 1, lm−1, rm−1) and (m, lm, rm), for m = 2, . . . ,M :

C
(
C2(|lm − lm−1|+ |rm − rm−1| − 2(lm−1 − rm)+ − 2(lm − rm−1)+)

)
+C(2C1bτm − C3b(rm − lm))−

∑
v∈V

π̄vDcmv(lm, rm)
(3.24)

• arcs between nodes (M, lM , rM) and the sink:

C(C2(rM − lM)), (3.25)

where τm = 1 when rm > lm, and zero otherwise.

Finally, to calculate dose deposition coefficients associated with row apertures we used the com-

mon approximation (cf. Peng et al., 2012)

Dcmv(l, r) =

∫ r

l

φcmv(x)dx, where φcmv(x) = Dcmnv, n− 1 < x ≤ n; n = 1, . . . , N, (3.26)

where the beamlet dose deposition coefficients Dcmnv for every control point c, voxel v, MLC row

m, and beamlet nwere calculated using Varian’s pencil-beam convolution-superposition algorithm

(Varian Medical Systems, Inc., Palo Alto, CA, USA).

3.2.5.2 Selecting Nodes to Include in the Network

It remains to specify which nodes should be included in each layer of the network.

Consider the nodes in the layer corresponding to row m of the MLC. For every node (m, lm, rm)

included in this layer, lm and rm must satisfy equations (3.19b)–(3.19d). The layer typically in-

cludes a node corresponding to each combination of lm and rm where lm is equal to an integer in

the interval [lm, l̄m], and rm ≥ lm is equal to either lm (if rm = lm satisfies equation (3.19d)), or an

integer in the interval [rm, r̄m], i.e., it consists of nodes (m, lm, rm) for all combinations of values
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lm and rm in the set

{(lm, rm) : lm ≤ rm, lm ∈ {dlme, dlme+ 1, . . . , bl̄mc − 1, bl̄mc},

rm ∈ Lm ∪ {drme, drme+ 1, . . . , br̄mc − 1, br̄mc}},
(3.27)

where Lm = {lm} if rm ≤ lm ≤ r̄m and Lm = ∅ otherwise. In other words, we solve the

pricing problem approximately by considering only integer values of leaf positions, i.e., positions

corresponding to the beamlet endpoints within each MLC row. In our computational experiments

we occasionally had to make an exception to the above rule when one or both intervals specified

in the set (3.27) contained no integer values. In this situation, we instead used interpolated values

l̃m and/or r̃m defined in equations (3.20).

Unlike the pricing problem in Peng et al. (2012), even without interdigitation constraints, our

pricing problem cannot be decomposed by row due to the dependence of the penalty metric P (A)

on the relative positions of the leaves in adjacent rows. Furthermore, the pricing problem could be

solved exactly by considering a subset of feasible values of the variables, namely, those associated

with (i) boundaries of constraints (3.19b)–(3.19c) and (ii) the breakpoints of the objective function,

which is piece-wise linear when equation (3.26) is used to define functionsDcmv(lm, rm). While in

Peng et al. (2012) the breakpoints of the objective function of the pricing problem were limited to

integer values of the variables, the breakpoints of our objective function are much more numerous,

including all the combinations of values corresponding to breakpoints of the piece-wise linear

function λ in equation (3.3). Therefore, we are effectively limited to approximate solutions of the

pricing problems, which were based on integer variable values in our implementation.

Due to the layered structure of the network, we can solve the shortest path problem by forward

dynamic programming, or forward induction. In a typical iteration, each node in layerm is labeled

with the cost of the shortest path from the source to this node, c(m, lm, rm), and the cost of the
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shortest path from the source to each node in layer m+ 1 is calculated as

c(m+1, lm+1, rm+1) = min
(m,lm,rm) in layer m

{c(m, lm, rm)+arc cost((m, lm, rm), (m+1, lm+1, rm+1))},

with the arc costs defined in Section 3.2.5.1. (The predecessor nodes are also recorded, to enable

the reconstruction of the shortest path.) Since each row may contain up to O(N2) nodes, updating

the cost labels requires O(N4) operations per row. Thus, we can compute the shortest path in

O(MN4) operations. Note, however, that the above analysis does not account for the time required

to calculate the arc costs given by the expressions in (3.23) and (3.24), which depends on the

specifics of how the summations (in the last term) over voxels as well as calculations of dose

deposition coefficients for row apertures are carried out.

3.2.5.3 Extensions and Generalizations

We conclude our discussion of the pricing problem by considering two extensions.

Control point-specific limits on leaf positions It may be desirable to replace bounds (3.16)

with

Lm ≤ lm ≤ rm ≤ Rm, m = 1, . . . ,M, (3.28)

where 0 ≤ Lm ≤ Rm ≤ N for m = 1, . . . ,M , and replace constraints (3.19b) and (3.19c) with

max{lm, Lm} ≤ lm ≤ l̄m, rm ≤ rm ≤ min{r̄m, Rm}, m = 1, . . . ,M. (3.29)

For example, the dosimetrist may determine that making the aperture (at a particular control point)

wider than the specified limits ~L on the left and ~R on the right is undesirable because the additional

dose delivered to the targets is insufficient to justify the additional dose delivered to the healthy

tissue. Aperture-edge penalties, by design, create a preference for large and round apertures over

small and irregular ones. While the function F (z) evaluating treatment quality aims to achieve an
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appropriate tradeoff between treating the targets and sparing the OARs and other healthy tissues,

balancing these tradeoffs with the aperture-edge penalty can present undue challenges for calibra-

tion of the objective function (3.7a). Instead, imposing explicit bounds on leaf positions (which

are typically informed by the beam’s projections onto the targets) provides more direct controls on

dose spillage to adjacent tissues. Furthermore, the reduction of the number of beamlets reduces

computation time of solving the pricing problem.

While replacing bounds (3.19c) and (3.19d) with (3.29) may seem like a simple change to the

pricing problem, if the values of (~L, ~R) are control point-dependent, doing so may render the

pricing problem infeasible. For example, it is possible that at control point c, for some m, the

value of, say, Lm is too large for lm = Lm to satisfy the mth inequality in (3.17) and/or (3.18); i.e.,

the left leaf in row m cannot travel sufficiently fast to reach position Lm at control point c starting

from position lc−m at control point c− and/or to reach position lc+m at control point c+ starting

from position Lm at control point c; a similar phenomenon occurs if Rm is too small. If this is the

case, (PPc) will be infeasible, and layer m in the network constructed based on bounds in (3.29)

according to the rules similar to those summarized in the set (3.27) will be empty.

