

Learning Hierarchical Compositional
Task Definitions through Online Situated

Interactive Language Instruction

by

James R. Kirk

A dissertation submitted in partial fulfillment
 of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2019

Doctoral Committee:

 Professor John E. Laird, Chair
 Professor Joyce Y. Chai

Associate Professor Odest Chadwicke Jenkins
Professor Richmond H. Thomason

James Kirk

jrkirk@umich.edu

ORCID iD: 0000-0002-2459-3643

© James Kirk 2019

 ii

Acknowledgements

I would like to thank the many people that have mentored, helped, collaborated, and

supported me over the past years of graduate school, especially my advisor, John Laird, my

committee, fellow graduate student in the Soar lab, contributors to the Rosie project, and my

friends and family.

iii

TABLE OF CONTENTS

Acknowledgements ... ii

List of Tables ... vi

List of Figures .. vii

Abstract .. x

Chapter 1 Introduction ... 1

1.1 Problem Characteristics ... 3

1.2 Learning Example ... 10

1.3 Learning Approach .. 11

1.4 Desiderata .. 15

1.5 Contributions ... 16

1.6 Outline ... 19

Chapter 2 Related Work... 21

2.1 Learning the Rules of Games .. 21

2.2 Task Specification Languages ... 22

2.3 Learning New Word Grounding .. 24

2.4 Contrast with our Approach .. 25

Chapter 3 Background ... 27

3.1 Rosie .. 28

iv

3.2 Environment .. 29

3.3 Soar Cognitive Architecture .. 30

Chapter 4 Task Learning Process .. 34

4.1 Internal Model Creation (L1) .. 35

4.2 Language Instruction (L2) ... 37

4.3 Recognition Structure Learning (L3) .. 39

4.3.1 Predicate Tree Construction .. 41

4.3.2 Structure Interpretation (Grounding) .. 46

4.3.3 Learning procedural rules through chunking ... 48

4.3.4 Recursive Learning Algorithm .. 53

4.4 Operationalization of Task Elements (L4) .. 55

4.5 Task Solving .. 55

Chapter 5 Task Learning Examples .. 58

5.1 Learning the Jealous Managers Puzzle ... 58

5.2 Examples of Learned Task-Specific Terms ... 62

5.2.1 Nouns ... 63

5.2.2 Nouns that act as functions ... 64

5.2.3 Prepositions ... 65

5.2.4 Adjectives .. 65

5.2.5 Comparative Adjectives ... 67

5.2.6 Superlative Adjectives ... 68

5.2.7 Stative Verbs .. 68

v

Chapter 6 Evaluating Task Learning .. 70

6.1 Evaluation of Generality (D1) ... 71

6.2 Evaluation of Communication (D2) .. 74

6.3 Evaluation of Agent Processing Time (D3) ... 76

6.4 Evaluation of Memory (D4) .. 80

Chapter 7 Multiple Interpretations ... 83

7.1 Creating Multiple Interpretations of Task Elements ... 84

7.2 Ambiguity Case Study .. 86

7.2.1 CASE 1: Ambiguous Word Meanings .. 86

7.2.2 CASE 2: Ambiguous External State .. 88

7.2.3 CASE 3: Symmetric State Ambiguity ... 89

7.3 Creating Synonym/Antonym Interpretations .. 89

7.4 Evaluation .. 90

7.4.1 Positive Transfer ... 91

7.4.2 No Transfer .. 92

7.4.3 Negative Transfer .. 93

Chapter 8 Discussion and Conclusion ... 95

8.1 Current Limitations and Future Work ... 99

8.2 Future of Interactive Task Learning .. 100

Appendix .. 102

REFERENCES ... 111

vi

List of Tables

Table 1: Primitive perceptual knowledge about the external environment initial encoded in the agent. Previous

implementations have learned classifiers for the “*” concepts. 37

Table 2: Primitive knowledge for actions, functions, and comparators encoded in the agent. 41

Table 3: A list of some examples of task-specific terms that Rosie has learned organized by the part of speech of the

term. 62

Table 4: A lookup table of common synonyms and antonyms for common words. 90

Table 5: An initial list of many different games and puzzle, that includes a quick description, an external link with

more details, whether we can learn it, and a quick explanation of why, if we cannot learn it. 109

vii

List of Figures

Figure 1: A depiction of an instructor attempting to teach a situated version of a river crossing problem and the

agent’s internal model derived from its perception and knowledge. 4

Figure 2: A tabletop environment with blocks and a robotic arm used for teaching a version of the Tower of Hanoi

puzzles. 10

Figure 3: Dialogue of an instructor teaching Rosie the Tower of Hanoi puzzle using blocks. 11

Figure 4: Pictures of different environments in which Rosie has learned games. From left to right: the tabletop arm

solving Tower of Hanoi with blocks, the Fetch robot learning a block representation of the Five-Puzzle, and an

internal simulation for learning the puzzle Ken-Ken. 29

Figure 5: Soar architecture block diagram showing interaction (input and output) between the long term memories,

working memory, and the Spatial Visual System (SVS) used for perception. 31

Figure 6: The predicate relationships extracted for the displayed external environment are to the right. The

predicates are between movable blocks (A,B,C) and immovable locations (X,Y,Z). 36

Figure 7: Example sentences used in teaching different tasks. 38

Figure 8: A graphical representations of the declarative structure Rosie creates from natural language that orders the

predicate tests. 39

Figure 9: A simplified graphical view of the representations Rosie learns for an action in Eight puzzle. Included are

graphs for the hierarchical concepts used (clear) and taught (adjacent to). The words and boxes are highlighted

according to their part of speech or type. 44

Figure 10: A graphical representations of the declarative structure from Figure 8, now marked with the results of

predicate matching indicated by object identifier numbers in red. 47

viii

Figure 11: A representation of the procedural knowledge, the soar rule, learned through chunking for resolving

“volume of.” 49

Figure 12: A representation of the procedural knowledge, the Soar rule, learned through chunking for resolving

“more than.” 50

Figure 13: A representation of the procedural knowledge learned through chunking for creating the recognition

structure of a task-specific term, “larger than,” in working memory. 51

Figure 14: A representation of the procedural knowledge learned through chunking for creating the recognition

structure of a task element, the goal example, in working memory. 51

Figure 15: A representation of the procedural knowledge learned through chunking for link the names of the goal,

action, and failure conditions for a task, in this case the eight puzzle. 52

Figure 16: A depiction of an instructor attempting to teach a situated version of a river crossing problem and the

agent’s internal model derived from its perception and knowledge. 58

Figure 17: Example sentences used in teaching task elements for nouns. 63

Figure 18: Example sentences used in teaching task elements for nouns that act as functions. 64

Figure 19: Example sentences used in teaching task elements for prepositions. 65

Figure 20: Example sentences used in teaching task elements for adjectives. 66

Figure 21: Example sentences used in teaching task elements for comparative adjectives. 67

Figure 22: Example sentences used in teaching task elements for superlative adjectives. 68

Figure 23: Example sentences used in teaching task elements for stative verbs. 69

Figure 24: The number of words required to teach each game, as influenced by previously learned games. Results

are averages of 3000 permutations of the 17 games. 75

Figure 25: The number of words required to teach each of 40 games by teaching order. Results are averages of 1000

permutations. 76

Figure 26: The total processing time required to learn each game, influenced by previously learned games. Results

are averages from 3000 permutations. 78

ix

Figure 27: The processing time required to interpret (match) all concepts for each game individually compared to the

processing required once learned. 79

Figure 28: On the left: the cumulative growth in semantic (long-term) memory for all games. On the right: the

accompanying growth in procedural memory (number of rules). 81

Figure 29: On the left: the growth in maximum working memory, measured in working memory elements, for each

game. On the right: the number of changes to working memory to teach each task in the given order. 81

Figure 30: The internal state generated by the agent for the Frogs and Toads puzzle, with objects identified by red

indexes. On the right are unary features and binary relations that the agent extracts from the state. 87

Figure 31: Recognition structures created for two interpretations of an action. Red values indicate the indexes of

objects in the environment that results from grounding the structure to the external state. 87

Figure 32: A representation of the internal state generated by the agent for describing jumping in the Frogs and

Toads puzzle. 88

Figure 33: Number of words required to teach clusters of closely related tasks A-D. 91

Figure 34: Number of words required to teach clusters of unrelated tasks E-H. 92

Figure 35: Number of words required to teach all permutations of task cluster G. The colors are used to highlight the

cases of no transfer (in blue), positive transfer (in green), negative transfer (in orange), and incorrect

knowledge transfer (in red). 93

Figure 36: Experimental results learning 1000 permutations of 55 games. More permutations are required for good

averages. 110

x

Abstract

Artificial agents, from robots to personal assistants, have become competent workers in

many settings and embodiments, but for the most part, they are limited to performing the

capabilities and tasks with which they were initially programmed. Learning in these

settings has predominately focused on learning to improve the agent’s performance on a

task, and not on learning the actual definition of a task. The primary method for imbuing

an agent with the task definition has been through programming by humans, who have

detailed knowledge of the task, domain, and agent architecture. In contrast, humans quickly

learn new tasks from scratch, often from instruction by another human. If we desire AI

agents to be flexible and dynamically extendable, they will need to emulate these learning

capabilities, and not be stuck with the limitation that task definitions must be acquired

through programming.

This dissertation explores the problem of how an Interactive Task Learning agent

can learn the complete definition or formulation of novel tasks rapidly through online

natural language instruction from a human instructor. Recent advances in natural language

processing, memory systems, computer vision, spatial reasoning, robotics, and cognitive

architectures make the time ripe to study how knowledge can be automatically acquired,

represented, transferred, and operationalized. We present a learning approach embodied in

an ITL agent that interactively learns the meaning of task concepts, the goals, actions,

failure conditions, and task-specific terms, for 60 games and puzzles. In our approach, the

agent learns hierarchical symbolic representations of task knowledge that enable it to

transfer and compose knowledge, analyze and debug multiple interpretations, and

communicate with the teacher to resolve ambiguity. Our results show that the agent can

correctly generalize, disambiguate, and transfer concepts across variations of language

descriptions and world representations, even with distractors present.

1

Chapter 1 Introduction

If an agent is going to acquire new tasks, we must consider the different ways that tasks

can be defined or formulated. Some tasks can be defined strictly by a procedure to follow,

such as following a recipe or directions, where the teacher already knows the correct

procedure. In contrast, we are interested in tasks that are defined by the legal actions that

can be taken and the goals to be achieved, such as games (Tic-Tac-Toe), puzzles (Sudoku),

or other discrete goal-oriented tasks (sorting, cleaning). We adopt Newell’s proposal that

goal-oriented tasks can be formulated as problem spaces (Newell, 1980). In the problem

space computational model, a task is represented by an initial state, a goal state, and the

constraints (preconditions) of available operators. The task may also include failure

conditions, or illegal states. This research focuses on games and puzzles, which provide a

large set of goal-oriented problems, but also require a large variety of concepts and

capabilities. This thesis is an exploration of what is required to support learning across

these types of diverse tasks and concepts, while taking advantage of the constraint provided

by the problem space formulation for goal-oriented tasks.
Specifically, we are looking at how an agent can learn all the elements of a task

(such as Tic-Tac-Toe) so that it can acquire and then perform the task. These task elements

that the agent must learn to recognize and operationalize include the goals (three in a row),

failure conditions (opponent three in a row), legal actions (marking an empty square), and

task-specific terms (empty) used to define a task. We define operationalizing a task element

as applying the recognized task element in the current environment. For example,

operationalizing an action task element means proposing available actions. Rather than

require an agent to be preprogrammed with this knowledge, we explore how the agent can

learn the task interactively and online, drawing inspiration from how a human novice might

learn a novel task from an expert teacher. Specifically, we enable an instructor to provide

2

natural language descriptions to the agent, sentence by sentence, of the task elements

grounded in a shared situated example of the task, where each described task element is

present in the external environment. The description of a task element includes conditions

that must be true for that goal, action, failure condition, or term to be applicable to the

current situation.

In many environments, the problem of recognizing and applying task elements is

straightforward because there is an assumption of fixed vocabulary usage and

representations of external environments. For example, the term “empty” will only ever

have a single meaning: there is only one way “empty” maps to objects in the environment,

without any consideration that the meaning of an “empty” square might vary for different

versions of Tic-Tac-Toe, one where squares are marked with X’s and O’s and one where

squares are covered with black and white stones. If a novel environment feature or word is

encountered, it is assumed that it correlates directly with an internal symbol known a priori

by the agent (Chai et al. 2016). For example, in these environments if the word “red” is

used, learning it means finding a mapping to a pre-existing symbol, such as R23, that is

linked to a classifier for the color red. In contrast, we do not make these assumptions: the

language meanings and external world are not known a priori and there may not exist an

internal symbol that directly corresponds with the vocabulary used. Therefore, the agent

must learn how novel terms ground to the external world, which may require a combination

of existing features and knowledge that the agent already knows.

