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ABSTRACT

In this dissertation we provide a comprehensive framework for evaluating the merits of

wireless vehicle-to-vehicle (V2V) communication on traffic. In particular we focus on

mixed traffic scenarios that will dominate highways in the next several decades. Such

mixed traffic primarily contains conventional human driven vehicles, however also includes

connected human-driven vehicles, automated vehicles, and connected automated vehicles.

Connected human-driven vehicles are human-operated vehicles that are able to send and

receive messages using V2V. Automated vehicles rely on an internal computer (rather than

a human) to process information from sensors such as cameras or radars to control their

motion. Finally connected automated vehicles are automated vehicles that use information

received from V2V communication in addition to sensory information for controlling their

motion.

Our framework is based on developing a prototype connected automated vehicle and inves-

tigating its effects on traffic patterns amongst human driven vehicles. We first establish an

experimental procedure and criteria for tuning the connected automated vehicle’s controller

to follow a connected human-driven vehicle at a desired distance. We then showcase an

experimental configuration that allows us to observe traffic patterns in a three-car connect-

ed vehicle network, where our connected automated vehicle interacts with two connected

human-driven vehicles. These experiments demonstrate the effectiveness of connected au-

tomated vehicles using beyond-line-of-sight information in promoting smooth traffic flow

in a mixed traffic environment.

xi



To investigate the effects of connected automated vehicles for large networks, we first fo-

cus on simple car-following models without communication, actuation or human reaction

delay. For these models we are able to analytically characterize the traffic patterns occur-

ring in human driven traffic at various densities, as well as show that connected automated

vehicles can indeed mitigate congestion and promote stable uniform flow of traffic. By

exploiting the cyclic symmetry of the governing equations, we rigorously show that the

results hold for arbitrarily large connected vehicle networks, and also that the feedback to

long-range information in connected automated vehicles should be carefully chosen to en-

sure the benefit to traffic flow.

Lastly we use simulations to investigate large connected vehicle networks, where delays,

nonlinearities, wireless communication delay, and eclectic driving dynamics are consid-

ered. We use these simulations to demonstrate that indeed the information from beyond-

line-of-sight is the key feature that allows the connected automated vehicles to bring sig-

nificant benefits to traffic. Finally, we conduct penetration studies to quantify the extent

to which connected automated vehicles may benefit traffic at partial penetrations, and dis-

cuss the implications of this study on the current competing wireless V2X communication

technologies.

xii



CHAPTER 1

Introduction

Ideas regarding using intelligent vehicles to improve the safety and efficiency of roadways
originated in the 1930s but early efforts were not successful due to the lack of inexpensive
sensors. In the last two decades we have witnessed an increase in vehicle automation and
advanced driver assistance features to improve safety and driver comfort [85, 86, 81] but
mobility has not seen a similar transformation. The limiting effect of vehicle automation
on the mobility of roadways may be attributed to the limitations of the automated vehicles’
sensory range [3]. While lidars, radars, and cameras may be sufficient to perceive the
automated vehicle’s immediate surroundings to ensure safety, these sensors are not able to
see beyond an obstruction such as another vehicle or a blind corner.

The opportunity for automated vehicles to look beyond-line-of-sight is becoming avail-
able with vehicle-to-everything (V2X) communication technologies. These technologies al-
low vehicles to communicate with their environment, such as other vehicles or infrastructure,
using standardized communication protocols such as dedicated short range communication
(DSRC), and Cellular V2X (C-V2X) [39, 80, 21, 7, 51]. Initial developments in DSRC
applications both in the United States and abroad were motivated by improving the safety of
human-driven vehicles by providing the driver of an equipped vehicle with a set of warnings
for safety critical applications such as forward collision warning, blind spot warning, and
intersection movement assist [19]. It was later shown that the wireless information commu-
nicated through DSRC can be used in an automated vehicle to perform control and benefit
safety as well as traffic flow [29, 88, 68]. At present time DSRC was successfully tested
and deployed in several cities [82, 90, 98] and by several manufacturers [40]. The recent
development of C-V2X as an alternative to DSRC was promoted by the 5G Automotive
Association and Qualcomm [51, 2]. Initial field experiments [1] show that C-V2X provides
a longer communication range than DSRC and allows for retransmission of lost packets
unlike DSRC. Furthermore, because pedestrians and cyclists generally have cellular phones,
C-V2X can potentially enable equipped vehicles to communicate with them in addition to
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other vehicles and the infrastructure. However since C-V2X technology is more recent, it
has not been tested and deployed to the extent of DSRC. The framework developed in this
dissertation can be used to assess both the capabilities of C-V2X and DSRC and compare
their potential in improving traffic flow.

Of particular interest are vehicle-to-vehicle (V2V) communication technology. Vehicles
equipped with V2V, called connected vehicles (CVs), can communicate with each other in
traffic over several hundred meters, beyond the line of sight of lidars, cameras, or radars.
They can use the received V2V information to augment their perception of the environment
and enhance their ability to respond. For example, a connected vehicle would be able to
detect a harsh braking event several hundred meters ahead through V2V even when its lidar
or camera are obstructed by surrounding vehicles [14, 34, 68]. Provided that this connected
vehicle is also automated, we can then design a controller so that the vehicle responds
to V2V information in a timely manner, in a way that not only ensures driver safety and
comfort, but also prevents the formation of congestion [66].

To study the effects of connected vehicles and connected automated vehicles in a general
traffic environment, we distinguish four types of vehicles: based on whether the vehicle
is controlled by a human operator or a computer and whether it is equipped with V2X
communication; see Figure 1.1. Regular vehicles are human driven (HVs) and do not have
V2X capabilities. By adding V2V devices they become connected human-driven vehicles
(CHVs). A vehicle whose dynamics are controlled by a computer is referred to as an
automated vehicle (AV) if it only relies on sensory information or a connected automated
vehicle (CAV) when it also utilises V2X connectivity. In this dissertation we focus on the
impact of connectivity on traffic flow, so we assume that all automated vehicles are equipped
with V2V devices, i.e., they are all connected automated. However we construct our CAVs
so that they still function when no other vehicle in the neighborhood has V2V capability,
in which case a CAV degrades to an AV. That is we consider a connected vehicle network,
composed of connected vehicles, connected vehicles, and connected automated vehicles as
shown in Figure 2.1 A,B.

The control strategy used in connected automated vehicles to achieve the desired system
level behavior largely depends on the penetration of connected automated vehicles. When
there are no connected vehicles present in the connected vehicle network (Figure 1.2 A),
the automated vehicle can only utilize information from its immediate predecessor obtained
from its seosors to control its longitudinal motion. We refer to this type of control strategy as

2



Figure 1.1: Vehicle types discussed in this dissertation.

Figure 1.2: Vehicles traveling on a single lane straight road with A): a single AV in a stream
of regular human-driven vehicles using ACC B): a singe CAV using information from a
single CHV downstream for CCC C): a single CAV using information from multiple CHVs
downstream for CCC D): a formation of CAVs traveling after each other using CACC

adaptive cruise control (ACC). The simplest realization of a connected cruise control (CCC)
is shown in Figure 1.2 B, where a single CAV is able to use information from a downstream
CHV beyond the CAV’s line of sight to perform longitudinal control. In general, a connected
automated vehicle can use CCC to utilize information from multiple connected vehicles
ahead, both within and beyond line of sight [8, 25, 27, 62, 109]; see Figure 1.2 C. Also CCC
does not require a pre-defined connectivity structure which makes CCC an effective control
for small penetrations of CVs and CAVs.

At sufficiently high levels of CAV penetration a scenario in which several CAVs fol-
low each other is more likely to occur, see Figure 1.2. Such scenarios allow the CAVs
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to implement cooperative adaptive cruise control (CACC), where all the CAVs use V2V
communication to control their motion in a coordinated fashion to achieve certain control
objectives [4, 29, 54, 55, 72]. The main challenge of CACC is that multiple CAVs need to
maintain a formation to reap its benefits, which would be especially challenging in a low
CAV penetration environment.

For a general control strategy a specific controller for CAVs needs to be first designed
and tuned, and then it’s impact on traffic patterns can be evaluated. Designing and tuning of
CAV controllers is usually done in an open chain configuration, where a few vehicles are
traveling one after another in a single lane road, as in Figure 2.1 A. Such a connected vehicle
network configuration can be studied both analytically [27, 54, 109, 72] and implemented
experimentally [28, 56, 60]. Once a controller with suitable properties has been developed,
a ring configuration can be used to evaluate the impact of the CAVs on traffic patterns, see
Figure 2.1 B. The advantage of this configuration is that it allows one to observe traffic
patterns for a relatively small number of vehicles. This configuration is mostly used in
analytical and simulation studies [22, 65, 66, 8, 9], however some experiments using this
configuration were also performed [93, 91, 11]. Because we focus on traffic patterns in this
dissertation, we will mostly be dealing with the ring configuration. Initially we use the open
chain configuration to tune the gains for the controller on our experimental CAV. Note that
for large numbers of vehicles, the open chain and ring configurations become equivalent
and yield the same analytical results [24].

In this dissertation we first develop an experimental connected automated vehicle that
performs car following in a fashion similar to a human driver, however is also able to exploit
information from beyond the line of sight by means of V2V communication. We tune
the feedback gains of the controller by performing car following experiments and using
experiment-based criteria in addition to theoretical criteria. We then design an experimental
framework to investigate traffic patterns for a three-car connected vehicle network consisting
of one connected automated vehicle and two connected human-driven vehicles. This setup
features a special boundary condition enforced by the connected automated vehicle allowing
us to observe traffic patterns at a wide range of traffic densities and speeds. The results
of these experiment show that by utilizing beyond-line-of-sight information, connected
automated vehicles allow for more traffic throughput compared to when the connected
automated vehicle only uses feedback from the nearest neighbor.

Inspired by our experiments with the connected automated vehicle, we perform an
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analytical investigation of traffic patterns in connected vehicle networks using rigorous
network-based methods. These methods enable us to determine whether the vehicle network
would tend to uniform flow or whether congestion waves would develop. Furthermore, we
can account for the nonlinear behavior of traffic such as bistablity, where either uniform flow
or congestion may develop depending on the disturbance. These network-based methods
also allow us to evaluate the effects of introducing connected automated vehicles which use
beyond the line of sight information into the traffic flow. Based on the insights gained from
analytically investigating traffic patterns and matching car-following models to experimental
data we perform a large-scale simulation study of connected vehicle networks at partial
penetrations of connected and connected automated vehicles. These simulations enable us
to include complex phenomena such as driver variability, delays due to actuation, reaction,
and communication, and demonstrate the scalability of connected cruise control.

Using the above simulations we are able to quantify the benefits of connected automated
vehicles on traffic flow at partial penetrations. In particular, we can highlight the day one
benefits, when the penetrations of connected automated vehicles on the road are small. Fur-
thermore, we discuss the merits of our framework in comparing different types of wireless
communication technologies, in particular whether using C-V2X would yield significant
benefits in improving flux compared to DSRC. We also note that the framework carried out
in this dissertation can be used to examine the merits of connected automated vehicles in
other key metrics, such as fuel economy and driver comfort.

This dissertation is organized as follows. In the remainder of Chapter 2 we present the
dynamical model for the vehicles in the connected vehicle network, as well as discuss the
open chain and ring configurations in detail. We then tune the longitudinal controller for the
connected automated vehicle, and investigate how it influences traffic patterns in Chapter 3.
In Chapter 4 we look at the nonlinear dynamics of a conventional vehicle network where
all vehicles rely on information coming from the vehicle immediately ahead. In Chapter
5 we investigate the effects of connected automated vehicles, that can utilize beyond the
line of sight information, on traffic dynamics using-network based perturbation methods. In
Chapter 6 we perform simulations of CVNs with at various penetration rates of connected
and connected and automated vehicles and discuss the implication of these simulations on
the current standing of V2X technologies. Finally we conclude this dissertation in Chapter
7.
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CHAPTER 2

Modeling a connected vehicle network

In this section we discuss the dynamics of the different vehicles in the connected vehicle
network as well as the configurations of the connected vehicle network.

2.1 Vehicles in a connected vehicle network

We consider a connected vehicle network composed of conventional vehicles, connected
vehicles, and connected automated vehicles as shown in Figure 2.1 A,B. As in this disserta-
tion we are interested in car-following along a single lane, so we only consider longitudinal
dynamics of the vehicles in the connected vehicle network to be significant. We first intro-
duce the general longitudinal dynamics of a vehicle in the network, and then discuss the
differences in dynamics between human-driven and connected automated vehicles.

2.1.1 Longitudinal vehicle dynamics

We consider a connected vehicle network with N vehicles. Let us denote the position of the
rear bumper of vehicle i by si and its velocity by vi; see Figure 2.1 A. We neglect tire slip,
suspension dynamics, aerodynamic drag, rolling resistance, grade, and engine dynamics.
Then the longitudinal motion is described by

ṡi(t) = vi(t),

v̇i(t) = fsat(ui(t)),
(2.1)

where the dot represents differentiation with respect to time t, ui gives the scaled driving
force commanded by the vehicle operator, and the saturation function fsat represents the
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limits of the engine and brakes of the vehicle. In particular, we use

fsat =


umin, if u≤ umin ,

u, if umin < u < umax ,

umax, if u≥ umax ,

(2.2)

shown in Figure 2.2A with limits umax = 3 [m/s2] and umin = −10 [m/s2], as these corre-
spond to the acceleration limits observed in experiments.

2.1.2 Modeling regular human drivers

For regular human-driven vehicles (HVs) the human driver exhibits two kinds of longitudinal
vehicle control: car following and conflict prevention. During car following the vehicle is
tracking the motion of the vehicle directly ahead and chooses the acceleration based on the
headway (distance to the rear bumper of the preceding vehicle) and the relative velocity to
the vehicle ahead. We adopt a model from [12, 8] and assume that the driver of vehicle i

responds to the motion of the preceding vehicle using the nonlinear controller

uhf
i (t) = αi

(
Vi(hi(t− τi))− vi(t− τi)

)
+βi

(
Wi(vi+1(t− τi))− vi(t− τi)

)
(2.3)

where τi represents the sum of the driver reaction time and the actuation delay while
αi and βi are control gains for the headway and relative velocity feedback, respectively.
The superscript hf denotes human car following. In the relative velocity feedback Wi

is a saturation function for the velocity feedback, that prevents car i from following the
predecessor if vi+1 > vmax,i.

Wi(v) =

v, if v < vmax,i ,

vmax,i, if v≥ vmax,i ,
(2.4)

see Figure 2.2 B where vmax = 24 [m/s].
The headway feedback term in (2.3) involves the nonlinear function Vi(h) called the

range policy or optimal velocity function [66, 8] which satisfies the following properties:

1. Vi(h) is continuous and monotonically increasing (the more sparse the traffic is, the
faster the vehicles want to travel).

2. Vi(h) ≡ 0 for h≤ hst,i (in dense traffic vehicles intend to stop).
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Figure 2.1: A): Connected vehicle network arranged in open chain configuration, featuring
regular human driven vehicles (HVs, grey), connected human-driven vehicles (CHVs, green),
and connected automated vehicles (CAVs, yellow) B): A connected vehicle network with
N = 11 vehicles arranged in ring configuration, viewed from the top. Grey dots represent
regular human-driven vehicles (HVs), green dots represent connected human-driven vehicles
(CHVs), and yellow dots represent connected automated vehicles (CAVs). The vehicles
move around the ring in the clockwise direction. Note that cars 1 to 4 are replicated from
the open chain configuration.

3. Vi(h)≡ vmax,i for h≥ hgo,i (in sparse traffic vehicles intend to travel with the maximum
speed).

These properties can be summarized as

Vi(h) =


0, if h≤ hst,i ,

F(h), if hst,i < h < hgo,i ,

vmax,i, if h≥ hgo,i ,

(2.5)

A simple choice of F(h) is a piecewise-linear function

F(h) = κ(h−hst,i) (2.6)

where κ = vmax,i/(hgo,i− hst,i). We use this range policy later on in the design of the
connected automated vehicle as the slope κ can be tuned to change the aggressiveness of
the CAV. Figure 2.2 C shows this function for κ = 0.6 and κ = 1.0 [s].

For human driven vehicles we use the function

F(h) = vmax,i

(
1−
( hgo,i−h

hgo,i−hst,i

)2
)

(2.7)

as we see from Figure 2.2 D that this function fits experimental data collected from human
drivers well. Model matched parameters of these range policies to two different human
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Figure 2.2: A): Saturation function for the acceleration of vehicles. B): Speed saturation
function for vehicle i C): Piecewise linear range policy designed for automated vehicle with
different aggressiveness D): Quadratic range policy for human driven vehicles fitted to data
E): Trigonometric range policy used for nonlinear analysis.

drivers are given in the first two rows of Table 2.1, and these were determined from
experiments by model matching as detailed in Section 3.2.2 and Appendix B. In order to
analytically examine traffic patterns in large connected vehicles in Chapters 4, 5 we use a
smooth range policy

F(h) =
vmax

2

(
1− cos

(
π

h−hst,i

hgo,i−hst,i

))
(2.8)

which is plotted in Figure 2.2 E. Qualitatively these range policies are similar.

Table 2.1: Range policy parameters for vehicles in connected vehicle network

Vehicle Parameters
1 hst,1 = 1.56±0.12 [m] hgo,1 = 29.1±0.92 [m] vmax,1 = 24.6±1.2 [m/s]
2 hst,2 = −0.20±0.11 [m] hgo,2 = 33.9±0.64 [m] vmax,2 = 24.0±0.6 [m/s]
3a hst,a = 5 [m] hgo,a = 45 [m] for κ = 0.6 [1/s], hgo,a = 29 [m] for κ = 1 [1/s] vmax,a = 24 [m/s]

a Since CAV parameters are designed, no error is given.

In order to define the conflict prevention dynamics of human-driven vehicles we define
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the time to conflict of car i as

Ti(t) =
h(t)−hst,i

vi(t)− vi+1(t)
. (2.9)

We consider that vehicle is i at risk of conflict when Ti(t) < Tc, i.e.,

vi(t) > vi+1(t)+
1
Tc
(h(t)−hst,i) , (2.10)

where Tc is the critical time-to-conflict. When this happens, we assume that the driver of the
vehicle i tries to maintain the critical time-to-conflict using the controller

uhc
i (t) = v̇i+1(t− τc)+

1
Tc

(
vi+1(t− τc)− vi(t− τc)

)
, (2.11)

where τc is the delay associated with the human reaction time in safety-critical situations
and the superscript hc refers to this being the human-driven vehicles motion under conflict
prevention. The commanded longitudinal acceleration of human-driven vehicle i is then

ui(t) =

uhf
i (t), if T (t− τc) ≥ Tc,

uhc
i (t), otherwise.

(2.12)

2.1.3 Connected vehicles

Recall from Figure 1.1 that connected human-driven vehicles (CHVs) are human-driven
vehicles equipped with V2X communication devices, enabling them to transmit and receive
wireless messages. We also note that connected automated vehicles also have the same
capability in terms of communication. We refer to any vehicle that uses V2X communication
as a connected vehicle (CV). Messages are broadcasted intermittently with a sampling time
of ∆t. Here we use ∆t = 0.1 [s] corresponding to the dedicated short range communication
(DSRC) standard [80]. We assume that each connected vehicle samples its motion data at
time instances tk = k ∆t, k = 0,1,2, . . . that can be achieved at a few millisecond accuracy in
V2X devices available in the market. When a connected vehicle transmits a packet, another
connected vehicle may receive the packet. According to our experiments with the vehicles
and devices shown in Figure 3.5 E-F, there is no significant packet loss if the vehicles are
within 300 [m] of each other in a highway environment. Thus we consider that vehicles can
communicate up to 300 [m] distance.
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2.1.4 Connected automated vehicles

In addition to sending and receiving V2X messages, a connected automated vehicle (CAV)
utilizes the obtained information to control its motion. We assume that the CAV uses a com-
bination of sensory information about the vehicle immediately ahead and data received from
multiple vehicles ahead via V2V communication to command its longitudinal acceleration.
Similar to human-driven vehicles, CAVs may also run in car following or conflict prevention
modes.

In car-following mode given a processing and actuation delay τa, the acceleration of the
CAV i in car-following mode is commanded by

uaf
i (t) = a

(
Va
(
hi(tk− τa)

)
− vi(tk− τa)

)
+ b
(

Wa(v̄
(d)
i (tk− τa))− vi(tk− τa)

)
, (2.13)

which is held constant during the time interval t ∈ [tk, tk+1) using a zero order hold. The
superscript af denotes automated car following, while a and b are control gains for the
headway feedback term and relative velocity feedback terms according to configuration in
Figure 3.5 D. Also, we design the piecewise linear range policy

Va(h) =


0, if h≤ hst,a ,

κ(h−hst,a), if hst,a < h < hgo,a ,

vmax,a, if h≥ hgo,a ,

(2.14)

with the parameters provided in the third row of Table 2.1. The corresponding function is
plotted in Figure 2.2 E for different values of κ . Such a design gives an intuitive interpretation
to the middle section of the range policy where the slope is given by κ = vmax,a

hgo,a−hst,a
, has

a unit of [1/s], and can be adjusted to tune the "aggressiveness" of the CAV’s controller.
In our case, the slope is set to κ = 1 [1/s] and κ = 0.6 [1/s] depending on the scenario.
The velocity feedback features the weighted average velocity v̄(d)i of the vehicles located
downstream of CAV i. That is,

v̄(d)i (tk) = ∑
j∈Ek

i

wi, j(tk)v j(tk) , s.t. ∑
j∈Ek

i

wi, j(tk) = 1, (2.15)

where the set Ek
i denotes the downstream vehicles including

• the immediate predecessor of vehicle i ( j = i+ 1). The information can either be
obtained via V2V (if i+ 1 is connected) or range sensors (if i+ 1 is a regular human-
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driven vehicle).

• connected vehicles within look-ahead distance D that are traveling slower than vehicle
i+ 1.

as applied in [10]. In the specific case shown in Figure 2.1 A we have Ek
i = {i+ 1, i+ 2}.

The CHV i+ 3 is traveling faster than the vehicle i+ 1. The headway feedback gain and
relative velocity gain are tuned to a = 0.4 [1/s] and b = 0.5 [1/s] based on safety consider-
ations, and τa = 0.5 [s] was established in prior experiments with this CAV. Finally, Wa is
given by (2.4), as in human-driver car following using vmax,a.

In conflict prevention mode we command the acceleration of the automated vehicle as

uac
i (t) = v̇i+1(tk− τa)+

1
Tc
(vi+1(tk− τa)− vi(tk− τc)) , (2.16)

which is held constant during the time interval t ∈ [tk, tk+1) using a zero order hold. That is,
the overall longitudinal acceleration is given by

ui(t) =

uaf
i (t), if T (t− τa) ≥ Tc ,

uac
i (t), otherwise ,

(2.17)

in the time interval t ∈ [tk, tk+1).

2.2 Connected vehicle network configuration

In this dissertation we use two configurations of connected vehicle networks: the open
chain and the ring configuration. Here we describe both of these configurations and their
applications. We also discuss the uniform flow state as the state which we examine in each
configuration.

2.2.1 Open chain configuration

An example of the open chain configuration is shown in Figure 2.1 A. In this configuration
N vehicle are aligned such that the i-th vehicle follows the i+ 1-st vehicle in a single lane,
with the N-th vehicle being the first vehicle in the open chain. We will investigate the open
chain configuration around a pseudo-equilibrium state called uniform flow, where all the
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vehicles travel at a constant speed v∗ pre-defined by the first vehicle, and their positions
along the road are given by

s∗i = v∗ t + s0
i , i = 1, ..., N, (2.18)

such that

s0
i+1− s0

i − `i = h∗i , i = 1, ..., N−1,

v∗ = Vi(h∗i ), i = 1, ..., N−1.
(2.19)

In this dissertation we primarily look at a two-vehicle open chain where a connected
automated vehicle follows a connected human-driven vehicle. In Chapter 3 we investigate
whether the connected automated vehicle is able to go to uniform flow while following a
connected human-driven vehicle, as well as whether it will be able to sustain uniform flow
upon perturbations.

2.2.2 Ring configuration

The ring configuration can be visualized by placing the open chain of N vehicles on a ring
road, such that first vehicle follows the N-th vehicle, i.e., we have the periodic boundary
conditions sN+1 = s1, vN+1 = v1, see Figure 2.1 B [22, 66, 8, 9]. The total length of the
road is L+∑

N
i=1 `i, where L is called the effective road length and `i is the length of vehicle

i. In fact, vehicles 1 through 4 in Figure 2.1 B replicate the open chain configuration in
2.1 A. One can show that the ring admits a uniform flow where (2.18,2.19) are satisfied in
addition to

s0
1− s0

N− `N = h∗N ,

v∗ = VN(h∗N), i = 1, ..., N .
(2.20)

due to the boundary condition. For a general connected vehicle network on the ring, the
uniform flow velocity can be calculated by solving

L−
N

∑
i=1

`i +V−1
i (v∗) = 0 (2.21)

numerically. Note, that in order to get a unique uniform flow for a given ring length L this
ring length must satisfy

N

∑
i=1

hst, i ≤ L≤
N

∑
i=1

hgo, i. (2.22)
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due to the Vi being invertible in that region. In subsequent chapters we analyze the connected
vehicle networks in ring configuration about uniform flow to determine whether vehicles in
the network would approach this state or congestion would develop.

2.3 Summary

In this section we described the dynamics of the vehicles in the connected vehicle network,
namely the human-driven vehicles and the connected automated vehicles. For all vehicles,
the car-following dynamics were governed by two delay-differential equations. While the
delay in the human-driven vehicle case stemmed from human reaction and actuation, the
delay in the connected automated vehicle is primarily due to actuation. The dynamics of the
connected automated vehicles were also discretized in time to represent digital communica-
tion and control.

After introducing the dynamics of the vehicles, we considered two ways in which these
vehicles can be placed on the road to form a connected vehicle network, namely the open
chain configuration and ring road configuration. In the subsequent sections we first use the
open-chain configuration to tune the connected automated vehicles’s controller. After that
we study traffic patterns using the ring road configuration.
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CHAPTER 3

Experimental implementation of connected
automated vehicles

In this chapter we implement a car following controller for the connected automated vehicle.
First, in section 3.1 we tune the gains on the car following controller when the connected
automated vehicle follows a single vehicle immediately ahead. Then in section 3.2 we
examine the effects of the connected automated vehicle on the traffic patterns in a network
of 3 vehicles - two connected human-driven vehicles in addition to the connected automated
vehicle. We then demonstrate that when the connected automated vehicles use long-range
feedback for control can significantly benefit traffic flow. In our experiments wireless
vehicle-to-vehicle (V2V) communication is realized using the devices shown in Figure
3.1. They consist of an electronic control unit and an antennae which transmits basic
safety messages (BSM) using standardized Dedicated Short Range Communication (DSRC)
protocol [68, 80]. The information broadcasted includes position and velocity. The devices
are powered through a 12 Volt power outlet and can be retrofitted to any regular vehicle. The
vehicles shown in Figure 3.1 are equipped with such V2V devices. Moreover, the vehicle on
the right is also capable of automated driving. In particular, the throttle and the brakes can
be commanded based on the data received from the other vehicles via V2V communication.