In our implementation, we attempt to respect the control point-specific limits on leaf positions

to the extent possible, violating them only when faced with an infeasible pricing problem. In

particular, when l̄m < Lm, we relax the limit and include nodes with lm = l̄m in layer m of the

network. Similarly, when rm < Rm, we include nodes with rm = rm. These allowances allowed

us to prevent infeasibility of all the pricing problem instances encountered in our experiments.

MLC with no interdigitation If the MLC used in the VMAT delivery system does not allow

interdigitation, the pricing problem can be modified to enforce this restriction. In particular, in the

network representation of the pricing problem, the arcs between nodes (m − 1, lm−1, rm−1) and

(m, lm, rm) should be removed whenever rm−1 < lm or lm−1 > rm.

Note that, without interdigitation, the “positive part” terms in the definition (3.3) of λ are always

equal to zero, thus simplifying the structure of the cost function of the pricing problem.
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3.2.6 Aperture Selection/Refinement Heuristic for (MP)

In this section we describe a heuristic approach for solving (MP). The heuristic is inspired by the

algorithms described in Peng et al. (2012) and Peng et al. (2015), with an enhanced approach to

aperture refinement in its second phase.

3.2.6.1 Initial Aperture Selection via Column Generation

The first phase of the algorithm produces a deliverable VMAT treatment plan by using a column

generation-like procedure to perform initial selection of apertures; this phase of the algorithm

follows the framework of Peng et al. (2012). In particular, we start with an “empty” treatment plan

with C = ∅ and z̄ = 0. At each iteration that follows, we first formulate and solve an instance

of the pricing problem (PPc) at each control point c 6∈ C, given the current value of z̄ and the

already-specified apertures at control points in C. If the minimum of the objective values βc(A) of

solutions found for all (PPc)’s is negative, the aperture with the smallest objective value is added

at the corresponding control point, the control point is added to C, the restricted master problem

(RMP(C)) is re-solved with the updated set of apertures to obtain z̄, and the algorithm proceeds

to the next iteration. This process continues until |C| = K, i.e., we have obtained a plan with

an aperture specified at every control point, or the objective values at solutions of all (PPc)’s are

nonnegative, i.e., we are unable to identify an improving aperture to add to the current plan.

The formal statement of this procedure is provided in Algorithm 1.

3.2.6.2 Aperture Refinement

The process for initial aperture selection described in Section 3.2.6.1 is a greedy heuristic: at each

iteration, it chooses to add an aperture that stands to improve the quality of the treatment plan

specified in the previous iteration the most, based on local derivative information reflected by the

KKT conditions. Due to its greedy nature, the apertures selected by the procedure in its early
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Algorithm 1 Initial aperture selection
1: procedure INITIAL APERTURE SELECTION

2: Set C = ∅ and z̄ = 0
3: while |C| < K do
4: For each c 6∈ C, formulate and solve (PPc) with z̄ and Āk, k ∈ C, to find β?c
5: Find β? ← minc 6∈C β

?
c

6: if β? ≥ 0 then
7: Exit while loop
8: else
9: Let c̄← argminc 6∈C β

?
c and let Āc̄ be the corresponding solution to (PPc̄)

10: C ← C ∪ c̄
11: end if
12: Solve (RMP(C)) with C and Āk, k ∈ C; let (ȳ, z̄) be the optimal solution found and W0

— the optimal objective value
13: end while
14: If necessary, complete the treatment plan by identifying feasible apertures at k 6∈ C, aug-

menting C, and setting ȳk = 0
15: Return C, Āk, k ∈ C, ȳ, and W0

16: end procedure

iterations may no longer be beneficial for the ultimate treatment plan. Indeed, in the instances of

(RMP(C)) solved in later iterations of the algorithm, the optimal values of the fluence rate variables

at control points populated early in the process are frequently equal to, or close to, 0.

In the second phase of our algorithm, we perform aperture refinement. In particular, in this

phase we revisit control points on the gantry trajectory in a specified order, and consider whether

the aperture at the control point can be replaced with a different one, which is better in the context

of the current treatment plan. This process is also accomplished by solving instances of restricted

master problems (RMP(C)) and pricing problems (PPc).

The aperture refinement procedure is formally presented in Algorithm 2. The input for the

procedure consists of the output of the initial aperture selection procedure in Algorithm 1, namely,

C — the set of control points where apertures have been specified, Āk, k ∈ C — the selected

apertures, and W0 — the optimal value of the corresponding restricted master problem instance.

We will use n as the iteration counter for the refinement procedure, and use Wn to keep track of
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Algorithm 2 Aperture Refinement

1: procedure APERTURE REFINEMENT(C; Āk, k ∈ C; W0)
2: n← 0
3: repeat
4: n← n+ 1
5: Wn ← Wn−1

6: c← 1
7: repeat
8: Formulate and solve (RMP(C\{c})) to find z̄
9: Formulate and solve (PPc); store β?c

10: c← c+ 1
11: until c ≥ K + 1
12: Let C ′ be the set of [1, . . . K] sorted in increasing order by β?c
13: i← 0
14: for each control point c in the ordered set C ′ do
15: Formulate and solve (RMP(C\{c})) to find z̄ and W̃ — the optimal value
16: Formulate and solve (PPc) to find β?c and A?c
17: if β?c ≥ 0 then
18: i← i+ 1
19: if W̃ < Wn then
20: C ← C \ c
21: Wn ← W̃
22: end if
23: else
24: i← 0
25: Formulate and solve (RMP(C)) with A?c at c; let W ? be its optimal value
26: if W ? < Wn then
27: C ← C ∪ c, Āc ← A?c
28: Wn ← W ?

29: end if
30: end if
31: if i = 5 then
32: n← n+ 1, exit the for loop
33: end if
34: end for
35: until

∣∣∣Wn−Wn−1

Wn−1

∣∣∣ ≤ ε

36: If necessary, complete the treatment plan by identifying feasible apertures at k 6∈ C, aug-
menting C, and setting ȳk = 0

37: Return Āk, k ∈ C, ȳ, and Wn

38: end procedure
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the objective function value of the best plan found in this iteration.