Learning how to recognize and operationalize novel task elements is challenging

given these assumptions. Characteristics of this learning problem that make it difficult

include (1) the inability of the agent to see into the mind of the teacher and know what their

words mean, (2) the multiplicity of possible words and meanings, (3) the complex

compositional definitions of concepts and how they connect to the world, and (4) the

accumulation of knowledge overtime. To avoid learning from ‘scratch’ each time, and

3

reduce teaching time, the agent should be capable of transferring knowledge from other

tasks while it is accumulating knowledge over many tasks. However, accurate knowledge

transfer is difficult given the other characteristics, which can cause negative transfer. The

inability of the agent to know the intended meanings of a word, given the multiplicity of

possible meanings, can lead to the incorrect meanings being used in a new task. These

problem characteristics are discussed below in detail in Section 1.1.

The result of this work is a learning methodology embodied in an agent that can start

with no task or domain specific knowledge, enter a novel setting with a teacher, and learn,

through quick interactions with context-specific language, to recognize all the task

elements (actions, goals, failure, etc.) and then use them to solve the task. Furthermore,

this agent can use the learned knowledge on future tasks, transferring relevant knowledge,

and handling ambiguous scenarios where knowledge interference and/or distractors are

present.

1.1 Problem Characteristics

There are many characteristics of this problem that make it challenging for an agent to

effectively learn many tasks quickly in succession, over changing context-specific terms,

in disparate environments. These characteristics and the accompanying challenges are

highlighted with the example depicted in Figure 1, where a human instructor and robotic

agent are situated in a shared environment that contains an instance of a river crossing

problem, involving actors and their managers who don’t want their clients to be poached.

The task is to ferry everyone from one bank to another, with at most two in the boat, and

without upsetting any managers by having one of their clients on the other bank with

another manager.

4

Figure 1: A depiction of an instructor attempting to teach a situated version of a river crossing
problem and the agent’s internal model derived from its perception and knowledge.

 An example shared environment for this task is depicted on the bottom of Figure 1. The

task environment, shown between the instructor (left) and agent (right), consists of blocks

and surfaces, with different colors and shapes that represent actors, managers, the boat, the

river, and the river banks. The green surfaces represent the banks with the blue surface

between them representing the river. The brown block is the boat and cylinders and stars

are the managers and actors, respectively, waiting on the banks. Each manager-actor pair

shares a single color, red, blue, or purple. In the figure, the instructor in attempting to teach

the failure condition of the task. This is just one possible embodiment for this task.

The agent’s internal model that it derives from perception are depicted at the top of

the Figure 1. The agent’s detection of objects is illustrated by bounding boxes with unique

identifiers (numbers 1-9) for each object. The agent’s symbolic representations that it

extracts from perception are listed to each side. The unary features detected from the

5

objects, such as red, are listed by their unique identifier to the (top) left. The spatial

relations detected between those objects are listed as predicates where the arguments are

the object identifiers, such as on(1,8) for the relation detected between the brown block

(the boat) and the bank on the right. The agent does not initially know how the terms used

by the instructor, “manager,” “actor,” “stranded,” and “accompanied,” map to its

representation of the environment; it only has general knowledge that is not task-specific.

We have identified four major problem characteristics (C1-C4) that create challenges

for learning:

 C1: Lack of Common Ground

The first problem characteristic is that the human instructor and the agent do not have

access to each other’s internal representations: they lack common ground (Clark &

Brennan, 1991). The teacher is not guaranteed to know or use terms that correspond

to the agent’s knowledge. In Figure 1, when the instructor describes the failure

condition as “if a stranded actor is accompanied by another manager, then you lose,”

the instructor uses task-specific terms (“stranded,” “accompanied,” “actor,”

“manager”) that may not exist in the agent’s internal model of the current

environment. To detect the failure condition, the term “accompanied” must be

mapped to a calculation of on the same bank, the term “stranded” to on a bank

without their manager, “actor” to an object having a star shape, and “manager” to

an object having a cylinder shape. These mappings can connect to not only symbolic

primitives; the agent can also learn a mapping to nonsymbolic classifiers, such as

classifiers for color, shape, or size.

 Chai et al. (2016) discuss in detail the problems that arise from the mismatch

between the perceptual basis and capabilities of a robotic agent and human teacher

and explore how an interactive agent can collaborate with the teacher to help resolve

these mismatches. Task learning approaches often avoid this problem by assuming

6

that the environment, terminology, or agent knowledge and capabilities are fixed, or

only vary in limited, predictable ways. This is a very constraining assumption to

make, especially for robotic applications with unknown environments.

 C2: Compositional Concepts

A second characteristic is that task elements (actions, goals, terms) can be defined by

the instructor using compositions of other task elements (that have been learned

previously in the task or other tasks). These compositions can involve conjunctions,

disjunctions, modifiers, functions, set operations, and other elements described by

First Order Logic as well as hierarchical compositions. Compositionality enables the

learning of a theoretically infinite number (bounded only by time and memory) of

concepts from a set of primitive elements (Fodor & Pylyshyn, 1988).

 Approaches to task learning have generally considered learning the different

elements of a task (actions, goals, failure conditions, task-specific terms)

independently: both in terms of the learning algorithms used and the final

representations that are learned. They don’t consider how these various elements can

be combined using first order logic or hierarchical composition. Rather than learning

hierarchies and maintaining intermediate representations that can be composed, they

learn mappings directly to subsymbolic sensorimotor representations (Socher et al.,

2013; Bhargava et al., 2016; Chauhan & Lopes, 2011; Dindo & Zambuto, 2010;

Orhan et al., 2013).

 Through the composition of concepts, the agent can learn definitions of failure

conditions using new terms, such as with “stranded” and “accompanied” in Figure 1,

definitions of goals using actions (capturable), and definitions of new task-specific

terms using previously defined task-specific terms. For example, the teacher could

define “stranded” by “if the manager of the actor is not on the same bank then the

actor is stranded,” but then would need to define “manager of” as well: “if a manager

7

has the same color as the actor then…” The learning of hierarchical compositions of

these task elements is vital to supporting the types of high-level definitions that

humans often use. Furthermore, supporting hierarchical representations of learned

knowledge has implications for the accumulation (C4) and transfer of knowledge.

With hierarchical, compositional representations, compared to direct mappings to

nonsymbolic representations, it is easy to replace component parts to achieve partial

knowledge transfer, such as learning a new grounding of “actor” for the failure

condition, without having to relearn the entire failure condition.

 C3: Many-to-many Mappings

A third characteristic is that the possible mappings from terms to definitions are

many-to-many, due to the polysemic nature of words (a word can have many possible

meanings and a meaning can be represented by many possible words) and due to

variations in external environments. For example, the term “clear” can be used to

mean not below anything. In another situation it can be used to mean transparent in

opacity, and in another, the term “empty” can also be used instead of “clear” to mean

not below anything. The required mappings from terms to meaning change

depending on the terminology used, how the instructor decomposes the task

elements, the setting of the problem in the external environment, and the agent’s

perception and prior knowledge.

 Consider all the variations that could occur in the problem depicted in Figure 1.

For task-specific terms, the teacher could have used the word “separated” instead of

“stranded.” For the task element decomposition, the teacher could instead define the

failure condition by saying “If an actor is poachable then you lose.” For the external

environment setting, instead of stars and cylinders, the “actors” and “managers,”

respectively, could be represented with different objects, such as cubes and cones.

For the agent’s perception and knowledge, the agent could possess spatial knowledge

8

of below rather than on or only have knowledge of the x, y, z coordinates of each

object with no known spatial prepositions. Given all these variations, the space of

possible mappings from the task elements to their external embodiments is huge. If

the desire is for an agent X (with unknown knowledge and capabilities), operating in

an environment Y (with unknown representations), to learn and do a task Z (with

unknown terms), this will be a significant, unavoidable, and reoccurring problem.

 C4: Accumulative Learning

A fourth characteristic is that the agent should be able to accumulate many tasks (and

task elements) over the learning of many different problems in different settings. A

key to reducing task teaching time during accumulative learning is the ability to

reuse, or transfer, knowledge previously learned to new tasks and avoid learning from

scratch each time. However, this introduces the problem of potential knowledge

interference from past learning: the possibility of incorrect knowledge transfer or

overgeneralization. For example, due to the many possible meanings of words (C3),

the agent could learn a meaning of the term “empty” for Tic-Tac-Toe (meaning

unmarked) and then incorrectly use that definition when the term is used to define a

subsequent task, such as Othello, where the meaning is different (not below a piece).

With the accumulation of many tasks, correctly inferring what knowledge can be

transferred will become increasingly difficult.

 Consider that after learning the problem in Figure 1, the agent is asked to solve a

identical puzzle, but one that uses cubes and cones to distinguish “managers” and

“actors” respectively. Like a human student, the agent should adapt to the new

instance by transferring all the task definition knowledge from the previous

incarnation, rather than relearning all the goals, actions, and constraints of the puzzle,

and only learn new mappings for “managers” and “actors” to cubes and cones. If a

new river crossing puzzle is taught that only shares a goal (“all objects are on the

9

right bank”) or an action (“move the boat”), the agent should transfer the relevant

knowledge and only learn what is novel. Consider instead that the agent is presented

with a similar but different river crossing problem to learn. If the puzzle is setup

using the same objects (cylinders and stars), the agent might incorrectly infer that

they are “managers” and “actors,” or if the term “accompanied” is used in a different

manner by the teacher, the agent might attempt to transfer the concept. The challenge

for an ITL agent is to transfer as much knowledge as possible without

overgeneralization, avoiding incorrect knowledge transfer.

 Existing approaches to task definition learning do not have a theory for how

knowledge transfer can occur because they don’t maintain intermediate knowledge

representations. Most have focused on learning mappings directly from task terms to

subsymbolic sensorimotor representations (Roy, 2002; Socher et al., 2013; Bhargava

et al., 2016; Yürüten et al., 2013; Chauhan & Lopes, 2011; Dindo & Zambuto, 2010;

Orhan et al., 2013; Matuszek et al., 2012). Other approaches (Hinrichs and Forbus,

2014) don’t learning mappings but instead compile the natural language specification

into a high-level programming language. Neither approach has explored how partial

knowledge transfer can occur, such as when a new task variation uses pieces of a

different shape or color.

10

1.2 Learning Example

Figure 2: A tabletop environment with blocks and a robotic arm used for teaching a version of
the Tower of Hanoi puzzles.

Figure 3 shows an example dialogue between our agent (marked in bold) and an instructor,

where the agent, embodied in a tabletop robot, is taught a version of the Tower of Hanoi

puzzle using blocks. The tabletop environment is shown in Figure 2.

“The name of the puzzle is Tower-of-Hanoi.”

“Please setup the puzzle.”

* Teacher moves blocks to setup the initial state. *

“Ok.”

“Please describe the actions, goals, and failure conditions.”

“You can move a clear block onto a clear object that is larger than the block.”

“Please describe the meaning of clear in this context. ”

“A location that is not below an object is clear.”

“Ok, Ive learned the meaning of clear for this context.”

11

“Please describe the meaning of larger -than in this context. ”

“If the volume of a block is more than the volume of an object then the block is larger
than the object.”

“Ok, Ive learned the meaning of larger -than for this context. ”

“Ive learned the action.”

“The goal is that a small block is on a medium block and the medium block is on a
large block and the large block is on the leftmost location.”

“Please setup the goal state.”

*Teacher moves blocks to setup the final state. *

“Ok.”

“Ive learned the goal .”

“Done.”

“Ive learned Tower-of-Hanoi. Should I try to solve the puzzle?”

Figure 3: Dialogue of an instructor teaching Rosie the Tower of Hanoi puzzle using blocks.

The agent quickly learns the task elements that define this task: preconditions of the legal

moves (can move blocks onto larger objects if both are clear) and the goal of the puzzle

(three blocks stacked smallest to largest on the leftmost location), along with supporting

context specific terminology (“clear” and “larger than”). This learning process is

summarized in the following section and described in detail in Chapter 4.

1.3 Learning Approach

In our approach, there is a single integrated agent that quickly learns new tasks online, in

real time from an instructor by learning all of the task elements that define the task. A key

aspect of our approach is that all task elements, goals, failure conditions, actions, and task-

specific terms, are represented uniformly and are learned through the same process. Thus,

12

to describe the learning of the entire task in our approach, we just describe the process of

learning a task element. For most task elements, the actions, goals, and failure conditions,

the teacher initiates the start of the learning process by teaching the name of a task element

(“The name of an action is stack”) or by starting a new description (“The goal is that…”).

In contrast, the agent initiates the start of the task element learning process for a task-

specific term. This occurs when the term is used to define another task element and the

agent cannot determine the correct meaning (or has none): “Please describe the meaning

of ‘clear’ in this context.” The teacher initiates the learning of a new task by naming it:

“The name of the puzzle is Tower-of-Hanoi.”

We decompose the process of learning a task element through interactive language

instruction into four learning phases:

 L1: Internal Model Creation

In order to interact with and reason about the outside world, the agent uses its

perception and existing knowledge to create an internal relational model of the

current state of the environment, including its beliefs about the objects and relations

between them. In order to learn a task element, the task element being described

must be currently present in the world so that the agent can ground the terms to its

internal state. An example of an internal model is depicted in Figure 1 for a river

crossing task, showing the objects the agent observes and their relations (the boat

is on a bank). It is possible that the agent could create this internal state through

another method, such as having it described (as in most word problems), but this

has not been explored in this thesis.1 It vital to our learning approach that the

1 Parallel work (Mininger & Laird, 2018) has enabled the agent to handle partially observable
scenarios when learning procedural tasks (not games) where the goal is not currently present.