3.1 Car following with one predecessor

In this section we design experiments to tune the car following controller of the connected
automated vehicle derived in the previous section. We focus on the scenario where the
connected automated vehicle follows a single connected human driven vehicle, as seen in
Figure 3.1 A. In this scenario, the equations of motion of the connected automated vehicle
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(2.1,2.13) can be reduced to

ḣ(t) = vL(t)− v(t),

v̇(t) = fsat(u(t)),
(3.1)

where

u(t) = a
(

Va
(
h(tk− τa)

)
− v(tk− τa)

)
+ b
(

Wa(vL(tk− τa))− v(tk− τa)
)

, (3.2)

Note that in this case we define the dynamics using the headway h rather than the CAV’s
position s. This variable definition is more suited when analyzing the open-chain configura-
tion. We use analytical criteria of plant and string stability [94] [26] as derived in Appendix
A in combination with data-based criteria to select gains a and b for the above car following
controller.

3.1.1 Experiments for gain tuning

In order to tune the feedback gains of the car following controller for the scenario shown
in Figure 3.1 A, we perform a set of car following experiments. In these car following
experiments we have a human-driven leading vehicle CHV shown in Figure 3.1 B driving
on the route shown in Figure 3.1 D according to a specific speed profile. The connected
automated vehicle then uses 2.13 to govern its longitudinal motion whilst being steered by a
human operator. An example of the headway time profile and the velocity profile during
such a test is shown in Figure 3.2 A,B.
For a given set of gains a, b the human driver of the leading vehicle performs a driving

cycle where he is asked to maintain a steady state speed over four time intervals, which are
marked by the grey shading. First the leading vehicle accelerates from a stop to 15 [mi/hr]
in the first steady speed section. In the second steady state section the driver accelerates to
30 mi/hr. In the third steady state section the driver of the leading vehicle slows down to
10 mi/hr. Finally in the last steady state section the leading vehicle accelerates to 20 mi/hr.
Finally the leading vehicle stops, completing one lap of the course, see Figure 3.1 C. For
each run we vary gains a and b, and obtain the GPS positions and velocities of the two
vehicles throughout the test, see Figure 3.2A,B.

To select the proper gains we use several criteria. The first criterion is called the
time-to-conflict criterion. We define the instantaneous time-to-conflict as

T (t) =
h−hst

v(t)− vl(t)
. (3.3)
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Figure 3.1: A: Connected vehicle network used in gain tuning experiment consisting of a
connected human-driven vehicle (CHV) and a connected automated vehicle (CAV) in an
open chain configuration. Note that the CHV has the index "L" associated with it, and the
CAV has no index. B: Actual vehicles used in experiments with a human-driven connected
vehicle on the left and a connected automated vehicle on the right [28, 68] C: V2V devices
for connected vehicles [28, 68] D: Route for longitudinal experiment on MCity test track,
with start, finish, and direction labeled. The blue line segments of the trajectory denote
where leading vehicle maintains a steady state velocity, the green and red segments denote
where the leading vehicle accelerates and decelerates respectively.

Figure 3.2: Collected data for a longitudinal car-following run with a = 0.8 [1/s] and b = 0.2
[1/s] including A: Headway of the automated vehicle relative to the leading vehicle, B:
Velocities of the leading vehicle and automated vehicle, and C: Time-to-conflict vs time for
one of the test runs. The time segments where the leading vehicle is trying to maintain a
constant velocity and the automated vehicle settles close to steady car following are shaded
in grey. In figure A, the dashed lines denote the headways corresponding to the velocities in
steady state sections according to h∗ = V−1(v∗).
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Figure 3.3: Frequency analysis of the velocities of the experimental run with a = 0.8 [1/s]
and b = 0.2 [1/s] including A: the Fourier transforms of the velocities of the leading (green)
and automated (black) and B: Fourier transform ratio vs frequency for the same experimental
run as in Figure 3.2.

The time-to-conflict index is then given by

CT(a,b) =
∫ tend

tst

Relu(Tc−T (t))dt (3.4)

where the function

Relu(u) =

 0 if u < 0

u otherwise
(3.5)

and tst and tend represent the start and end of each run. The value Tc denotes a threshold
for time to conflict below which we would consider the car following to be unsafe. For
our purposes we set Tc = 6 [s]. Large values of CT indicate that the connected automated
vehicle gets close to colliding with the leading vehicle, and thus correspond to an undesirable
design.
The second criterion used for parameter selection is the string instability criterion. We

define the string instability index as

Cs(a,b) =
∫ fend

fst

Relu

(
G( f )
Gl( f )

−1

)
d f (3.6)

where G( f ) represents the Fast Fourier Transform of the speed of the automated vehicle
during each run, and likewise Gl( f ) is the Fast Fourier Transform of the speed of the
leading vehicle. Figure 3.3 A shows the Fast Fourier Transforms of the velocities of the
leading vehicle and the following vehicle. Note that the Fast Fouier Transforms have been
filtered using the Savitzky-Golay filter with a order 3 polynomial and frame length of 31
points. The ratio of the two is depicted in Figure 3.3 B. Larger values of Cs indicate that
velocity fluctuations coming from the leading vehicle tend to get amplified by the connected

18



Figure 3.4: Charts in (b,a) depicting A: Time-to-conflict index and B: String instability
index values for given (b,a) pairs. The values of indices are coded according to a point
size scheme with an affine correlation: larger points represent larger index values. Black
curves represent the analytic string stability boundaries for τ̄ = 0.55, 0.6, 0.65, 0.7 [s] (see
Appendix A). The corresponding regions of string stability are shaded grey, with darker
shade corresponding to larger delay.

automated vehicle, which is not desirable and leads to congestion and loss of fuel economy
[28]. In Figure 3.4 we plot the time-to-conflict and the string instability indices in the (b,a)
plane using a point size scheme. The values of the indices are given by the size of the points:
larger index values correspond to larger points.
To supplement the experimental criteria in the parameter selection we also use the analytic
string stability boundaries for car following provided in Appendix A and [26]. The three
black string stability boundaries correspond to the delays τa = 0.6, 0.65, 0.7 s, as these
are the delays observed for the connected automated vehicle with packet loss. Based on
observing Figure 3.4, we chose a = 0.4 [1/s] and b = 0.5 [1/s] as the gains. This pair of
gains yielded low values for the both the time-to-conflict index and the string instability
index. This pair of gains is also located inside the analytic stability boundaries for the
examined delays.

3.2 Experimental "ring road" for traffic pattern investiga-
tion

In this section we introduce an experimental framework that allows us to evaluate traffic
patterns in a connected vehicle network with two connected human driven vehicles and one
connected automated vehicle, as seen in Figure 3.5 A. By using the V2V communication of
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Figure 3.5: A: Connected vehicle network consisting of human-driven connected vehicles
(green) and a connected automated vehicle (yellow) B: Representation of the connected
vehicle network on a ring road C: The tail vehicle is projected in front of the head vehicle to
provide a periodic boundary condition [11]. D: Vehicles i = 1 and i = 2 are both projected
in front of the head vehicle for long-range feedback implementation

the connected automated vehicle, we are able to utilise the ring road boundary condition
developed in Chapter 2 Section 2.2. This experimental framework allows us to investigate
emerging traffic patterns for a wide range of traffic speeds. We then demonstrate that the
traffic patterns observed in the performed experiments can be replicated by simulating the
models proposed in Chapter 2 Section 2.1.

3.2.1 Experimental design

Since our goal is to evaluate traffic patterns in connected vehicle networks such as uniform
flow or congestion waves, we are interested in how velocity fluctuations propagate along
vehicle chains. A common way in the literature to study such problems is to place N vehicles
on a circular road of length L as discussed in Section 2.2 of Chapter 2. Moreover, the
average spacing of the vehicles on the ring

h∗avg =
1
N

(
L−

N

∑
i=1

`i

)
(3.7)

can be controlled by adjusting the ring length L and/or the number of vehicles N.
This setup may allow one to study traffic patterns such as uniform flow or traveling
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waves depending on parameters in the longitudinal dynamics and the average spacing (3.7).
This setup was used in [93] to demonstrate the formation on traffic jams with human-driven
vehicles, while in [91] and automated vehicle was placed among human-driven cars and
it was shown that it can mitigate congestion by keeping a large distance to its predecessor.
However, the speeds and vehicle spacings achieved in these experiments had to be kept low
(below 10 [m/s]) in order to keep the lateral acceleration within a comfortable limit and
allow drivers to focus on longitudinal control rather than steering. That is, this setup makes
it very challenging to evaluate the traffic patterns for realistic speeds.

To solve this problem we propose to use V2V connectivity in order to establish periodic
boundary conditions without having vehicles to drive on a ring. The key idea is to allow that
head vehicle of an open chain to observe the motion of the tail vehicle of the chain. Then, by
adding the ring length L to the longitudinal coordinate of the last vehicle it can be virtually
placed ahead of the connected automated vehicle (CAV) as illustrated in Figure 3.5 A,C
for a three-vehicle chain [11]. In this case, the head vehicle (yellow) is a CAV which is
followed by two CHVs. Then using s1 +L in the controllers of the connected automated
vehicle the CHV i = 1 can be "placed" in front of it. This setup allows the human drivers to
drive at realistic speed ranges while "closing the ring" via V2V communication.

Moreover, the established periodic boundary condition allows one to evaluate the impact
of a connected automated vehicle on traffic flow for different ring lengths (and average
vehicle spacings) and different communication strategies. Indeed, the idea can be extended
to scenarios when a connected automated vehicle responds to the motion of multiple vehicles
ahead and allows us to evaluate the impact of connected automated vehicles on traffic flow.
Specifically Figure 3.6 C shows the nearest-neighbor feedback configuration, where the
CAV responds only to CHV i = 1, while Figure 3.6 D shows the long-range feedback
configuration, where the CAV responds to CHV i = 1 and CHV i = 2. In this chapter
we experimentally compare the traffic patterns emerging in the nearest-network feedback
configuration and the long-range feedback configuration.

3.2.2 Experimental results

We performed experiments on a straight public road with the connected automated vehicle set
up so that the connected vehicles were in the communication range at all times. Here the CAV
uses the car following controller given by (2.13,2.14,2.6,2.15) to prescribe the acceleration.
The headway and relative velocity gains are tuned to a = 0.4 and b = 0.5 [1/s], see Section
3.1. For the nearest-neighbor feedback we set Ek

3 = {1} and weight w3,1 = 1 [1/s] while for
the long-range feedback we set Ek

3 = {1,2} and weights w3,1 = 0.4 [1/s], w3,2 = 0.6 [1/s],
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c.f. (2.15). Also we considered scenarios with κ = 0.6 [1/s] and κ = 1.0 [1/s] to observe
the effects of the "aggresiveness" of the automated vehicle. In particular, we studied three
scenarios as outlined in Table 3.1. For each κ the ring length L (and consequently the average
vehicle spacing h∗avg) was varied, as seen in Table 3.1 to account for different uniform flow
speeds up to about 24 [m/s]. For each experiment the vehicles started from a stationary
configuration and then were given some time to approach either a steady state where they
traveled close to uniform flow or reached steady oscillatory behavior during which they
periodically slowed down and speeded up.

Table 3.1: Experimental scenarios for three car connected vehicle network

Feedback Ring Lengths Examined Average Spacings Examined
κ = 0.6 [1/s] nearest-neighbor L ∈ {30, 45, . . . , 135} [m] h∗avg ∈ {5, 10, . . . , 40} [m]
κ = 1.0 [1/s] nearest-neighbor L ∈ {30, 45, . . . , 90} [m] h∗avg ∈ {5, 10, . . . , 25} [m]

κ = 1.0 [1/s] long-range L ∈ {30, 45, . . . , 90} [m] h∗avg ∈ {5, 10, . . . , 25} [m]

The first column of Figure 3.6 show time profiles of the headways and velocities of the
three vehicles for h∗avg = 15 [m], with the first two rows corresponding to nearest-neighbor
feedback with κ = 0.6 [1/s], the second two rows corresponding to the nearest-neighbor
feedback with κ = 1.0 [1/s], and the last two rows corresponding to the long-range feedback
with κ = 1.0 [1/s].

For κ = 0.6 [1/s] (see Figure 3.6 A, C) the vehicles accelerate from a standstill and
approach uniform flow, where they travel at a constant velocity around 12 [m/s]. This
corresponds to the equilibrium speed predicted by the car following models (see black
dashed line). When we set κ = 1.0 [1/s] (see Figure 3.6 E, G), the vehicles approach a state
where their speed and headway oscillate. In this case the uniform flow is unstable and the
uniform flow velocity would be around 15 [m/s] that is close to the average velocities of
the vehicles during the steady oscillations. Lastly, when we introduce long-range feedback
with κ = 1.0 [1/s] vehicles approach uniform flow (see Figure 3.6 J, L). Here, the uniform
flow velocity is also about 15 [m/s] and the vehicles are able to sustain this state and no
oscillations develop.

To show that the above traffic behavior is captured by the vehicle models developed
in Section 2.1 of this chapter, we also plot the corresponding model-matched simulation
results in the right column of Figure 3.6. In particular, model matching was used to select
the parameters αi, βi and τi for the human-driven vehicles i = 1, 2, see Appendix B for
details. We found that, while these parameters may vary in time and from driver to driver,
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using approximations α1 = α2, β1 = β2 and τ1 = τ2 we are able to reproduce the behavior
of the individual vehicles and that of the connected vehicle network sufficiently well.

From the experiments and the model matched simulations we see that for the one-car-
look-ahead configuration, choosing between κ = 0.6 [1/s] and κ = 1.0 [1/s] is a tradeoff
between speed and stability of uniform flow. For a given spacing h∗avg decreasing κ decreases
the overall velocity of the vehicles, while increasing κ would make the network more
susceptible to developing undesirable oscillations. The above tradeoff can be resolved
by using a long-range feedback, where even with the more aggressively tuned κ = 1.0
[1/s] the connected vehicle network is able to sustain uniform flow at a higher speed. It
is demonstrated that by getting information from multiple vehicles ahead, we are able to
improve the throughput of the network without making it susceptible to oscillating behavior.
This has been verified by multiple experiments using different initial conditions.

3.3 Summary

In this section we developed a controller for a connected automated vehicle and investigated
the traffic patterns formed when this vehicle interacted with human-driven vehicles. To tune
the gains of the car-following controller we used an open chain configuration, where the
connected automated vehicle followed a connected human-driven vehicle while the human
was driving according to a pre-defined speed profile. Experimental criteria were developed
and applied to the collected data to tune the controller in addition to standard analytical
criteria.

After tuning the controller for the connected automated vehicle, we placed it together
with two connected human-driven vehicles into a three-car connected vehicle network. We
used the ring configuration to ensure that traffic patterns form and persist for just three
vehicles. Our experimental design used the connected automated vehicle to ensure the
ring boundary condition so that we could observe speeds of up to 24 [m/s] without taking
lateral dynamics into account. In these experiments we observed that when the connected
automated vehicle relied only on the information of the preceding vehicle, pushing the
vehicles closer together yielded traffic waves rather than uniform flow. Using long range
feedback however allows us to push the vehicles closer together and ensure stable uniform
flow. Lastly we showed that modeling car following via delayed differential equations
allows us to replicate the behavior of the connected vehicle network as well as individual
vehicles observed in experiments.

These experimental results motivated us to study traffic patterns in large connected
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vehicle networks as it is important to see whether traffic patterns change for a large number
of vehicles. Because modeling car following via differential equations allowed us to replicate
experimental results, we will perform this investigation by analyzing and simulating these
equations.
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Figure 3.6: Time profiles of headways and velocities for vehicles in connected vehicle
network with average spacing h∗ = 15 [m] from the experiment (left column) and model
matched simulations (right column) for the three scenarios presented in Table II.
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CHAPTER 4

Network-based nonlinear analysis of human
driven traffic

As seen from (2.1,2.3), equations governing car following for human drivers feature several
nonlinearities including the saturation in the range policy and the saturation in acceleration.
Consequently, we need to analyze the nonlinear dynamics of the arising connected vehicle
systems. Of specific interest is to identify the domains of bistability in the parameter space
where smooth traffic flow can be achieved, but sufficiently large perturbations may lead
to stop-and-go traffic jams [22, 37, 65, 67]. In [37] the critical densities at which bistabil-
ity appears were derived analytically for a simplified model, while nonlinear oscillatory
solutions were characterized in [22] using Hopf calculations and numerical continuation.
By extending these techniques to infinite dimensional state spaces, the effects of driver
reaction time were investigated in [65, 67]. While these techniques were successful when
considering simplified human-driver models, they become cumbersome and inefficient when
considering more complicated connected cruise control strategies. This demands new tools
for the analysis of nonlinear networked systems to allow fast controller prototyping where
the control algorithms can be designed at the vehicle level but their impact on the large-scale
dynamics can also be evaluated.

One way to characterize nonlinear dynamics of high-dimensional systems is to identify
the so-called nonlinear normal modes (NNMs). Here we briefly discuss the history of NNMs
and refer the reader to the comprehensive summary presented in [41]. The concept of NNMs
can be traced back to Rosenberg [79], where he defined them as “vibrations-in-unison
of the system". Shaw and Pierre expanded this definition in [84] to “a motion that takes
place on a two-dimensional invariant manifold embedded in state space". (The manifold
was two-dimensional since they were concerned about mechanical systems constructed of
one-degree-of-freedom elements, but the concept can be generalized to higher dimensional
manifolds.) By exploiting the invariance of these nonlinear manifolds, they presented an
analytical method for the approximation of NNMs that led to algebraic equations. Other
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analytical techniques used to compute NNMs include various energy-based methods [49, 79];
the method of multiple scales [30, 58, 102]; the method of normal forms [38, 57]; and the
harmonic balance method [35, 96]. These analytical methods were applied to systems
consisting of small numbers of oscillators due to the complexity of the calculations.

In [41] it was suggested that numerical continuation [16, 89] may be used to extend
NNM analysis to systems containing larger numbers of oscillators. The practicality of
continuation in NNM analysis was demonstrated in [69] along with several applications to
mechanical systems, while in [31, 32] continuation was used to obtain NNMs for structures
with cyclic symmetry containing up to 60 oscillators. However, beyond this limit numerical
continuation becomes unfeasible due to high computational demand. Furthermore, when
using numerical methods one loses the intuition that can be gained when applying analytical
approaches.

The analysis of networked systems with large numbers of nodes is not feasible with the
current analytical and numerical methods since they lead to large numbers of coupled linear
algebraic equations that need to be solved simultaneously to obtain the modal equations. Our
goal is to extend these limitations by exploiting the network structure. Using network-based
linear and nonlinear transformations we decompose the system into uncoupled nonlinear
modal equations. Each modal equation can be obtained by solving a small number of
algebraic equations without considering the other modes. When bifurcations occur in the
corresponding modal subspace normal forms can be used to characterize the nonlinear
behavior of the entire system.

In this chapter we present the mathematical methods for systems with cyclic structure
and apply the developed tools to investigate the dynamics of a connected vehicle system
where each vehicle utilizes information about the motion of the vehicle immediately ahead;
see Fig. 2.1(b). In Section 4.2 we develop a network-based algorithm for decomposing
general systems with cyclic symmetry into nonlinear modes. In Section 4.3 we apply this
algorithm to analyze nonlinear oscillations arising through a Hopf bifurcation in a connected
vehicle system consisting of conventional vehicles. Analytical results are compared to those
of numerical continuation in Section 4.4, where we evaluate the effects of the driver model
parameters on the dynamics of the network. Finally, we discuss the implications of the
developed network-based algorithms in 4.5.

4.1 Simplified model for human-driven car following

In this section we analyze the connected vehicle network in a ring configuration (see
Subsection 2.2.2) composed of human drivers. To develop analytical tools for observing
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behaviors of large vehicle networks in this chapter we simplify the human (2.1,2.3) by
excluding the acceleration saturation fsat(·) as well as the delay, however note that a
similar analysis can be performed with both for a sufficiently small network, see [45].
For simplicity we also consider that all the human drivers have the same parameters, i.e.
αi = α , βi = β , Vi(h) = V (h) for i = 1 . . .N. Thus in this scenario, the dynamics of each
vehicle can be represented by two ordinary differential equations

ṡi = vi

v̇i = α

(
V (hi)− vi

)
+β

(
vi+1− vi

) (4.1)

Where the range policy is the one defined by (2.5,2.8) due to the fact that it has continuous
first derivatives, although similar analysis can be performed for the range policies shown in
Figure 2.2 E. We consider the system around uniform flow defined in (2.18-2.22) define the
perturbations

s̃i = si− s∗i , ṽi = vi− v∗, (4.2)

and approximate the system about the pseudo-equilibrium (2.18,2.19) up to the cubic order
using Taylor expansion that yields

˙̃si = ṽi ,

˙̃vi = p (s̃i+1− s̃i)+
q
2
(s̃i+1− s̃i)

2 +
r
6
(s̃i+1− s̃i)

3 +β1 (ṽi+1− ṽi)−α ṽi,
(4.3)

where

p = α V ′(h∗) ,

q = α V ′′(h∗) ,

r = α V ′′′(h∗) ,

(4.4)

and the prime denotes the derivative with respect to the headway h. In this chapter we use
the approximation (4.3) to develop network-based methods to analyze patterns in networks
of human-driven vehicles.

4.2 Nonlinear network-based analysis

In this section we develop methods for the nonlinear analysis of a general system with cyclic
structure. For simplicity, we present the result for two equations per node and unidirectional
nearest-neighbor coupling, but the approach can be generalized for arbitrary number of
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equations per node and more general coupling structures that admit ZN symmetry. We
investigate the system in the vicinity of a uniform equilibrium, where we approximate the
dynamics using Taylor expansion up to third order. We then write the quadratic and cubic
terms of the approximated system into a compact form, which allows us to perform a series
of linear and nonlinear network-based transformations. These transformations result in
nonlinear modal equations that are decoupled and can be analyzed separately in order to
characterize the dynamics of the entire system.

Consider a system composed of N nodes arranged in a cyclic structure where the i+1-st
node is connected to the i-th node and the first node is connected to the N-th node; see
Fig. 2.1 B. Assuming that the state of the i-th node is described by the vector xi = [x(1)i x(2)i ]T,
where T denotes the transpose, the dynamics of the i-th node can be written into the form

ẋi = g(xi,xi+1), (4.5)

for i= 1, . . . ,N, where g = [g(1) g(2)]T and xN+1≡ x1. We assume that the system possesses
a uniform equilibrium

x∗i = x∗, (4.6)

for i = 1, . . . , N which satisfies g(x∗, x∗) = 0.

By defining the perturbation
yi = xi − x∗, (4.7)

where yi = [y(1)i y(2)i ]T, the third-order Taylor approximation of (4.5) around the equilibrium
(4.6) can be written as

ẏi = [J0]
∗yi + [J1]

∗yi+1 +
1
2 ∑

b=0,1
∑

β=1,2
H(β )

b (yi+b)
(
[∂

(β )
b J0]

∗yi +[∂
(β )
b J1]

∗yi+1

)
+

1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
H(β )

b (yi+b)H(δ )
d (yi+d)

(
[∂

(β )
b ∂

(δ )
d J0]

∗yi +[∂
(β )
b ∂

(δ )
d J1]

∗yi+1

)
,

(4.8)

where ∂
(β )
b = ∂

∂x(β )i+b

, and the operators

Jb =

[
∂
(1)
b g(1) ∂

(2)
b g(1)

∂
(1)
b g(2) ∂

(2)
b g(2)

]
, (4.9)

where b = 0,1 represent the derivatives of the function g. In (4.8) the asterisk denotes that
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the derivatives are evaluated at the equilibrium. The quadratic and cubic terms contain the
diagonal matrices

H(β )
b (yi) =

[
y(β )i+b 0

0 y(β )i+b

]
, (4.10)

for β = 1,2, b = 0,1, and i = 1, . . . ,N. The matrix H(β )
0 (yi) is related to the self-feedback

(the dependence of a node’s dynamics on its own states), while H(β )
1 (yi+1) is related to the

coupling (the dependence of a node’s dynamics on the state of the neighboring node). We
remark that the double sum in (4.8) results in 4 different quadratic terms while the quadruple
sum results in 10 different cubic terms.

4.2.1 Network Structure

Before we proceed with the general analysis we rewrite (4.8) into a form that allows us to
take advantage of the cyclic structure during the linear and nonlinear analysis. In order to do
this we first define the direct product (or Kronecker product) of matrices B = [bi j] ∈ CN×M

and C ∈ CP×Q as

B⊗C =


b11C b12C · · · b1MC
b21C b22C · · · b2MC

...
... . . . ...

bN 1C bN 2C · · · bN MC

 , (4.11)

where B⊗C ∈ CN P×M Q. We also define the vector ŷ = col[y1 · · · yi · · · yN ], where the
operator col[·] stacks vectors into one large column vector. Thus, using (4.8) and (4.11) the
dynamics of the entire system can be written into the form

˙̂y =
(

IN⊗ [J0]
∗+AN⊗ [J1]

∗
)

ŷ +
1
2 ∑

b=0,1
∑

β=1,2
L̂(β )

(
Ĥb(ŷ)

)(
IN⊗ [∂

(β )
b J0]

∗+AN⊗ [∂
(β )
b J1]

∗
)

ŷ

+
1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
L̂(β )

(
Ĥb(ŷ)

)
L̂(δ )

(
Ĥd(ŷ)

)(
IN⊗ [∂

(β )
b ∂

(δ )
d J0]

∗+AN⊗ [∂
(β )
b ∂

(δ )
d J1]

∗
)

ŷ,

(4.12)

where IN is the N-dimensional identity matrix and AN = [ai j ] is the N-dimensional adja-
cency matrix with circulant structure, whose elements are defined as

ai j =

1 if j = i+ 1,

0 otherwise .
(4.13)
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As mentioned above, for i = N we have j = 1. The Jacobian matrix in (4.12) contains the
blocks [J0]∗ along the diagonal and the blocks [J1]∗ above the diagonal representing the
self-coupling and the effects of the neighbors, respectively.

The nonlinear self-feedback terms feature the 2N-dimensional diagonal matrix

Ĥ0(ŷ) = diag
([

y(1)i 0

0 y(2)i

])
, (4.14)

where the operator diag(·) is defined by

diag(Bi) = diag(B1,B2, . . . ,BN) =


B1 0 . . . 0
0 B2 . . . 0
...

... . . . ...
0 0 . . . BN

 , (4.15)

as adopted from [59]. To be able to represent the nonlinear coupling terms, we shift the
blocks along the diagonal in a circulant manner using

Ĥ1(ŷ) = (AN ⊗ I) Ĥ0(ŷ) (A−1
N ⊗ I) = diag

([
y(1)i+1 0

0 y(2)i+1

])
, (4.16)

where I is the 2-dimensional identity matrix. Matrices (4.14) and (4.16) are the basic
building blocks for the quadratic and cubic terms for the system dynamics. To be able to
express all possible terms we shuffle the variables within the blocks of Ĥ0(ŷ) and Ĥ1(ŷ).
First, we define two linear shuffling operators L(1) and L(2) whose action on the diagonal
matrix

M =

[
µ 0
0 υ

]
, (4.17)

is given by

L(1)(M) =

[
1 0
0 0

]
M

[
1 0
0 0

]
+

[
0 0
1 0

]
M

[
0 1
0 0

]
=

[
µ 0
0 µ

]
,

L(2)(M) =

[
0 0
0 1

]
M

[
0 0
0 1

]
+

[
0 1
0 0

]
M

[
0 0
1 0

]
=

[
υ 0
0 υ

]
.