In every iteration of the aperture refinement procedure, we first determine an ordering of control

points {1, . . . , K}, and then proceed to examine the aperture at each control point, in the specified

order, and consider replacing it with a different one.

Given a treatment plan specified by Āc, c ∈ C, we order the control points based on a prediction

of potential improvement of the treatment plan from replacing their current apertures. For each

c = 1, . . . , K, we first remove the aperture specified at this control point (if any) and solve the

corresponding instance of the restricted master problem, namely, (RMP(C\{c})). Then, using the

optimal solution of (RMP(C\{c})), we formulate and solve the corresponding instance of (PPc), and

record the objective value found, β?c . We sort the control points in the increasing order of β?c ’s. The

ordering process is described in lines 2.7–2.12 of Algorithm 2, and produces C ′ — an ordering of

{1, . . . , K}.

Next, we move on to the refinement process described in lines 2.14–2.34 of the algorithm. We

proceed in the order specified by C ′ and consider whether we can add, remove, or replace the

aperture at each control point in a way that improves the overall treatment plan. The process

for doing this is somewhat similar to the one used in the ordering step above. Conceptually, if

c is the control point currently under consideration, we remove the aperture Āc (assuming one is

specified) from the plan, solve the resulting instance of (RMP(C\{c})), and use its optimal solution

to formulate and solve an instance of (PPc). If the optimal value of (PPc) is nonnegative, i.e., no

beneficial aperture could be found, we remove the control point from C. If the optimal value of

(PPc) is negative, we place the discovered aperture at control point c (note that this aperture may, in

fact, be equal to Āc, which was removed to formulate (RMP(C\{c}))), confirming that its presence

is beneficial to the overall plan).

In practice, however, we proceed with more caution, due to the following considerations: (i)

the objective value of an aperture in (PPc) is a prediction of its contribution to the master problem

based on local derivative information, but the actual contribution needs to be verified by solving

81



the restricted master problem, and (ii) our solution to (PPc) is based on a discretization of its

feasible region, and the “original” aperture Āc, while feasible, might not be representable in the

current discretization, and thus might not be re-discoverable. Below, we provide a more detailed

description of the procedure.

Let the optimal value of (RMP(C\{c})) be W̃ , and let A?c be the aperture found by solving (PPc),

with objective value β?c .

Case 1: β?c ≥ 0. In this case, the pricing problem fails to find a beneficial aperture at c. We use

a counter i to keep track of the number of such control points encountered consecutively

within the current iteration, i.e., the number of consecutive control points where we failed to

discover an improving aperture by solving the pricing problem. In this case, we increment i.

If the current treatment plan includes some aperture Āc at this control point, this would

suggest that the aperture should be removed since, apparently, it does not have a negative

value of βc(·). However, since the pricing problem was only solved approximately, before

removing Āc, we explicitly check whether doing so would improve the plan, i.e., whether

W̃ < Wn. If this is the case, we update C by removing control point c and set yc = 0 and

Wn = W̃ . This case is described in lines 2.17–2.22 of the algorithm.

Case 2: β?c < 0. In this case, the pricing problem indicates that the aperture A?c should be used at

control point c, replacing the current aperture if one exists. We formulate and solve a new

instance of the restricted master problem (RMP(C)), which uses A?c at c, and denote its opti-

mal objective value by W ?. If this new W ? is better (lower) than Wn, we update the aperture

at this control point to A?c , and update the value of Wn. Otherwise, the aperture found via the

pricing problem was ultimately not beneficial, and we keep the original aperture in the plan.

This case is described in lines 2.23–2.29 of the algorithm.

Once the value of counter i reaches a threshold (we use 5 in our implementation), we conclude

that the likelihood of finding an improving aperture at the remaining control points in the cur-
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rent ordering sequence is small. Therefore, in this case we terminate the current iteration of the

refinement process.

We terminate the algorithm when the relative improvement in the objective function value of the

restricted master problem in the latest iteration fails to exceed a pre-specified threshold (line 2.35).

3.3 Experiments and Results

3.3.1 Test Cases and Implementation Details

We performed the experiments discussed in this section on a dataset consisting of clinical cases

at body sites that are suitable for VMAT treatment and tend to generate small irregular apertures

during treatment: Head and Neck, Brain, Lung, and Spine. The Head and Neck case was a single-

arc coplanar version of the case originating from the CORT dataset (Craft et al., 2014), and the

remaining cases were provided by our collaborators at the University of Michigan Hospital System

Radiation Oncology department, who assisted us with case data acquisition, including specification

of the gantry trajectory and the number and location of control points for each case. Beamlet dose

deposition coefficients were calculated using Varian’s Analytical Anisotropic Algorithm (AAA)

with a calculation model that is based on a 3D pencil-beam convolution-superposition algorithm

that accounts for tissue heterogeneities (Ulmer et al., 2005).

We chose these cases and their discretization settings in part with the goal of testing the com-

putational performance of our treatment planning algorithm, studying how it scales for problems

with varying numbers of control points, beamlets, and voxels. These features are summarized in

Table 3.1. All single-arc cases use a total of K = 180 control points equally spaced around the

patient with δk = 2◦, while the multi-arc version of the brain case includes a second semi-circular

arc in a different plane, with 90 additional control points. The machine settings were assumed to

follow the parameters from Varian Medical Systems (2011) TrueBeam specifications.
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Brain Lung Spine Brain Head and Neck
multi-arc

# Voxels 8,094 1,500 30,815 8,094 251,893
# Beamlets 69,120 36,000 20,160 91,800 202,640
Beamlet size 5mm × 5mm 1cm × 1cm 5mm × 5mm 5mm × 5mm 5mm × 5mm
# Control points 180 180 180 270 180
# OARs 16 5 8 16 25
# Targets 2 1 2 2 6

Table 3.1: Summary of case sizes in VMAT experiments.

Control point-specific limits ~Lk and ~Rk on leaf positions (see Section 3.2.5.3) were generated for

each of the cases. For the head and neck case, their values could be deduced from the information

included as part of the CORT data set. For the other cases, we determined the limits as follows.