13

described concept can be grounded in an accurate internal model that contains the

concept, but the source of that model could vary.

 L2: Language Instruction

Next the agent converts the teacher’s natural language sentences that describe each

task element into an internal relational representation. This relational representation

contains all the conditions that need to be true for the task element to be applicable

in the current situation. For example, if the teacher describes “pinned” with the

sentence “if a piece is blocking your king, then it is pinned” then the agent creates

a representation equivalent to blocking(piece, king) →pinned(piece).2

 L3: Recognition Structure Learning

In order to recognize the task element in the environment, the agent creates a

declarative structure that connects the language-derived relational representation to

the agent’s internal model. The agent grounds each referenced term (i.e. blocking,

piece, king) so that the conditions of the task element can be evaluated. For

example, the conditions for an action stack might be that the destination is clear

and the block is movable, which are evaluated in order to determine valid actions.

This process includes verifying that the task element is applicable in the current

context. If the agent is unable to ground a term in its internal model, the agent asks

the teacher for a definition (the meaning) of the new task-specific term, another

new task element. This causes the learning to loop recursively back to L1 for this

new task element. (However, the world should already contain an instance of the

term, so the agent will not need to request that the environment be modified to setup

2 Throughout this paper we use quotes (“pinned”) to denote terms used in language descriptions
and italics (pinned) to denote elements of the agent’s internal state.

14

a relevant state.) During this process the agent learns procedural rules that condense

the agent processing during interpretation into procedural knowledge that directly

evaluates the declarative recognition structure.

 L4: Operationalization

In order to operationalize the task element, the agent instantiates this knowledge

for the current situation in its internal model of the task environment. The exact

form of the operationalization depends on the type of task element; whether it is a

goal, action, failure, or task-specific term. The instantiation of an action, such as

stack, involves proposing the primitive actions that were used to teach it, such as

move obj1 onto obj2, using the objects in the world that satisfy the preconditions.

The agent only instantiates a task-specific term, such as pinned¸ when it is a

condition of another task element. The result of operationalizing a task-specific

term is returning the detected instances of that term in the current context, in order

to evaluate the conditions of the task element using the task-specific term.

After learning all the task elements for a new task, the agent uses the acquired knowledge

for recognizing and operationalizing each task element to perform each associated task

function and attempt to solve the problem through search or other problem-solving

strategies. Thus, in order to solve the newly learned task, the agent creates an internal model

of the current situation from its perception of the environment, and applies the task

elements to: detect and propose legal action actions, generate the resulting substates using

primitive action models, avoid failure states, and search until the goal is recognized.

Building the internal state (L1), language processing (L2), and problem solving (search)

have been implemented in prior research (Mohan et al. 2012; Kirk & Laird, 2016). This

thesis focuses on the third and fourth phases (L3 and L4), the problem of learning a

15

connection between the described task elements and the agent knowledge required to

recognize and apply them.

1.4 Desiderata

To qualitatively evaluate the agent and provide guidance for agent design, we have

developed a list of desiderata. These desiderata may not be requisites for every ITL system,

but they are general principles that can guide the development and common evaluation of

such systems, which are inherently difficult to compare. We have described a larger space

of possible desiderata for Interactive Task Learning agents (Laird et al., 2017), but here we

focus on four major desiderata for ITL agents that serve as a basis for the goals, claims,

subsequent evaluation of our research on learning task elements. These desiderata focus on

minimizing or maximizing certain aspects of task learning, while maintaining correctness

of the learning. To be clear, the objective is reducing or increasing these ITL aspects, not

finding a theoretical maximum or minimum.

 D1: Maximize Generality

The agent should be able to learn a diverse set of tasks, requiring a diverse set of

concepts (objects, relations, actions). The level of generality of a task learning agent

increases as it becomes capable of learning more tasks and more kinds of tasks.

Meeting this challenge requires avoiding task specific representations or processing

mechanisms.

 D2: Minimize Agent-Teacher Communication

The communication of the task should be concise, avoiding repetition, verbosity,

and unnecessary communications. The agent should try to minimize the number of

words, interactions, and demonstrations, as well as the overall time, required to

16

learn a new task, to reduce the burden on the teacher and speed the learning process.

The learning must be fast, online, and in real-time.

 D3: Minimize Agent Execution Time

The agent should try to learn task representations that minimize execution time, by

learning procedural representations that do not need to be interpreted to be

executed. Their execution should be similar in behavior to the execution of the code

of the underlying agent architecture. The newly learned knowledge must integrate,

and not interfere, with existing behavior and any future knowledge that might be

learned.

 D4: Minimize Memory Size Growth

The agent should minimize the growth of memory (working, procedural, and

semantic) to avoid negative (slow) memory behavior. The agent should minimize

the time required to access or add memory elements, the size of the memory, and

their growth overtime as the agent learns many successive tasks. We expect

different memory systems to have different growth patterns, the objective is to

avoid excessive, harmful memory growth which negatively impacts agent behavior.

1.5 Contributions

We present our learning approach embodied in an agent called Rosie, an interactive task

learning robotic platform built on the Soar cognitive architecture. A key aspect, and

contribution of our approach is identifying the underlying structure and similarities in this

learning space across the different types of task elements in order to learn them through a

singular process into a single type of representation. This uniformity of representation

across task elements supports the compositional nature (C2) of task knowledge. The ability

17

to learn composable representations is a critical feature to enabling better, long-term

knowledge transfer during accumulative learning (C4). Using this approach, Rosie can

learn an entire problem definition from the ground up, by using the knowledge that the

agent already has and the definitions the human provides, despite a lack of knowledge

overlap (C1), learning new task elements based on their word choice and task

decomposition, learning a multiplicity of words and meanings (C3), and transferring

knowledge over many tasks, even in ambiguous scenarios, as the agent accumulates

knowledge (C4).

We evaluate how well how our approach addresses the challenges associated with

each of the aforementioned problem characteristics. We show that our learning approach

works independent of changes to the terminology used, agent knowledge representations,

and environments by learning new definitions to establish common ground (C1). We

demonstrate that Rosie can learn, through interactive instruction, compositions of existing

concepts through hierarchical composition (C2) and can learn a multiplicity of terms and

meanings for the many-to-many possible mappings between words and meanings (C3). We

evaluate Rosie in online, accumulative long-term learning scenarios and Rosie’s ability to

transfer knowledge over many tasks (60) and domains, including scenarios with distractors

and knowledge interference (C4).

We evaluate our approach across a wide variety of tasks (D1), from Tic-Tac-Toe to

Sudoku, through quick natural language communication (D2). We also evaluate the

execution, or processing, time of the agent during and after learning (D3), and the agent’s

growth in memory size (D4) as it accumulates tasks.

In brief, the core contributions of this thesis are:

1. A general, online method for learning mappings between task elements (actions,

goals, failure conditions, and task-specific terms) and hierarchical compositions of

the agent knowledge required to recognize and operationalize them. This learning

18

method enables an ITL agent to gain the necessary knowledge to formulate and

solve a novel task in a novel environment.

2. A strategy for handling ambiguous learning situations, where distractors and/or

knowledge interference are present, that enables Rosie to consider multiple possible

interpretations and interact with the instructor to resolve ambiguities and accurately

transfer knowledge.

3. A characterization of the space of learnable tasks and task elements through this

approach. From this characterization, it should be possible to determine whether

Rosie is capable of learning a specific novel game, task, or problem.

4. An evaluation of these methods over many tasks for each of the given desiderata.

This evaluation covers agent-teacher communication (sentences used to teach the

task), the growth in size of semantic, procedural, and working memory, the timing

of agent execution, and the handling of ambiguous learning scenarios that could

lead to negative knowledge transfer.

5. An evaluation of the generality of the learning approach across different tasks

(puzzles, games, logic problems), domains (cards, board games, marking puzzles,

computer games), environments (real and simulated), language usage

(terminology), task decompositions, and agent embodiments (virtual, robotic).

6. A publicly available archive (www.umich.edu/~jrkirk/ijcai2019.html) of all the

games (and task elements) learned and the sentences, world environments, and

primitive concepts used to each them. A list of these games is shown in Table 2 in

the Appendix, including examples of games that cannot be learned and the reasons

why. This will be a resource for other researchers investigating Interactive Task

Learning.

http://www.umich.edu/%7Ejrkirk/ijcai2019.html

19

1.6 Outline

In Chapter 2 we discuss the related work and briefly contrast those approaches with our

own approach.

In Chapter 3 we describe some background on the development of Rosie and supporting

work.

In Chapter 4 we provide a detailed description our task-independent approach to learning

to recognize and operationalize all types of task elements, the actions, goals, failure

conditions, and task-specific terms. During this description we note how the design

decisions were motivated by the problem characteristics (C1-C4) and desiderata (D1-D4).

In Chapter 5 we provide a detailed description of a complex example of the agent learning

an entire task, the problem from the introduction, as well as examples of a variety of task

elements that agent has learned.

In Chapter 6 we describe evaluations of task learning and knowledge transfer we have

conducted using the desiderata as criteria. These experiments have been performed in a

variety of domains, learning many successive tasks, where we analyze the memory growth

(agent knowledge), timing (agent processing), interactions (teacher natural language

descriptions), knowledge correctness, and the accuracy of the solutions the agent produces

after learning the complete task. Our results show that the agent can correctly generalize,

disambiguate, and transfer concepts within variations in language descriptions and world

representations of the same task, and across variations in different tasks. Rosie has

successfully learned 60 distinct games and puzzles, from Missionaries and Cannibals to

Othello to Sudoku, and thousands of actions, goals, failures, and terms.

20

In Chapter 7 we describe handling scenarios where ambiguity and knowledge interference

can negatively impact the ability to accurately learn and transfer knowledge, by enabling

Rosie to create, analyze, and debug (through interactions with the teacher) multiple

interpretations of task elements. We evaluate the correctness of learning and the number of

words required to teach tasks across cases of no transfer, positive transfer, and interference

from prior tasks.

In Chapter 8 we summarize the contributions of the thesis and discuss the potential impact

of the work, limitations of the work, and possible directions for future work.

21

Chapter 2 Related Work

In this chapter we review related research, starting with research on learning the rules of

games, followed by approaches that support task execution and specification, but not

incremental acquisition, to work that supports learning the grounding of novel terms, and

finally ending by discussing how these approaches contrast with ours.

2.1 Learning the Rules of Games

Early research on understanding natural language descriptions of games was conducted by

Simon and Hayes (1976) in a program called UNDERSTAND, which extracted the actions,

or operators, and goals from natural language specifications of various isomorphism of the

Tower of Hanoi puzzle. puzzle. They showed that differences in task specification led to

differences in task formulation, both in humans and with UNDERSTAND. This was an

early attempt at task specification through language, however a complete agent

implementation was not implemented; the language translation and concept learning

processes were simulated by hand.

Hinrichs and Forbus (2014) have developed an agent in the Companions architecture

that learns to play Tic-Tac-Toe and Hexapawn through a combination of language

instruction and sketching using CogSketch. Their system generates a GDL (Game

Description Language) specification (Love, Hinrichs, Haley, Schkufza, & Genesereth,

2008) of the task, which is interpreted so that a Companions agent can play the game. Their

approach focuses more on the naturalness of agent-teacher interaction than learning new

concepts or maximizing the generality of task learning (D1). They do not have a theory for

task knowledge transfer. GDL is a high-level program-like formalism that lets one specify

22

a large variety of games; it is used in the General Game Playing competition (Genesereth

& Love, 2005). Research on transfer of knowledge with agents that use GDL specifications

has so far focused only on policy transfer (Banerjee & Stone, 2007).

We have identified the following issues with the approach of converting natural

language into an intermediate formal language, such as GDL or STRIPS/PDDL, and then

using an interpreter to produce behavior. This approach does not include a theory of how

the acquisition and execution of a new task and new task knowledge fits into the overall

ongoing agent operation. These languages, and their interpreters, assume batch operation

of a single task where the complete task description is available all at once. This approach

does not support the accumulation of multiple tasks, nor the sharing of knowledge among

tasks, nor interactive learning where the agent asks for clarification and missing

knowledge, so that the instructor does not need to know exactly what must be taught.

In a very different approach, Barbu et al. (2010) describe a robotic system that learns

to play simple 3×3 board games, like Tic-Tac-Toe and Hexapawn, by observing random

legal game play between two other agents. Kaiser (2012) makes many improvements on

learning board game rules through visual observation by reducing the amount of pre-coded

background knowledge and using more expressive representations of state. This system

represents the game state with relational structures, instead of formulas, but these structures

are predefined, namely rows, columns, and diagonals in the board grid. Approaches using

visual observation can be effective at successfully learning tasks, as well as learning

competent game play, but they require a large number of demonstrations, including in some

cases labeled illegal game play, in order to learn.

2.2 Task Specification Languages

Task learning research has usually focused on learning a procedure to follow or a policy.

In other prior work on agents learning tasks through instruction, such as by Langley et al.