(4.18)
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Consequently, considering a block matrix M̂ ∈ C2N×2N with 2×2 diagonal blocks

M̂i j =

[
µi j 0
0 υi j

]
, (4.19)

we can define the shuffling operators

L̂(1)(M̂) =

(
IN ⊗

[
1 0
0 0

])
M̂
(

IN ⊗
[

1 0
0 0

])
+

(
IN ⊗

[
0 0
1 0

])
M̂
(

IN ⊗
[

0 1
0 0

])
,

L̂(2)(M̂) =

(
IN ⊗

[
0 0
0 1

])
M̂
(

IN ⊗
[

0 0
0 1

])
+

(
IN ⊗

[
0 1
0 0

])
M̂
(

IN ⊗
[

0 0
1 0

])
,

(4.20)

where the blocks are given by

[L̂(1)(M̂)]i j =

[
µi j 0
0 µi j

]
, [L̂(2)(M̂)]i j =

[
υi j 0
0 υi j

]
. (4.21)

We remark that for the more general case, when the dynamics of each node are given by
n differential equations, we need to define n shuffling operators with similar structure to
(4.20). Notice the similarity of structure of the linear, quadratic, and cubic terms in (4.12).
In the next section we exploit this structure while performing network-based coordinate
transformations.

4.2.2 Linear Modal Transformation

Prior to applying network-based nonlinear transformations, we transform the system to
modal coordinates using the linear coordinate transformation

ŷ = (TN⊗ I) ẑ , (4.22)

where the modal coordinates are defined as zk = [z(1)k z(2)k ]T, ẑ = col [z0 . . . zk . . . zN−1].
Moreover, TN =

[
e0 · · · ek · · · eN−1

]
, where ek is the k-th eigenvector of the adjacency

matrix AN corresponding to the k-th modal eigenvalue ei 2π k
N , so that i2 = −1 and k =

0, . . . , N−1. Notice that the mode number k = 0 corresponds to a translational symmetry
of the system, the mode numbers k = 1, . . . , bN

2 c correspond to having k waves along the
ring, while the mode numbers k = dN

2 e, . . . , N−1 correspond to having N− k waves along

32



the ring [59, 66]. Using the modal coordinates (4.12) can be written as

˙̂z = D̂ ẑ+
1
2 ∑

b=0,1
∑

β=1,2
L̂(β )

(
Ŝb(ẑ)

)
K̂(β )

b ẑ+
1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
L̂(β )

(
Ŝb(ẑ)

)
L̂(δ )

(
Ŝd(ẑ)

)
L̂(β δ )

bd ẑ .

(4.23)

Here the matrix
D̂ = diag(Dk) , (4.24)

is block diagonal and the 2×2 block for mode k is given by

Dk = [J0]
∗+[J1]

∗ ei 2π k
N , (4.25)

for k = 0, . . . , N−1. Note that the block Dk is in fact the k+ 1-st block along the diagonal
due to the presence of modal index 0. The matrices Ŝb(ẑ) ∈ C2N×2N , b = 0, 1 in (4.23)
have block structures such that the blocks are given by

S0k `(z fk `) =

[
z(1)fk `

0

0 z(2)fk `

]
, S1k `(z fk `) =

ei 2π (k−`)
N z(1)fk `

0

0 ei 2π (k−`)
N z(2)fk `

 , (4.26)

where the function

fk ` =

k− ` if k ≥ `,

N + k− ` if k < `,
(4.27)

defines the modal indices for the blocks and dictates the cyclic structure of the nonlinear
terms.

Since the coefficient matrices in the quadratic and cubic terms of (4.12) have the same
block structure as the Jacobian, they are also diagonalized by the linear modal transformation.
The quadratic terms contain the block-diagonal matrix

K̂(β )
b = diag(K(β )

bk ) , (4.28)

with 2×2 blocks
K(β )

bk = [∂
(β )
b J0]

∗+[∂
(β )
b J1]

∗ ei 2π k
N , (4.29)

for k = 0, . . . , N−1, while the cubic terms contain the block-diagonal matrix

L̂(β δ )
bd = diag(L(β δ )

bd k ) , (4.30)
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with 2×2 blocks

L(β δ )
bd k = [∂

(β )
b ∂

(δ )
d J0]

∗+[∂
(β )
b ∂

(δ )
d J1]

∗ ei 2π k
N , (4.31)

for k = 0, . . . , N−1. The asterisk in (4.29) and (4.31) still indicates that the matrices are
evaluated at the equilibrium.

The linear coordinate transformation (4.22) serves two purposes. First, it simplifies
the linear analysis of the system: the linear part is decoupled into N pairs of complex
differential equations, representing the oscillation modes. Thus, linear stability can be
analyzed separately for each mode and stability is ensured when all the modes are stable.
Moreover, the transformation (4.22) block-diagonalizes the nonlinear coefficient matrices in
the quadratic and cubic terms (notice the similarity between (4.24,4.25), (4.28,4.29), and
(4.30,4.31)), and transforms the matrices Ĥ0(ŷ) and Ĥ1(ŷ) into modal matrices Ŝ0(ẑ) and
Ŝ1(ẑ), cf. (4.12,4.23). The cyclic structure (4.27), that appears in both the quadratic and the
cubic terms, allows us to define nonlinear near-identity transformations for cyclic systems.

4.2.3 Nonlinear network-based coordinate transformations

After obtaining the modal coordinates where the linear terms are decoupled, we proceed
to simplify the quadratic and cubic terms using network-based transformations. These
transformations exploit the structure of the network and allow us to eliminate the second-
order and third-order terms for a given mode by solving a small number of algebraic
equations. Specifically, for a cyclic system with two equations per node, we need to solve
8 coupled algebraic equations to eliminate the quadratic terms for a given mode, and 16
coupled equations to eliminate the cubic terms for a given mode. For n equations per mode
these are n3 and n4, respectively. For a given mode we can either eliminate the nonlinear
terms up to third order or obtain the normal form if the mode undergoes a bifurcation. We
emphasize that this method is independent of the number of nodes N in the system.

4.2.3.1 Network-based quadratic near-identity transformation

To eliminate the quadratic terms in (4.23) we use the quadratic near identity transformation

ẑ =
(
Î+ Ψ̂(û)

)
û , (4.32)
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where û = col [u0 . . . uk . . . uN−1] and uk = [u(1)k u(2)k ]T. In Ψ̂(û) the 2× 2 block corre-
sponding to the mode numbers k, `= 0, . . . , N−1 is given by

Ψk `(u fk `) =

[
ψ
(11)
k ` ·u fk ` ψ

(12)
k ` ·u fk `

ψ
(21)
k ` ·u fk ` ψ

(22)
k ` ·u fk `

]
, (4.33)

where ψ
(mn)
k ` = [ψ

(mn1)
k ` ψ

(mn2)
k ` ]T, the bar denotes complex conjugate, fk ` is given by

(4.27), and the dot stands for the inner product defined as

a ·b = a1b1 + a2b2 . (4.34)

The matrix Ψ̂(û) has the same structure as the modal matrices in (4.26) that appear in the
quadratic terms of (4.23).

In order to derive the coefficients we obtain ˙̂z in two different ways up to second order.
On one hand, we substitute (4.32) into the right hand side of (4.23). On the other hand, we
take the time derivative of (4.32). Comparing these two approaches and considering

˙̂u = D̂û+O(û3) , (4.35)

we obtain(
Ψ̂(D̂ û)+ Ψ̂(û) D̂− D̂ Ψ̂(û)

)
û =

1
2

(
∑

b=0,1
∑

β=1,2
L̂(β )

(
Ŝb(û)

)
K̂(β )

b

)
û , (4.36)

where the left hand side contains the coefficients of the transformation matrix, while the
right hand side contains the quadratic terms we seek to eliminate via the transformation.
The similar structure of the matrices on the two sides of (4.36) allows us to eliminate vector
û and comparing the appropriate blocks yields

Ψk `(D fk ` u fk `)+Ψk `(u fk `)D`−DkΨk `(u fk `) =
1
2 ∑

b=0,1
∑

β=1,2
L(β )

(
Sbk `(u fk `)

)
K(β )

b` .

(4.37)

35



For each k,` pair this gives a linear system of 8 equations with 8 unknowns of the form

Ak `bk ` = ck `, (4.38)

where the coefficient matrix Ak ` ∈ C8×8 is composed of 2×2 blocks as

Ak ` = −Dk⊗ I⊗ I+ I⊗DT
` ⊗ I+ I⊗ I⊗DT

fk `

=


DT

fk ` + ξ
(11) ∗
k ` I κ

(21) ∗
`0 I −κ

(12) ∗
k 0 I 0

κ
(12) ∗
`0 I DT

fk ` + ξ
(21) ∗
k ` I 0 −κ

(12) ∗
k 0 I

−κ
(21) ∗
k 0 I 0 DT

fk ` + ξ
(12) ∗
k ` I κ

(21) ∗
`0 I

0 −κ
(21) ∗
k 0 I κ

(12) ∗
`0 I DT

fk ` + ξ
(22) ∗
k ` I

 .
(4.39)

Here we have
κ
(β δ )
k ` = ∂

(δ )
0 g(β )+ ∂

(δ )
1 g(β ) ei 2π (k−`)

N , (4.40)

and
ξ
(β δ ) ∗
k ` = κ

(β β ) ∗
`0 −κ

(δ δ ) ∗
k 0 , (4.41)

for β , δ = 1, 2 where the asterisk indicates that the derivatives are evaluated at the equi-
librium. The vector bk ` ∈ C8 contains the near-identity coefficients defined in (4.33) that
appear on the left hand side of (4.37), i.e.,

bk ` = [ψ
(111)
k ` ψ

(112)
k ` ψ

(121)
k ` ψ

(122)
k ` ψ

(211)
k ` ψ

(212)
k ` ψ

(221)
k ` ψ

(222)
k ` ]T, (4.42)

while the vector ck ` ∈C8 contains the terms that appear on the right hand side of (4.37), that
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is,

ck ` =
1
2



[(
∂
(1)
0 + ∂

(1)
1 ei 2π `

N
)
(κ

(11)
k ` )

]∗
[(

∂
(1)
0 + ∂

(1)
1 ei 2π `

N
)
(κ

(12)
k ` )

]∗
[(

∂
(2)
0 + ∂

(2)
1 ei 2π `

N
)
(κ

(11)
k ` )

]∗
[(

∂
(2)
0 + ∂

(2)
1 ei 2π `

N
)
(κ

(12)
k ` )

]∗
[(

∂
(1)
0 + ∂

(1)
1 ei 2π `

N
)
(κ

(21)
k ` )

]∗
[(

∂
(1)
0 + ∂

(1)
1 ei 2π `

N
)
(κ

(22)
k ` )

]∗
[(

∂
(2)
0 + ∂

(2)
1 ei 2π `

N
)
(κ

(21)
k ` )

]∗
[(

∂
(2)
0 + ∂

(2)
1 ei 2π `

N
)
(κ

(22)
k ` )

]∗



. (4.43)

We remark that (4.38) can be solved for each k,` pair separately, that is, when focusing
on a chosen mode k we need to solve N decoupled systems of 8 equations. On the other
hand, using traditional near-identity transformations would require one to solve 8N2 coupled
equations. Unless a fold bifurcation (or any other resonance) occurs, we shall be able to
select the matrix Ψ̂(û) so that the dynamics of the system do not contain second order terms.
Using the new coordinates, (4.35) can be expressed as

˙̂u = D̂û+
1
2 ∑

b=0,1
∑

β=1,2

(
L̂(β )

(
Ŝb(Ψ̂(û)û)

)
K̂(β )

b + L̂(β )
(
Ŝb(û)

)
K̂(β )

b Ψ̂(û)
)

û

+
1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
L̂(β )

(
Ŝb(û)

)
L̂(δ )

(
Ŝd(û)

)
L̂(β δ )

bd û .
(4.44)

When comparing (4.23) and (4.44) one may notice that while the second order terms
disappear, the transformation generates additional third order terms. The cubic terms in
the bottom row of (4.44) originate from the cubic terms present in the modal system (4.23)
while the cubic terms in the top row appear due to the quadratic near-identity transformation.
It is shown in Appendix C that the two terms appearing in the top row are equal, which
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yields

˙̂u = D̂û+ ∑
b=0,1

∑
β=1,2

L̂(β )
(
Ŝb(û)

)
K̂(β )

b Ψ̂(û)û

+
1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
L̂(β )

(
Ŝb(û)

)
L̂(δ )

(
Ŝd(û)

)
L̂(β δ )

bd û .
(4.45)

4.2.3.2 Network-based cubic near-identity transformation

Based on the structure of the cubic terms in (4.45), we define the cubic near-identity
transformation

û =
(
Î+ Γ̂(ŵ) Φ̂(ŵ)

)
ŵ, (4.46)

where ŵ = col [w0 . . . wk . . . wN−1] and wk = [w(1)
k w(2)

k ]T. The matrices Γ̂(ŵ) and Φ̂(ŵ)

have a circulant block structure, where the blocks for mode numbers k, ` = 0, . . . , N−1
are given by

Γk `(w fk,`) =

[
γ
(11)
k ` ·w fk ` γ

(12)
k ` ·w fk `

γ
(21)
k ` ·w fk ` γ

(22)
k ` ·w fk `

]
, Φk `(w fk `) =

[
φ
(11)
k ` ·w fk ` φ

(12)
k ` ·w fk `

φ
(21)
k ` ·w fk ` φ

(22)
k ` ·w fk `

]
,

(4.47)

where γ
(mn)
k ` = [γ

(mn1)
k ` γ

(mn2)
k ` ]T and φ

(mn)
k ` = [φ

(mn1)
k ` φ

(mn2)
k ` ]T, fk ` is given by (4.27), and

the inner product is defined by (4.34).

Again, we may obtain ˙̂u in two ways. On one hand, we may substitute (4.46) into (4.45),
while on the other hand, we may differentiate (4.46) with respect to time. Considering

˙̂w = D̂ ŵ + O(ŵ4) , (4.48)

we obtain(
Γ̂(D̂ŵ) Φ̂(ŵ)+ Γ̂(ŵ) Φ̂(D̂ŵ)+ Γ̂(ŵ) Φ̂(ŵ)D̂− D̂Γ̂(ŵ)Φ̂(ŵ)

)
ŵ

=
(

∑
b=0,1

∑
β=1,2

L̂(β )
(
Ŝb(ŵ)

)
K̂(β )

b Ψ̂(ŵ)+
1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
L̂(β )

(
Ŝb(ŵ)

)
L̂(δ )

(
Ŝd(ŵ)

)
L̂(β δ )

bd

)
ŵ.

(4.49)

where the left hand side contains the coefficients of the transformation matrices, while
the right hand side contains the cubic terms we seek to eliminate via the transformation.
Again, exploiting the similarity of structure of the matrices on the two sides of (4.49) we
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can eliminate ŵ and compare the appropriate blocks to get

N−1

∑
j=0

(
Γk j(D fk jw fk j)Φ j `(w f j `)

+Γk j(w fk j)Φ j `(D f j `w f j `)+Γk j(w fk j)Φ j `(w f j `)D`−DkΓk j(w fk j)Φ j `(w f j `)

)
=

N−1

∑
j=0

(
∑

b=0,1
∑

β=1,2
L(β )

(
Sbk j(w fk j)

)
K(β )

b j Ψ j `(w f j `)

+
1
6 ∑

b=0,1
∑

β=1,2
∑

d=0,1
∑

δ=1,2
L(β )

(
Sbk j(w fk j)

)
L(δ )

(
Sd j `(w f j `)

)
L(β δ )

bd `

)
,

(4.50)

where the sum over j appears due to the multiplication of circulant matrices.

Each triplet k, j,` yields 16 equations for the products of coefficients γk j φ j `, (cf. (4.47)),
and 32 different products exist. However we can combine certain pairs of products (that
always occur together) and obtain a set of 16 equations with 16 unknowns for each k, j, `
triplet:

Ãk j ` b̃k j ` = c̃k j ` . (4.51)

The matrix Ãk j ` ∈ C16×16 is composed of four 8×8 blocks such that

Ãk j ` = −Dk⊗ I⊗ I⊗ I+ I⊗DT
` ⊗ I⊗ I+ I⊗ I⊗DT

fk j
⊗ I+ I⊗ I⊗ I⊗DT

f j `

=

[
Ek j ` Fk j `

Gk j ` Hk j `

]
,

(4.52)
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where

Ek j ` =


DT

f j `
+ ξ

(111) ∗
k j ` I κ

(21) ∗
k j I κ

(21) ∗
`0 I 0

κ
(12) ∗
k j I DT

f j `
+ ξ

(211) ∗
k j ` I 0 κ

(21) ∗
`0 I

κ
(12) ∗
`0 I 0 DT

f j `
+ ξ

(121) ∗
k j ` I κ

(21) ∗
k j I

0 κ
(12) ∗
`0 I κ

(12) ∗
k j I DT

f j `
+ ξ

(221) ∗
k j ` I

 ,

Fk j ` = −κ
(12) ∗
k 0


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ I, Gk j ` = −κ
(21) ∗
k 0


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ I,

Hk j ` =


DT

f j `
+ ξ

(112) ∗
k j ` I κ

(21) ∗
k j I κ

(21) ∗
`0 I 0

κ
(12) ∗
k j I DT

f j `
+ ξ

(212) ∗
k j ` I 0 κ

(21) ∗
`0 I

κ
(12) ∗
`0 I 0 DT

f j `
+ ξ

(122) ∗
k j ` I κ

(21) ∗
k j I

0 κ
(12) ∗
`0 I κ

(12) ∗
k j I DT

f j `
+ ξ

(222) ∗
k j ` I

 .

(4.53)

Here we have
ξ
(β δ θ ) ∗
k j ` = κ

(β β ) ∗
k j +κ

(δ δ ) ∗
`0 −κ

(θ θ ) ∗
k 0 , (4.54)

for β , δ , θ = 1, 2 and κ
(β δ )
k ` is defined in (4.40). The vector b̃k j ` contains the coefficients

defined in (4.47) that appear on the left hand side of (4.50) (see Appendix D), while vector
c̃k j ` contains the cubic coefficients that appear on the right hand side of (4.50) (see Appendix
E). Similarly to the quadratic case, (4.51) can be solved for each k, j, ` triplet separately,
that is, for a chosen k one need to solve N2 decoupled systems of 16 equations. Again, using
traditional nonlinear near identity transformations would lead to 16N3 coupled equations. If
there are no bifurcations or resonant third order terms, (4.51) can be solved for all triplets
k, j, ` and all cubic coefficients can be eliminated yielding the form (4.48).

When bifurcations or resonances occur certain terms cannot be eliminated. However, the
set of nonlinear transformations described above allows us to decouple the mode responsible
for the bifurcation from the rest of the system. By performing one more linear transformation
on this small system the normal form of the bifurcation can be derived.
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4.3 Network-based analysis of the connected vehicle sys-
tem

First, we decompose the connected vehicle network into modes at the linear level and analyze
the linear stability of the modes. Then we use nonlinear network-based analysis to eliminate
the nonlinearities for the modes responsible for the stability loss. Finally, we investigate the
criticality of bifurcations and determine the amplitude of nonlinear oscillations associated
with the modal stability loss using normal forms.

To take advantage of the cyclic symmetry, in this chapter we consider (4.1) to govern the
dynamics of all the vehicles in the CVN. Thus we consider the third order approximation
(4.3) with β1 = β and βiσ = 0. Using the vector notation yi = [s̃i ṽi]T we can rewrite this
approximation into the compact form

ẏi = [J0]
∗yi +[J1]

∗yi+1 +
1
2 ∑

b=0,1
H(1)

b (yi+b)
(
[∂

(1)
b J0]

∗yi +[∂
(1)
b J1]

∗yi+1

)
+

1
6 ∑

b=0,1
∑

d=0,1
H(1)

b (yi+b)H(1)
d (yi+d)

(
[∂

(1)
b ∂

(1)
d J0]

∗yi +[∂
(1)
b ∂

(1)
d J1]

∗yi+1

)
.

(4.55)

cf. (4.8). Notice that since only the position coordinates s̃i appear in the nonlinear terms, we
do not have to sum for the individual coordinates of yi. The linear terms in (4.55) contain
the matrices

[J0]
∗ =

[
0 1
−p −(α +β )

]
, [J1]

∗ =

[
0 0
p β

]
, (4.56)

while the coefficient matrices in the quadratic terms are given by

[∂
(1)
0 J0]

∗ = −[∂ (1)
0 J1]

∗ = −[∂ (1)
1 J0]

∗ = [∂
(1)
1 J1]

∗ =

[
0 0
q 0

]
, (4.57)

and the cubic terms contain

−[∂ (1)
0 ∂

(1)
0 J0]

∗ = −[∂ (1)
0 ∂

(1)
1 J1]

∗ = −[∂ (1)
1 ∂

(1)
1 J0]

∗ =

[
0 0
r 0

]
,

[∂
(1)
0 ∂

(1)
0 J1]

∗ = [∂
(1)
0 ∂

(1)
1 J0]

∗ = [∂
(1)
1 ∂

(1)
1 J1]

∗ =

[
0 0
r 0

]
,

(4.58)
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where p, q, r are given by (4.4). For the whole system, (4.55) can be reformulated as

˙̂y =
(

IN⊗ [J0]
∗+AN⊗ [J1]

∗
)

ŷ +
1
2 ∑

b=0,1
L̂(1)(Ĥb(ŷ)

)(
IN⊗ [∂

(1)
b J0]

∗+AN⊗
[
∂
(1)
b J1]

∗
)

ŷ

+
1
6 ∑

b=0,1
∑

d=0,1
L̂(1)(Ĥb(ŷ)

)
L̂(1)(Ĥd(ŷ)

)(
IN⊗ [∂

(1)
b ∂

(1)
d J0]

∗+AN⊗ [∂
(1)
b ∂

(1)
d J1]

∗
)

ŷ ,

(4.59)

cf. (4.12). The linear coordinate transformation (4.22) yields

˙̂z = D̂ ẑ+
1
2 ∑

b=0,1
L̂(1)(Ŝb(ẑ)

)
K̂(1)

b ẑ+
1
6 ∑

b=0,1
∑

d=0,1
L̂(1)(Ŝb(ẑ)

)
L̂(1)(Ŝd(ẑ)

)
L̂(11)

bd ẑ,

(4.60)

cf. (4.23), where D̂, Ŝb(ẑ), K̂(1)
b , L̂(11)

bd ∈ C2N×2N are given by (4.24, 4.26, 4.28, 4.30).

4.3.1 Linear Stability Analysis

The linear part of (4.60) consists of N decoupled complex differential equations which
represent the linear modes in the system. For the k-th mode the linear dynamics are given by[

ż(1)k

ż(2)k

]
=

[
0 1

pηk 0 β ηk 0−α

] [
z(1)k

z(2)k

]
, (4.61)

where
ηk ` = ei 2π (k−`)

N −1, (4.62)

for k, ` = 0, . . . , N− 1. Thus, using the trial solution z(1)k (t) = z(1)k 0 eλ t , z(2)k (t) = z(2)k 0 eλ t

with λ , z(1)k 0 , z(2)k 0 ∈ C the characteristic equation for mode k becomes

λ
2 + (α +β )λ + p − (β λ + p)ei 2π k

N = 0. (4.63)

If both solutions λ have negative real parts the mode is stable. We remark that when the
solutions are complex, they are not complex conjugates, since (4.61) contains complex
coefficients. In fact, mode N− k provides the complex conjugate eigenvalues for mode k.
The special mode k = 0 gives the eigenvalues λ0,1 = 0 and λ0,2 = −α . The former one
corresponds to a translational symmetry of the cyclically symmetric network of conven-
tional vehicles (4.1) (see [65]), while the latter one stays in the left-half complex plane for
α > 0. We note that for even N, there is another special mode k = N/2 which does not
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Figure 4.1: Eigenvalues in the complex plane for the human-driven vehicle network (4.1)
when considering N=11 cars and parameters α = 1 [1/s], β = 0 [1/s] and varying the
parameter p = α V ′(h∗). Stable eigenvalues are shown as green crosses, while unstable
eigenvalues are depicted as red crosses. The mode numbers for unstable eigenvalues are
indicated in cases (b) and (c)

have a complex conjugate mode. The eigenvalues of this mode have negative real parts for
α + 2β > 0.

The critical value of p = α V ′(h∗), where modes k and N− k lose stability, can be
obtained by substituting λ = iω into (4.63), taking the real and imaginary parts, and
performing some algebraic manipulation to eliminate ω . This yields

pk = 1
2(2β +α)

(
(2β +α) tan2

(
k π

N

)
+α

)
. (4.64)

On the other hand, eliminating p we may obtain the critical angular frequency

ωk = (2β +α) tan
(

k π

N

)
, (4.65)

for k = 1, . . . , N−1.
Fig. 5.2 shows how the eigenvalues vary with parameter p for N = 11 cars and parameters

α = 1 [1/s], β = 0 [1/s]. When p is increased the eigenvalues move in the complex plane
and cross the imaginary axis at pk with imaginary part ωk. Here we restrict our discussion
to k = 1, . . . , bN

2 c, because for k = dN
2 e, . . . , N−1 we get pk = pN−k, ωk = −ωN−k due to

the complex conjugacy of modes k and N−k. Since (4.64) is monotonically increasing with
k when 1 ≤ k ≤ bN

2 c, the modes lose stability in the increasing order of mode number k.
Thus, the uniform flow loses stability when modes 1 (and N−1) lose stability. Since the
eigenvalues cross the imaginary axis with a non-zero imaginary part and with finite speed
(i.e., ωk > 0, Re∂ λ

∂ p (pk) > 0), Hopf bifurcations occur in the corresponding nonlinear
system. This leads to nonlinear oscillations with frequency close to (4.65) and wavelength
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(L+N `)/k; see [67]. The corresponding periodic orbit is embedded in the modal subspace
given by modes k and N− k. At the linear level, the oscillations can be characterized by the
modal coordinates zk and zN−k (see (4.61)), while at the nonlinear level further nonlinear
transformations are needed to describe the oscillations.