For each control point k, we located all the beamlets that were deemed necessary according to the

following calculation. First, we calculated the maximum dose deposition coefficient Dkmnv from

any beamlet (m,n) at this control point to any voxel v in the targets. We characterized a beamlet as

necessary if it delivers at least a certain (control point-specific) percentage Xk% of that maximum

dose to any target. For each row m, we set the limits Lm and Rm at that control point to be the

left-most and the right-most necessary beamlets in that row. (Thus, some non-necessary beamlets

will also be included because they lie between two necessary beamlets.) The reason for making

the cutoffs Xk in this calculation specific to each control point is that the lesions are rarely located

in the center of the body, and the ranges of values of dose deposition coefficients to voxels in the

targets are different at different beam angles. To determine control point-specific values of Xk, we

used manual iteration and visual inspection of the resulting ~Lk and ~Rk, and corresponding limits

on possible apertures, overlaid on top of a beam’s eye view of the targets.

Recall from Section 3.2.5.3 that we may occasionally have to violate the control point-specific

limits on leaf positions to ensure feasibility of the pricing problem. As a final step, we computed

the case-specific envelope ~L = mink ~Lk and ~R = maxk ~Rk. While the apertures generated in the

process of solving the pricing problems may occasionally violate the control point-specific limits
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in some rows, they will always be contained in this envelope. Thus, we can reduce the memory

requirements of the algorithm by only retaining dose deposition coefficients for beamlets contained

in this envelope.

In our computational experiments, we did occasionally encounter apertures that were outside of

the control point-specific limits, but it happened very infrequently.

We used an objective function F (z) with the same convex smooth piece-wise quadratic structure

as described in Section 2.4.1, assigning structure-dependent coefficients in each component. These

coefficients were determined using manual trial and error on a VMAT case with C = 0 (i.e., no

aperture shape control), until a satisfactory plan was obtained.

We implemented our algorithms using Python v.3.7. In particular, the restricted master prob-

lem was solved using the SciPy package; its results were corroborated using Gurobi’s quadratic

programming solver. There was an opportunity to solve the instances of the pricing problem at dif-

ferent control points in parallel; these parallelizations were carried out under the multiprocessing

library. The full implementation is available as the GitHub repository https://github.com/

wilmerhenao/VMATwPenCode.

We ran most cases on a desktop powered by an Intel Core™ i7 processor at 3.50GHz, with four

cores and 32 GB of RAM. Where parallelization was possible, our implementation took advantage

of all eight threads.

3.3.2 Calibration of Parameters in Metric P

In Younge et al. (2012), the authors showed that the number of open MLC rows in an aperture did

not have a strong correlation with aperture irregularity, and therefore used C̃1 = 0 and C̃2 = 1

in their edge metric PY (A) of equation (3.4). Similarly, in our modified edge metric P (A) of

equation (3.6) we used C1 = 0, which, after scaling, allowed us to re-write the expression for
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P (A) simply as

P (A) = λ(A)− ξarea(A). (3.30)

The next step was to calibrate the value of the parameter ξ so that the resulting values of P (A) are

in reasonable agreement with values of the edge metric PY (A) (with C̃1 = 0 and C̃2 = 0).

We used the lung case to perform the experiments that informed our ultimate choice of ξ. First,

we set ξ = 1 and applied the first phase of our heuristic algorithm (i.e., the initial aperture selection

phase, but not the aperture refinement phase) to the resulting instances of the Master Problem (3.7)

for several values of the scaling parameter C ≥ 0. The apertures in each generated treatment plan

were used to produce a data set to fit the linear regression model

PY (A) = λ(A)− ξarea(A) + error, (3.31)

minimizing the sum of squared errors over each set of apertures.

Using different values of C in the Master Problem resulted in different treatment plans with

different apertures, which in turn led to different values of ξ attaining the optimal fit. However,

we observed that all values of ξ in the range [0.4, 0.8] provided a reasonably good choice for most

sets of apertures. This result is in agreement with the results of Götstedt Julia Karlsson Hauer

(2015), who studied Pearson’s correlations between several aperture metrics and found that most

of the edge-related metrics positively correlate with each other. Based on these observations, we

used ξ = 0.75 in our subsequent experiments. As an illustration, we applied the initial aperture

selection phase of the algorithm to the problem instance with ξ = 0.75 andC = 0.0001, generating

an aperture at each of the 180 control points. The values of the two metrics for each of these

apertures are depicted in Figure 3.5. We observe that the relationship between the two metrics

is heteroscedastic, that is, greater dispersion of the values of the edge metric PY is observed for

apertures with larger values of the modified edge metric P . However, overall the relationship

is nearly monotone, and a linear approximation provides a good fit: the red line in the figure
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Figure 3.5: Comparison of values of P (A) (horizontal axis) and PY (A) (vertical axis) for 180
apertures in the plan obtained by applying the initial aperture selection phase of the algorithm to
the lung case with ξ = 0.75 and C = 0.0001. Each dot associated with aperture A has coordinates
(P (A), PY (A)). The red line represent the best linear fit for this data set, achieving R2 = 0.77.

represents the best linear fit for this set of apertures, achieving R2 = 0.77.

We performed additional experiments to confirm that, with the above choice of ξ, the values of

the modified edge metric P (A) provide a reasonable proxy for the values of the edge metric PY (A).

We calculated the values of both metrics for all apertures in plans produced for different values of

C for the brain, spine, and lung cases after the initial aperture selection phase of the algorithm.

The results are presented in Figure 3.6. The apertures from plans generated using different values

of C are depicted using dots of different shapes and colors. Not surprisingly, plans generated using

higher values of C tend to contain more regularly-shaped apertures, which tend to form clusters

at the lower-left of the scatter plots, while apertures generated using lower values of C tend to

cluster at the upper-right of the scatter plots. Combining the results for all the plans produced for

each case in a single plot allows us to conclude that, although the relationship between the metrics

87



is not linear over the entire range of values of interest, the value of P (A) provides a reasonable

proxy for the value of PY (A) for many different types of apertures, and the apertures with lower

values of P (A) should have better delivery characteristics, similarly to apertures with lower values

of PY (A), as studied in Younge et al. (2012).

With this hypothesis confirmed, we used ξ = 0.75 in the subsequent experiments, which in-

cluded adding the aperture refinements phase to the algorithm. Although it is possible that a better

fit can be obtained by selecting a case- or site-specific value of ξ, we kept its value constant for the

purposes of this project, to focus our experiments on the impact of the scaling parameter C on the

tradeoff between the two components of the objective function of the Master Problem.