(2010) and Allen et al. (2007), a human teaches a specific policy or procedure for solving

23

a task, such as giving directions to a location. Rather than teaching the problem

specifications, these approaches teach a solution to a problem, which is sufficient for tasks

where there is a single, fixed solution or policy for all problem instances (and not goal-

oriented tasks such as games and puzzles). Policy task learning has been explored with

Soar in the past, with Instructo-Soar (Huffman & Laird, 1995) an agent that learned simple

but novel block manipulation tasks from simple natural language instructions, and in the

present, with parallel work (Mininger & Laird, 2018) conducted on Rosie to enable the

learning of procedural tasks.

There have been many efforts to create abstract task specification languages that

make it easier for a user to develop agents. The Task Acquisition Language or TAQL (Yost,

1993) was an abstract language based on the problem space model of computation that was

compiled into Soar. Other task specification languages that compile into Soar include

HERBAL (Cohen, 2008) and HLSR (Jones et al., 2006). Cohen (2008) provides an

extensive review of these task specification languages. Langley et al. (2010) described a

related approach in which an instructional command language allows the specification of

behavior for agents in ICARUS. These projects all require independent batch systems that

compile the task specifications into the target language.

Salvucci (2013) introduced another approach to cognitive skill acquisitions (with

ACT-R) focusing on the integration and reuse of previous skill knowledge and the

proceduralization of this knowledge. The commands are limited to a restrictive syntax that

only specifies the policy of a task. Cantrell et al. (2012) describe a mobile robotic system

that can be taught individual commands via language by specifying preconditions (“you

are at a closed door”), action definitions (“you push it one meter”), and postconditions

(“you will be in the room”). It does not learn new predicates, nor can it learn tasks that

involve constraints, failure states, and specific goal conditions.

The Tailor system (Blythe, 2005) allowed the teacher to modify task information

though natural language instructions and ensured that there were no undesirable side effects

caused by the modifications. PLOW (Allen et al., 2007) is a collaborative task-learning

24

agent that acquires procedural knowledge through demonstration and dialog. The instructor

provides tutorial instructions accompanied by related demonstrations, which the agent uses

to acquire new procedural knowledge. The teaching is done largely by demonstration, but

unlike most learning from demonstration, the human is not required to provide a large

number of examples due to agent generalization mechanisms. LIA (Azaria et al., 2016) is

an interactive agent that learn new commands for managing email through step-by-step

instructions from a human in natural language. These systems learn new tasks or

modifications to tasks but are limited the types of tasks they can learn: only tasks defined

by sequences of actions.

2.3 Learning New Word Grounding

Research on learning the groundings of words in situated domains has focused on learning

new symbols grounded directly in the robots subsymbolic sensorimotor representations.

One exception is TRIG (Gold et al., 2009), a system that learns from primitive symbolic

relationships though demonstrations. Agents that do learn groundings from existing

symbolic concepts only learn synonyms; they assume that for any term there is a single

matching concept with the identical meaning (Goldwasser & Roth, 2014). Many of these

approaches use machine learning techniques and require a large number of demonstrated

positive (and sometimes negative) examples of the described concepts. These methods

have been successful at learning new adjectives, prepositions, and nouns by learning

mappings directly from task terms to subsymbolic sensorimotor representations (Roy,

2002; Socher et al., 2013; Bhargava et al., 2016; Chauhan & Lopes, 2011; Dindo &

Zambuto, 2010; Yürüten et al., 2013; Orhan et al., 2013; Matuszek et al., 2012).

Systems that can handle novel environment features or words, often assume that

they correlate directly with an internal symbol known a priori by the agent, just that the

mapping has not been established (Chai et al. 2016). For example, Thomason, Zhang,

Mooney, and Stone (2015) describe an agent that incrementally learns a semantic parser

25

through interactive natural language in robotic domains, as well as an online domain that

utilizes Mechanical Turk for training. Their system creates a lambda-calculus

representation that includes predicates defined over objects. However, it only learns one-

to-one mapping as the semantics for novel terms, assuming that a preexisting symbol is

functionally a synonym. It does not learn new tasks; the focus is on learning a semantic

parser so that the agent can understand and execute the procedural commands it is given.

Another common assumption of learning systems is that each term only has a single

meaning, however some research has explored learning one-to-many mappings from terms

to meanings for polysemic words. Thomason (2016) presents an extension to the previously

mentioned work, that enables learning multi-modal classifiers for polysemic words, for

example, learning classifiers for both “light,” as in lightweight, and “light,” as in light-

colored. The system learns one-to-many mappings to nonsymbolic representations, not to

combinations of symbolic knowledge.

2.4 Contrast with our Approach

In general, these approaches assume that the agent only learns a single task (rather than a

sequence of many tasks), that concepts can be directly mapped to known primitives or

subsymbolic representations, and that learning and acting are separate processes, where

learning can be an offline batch process.

In contrast, in our approach, there is a single integrated agent that both acquires

new tasks and executes those tasks, using a single underlying cognitive architecture.

Furthermore, the agent learns uniform representations for the different aspects of the

problem space, the actions, goals, failure conditions, and supporting concepts, so that they

can be composed and combined to support continuous and accumulative learning. Task

acquisition is just another task that uses the same memories, learning mechanisms, and

decision procedures as are used for task performance. An advantage of this approach is that

26

whenever new task knowledge is acquired, it is immediately available for both the

assimilation and execution of future tasks.

We focus on learning many tasks at once with instruction that is fast, interactive,

and on-the-fly, and importantly builds knowledge over time, handling the many-to-many

possible matchings between language, the external environment, and the agent’s own

knowledge representations. A key aspect of our approach is that the elements of the

problem space learned are uniform in representation, logically composable, and teachable

in hierarchical combinations that enable partial transfer. This allows the agent to

opportunistically engage the teacher to fill in gaps, resolve discrepancies, and transfer

already learned relevant knowledge.

27

Chapter 3 Background

Why are humans so good at quickly teaching and learning novel tasks? From observing

human-human learning scenarios, where an expert teaches a student unfamiliar with the

task, it is clear that in part it is because the teaching is: interactive, allowing for corrections

to mistakes and incomplete models of their partner; situated in a shared grounded

experience of the task with the expert; multimodal, using language, demonstrations,

gestures, and other means to convey information; and continuous and accumulative,

leveraging past knowledge. These aspects of human learning motivate our research into

how an artificial agent can interactively and naturally learn tasks though task-oriented

dialog. Although there are other means for teaching an agent a new task, task-oriented

dialog is ubiquitous in human instruction and can be fast, effective, and natural for humans

to use (Mohan et al., 2015).

The goal of Interactive Task Learning is to support the development agents that can

learn novel tasks through natural interactions with a human teacher. An ITL agent will need

to integrate many capabilities, including but not limited to natural language processing,

dialog management, knowledge representation, memory, computer vision, spatial

reasoning, and general problem solving. Integrated approaches provide a platform for

studying how each process can be more directly informed by each other in the context of

the current environment.

The agent used for this research and subsequent experimentation and evaluation is

Rosie (Mohan et al., 2012), an Interactive Task Learning agent built on the Soar cognitive

architecture (Laird, 2012), that learns through instruction and demonstration in a shared

environment with a human teacher.

28

3.1 Rosie

Rosie is an ITL agent that relies upon task-oriented dialog with a human instructor to

acquire new knowledge. It learns many aspects of tasks, including colors, shapes, sizes,

spatial relations, procedural actions, and execution policy. Rosie has been under

development by the University of Michigan Soar Lab since 2012, and the project has had

the benefit of many collaborators in the Soar lab, as well as other robotic labs, that has

made possible the development of the capabilities an ITL robot needs, including vision,

actuation, reasoning, dialog management, and natural language processing.

Natural language is processed using a parser, implemented in Soar, that is integrated

with Rosie. The parser takes as input grammatical English sentences and produces a

semantic interpretation. The parser was developed by John Laird for Rosie, and was not a

contribution of this thesis and so is only briefly described here. There are two modes for

the parser that Rosie can select to affect the content of the semantic interpretation. In the

first mode, the interpretation grounds all references to objects to specific objects in Rosie’s

perceptual system that match the conditions for the objects specified in the sentence. For

example, “a red object that is on a bank” grounds to an object in Rosie’s model of the world

that is both red and on a bank. If there are multiple red objects that are on a bank, such as

in Figure 1 with the river crossing puzzle, then one of the objects, such as the object

identified with id 1 that is a red cylinder, is randomly selected.

The second mode of parsing is for when the agent does not want the parser to ground

directly to any specific object, and instead just reflect the conditions in the language

description. This is the parsing mode that is used for the work in this thesis that enables

Rosie to learn games and puzzles. The reason for using this parsing mode for learning

concepts for games is to help Rosie make correct generalizations. Rosie assumes that all

the features the instructor mentioned are defining characteristics, such as “red,” and those

not included can be ignored, such as “cylinder.” The descriptions of concepts for games

are not directly referencing a specific object in the world, even though at least one valid

instance of the described concept must be present for later grounding. In this mode the

29

parser creates an internal representation of a hypothetical object which contains predicates

for all the constraints that were present in its description, in the above example “red,”

“object,” “bank,” and “on.” The parser produces a relational representation that includes

information derived from the linguistic structure of the sentence, such as specific relative

clauses.

3.2 Environment

To demonstrate the generality of agent design of Rosie, it has been ported to multiple

domains and embodiments, including four robots and many simulated environments.

Pictures of some of these environments for different games are shown in Figure 4. The

robots include a table-top robot arm (with a Kinect for sensing) that can manipulate

variously colored and shaped foam blocks, an April MagicBot that can navigate hallways,

a Fetch robot that can move and manipulate objects on a table, and most recently a Cozmo

toy robot that can move and pick up small cubes. The simulated domains include the April

Simulator of the table-top arm, the ROS simulator (Quigley et al., 2009) of a Fetch robot,

an agent internal simulation for grid based puzzles (such as Sudoku), a simulated card game

environment in an external Java application, and AI2-Thor (Kolve et al., 2017).

Figure 4: Pictures of different environments in which Rosie has learned games. From left to
right: the tabletop arm solving Tower of Hanoi with blocks, the Fetch robot learning a block
representation of the Five-Puzzle, and an internal simulation for learning the puzzle Ken-Ken.

30

The teaching of puzzles and games has mostly focused on the tabletop domain (real and

simulated), and specifically on tasks that can be defined by movable objects, the locations

those objects can occupy, and the relationships, functions, and attributes over those objects.

For each domain, Rosie initially knows (and has internal models of) primitive domain-

specific actions such as picking up a block (tabletop), navigating down a hallway (mobile

robot), or writing a number onto a square (simulated grid).

In real world domains, Rosie translates the noisy continuous state produced by

sensors into discrete symbolic states or representations of the world (Mohan et al., 2012;

Mininger & Laird, 2019). For the learning of games and puzzles, we assume fully

observable environments that can be mapped onto high-quality discrete symbolic

representations that are not subject to noise or uncertainty.

3.3 Soar Cognitive Architecture

Since we are adopting the problem space model of problem representation, as well as

attempting to integrate many capabilities, the Soar cognitive architecture (Laird, 2012),

developed on the problem space model, is a natural choice for the development of an

Interactive Task Learning agent. As Newell, one of the creators of Soar, defined it: “a

problem space consists of a set of symbolic structures (the states of the space) and a set of

operators over the space… A problem in a problem space consists of a set of initial states,

a set of goal states, and a set of path constraints.” (Newell, 1980)

Rosie is implemented in Soar, which has been applied to a wide variety of domains

and tasks, including natural language understanding and robot control (Laird, 2012).

Recent extensions to Soar, including episodic and semantic memories, as well as a visual-

spatial system, enhance Soar’s ability to support grounded language learning. Relevant

components are described in the following paragraphs.

31

Figure 5: Soar architecture block diagram showing interaction (input and output) between the
long term memories, working memory, and the Spatial Visual System (SVS) used for perception.

Soar contains a task-independent spatial visual system (SVS) that supports translations

between the continuous representations required for perception and the symbolic, relational

representations in Soar. The continuous environment state is represented in SVS as a scene

graph composed of discrete objects and their continuous properties. Binary spatial

predicates are computed when an agent issues a query for a specific predicate such as X-

axis-aligned(A,B). The set of predicates is task independent and fixed, but predicate

extraction is controlled using task-specific knowledge.

Figure 5 shows a block diagram of Soar picturing the organization and interactions

between working memory, SVS, and the long-term memories: procedural, semantic, and

episodic memory.

In Soar, working memory maintains symbolic relational representations of current

and recent sensory data, current goals, and the agent’s interpretation of the current situation

32

including mappings between objects in the scene and internal symbols and words. Working

memory buffers provide interfaces to Soar’s long-term memories, the perception and action

systems, and the instructor interface.