4.3.2 Near-identity transformations

Let us use the network-based nonlinear transformations to eliminate nonlinear terms in
(4.60) at the Hopf point corresponding to the stability loss (i.e., p = p1). This way we
can obtain a nonlinear modal equations for modes 1 and N− 1 that are decoupled from
the rest of the system. To eliminate the quadratic terms in (4.60) we use the near-identity
transformation (4.32). In this case (4.36) simplifies to(

Ψ̂(D̂ û)+ Ψ̂(û) D̂− D̂ Ψ̂(û)
)

û =
1
2

(
∑

b=0,1
L̂(1)(Ŝb(û)

)
K̂(1)

b

)
û , (4.66)

which is equivalent to

Ψk `(D fk ` u fk `)+Ψk `(u fk `)D`−DkΨk `(u fk `) =
1
2 ∑

b=0,1
L(1) (Sbk `(u fk `)

)
K(1)

b` , (4.67)

cf. (4.37). Thus, in (4.38) we have

Ak ` =


DT

fk ` κ
(21) ∗
`0 I −I 0

I DT
fk ` +κ

(22) ∗
`0 I 0 −I

−κ
(21) ∗
k 0 I 0 DT

fk `−κ
(22) ∗
k 0 I κ

(21) ∗
`0 I

0 −κ
(21) ∗
k 0 I I DT

fk ` +(κ
(22) ∗
`0 −κ

(22) ∗
k 0 )I

 ,

(4.68)
where

κ
(21) ∗
k ` = p1 ηk ` , κ

(22) ∗
k ` = β ηk `−α , (4.69)

and ηk ` is defined in (4.62). Note that unlike in (4.39) here we refrain from using ξ
(β δ ) ∗
k `

defined in (4.41) because κ
(11) ∗
k ` = 0 for all k, `. Moreover, the right hand side (4.43)

simplifies to
ck ` = col[0 0 0 0

q1

2
ηk `η`0 0 0 0]T , (4.70)

where q1 indicates the value of q at the bifurcation point; cf. (4.4).
Solving (4.38) allows us to eliminate all but a few quadratic terms in the k = 0 mode in

(4.60). However, as explained above, the k = 0 mode does not lose stability and it does not
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influence the dynamics of the other modes. The equation in the new coordinates becomes

˙̂u = D̂û+
1
2

R̂(û)û+ ∑
b=0,1

L̂(1)(Ŝb(û)
)
K̂(1)

b Ψ̂(û)û+
1
6 ∑

b=0,1
∑

d=0,1
L̂(1)(Ŝb(û)

)
L̂(1)(Ŝd(û)

)
L̂(11)

bd û,

(4.71)

cf. (4.45), where the quadratic terms R̂(û)û appear in the k = 0 mode, see Appendix F.

As our goal is to obtain the nonlinear modal equations for modes 1 and N − 1, we
proceed by simplifying the cubic terms using the transformation (4.46) which leads to a
simplified form of (4.49):(

Γ̂(D̂ŵ) Φ̂(ŵ)+ Γ̂(ŵ) Φ̂(D̂ŵ)+ Γ̂(ŵ) Φ̂(ŵ)D̂− D̂Γ̂(ŵ)Φ̂(ŵ)
)

ŵ

=
(

∑
b=0,1

L̂(1)(Ŝb(ŵ)
)
K̂(1)

b Ψ̂(ŵ)+
1
6 ∑

b=0,1
∑

d=0,1
L̂(1)(Ŝb(ŵ)

)
L̂(1)(Ŝd(ŵ)

)
L̂(11)

bd

)
ŵ ,

(4.72)

that is equivalent to

N−1

∑
j=0

(
Γk j(D fk j w fk j)Φ j `(w f j `)+Γk j(w fk j)Φ j `(D f j `w f j `)+Γk j(w fk j)Φ j `(w f j `)D`−DkΓk j(w fk j)Φ j `(w f j `)

)
=

N−1

∑
j=0

(
∑

b=0,1
L(1)(Sbk j(w fk j)

)
K(1)

b j Ψ j `(w f j `)+
1
6 ∑

b=0,1
∑

d=0,1
L(1)(Sbk j(w fk j)

)
L(1)(Sd j `(w f j `)

)
L(11)

bd `

)
,

(4.73)
cf. (4.50). The matrix Ãk j ` in (4.51) has sub-matrices

Ek j ` =


DT

f j `
κ
(21) ∗
k j I κ

(21) ∗
`0 I 0

I DT
f j `
+κ

(22) ∗
k j I 0 κ

(21) ∗
`0 I

I 0 DT
f j `
+κ

(22) ∗
`0 I κ

(21) ∗
k j I

0 I I DT
f j `
+(κ

(22) ∗
k j +κ

(22) ∗
`0 ) I

 ,

Fk j ` =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ⊗ I, Gk j ` = κ
(21) ∗
k 0 Fk j `, Hk j ` = Ek j `−κ

(22) ∗
k 0 I ,

(4.74)

cf. (4.53), where the κ
(21) ∗
k ` and κ

(22) ∗
k ` are given by (4.69). Finally the right hand side (E.1)
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(in Appendix E) simplifies to

c̃k j ` = q1 ηk j η j 0 [0 0 0 0 0 0 0 0 ψ
(111)
j ` ψ

(112)
j ` 0 0 ψ

(121)
j ` ψ

(122)
j ` 0 0]T

+
r1

6
ηk j η j `η`0 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]T ,

(4.75)

where ηk ` is given by (4.62), the ψ
(· · ·)
j ` are the solution of (4.38), while q1 and r1 give the

values of q and r at the bifurcation point; cf. (4.4).

When considering the system at the Hopf bifurcation point (p = p1) some cubic terms
related to modes k = 1 and k = N−1 cannot be eliminated by the nonlinear transformations.
In particular, considering (4.51) the determinant of the matrix Ãk j ` is 0 for the index
combinations

1) k = 1, j = 0, `= N−1,

2) k = 1, j = 0, `= 1,

3) k = 1, j = 2, `= 1.

(4.76)

Thus, we obtain that the dynamics of mode 1 are governed by two complex differential
equations[

ẇ(1)
1

ẇ(2)
1

]
=

[
0 1

κ
(21) ∗
10 κ

(22) ∗
10

] [
w(1)

1

w(2)
1

]
+

η2
10 η10 r1

2

[
0

(w(1)
1 )2 w(1)

N−1

]

+η10 η20 q1

[
0

ψ
(111)
21

(
w(1)

1
)2 w(1)

N−1 +
(
ψ
(112)
21 +ψ

(121)
21

)
w(1)

1 w(2)
1 w(1)

N−1 +ψ
(122)
21

(
w(2)

1
)2 w(1)

N−1

]
,

(4.77)

where ηk ` is defined in (4.62), while κ
(21) ∗
k ` and κ

(22) ∗
k ` are given by (4.69). The equations

for w(1)
N−1 and w(2)

N−1 can be obtained by taking the complex conjugate of (4.77). Explicit

expressions for the quadratic near-identity coefficients ψ
(111)
21 , ψ

(112)
21 +ψ

(121)
21 and ψ

(122)
21

are given in Appendix G. We note that modes 1 and N− 1 result in cubic terms in other
modes. However, the dynamics for modes k = 1 and k = N− 1 are not affected by the
other modes.
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4.3.3 Bifurcation analysis

To characterize the nonlinear oscillations in the vicinity of the stability loss we derive the
normal form of the Hopf bifurcation using the nonlinear modal equation (4.77). Because
modes 1 and N − 1 contain eigenvalues that cross the imaginary axis at p = p1, the
corresponding four-dimensional manifold contains the two-dimensional center manifold.
We can obtain the normal form of the Hopf bifurcation by projecting the modal system onto
the center manifold. Due to the complex conjugacy of the modes 1 and N−1 involved in
the bifurcation, we only need to use one mode to perform the projection and we choose
mode 1. At the bifurcation point, mode 1 has one purely imaginary eigenvalue λcr = iω1,
where ω1 is given by (4.65). Using (4.69) in the linear part of (4.77) one may obtain the
corresponding eigenvector

e =

[
1

iω1

]
, (4.78)

while left eigenvector corresponding to λ cr = − iω1 is given by

f =
1

α +ω1 (2 tan( π

N )− i)

[
α +ω1 tan( π

N )

1+ i tan( π

N )

]
. (4.79)

The coefficient in front of the left eigenvector is obtained from the orthogonality condition
f · e = 1, where the inner product is defined by (4.34).

Let us define the complex variable

ζ = f ·w1 . (4.80)

Multiplying (4.77) by f from the left we may project the dynamics onto the center manifold;
see [46]. Exploiting w1 ≈ ζ e we obtain the dynamics

ζ̇ = iω1 ζ + δ ζ
2

ζ , (4.81)

where the cubic coefficient is given by

δ =
η10
(
1− i tan( π

N )
)

2
(
α +ω1 (2 tan( π

N )+ i)
)(r1 η

2
10 + 2q1 η20

(
ψ
(111)
21 + iω1 (ψ

(112)
21 +ψ

(121)
21 )−ω

2
1 ψ

(122)
21

))
.

(4.82)

The sign of Re δ determines whether the Hopf bifurcation is supercritical or subcritical.
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For a supercritical Hopf bifurcation (Reδ < 0) stable oscillations arise around the unstable
equilibrium, while in the subcritical case (Reδ > 0) unstable oscillations emerge around
the stable equilibrium. Subcritical Hopf bifurcations may lead to bistability as discussed in
[67]. Thus, it is important to determine the criticality of the bifurcation in order to evaluate
the effect of the CCC controllers at the nonlinear level.

To calculate the amplitude of the nonlinear oscillations near the Hopf point we also need
the “speed“ of the critical eigenvalues crossing the imaginary axis as the parameter p is
varied:

Re
dλ

d p
(p1) =

ω1 sin(2π

N )(
ω1 tan( π

N )+α
)2 cos4( π

N )+ 4 tan2( π

N )
(
β (1+ sin2( π

N )) + α
)2 . (4.83)

In the vicinity of the Hopf point, the invariant oscillations are well approximated by

ζ (t) ≈ Ampζ ei(ω1 t+α0) , (4.84)

where the phase α0 can be chosen arbitrarily, the frequency ω1 is given by (4.65), while the
amplitude is given by

Ampζ =

√
−

Re dλ

d p(p1)

Reδ
(p− p1) . (4.85)

Using (4.80) the approximations w1 ≈ ζ e and z1 ≈ w1 result in

z1(t) =

[
z(1)1 (t)

z(2)1 (t)

]
≈
[

Ampζ ei(ω1 t+α0)

ω1 Ampζ ei(ω1 t+ π

2 +α0)

]
. (4.86)

Finally, using (4.22) and yi = [s̃i, ṽi]T, the velocity of the i-th vehicle can be approxi-
mated as

ṽi(t) = ei 2π (i−1)
N z(2)1 + e−i 2π (i−1)

N z(2)N−1 ≈
Ampv

2
cos(ω1 t +αi) , (4.87)

where the peak-to-peak amplitude is given by

Ampv = 4ω1

√
−

Re dλ

d p(p1)

Reδ
(p− p1) , (4.88)

and αi = α0 +
π

2 +
2π

N (i−1) is the phase offset for the i-th car. Choosing α0 = −π

2 +
2π

N

yields αi =
2π

N i; making it obvious that (4.87) describes a traveling wave [65].
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Figure 4.2: The nonlinear range policy function (2.5,2.8) (left) and its derivative (right). The
headways hst and hgo, the free-flow speed vmax, and the maximum of the derivative V ′max are
indicated. In this case hst = 5 [m], hgo = 35 [m], vmax = 30 [m/s], V ′max =

π

2 [1/s]

Notice that according to (4.4) we have p1 = α V ′(h∗cr), that is, when varying the average
distance of vehicles h∗, the parameter p changes and the critical value of p1 corresponds to
some critical headway h∗cr. If we wish to consider h∗ as the bifurcation parameter, we can
use (4.4) to obtain

Re
dλ

dh∗
(h∗cr) = Re

dλ

d p
(p1)

d p
dh∗

(h∗cr) = q1 Re
dλ

d p
(p1) , (4.89)

and rewrite the peak-to-peak amplitude for velocity oscillations (4.88) as

Ampv = 4ω1

√
−q1

Re dλ

d p(p1)

Reδ
(h∗−h∗cr) . (4.90)

4.4 Numerical Verification

In this section we validate our analytical results using numerical continuation for the smooth
range policy (2.5,2.8); that is plotted together with its derivative in Fig. 4.2 for hst = 5 [m],
hgo = 35 [m], and vmax = 30 [m/s] yielding V ′max = 30 [1/s] that is used in the rest of the
section. Because all of the vehicles use the same range policy shown in Figure 4.2, we
denote the average spacing h∗avg = L/N as h∗, as for uniform flow the average spacing
would indeed equal the headway of each vehicle. We chose h∗ as the bifurcation parameter
and present the results for different values of the parameters α and β to evaluate the effects
of the CCC controller on the system dynamics. Note that due to the properties of the range
policy (2.5,2.8), each p1 corresponds to two h∗cr values, such that p > p1 for the middle

49



Figure 4.3: Two-dimensional bifurcation diagrams in the (h∗, α)-plane for N = 11cars
when considering different values of β as indicated. The black curves are the linear stability
boundaries for the modes k = 1, . . . , 5. The dashed green curves show where the periodic
solutions for k = 1 undergo fold bifurcations. Light gray shading indicates globally stable
uniform flow. In the white region the uniform flow is unstable and stable oscillations appear.
The dark gray region corresponds to bistability between the equilibrium and oscillations.
The red horizontal lines correspond to the panels in Fig. 4.4

range of headways.

4.4.1 Bifurcation diagrams

In Fig. 4.3 the results are summarized in the (h∗, α)-plane for different values of the pa-
rameter β when considering N = 11 cars. Solid black curves denote the modal stability
boundaries, while green dashed curves denote the fold bifurcations of the oscillatory solution-
s for k = 1 (explained further below). In the light gray region the uniform flow equilibrium is
globally stable. In the white region the equilibrium is unstable and there exist globally stable
oscillatory solutions. In the dark gray region bistability occurs between the stable uniform
flow and the oscillations. Since the stability boundaries for modes k and N− k are the same
due to complex conjugacy we only consider k = 1, . . . , bN

2 c. Each modal boundary encloses
a region in the parameter space where the corresponding mode is linearly unstable. Notice
that the instability regions for higher mode numbers are contained in the instability regions
for lower mode numbers. This corresponds to the fact that (4.64) increases monotonically
with the mode number k between 1 and bN

2 c. Thus, k = 1 gives the stability boundary
of the uniform flow. Fig. 4.3(a) shows the two dimensional bifurcation diagram without
relative velocity feedback (β = 0). In this case all five modal stability boundaries appear.
For β > 0 the modal stability boundaries become closed curves and the modal instabil-
ity regions shrink (and may even disappear) when β is increased as depicted in Fig. 4.3(b,c).
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In order to quantify how the stability chart changes with β , we determine the maximum
α+ and the minimum α−; see Fig. 4.3, and use these extrema to calculate the critical value
of β where the linearly unstable domain disappears. To find α± we substitute V ′(h) = V ′max

and k = 1 into (4.64) which yields

α± = (β +V ′max)cos2( π

N )−2β ±
√(

(β +V ′max)cos2( π

N )−2β
)2−4sin2( π

N )β
2 .

(4.91)

One can show that α− increases while α+ decreases with β and the instability region
disappears when α+ = α− that occurs at the β value

βcr = V ′max
1− sin( π

N )

1+ sin( π

N )
. (4.92)

That is, for β > βcr no unstable region exists. For N = 11 cars we obtain βcr ≈ 0.880 [1/s].

While the linear stability analysis reveals where the uniform traffic flow loses linear
stability, the bifurcation analysis gives insight about what happens at the nonlinear level.
Here we compare the peak-to-peak amplitude (4.90) calculated analytically to the ampli-
tudes computed using numerical continuation [78]. In Fig. 4.4 we plot the branches of
oscillations for mode 1 considering different values of β for N = 11 cars and α = 1[1/s];
see the red horizontal lines in Fig. 4.3. The horizontal axis represents the uniform flow
equilibrium. Stable and unstable solutions are shown as solid green and dashed red curves,
respectively. The oscillatory solutions arise from Hopf bifurcations marked by blue stars,
and may undergo fold bifurcations marked by black pluses. The zoom-ins at the bottom
compare the analytical results (black) and the numerical results (colored) at the vicinity of
the Hopf bifurcation points. The bifurcation diagrams are symmetric about h∗ = hgo+hst

2

due to the symmetry of the range policy function (2.5,2.8). In each case the bifurcations
partition the diagrams into different regimes of qualitative behavior.

In Fig. 4.4(a) the Hopf bifurcations are supercritical and give rise to stable periodic solu-
tions, but the stability changes via fold bifurcation soon after birth (see the zoomed panels at
the bottom). For large amplitudes the stability of the periodic orbits changes again through
fold bifurcations leading to stable large-amplitude oscillations. These bifurcations yield
four qualitatively different regimes. For headways outside the high amplitude fold points
the uniform flow is globally stable and no oscillations appear. In the region in between the
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Figure 4.4: Bifurcation diagrams for N = 11 cars and α = 1 [1/s] for different values of
β as indicated. In each panel, the peak-to-peak velocity amplitude Ampv is shown as a
function of the bifurcation parameter h∗. The horizontal axis represents the uniform flow
equilibrium. Stable states are depicted as solid green and unstable states are shown as dashed
red curves. Hopf bifurcations are marked by blue stars and fold bifurcations of periodic
orbits are marked by black pluses. The bottom panels zoom onto the at the Hopf points and
also show the analytical predictions (4.90) as black lines

low-amplitude fold points the uniform flow is unstable while the high amplitude oscillations
are globally stable. In the bistable regimes bordered by a high-amplitude fold point and a
Hopf point the uniform flow is linearly stable, but stable large-amplitude oscillations are
also present, and the stable states are separated by unstable oscillations. Other bistable
regimes are bordered by a Hopf point and a low-amplitude fold point where the uniform
flow is unstable, but there exist stable low-amplitude and high-amplitude oscillations sep-
arated by unstable oscillations. We remark that this behavior happens in a very narrow
parameter domain and is not visible in the two dimensional bifurcation diagram in Fig. 4.3(a).

When β is increased the domain where the equilibrium is unstable shrinks as can
be observed in Fig. 4.4(b) (cf. Fig. 4.3(b)). Nonlinear analysis shows that the Hopf
bifurcations are now subcritical, leading to unstable oscillations. The low-amplitude fold
bifurcations disappear while the high amplitude fold points move closer to each other. Here
the bifurcations create three regimes of qualitatively different behavior. Again outside
the fold points the uniform flow is globally stable while between the Hopf points the
uniform flow is unstable and the high amplitude velocity oscillations are globally stable.
However only one kind of bistable regime exists between the Hopf and fold points, where
the equilibrium and the large-amplitude oscillations are both stable. For larger β values
stable oscillatory solutions exist only between the Hopf points where the uniform flow is
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Figure 4.5: (a) Two-dimensional bifurcation diagram for N = 33cars and β = 0.6 [1/s]. (b)
Bifurcation diagram for N = 33cars, α = 1 [1/s], and β = 0.6 [1/s]. The same notation is
used as in Fig. 4.3 and Fig. 4.4. The blue dotted curves in panels (b2) and (b3) show the
analytical prediction for N→ ∞ as given by (4.96)

unstable as shown in Fig. 4.4(c) and outside this regime the uniform flow is globally stable.
When β is increased even further, the Hopf points move closer to each other and the branch
of stable oscillations disappears at β ≈ 0.786 [1/s].

4.4.2 Large N limit

Now we demonstrate how the number of cars N influences the nonlinear behavior. In-
deed, we are interested in the large N limit. First, we consider N = 33 cars and β =

0.6 [1/s]. Fig. 4.5(a) shows a two-dimensional bifurcation diagram in the (h∗,α)-plane (cf.
Fig. 4.3(b)), while a bifurcation diagram is displayed in Fig. 4.5(b) for α = 1 [1/s], (cf.
Fig. 4.4(b)). The linearly unstable region is similar to the 11-car case but we have larger
number of modal stability boundaries. Still mode 1 determines the linear stability of the
uniform flow. One may observe that stability is lost via subcritical Hopf bifurcations and the
bifurcation diagram is qualitatively similar to the one in Fig. 4.4(b).

To get a broader picture about how the nonlinear oscillatory solutions depend on the
number of vehicles, we consider α = 1 [1/s] and evaluate the sign of Reδ in (4.81) while
varying N and β . We plot the results in Fig. 4.6, where supercritical Hopf bifurcations occur
in the green area, subcritical Hopf bifurcations occur in the red area, and no bifurcations

53



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1β

[ 1s ]

N

(c)

(b)

(a)

(d)

Figure 4.6: Criticality diagram for α = 1 [1/s]. Green shading represents supercritical
Hopf bifurcations, red shading represents subcritical Hopf bifurcations. These are separated
by the blue curve. The system does not undergo a Hopf bifurcation in the white region
and the Hopf boundary is represented by the black curve. The points marked (a), (b), (c)
correspond to the three cases examined in Fig. 4.3 and Fig. 4.4, while the point marked (d)
corresponds to Fig. 4.5

take place in the white area. The black curve denotes the linear stability boundary, while the
blue curve denotes the boundary where criticality of the Hopf bifurcation changes. For a
small numbers of cars (N < 10) only supercritical Hopf bifurcations are possible. When N

is increased the unstable regime expands and the bifurcation turns subcritical for a range of
β that also grows with N.

In the large N limit the black stability boundary approaches an asymptotic value that can
be obtained by using p1 = αV ′max and N→ ∞ in (4.64):

βmax = V ′max−
α

2
. (4.93)

Considering the range policy (2.5,2.8) and α = 1 [1/s] yields βmax = (π−1)/2 ≈ 1.071 [1/s];
see the black curve in Fig. 4.6. Also, the blue criticality boundary approaches the horizontal
axis and the black Hopf bifurcation boundary which indicates that the typical behavior is
subcritical for large number of cars as demonstrated in Fig. 4.5. This can also be seen when
replacing the trigonometric functions in (4.82) by their Taylor series which in the large N

limit yields

Reδ∞ ≈
3q2

1 β

(3β +α)2α2

(
2π

N

)2

> 0, (4.94)

54



showing that Reδ∞ is positive for the whole domain 0 < β < βmax.

Similarly, taking the large N limit in (4.83) gives

Re
dλ

dh∗
(h∗cr∞) ≈

q1(2β +α)

2α2

(
2π

N

)2

. (4.95)

Thus for large N the Hopf amplitude (4.90) is given by

Ampv∞ ≈ 4(3β +α)(2β +α)
π

N

√
−2β +α

6β q1
(h∗−h∗cr) , (4.96)

where we used (4.65) with k = 1. The blue dotted curves in Fig. 4.5 correspond to (4.96)
and these are well approximated by the black curves shown for N = 33. However, observe
that Ampv∞→ ∞ as β → 0 or q1→ 0. The latter case corresponds to β → βmax, since the
black stability boundary in Fig. 4.6 corresponds to the inflection point of the range policy.
This shows that in the large N limit the lower criticality boundary tends to β = 0 while the
upper criticality boundary tends to β = βmax. Thus choosing sufficiently large β guarantees
global stability of the uniform flow, which demonstrates the benefit of relative velocity
feedback in CCC design.

4.5 Summary

In this chapter we analyzed the dynamics of connected vehicle systems where vehicles
respond to the motion of other vehicles ahead. These systems were used as a motivation to
develop network-based bifurcation analysis based on nonlinear normal modes (NNMs). Our
method simplified the bifurcation analysis of large coupled systems with cyclic symmetry. A
linear transformation was used to write the dynamics into modal coordinates, and subsequent
nonlinear network-based transformations were used to eliminate the quadratic and cubic
terms. These led to a small number of algebraic equations for each mode that can be solved
without considering the dynamics of other modes.

We applied the algorithm to a connected vehicle system where each vehicle reacts to
the distance and the relative velocity to the vehicle directly ahead (conventional vehicles).
After performing the linear transformation we detected the mode responsible for the stability
loss of the uniform flow. We then decoupled this mode from the rest of the system using
the nonlinear near-identity transformations and projected the dynamics onto the center
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manifold to find the normal form of the Hopf bifurcation. These nonlinear near-identity
transformations were reduced to linear algebraic equations that were decoupled using the
cyclic symmetry of the network. Specifically for a system of N nodes and 2 equations per
node we need to solve N decoupled systems of 8 equations to eliminate the quadratic terms,
and N2 decoupled systems of 16 equations to eliminate the cubic terms. By comparison, if
the cyclic symmetry is neglected, we would have to solve a system of 8N2 linear equations to
eliminate the quadratic terms, and 16N3 equations to eliminate the cubic terms. For example,
if we have 100 nodes, then for quadratic terms we only need to solve 100 decoupled linear
systems of 8 unknowns as opposed to a system of 80000 coupled linear equations. For the
third order terms we only need to solve 10000 decoupled linear systems of 16 unknowns as
opposed to an equation with 16 million coupled linear equations. This gives a significant
simplification to the nonlinear analysis of large cyclic systems. This network-based approach
allowed us to analytically determine the criticality and amplitudes the nonlinear oscillations
arising at the bifurcation point and observe the effects of the controller feedback law on the
system dynamics. We validated our network-based algorithm by comparing the analytical
results to those obtained by numerical continuation.

The developed network-based tools allowed us to characterize the traffic patterns de-
veloping in a network where identical vehicles rely on information of the vehicle directly
ahead. Knowing the behavior of this baseline network, the logical next step is analyze
connected vehicle networks where beyond-line-of-sight information is used in order to
assess the benefits of V2V communication in connected vehicle networks.
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CHAPTER 5

Network-based analysis of connected vehicle
networks with beyond-line-of-sight connectivity

The advantages of a connected vehicle network over a traditional network are reaped from
connected and automated vehicles exploiting the beyond-line-of-sight V2V communication.
These vehicles are mixed into the traffic flow with conventional vehicles ad-hoc as shown
in Figure 5.1 D). To evaluate the effect of connected automated vehicles at a system
level demands methods that account for the heterogeneity of vehicles and communication
strategies of mixed traffic. Such methods shall allow for reduction of the dynamics of large
vehicle systems without being computationally demanding.

To simplify the analysis of a network of connected nodes, we first consider a system with
simple connectivity structure and then use perturbation theory to analyze networks with more
complex connectivity structures. In the literature, perturbation theory was used to analyze
the modes of near-cyclic systems dealing with vibrations and localized modes of bladed
disc assemblies [33, 47, 70, 105]. In particular, closed-form analytical approximations for
the eigenvalues and modes of mistuned bladed disc assemblies were obtained by expanding
the equations around the corresponding cyclically symmetric assembly. Such perturbation
analysis was more computationally effective compared to a global eigenvalue analysis
and also gave insight about the effects of mistuning on the frequencies and mode shapes
for simple one-degree-of-freedom mechanical systems with nearest neighbor interactions.
Recently, modal perturbation analysis was used in [95] to evaluate the performance of a
CVN where each vehicle is modeled by a delay differential equation. The technique allowed
the authors to characterize the modal stability boundaries of a network of 3 connected
vehicles on the ring road. However, the analysis did not exploit the cyclic structure of the
network and such analysis would become cumbersome (or impossible) for a larger number
of vehicles with more complex dynamics and interaction laws.