3.3.3 Aperture Refinement

We will use the spine case to illustrate the importance of the aperture refinement phase of the

algorithm described in Section 3.2.6.2 by comparing three sets of DVH plots in Figure 3.7. (Once

again, it is important to emphasize that all the DVH plots presented in this chapter are created using

planned dose distributions of the proposed treatments, whereas delivered dose distributions will

deviate from the planned ones. Moreover, since the treatments resulting from different planning

and delivery paradigms will have different delivery characteristics, these dose discrepancies will

be different as well; if our proposed approaches indeed produce plans that have better delivery

characteristics, their delivered doses should adhere to the planned ones more closely.)

To create an illustrative “proof-of-concept” example to which the heuristic can be applied effi-

ciently, we modified the spine case described in Table 3.1 by considering a subset of 36 control

points uniformly distributed around the arc with δk = 10◦ for all k: {0◦, 10◦, 20◦, . . . , 350◦}. The

first DVH plot in Figure 3.7 corresponds to a hypothetical IMRT treatment obtained by solving an

FMO model (where the intensity of each beamlet is determined individually) with 36 beam angles

corresponding to the aforementioned VMAT control points, and objective function F (z). Clearly,
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(a) Lung case

(b) Brain case

(c) Spine case

Figure 3.6: Comparison of values of P (A) (horizontal axis) and PY (A) (vertical axis). Dots of
different shapes and colors correspond to apertures in plans obtained with different values of C, as
shown in the legends, after the initial aperture selection phase of the algorithm.

89



such a treatment cannot be delivered, but it provides us with a useful, if unattainable, benchmark,

since the optimal objective value of this FMO model provides a lower bound on the value of F (z)

of any VMAT treatment with the same set of control points. While we cannot solve the optimiza-

tion problem (3.7) exactly, we can compare the quality of dose distributions of its approximate

solutions by how closely they approach the dose distribution of this IMRT benchmark. The second

DVH plot in Figure 3.7 corresponds to the plan obtained after the initial aperture selection phase

(Algorithm 1) with C = 0.0001, and the third plot corresponds to the plan obtained after several

subsequent iterations of the aperture refinement phase (Algorithm 2). While the last plot is not

quite as good as the FMO benchmark, it represents a significant improvement over the second one.

(It should be noted that the parameters of the function F (z) used in this experiment are different

than those in the forthcoming study of the spine case in Section 3.3.5, and thus the DVH plots in

that section should not be directly compared to Figure 3.7.)

3.3.4 The Lung Case

The lung case is the smallest (voxel-wise) case we considered, containing only 1,500 voxels. It is

the most straightforward case when it comes to computational times.

In this case, we used a simpler version of the refinement algorithm. We did not control for

strict improvement in the objective function value in each aperture refinement. Having said that,

objective value improvement was attained after the application of the aperture refinement phase.

Our clinical goals for this case, defined according to the RTOG protocols, are outlined in Ta-

ble 3.2. We can satisfy most of these objectives using our heuristic with C = 0 and C = 1. The

DVH results shown in Figure 3.8 confirm the satisfaction of most of these goals with the only

exception of the target (PTV) hot spot. The main limiting organ in this case is the spinal cord, but

a steep penalization near the 45Gy threshold in the F (z) function achieves the desired maximum

dose. Esophagus, lung, and heart achieve doses below their goals.
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(a) Benchmark FMO plan

(b) VMAT treatment without aperture refinement

(c) VMAT treatment after aperture refinement

Figure 3.7: DVH plots of plans for the spine case with 36 equispaced control points around the
circular arc. (a) Benchmark FMO plan; (b) Output of the initial aperture selection phase with scal-
ing parameter C = 0.0001; (c) Output of several subsequent iterations of the aperture refinement
phase.
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Goal Delivered
Target Dose 60 Gy
Target Hot Spot 99% below 66 Gy
Target Cold Spot 99% above 55 Gy
Cord 100% below 45 Gy
Heart 50% below 20 Gy
Lungs 50% below 20 Gy
Esophagus 99% below 60 Gy
Esophagus 50% below 34 Gy

Table 3.2: Treatment goals for the lung case.

Figure 3.8: Comparison of Dose Volume Histograms (DVHs) for the lung case plans obtained with
scaling parameter C = 0, i.e., without aperture shape penalty (dotted lines) and with C = 1 (solid
lines). The structures shown correspond to the target and the most important OARs.
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C = 0.0 C = 1.0
2581.50 1508.72
5949.03 4296.96
7828.04 4737.23
5701.68 4801.40
5585.59 4820.94
4995.61 4900.32

Table 3.3: The times (in seconds) spent in the initial aperture generation phase (first row) and in
each “pass” through the aperture refinement loop (subsequent rows) for the lung case.

The plans for the lung case can be obtained in a few hours of computation, with most of this time

spent on the aperture refinements. The times spent in the initial aperture generation phase and each

“pass” through the refinement loop are reported in Table 3.3. The first phase runs faster than the

subsequent aperture refinement passes; we attribute this to the greater parallelization opportunities

in the first phase. Curiously, in this particular case the algorithm runs faster when C = 1; this is not

indicative of a general pattern (in fact, the pricing problem solution subroutine can be implemented

much more efficiently if we were only planning to consider instances with C = 0).

By increasing the value of the scaling parameter C, we can reduce the edge metric penalty∑K
k=1 PY (Ak)δkyk for the lung case by as much as 15%. The top plot of Figure 3.9 shows the val-

ues of this penalty for plans obtained by applying the heuristic algorithm to instances with different

values of the scaling parameter C. The plots are scaled by the edge metric penalty corresponding

to the plan obtained with C = 0. The edge metric penalty does not strictly decrease as the scaling

parameter C increases, but the correlation between this penalty and the scaling parameter is nega-

tive. Figure 3.10 presents a plot of the values of the modified edge metric penalty
∑K

k=1 P (Ak)δkyk

versus the scaling parameter C. There is a stronger negative correlation between this penalty and

the scaling parameter C, which is to be expected since this penalty is explicitly included in the

objective function of the optimization problem (3.7). The dependence is not strict, which can be

attributed to the fact that the plans are obtained by a heuristic algorithm, which is not guaranteed
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Figure 3.9: The edge metric penalty
∑K

k=1 PY (Ak)δkyk (top) and the quality function F (z) (bot-
tom) of treatment plans for the lung case obtained for different values of the scaling parameter
C. In the top graph, the values are scaled by the edge metric penalty corresponding to the plan
obtained with C = 0.

to achieve global optimality.