Procedural memory contains Soar’s knowledge of how to select and perform

actions (called operators), encoded as if-then rules. The locus of decision making is not the

selection of a rule. Instead, Soar fires all rules in parallel. The rules propose, evaluate, or

apply operators, which are the locus of decision making. Only a single operator can be

selected at a time, and once an operator is selected, rules sensitive to its selection and the

current context perform its actions (both internal and external) by modifying working

memory. Whenever procedural knowledge for selecting or applying an operator is

incomplete or in conflict, an impasse occurs and a substate is created in which more

reasoning can occur, including task decomposition, planning, and search methods. In Soar,

complex behavior arises not from complex, preprogrammed plans or sequential procedural

knowledge, but from the interplay of the agent’s knowledge (or lack thereof) and the

dynamics of the environment. In Rosie, procedural memory holds rules that implement the

processing capabilities such as lexical processing, human-agent interaction, grounded

comprehension, and acquisition of grounded representations of words. The agent also has

rules that implement the primitive actions and their models. The acquired action-execution

knowledge for verbs is stored in procedural memory.

Chunking is a learning mechanism that creates rules from the reasoning that

occurred in a substate. When a result is created in a substate, a rule is compiled. The

conditions of this rule are the working-memory elements that existed before the substate

and were necessary for creating the result, and the actions are the result. The rule is added

to procedural memory and is immediately available. Chunking is the mechanism that learns

the action-execution knowledge for novel verbs.

Semantic memory stores context-independent declarative facts about the world. The

agent can store working memory elements in semantic memory. Elements are retrieved by

creating a cue in a working memory buffer and finding the best match (biased by recency

33

and frequency) in semantic memory. In Rosie, semantic memory stores linguistic mapping

knowledge, such as the mapping between a word and a perceptual symbol (red color

corresponds to symbol r43). Apart from linguistic mapping knowledge, semantic memory

also stores compositions of spatial primitives and action-concept networks (discussed

later). One advantage of semantic memory over procedural memory is that any aspect of a

memory structure can be used for retrieval, whereas in procedural memory, there is an

asymmetry between the conditions and actions. An agent can use red as a cue, or it could

use r43 as a cue, depending on what knowledge is available and what knowledge needs to

be retrieved.

34

Chapter 4 Task Learning Process

This section provides a detailed description of the entire task learning process. In our

approach, learning a task requires learning many task elements: the goals, failure

conditions, actions, and task-specific terms. Before showing how an entire task is learned,

we describe how each task element is learned. This learning process is the same for all task

elements irrespective of whether they are a goal, action, or task-specific term. The only

difference, besides the way each type of element is applied, is that the teacher initiates the

learning of a goal, action, or failure condition (“The name of the goal is three-in-a-row.”)

and the agent initiates the learning of a task-specific term (“Please describe the meaning of

‘clear’ in this context.”). Essentially, after the instructor begins teaching a new task (“The

name of the game is Tic-Tac-Toe.”), the agent prompts the teacher to provide definitions

of the actions, goals, and failure conditions, interacting to learn the meaning of task-

specific terms when necessary.

This explanation is followed by an illustrative example detailing the complete

process of learning a specific puzzle, learning all the task elements, drawn from the

example presented in the introduction. Finally, we describe how this knowledge is used to

solve and complete the task through search. Throughout, we use examples from different

games and puzzles that Rosie has learned to illustrate the learning process. We also explain

how the problem characteristics (C1-C4) and desiderata (D1-D4) have motivated decisions

about the agent design and learning process. In Chapter 7 we describe an extension to the

task learning process described here that enables Rosie to handle sources of ambiguity

during learning caused by the problem characteristics.

There are multiple types of task elements that must be learned to specify a goal-

oriented task: actions, goals, failure conditions, and new task-specific terms. All of these

involve detecting the states in which the task element is appropriate: when an action can

35

be legally applied, when a goal has been achieved, when a failure state has been reached,

or when a task-specific term is applicable. Each task element is defined by a linguistic term

(“stack,” “three-in-a-row,” “clear”), a conjunction of predicate tests, and the usage

knowledge specific to that task element type. We use predicate to generally refer to all the

components that test arguments in the logical definition of the task element. Each

individual predicate can refer either to a learned task element, such as clear(x), or

knowledge that is part of the internal state derived from perception and primitive

knowledge, such as red(x).

For example, in teaching an action “stack” from the Blocks World, the following

sentence could be used: “You can move a clear block onto a clear location.” The linguistic

term is “stack,” the conjunction of predicate tests is clear(X) ∧ block(X) ∧ clear(Y) ∧

location(Y), and the usage knowledge for an operator has to do with its actions: ‘move X

onto Y.’

In the sections below we describe in detail the four phases of the task element

learning process: internal state creation (L1), language instruction (L2), recognition

structure learning (L3), and operationalization (L4).

4.1 Internal Model Creation (L1)

In order to learn a new task element, Rosie must first be situated in a relevant environment,

where the task can be performed, and it must build an internal model of the environment.

The task element learning process requires that the described concept be present so that the

correct grounding can be learned. Rosie starts by asking the instructor to configure the

world into a state in which the conditions of the task element are satisfied. For an action,

this is a state in which the action legally applies, while for the goal, it is a goal state, and

so on.

36

Figure 6: The predicate relationships extracted for the displayed external environment are to the
right. The predicates are between movable blocks (A,B,C) and immovable locations (X,Y,Z).

The symbolic relational model of the external environment is maintained in Rosie’s

working memory. This model is automatically updated as new perceptual information

comes in from the external world. This world state model consists of a set of objects and

predicates over those objects. The left side of Figure 6 shows blocks and locations in an

external domain (table-top robotic arm). Overlaying the picture are the internal identifying

labels (A, B, C, X, Y, Z) created by the agent for the objects in the world. The right side of

the figure shows the derived internal state.

Unary predicates defined over a single object, such as A or B, describe properties

of that object, such as small(A) or block(B). Binary predicates defined over two objects

describe spatial relations between those objects, such as on(A,B) or below(B,A). All

relational predicates are represented symbolically, but are grounded in continuous

representations maintained in the agent’s spatial/visual short-term memory (when not in a

simulated environment). The teacher can see the current scene (on the left), excluding the

object labels, but does not have access to Rosie’s internal state (on the right). The lack of

common ground (C1) between the teacher and Rosie, and the many-to-many possible

mappings between words and meanings (C3), makes learning more difficult.

When Rosie is embodied in a robotic platform, its perceptual systems extract the

objects and primitive features and relations, including colors (red, green), sizes (large,

small), spatial relations (next to, below), object types (location, block), and labels (bank,

destination). A complete list of Rosie’s primitive perceptual knowledge, including all

concepts used for teaching the games evaluated in this thesis, is shown below in Table 1,

organized by type.

37

Types Primitives
Object types location, block
Colors* red, green, purple, yellow, orange, black, white,

blue, brown, gray, pink
Labels garbage, destination, card, bank, boat, pawn, king,

knight, rook, queen, bishop, missionary, cannibal
Shapes* cube, sphere, cylinder, rectangle, triangle, arch
Sizes* tiny, small, medium, large
Spatial relations on*, below*, near*, near*, left of*, right of*, under*,

above*, behind*, in front of*, between (inclusive),
between (exclusive), adjacent, diagonal, linear

Table 1: Primitive perceptual knowledge about the external environment initial encoded in the
agent. Previous implementations have learned classifiers for the “*” concepts.

Many of these primitives were previously learned through simple KNN classifiers from a

few training examples, but this has not been a recent focus of this work, which assumes

initial knowledge of these primitive concepts (provided by either by stored training data

for robotic platforms or directly from the world state for simulated environment).

4.2 Language Instruction (L2)

The instructor begins by teaching the name of the new task element, such as “The name of

an action is stack.” Again, Rosie must have an instance of the described task element visible

(for the internal state creation L1) to learn the correct grounding of the task element for the

current context, so Rosie requests that the instructor set up a state that contains at least one

instance of the described element, be that an action, goal, or failure condition. For example,

it will request that the instructor show it an example of a state in which the action stack is

applicable. Once the request has been satisfied, Rosie asks for a description from the

instructor that defines that concept in the current setting: “Teach me the action stack.”

In order to understand sentences that are typed or uttered by the instructor, Rosie

uses a single path, incremental, construction-based parser developed in Soar by John Laird.

Off the shelf parsers are inadequate because they lack semantic precision and are difficult

38

to dynamically extend online with new words. Rosie can parse a restricted form of natural

language that is sufficient for descriptions of the many games and puzzles studied in the

thesis. Some example of sentences used to teach these games and puzzles are in Figure 7.

The parser can process multiple clauses, embedded clauses, and many natural forms

of anaphoric references so that multiple references to the same object can be easily made

in a sentence, thereby supporting moderately complex sentence structures. For example,

Rosie can learn a goal from the sentence “The goal is that a small block is on a medium

block and a large block is below the medium block.” This goal state is visible in Figure 6.

The parser produces a relational representation that includes information derived

from the linguistic structure of the sentence, such as specific relative clauses. Because of

the many possible meanings (C3) that can be associated with the spelling of a new task

element (such as “clear”), a unique symbol is created from the spelling of the word (such

as clear5). A future usage of the term “clear” that has a different meaning will get its own

unique symbol (clear7) when learned. The numbers are sequentially generated and not

associated with any particular task or domain. Multiple definitions of the same term can be

learned for a single task.

“An object that is not below a block is clear.”

“If the volume of a block is less than the volume of an object then the object is larger than
the block.”

“You can move a clear block onto a clear object that is larger than the block.” [Tower of
Hanoi]

“If a block is adjacent to a clear location then you can move the block onto the location.”
[Eight Puzzle]

“The goal is that there are eight matched locations.” [Eight Puzzle]

“If the value of a location is equal to the value of the block that is on the location then the
location is matched. [Eight Puzzle]

“You can move a passenger of the boat onto the current bank.” [Fox River Puzzle]

Figure 7: Example sentences used in teaching different tasks.

39

4.3 Recognition Structure Learning (L3)

Once a relational representation of the sentence describing the new task element has been

created, Rosie builds a structure to recognize it. The task element recognition structure

learning process is decomposed into two phases, structure construction and structure

interpretation.

In the structure construction phase (described in detail in Section 4.3.1), the agent

extracts a conjunction of predicates from the linguistic descriptions of the combinations of

objects and relations. Rosie creates a declarative predicate structure that orders the

conjunction of predicates to optimize later interpretation and support hierarchical

composition. An example of the tree structure created is graphically depicted in Figure 8.

From the goal “a small block is on a medium block and a large block is below the medium

block,” the agent constructs the structure with the unary predicates at the bottom (block)

and the binary predicates at the top. The leaf nodes are predicate tests that are evaluated

against the agent’s perception of the world, and any objects that satisfy a predicate are

passed up to the parent node during the grounding of concepts.

Figure 8: A graphical representations of the declarative structure Rosie creates from natural
language that orders the predicate tests.

40

The conjunction of predicates, p(x,...), is defined over a set of objects, x, which can be

objects in the environment, as well as strings, numeric values, or sets of x. For example,

from the goal description example, Rosie learns the conjunction: goal(x1,x2,x3) = small(x1)

^ medium(x2) ^ large(x3) ^ on(x1,x2) ^ below(x3,x2). More generally, the conjunction can be

represented as the intersection of n predicates fi() and m objects xj as shown in Equation 1.

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = �𝑓𝑓𝑖𝑖�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (1)

Predicates, p(x, ...), represent perceptual features: binary values over unary features (red,

large...) and n-ary relationships (on, behind,...), but also set operations (choose K),

functions (count, sum), comparators (less than), and actions (move). Predicates in the

conjunction can be negated (¬below). A complete list of Rosie’s primitive knowledge that

is not directly available in the agent’s internal model of the environment (L1), including

all concepts used for teaching the games evaluated in this thesis, is shown below in Table

2. For our purposes, we label predicates as functions if they generate or return a different

result from their input arguments, such as choose K which generates all subsets of size K

from a larger set or attribute of which returns the value of the specified attribute (color,

size, etc.) of an object. For the discrete primitive actions that the agent can perform, such

as “write” and “move,” Rosie knows the preconditions and effects, and can model each

action during internal simulation.

The results of functions, where y=f(x...), are represented as predicate p(y, x...) with

the result y as the first argument. For example, the representation created for “the number

of blocks is three” is count(3, blocks). Knowledge about primitives includes how they are

referred to in relational representations created by the parser, so that the agent can convert

utterances such as “the number of X is Y” to the predicate count(Y, X).

41

Types Primitives
Comparators less than, more than, equal to, x less than,

x more than, same
Functions product, choose K, numeric between,

attribute of, count, sum, difference
Actions pick up, put down, move, write

Table 2: Primitive knowledge for actions, functions, and comparators encoded in the agent.

New predicates can be learned from the primitives as the agent learns task elements for

task-specific terms, which enables the definition of hierarchical task elements through

composition. Rosie converts the predicate conjunction into the tree structure (Figure 8) to

help support composition of task elements and partial knowledge transfer (and reduce

computation).

Next in the structure interpretation phase (described in detail in Section 4.3.2), the

agent interprets that structure within the context of its representation of the external

environment, also using its internal knowledge about the meaning of primitive predicates

(such as on), learned predicates (such as clear), and internal functions (such as count).

Rosie attempts to interpret the structure immediately after creating it, both to verify that

the learned structure can be successfully grounded in the environment and to enable

learning of procedural interpretation code that will be used for task performance. After

verifying the learned structure, Rosie links it to the linguistic term for the task element and

stores the structure into semantic memory (long-term declarative memory).