In this chapter we develop a network-based modal analysis technique for perturbed cyclic
systems with an arbitrary number of nodes, multiple equations per node and for multiple
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acyclic perturbations. By exploiting the cyclic structure of the unperturbed system, we use a
series of steps to decompose the perturbed cyclic system into decoupled modal equations.
Such a modal decomposition can be performed for systems with arbitrary numbers of nodes
and an arbitrary number of perturbations without significant increase in complexity. The
linear stability conditions can then be evaluated independently for each mode and the effects
of the perturbations on modal stability can be quantified. In addition to being convenient for
systems with large numbers of nodes and acyclic perturbations, this technique allows one to
determine analytical relationships between system parameters and modal behavior, which
would be extremely difficult and cumbersome with traditional analytical and numerical
stability analysis. We use the developed technique to examine the linear stability of a CVN
consisting of both conventional vehicles and connected automated vehicles, and analyze
how the gain parameter used for the long-range connections shall be selected to stabilize the
traffic flow.

The layout of the chapter is as follows. A general perturbation method to estimate the
modal dynamics of a cyclic system with a general class of acyclic perturbations is presented
in Section 5.2. In Section 5.3 we utilize this method to estimate the modal dynamics of
CVN. We also examine the stability of several specific connected vehicle configurations and
validate the developed modal perturbation technique using numerical continuation. Finally,
we discuss the implications of the results and lay out future research directions in Section
5.4.

5.1 Simplified model for connected automated vehicle car
following

In this section we extend our analysis to general connected vehicle networks featuring
connected vehicles and connected automated vehicles in addition to regular human driven
vehicles. The main goal of this chapter is quantify the effects of utilizing long-range
feedback due to the wireless communication of CAVs at partial penetrations of CVs and
CAVs on the traffic patterns. We build up the connected vehicle network by starting with a
network of N regular human-driven vehicles which we analyzed extensively in the previous
chapter. Figure 5.1 A) shows such a network for 11 vehicles moving counterclockwise,
marked by grey dots. The dynamics of these vehicles are given by (4.1) as discussed in the
previous chapter. After this we select a few of these vehicles to become connected vehicles.
For example in Figure 5.1 B), i = 1, 3, 6, 7, 9, 11 are selected to be connected vehicles.
We then select a fraction of the connected vehicles to be connected automated vehicles
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Figure 5.1: Four steps of setting up an 11-car connected vehicle network on a ring road A):
Regular human driven vehicles (HVs) represented by gray circles are placed on a single lane
road. The black arrow represents the direction of the traffic flow. B): Connected vehicles
(CVs) are added to the network (highlighted as green). C): Some of the connected vehicles
become connected automated vehicles (CAVs) highlighted by yellow dots. D): V2V links
are set up between CVs and CAVs by assuming that each CAV can receive information from
up to 4 CVs ahead of it.

(CAV’s), while the rest of the vehicles stay connected human-driven vehicles (CHV’s).
In Figure 5.1 C) vehicles i = 1, 7 are CAVs, while i = 3, 6, 9, 11 are CHVs. Finally to
form a connected vehicle network , the CAVs use the information from connected vehicles
downstream to control their longitudinal motion. To develop our analytical tools we simplify
the car-following dynamics of the connected automated vehicles (2.1,2.13,2.15,2.17) by
excluding the delay and saturation. Furthermore, we model the dynamics as a continuous
time process, assuming that the information coming in from wireless communication is
streamed to each connected automated vehicle rather than broadcasted periodically. The
latter can be interpreted as a variable delay in the dynamics [75, 76], so this simplification is
in line with eliminating the delays due to reaction and actuation. The dynamics can be then
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written as

ṡi = vi,

v̇i = α
(
V (si+1− si− `i)− vi

)
+β1 (vi+1− vi)+

σmax

∑
σ=2

βiσ (vi+σ − vi) .
(5.1)

Note that in this case we use the same smooth range policy as for the human driven vehicles.
Furthermore in (2.13) we set a = α . We rewrite the relative velocity feedback (2.13) as a
sum of feedbacks from vehicle i+ 1 (with gain β1) and beyond-line-of-sight vehicles i+σ

where σ = 2, . . . ,σmax, with gain βiσ such that

β1 +
σmax

∑
σ=2

βiσ = b. (5.2)

In other words σ represents the length of the communication link between a CV and a CAV.
In Figure 5.1 D) we see two links with link length σ = 2 and one link with length σ = 4. In
connected vehicle networks links up to σ ≈ 4 were shown to have significant benefit [27],
so in this chapter we consider σmax = 4, but the developed framework can be used for links
of arbitrary length. Finally for the human driven vehicles in (4.1) we set β = β1, so that
the only difference between (5.1) and (4.1) are the velocity feedback terms from vehicles
beyond-line-of-sight.

Due to the range policy being the same for all drivers, note that the uniform flow state
(2.18-2.22) remains the same for N vehicles in the network no matter how many of them are
human driven or connected automated. Thus the above simplifications allow us to analyze
solely the effect of the added long-range communication links on the stability of uniform
flow. The perturbations about uniform flow are defined as before (4.2) and the cubic order
Taylor expansion of yields

˙̃si = ṽi ,

˙̃vi = p (s̃i+1− s̃i)+
q
2
(s̃i+1− s̃i)

2 +
r
6
(s̃i+1− s̃i)

3 +β1 (ṽi+1− ṽi)−α ṽi +
σmax

∑
σ=2

βiσ (ṽi+σ − ṽi),

(5.3)

In this chapter we investigate how a connected vehicle network where human-driven
vehicles modeled by (4.1) and connected automated vehicles modeled by (5.1) performs
compared to a network composed solely of human drivers. To do this investigation we
develop analytical tools for scalable stability analysis of such connected vehicle networks.
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5.2 Network-Based Analysis of Cyclic Systems with Acyclic
Perturbations

In this section we develop methods for the linear modal analysis of systems with an under-
lying cyclic structure that is perturbed by long-range connections (that make the system
acyclic). We write the Jacobian of the overall system as a sum of a block circulant matrix
(representing the unperturbed cyclic system) and perturbation (matrices representing the
long-range connections). First we obtain the modes using a linear transformation for the
unperturbed cyclic system. This is a well known problem and was extensively discussed in
[59]. We then develop a perturbation method to approximate the modes for the perturbed
acyclic system around the cyclically symmetric configuration. We exploit the cyclic structure
of the unperturbed system to reduce the complexity of calculations when solving for the
modes of the perturbed acyclic system. As mentioned above, such a modal decomposition
can be performed for systems with arbitrary numbers of nodes and an arbitrary number of
perturbations without significant increase in complexity. Our network-based modal analysis
also reveals how different parameters influence modal and system stability.

Assuming the state of the i-th node is described by the vector xi = [x(1)i , . . . ,x(M)
i ]T, its

dynamics can be written as

ẋi = g(xi,xi+1, · · · ,xi+N−1)+
σmax

∑
σ=0

hiσ (xi,xi+σ )εiσ , (5.4)

where xN+i ≡ xi and g = [g(1), . . . ,g(M)]T is a vector valued function that represents the
cyclic coupling of the nodes. The vector valued functions hiσ = [h(1)iσ , . . . ,h(M)

iσ ]T represent
the acyclic perturbations to the cyclic structure, while εiσ represents the magnitude of the
perturbations. We assume that the system possesses a equilibrium where all the nodes are
synchronized

xi ≡ x∗ , (5.5)

for i = 1, . . . ,N satisfying g(x∗, . . . ,x∗) = 0 and hiσ (x∗,x∗) = 0.

By defining the perturbation
yi = xi−x∗ , (5.6)

where yi = [y(1)i . . .y(N)
i ]T, we linearize (5.4) around the synchronous equilibrium (5.5) and

obtain

ẏi =
N

∑
j=1

C jyi+ j−1 +
σmax

∑
σ=0

(∂1hiσ yi + ∂2hiσ yi+σ )εiσ , (5.7)
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where the M×M matrices C j, ∂1hiσ , ∂2hiσ are given by

[C j]bd =
∂g(b)

∂x(d)i+ j−1

∣∣∣∣∣
∗
, [∂1hiσ ]bd =

∂h(b)iσ

∂x(d)i

∣∣∣∣∣
∗
, [∂2hiσ ]bd =

∂h(b)iσ

∂x(d)i+σ

∣∣∣∣∣
∗

, (5.8)

where the asterisk denotes that the derivatives are evaluated at the synchronous equilibrium.
Notice that C j does not depend on i because the nodes are cyclically coupled. By defining
the state vector ŷ = [yT

1 . . .y
T
N ]

T we can rewrite (5.7) into the compact form

˙̂y = Ĵ ŷ, (5.9)

where the Jacobian

Ĵ = Ĵ0 +
N

∑
i1=1

σmax

∑
σ1=0

P̂(i1,σ1)εi1σ1 , (5.10)

is divided into parts corresponding to the cyclic system and the perturbations. Indeed, the
cyclic coupling between the nodes is represented by

Ĵ0 = circ(C1, . . . ,CN) =


C1 C2 · · · CN

CN C1 · · · CN−1
...

... . . . ...
C2 C3 · · · C1

 , (5.11)

that is a block-circulant matrix of type (M,N); see [59]. The terms

P̂(i1,σ1) = ∆i1i1⊗∂1hi1σ1 +∆i1i1+σ1⊗∂2hi1σ1 , (5.12)

represent the perturbations to the cyclic structure where ∆i j ∈ RN×N contains a "1" in
the i-th row and the j-th column, and zeros everywhere else. The symbol ⊗ denotes the
Kronecker product. Indeed, the matrix P̂(i1,σ1) corresponds to a particular link of length
σ1 starting at node i1 +σ1 and ending at node i1, cf. Figure 5.1 D). In P̂(i1,σ1) we use
brackets instead of subscripts in order to improve the readability.

5.2.1 Modal analysis of cyclic systems

Before obtaining approximations of the modes for the system with acyclic perturbations
we obtain the modes of the cyclic system; see [59]. In particular, we use a linear modal
transformation that exploits the circulant structure of the Jacobian Ĵ0 given in (5.10). When
considering (5.9,5.10) with εi1σ1 = 0, (5.11) can be represented as a linear combination of
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its generating elements using the Kronecker product

Ĵ0 =
N

∑
j=1

(AN)
( j−1)⊗C j, (5.13)

where the N-dimensional forward shift matrix AN = [ai j ] contains elements defined as

ai j =

1 if j = i+ 1,

0 otherwise .
(5.14)

We define the linear coordinate transformation

ŷ = T̂0 ẑ , (5.15)

with modal coordinates zk = [z(1)k . . . z(M)
k ]T, ẑ = [zT

1 . . . zT
N ]

T, and matrix

T̂0 = TN⊗ IM. (5.16)

Here TN =
[
e1 · · · eN

]
and ek is the k-th eigenvector of the forward shift matrix AN

corresponding to the k-th modal eigenvalue ei 2π (k−1)
N , where i2 = −1, k = 1, . . . , N, and IM

is the M-dimensional identity matrix. This transformation is also known as the discrete
Fourier transformation; see [59].

Notice that the mode number k = 1 corresponds to a translational symmetry of the
system, the mode numbers k = 2, . . . , bN

2 + 1c correspond to having k− 1 waves along
the ring, while the mode numbers k = dN

2 + 1e, . . . , N correspond to having N − k + 2
waves along the ring; see [26, 59]. Note that by abuse of notation we use mode numbers
k = 1, . . . , N, in this chapter as opposed to k = 0, . . . , N− 1, in Chapter 4. Applying the
modal transformation (5.15) the equation ˙̂y = Ĵ0ŷ (cf. (5.9,5.10)) without perturbations can
be rewritten as

˙̂z = D̂0 ẑ , (5.17)

where the block diagonal matrix D̂0 ∈ CNM×NM is given by

D̂0 = T̂−1
0 Ĵ0T̂0 = diag([D̂0]

k
k) . (5.18)
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In particular, the block

[D̂0]
k
k =

N

∑
j=1

C jei 2π

N (k−1)( j−1) (5.19)

gives the dynamics of the k-th mode of the cyclic system. We note that the mode/block-
eigenvector relationships for mode k can be formulated as

(Ĵ0− IN⊗ [D̂0]
k
k)[T̂0]k = 0, (5.20)

and
[T̂−1

0 ]k(Ĵ0− IN⊗ [D̂0]
k
k) = 0, (5.21)

where [T̂0]k is the so-called k-th "block eigenvector", that is the k-th set of M columns of
T̂0 and [T̂−1

0 ]k is the so-called k-th "left block eigenvector", that is the k-th set of M rows
of T̂−1

0 . Formulae (5.20) and (5.21) will be used extensively to obtain approximations of
modes and block-eigenvectors for the perturbed system in the next subsection.

Note that the linear coordinate transformation simplifies the linear analysis of the system:
the linear part is decoupled into N sets of complex differential equations representing the
oscillation modes. Thus, the linear stability can be analyzed separately for each mode and
the stability of the synchronous state (5.5) is ensured when all modes are stable.

5.2.2 Modal analysis of cyclic systems with acyclic perturbations

In this section we build upon the analysis of the cyclic system to obtain an approximation
for the modes of the mistuned cyclic system (5.9,5.10) when εi1σ1 > 0 are small for all
i1 = 1, . . . ,N, σ1 = 0, . . . ,σmax.
We assume that Ĵ can be transformed to a block-diagonal matrix D̂ using the transformation

ẑ = T̂ ŷ, (5.22)

yielding
ż = D̂z , (5.23)

with
D̂ = T̂−1 Ĵ T̂ = diag([D̂]kk). (5.24)

Indeed [D̂]kk (k-th modal block) and
[
T̂
]

k (the k-th block-eigenvector) satisfy the equation

(Ĵ− IN⊗ [D̂]kk)
[
T̂
]

k = 0, (5.25)
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cf. (5.20).
We construct D̂ as an expansion about D̂0 up to third-order in εiσ :

D̂ = D̂0 +
N

∑
i1=1

σmax

∑
σ1=0

D̂(1)
εi1σ1 +

1
2

N

∑
i1,i2=1

σmax

∑
σ1,σ2=0

D̂(1,2)
εi1σ1εi2σ2

+
1
6

N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=0

D̂(1,2,3)
εi1σ1εi2σ2εi3σ3 + . . . ,

(5.26)

where we introduced the compact notation

M(1) = M1(i1,σ1),

M(1,2) = M2(i1,σ1, i2,σ2),

M(1,2,3) = M3(i1,σ1, i2,σ2, i3,σ3).

(5.27)

In order to be able to derive the coefficient matrices in (5.26) we expand T̂ up to second-order

T̂ = T̂0 +
N

∑
i1=1

σmax

∑
σ1=0

T̂(1)
εi1σ1 +

1
2

N

∑
i1,i2=1

σmax

∑
σ1,σ2=0

T̂(1,2)
εi1σ1εi2σ2 + . . . . (5.28)

Since we already know D̂0 and T̂0 from (5.18,5.19) and (5.16), respectively, we use
(5.25) and (5.24) sequentially to obtain the higher order terms of D̂ and T̂ as depicted in Fig.
5.2.

D̂0 T̂0

D̂1(i1, σ1) T̂1(i1, σ1)

D̂2(i1, σ1, i2, σ2) T̂2(i1, σ1, i2, σ2)

D̂3(i1, σ1, i2, σ2, i3, σ3) · · ·

Figure 5.2: Diagram showing the sequential method of obtaining the approximations for the
modal blocks and block-eigenvectors of the perturbed system by solving (5.25) and (5.24).

In particular, to determine the higher order terms in [D̂]kk we differentiate (5.25) with
respect to εiσ , while to obtain the higher order terms of [T̂]k we compare the left and right
hand sides of (5.24). To obtain the first-order perturbation of the dynamics of the k-th
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mode [D̂(1)]kk for an arbitrary i1,σ1 we take the derivative of (5.25) with respect to εi1σ1 pair
(denoted by ∂ε1) to obtain(

∂ε1 Ĵ− IN⊗∂ε1 [D̂]kk

)
[T̂]k +

(
Ĵ− IN⊗ [D̂]kk

)
∂ε1 [T̂]k = 0. (5.29)

We then evaluate this at εi1σ1 = 0, yielding

(
P̂(1)− IN⊗ [D̂(1)]kk

)
[T̂0]k +

(
Ĵ0− IN⊗ [D̂0]

k
k
)
[T̂(1)]k = 0, (5.30)

where we use the compact notation M(1) = M(i1,σ1); cf. (5.27) and see (5.10,5.11,5.12).
Multiplying (5.30) with [T̂−1

0 ]k from the left and using (5.21) we can eliminate the second
term, that is,

[T̂−1
0 ]k

(
P̂(1)− IN⊗ [D̂(1)]kk

)
[T̂0]k = 0, (5.31)

which can be simplified and solved for

[D̂(1)]kk = [T̂−1
0 ]k P̂(1)[T̂0]k, (5.32)

We can substitute the definition (5.12) of P̂(1) to obtain a general expression for the first-order
perturbation of the k mode due to a link between nodes i1 and i1 +σ1:

[D̂(1)]kk = [D̂1(i1,σ1)]
k
k =

1
N

(
∂1hi1σ1 + ei 2π

N σ1(k−1)
∂2hi1σ1

)
. (5.33)

To expand the modal dynamics up to second-order in terms of mistunings we must first
obtain the expansion of matrix T̂ and its block-eigenvectors up to first-order. Notice that the
expansion for T̂−1 can be written as

T̂−1 ≈ T̂−1
0 −

N

∑
i1=1

σmax

∑
σ1=0

T̂−1
0 T̂(1)T̂−1

0 εi1σ1

+
N

∑
i1,i2=1

σmax

∑
σ1,σ2=0

(
T̂−1

0 T̂(1)T̂−1
0 T̂(2)T̂−1

0 −
1
2

T̂−1
0 T̂(1,2)T̂−1

0

)
εi1σ1εi2σ2 + . . . ,

(5.34)

where we exploited the Neumann series, given by

(I+M)−1 ≈ I−M+M2 + . . . , (5.35)

where M is a square matrix whose eigenvalues are less than 1 and I is an identity matrix.
Substituting (5.26), (5.28), and (5.34) into (5.24) and matching the first-order terms in εi1σ1
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yields

N

∑
i1=1

σmax

∑
σ1=0

D̂(1)
εi1σ1 =

N

∑
i1=1

σmax

∑
σ1=0

(
− T̂−1

0 T̂(1)T̂−1
0 Ĵ0T̂0 + T̂−1

0 P̂(1)T̂0 + T̂−1
0 Ĵ0T̂(1)

)
εi1σ1 .

(5.36)
We equate the terms corresponding to a perturbation corresponding to an arbitrary i1, σ1

pair and use (5.18) to simplify the formula to obtain a Sylvester equation

D̂0Û(1)− Û(1)D̂0 = D̂(1)− T̂−1
0 P̂(1)T̂0, (5.37)

for the matrix Û(1) = T̂−1
0 T̂(1) of (MN)2 unknowns.

The complexity of (5.37) can be reduced significantly by exploiting the cyclic structure
of the unperturbed system. In (5.37), Û(1) is multiplied by block-diagonal matrices from the
left and right. Thus, the coefficients contained by [Û(1)]k` remain in the k-th block row and
`-th block column after the multiplications, which yields

[D̂0]
k
k[Û

(1)]k`− [Û(1)]k` [D̂0]
`
` = [D̂(1)]k`− [T̂−1

0 ]k P̂(1)[T̂0]`. (5.38)

Using (5.12) and (5.33), this can be written as

[D̂0]
k
k[Û

(1)]k`− [Û(1)]k` [D̂0]
`
` =

1
N

ei 2π

N (i1−1)(`−k)
(

∂1hi1σ1 + ei 2π

N σ1(`−1)
∂2hi1σ1

)
(δk`−1),

(5.39)
where δk` denotes the Kronecker delta. This Sylvester equation can be rewritten into the
standard form of a linear algebraic equation

A(1)
k ` b(1)

k ` = c(1)k ` , (5.40)

where
A(1)

k ` = IM⊗ [D̂0]
k
k− [D̂T

0 ]
`
`⊗ IM, (5.41)

and
b(1)

k ` = vec([Û(1)]k`). (5.42)

Here vec(·) is the vectorization operator that stacks the columns of a matrix into a column
vector. Similarly, c(1)k ` is the vectorization of the right hand side of (5.39). Thus, by exploiting
the cyclic structure of the unperturbed system (5.13) we need to solve N2 decoupled linear
equations each with M2 unknowns. In contrast (5.37) would require us to solve (MN)2

coupled equations. For the diagonal M×M blocks of Û(1), equation (5.40) has multiple
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possible solutions due to a non-zero nullity. Here we set

[Û(1)]kk = 0. (5.43)

Once all the M×M blocks of Û(1) are solved for, we can calculate T̂(1) = T̂0Û(1).

To obtain the second-order perturbation of the dynamics of the k-th mode [D̂(1,2)]kk for
an arbitrary i1,σ1, i2,σ2 quadruple we take the derivative of (5.29) with respect to εi2σ2

(denoted by ∂ε2) yielding(
∂ε1∂ε2 Ĵ− IN⊗∂ε1∂ε2 [D̂]kk

)
[T̂]k +

(
∂ε1 Ĵ− IN⊗∂ε1 [D̂]kk

)
∂ε2 [T̂]k

+
(

∂ε2 Ĵ− IN⊗∂ε2 [D̂]kk

)
∂ε1 [T̂]k +

(
Ĵ− IN⊗ [D̂]kk

)
∂ε1∂ε2 [T̂]k = 0,

(5.44)

and evaluate this at εi1σ1 = 0, εi2σ2 = 0 to get

1
2

IN⊗ ([D̂(1,2)]kk +[D̂(2,1)]kk)[T̂0]k =(
P̂(1)− IN⊗ [D̂(1)]kk

)
[T̂(2)]k +

(
P̂(2)− IN⊗ [D̂(2)]kk

)
[T̂(1)]k

+
1
2
(
Ĵ0− IN⊗ [D̂0]

k
k
)(
[T̂(1,2)]k +[T̂(2,1)]k

)
,

(5.45)

where we used the compact notation M(1,2) =M2(i1,σ1, i2,σ2), cf. (5.27) and see (5.10,5.11,5.12).
We eliminate the last term in the expression above by multiplying by [T̂−1

0 ]k from the left
and use (5.21) to obtain

[D̂(1,2)]kk +[D̂(2,1)]kk =

2[T̂−1
0 ]k

(
P̂(1)− IN⊗ [D̂(1)]kk

)
[T̂(2)]k + 2[T̂−1

0 ]k
(
P̂(2)− IN⊗ [D̂(2)]kk

)
[T̂(1)]k.

(5.46)

Since the above expression contains two unknowns ([D̂(1,2)]kk and [D̂(2,1)]kk) for each i1,σ1, i2,σ2

quadruple, we have the freedom to set

[D̂(1,2)]kk = 2[T̂−1
0 ]k

(
P̂(1)− IN⊗ [D̂(1)]kk

)
[T̂(2)]k. (5.47)

Since [T̂−1
0 ]k(IN⊗ [D̂(1)]kk)[T̂

(2)]k = 0 we obtain the simplified form

[D̂(1,2)]kk = 2[T̂−1
0 ]kP̂(1)[T̂(2)]k. (5.48)

Using (5.12) this can be written as
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[D̂(1,2)]kk = [D̂2(i1,σ1, i2,σ2)]
k
k =

N

∑
j=1

2
N

ei 2π

N (i1−1)( j−k)(
∂1hi1σ1 +ei 2π

N σ1( j−1)
∂2hi1σ1

)
[Û(2)] j

k,

(5.49)
where the components of Û(2) = Û1(i2,σ2) = T̂−1

0 T̂1(i2,σ2) are given by the solution of
(5.40).

To expand the modal dynamics up to third-order we must first obtain the expansion of
matrix T̂ up to second-order. The process is similar to the process of expanding T̂ up to
first-order; cf. (5.36-5.43). Substituting (5.26), (5.28), and (5.34) into (5.24) and collecting
the second-order terms yields

1
2

N

∑
i1,i2=1

σmax

∑
σ1,σ2=0

D̂(1,2)
εi1σ1εi2σ2 =

N

∑
i1,i2=1

σmax

∑
σ1,σ2=0

(
− 1

2
T̂−1

0 T̂(1,2)T̂−1
0 Ĵ0T̂0

+ T̂−1
0 T̂(1)T̂−1

0 T̂(2)T̂−1
0 Ĵ0T̂0− T̂−1

0 T̂(1)T̂−1
0 P̂(2)T̂0

− T̂−1
0 T̂(1)T̂−1

0 Ĵ0T̂(2)+ T̂−1
0 P̂(1)T̂(2)+

1
2

T̂−1
0 Ĵ0T̂(1,2)

)
εi1σ1εi2σ2 .

(5.50)

Equating the terms corresponding to εi1σ1εi2σ2 , and using (5.18) and (5.37) and some
algebraic manipulation we obtain the Sylvester equation

D̂0Û(1,2)− Û(1,2)D̂0 = D̂(1,2)+ 2Û(1)D̂(2)−2T̂−1
0 P̂(1)T̂0Û(2), (5.51)

for the matrix Û(1,2) = T̂−1
0 T̂(1,2).

We again compare individual blocks on the two sides of (5.51) and reduce it to a low
order Sylvester equation

[D̂0]
k
k[Û

(1,2)]k`− [Û(1,2)]k` [D̂0]
`
` = [D̂(1,2)]k` + 2[Û(1)]k` [D̂

(2)]``−2[T̂−1
0 ]kP̂(1)T̂0[Û(2)]`.

(5.52)
Using (5.33) this becomes

[D̂0]
k
k[Û

(1,2)]k`− [Û(1,2)]k` [D̂0]
`
` =

2
N
[Û(1)]k`(∂1hi2σ2 + ei 2π

N σ2(`−1)
∂2hi2σ2)

−
N

∑
j=1

2
N

ei 2π

N (i1−1)( j−k)
(

∂1hi1σ1 + ei 2π

N σ1( j−1)
∂2hi1σ1

)
[Û(2)] j

`(1−δk`).
(5.53)

that can be written into the form of a linear algebraic equation

A(1,2)
k ` b(1,2)

k ` = c(1,2)
k ` , (5.54)
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where
A(1,2)

k ` = IM⊗ [D̂0]
k
k− [D̂T

0 ]
`
`⊗ IM, (5.55)

and
b(1,2)

k ` = vec([Û(1,2)]k`), (5.56)

and c(1,2)
k` is the vectorization of the right hand side of (5.53); cf. (5.40, 5.41, 5.42). Here

again we need to solve N2 decoupled equations equations with M2 unknowns. In contrast in
(5.52) would require us to solve (NM)2 coupled equations.