Increasing the value of C shifts the focus of optimization away from the treatment quality

penalty function F (z). As shown in the bottom plot of Figure 3.9, the values of this function

tend to increase as we increase the scaling parameter C (again, the relation is not monotonic, but

the correlation is positive).

In Figure 3.11, we compare representative apertures from plans obtained with values C = 0.0

and C = 1.0 in the left and the right column, respectively. We show these results at 5 of the control

points (one in each row). The heat maps in these pictures show beamlets at each control point

represented by squares of different colors. The color of each beamlet represents the maximum

dose deposition coefficient from this beamlet to any voxel in the targets using a dark-blue to bright-

yellow spectrum: the darkest blue beamlets don’t deliver dose to any target, and the brightest
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Figure 3.10: The modified edge metric penalty
∑K

k=1 P (Ak)δkyk of treatment plans for the lung
case obtained for different values of C. The values are scaled by the modified edge metric penalty
corresponding to the plan obtained with C = 0.

yellow beamlets have the largest dose deposition coefficient to any target voxel from that control

point. The aperture contours are shown by the green outlines. As demonstrated in the figure, a

higher value of the scaling parameter C leads to a plan with apertures that have visually more

rounded shapes (the five apertures on the right).

3.3.5 The Spine Case

The spine case has a total of 180 control points, comprising 20,160 beamlets. There are 30,815

voxels grouped into ten structures. The significant limiting factor for spine cases is the cord,

which is surrounded by the lesion. Treatments for these types of lesions are characterized by small

aperture fields and the tendency to produce irregular aperture shapes. The clinical goals for this

case are shown in Table 3.4.

Figure 3.12 shows the values of the edge metric penalty (on the top) and the modified edge
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Figure 3.11: Comparison of aperture shapes in lung case plans obtained using values C = 0.0 (left
column) and C = 1.0 (right column) at 5 of the control points (one in each row). Beamlets are
shown as squares of different colors representing the maximum dose deposition coefficient from
this beamlet to any voxel in the targets using a dark-blue to bright-yellow spectrum. The darkest
blue beamlets don’t deliver dose to any target, and the brightest yellow beamlets have the largest
dose deposition coefficient to any target voxel from that control point. The aperture contours are
shown by green outlines.

Goal Delivered
Target Dose 44 Gy
Target Hot Spot 99% below 46 Gy
Target Cold Spot 99% above 37 Gy
Cord 100% below 30 Gy
Esophagus 95% below 40 Gy

Table 3.4: Treatment goals for the spine case.
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Figure 3.12: The edge metric penalty (top) and the modified edge metric penalty (bottom) of
treatment plans for the spine case obtained for different values of the scaling parameter C. The
values in each graph are scaled by the value of the corresponding penalty associated with the plan
obtained with C = 0. The horizontal axis of both plots uses a logarithmic scale.

metric penalty (on the bottom) for the spine case obtained by applying the heuristic algorithm to

instances with different values of the scaling parameter C. (Note that both plots use logarithmic

scale for the horizontal axis.) As expected, these plots show a downward trend in the penalty

values. The DVH plots of the resulting plans are presented in Figure 3.13. Increasing the value of

C slightly deteriorates the quality of the treatment plans; however for the chosen values of C, the

plans still satisfy the treatment goals.

Several values of the scaling parameter C proved effective for reducing edge metric penalties in

this case. For example, C = 0.02 may be a good choice to achieve a satisfying tradeoff: it reduces

the edge metric penalty by more than 8% (while reducing the modified edge metric penalty by

21.1%), while the resulting treatment plan satisfies the goals with only small violations. In fact,

some aspects of the treatment plan obtained with C = 0.02 improved over the plan obtained with
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(a) C = 0.00001
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(b) C = 0.0001
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(c) C = 0.001
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(d) C = 0.05

Figure 3.13: Comparison of DVH plots for the spine case plans obtained for different values of the
scaling parameter C.
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Figure 3.14: Comparison of DVH plots for the spine case plans obtained with scaling parameter
C = 0, i.e., without aperture shape penalty (dotted lines) and with C = 0.02 (solid lines). The
structures shown correspond to the target and the most important OARs.

C = 0 (notice, for example, the reduction in maximum dose to the esophagus in Figure 3.14);

however, this improvement may be attributable to the heuristic nature of the algorithm used to

generate these plans.

3.3.6 The Head and Neck Case

The Head and Neck case was taken from the CORT dataset, which is an open dataset available

to researchers for developing and comparing radiation therapy planning algorithms. The case

contains a total of 1983 control points on a sphere around the target, to allow creation of non-

coplanar treatment plans. In our study, we limited our attention to the 180 control points on a

single coplanar VMAT arc orthogonal to the couch length. The case contains 251,893 voxels,

separated into 25 structures, with 25,388 of the voxels corresponding to one of the 6 targets. We
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Goal Delivered
Target Dose 78 Gy
Spinal Cord 100% below 48 Gy
Parotid Glands (Left) 50% below 40 Gy
Parotid Glands (Right) 50% below 40 Gy
Left Optic Nerve 100% below 30 Gy
Right Optic Nerve 100% below 30 Gy

Table 3.5: Treatment goals for the head and neck case.

illustrate 6 of the OARs and 2 of the targets in Figure 3.15. These are the structures highlighted on

Figure 3 of Craft et al. (2014), and they are the critical structures for this particular case.

In this case, as in the lung case, we used a simpler version of the refinement algorithm, where we

did not control for strict improvement in the objective function value in each aperture refinement.

As in the lung case, objective value improvement was attained after the application of the aperture

refinement phase.

The treatment goals for this case are outlined on Table 3.5. By calibrating the parameters in

function F (z), we were able to satisfy all of the goals, and by setting C = 0.5, we can reduce

the edge metric penalty
∑K

k=1 PY (Ak)δkyk by 19%. Figure 3.15 presents a comparisons of the

DVH plots for plans obtained with C = 0 and C = 0.5. Some deterioration of treatment quality

can be seen in the latter plan, although all treatment goals remain satisfied, with the exception of

a slight violation of the goal for the right parotid. In a case such as this, the treatment planner

would consider whether the plan obtained for the chosen value of C achieves the desired tradeoff

between the planned treatment quality and edge metric penalty reduction, and re-run the algorithm

on instances with different values of C to explore the range of the tradeoffs available. A re-

calibration of the function F (z) (in particular, parameters associated with the terms corresponding

to the right parotid voxels) can also be used to attempt to maintain the goal corresponding to this

structure.
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(a) C = 0 (b) C = 0.5

Figure 3.15: Comparison of DVH plots for the head and neck case plans obtained with scaling pa-
rameter C = 0, i.e., without aperture shape penalty (left) and with C = 0.5 (right). The structures
shown correspond to the targets and the most important OARs.