These two phases of recognition learning, structure construction and structure

interpretation, which enable the agent to detect the task element in the external

environment, are described in detail in the following sections.

4.3.1 Predicate Tree Construction

Evaluating a conjunction of predicates to determine possible matches can be

computationally expensive. This is especially true for functions if they are tested on many

42

possible objects or sets. Rather than trying to jointly satisfy all predicate tests at once, Rosie

learns a hierarchical tree structure to order the tests and minimize computation. This is also

critical to supporting the compositionality (C2) of task elements and knowledge transfer

during accumulative learning (C4). An example of the tree structure that Rosie constructs

from a conjunction of predicates is graphically displayed in Figure 8. The predicates are

ordered so they can be efficiently evaluated, from bottom to top in the following

interpretation phase.

To construct this predicate structure, Rosie iterates through each predicate and adds

it to the structure one by one, keeping track of the last predicate added to the structure that

tested the same object or value. Rosie orders the adding of predicates based on the predicate

arity and dependency information extracted during parsing, in order to minimize the

number of objects tested by each predicate and thus reduce the time required to evaluate

the structure. The pairwise effect of testing all combinations of objects causes evaluations

of higher arity predicates to require more computation than lower arity predicates. For

example, from the structure created for the goal in Figure 8, the predicate below will only

be evaluated on object pair (A, B), the small and medium blocks from Figure 6. If the agent

did not order predicate tree construction by arity and below was on the bottom of the

structure it would have to test all objects pairwise: (A, B), (A, C), (A, D), (A, X), (A, Y),

A, Z), (B, C), etc. This design decision also reduces the space of options to consider when

contrasting multiple interpretations of task elements, which is an extension that we will

describe later in Chapter 7, along with an explanation of how this design reduces the space

of options.

Here, the objective is to reduce the computation time required to use these task

elements after learning, thereby minimizing agent execution time (D3). First, unary

predicates (block, small,...) are added, followed by any predicates created from dependent

clauses (such as “the block that is on a location is...”), followed by binary predicates (on,

below) and finally n-ary predicates (such as between).

43

When defining a task element for a new task-specific terms such as “clear,” rather

than an action, goal, or failure condition, the sentence is always structured as an if-then

clause. Logically the clauses are considered to be if and only if statements, but this does

not prevent the learning of multiple definitions for “clear” due to the generation of separate

versions clear3 and clear4.

For example, “clear” could be defined with the sentence “if a location is not below

an object then the location is clear.” The objects referenced in the then-clause that are tested

by the predicate being taught are labeled as the inputs of the new predicate. The input object

for the definition of clear is the location. Figure 9 shows a graphical representation of the

learned structure for an action from the Eight Puzzle that contains two task-specific terms,

“clear” and “adjacent to.” For unary predicates, such as clear, there is only one input. For

binary predicates, such as adjacent to, the inputs are labeled input1 and input2 for predicate

arguments x1 and x2 respectively. The subgraphs showing the recognition structures learned

for the new predicates clear and adjacent to are also displayed, with the accompanying text

for teaching adjacent to. In this figure, each predicate is labeled with its type: unary feature,

relation, function, input, or learned predicate. In addition, the graph shows the argument

attachment of the verb, which is exclusive to action task elements.

44

Figure 9: A simplified graphical view of the representations Rosie learns for an action in Eight
puzzle. Included are graphs for the hierarchical concepts used (clear) and taught (adjacent to).
The words and boxes are highlighted according to their part of speech or type.

When constructing the declarative predicate structure for “adjacent,” the objects in the

then-clause that are referenced by adjacent are labeled as the inputs. The references to the

input objects from the if-clause establish the necessary conditions for the new predicate

defined over the inputs.

Only the predicates contained exclusively in the if-clause are added to the predicate

structure, so the structure learned for clear(x) only contains ~below(x, object). This last

decision was made to allow Rosie to generalize and reuse the definition during

accumulative learning (C4), but in some cases it causes Rosie to overgeneralize and

transfer knowledge it should not. However, in the above example for “clear,” where Rosie

assumes that the object being a location is not relevant because the predicate exists in both

if and then clauses, this is a useful generalization; the learned representation ~below(x,

object) will also work for non location objects, such as a block that is clear.

If instead Rosie learned ~below(x, object) ^ location(x) it would need to learn

another definition of clear for blocks. However, in a different example “if a banana is

yellow then it is ripe,” the agent will overgeneralize and learn that ripe(x) means yellow(x),

even though obviously not all yellow objects are ripe; it would be better to have learned

45

yellow(x) ̂ banana(x). This is a greedy design choice (which could be easily reversed) done

to maximize potential transfer and minimize teach-agent communication (D2). For the

tasks and environments we have explored teaching, this has not caused many problems,

but it could for other tasks and environments, where it may be worthwhile to prioritize

correctness of learning over quickness of teaching. Future work will explore mechanisms

for verifying the correctness of learning and correcting mistakes created by

overgeneralization or incorrect knowledge transfer.

The existence of many possible meanings (C3) and the lack of knowledge of the

instructors meaning (C1) makes correct generalization difficult. A more complex, complete

example is discussed in Section 4.4.3.

Strictly non-hierarchical, or flat, representations that attempt to encode the same

knowledge are problematic, not only because they increase the required computation (D3)

and communication (D3), but also because they make it difficult to parse the sentence,

make appropriate anaphoric references, and resolve ambiguity. For example, without using

clear or adjacent to define the action in Figure 9, the sentence would become: “If a block

is next to a location that is not below a block but it is not diagonal with the block then you

can move the block onto the location.” Determining the correct attachment of the clauses

and the object references is difficult: which of the blocks referred to in the if-clause are the

ones references in the then-clause? Hierarchical composition (C3) helps reduce the number

of objects, predicates, and the overall complexity of each task element.

After Rosie has finished creating the recognition structure, it stores the declarative

structure in long-term semantic memory, so that it be linked with the linguistic term for the

task-element, such as “clear” or “three-in-a-row,” and the name of the task being taught,

such as “Tic-Tac-Toe.” This structure can be retrieved from semantic memory at a later

time, such as when it is used in another task, using the linguistic term or the task name as

a cue.

46

4.3.2 Structure Interpretation (Grounding)

Once Rosie has created a recognition structure, it tries to use it to recognize the task element

in its internal model of the environment (L1). As previously mentioned, the task element

must be present in environment so that Rosie can learn the correct task-specific grounding

of each term. This is necessary to verify the correctness of the recognition structure for the

current context, learn procedural knowledge for directly evaluating the structure (though

chunking), and to determine if the agent requires additional knowledge: it may need to

learn another task element for a task-specific term used in the recognition structure. Rosie

interprets the declarative predicate structure using internal knowledge about functions,

primitive predicates, and learned predicates, and grounds it in the agent’s perception of its

external environment. Essentially Rosie is figuring out how to interpret, or ground, the

declarative structure in a situated context given its current state of knowledge so that is can

recognize the task element that structure defines.

Figure 6 displayed an example external environment that can be used to interpret

the Blocks World goal described above. The interpretive process finds all possible

matchings of the environmental state to the task element. This process is decomposed into

two parts: first, the constituent predicates of the structure are individually evaluated by

matching them against internal knowledge to produce sets of candidates from the

environment that individually satisfy each predicate; second, the candidates generated by

the predicates are joined or intersected, filtering out objects that do not simultaneously

satisfy all the constraints.

Individual predicate matching:

Different types of predicates (such as spatial relations, unary features, and functions) are

evaluated using different methods. Each method evaluates the predicate within the context

of the world state by retrieving the predicate’s associated semantics based on the linguistic

term. For example, for the function referenced by “number of,” Rosie uses an internal count

47

operation that calculates the size of the set. The predicate matching process completes when

results have been calculated for every predicate in the learned representation.

Figure 10 shows the results of predicate matching for the example Blocks World

goal and world state shown in Figure 6. The results of a predicate are depicted at the top of

each box representing the predicate. Rosie first evaluates the unary predicate block over all

the objects in the world state (A, B, C, X, Y, Z), successfully matching only against A, B,

and C. Due to the ordering constraints that Rosie imposes through the learned structure,

when Rosie evaluates the predicates for small, medium, and large, they are tested against

only the blocks A, B, and C. The predicates for on and below are evaluated last and are

tested against only the blocks A, B and C, B respectively. This helps Rosie to achieve faster

execution (D3), especially when there are many predicates and functions in the description.

Figure 10: A graphical representations of the declarative structure from Figure 8, now marked
with the results of predicate matching indicated by object identifier numbers in red.

Joining/satisfying intersection:

After each constituent predicate has been evaluated, Rosie attempts to jointly satisfy the

arguments of the declarative predicate structure by evaluating the intersection of the results

from the predicate matching. The results are the objects and values in the external world

that satisfy all constraints. For the Blocks World goal in Figure 6, the join is trivial because

48

there is only one block of each kind, small, medium, and large, and blocks A, B, and C

satisfy all the predicates jointly.

4.3.3 Learning procedural rules through chunking

The processing described above is implemented in Soar as a hierarchy of problem spaces

with associated operators. Thus, the interpretation phase is dynamically decomposed into

operators that perform the component processing steps of predicate matching, term linking,

and joining. Each of these is implemented in its own substate through operators that

manipulate the appropriate data structures.

A critical aspect of this process is that as a side effect of the processing, Soar’s

chunking mechanism creates rules that capture the input-output mappings of the

processing. Chunking dynamically compiles the processing in a substate into procedural

rules, so that when the situation that led to the substate arises in the future, the processing

in the substate is bypassed by those rules. During the interpretation process, rules are

learned for each of these component processing steps so that in the future, the deliberate,

sequential processing is replaced by procedural rules (native Soar production code D3).

These rules can directly recognize and apply the task elements, but much faster

(approximately 80x) than the initial interpretation process. During the interpretation

process, three different kinds of rules are learned.

49

Figure 11: A representation of the procedural knowledge, the soar rule, learned through chunking
for resolving “volume of.”

The first type of rule Rosie learns though chunking is from predicate matching (Section

4.3.2). Rosie learns rules to evaluate primitive unary features, spatial relations, and internal

functions. The processing of some predicates lead to multiple rules being learned, such as

those dealing with functions and sets of objects. For example, consider that Rosie is

learning the task-specific term “larger than,” which the teacher has defined with “If the

volume of an object is more than the volume of a block then the object is larger than the

block.” Figure 11 shows the recognition structure learned for “larger than” during the

process of predicate matching. The figure also shows a representation of the agent’s

internal model of the environment (at the bottom), and a representation of the Soar rule that

is learned for evaluating volume of (on the right).

Once a rule is learned, it replaces the processing via the hierarchy of operators used

to interpret the predicate. The interpretation process is impasse driven, only the absence of

results causes the predicate interpretation process to begin. In this example, this would

involve retrieving knowledge about the predicates from semantic memory, and then using

the context of its internal model of the current state of the world (shown on the bottom of

50

the figure) to determine that volume is an object property that is a unary primitive numeric

attribute of objects that are currently visible in the world. Recent improvements to

chunking have improved its ability to generalize, so that the elements highlighted in blue

in the rule shown in Figure 11 are variablized: this rule will also be able to evaluate a

similar predicate, such as for color of, without learning a new rule, thus transferring

knowledge. This type of knowledge transfer does not reduce the amount of instruction

required from the teacher, but does reduce the time it takes for structure interpretation

during the learning of future task elements.

Figure 12 shows another example of a rule learned for the evaluation of the more

than predicate, which can be evaluated now that volume of has generated results (for both

input arguments). In this example, Rosie learns a rule for evaluating binary predicates that

compare two integer objects (A and B) and returns a pair (A, B) as a positive result if the

first number (A) is larger than the second number (B). This rule is not very general: the

agent would need to learn another rule for less than or equal to. Not all learned rules have

the level generality shown in rule from Figure 11.

Figure 12: A representation of the procedural knowledge, the Soar rule, learned through
chunking for resolving “more than.”

51

The second type of rule Rosie learns is during the process of linking the linguistic term to

the learned structure. These rules test the name of the task element used, whether it is a

goal, failure, action, or new predicate for a task-specific term, and then add the

corresponding recognition structures into working memory (WM). Figure 13 show a

representation of the procedural knowledge learn for larger-than1. The existence of the

predicate larger-than1 in part of another task element, such an action, will cause this rule

to match and fire, so that larger-than can be evaluated over its input arguments. These rules

are not general, they are specific to a single task element.

Figure 13: A representation of the procedural knowledge learned through chunking for creating
the recognition structure of a task-specific term, “larger than,” in working memory.

These rules prevent Rosie from retrieving the recognition structures from semantic

memory, because the existence of the task element’s name in working memory causes the

rules to match and fire, adding the structures directly to working memory. Figure 14 shows

a representation of the procedural rule learned for a goal from the blocks world example.

Figure 14: A representation of the procedural knowledge learned through chunking for creating
the recognition structure of a task element, the goal example, in working memory.

52

The final type of procedural knowledge that Rosie learns is learned during the linking of

the name of the task to the actions, goals, and failures. Figure 15 shows a representation of

the procedural knowledge learned for the eight puzzle, which links the name of the game

to its action, slide2, and goal, eight-matched5.