The third-order perturbation for the dynamics of the k-th mode can then be obtained
similarly to the way the first and second-order perturbations were obtained. The detailed
derivation is given in Appendix H. The result can be simplified to

[D̂(1,2,3)]kk = [D̂3(i1,σ1, i2,σ2, i3,σ3)]
k
k =

3
N

N

∑
j=1

ei 2π

N (i1−1)( j−k)(∂1hi1σ1 +ei 2π

N σ1( j−1)
∂2hi1σ1)[Û

(2,3)] j
k,

(5.57)
where the compact notation M(1,2,3) = M(i1,σ1, i2,σ2, i3,σ3) was used (cf. (5.27)). Using
(5.13), (5.33), (5.49), and (5.57) the dynamics of the k-th mode can be expressed by

żk = [D̂]kkzk, (5.58)

where

[D̂]kk =
N

∑
j=1

C jei 2π

N (k−1)( j−1)+
1
N

N

∑
i1=1

σmax

∑
σ1=0

(
∂1hi1σ1 + ei 2π

N σ1(k−1)
∂2hi1σ1

)
εi1σ1

+
1
N

N

∑
i1,i2=1

σmax

∑
σ1,σ2=0

N

∑
j=1

ei 2π

N (i1−1)( j−k)(
∂1hi1σ1 + ei 2π

N σ1( j−1)
∂2hi1σ1

)
[Û(2)] j

kεi1σ1εi2σ2

+
1

2N

N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=0

N

∑
j=1

ei 2π

N (i1−1)( j−k)(∂1hi1σ1 + ei 2π

N σ1( j−1)
∂2hi1σ1)[Û

(2,3)] j
kεi1σ1εi2σ2εi3σ3 ,

(5.59)

and [Û(2)] and [Û(2,3)] are the solutions of (5.37) and (5.51), respectively.
That is we obtained N decoupled systems of M linear complex ordinary differential

equations. Each system can then be separately analyzed to estimate the stability of the
corresponding mode (assuming that the perturbations are small). To evaluate the linear
stability of the synchronous state (5.5) we calculate the characteristic polynomial for mode
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k, given by
det(λ IM− [D̂]kk) = 0, (5.60)

and solve for its M eigenvalues λ ∈ C. Indeed, the synchronous solution is stable when all
modes are stable.

5.3 Modal approximation for heterogeneous connected ve-
hicle network

In this section we analyze the connected vehicle network where the human-driven vehicles
are governed by (4.1) and the connected automated vehicles are governed by (5.1) using the
framework developed above. First, we decompose the underlying cyclic system with nearest
neighbor coupling and analyze the linear stability of the corresponding modes. Then, we use
the developed perturbation analysis to approximate the modes in the presence of long-range
links. Decoupling the modes of the connected vehicle network allows us to analyze the
linear stability of the modes individually, and characterize the oscillations that arise when
these modes lose their stability. This allows us to study the effects of long-range V2V links
on the stability of connected vehicle networks.

Consider the Taylor approximation (4.3) up to first order, in other words, setting p =

q = 0. Using the vector notation yi = col [s̃i ṽi], we can rewrite the dynamics of the i-th car
(4.3) around the uniform flow as

ẏi = C0yi +C1yi+1 +
σmax

∑
σ=2

(∂1hiσ yi + ∂2hiσ yi+σ )βiσ , (5.61)

(cf. 5.7). Here

C0 =

[
0 1
−p −α−β1

]
, C1 =

[
0 0
p β1

]
, (5.62)

represent the nearest neighbor coupling,

∂1hiσ =

[
0 0
0 −1

]
, ∂2hiσ =

[
0 0
0 1

]
, (5.63)

correspond to the long-range connections, cf. (5.8) and βiσ stands for εiσ . Then we write
(5.61) into the form (5.9,5.10) where

Ĵ0 = circ(C0,C1,0, . . . ,0) = (IN⊗C0 +AN⊗C1), (5.64)
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(cf. (5.11,5.13)) and P̂(i1,σ1) is defined in (5.12).

5.3.1 Modal analysis of connected vehicle network with nearest neigh-
bor coupling

Prior to performing the linear modal analysis on the heterogeneous connected vehicle
network, we first find the modes for the homogenous network, i.e., (5.61) with βiσ = 0.
This analysis was performed in detail in [8] and here we summarize the main findings.
Performing the coordinate transformation (5.15) we obtain the dynamics of the k-th mode to
be

[D̂0]
k
k =

[
0 1

pηk1 β1ηk1−α

]
, (5.65)

(cf. (5.19)) where
ηk ` = ei 2π

N (k−1)− ei 2π

N (`−1) , (5.66)

for k, `= 1, . . . , N. Note that the dynamics of modes k and N−k+2 are complex conjugates
of each other. Mode k = 1 corresponds to a translational symmetry of the system, see [65].
This mode does not become unstable for α > 0. We also remark that for even N, there is
another special mode k = N/2+ 1 which does not have a complex conjugate mode. This
mode remains stable for α + 2β1 > 0.

Modes k and N− k+ 2 lose stability at a critical value of p = α V ′(h∗) given by

pk = 1
2(2β1 +α)

(
(2β1 +α) tan2

(
(k−1)π

N

)
+α

)
, (5.67)

and the stability of these modes is lost to oscillations of frequencies

ωk = (2β1 +α) tan
(
(k−1)π

N

)
, (5.68)

for k = 2, . . . , N. Since (5.67) is monotonically increasing with k when 2 ≤ k ≤ bN
2 + 1c,

the modes lose stability in the increasing order of mode number k. Thus, the uniform flow
loses stability when modes 2 (and N) lose stability for the cyclically symmetric system with
nearest neighbor coupling. At the linear level, the oscillations can be characterized by the
modal coordinates zk and zN+2−k. In order to perform a similar analysis for a connected
vehicle network that includes long-range V2V links, we perform perturbation analysis to
decouple the modes.
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Figure 5.3: Stability charts in the (h∗,β2) plane when a V2V link of length 2 is added to an
11-car network. The β1 and α values are indicated at each panel. The red curves denote the
stability boundaries for the modes k = 2, . . . ,6 obtained through analytical approximation
up to third-order in βσ . The black curves denote the linear stability boundaries for modes
obtained by numerical continuation. The grey shaded region corresponds to stable uniform
flow.

5.3.2 Stability analysis of connected vehicle network with long-range
V2V connections

Now we consider the case that βi1σ1 are small for all i1 = 1, . . . ,N and σ1 = 2, . . . ,σmax.
Considering (5.61) and using (5.25) with the approximations defined in (5.26), (5.28), and
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(5.34) we can obtain the perturbations to the modal dynamics and the modal transformation.
We use (5.33) to obtain the first-order perturbation for the dynamics of the k-th mode
associated with a link of length σ1 terminated at vehicle i1. This reads

[D̂1(i1,σ1)]
k
k =

[
0 0

0 1
N

(
ei 2π

N σ1(k−1)−1
)] . (5.69)

We see that to first-order the contributions of the long-range links are independent from
one another. In other words, to first-order, the contribution of all the links to the dynamics
of mode k is the sum of the contributions of the individual links. To obtain the modal
coordinate transformation (5.22) up to first-order we solve (5.40) with the matrices

A(1)
k` =


0 1 −pη`1 0

pηk1 β1ηk1−α 0 −pη`1

−1 0 −β1η`1 +α 1
0 −1 pηk1 β1ηk`

 , (5.70)

and

c(1)k` =


0
0
0

1
N ei 2π

N (i1−1)(`−k)(ei 2π

N σ1(`−1)−1)(δk`−1)

 , (5.71)

to obtain

b(1)
k` =


u(1)k`,11

u(1)k`,21

u(1)k`,12

u(1)k`,22

=
(1−δk`)(ei 2π

N σ1(`−1)−1)ei 2π

N (i1−1)(`−k)

Nηk`(p−αβ1)


β1η`1

−pη`1

−1
α

 . (5.72)

Using the first-order pertubations upon T̂ we can obtain the second-order perturbation
on the dynamics of mode k with respect to any two long-range links described by the indices
i1,σ1, i2,σ2. In particular, (5.49) yields

[D̂(1,2)]kk = [D̂2(i1,σ1, i2,σ2)]
k
k =

[
0 0

−2K0(i1,σ1, i2,σ2) −2K1(i1,σ1, i2,σ2)

]
, (5.73)
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where

K0(i1,σ1, i2,σ2) =
pηk1

N2(p−αβ1)

N

∑
j=1, j 6=k

(ei 2π

N σ1( j−1)−1)(ei 2π

N σ2(k−1)−1)ei 2π

N (i1−i2)( j−k)

η jk
,

K1(i1,σ1, i2,σ2) =
−α

N2(p−αβ1)

N

∑
j=1, j 6=k

(ei 2π

N σ1( j−1)−1)(ei 2π

N σ2(k−1)−1)ei 2π

N (i1−i2)( j−k)

η jk
.

(5.74)

Note that the second-order terms for two different links will depend on the parameters α , β1,
p, the indices of receiving cars (i1, i2), and the link lengths (σ1,σ2). Thus, a second-order
approximation accounts for the interactions between the long-range links.

To get the second-order terms for the modal coordinate transformation (5.22) we solve
(5.54) with matrices

A(1,2)
k` =


0 1 −pη`1 0

pηk1 β1ηk1−α 0 −pη`1

−1 0 −β1η`1 +α 1
0 −1 pηk1 β1ηk`

 , (5.75)

and

c(1,2)
k` =

2
N


0

−∑
N
j=1 ei 2π

N (i1−1)( j−k)(ei 2π

N σ1( j−1)−1)u(2)j`,21

u(1)k`,12(e
i 2π

N σ2(`−1)−1)

u(1)k`,22(e
i 2π

N σ2(`−1)−1)−∑
N
j=1 ei 2π

N (i1−1)( j−k)(ei 2π

N σ1( j−1)−1)u(2)j`,22

 , (5.76)

where u(1)k`,·· represent the elements of the 2× 2 block [Û(1)]k` are given by (5.72). The

solution for the b(1,2)
k` is given in Appendix I.

Using the elements of b(1,2)
k` (cf. (I.2)) we can obtain the third-order perturbations of the

dynamics due to any three long-range links defined by the indices i1,σ1, i2,σ2, i3,σ3 as

[D̂(1,2,3)]kk = [D̂3(i1,σ1, i2,σ2, i3,σ3)]
k
k =

[
0 0

−6L0(i1,σ1, i2,σ2, i3,σ3) −6L1(i1,σ1, i2,σ2, i3,σ3)

]
,

(5.77)
where L0(i1,σ1, i2,σ2, i3,σ3) and L1(i1,σ1, i2,σ2, i3,σ3) are given in Appendix J (see (J.1)).
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Thus, based on (5.59) the dynamics for mode k approximated up to third-order in βiσ become

żk =

([
0 1

pηk1 β1ηk1−α

]
+

1
N

N

∑
i1=1

σmax

∑
σ1=2

[
0 0

0
(
ei 2π

N σ1(k−1)−1
)]βi1σ1

+
N

∑
i1,i2=1

σmax

∑
σ1,σ2=2

[
0 0

−K0(i1,σ1, i2,σ2) −K1(i1,σ1, i2,σ2)

]
βi1σ1βi2σ2

+
N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=2

[
0 0

−L0(i1,σ1, i2,σ2, i3,σ3) −L1(i1,σ1, i2,σ2, i3,σ3)

]
βi1σ1βi2σ2βi3σ3

)
zk,

(5.78)
where the coefficients for the second and third-order terms are given in (5.74) and (J.1),
respectively.

Figure 5.4: Top row: Diagrams of the vehicle configurations with a long-range V2V link for
different link lengths for 11 cars. Bottom row: Corresponding stability charts in the (h∗,βσ )

plane when considering β1 = 0.3 [1
s ] and α = 1 [1

s ]. The red curves denote the stability
boundaries for the modes 2 and 3 obtained through the derived analytical approximation up
to third-order in βσ , while the black curves denote the linear stability boundaries obtained
by numerical continuation. The grey shaded region corresponds to stable uniform flow.

To analyze the stability the modes we use the trial solution zk(t) = zk 0eλ t with zk 0 ∈C2
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and λ ∈ C for mode k. Thus (5.78) yield the characteristic equation for

λ
2 +

(
−β1ηk1 +α +

1
N

N

∑
i1=1

σmax

∑
σ1=2

(1− ei 2π

N σ1(k−1))βi1σ1

+
N

∑
i1,i2=1

σmax

∑
σ1,σ2=2

K1(i1,σ1, i2,σ2)βi1σ1βi2σ2 +
N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=2

L1(i1,σ1, i2,σ2, i3,σ3)βi1σ1βi2σ2βi3σ3

)
λ

+

(
− pηk1 +

N

∑
i1,i2=1

σmax

∑
σ1,σ2=2

K0(i1,σ1, i2,σ2)βi1σ1βi2σ2 +
N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=2

L0(i1,σ1, i2,σ2, i3,σ3)βi1σ1βi2σ2βi3σ3

)
= 0.

(5.79)
We examine the stability of the connected vehicle network and its modes with respect to the
equilibrium headway h∗. By considering the critical case λ = iω we calculate the critical
value of pk using (5.79) which results in the corresponding headway h∗k using (2.5,2.8,2.19)
and determine the corresponding frequency ωk. As both pk and ωk depend on the gains βiσ

and we write these as expansions in βiσ up to third-order as

pk = pk0 +
N

∑
i1=1

σmax

∑
σ1=2

pk1(i1,σ1)βi1σ1 +
1
2

N

∑
i1,i2=1

σmax

∑
σ1,σ2=2

pk2(i1,σ1, i2,σ2)βi1σ1βi2σ2

+
1
6

N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=2

pk3(i1,σ1, i2,σ2, i3,σ3)βi1σ1βi2σ2βi3σ3 + . . . ,

(5.80)

and

ωk = ωk0 +
N

∑
i1=1

σmax

∑
σ1=2

ωk1(i1,σ1)βi1σ1 +
1
2

N

∑
i1,i2=1

σmax

∑
σ1,σ2=2

ωk2(i1,σ1, i2,σ2)βi1σ1βi2σ2

+
1
6

N

∑
i1,i2,i3=1

σmax

∑
σ1,σ2,σ3=2

ωk3(i1,σ1, i2,σ2, i3,σ3)βi1σ1βi2σ2βi3σ3 + . . . .

(5.81)

To obtain the coefficients in (5.80) and (5.81), we substitute them into (5.79), differentiate
the result with respect to the βiσ , evaluate the results at βiσ = 0, and solve the two resulting
algebraic equations for the terms of pk and ωk. The corresponding details are given in
Appendix K.

The approximation to the stability boundary above can be used to directly determine
the values of h∗k at which stability is lost for mode k. Alternatively, given an equilibrium
headway h∗ one can find the set of gains to guarantee the linear stability of all modes.
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5.3.3 Stability diagrams

In this subsection we visualize the results presented in the previous subsection using stability
charts for connected vehicle networks with different connectivity structures. We plot the
analytical approximations of the modal stability boundaries derived above and validate these
results using numerical continuation. We consider long-range V2V links of length 2,3, and
4. For simplicity, we assume that links of the same length use the same gain, i.e.,

βi2 = β2, βi3 = β3, βi4 = β4. (5.82)

We use the range policy (2.5,2.8) with hst = 5 [m], hgo = 35 [m], and vmax = 30 [m
s ].

We first examine the effect of a single long-range link on the stability of connected
vehicle networks. When vehicle i = 1 is receiving information through a link of length σ ,
as depicted in Figure 5.4(a1-c1), the linearized dynamics is described by (5.9) with matrix

Ĵ = Ĵ0 + P̂(1,σ)βσ , (5.83)

cf. (5.10) where ε1σ = βσ is the gain for the link of length σ terminated at vehicle 1.
We first analyze the effect of link of length σ = 2 on the modal stability boundaries

in the (h∗,β2) plane for various values of α and β1. Note, like in the previous section
due to the fact that the range policy is the same for all vehicles h∗ = h∗avg. The results are
summarized in Figure 5.3. The dashed red curves represent the analytical approximations
of the modal stability boundaries up to third-order in β2, while the solid black curves de-
note the boundaries obtained through numerical continuation [78]. Grey shading denotes
stable uniform flow. The corresponding mode numbers k are shown next to each boundary.
Only modes corresponding to k = 2 . . .bN

2 + 1c are shown, since modes k and N + 2− k

are complex conjugates and therefore correspond to the same set of stability boundaries.
The instability region for each mode is confined between the modal boundaries of that
mode. Although the exact boundaries may cross each other (see Figure 5.3(a)), the stabili-
ty for the connected vehicle network, is always given by mode 2 for the cases examined here.
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Figure 5.5: Top row: Connected vehicle networks with 11 cars and links of length 2 and 3
arranged in different configurations. Bottom row: Stability charts in the (β2,β3) plane for
h∗ = 20 [m], β1 = 0.6 [1

s ], and α = 1 [1
s ]. The same notation is used as in Figure 5.4.

Figure 5.3(a) contains four stability boundaries k = 2, . . . ,6. When increasing β2, the
instability region for each mode shrinks and the uniform flow becomes stable for a wider
range of h∗. As β2 increases further some modal stability boundaries (k = 3 and 5) fold back,
increasing the corresponding regions of instability. However, the k = 2 stability boundary
(that gives the primary instability) is nearly vertical, so changing β2 does not change the
stability region significantly. As we increase the values of α and β1 (going down and to the
right in Figure 5.3), stability boundaries for higher mode numbers disappear, and the range
of h∗ for which the system is stable increases. In fact, in Figure 5.3(f,h,k) the connected
vehicle network can be completely stabilized for a large enough gain β2. Notice that the
analytical approximations for the modal boundaries become more accurate for larger values
of α and β1 due to stronger cyclically symmetrical coupling.
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Figure 5.6: (a1,b1):Two connected vehicle networks with 33 vehicles. (a2-a4,b2-b4):
Corresponding stability charts in the (β2,β3) plane corresponding to for h∗ = 20 [m], α =

1 [1/s], β1 = 0.6 [1/s], and various values of β4 as indicated. The same notation is used as
in Figure 5.4.

80



Next we consider the effect of varying the length of the long-range link. In Figure 5.4
we compare the linear stability charts when a long-range link of length σ = 2, σ = 3, σ = 4
is added to an 11-car network. The configurations are depicted in Figure 5.4(a1), (b1),
(c1), respectively, where the corresponding stability boundaries are shown in Figure 5.4
(a2), (b2), (c2). In the case of σ = 3, increasing the gain βσ corresponding to V2V link
improves the stability (still determined by mode 2) more than in the case of σ = 2. In fact,
a sufficiently large gain β3 can be used to stabilize the uniform flow for all values of h∗.
However, increasing β3 has a smaller effect on the stability of mode 3 than increasing β2,
and it takes a larger value of β3 to stabilize mode 3 for all values of h∗. In the case of σ = 4
increasing β4 benefits the stability of the network for low values of β4 where the stability
boundary is given by mode 2. However, for β4 & 1.23 [1/s] the stability of the network is
governed by mode 3, and increasing β4 further has limited impact on the stability of the
network.

After examining the effects of individual V2V links on stability of connected vehicle net-
works, we analyze the effects of combinations of these links. We first consider the scenario
when the connected vehicle network contains two V2V links of different lengths (σ = 2
and σ = 3), and examine the stability for different configurations. A detailed description
of different configurations can be found in [109] while examples of such combinations for
an 11-car network are given at the top of Figure 5.5. In the union configuration shown
in Figure 5.5(a1) a single connected automated vehicle (i = 1) utilizes information from
multiple vehicles ahead (i = 3 and i = 4). In the embedment configuration depicted in Figure
5.5(b1) two distinct connected automated vehicles (i = 1 and i = 2) utilize information from
a single connected human-driven vehicle (i = 4). In the cascade configuration shown in
Figure 5.5(c1), a connected automated vehicle (i = 1) utilizes information from a connected
vehicle ahead (i = 4), which also utilizes information from a vehicle further ahead (i = 6).
The bottom row of Figure 5.5 shows the stability charts for the three configurations in the
(β2,β3) plane. The regions of stability for the three different configurations are similar,
but the stability boundaries for the embedment and cascade cases are more concave. This
indicates that the cascade and embedment configurations may have a greater benefit on the
stability of the network than the "sum" of the individual links in these configurations.
After analyzing the typical configurations appearing in connected vehicle networks, we
use the methodology outlined in Figure 2.1 to construct a connected vehicle network for a
ring with 33 cars. We set up the network as explained in Figure 2.1 B-D by first randomly
selecting the connected vehicles with a probability of 0.5 and then randomly selecting the
connected automated vehicles with a probability of 0.5 out of the connected vehicles. Two
of such connected vehicle networks are shown in Figure 5.6(a1,b1), labeled by "Trial 1" and
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"Trial 2". In both cases combinations of unions, embedment and cascades appear. Figure
5.6(a2-b2) shows stability charts for the two trials in the (β2,β3) plane for different values
of β4. In Figure 5.6(a2,b2), we have β4 = 0, and stability boundaries for modes 2 through
6 appear. Note that the origin denotes the case of no V2V communication where modes
2 through 5 are unstable. Observe that the uniform flow can be stabilized by selecting
sufficiently large gains β2 and β3. As β4 is increased, the modal stability boundaries move
down, and the network can be stabilized using smaller values of β2 and β3. In Figure 5.6(b4)
only stability boundaries for modes 2 through 4 are present. Furthermore, Figure 5.6(b4)
demonstrates that uniform flow can be stabilized only by using links of length 4, since the
origin is located in the region of stable uniform flow.

5.4 Summary

In this chapter we analyzed the dynamics of connected vehicle networks consisting of con-
ventional vehicles that respond to the vehicle immediately ahead, connected vehicles that are
able to transmit and receive information through wireless vehicle-to-vehicle communication
and connected automated vehicles equipped with connected cruise control (CCC) that use
wireless vehicle-to-vehicle communication to respond to multiple vehicles ahead.

The nontrivial connectivity structure of such connected vehicle networks (CVNs) moti-
vated us to develop a perturbation technique to approximate the modal dynamics of networks
with heterogeneous connectivity by perturbing the modes of a corresponding cyclically
symmetric network. First, the modal dynamics of the underlying cyclically symmetric
network were determined through a discrete Fourier transformation. Subsequently the ap-
proximations to the modes of the heterogeneous network were obtained about the symmetric
state. These expansions were obtained using linear algebraic equations that were decoupled
by exploiting the symmetry of the underlying cyclically symmetric network. Specifically
for a system with N nodes and M equations per node this reduction allows one to solve
N2 decoupled linear systems of M2 unknowns instead of solving a single linear system
with (NM)2 unknowns. For example, if N = 100 and N = 2, we wold need to solve 10000
decoupled linear systems with 4 unknowns rather than a linear system with 40000 unknowns,
which is a significant simplification. Furthermore the resulting N2 decoupled linear systems
hare similar structure, which allows one to algorithmize the solution for increased efficiency.

This modal approximation technique was applied to heterogeneous connected vehicle
systems including connected automated vehicles which can also react to the velocity of up
to four vehicles ahead. We first obtained the modal dynamics of the cyclically symmetric
system containing no connected automated vehicles. To obtain approximations of the modal
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equations when the connected vehicle network contains connected automated vehicles,
we calculated the modal expansions around the symmetric modes up to third-order in
the V2V link gains. Using the obtained approximations we were able to analytically
determine the modal stability boundaries for the heterogeneous connected vehicle networks.
We validated the results by comparing these analytical boundaries to those obtained by
numerical continuation.

We conclude that adding connected automated vehicles to a vehicle network of human
driven vehicles may stabilize the uniform flow. We observed that longer V2V links are more
effective at stabilizing modes of low wave numbers, and less effective at stabilizing modes
of high wave numbers. When adding multiple V2V links to a vehicle network, specific
combinations of V2V links may enhance the impacts of the individual links on the stability
of uniform flow. Finally, we demonstrated that in a large CVN having a few appropriately
designed V2V links may be adequate to stabilize the uniform flow.

We found the network-based modal approximation technique to be effective in analyzing
the linear stability of large connected vehicle networks with heterogeneous connectivity.
After analytically showing that V2V communication can be beneficial to stabilizing uniform
flow in connected vehicle networks, it would be interesting to assess the effects of V2V
communication on the nonlinear dynamics of a connected vehicle network. Furthermore
incorporating human reaction delays and vehicle acceleration limits into the model would
give us a better interpretation of the impacts of connected and automated vehicles on traffic
flow.
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CHAPTER 6

Simulations of large connected vehicle networks

The experiments on the 3-car connected vehicle network performed in Chapter 3 demonstrate
that changing the way the connected automated vehicle responds to information from
vehicles traveling ahead may influence the behavior of the overall connected vehicle network.
In particular, we noted that a connected automated vehicle using long-range feedback may
allow all vehicles in the network to travel faster and approach uniform flow. Furthermore, we
demonstrated that for well-tuned parameters the car following models are able to reproduce
experimental results. Supplementarily, in Chapter 4 we have seen that human drivers tend to
develop stop-and-go traffic jams in large vehicle networks for a wide range of parameters.
Furthermore we have shown that for some traffic densities uniform flows and traffic jams
may develop based on the perturbation introduced by vehicles into the network. In Chapter
5 we analytically showed that adding connected and connected automated vehicles may
stabilize the uniform flow of networks if the gains were tuned appropriately.

In this chapter we investigate effects of connected automated vehicles on traffic by
considering large connected vehicle networks consisting of regular human-driven vehicles
(HVs), connected human-driven vehicles (CHVs), and connected automated vehicles (CAVs).
We use the models defined in Chapter 1 without any simplification and with parameters
determined in Appendix B to characterize human drivers in these simulations. We develop a
criterion to baseline the performance of a network of regular human-driven vehicles and
then investigate the effects of adding connected vehicles and connected automated vehicles.

6.1 Connected vehicle network setup

We simulate a connected vehicle network of N vehicles on a ring road of length L so that the
the first vehicle travels behind the N-th vehicle resulting in the periodic boundary conditions
sN+1 = s1 + L and vN+1 = v1. Similarly to the previous chapters we consider the ring
configuration outlined in section 2.2.2, but we do not consider ring road geometry (that
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would require to model lateral and yaw dynamics) but rather simply utilize these periodic
boundary condition to obtain a closed system. Correspondingly, the distances between the
vehicles are calculated using arclengths rather than secants.

Each of the cars is then assigned to be a human-driven vehicle (HV), a connected human-
driven vehicle (CHV), or a connected automated vehicle (CAV). We first randomly select
ncv vehicles in the network to be connected. Then we select ncav of the connected vehicles
to be connected automated. Indeed, the number of connected human-driven vehicles in this
network ncv−ncav. We define the connected vehicle penetration rate as 100ncv

N % and the
connected automated vehicle penetration rate as 100ncav

ncv
%.

In order to model highway scenarios, we set hst = 5 [m] and vmax = 30 [m/s] for
all drivers, cf. (2.5,2.7) and Figures 2.2 D. To account for the variation between human
drivers we assign hgo for each human driver from a uniform random distribution in the
interval [45, 55] [m]. The other human parameters are set to τh = 1.0 [s], α = 0.14 [1/s]
and β = 0.54 [1/s], as determined from model matching; see Appendix B. Likewise we
adjust the range policy of the CAV so that vmax = 30 [m/s] while we still use κ to tune
the "aggressiveness" of the CAVs; see (2.14) and Figure 2.2. We investigate the effects of
κ as well as the effects of long-range V2V communication on the global behavior of the
constructed connected vehicle networks.

When using long-range feedback the connected automated vehicle i considers connected
vehicles up to a look-ahead distance D that are moving slower than the immediate predeces-
sor (vehicle i+ 1). For these vehicles we calculate the weighted downstream velocity v̄(d)i

using (2.15) from Chapter 3 with weights:

wi j =


wi if j = i+ 1

wi if 0 < s j− si < D and v j < vi+1 ,

0 otherwise ,

(6.1)

Note that we limit the number of vehicles in the set Ek
i to 5, as prior research shows

that looking at more than 5 vehicles does not yield significant improvement in performance
[27, 28].