3.4 Multi-Arc VMAT

It is possible to extend the VMAT treatment planning model and solution heuristic presented in

Section 3.2 to a multi-arc setting by making the following modifications, and keeping track of the

case data according to the following recommendations:

• Concatenate the arcs, but do not impose compatibility constraints (3.7d) between the last

control point of one arc and the first control point of the next arc. Additionally, when solv-

ing the pricing problem, do not include bounds (3.17) or (3.18) if control points c+ or c−,

respectively, belong to a different arc than c. Lastly, aperture envelope bounds (~L, ~R) should

also be determined separately for each arc.

• Make sure that the data generated for different arcs maintains consistency of indexing of

voxels and structures.

• Make sure that in the data generated for different arcs, control points’ and beamlets’ indices

are unique across all arcs.

• MLC sizes and discretizations may be different for different arcs, i.e., each arc will have
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Goal Delivered
Target Dose 60 Gy
Brainstem 100% below 60 Gy
Left Optic Nerve 100% below 55 Gy
Right Optic Nerve 100% below 55 Gy
Optic Chiasm 100% below 54 Gy
Left Eye 100% below 40 Gy
Right Eye 100% below 40 Gy
Left Lens 100% below 10 Gy
Right Lens 100% below 10 Gy

Table 3.6: Treatment goals for the brain case.

different values of parameters M and N associated with it. In this case, make sure that

the upper bound on the leaf travel speed v (in beamlets ×s−1) is calculated for each arc

accordingly.

• If the arcs are independents (i.e., there are no voxels that have positive dose deposition

coefficients for beamlets corresponding to control points in different arcs), Algorithm 1 can

be applied to each arc separately and in parallel. Algorithm 2 can also be applied to each arc

separately, or the arcs can be merged in this phase to speed up the process (namely, to enable

combined updates of the counter i across different arcs).

We tested the multi-arc case extension on a brain case discussed in Subsection 3.4.1.

3.4.1 The Brain Case

This case is particularly challenging because of the proximity of one of the lesions to the right eye.

The lesion surrounds the optic nerve, which severely complicates the treatment. The clinical goals

for the brain case are shown on Table 3.6.

Due to the anatomical features of this case, it is not possible to achieve a good treatment with

only one arc. Figure 3.16 shows a DVH plot of the single-arc plan obtained for C = 0¡ i.e., without
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Figure 3.16: A DVH plot for the single-arc brain case plan obtained for C = 0, i.e., without
aperture shape penalty. The structures shown correspond to the target and the most important
OARs.

aperture shape penalty. In this experiment, the parameters in the function F (z) were selected in an

attempt to satisfy the upper bounds on all OARs to the extent possible while avoiding cold spots

in both PTVs and hot spots in the second PTV. As a result, the first PTV has a significant hot spot.

Many more combination of parameters of F (z) were tried, all of them with different unsatisfactory

results, with goals for at least one of the structures being significantly violated.

In order to achieve better results, a second arc was added. While the first arc has 180 control

points equally spaced around a full circle orthogonal to the couch length, the second arc is a semi-

circle perpendicular to the first arc, with 90 control points. With the addition of the second arc,

significantly better treatment plans could be obtained. After re-calibrating the function F (z), our

algorithm (applied to the instance with C = 0) was able to find a treatment plan that satisfies most

of the goals connected to the OARs associated with the left eye (lens, nerve, and the eye itself); see

the dotted DVH curves in Figure 3.17. However, we were not able to satisfy the goals related to
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Figure 3.17: Comparison of Dose Volume Histograms (DVHs) for the brain case plans obtained
with scaling parameterC = 0, i.e., without aperture shape penalty (dotted lines) and withC = 0.03
(solid lines). The structures shown correspond to the target and the most important OARs.

the right eye OARs. From the clinical point of view, in a case such as this, with the right eye being

very close to one of the PTVs, the physician may consider sacrificing the function of the right eye

for the sake of achieving adequate coverage of cancerous regions.

We tested the algorithm on an instance with a relatively large value of the scaling parameter

C = 0.03. With this value of C, the aperture shape penalty plays a significant role, and the solid

DVH curves in Figure 3.17 for the resulting plan look quite different. However, it should be noted

that due to our choice of parameters in the function F (z), the most significant deterioration is still

limited to the OARs corresponding to the right eye, while the left eye and the brainstem remain

fairly well protected and the coverage of the PTVs is not significantly affected. Therefore, the

physician may in fact choose this plan, which sacrifices the right eye to meet the goals for the

other structures, while simultaneously reducing the edge metric penalties and thus reducing the

discrepancy between planned and delivered doses.
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It should be noted that the increase in the number of control points resulted in significant increase

in the computational demands of the heuristic. It took 8,861 seconds to execute the first phase, and

62,740 seconds to execute the first refinement loop (after which the algorithm was stopped). To

enable clinical use of our algorithm and its variation, more aggressive use of parallelization will be

required.

3.5 Translation to the Clinical System

Translation to the clinical system involves the transfer of the plan specified using the values of

the variables of the optimization model of the treatment planning problem into the specifications

used in a clinical setting. In our particular case, it involves the passing of the machine parameters

corresponding to control point orientations, intensities, and positions to the LINAC Treatment

Planning System. The “Beam Meterset” attribute that assigns intensity for each successive control

point needs to be specified in “Monitor Units or minutes as defined by the Primary Dosimeter Unit

(The measurement unit of machine dosimeter)” (as defined in the DICOM standard Information

Object Definitions). Leaf positions are also passed to the LINAC at each discrete control point.