Figure 15: A representation of the procedural knowledge learned through chunking for link the
names of the goal, action, and failure conditions for a task, in this case the eight puzzle.

In the future, when the task is attempted again, these rules cause Rosie to add to working

memory the names of all the goals, actions, and failure conditions learned for that task,

without needing to retrieve them from semantic memory. This in turn causes the second

type of rule to match and fire, populating working memory with the recognition structures

for those actions, goals, and failure conditions. If there are any task-specific terms, their

existence in the recognition structures of the other task elements will cause additional rules

to match and fire, adding into working memory the recognition structures for those task-

specific terms. These structures can be directly evaluated against the agent’s internal model

using the first type of rules that it learned.

Although the declarative structures are still maintained in long-term semantic

memory, these rules, stored in procedural memory, are all that Rosie needs to be able to

53

attempt or solve a task. No semantic memory retrieval or interpretation is necessary after

learning. The agent runs as normal but with the addition of the procedural rules that avoid

the impasses and enable the agent to recognize every task element when it is prompted to

attempt the task.

4.3.4 Recursive Learning Algorithm

As mentioned previously, the learning can recursively loop through L1-L4 when Rosie

requests a definition for a task-specific term. However, in many cases there are multiple

options to pick from: there is more than one predicate that cannot be satisfied or grounded

in the current context given the agent’s current state of knowledge. In the past, Rosie

selected the first term mentioned, but with an increasing numbers of terms it could learn,

and for cases where many task-specific terms needed to be defined for a single task-

element, we have had to develop a more sophisticated recursive learning algorithm to guide

the learning process.

 The process of learning to ground all parts of the task element is described by the

Recursive Grounding Function (RGF) depicted in Algorithm 1. The input is the generated

recognition structure, here represented as a conjunction of predicates as shown in Equation

1. The terminal condition is that the input function f(x) can be satisfied, meaning that an

instance of the task element is detected in the environment by applying the recognition

structure. If no definition is known for f(x), the agent prompts the teacher for a definition.

54

Otherwise, for each of the unsatisfied predicates fi() used to define f(x), Rosie proposes a

recursive function call RGF[fi()]. The agent also proposes RGF[f()] to consider learning a

new definition for f(x) even though it already has one (many-to-many mappings). Because

there may be many unsatisfied predicates, heuristics are used to select which recursive

function call to make.

These heuristics leverage the hierarchical tree structure of the task elements to bias

the selection of the next unsatisfied predicate to attempt to learn a new meaning for. The

heuristics used for this process are listed below in order, with heuristics listed earlier taking

precedence over those that follow. Rosie prefers learning predicate p over predicate q,

where f(x) is undefined for both, if the arguments of p, its child predicates in the recognition

structure, have both returned results. This prevents trying to learn a new definition for a

predicate that has no chance of being successfully learned: it has no values or objects as

input arguments to test. Rosie prefers learning predicate p over q if p is a descendant of q

(block is a descendant of below in Figure 14, small is not). Rosie prefers learning predicates

that are lower in the hierarchy of task elements (RGF[fi()] > RGF[f()]). This learning

function terminates when it has learned to recognize and apply the task element f(x) and all

supporting task-elements fi(x) used to describe it.

55

4.4 Operationalization of Task Elements (L4)

Once the declarative predicate structure has been successfully interpreted and grounded in

the agent’s perception of its environment, and procedural rules for this process have been

learned, the task element has been recognized and can now be operationalized, or applied,

in the task environment. The type of task element being taught determines the details of

the operationalization learning phase. To operationalize an action task element is to identify

available legal actions. Those actions are then proposed to search or to act in the world.

To operationalize a goal task element is to indicate that the goal state has been

detected: the agent has won the game. For example, if Rosie recognizes the goal three-in-

a-row in the internal state created by simulating an action in Tic-Tac-Toe, it now knows

that that action will win the game. To operationalize a failure condition task element is to

indicate that a terminal state has been detected: the agent has lost the game or found a bad

solution path. For example, if Rosie recognizes the failure condition of Tower of Hanoi

puzzle, larger-on-smaller, in an internal state while searching for the solution, Rosie stops

searching down that path. To operationalize a task-specific term task element is to indicate

a successful match of a predicate that is part of the definition of another task element. For

example, if Rosie recognizes the unary term captured in a game state of Tic-Tac-Toe, the

knowledge of which squares are captured allows Rosie to determine if the goal (“three

captured locations in a line”) is present. The procedural rules Rosie has learned (Section

4.3.3), such as the example in Figure 13, are sufficient for operationalizing a task-specific

element because it only involves recognition, so no additional code is required to

operationalize it, unlike the other task elements.

4.5 Task Solving

The instructor signals that they are done teaching the actions, goals, and failure condition

of the task by telling the agent they are “done.” At this point Rosie has learned declarative

56

knowledge (the recognition structures) and procedural knowledge (the chunked rules) for

recognizing and operationalizing the goals, actions, failure conditions, and supporting task-

specific terms, by recursively applying the learning process described (L1-L4) for each

unknown task element.

After completing learning the task, Rosie asks the instructor if it should attempt to

solve the task: “I have learned the task. Should I try to solve the puzzle?” The agent solves

the task through straightforward search, by using the task element knowledge to propose

actions, apply them through internal simulation, and evaluating the resulting states and

whether they contain a goal or failure condition. If the task is a multiplayer game, not a

puzzle, instead the agent asks “Shall we play a game?” and only searches forward one step.

For single-player puzzles, it uses iterative deepening, implemented as recursive

substates in Soar (Laird, 2012), to search for the goal. For each state in the search, Rosie

determines whether a goal or failure state is present, and if not, iteratively extends the

search by generating the legal actions for the new state until the current depth limit is

reached. If a failure state is encountered, that search path is abandoned. If a goal state is

encountered, the search terminates, and the appropriate action is selected, and the

associated verb command is executed. If the task is a single-player puzzle, Rosie

successively selects and executes the actions it discovered that were on the path to the goal.

These actions are retrieved from an “actions to perform” stack that Rosie maintains; each

action that is in the path to the goal is pushed onto the stack.

The internal search is possible because even though the full action model of a task

action is not specified by the instruction, the agent has the action knowledge of the

associated primitive verbs. A full action effect model specifies not only the direct result of

the action, but all the related relationships that change as a result. For example, an action

in the Eight Puzzle, slide, does not verbally encode the fact that a new location is made

empty. That is, the preconditions of an action are encoded, but not all of its effects.

However, because Rosie has primitive knowledge of the verbs used to define the task

actions, such as pick up or move, it can simulate these actions using built in action models.

57

When embodied in real non-simulated environments, Rosie also has the capability to

simulate actions in its spatial visual system to determine not only their primary effects

(such as the movement of a tile to a new location), but also secondary effects (such as

changes in spatial relations with other objects). This capability is unique compared to other

game player systems, such as those using the Game Description Language (Genesereth &

Love, 2005), which must explicitly represent all primary and secondary action effects.

When playing a two-player game, Rosie only searches forward one step. The agent

currently lacks knowledge about the opponent, or its actions. If the agent is one move away

from a goal, the one-step search is sufficient; in other cases, the agent uses a general

heuristic that approximates the state’s distance to the goal. It calculates this approximation

by counting the number of partially matched goal parameters, which produces better than

random behavior for many games. These limitations of the solution strategies of the agent

(iterative deepening and one step look-ahead) are not a result of fundamental limitations of

the system (and the representation it learns) rather they have not been a focus of our

research; we have not put effort into more sophisticated search techniques.

58

Chapter 5 Task Learning Examples

This chapter provides a verbose example of task learning, showing everything that is

learned for an entire task, and examples of different task-specific terms that Rosie has been

able to learn for various tasks. The example task is drawn from the example river crossing

puzzle from Chapter 1.

5.1 Learning the Jealous Managers Puzzle

This section illustrates the previously described learning process through an example of

learning the task elements of the puzzle introduced in the first chapter. In this instance there

are only two pairs of agent-managers as shown in Figure 16, in order to simplify analysis

of the learned representations and how they map to this environment.

Figure 16: A depiction of an instructor attempting to teach a situated version of a river crossing
problem and the agent’s internal model derived from its perception and knowledge.

59

This puzzle requires that you ferry managers and actors across a river, with at most two in

the boat at once, while avoiding the actors from being “poached:” the actor cannot be on a

bank with another manager when their own manager isn’t there. Given such a sparse

representation of the environment, only the colors, shapes, and simple relations of blocks

are known, how could a robot learn the complete puzzle?

One possible way that the task could be taught is shown in the dialog below

showing the interactive dialog between the teacher and Rosie (highlighted in red). Each

sentence is ordered with red numbers (referenced by superscripts) and each task elements

that the agent learns are enumerated in bold (referenced by subscripts). The details of each

task element description will be explained throughout the learning process below.

1. The name of the puzzle is jealous-managers.
2. Please setup the puzzle.
3. Ok.
4. Please describe the actions, goals, and failure conditions.
5. The name of an action is ferry-one1.
6. What are the conditions of the action?

The instructor initiates the teaching a new task by give it a name: “The name of the puzzle

is jealous-managers.”1 If the agent knows this task already (by name), it will ask if it should

try to solve the puzzle or play the game, otherwise it will learn a new task. Rosie starts by

asking the teacher to setup the puzzle in the current environment, as shown in Figure 16,

and then asks the teacher to initiate the teaching of actions, goals, and failure conditions.

The agent initiates the learning of task-specific terms. The instructor begins by teaching

the name of an action to be learned: “The name of an action is ferry-one.” 5 When Rosie

decides it needs a new definition for a task element, in this case it doesn’t know any task

element named ferry-one1, using the process described in section 4.3.4, it initiates an

interaction with the teacher to learn that concept: “What are the conditions of the action?”6

This learning is guided by the process described in section 4.3.4, but will not be described

in detail here.

60

When Rosie prompts the teacher for a definition of the action the teacher responds “You

can move the boat and a person2 on the current3 bank onto the opposite4 bank.”7 However,

Rosie does not know the meanings of the task-specific terms “person,” “current,” and

“opposite.” These terms do not show up in the task environment (Figure 16) and Rosie

does not know how to ground them.

7. You can move the boat and a person2 on the current3 bank onto the

opposite4 bank.
8. Please describe the meaning of current in this context.
9. If the bank is below a boat then it is the current4 bank.
10. Please describe the meaning of below in this context.
11. If a block is on an object then the object is below5 the block.
12. Ok, Ive learned the meaning of below for this context.
13. Ok, Ive learned the meaning of current for this context.

The first task specific term Rosie attempts to learn a new meaning for is current4. When

prompted by Rosie, the teacher describes “current” as “If a bank is below a boat then it is

the current bank.”9 However, looking at Figure 16 again, the agent only knows the primitive

spatial relationship on. The inability to detect any results for “below” prompts Rosie to ask

for a new definition for below5, which the teacher defines simply as the inverse of on: “If

a block is on an object then the object is below the block.”11 With this knowledge, Rosie

can now satisfy the recognition structure for below5 which enables it to satisfy the

recognition structure learned for current4, and finally it can evaluate the action again,

which prompted this recursive learning of the unknown terms. However, Rosie is still

unable to ground two of the terms.

14. Please describe the meaning of opposite in this context.
15. If the bank is not current then it is the opposite8 bank.
16. Ok, Ive learned the meaning of opposite for this context.
17. Please describe the meaning of person in this context.
18. If an object is a block and it is not a boat then it is a person3.
19. Ok, Ive lear ned the meaning of person for this context.
20. Ive learned the action.

61

When prompted by Rosie for a definition of opposite8 (line 14), rather than defining it

from primitives, the teacher uses a term that we have already defined, and defines a concept

using its negative: “If a bank is not current then it is the opposite bank.”15 Once Rosie has

successfully learned how to recognize and apply opposite8 in the current environment,

Rosie prompts for a definition another ungroundable concept person3. In this instance of

the puzzle, from looking at Figure 16, we can see that all the people are represented by

blocks, but the boat is also a block. In this example, the instructor decides to teach the

meaning of person3 as “If an object is a block and it is not a boat then it is a person3.” 18

With these new definitions, Rosie can now recognize the action ferry-one1 and

operationalize it: move a person on the current bank (with the boat) and the boat on to the

opposite (not current) bank.

21. The name of an action is ferry-two6.
22. What are the conditions of the action?
23. You can move a person3 that is on the current bank and another person3

that is on the current4 bank and the boat onto the opposite8 bank.
24. Ive learned the action.

Now that Rosie knows how to ferry a single person with the boat, Rosie is taught how to

ferry two persons with the boat, ferry-two6 (line 21). When Rosie prompts the teacher for

a definition “What are the conditions of the action?”22 the teacher responds with “You can

move a person3 that is on the current4 bank and another person3 that is on the current4

bank and the boat onto the opposite8 bank.”23 Rosie has just learned meanings for these

terms, and because they lead to matches in the environment, though intra task transfer

Rosie does not require or ask for additional definition of terms and is immediately able to

detect the new action.