One can show that the dynamics of the connected vehicle network (2.1)-(2.17) admits a
uniform flow equilibrium where all the vehicles travel with constant speed while maintaining
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constant spacings, that is,

vi(t) ≡ v∗,

si+1(t)− si(t)− `i ≡ h∗i ,
(6.2)

where v∗ and h∗i are the uniform flow velocity and uniform flow spacing such that

v∗ = Vi(h∗i ),
N

∑
i=1

(h∗i + `i) = L . (6.3)

Indeed, we have the average spacing h∗avg =
1
N ∑

N
i=1 h∗i cf. (3.7). Depending on the stability

of the uniform flow, the connected vehicle network may converge to or diverge from the
uniform flow after a perturbation is introduced. In the latter case traveling waves may form.

6.1.1 Testing procedure

We initialize simulations with all the cars traveling at uniform flow except the first vehicle,
whose motion is perturbed according the speed profile shown in Figure 2.2 F. The magnitude
of the perturbation is characterized by a dimensionless quantity 0≤ ∆ ≤ 1 called severity.
When ∆ = 0 no perturbation occurs and the car continues to move with the uniform flow.
When ∆ = 1 the perturbed car first decelerates from v∗ to 0 at the deceleration rate amin < 0;
cf. Figure 2.2A. This deceleration happens over a time interval Tb = −v∗/amin. Then the
car remains stationary for a time interval Tc. Finally, the car accelerates back to v∗ at the
acceleration rate amax > 0 (cf. Figure 2.2A) over a time Ta = v∗/amax.

For 0 < ∆ < 1, the selected car reduces its speed by ∆ ·v∗ during the interval 0 ≤ t < Tb

using a constant deceleration. During Tb ≤ t < Tb + Tc the car coasts at a constant ve-
locity of (1−∆)v∗. For our simulations we use Tc = 5 [s]. Lastly, during Tb +Tc ≤ t <

Tb + Tc + Ta the car increases its speed back to v∗ using constant acceleration. During
0 ≤ t ≤ Tb + Tc + Ta the dynamics of the other vehicles in the network are governed
by (2.1)-(2.17). For t ≥ Tb +Tc +Ta the dynamics of all vehicles are governed by these
equations.

After introducing the perturbation, we observe the response of the network. As we are
examining the merits of connected automated vehicles in benefiting traffic flow, we select
our performance metric to be an average flux

q =
1
N

N

∑
i=1

qi, (6.4)

86



where the time-averaged flux of car i is given by

qi =
N + 1
tf− tset

. (6.5)

Here the time tset denotes the time where the simulation converges to a steady behavior and
tf is found by solving

si(tf) = L+ si(tset) . (6.6)

In other words we determine the time it takes each vehicle to go once around the ring after
the connected vehicle network gets close to steady motion. When vehicle i returns to the
same point after going completely around the ring, N + 1 vehicles would have traveled
through that point. Given this, we can determine the flux from the perspective of car i in
(6.5). We then average these results over all the vehicles in the connected vehicle network
using (6.4).

6.2 Results

In this section we first examine the performance of vehicle networks consisting of regular
human-driven vehicles (HVs) while varying the perturbation severity and the traffic density
(the average vehicle spacing h∗avg via adapting the ring length L, cf. (3.7)). We then
investigate the dynamics when connected vehicles and connected automated vehicles are
added to the traffic flow.

6.2.1 Human-driven network

We first look at the performance of a network solely consisting of regular human-driven
vehicles in order to establish a baseline to which we can compare the performance of
connected vehicle networks.

In Figure 6.1 the behavior of a vehicle network composed of 100 human drivers is
shown, focusing on the effects of average vehicle spacing and perturbation severity on
the large-scale traffic patterns. From Figures 6.1 A, C we observe that for h∗avg = 35 [m]
a stop-and-go wave develops independent of the size of perturbations introduced to the
network. While some of the vehicles are traveling at free flow speed others are stopped in
congestion. When the average vehicle spacing is increased to h∗avg = 45 [m], the humans
are able to return to the uniform flow after a small perturbation, see Figure 6.1 B, but large
perturbations still lead to stop-and-go motion; see Figure 6.1 D.
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In order to better understand the traffic patterns, we plot the average flux (6.4) as a
function of the perturbation severity in Figure 6.1 E, F, that are generated using 10 different
distributions of human drivers to account for the variation in human behavior. The mean
values are plotted as points with the standard deviations captured by the error bars. For
h∗avg = 35 [m] the flux for all perturbations remains around 1600 [cars/hr]. This is related
to the fact that congestion forms for all perturbations for the spacing h∗avg = 35 [m]. For
h∗avg = 45 [m] the flux of the network at low perturbations is around 2200 [cars/hr], which
corresponds to highway traffic capacity per lane. However, applying perturbations of severity
0.5 and larger the flux reduces to about 1700 [cars/hr] due to congestion waves.

To obtain a relationship between the flux and vehicle spacing, we plot the flux as
a function of average vehicle spacing for ∆ = 0.01 and ∆ = 1.0 in Figure 6.1 G. For
h∗avg ≤ 40 [m] both small and large perturbations lead to the same flux. For these spacings
congestion develops even for a small perturbations, as demonstrated by Figure 6.1 A,C.
For 40≤ h∗avg ≤ 50 [m] small perturbations result in a significantly higher flux than large
perturbations since the human drivers are able mitigate small perturbations while large
perturbations trigger congestion, as demonstrated by Figure 6.1 B,D. For h∗avg ≥ 50 [m], the
flux resulting from small and large perturbations is the same again, since human drivers are
able to sustain uniform flow for all perturbations examined.

6.2.2 Effects of connected automated vehicles

After baselining the performance of the human-driven network, we add connected and
connected automated vehicles to the network and examine the performance of the resulting
connected vehicle network. As an example, we consider 100% CV penetration and 30%
CAV of CV penetration, that is 70 CHVs and 30 CAVs. This represents a scenario in which
V2X communication is ubiquitous, but the penetration of automated vehicles is still limited.

First we show that in this scenario of partial penetration of connected automated vehicles,
implementing nearest neighbor feedback (where the connected automated vehicle uses
information solely from the vehicle immediately ahead) yields marginal benefits to traffic
flux as the large-scale traffic patterns do not qualitatively change regardless of whether the
connected automated vehicles are tuned to be more or less aggressive (κ = 0.6 or κ = 1.0
[1/s]).

Figures 6.2 and 6.3 A, C show that for h∗avg = 35 [m] stop-and-go waves still develop
for large and small perturbations regardless of κ being 0.6 or 1.0 [1/s]. For h∗avg = 45 [m],
likewise, the connected vehicle network goes to uniform flow for small perturbations, and a
congestion wave forms for large perturbations for both κ values; see Figures 6.2 and 6.3
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B, D. However, panel D shows less congestion compared to the human-driven network as
vehicles do not stop in congestion.

To account for the distribution of the CAVs in the network for figures E, F, G, we
use the results of 30 different connected vehicle networks. The points in each of these
figures correspond to the mean flux, and the error bars indicate standard deviations. Adding
connected automated vehicles leads to a slight (100 [cars/hr]) increase in flux at h∗avg = 35
[m] for both the κ = 0.6 [1/s] and κ = 1.0 [1/s]; see panel E. For h∗avg = 45 [m], using
κ = 0.6 decreases the flux slightly compared to human drivers for perturbations for ∆ < 0.5;
see Figure 6.2 F. This can be attributed to larger spacings between vehicles at uniform flow
in the connected vehicle network. For ∆ > 0.5 the connected vehicle network maintains
a higher flux than the human driven network as the congestion for the connected vehicle
network is smaller. For κ = 1.0 [1/s] (Figure 6.3 F), the connected vehicle network always
maintains a slightly higher flux than the human driver network, as the vehicles are closely
packed at uniform flow and the congestion is less severe for higher perturbations.

Figure 6.2 G demonstrates that the connected vehicle network with κ = 0.6 [1/s] per-
forms as good or better than the human-driver network for all h∗avg except between 41
to 45 [m], where for the low perturbations the human-driver network does better. The
difference in performance however is not large. When κ = 1.0 [1/s] (Figure 6.3 G) the
connected vehicle network performs as good or slightly better than the human-driver network
without any drawbacks. In particular from 19≤ h∗avg ≤ 39 the connected vehicle network
slightly outperforms the human driven network for both large and small perturbations. For
41≤ h∗avg ≤ 49 [m] the connected vehicle network performs better than the human-driver
network for large perturbations, and maintains the performance of the human-driver network
for small perturbations.

Now we demonstrate that by using long-range feedback, the connected automated
vehicles can significantly improve the flux of the connected vehicle network even at partial
penetration. As before, we consider 100% CV penetration and 30% CAV of CV penetration,
that is 70 CHVs and 30 CAVs.

Figure 6.4 A shows that at h∗avg = 35 [m] the network stays close to uniform flow:
in steady state the velocities oscillate by 1-2 [m/s]. Congestion does not develop unlike
in the human driven network, or the connected vehicle networks with nearest-neighbor
feedback. Large perturbations still result in stop-and-go congestion; see Figure 6.4 C. For
h∗avg = 45 [m], adding the connected automated vehicles with long-range feedback allows
for the connected vehicle network to return to uniform flow even for large perturbations as
demonstrated in Figure 6.4 D. These changes in traffic patterns are reflected in improvements
in flux. In Figure 6.4 E, we see that at h∗avg = 35 [m] for small perturbations the flux is
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increased to 2400 [cars/hr], which corresponds to a 50% improvement over the previous
networks examined. At h∗avg = 45 [m] we see that the robustness of the connected vehicle
network to perturbations is significantly improved, as the flux stays close to 2200 [cars/hr]
for all perturbations.

As depicted in Figure 6.4 G the most significant improvement in flux over the previous
network is for 35≤ h∗avg ≤ 39 [m] for small perturbations. In the case the connected vehicle
network with long-range feedback is able to maintain uniform flow for these spacings. In
general there are no drawbacks in terms of flux for using long-range feedback in connect-
ed automated vehicles compared to nearest-neighbor feedback, however, the significant
flux improvements above give this strategy a significant advantage over nearest-neighbor
feedback.

6.2.3 Penetration study

After seeing that long-range feedback is an effective strategy to improve traffic flow at partial
penetrations of connected automated vehicles, we conduct a penetration study to see how
many connected and connected automated vehicles are necessary to benefit the flux. In
our 100 car network we vary the CV penetration in increments of 25% from 0% to 100%,
which represent how "connected" the traffic environment is. We also vary the CAV of CV
penetration in increments of 25% from 0% to 100%, which indicates the fraction of the
connected vehicles that are automated.

Because most common perturbations are not severe (it’s rare for someone to do a full
stop on the highway), we chose to perturb the networks with ∆ = 0.1 (corresponding to
a 10%) deviation of the speed from uniform flow. After the start of the perturbation we
let the network run for 5 minutes and calculate the flux as in (6.4,6.5,6.6) with t f = 300
[s] corresponding to the end of the simulation. The resulting flux of the connected vehicle
network as a function of spacing qCVN(h∗avg) is compared to that of a network with 100
human-driven vehicles qHVN(h∗avg). The first metric we define yields the maximum increase
in flux over all traffic densities

δqmax = max
h∈[hmin,hmax]

qCVN(h)−qHVN(h)
qHVN(h)

. (6.7)

To investigate the change in flux for a wide range of densities, we consider averaging the
flux increase over the densities examined (between hmin and hmax) and define another metric

δ q̄ =
1

hmax−hmin

∫ hmax

hmin

qCVN(h)−qHVN(h)
qHVN(h)

dh . (6.8)
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We use hmin = 25 [m] and hmax = 49 [m]. The results for both δqmax and δ q̄ are shown in
Figure 6.5 A, B. Note in this case we consider vehicles from D = 300 [m] ahead as before,
as this was the range in which we observed no significant packet losses during experiments.
From Figure 6.5 A we see that even when there is 25% CV penetration and 25% CAV of
CV penetration (ie: 25 % connected vehicles and 6 connected automated vehicles in the
network), the flux can be increased up to 6 % compared to the human connected vehicle
network. With full connectivity (100% CV penetration) just 25% CAV penetration yields
25% increase in flux. Figure 6.5 B shows that on average 50% CV penetration and 25%
CAV of CV penetration (50 CV’s and 13 CAV’s ) yields close to 5% increase in flux on
average over the human driven network. For full connectivity, even 25 CAV’s improve
the flux by over 10% on average. Note that for a given number of CAVs, increasing the
number of CHV’s yields an improvement in flux. That is, 50% CV penetration and 25%
CAV of CV penetration yields higher metrics than 25% CV penetration and 50% CAV of
CV penetration, while both scenarios have 13 connected automated vehicles.

In Figures 6.5 C,D we show the results in which we take the look ahead-distance D to
be 600 [m] rather than 300 [m]. The results are not significantly different for either metric.
Even when we increase the look ahead distance to 900 [m], as shown in Figures 6.5 E,F,
there is no significant difference in performance compared to when the CAV’s only look
ahead 300 [m].

6.3 Summary

To characterize the effect of vehicle-to-vehicle connectivity on traffic patterns, we designed
a small-scale experiment featuring three cars: two connected human-driven vehicles and
one connected automated vehicle. This experimental setup allowed us to evaluate the effect
of different types of feedback used by the connected automated vehicle on traffic patterns
at a realistic range of speeds. The results showed that utilizing long-range feedback by
the connected automated vehicle enables all vehicles to travel at high speeds for a given
traffic density as well as prevent undesirable traffic oscillations. Furthermore, our proposed
car-following model with delay replicated experimental results. We used simulations to
investigate the effects of adding connected automated vehicles to human-driven traffic
in a 100-vehicle connected vehicle network. We observed that although having some
automated vehicles in the network brings benefits in terms of flux over human-driven
vehicles, significant benefits of the connected automated vehicles are only realized when
they are using long-range feedback from multiple vehicles ahead. Our results show that using
long-range feedback is critical for realizing the benefits of connected automated vehicles on
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traffic flow. Furthermore we show that even for small penetrations of connected automated
vehicles ( 13 connected automated vehicles per 100 cars), flux can be improved by 5% for
a wide range of traffic densities provided half of the vehicles on the road are connected
vehicles. Full connectivity will yield even more significant benefits (over 10% across a
wide range of densities), even if only a quarter of the vehicles are connected automated.
Finally, we showed that with our strategy CAV’s do not benefit by receiving information
from connected vehicles over 300 [m] ahead even for small penetrations.
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Figure 6.1: Behavior of a network consisting of 100 human-driven vehicles. A-D: Distribu-
tions of velocities in the network at the end of the simulation for different ∆ and h∗avg. The
dashed line indicates the uniform flow. E, F: Flux-severity charts. G: Flux-spacing chart for
different severities as indicated.
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Figure 6.2: Behavior of a network with 100% CV penetration and 30% CAV of CV
penetration (70% CHVs and 30% CAVs) with the CAVs using nearest neighbor feedback
with κ = 0.6 [1/s] range policy. Same notation is used as in Figure 6.1.
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Figure 6.3: Behavior of a network with 100% CV penetration and 30% CAV of CV
penetration (70% CHVs and 30% CAVs) with the CAVs using nearest neighbor feedback
with κ = 1.0 [1/s] range policy (left). Same notation is used as in Figure 6.2.
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Figure 6.4: Behavior of a network with 100% CV penetration and 30% CAV of CV
penetration (70% CHVs and 30% CAVs) with the CAVs using long-range feedback with
κ = 1.0 [1/s] range policy. Same notation is used as in Figure 6.2.
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Figure 6.5: Penetration study of connected vehicle network with CAV’s using long-range
feedback A: δqmax B: δ q̄ calculated between hmin = 25 [m] and hmax = 49 [m] C, D:
Penetration study for D = 600, with the same notation as A, B. D,E:Penetration study for
D = 900, with the same notation as A, B.
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CHAPTER 7

Conclusions

In this dissertation we examined the impact of vehicle-to-vehicle communication on traffic
flow using rigorous analytical methods, large scale numerical simulations, and also small
scale experiments with real connected and connected automated vehicles.

First we designed and tuned a car following controller of a connected automated vehi-
cle that we developed to follow a connected human driven vehicle. Then we performed
experiments with a small scale connected vehicle network consisting of the connected
automated vehicle and two connected human-driven vehicles to observe the effect of n-
earest neighbor feedback and long-range feedback on traffic patterns. These experiments
showed us two important implications; first is that using long-range feedback to control the
connected automated vehicle gives significant benefits in stability and throughput of the
connected vehicle network, and second that the car following models do a good job in repli-
cating the dynamics of the vehicles as well as the dynamics of the connected vehicle network.

This motivated us to develop rigorous analytical methods to investigate large scale traffic
patterns in vehicle networks as well as how connected automated vehicles can influence
these patterns. First, motivated by the nonlinearity of car following we developed a network-
based methodology to decouple the nonlinear normal modes in a system possessing cyclic
symmetry. This method allowed us to perform bifurcation analysis on a conventional vehicle
network consisting of human driven vehicles, and observe the emerging traffic patterns.
After baselining the performance of the conventional vehicle network, we sought to analyti-
cally evaluate the impact of adding connected and connected automated vehicles into the
network.

These results inspired us to develop a network-based method of decoupling modes for
dynamical systems with acyclic symmetry. Using this method we were able to get nontrivial
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insight about the effects of adding different connected and connected automated vehicle
configurations to the network. We showed that by appropriately gauging the gains, V2V link
lengths, as well as the positioning of connected and automated vehicles, we could benefit
the stability of uniform flow.

To confirm the benefits of the wireless connectivity we performed simulations of large
connected vehicle networks, where we included realistic effects such as delays, discrete
time dynamics of connected automated vehicles, vehicle acceleration limits, as well as an
ad-hoc environment where individual vehicles were not aware of the connected vehicle
network structure. We demonstrated that in order for the connected automated vehicles
to significantly improve traffic flow in the connected vehicle network at low penetration,
the connected automated vehicles must use information from beyond-line-of-sight vehicles
for long-range feedback. In a network including with automated vehicles that use using
nearest-neighbor feedback no significant benefits to flux were observed. If however the same
number of connected automated vehicles are included that respond to connected vehicles
via long-range feedback, significant improvements in flux over human driven traffic are
realized.

Furthermore our study of the effects of different penetrations of connected vehicles
and connected automated vehicles using long-range feedback demonstrates that significant
benefits for all traffic densities can be observed when only a few vehicles are connected
automated, and these vehicles benefit to the flux grows with the % of connected human
driven vehicles in the network. That is increasing the penetration of connected human
driven vehicles would enable a small percentage of connected automated vehicles (on the
order of 10−20 % out of all the cars) to significantly improve traffic flow. Given that full
connectivity can be easily achieved by a government mandate, such as the one proposed in
2016 [20], and-off-the-shelf devices can readily be retrofitted to conventional human-driven
vehicles to make them connected [28, 11] these significant improvements can be viable in
the near future.

Furthermore, our penetration study has demonstrated to achieve the significant benefits
outlined above, connected automated vehicles do not need to look beyond several hundreds
of meters. In particular, having reliable communication beyond 300 [m] was shown not to
give significant benefits to flux at the considered penetrations of connected and connected
automated vehicles. One implication is that while the emerging cellular V2X (C-V2X)
technology promises higher range than DSRC, DSRC is sufficient to improve the flux of
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connected vehicle networks at partial connected vehicle and connected automated vehicle
penetrations. Given the fact that DSRC has already been successfully tested and deployed
in connected vehicle by several manufacturers [40], benefits to traffic flux can be readily
realized provided the deployment of connected automated vehicles with longitudinally
controlled motion.

In addition to looking at the effects of connected and automated vehicles on mobility,
one can extend the framework developed in this dissertation to look at other key performance
metrics such as fuel economy and driver comfort. When considering such performance
metrics it would be important to distinguish and consider both the benefits reaped by the
individual vehicles as well as the benefits for the entire connected vehicle network. This
way we can assess the customers’ incentive behind adopting connected automated vehicles
as well as the global benefits once a critical penetration has been reached.

Lastly experimental and simulation frameworks developed in this work would allow
us to evaluate any other potential control strategies for connected automated vehicles.
For instance, with the emergence of reinforcement learning as a technique for control of
connected automated vehicles with promising initial simulation results in [106, 44, 101],
it would be interesting to evaluate these algorithms on real vehicles and using large scale
simulations to see how they compare in reducing congestion and increasing traffic flow in
mixed penetration environments.
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APPENDIX A

Analytical plant and string stability conditions

The car following equations (3.1 3.2) can be discretized with a timestep ∆t equal to the
V2V message frequency, provided that the timestep ∆t is a factor of the delay, i.e., τa = γ∆t

where γ is a real number

h(t) = h(tk)+
∫ t

tk
vL(t̃)dt̃− v(tk)(t− tk)−

1
2

fsat(u(tk−γ))(t− tk)2 ,

v(tk+1) = v(tk)+∆t fsat
(
u(tk−γ)

)
,

(A.1)

If we define

x(k) =

[
h(k)

v(k)

]
=

[
h(tk)

v(tk)

]
, (A.2)

we can write[
h(k+ 1)
v(k+ 1)

]
=

[
1 −∆t

0 1

][
h(k)

v(k)

]
+

[
0 ∆t2

2 (kP + kV)

0 −∆t(kP + kV)

][
h(k− γ)

v(k− γ)

]

+

[
−∆t2

2 kP

∆tkP

]
V (h(k− γ))+

[
−∆t2

2 kV

∆tkV

]
W (vL(k− γ))+

[∫ tk+1
tk vL(t̃)dt̃

0

]
, (A.3)

The uniform flow condition (2.18,2.19) can be re-defined for the discrete equations above as

vL(t) ≡ v∗ ⇒ vL(k) ≡ v∗ , (A.4)

h(t) ≡ h∗ ⇒ h(k) ≡ h∗ , (A.5)

v(t) ≡ v∗ ⇒ v(k) ≡ v∗ , (A.6)
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where v∗ =V (h∗) and hst < h∗ < hgo, in the linear regime of the range policy (2.6). We can
linearize (A.3) about this uniform flow by defining perturbations

ṽL(k) = vL(k)− v∗ , (A.7)

x̃(k) = x(k)−x∗ , (A.8)

where x∗ = [h∗,v∗]T. We can also use the approximations

∫ tk+1

tk
vL(t̃)dt̃ ≈ vL(tk+1)+ vL(tk)

2
∆t , (A.9)∫ tk+1

tk
ṽL(t̃)dt̃ ≈ ṽL(tk+1)+ ṽL(tk)

2
∆t , (A.10)

for the integrals which yields

x̃(k+ 1) = A0x̃(k)+Aγ x̃(k− γ)+b0
(
ṽL(k)+ ṽL(k+ 1)

)
+bγ ṽL (A.11)

Where

A0 =

[
1 −∆t

0 1

]
, Aγ =

[
− (∆t)2

2 aκ
(∆t)2

2 (a+ b)

∆taκ −∆t(a+ b)

]
, bγ = b

[
− (∆t)2

2

∆t

]
, b0 =

∆
2

[
1
0

]
,

(A.12)
If we define x̂(k) = [x̃(k), . . . , x̃(k− γ)], we can write the system in standard state space
form

x̂(k+ 1) = Âx̂(k)+ B̂γvL(k− γ)+ B̂0
(
vL(k)+ vL(k+ 1)

)
(A.13)

where

Â =



A0 0 · · · 0 Aγ

I 0 · · · · · · 0
... . . . ...
... . . . ...
0 · · · · · · I 0


, B̂0 =



b0

0
...
...
0


, B̂γ =



bγ

0
...
...
0


(A.14)

The transfer function between vL and v may then be obtained as

T (z) = Ĉ
(
zÎ− Â

)−1 (
z−γ B̂γ +(1+ z)B̂0

)
=

Ĉadj
(
zÎ− Â

)(
z−γ B̂γ +(1+ z)B̂0

)
det
(
zÎ− Â

) ,

(A.15)
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To make sure that the CAV is able to attenuate velocity fluctuations coming from the
leading vehicle it is important to ensure string stability of the connected automated vehicle
[94, 26, 109]. This can be formulated as

|T (eiω∆t)|< 1, for 0 < ω <
2π

∆t
, (A.16)

It can be shown that this criterion is equivalent to the one obtained from a continuous time
delay system

ḣ(t) = vL(t)− v(t) ,

v̇(t) = fsat

(
a
(
V (h(t− τ̄))− v(t− τ̄)

)
+ b
(
W (vL(t− τ̄))− v(t− τ̄)

))
,

(A.17)

where τ̄ = τa +
∆t
2 . In other words, to account for the delay due to zero-order hold between

V2V packet deliveries, it is sufficient to add a factor of half the timestep. In [26] is is shown
that with the automated car following dynamics (A.17) with the piecewise linear range
policy (2.5,2.6) shown in Figure 2.2 C, the string stability boundaries are parameterized by
ωcr, the frequency at which string stability is lost:

α = K1±
√

K2
1 +K2 ,

β =
ωcr +ακτ̄ sin(ωcrτ̄)

sin(ωcrτ̄)+ωcrτ̄ cos(ωcrτ̄)
−α ,

(A.18)

and

K1 =
ωcr(κτ̄−1)+κ sin(ωcrτ̄)cos(ωcrτ̄)

(2κτ̄−1) sin(ωcrτ̄)−ωcrτ̄ sin(ωcrτ̄)
,

K2 =
ω2

cr
(

sin(ωcrτ̄)−ωcrτ̄ cos(ωcrτ̄)
)

(2κτ̄−1) sin(ωcrτ̄)−ωcrτ̄ sin(ωcrτ̄)
.

(A.19)

These analytic boundaries allow us to account for the uncertainty in delay τ . We plot
the plant and string stability boundaries for τ̄ = 0.55, 0.6, 0.65, 0.7 s (which is the range of
communication and actuation delays observed for the connected automated vehicle with
packet loss) in Figure 3.4.
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APPENDIX B

Model matching car-following models to human
data

To show that the traffic patterns observed in the experiments can be reproduced by car
following models, we select the parameters for the human car-following model (2.3,2.5,2.7)
via a two-step model matching process.

First we fit the range policy (2.5,2.7) to the experimental data to find hst,i, hgo,i, and vmax,i.
To do this we select segments where the system is close to a uniform flow with vehicles
traveling at roughly constant speed while maintaining constant headways. For example, see
the first column with κ = 0.6 [1/s] nearest-neighbor feedback and κ = 1 [1/s] long-range
feedback scenarios in Figure 3.6. The headways and velocities corresponding to these steady
states are plotted as grey dots in Figures 2.2 B, C for vehicles 1 and 2, respectively. The
blue curves correspond to the fitted range policies, with the parameters given in the first two
rows of Table 2.1.

Second we select the appropriate gains αi, βi and time delay τi for the human drivers
in (2.3). For simplicity, we assume both human drives have similar gains and delays, i.e.,
αi = αh,βi = βh,τi = τh, but our method can be generalized to the scenario when these
parameters are different for each driver. We select the gains and delays by minimizing two
cost functions over a range of αh, βh and τh.