The information is transferred using a Digital Image and Communications in Medicine (DICOM)

file (see https://www.dicomlibrary.com). The files can store treatment information,

namely, machine parameters derived from the optimization, high-quality medical images (CT,

MRI, and ultrasound results), and provides integration with multiple medical devices. One of these

devices is the Varian LINAC. Varian’s Treatment Planning System (TPS) allows the calculation of

dose effects, enables the visualization of the dose distribution, and allows for the visualization

of the aperture field along the gantry trajectory. The TPS extrapolates a smooth trajectory from

the provided discretization. In particular, the variables of the optimization model (3.7) can be

converted into the input types of VMAT treatments in Varian’s TPS via a simple bijective transfor-

mation.
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3.6 Expected Reduction of Dosimetric Discrepancies

It is difficult to provide a definitive forecast of dose discrepancies based on our results. Our exper-

iments show that a significant reduction in the modified edge metric penalty is medically feasible

for the cases we considered. However, at this stage in our research, we have to rely on the phys-

ical measurements performed by Younge et al. (2012) to predict the effect of greater regularity of

aperture shapes on reductions in dosimetric discrepancies. As we have pointed out throughout our

analysis, our modified edge metric provides a reasonable proxy for the edge metric of Younge et al.

(2012), but the relationship is not linear or fully monotone.

To recap some of the experimental results presented in Younge et al. (2012), they achieved

an aggressive reduction of 55% in edge metric penalization in their spine case. The next step

was the experimental measurement of the resulting reduction in dose discrepancies using gamma

analysis (a measure that combines dosimetric and spatial discrepancy regularly used in QA). For

gamma analysis with 3% dose and 1mm distance, the percentage of voxels passing the test went

from 79.5% to 95.4% when the aperture penalization was implemented, which is a significant

improvement.

In our experiments, we didn’t achieve such a significant reduction in the edge metric penalty,

but we can still expect an increase in the percentage of voxels passing the QA tests. Moreover,

due to the different mathematical structure of the original and modified edge metrics, the apertures

obtained by using a penalty based on the latter may have subtly different geometric features and

have a different effect on actual dose discrepancy and QA pass rates. Further computational ex-

periments should be performed to more fully explore the clinically feasible tradeoffs potentially

leading to greater reductions in the penalties, and the modified edge metric penalty should be

evaluated dosimetrically in order to measure its actual impact.
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3.7 Conclusions

We have developed a new optimization model for VMAT treatment planing that explicitly penalizes

aperture shape irregularities, and can be used to study the tradeoffs between the quality of planned

treatments and a new edge metric penalty. We developed a significant extension of a heuristic

solution algorithm for VMAT treatment planning applicable to the new model. The edge metric

penalty used in our model is shown to be a good proxy for the metric used in prior work by Younge

et al. (2012), which in turn was shown to correlate with measured discrepancies between planned

and delivered doses; based on this analysis we predict that the plans obtained using our model and

algorithm will have less dosimetric discrepancies between the planned and delivered doses.

Future research in this area should focus on the development of improved solution methods for

the proposed treatment planning model, both in terms of algorithmic approaches leading to better

heuristics, and implementation techniques to speed up the computation. Moreover, dosimetric

studies should be used to verify the reduction in dosimetric errors and discrepancies achieved by

using the modified edge metric. We do not rule out the possibility that our modified metric may

convey somewhat different information about the aperture shape than the original metric of Younge

et al. (2012), and thus using a penalty based in this metric in the treatment planning optimization

may have a qualitatively different impact on dosimetry.

We also believe that our modeling approach can be a useful tool in other applications where

geometric properties, specifically, “excessive edges,” are an import aspect of design decisions.

Gerrymandering in districting decisions is an excellent example of a field that could benefit from

edge penalies.
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CHAPTER 4

Conclusions and Future Research Suggestions

The rapid advances in the field of radiation therapy planning and the constant development of new

machinery and technologies demand the constant evolution of models and methods for treatment

planning to squeeze the most benefit out of the potential offered by the new technology. The

newest machines require models that take into account the complex physical properties inherent

to the treatment modality. Together, physicists, physicians, and operations research professionals

work in tandem in order to devise the tools that can take the field of radiation therapy planning to

the next level.

We attempted to devise optimization models and solution methods that allow the creation of

treatment plans that are less prone to discrepancies between the dose distributions that are planned

and that are actually delivered to the patients. If these methods prove to be clinically feasible,

they can be used to design more precise treatment strategies, leading to treatments that are more

effective and safer for the patients.

In closing, we mention a few promising future research directions.

4.1 Tomotherapy

We think tomotherapy delivery can be made better by increasing the projection resolution. Our

proposed modeling paradigms avoid the limitations of current treatment planning methods in this
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regard, paving the way for more precise representation of tomotherapy treatments. However, this

flexibility comes at the cost of complexity of the associated MIP problems. We anticipate that

future work should focus on improvement of the solution approaches for these MIP problem, pos-

sibly including design of specialized algorithms.

Moreover, the hypothesized improvements in dosimetric accuracy due to finer discretization and

increased Leaf Opening Times (LOTs) should be tested at other treatment sites, both computation-

ally and dosimetrically. While our experiments suggest that longer LOTs can be achieved without

negative impact on (planned) treatment quality for typical prostate cases, for other treatment sites

shorter LOTs may be unavoidable. In the latter case, increased precision in dose delivery modeling

due to improved resolution may still have a positive effect on treatment planning.

4.2 VMAT

The first line of future research would investigate whether the proposed modified edge metric is

actually a good predictor of dose discrepancies. Two potential complementary approaches are to

perform experiments based on dosimetric measurements, similar to those done by Younge et al.

(2012) and other researchers, as well as attempt to develop analytical approaches for estimating

(e.g., providing lower and upper bounds) the dose discrepancies based on aperture shapes.

Another line of research to be explored is whether it is possible to either avoid high compu-

tational cost of solving the pricing problem, or leverage parallelization opportunities to a greater

extent, to bring computational demands of our algorithms, and other similar solution methods,

down to clinically reasonable levels. As more complex multi-arc VMAT treatments with greater

numbers of control points are being considered, while computer systems with large multi-core pro-

cessors and distributed capabilities become increasingly available, parallelization opportunity will

enable these two developments to proceed hand in hand.

Lastly, outside of the field of radiation oncology, there are many other geometric design prob-
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lems where “excessive edges” are views as undesirable, and there is a need to balance some type

of edge metric penalty with other measures of quality; gerrymandering in political redistricting is

a particularly prominent exaple. Optimization models similar to the one developed in this thesis,

and appropriate solution methods, can be a promising direction to address such problems.
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