The first cost function calculates the sum of squared differences between the measured
and simulated headways and velocities for all cars:

Jcar(αh,βh,τh) =
1

tend− tst

3

∑
i=1

∫ tend

tst

(
hm

i (t)−hi(t)
)2
+C

(
vm

i (t)− vi(t)
)2

dt. (B.1)

This cost was averaged for all 18 runs (8 for κ = 0.6 [1/s] and 5 for κ = 1.0 [1/s]). The
superscript "m" indicates measured quantities, whereas the unsubscripted headways and
velocities denote data obtained by simulating the network Figure 3.5 B starting from the
same initial condition. Here C is a constant, which we set to 1 [s2].
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The second cost function seeks to match the traffic patterns between the measurements
and simulations:

Jtrf(αh,βh,τh) =
(
∆vm−∆v

)2 , (B.2)

where
∆v =

1
tset

∫ tf

tset

max
i, j=1,2,3

|vi(t)− v j(t)|dt, (B.3)

gives the average speed difference between the fastest and the slowest moving vehicle in
the connected vehicle network taken after time tset when the network settled down to either
uniform flow or steady oscillations. More precisely, for the experiments this period of time
is taken as a time segment from tset to tf of at least 10 seconds where the trajectories either
approach uniform flow, or exhibit constant amplitude oscillations. For the simulation results
this segment is taken as the last 10 seconds of the simulation (tf = tset+10 ). Intuitively small
∆v correspond to the network being close to uniform flow, whereas large ∆v correspond
to traffic congestion [22, 66, 8]. Again, this cost was averaged for all 18 runs,and the
superscripts are used to distinguish experimental and simulated quantities as in (B.1).

We select the gains αh, βh and the delay τh for which the values of both of the above cost
functions are sufficiently small. For the 18 runs considered we obtained αh = 0.14 [1/s],
βh = 0.54 [1/s] and τh = 1.0 [s]. We show the simulation results with these parameters for
h∗avg = 15 [m] in the second column of Figure 3.6. Indeed, the simulations reproduce the
experiments with high accuracy in the three scenarios.
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APPENDIX C

Simplification of Cubic Terms

Before applying the cubic near-identity transformation (4.46) we need to express all the
cubic terms of (4.44) using multiples of two circulant matrices. However, the cubic term
L̂(β )

(
Ŝb
(
Ψ̂(û)û

))
K̂(β )

b û does not appear to have such structure. By spelling out the
components corresponding to the dynamics of mode k (in other words the k+ 1-st row pair)
we obtain[

∑
b=0,1

∑
β=1,2

L̂(β )
(
Ŝb(Ψ̂(û)û)

)
K̂(β )

b û
]

k
=

N−1

∑
j=0

N−1

∑
`=0

∑
b=0,1

∑
β=1,2

∑
δ=1,2

ei 2π b (k−`)
N

[
∂
(β )
b κ

(1δ )
`0

]∗(
ψ

(β 1)
m(`) j ·u fm(`) j

u(1)j +ψ
(β 2)
m(`) j ·u fm(`) j

u(2)j

)
u(δ )`

ei 2π b (k−`)
N

[
∂
(β )
b κ

(2δ )
`0

]∗(
ψ

(β 1)
m(`) j ·u fm(`) j

u(1)j +ψ
(β 2)
m(`) j ·u fm(`) j

u(2)j

)
u(δ )`

 ,

(C.1)
where m(`) is given as

m(`) = fk ` =

k− ` if k ≥ ` ,

N + k− ` if k < ` .
(C.2)

If we consider a change of indexes σ = fk ` we get[
∑

b=0,1
L̂(β )

(
Ŝb(Ψ̂(û)û)

)
K̂(β )

b û
]

k
=

N−1

∑
j=0

N−1

∑
σ=0

∑
b=0,1

∑
β=1,2

∑
δ=1,2

ei 2π bσ

N

[
∂
(β )
b κ

(1δ )
fk σ 0

]∗(
ψ

(β 1)
σ j ·u fσ j u(1)j +ψ

(β 2)
σ j ·u fσ j u(2)j

)
u(δ )fk σ

ei 2π bσ

N

[
∂
(β )
b κ

(2δ )
fk σ 0

]∗(
ψ

(β 1)
σ j ·u fσ j u(1)j +ψ

(β 2)
σ j ·u fσ j u(2)j

)
u(δ )fk σ

 .

(C.3)
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Similarly, the k-th modal component of L̂(β )
(
Ŝb(û)

)
K̂(β )

b Ψ̂(û)û can be expanded as

[
∑

b=0,1
∑

β=1,2
L̂(β )

(
Ŝb(û)

)
K̂(β )

b Ψ̂(û)û
]

k
=

N−1

∑
j=0

N−1

∑
`=0

∑
b=0,1

∑
δ=1,2

∑
β=1,2

ei 2π b (k−`)
N

[
∂
(β )
b κ

(1δ )
`0

]∗(
ψ

(δ 1)
` j ·u f` j u(1)j +ψ

(δ 2)
` j ·u f` j u(2)j

)
u(β )fk `

ei 2π b (k−`)
N

[
∂
(β )
b κ

(2δ )
`0

]∗(
ψ

(δ 1)
` j ·u f` j u(1)j +ψ

(δ 2)
` j ·u f` j u(2)j

)
u(β )fk `

 .

(C.4)
If we re-label the δ and β we obtain[

∑
b=0,1

∑
β=1,2

L̂(β )
(
Ŝb(û)

)
K̂(β )

b Ψ̂(û)û
]

k
=

N−1

∑
j=0

N−1

∑
`=0

∑
b=0,1

∑
β=1,2

∑
δ=1,2

ei 2π b (k−`)
N

[
∂
(δ )
b κ

(1β )
`0

]∗(
ψ

(β 1)
` j ·u f` j u(1)j +ψ

(β 2)
` j ·u f` j u(2)j

)
u(δ )fk `

ei 2π b (k−`)
N

[
∂
(δ )
b κ

(2β )
`0

]∗(
ψ

(β 1)
` j ·u f` j u(1)j +ψ

(β 2)
` j ·u f` j u(2)j

)
u(δ )fk `

 .

(C.5)
Considering (C.3) and (C.5) for the same values of j, β , and δ , and for σ = ` we can show
that

∑
b=0,1

ei 2π bσ

N

[
∂
(β )
b κ

(1δ )
fk σ 0

]∗
= ∑

b=0,1
ei 2π b (k−`)

N

[
∂
(δ )
b κ

(1β )
`0

]∗
, (C.6)

and hence (C.3) and (C.5) are equal. This means that (4.44) and (4.45) are identical.
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APPENDIX D

Cubic Near Identity Coefficients (Left Hand
Side)

The coefficient vector b̃k j ` in (4.51) is given by

b̃k j ` =



γ
(111)
k j φ

(111)
j ` + γ

(121)
k j φ

(211)
j `

γ
(111)
k j φ

(112)
j ` + γ

(121)
k j φ

(212)
j `

γ
(112)
k j φ

(111)
j ` + γ

(122)
k j φ

(211)
j `

γ
(112)
k j φ

(112)
j ` + γ

(122)
k j φ

(212)
j `

γ
(111)
k j φ

(121)
j ` + γ

(121)
k j φ

(221)
j `

γ
(111)
k j φ

(122)
j ` + γ

(121)
k j φ

(222)
j `

γ
(112)
k j φ

(121)
j ` + γ

(122)
k j φ

(221)
j `

γ
(112)
k j φ

(122)
j ` + γ

(122)
k j φ

(222)
j `

γ
(211)
k j φ

(111)
j ` + γ

(221)
k j φ

(211)
j `

γ
(211)
k j φ

(112)
j ` + γ

(221)
k j φ

(212)
j `

γ
(212)
k j φ

(111)
j ` + γ

(222)
k j φ

(211)
j `

γ
(212)
k j φ

(112)
j ` + γ

(222)
k j φ

(212)
j `

γ
(211)
k j φ

(121)
j ` + γ

(221)
k j φ

(221)
j `

γ
(211)
k j φ

(122)
j ` + γ

(221)
k j φ

(222)
j `

γ
(212)
k j φ

(121)
j ` + γ

(222)
k j φ

(221)
j `

γ
(212)
k j φ

(122)
j ` + γ

(222)
k j φ

(222)
j `



, (D.1)

where the constants γ
(··· )
k j and φ

(··· )
j ` are defined in (4.47).
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APPENDIX E

General Cubic Coefficients (Right Hand Side)

The coefficient vector c̃k j ` in (4.51) is given by

c̃k j ` =



(
∑β=1,2 ψ

(β 11)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(11) ∗
k j(

∑β=1,2 ψ
(β 12)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(11) ∗
k j(

∑β=1,2 ψ
(β 11)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(12) ∗
k j(

∑β=1,2 ψ
(β 12)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(12) ∗
k j(

∑β=1,2 ψ
(β 21)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(11) ∗
k j(

∑β=1,2 ψ
(β 22)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(11) ∗
k j(

∑β=1,2 ψ
(β 21)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(12) ∗
k j(

∑β=1,2 ψ
(β 22)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(12) ∗
k j(

∑β=1,2 ψ
(β 11)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(21) ∗
k j(

∑β=1,2 ψ
(β 12)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(21) ∗
k j(

∑β=1,2 ψ
(β 11)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(22) ∗
k j(

∑β=1,2 ψ
(β 12)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(22) ∗
k j(

∑β=1,2 ψ
(β 21)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(21) ∗
k j(

∑β=1,2 ψ
(β 22)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(21) ∗
k j(

∑β=1,2 ψ
(β 21)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(22)∗
k j(

∑β=1,2 ψ
(β 22)
j ` (∂

(β )
0 + ei 2π j

N ∂
(β )
1 )

)
κ
(22) ∗
k j



+
1
6



(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(11) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(11) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(11) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(11) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(12) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(12) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(12) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(12) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(21) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(21) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(21) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(21) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(22) ∗
`0

(∂
(1)
0 + ei 2π (k− j)

N ∂
(1)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(22) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(1)
0 + ei 2π ( j−`)

N ∂
(1)
1 )κ

(22) ∗
`0

(∂
(2)
0 + ei 2π (k− j)

N ∂
(2)
1 ) (∂

(2)
0 + ei 2π ( j−`)

N ∂
(2)
1 )κ

(22) ∗
`0



. (E.1)
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APPENDIX F

Remaining quadratic terms for mode 0

In equation (4.71) 1
2R̂(û)û represents the quadratic terms that cannot be eliminated by the

near-identity transformation (4.32) when modes 1 and N−1 undergo a Hopf bifurcation.
The only two non-zero entries in matrix R̂(û) are given by

[R̂(û)](1,2) =

 0 0

4q1 sin2
(

π

N

)
z(1)N−1 0

 , [R̂(û)](1,N) =

 0 0

4q1 sin2
(

π

N

)
z(1)1 0

 ,

(F.1)
where subscripts denote the location of the block in R̂(û), and q1 gives the value of q at the
bifurcation point; cf. (4.4). Indeed, these quadratic terms correspond to the modes 1 and
N−1 and they only appear in the dynamics of the k = 0 mode. In the special case when
β = 0 and even N the term

[R̂(û)](1, N
2 +1) =

 0 0

4q1 z(1)N
2

0

 , (F.2)

also remains in the equation of the k = 0 mode due to mode N/2.
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APPENDIX G

Quadratic near-identity coefficients for the
connected vehicle example

Equations (4.77) and (4.82) contain four non-zero quadratic near identity coefficients that
can be obtained by solving (4.51) for the car following model:

ψ
(111)
21 =

q1 (ei 2π

N −1)2

2∆

(
−
(
2κ

(21) ∗
10 −κ

(21) ∗
20

)(
4κ

(21) ∗
10 −κ

(21) ∗
20

)
−2κ

(21) ∗
10

(
κ
(22) ∗
10 −κ

(22) ∗
20

)
κ
(22) ∗
20 + κ

(21) ∗
20 κ

(22) ∗
10

(
5κ

(22) ∗
10 −3κ

(22) ∗
20

)
−2
(
κ
(22) ∗
10

)2 (
κ
(22) ∗
10 −κ

(22) ∗
20

)(
2κ

(22) ∗
10 −κ

(22) ∗
20

))
,

ψ
(112)
21 +ψ

(121)
21 =

−q1 (ei 2π

N −1)2

∆

(
4κ

(21) ∗
10 κ

(22) ∗
10 + κ

(21) ∗
20

(
κ
(22) ∗
10 −κ

(22) ∗
20

)
−2κ

(22) ∗
10

(
κ
(22) ∗
10 −κ

(22) ∗
20

)(
2κ

(22) ∗
10 −κ

(22) ∗
20

))
,

ψ
(122)
21 =

q1 (ei 2π

N −1)2

∆

((
4κ

(21) ∗
10 − κ

(21) ∗
20

)
−
(
κ
(22) ∗
10 −κ

(22) ∗
20

)(
2κ

(22) ∗
10 −κ

(22) ∗
20

))
,

(G.1)

where the factor ∆ is

∆ = κ
(21) ∗
20

(
4κ

(21) ∗
10 −κ

(21) ∗
20

)2−16κ
(22) ∗
10

(
κ
(22) ∗
10 −κ

(22) ∗
20

)(
κ
(21) ∗
10

)2

+ 4
(
2 (κ (22) ∗

10 )2− (κ
(22) ∗
20 )2)

κ
(21) ∗
10 κ

(21) ∗
20 −κ

(22) ∗
10

(
5κ

(22) ∗
10 −3κ

(22) ∗
20

)(
κ
(22) ∗
20

)2

+ 2κ
(22) ∗
10

(
κ
(22) ∗
10 −κ

(22) ∗
20

)(
2κ

(22) ∗
10 −κ

(22) ∗
20

)(
−2κ

(21) ∗
10 κ

(22) ∗
20 + κ

(21) ∗
20 κ

(22) ∗
10

)
,

(G.2)

and q1 gives the value of q at the bifurcation point; cf. (4.4). We remark that the coefficients
ψ
(112)
21 and ψ

(121)
21 do not need to be evaluated individually since (4.77,4.82) only include

their sum.
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APPENDIX H

Third-order approximation of modal dynamics

To obtain the third-order perturbation of the dynamics of the k-th mode [D̂(1,2,3)]kk for an
arbitrary i1,σ1, i2,σ2, i3,σ3 sextuple we take the derivative of (5.44) with respect to εi3σ3

(denoted by ε3) which yields

∂ε1∂ε2∂ε3

(
Ĵ− IN⊗ [D̂]kk

)
[T̂]k + ∂ε1∂ε2

(
Ĵ− IN⊗ [D̂]kk

)
∂ε3 [T̂]k

+ ∂ε1∂ε3

(
Ĵ− IN⊗ [D̂]kk

)
∂ε2 [T̂]k + ∂ε2∂ε3

(
Ĵ− IN⊗ [D̂]kk

)
∂ε1 [T̂]k

+ ∂ε1

(
Ĵ− IN⊗ [D̂]kk

)
∂ε2∂ε3 [T̂]k + ∂ε2

(
Ĵ− IN⊗ [D̂]kk

)
∂ε1∂ε3 [T̂]k

+ ∂ε3

(
Ĵ− IN⊗ [D̂]kk

)
∂ε1∂ε2 [T̂]k +

(
Ĵ− IN⊗ [D̂]kk

)
∂ε1∂ε2∂ε3 [T̂]k = 0.

(H.1)

At εi1σ1 = εi2σ2 = εi3σ3 = 0 we obtain

1
6

IN⊗
(
[D̂(1,2,3)]kk +[D̂(1,3,2)]kk +[D̂(2,1,3)]kk +[D̂(2,3,1)]kk +[D̂(3,1,2)]kk +[D̂(3,2,1)]kk

)
= −1

2
IN⊗

(
[D̂(1,2)]kk +[D̂(2,1)]kk

)
[T̂(3)]k−

1
2

IN⊗
(
[D̂(1,3)]kk +[D̂(3,1)]kk

)
[T̂(2)]k

− 1
2

IN⊗
(
[D̂(2,3)]kk +[D̂(3,2)]kk

)
[T̂(1)]k +

1
2
(P̂(1)− IN⊗ [D̂(1)]kk)([T̂

(2,3)]k +[T̂(3,2)]k)

+
1
2
(P̂(2)− IN⊗ [D̂(2)]kk)([T̂

(1,3)]k +[T̂(3,1)]k)+
1
2
(P̂(3)− IN⊗ [D̂(3)]kk)([T̂

(1,2)]k +[T̂(2,1)]k)

+
1
6
(Ĵ0− IN⊗ [D̂0]

k
k)
(
[T̂(1,2,3)]k +[T̂(1,3,2)]k +[T̂(2,1,3)]k +[T̂(2,3,1)]k +[T̂(3,1,2)]k +[T̂(3,2,1)]k

)
.

(H.2)

We can eliminate the last term in the expression above by multiplying by [T̂−1
0 ]k from the

left and using (5.21). Also because the above expression has six unknowns
(

the [D̂(·,·,·)]kk’s
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)
for each i1, σ1, i2, σ2, i3, σ3 sextuple we have the freedom to set

[D̂(1,2,3)]kk = [D̂3(i1,σ1, i2,σ2, i3,σ3)]
k
k =

−3[T̂−1
0 ]k(IN⊗ [D̂(1,2)]kk)T̂0[Û(3)]k + 3[T̂−1

0 ]k(P̂(1)− IN⊗ [D̂(1)]kk)T̂0[Û(2,3)]k,

(H.3)

while the equations for the other third-order terms can be obtained by permuting on
the indices corresponding to i1, σ1, i2, σ2, i3, σ3 on the left and right hand side of (H.3).
By algebraic manipulation one can show [T̂−1

0 ]k(IN ⊗ [D̂(1,2)]kk)T̂0[Û(3)]k = [T̂−1
0 ]k(IN ⊗

[D̂(1)]kk)T̂0[Û(2,3)]k = 0. This means we can simplify (H.3) to

[D̂(1,2,3)]kk = 3[T̂−1
0 ]kP̂(1)T̂0[Û(2,3)]k, (H.4)

and by using (5.12) we can obtain (5.57).
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APPENDIX I

Second-order approximation of the modal
block-eigenvector

Solving (5.54) for the connected vehicle network , we obtain the (k,`)-th block of Û(1,2)

whose elements are contained in

b(1,2)
k` =


u(1,2)

k`,11

u(1,2)
k`,21

u(1,2)
k`,12

u(1,2)
k`,22

 . (I.1)

For k 6= ` using (5.75,5.76) we obtain

b(1,2)
k` =

1
p(p−αβ1)ηk `

×


(p+β1(β1η`1−α))R(i1,σ1, i2,σ2)k`+ pη`1(p+β1(β1ηk1−α))Q(i1,σ1, i2,σ2)k`− pβ1η`1S(i1,σ1, i2,σ2)k`

pη`1(−β1R(i1,σ1,ξ2,ψ2)k`− pβ1ηk1Q(i1,σ1,ξ2,ψ2)k`+ pS(i1,σ1,ξ2,ψ2)k`)

(−pβ1ηk1Q(i1,σ1, i2,σ2)k`−β1R(i1,σ1, i2,σ2)k`+ pS(i1,σ1, i2,σ2)k`)

p(R(i1,σ1,ξ2,ψ2)k`+ pηk1Q(i1,σ1,ξ2,ψ2)k`−α S(i1,σ1,ξ2,ψ2)k `)

 ,

(I.2)
where

Q(i1,σ1, i2,σ2)k ` =
2
N

u(1)k`,12

(
ei 2π

N σ2(`−1)−1
)

,

R(i1,σ1, i2,σ2)k ` =
2
N

(
−

N

∑
j=1

ei 2π

N (i1−1)( j−k)
(

ei 2π

N σ1( j−1)−1
)

u(2)j`,21

)
,

S(i1,σ1, i2,σ2)k ` =
2
N

(
u(1)k`,22

(
ei 2π

N σ2(`−1)−1
)
−

N

∑
j=1

ei 2π

N (i1−1)( j−k)
(

ei 2π

N σ1( j−1)−1
)

u(2)j`,22

)
.

(I.3)
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and u(1)k`,12, u(2)j`,21, u(1)k`,22, u(2)j`,22 are given in (5.72). For the case k = ` (5.54) has multiple
possible solutions due to a non-zero nullity. In this case, we set

b(1,2)
k` =


0
0
0
0

 . (I.4)
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APPENDIX J

Cubic terms of the modal approximation

The coefficients in (5.77) and (5.78) are given by

L0(i1,σ1, i2,σ2, i3,σ3) =
1

N3
pηk1

(p−αβ1)2

N

∑
u=1,u6=k

(ei 2π

N σ1(u−1)−1)ei 2π

N (i1−1)(u−k)

ηuk

×
(
− (ei 2π

N σ2(k−1)−1)(ei 2π

N σ3(k−1)−1)ei 2π

N (i2−1)(k−u)

ηuk
(β1ηu1 +α)

+
N

∑
j=1, j 6=k

(ei 2π

N σ2( j−1)−1)(ei 2π

N σ3(k−1)−1)ei 2π

N (i2−1)( j−u)ei 2π

N (i3−1)(k− j)

η jk
(β1ηk1 +α)

)
,

and

L1(i1,σ1, i2,σ2, i3,σ3) =
1

N3
1

(p−αβ1)2

N

∑
u=1,u6=k

(ei 2π

N σ1(u−1)−1)ei 2π

N (i1−1)(u−k)

ηuk

×
(
(ei 2π

N σ2(k−1)−1)(ei 2π

N σ3(k−1)−1)ei 2π

N (i2−1)(k−u)

ηuk
(pηu1 +α

2)

−
N

∑
j=1, j 6=k

(ei 2π

N σ2( j−1)−1)(ei 2π

N σ3(k−1)−1)ei 2π

N (i2−1)( j−u)ei 2π

N (i3−1)(k− j)

η jk
(pηk1 +α

2)

)
.

(J.1)
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APPENDIX K

Coefficients for modal stability boundaries and
modal frequencies

The coefficients for pk and ωk in (5.80) and (5.81) are obtained by plugging in (5.80) and
(5.81) into (5.79) with p = pk and λ = iωk. The zeroth-order terms in (5.80) and (5.81) are
then determined by setting all βiσ = 0, taking the real and imaginary parts of (5.79), and
solving the resulting two equations for pk0 and ωk0 we obtain

pk0 = 1
2(2β1 +α)

(
(2β1 +α) tan2

(
θk
2

)
+α

)
,

ωk0 = (2β1 +α) tan
(

θk
2

)
,

(K.1)

where θk =
2π

N (k−1). These expressions indeed correspond to (5.67) and (5.68).

To obtain the first-order terms for indices i1,σ1, we take the partial derivative of (5.79)
with respect to βi1σ1 and evaluate the expression at βi1σ1 = 0. Then taking the real and
imaginary parts, and performing some algebraic manipulation we get

pk1(i1,σ1) =
1

2N

(
ωk0

(
sin(σ1θk)+

2
(
1+ sin(θk

2 )
)

sin(θk)

(
1− cos(σ1θk)

))

+α

(
sin(σ1θk)

tan(θk
2 )

+
(
1− cos(σ1θk)

)))

ωk1(i1,σ1) =
1
N

(
sin(σ1θk)+ tan(θk

2 )
(
1− cos(σ1θk)

))
.

(K.2)

Similarly, the second-order terms for the indices i1,σ1, i2,σ2 can be obtained by taking
the second partial derivative of (5.79) with respect to βi1σ1 and βi2σ2 and evaluating the
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results at βi1σ1 = βi2σ2 = 0. Splitting the real and imaginary parts we obtain

pk2(i1,σ1, i2,σ2) =
2
N

ωk1(i1,σ1)k
1− cos(σ2θk)

sin(θk)

+

(
2ωk0

1+ sin2( θk
2 )

sin(θk)
+α

)(
ReK1(i1,σ1, i2,σ2)|c +

1
ωk0

ImK0(i1,σ1, i2,σ2)|c
)

+

(
ωk0 +α

2cos2( θk
2 )

sin(θk)

)(
− ImK1 (i1,σ1, i2,σ2)|c +

1
ωk0

ReK0(i1,σ1, i2,σ2)|c
)

ωk2(i1,σ1, i2,σ2) = 2
(

ReK1(i1,σ1, i2,σ2)|c tan( θk
2 )− ImK1(i1,σ1, i2,σ2)|c

)
+

2
ωk0

(
ReK1(i1,σ1, i2,σ2)|c + ImK0(i1,σ1, i2,σ2)|c tan( θk

2 )

)
,

(K.3)
where "|c" indicates that the quantity is evaluated with all βiσ = 0.

Finally, to obtain the third-order terms for the indices i1,σ1, i2,σ2, i3,σ3 we take the third
partial derivative of (5.79) with respect to βi1σ1 , βi2σ2 , and βi3σ3 and evaluate the result at
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βi1σ1 = βi2σ2 = βi3σ3 = 0. Taking the real and imaginary parts yields

pk3(i1,σ1, i2,σ2, i3,σ3) = 3ωk1(i1,σ1)ωk2(i1,σ1, i2,σ2)+
3
N

1− cos(σ1θ)

sin(θk)
ωk2(i2,σ2, i3,σ3)

+

(
3
2

ωk0 +
α

2
1

tan( θk
2 )

)
ωk3(i1,σ1, i2,σ2, i3,σ3)

+ 6ωk1(i1,σ1)

(
ReK1(i2,σ2, i3,σ3)|c

1
tan(θk)

+ ImK1(i2,σ2, i3,σ3)|c
)

+ 6ωk0

(
∂ε1ReK1(i2,σ2, i3,σ3)|c

1
tan(θk)

+ ∂ε1ImK1(i2,σ2, i3,σ3)|c
)

+ 6ωk0

(
ReL1(i1,σ1, i2,σ2, i3,σ3)|c

1
tan(θk)

+ ImL1(i1,σ1, i2,σ2, i3,σ3)|c
)

+ 6
(

∂ε1ImK0(i2,σ2, i3,σ3)|c
1

tan(θk)
−∂ε1ReK0(i2,σ2, i3,σ3)|c

)
+ 6
(

ImL0(i1,σ1, i2,σ2, i3,σ3)|c
1

tan(θk)
−ReL0(i1,σ1, i2,σ2, i3,σ3)|c

)
,

ωk3(i1,σ1, i2,σ2, i3,σ3) = −3
ωk1(i1,σ1)ωk2(i2,σ2, i3,σ3)

ωk0

+ 6
ωk1(i1,σ1)

ωk0

(
ReK1(i2,σ2, i3,σ3)|c tan( θk

2 )− ImK1(i2,σ2, i3,σ3)|c
)

+ 6
(

∂ε1ReK1(i2,σ2, i3,σ3)|c tan( θk
2 )−∂ε1ImK1(i2,σ2, i3,σ3)|c

)
+ 6
(

ReL1(i1,σ1, i2,σ2, i3,σ3)|c tan( θk
2 )− ImL1(i1,σ1, i2,σ2, i3,σ3)|c

)
+

6
ωk0

(
∂ε1ReK0(i2,σ2, i3,σ3)|c + ∂ε1ImK0(i2,σ2, i3,σ3)|c tan( θk

2 )

)
+

6
ωk0

(
ReL0(i1,σ1, i2,σ2, i3,σ3)|c + ImL0(i1,σ1, i2,σ2, i3,σ3)|c tan( θk

2 )

)
.

(K.4)
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