Rosie has now learned all the necessary action knowledge for solving this puzzle

and must now learn the failure condition and goal. This learning example is completed on

the online archive at umich.edu/~jrkirk/ijcai2019.html, where we also include figures and

analysis of each recognition structure that is learned for each of the task elements, which

was too verbose to include here.

62

5.2 Examples of Learned Task-Specific Terms

A list of some of the task elements that Rosie has learned, specifically task-specific terms,

is shown below in Table 3, organized by the Part of Speech (POS) of the word. This is not

a complete list of everything Rosie has learned, but shows many of the different types of

terms it can learn in different situations.

Part of Speech Task-specific Terms Learned
Nouns frog, toad, box, boat, actor, manager, missionary,

cannibal, grapefruit
Nouns used as
Functions (with of)

passenger of, husband of, wife of, occupant of,
manager of, position of, neighbor of, score of

Prepositions adjacent to, below, on, under, in a line, in a group,
left of, right of, …

Adjectives covered, free, clear, current, your, small, large, huge,
wild, frog-covered, toad-covered, matched, matching,
occupied, colorless, shapeless, surrounded, center,
fork, raw, cooked, well-done

Comparative
Adjectives

smaller than, colder than, heavier than, higher than,
lower than, weaker than, stronger than, warmer than

Superlative
Adjectives

coldest, hottest, largest, smallest, highest, heaviest,
lowest, top, bottom

Stative Verbs attackable by, attacking, capturable by, occupied by,
conquerable by, matched by, captured by, captured

Table 3: A list of some examples of task-specific terms that Rosie has learned organized by the
part of speech of the term.

The ability to compose hierarchies of task elements enables Rosie to learn many different

types of task elements (C2). Essentially Rosie can learn new classes of knowledge based

on the types of available primitives. In various domains these primitives have included

colors (red, green), sizes (large, small), relations (next-to, smaller-than), labels (location,

destination), and functions (count, attribute-of, comparison). Through hierarchical

composition of these primitives, Rosie can learn new relations (adjacent to), labels

(captured, current, opposite), and functions (husband-of, passenger-of). Rosie can also

63

learn synonyms (huge), antonyms (covered and clear), and homonyms (matched). The two

different definitions learned for “matched,” as well as some of the other example learned

task elements, are described below.

The learned task elements can be task and domain dependent and be redefined

based on the available knowledge and environment representations. For example, in an

instance of the Jealous Husbands river crossing puzzle, the attribute used to designate

couples is their “last-name,” which is unique to each pair of men and women. In this

domain, when describing the failure condition: “If a woman is on a bank and the husband

of the woman is not on the bank and another man is on the bank then you lose,” the

unknown term “husband of” can be described by: “If the last-name of a woman is the last-

name of a man then the man is the husband of the woman.”

In the following subsections we show examples of sentences used to teach different

task-specific terms organized by the Part of Speech of the term.

5.2.1 Nouns

Examples of sentences used to teach task elements for task-specific terms that are nouns

are displayed in Figure 17.

“If an object is a block and the object is red then it is a frog.”
“If an object is a blue block then it is a toad.”
“If an object is a medium brown rectangle then the object is a box.”
“If an object is brown and it is on a bank then it is a boat.”
“If the shape of an object is a star then it is an actor.”
“If the shape of an object is a cylinder then it is a manager.”
“If an object is a red block and the object is on a bank then it is a missionary.”
“If an object is a blue block and the object is on a bank then it is a cannibal.”
“If an object is a large yellow sphere and the object is in the kitchen then the
object is a grapefruit.”

Figure 17: Example sentences used in teaching task elements for nouns.

64

Rosie can be taught task-specific terms for nouns by leveraging the current attributes it can

detect for an object. This enables the instructor to use appropriate terms, such as

“missionary” or “actor,” for teaching the actions and goals to Rosie, even when the agent’s

sensing of the environment is limited to very simple features, such as colors and shapes.

These definitions are often not very transferrable outside of the task (inter task transfer)

because they are context specific, but they do support intra-task transfer, such as between

the task actions and goals.

5.2.2 Nouns that act as functions

Examples of sentences used to teach task elements for task-specific terms that are nouns

that act as functions, by combination with “of,” are displayed in Figure 18.

“If a block is on a boat then the block is a passenger of the boat.”
“If the last-name of a woman is the last-name of a man then the man is the
husband of the woman.”
“If the last-name of a man is the last-name of a woman then the woman is the
wife of the man.”
“If a block is on a location then the block is an occupant of the location.”
“If the color of a manager is the color of an actor then it is the manager of the
actor.”
“If a location is below a block then the location is the position of the block.”
“If a location is adjacent to another location then the former location is a
neighbor of the later location.”

Figure 18: Example sentences used in teaching task elements for nouns that act as functions.

Rosie can be taught task-specific terms for functional nouns, or nouns that act as functions,

such as “passenger of” or “position of.”

65

5.2.3 Prepositions

Examples of sentences used to teach task elements for task-specific terms that are

prepositions are displayed in Figure 19.

“If a location is next to an object but it is not diagonal with the object then it is
adjacent to the object.”
“If a block is on an object then the object is below the block.”
“If a block is blue and the column of the block is the column of a location then
the block is below the location.”
“If a block is below an object then the object is on the block.”
“If a location is above an object then the object is under the location.”
“If the blocks have the same row then they are in a line.”

Figure 19: Example sentences used in teaching task elements for prepositions.

Rosie can also be taught task-specific terms for prepositions, such as “adjacent to” or “in a

line,” using primitive spatial relations, such as “diagonal” or “next to,” or other learned

prepositions.

5.2.4 Adjectives

Examples of sentences used to teach task elements for task-specific terms that are

adjectives are displayed in Figure 20.

“If a location is below an object then it is covered.”
“If a block is not on a location then it is free.”
“If a location is not below an object then it is clear.”
“If a bank is below the boat then it is the current bank.”
“If a block is red then it is your block.”
“If the volume of a block is more than 2 then it is small.”
“If the volume of a block is more than 5 then it is large.”

66

“If a block is large then it is huge.”
“If the value of a card is eight then the card is wild.”
“If a location is below a red block then the location is frog-covered.”
“If a location is below a blue block then the location is toad-covered.”
“If the color of a location is the color of the block that is on the location then the
location is matched.”
“If the value of a location is the value of the tile that is on the location then the
location is matched.”
“If the locations have the same value then they are matching.”
“If a location is below a blue block then it is occupied.”
“If the color of an object is absent then the object is colorless.”
“If the shape of an object is absent then the object is shapeless.”
“If the number of covered locations near a clear location is eight then the clear
location is surrounded.”
“If the number of locations diagonal with another location is four then the
location is a center location.”
“If the number of captured locations near a clear location is more than one then
the location is a fork location.”
“If the color of a steak is red then the steak is raw.”
“If the color of a steak is brown then the steak is cooked.”
“If the temperature of a steak is more than 150 and the steak is brown then the
steak is well-done.”

Figure 20: Example sentences used in teaching task elements for adjectives.

Rosie can also be taught task-specific terms for adjectives. For example, instructor might

use (and then be forced to define) the adjectives “center” and “fork” while teaching Tic-

Tac-Toe.

67

5.2.5 Comparative Adjectives

Examples of sentences used to teach task elements for task-specific terms that are

comparative are displayed in Figure 21.

“If the volume of a block is less than the volume of an object then the block is
smaller than the object.”
“If the temperature of a block is less than the temperature of an object then the
block is colder than the object.”
“If the weight of an object is more than the weight of another object then the
former object is heavier than the latter object.”
“If the value of a card is more than the value of an object then the card is higher
than the object.”
“If the value of a card is less than the value of an object then the card is lower
than the object.”
“If the number of blocks on a location is less than the number of blocks on an
object then the location is weaker than the object.”
“If the number of blocks on a location is more than the number of blocks on an
object then the location is stronger than the object.”
“If the temperature of a block is more than the temperature of an object than the
block is warmer than the object.”
“If the kelvin-value of a block is more than the kelvin-value of an object than
the block is warmer than the object.”
“If an object is red then it is warmer than an object that is blue.”

Figure 21: Example sentences used in teaching task elements for comparative adjectives.

By using the primitive comparative knowledge that Rosie knows, it is easy to teach it task-

specific terms for many different comparative adjectives, such as “colder than” or “smaller

than,” by comparing different attributes of objects, such as “temperature” or “volume.”

There are many possible meanings of these terms (C3), such as shown with “warmer than,”

which vary widely based on the context.

68

5.2.6 Superlative Adjectives

Examples of sentences used to teach task elements for task-specific terms that are

superlative adjectives are displayed in Figure 22.

“If an object is not hotter than any block then the former object is coldest.”
“If an object is not colder than any block then the former object is hottest.”
“If an object is not smaller than a block then the former object is largest.”
“If a block is not larger than any object then the block is smallest.”
“If an object is not lower than any card then the former object is highest.”
“If an object is not higher than any card then the former object is lowest.”
“If a card is on a deck and it is not below another card then it is a top card.”
“If a card is on a deck and it is not on another card then it is a bottom card.”

Figure 22: Example sentences used in teaching task elements for superlative adjectives.

With the comparative adjectives that Rosie can learn, shown above, it is easy to then teach

Rosie task-specific terms for superlative adjectives. For example, the instructor can teach

Rosie the meaning of “smallest” using “larger than,” an object that is not larger than any

object.

5.2.7 Stative Verbs

Examples of sentences used to teach task elements for task-specific terms that are stative

verbs, which are often verb-derived adjectives, are displayed in Figure 23.

“If a location is under an object and the location is diagonal with the object then
the object is attackable by the location.”
“If you can move a piece onto a location then the piece is attacking the
location.”
“If an occupied location is above a clear location then the clear location is
capturable by a block on the occupied location.”

69

“If a location is below a block and the block is blue then the location is
occupied by the block.”
“If an occupied location is above a clear location then the clear location is
conquerable by a block on the occupied location.”
“If the color of a block is the color of an object then the block is matched by
the object.”
“If a location is below a red block then the location is captured.”
“If a location is below a blue block then it is a captured location.”
“If a location is below a red block then the location is captured by the block.”
“If a blue block is on a location then the location is captured by the opponent.”
“If the value of a location is X then the location is captured.”

Figure 23: Example sentences used in teaching task elements for stative verbs.

Rosie can learn stative verbs, or verbs that describe a state, such as that a location is

“occupied by” a block or that a square is “captured.” Similar to the case of “warmer than”

there are many possible meanings (C3) for “captured” depending on the usage, the task,

and the environment. Although not explored in this work, there has been research

conducted on Rosie (Mohan, 2015; Mininger & Laird, 2019) on teaching new procedural

non-stative verbs, such as stack. For the games and puzzles (over 60) we have explored in

this thesis, the agent has only been required to know only a couple procedural non-stative

verbs, move and write, which are pre-coded as primitive knowledge (including action-

model knowledge) in the agent. A list of the primitives required, and task-specific terms

learned, for each game Rosie can learn are listed in the appendix and the dialogues for

teaching all 60 games are available in the public archive created at

umich.edu/~jrkirk/ijcai2019.html.

70

Chapter 6 Evaluating Task Learning

We have run many different experiments on Rosie in order to evaluate its handling of the

problems associated with the problem characteristics, (C1) lack of common ground,

(C2) compositional concepts, (C3) many-to-many mappings, and (C4) accumulative

learning, using the criteria set by the desiderata, (D1) maximizing generality, (D2)

minimizing communication, (D3) minimizing agent execution, and (D4) minimizing

memory growth, that we defined in Chapter 1.

The games in the following evaluations were chosen so that there were some with

considerable conceptual overlap (Eight Puzzle and Five Puzzle, Jealous Husbands problem

and Missionaries and Cannibals, Picaria and Three Men’s Morris), and others with very

little overlap, such as Othello and the Frogs and Toads puzzle. Rosie correctly learns the

task knowledge for all of these games.

Many of our evaluations concern the accumulation and transfer of knowledge

between games and the ability of the system to continue running efficiently as multiple

games are learned. The agent should be task general (D1), not be designed for any specific

task, or set of tasks, and should be able to learn a large variety of different kinds of tasks

and concepts. The agent should minimize communication during learning (D2) and not

require large amounts of instructions or interactions. It should limit what is learned from

scratch through the transfer (reuse) of knowledge, while avoiding negative knowledge

transfer. After the agent has learn all task knowledge, the resulting learned representations

should minimize agent execution time (D3), as if it had been hand-programmed with that

task knowledge. As the agent accumulates task knowledge, the agent should minimize the

growth in size of semantic, procedural, and working memory (D4), limiting what is added

to the agent’s memories.

71

To evaluate how well Rosie meets the criteria laid out in the desiderata, we designed

an experiment where we teach thousands of randomly generated permutations of the

teaching order of a set of games. In each permutation, every game is taught, one after

another via scripts. The scripts ensure that only those concepts required for a game are

taught, so if a concept has been previously learned in another game, it will not be taught in

the current game. These scripts are auto-generated by an independent (python) program

that takes hand-written scripts for each task in the set and analyzes which meanings have

been previously taught for each task in each permutation to generate a script that teaches

all tasks. To simplify the experiment execution, we created rules in Soar that internally

simulate the external environments. Rather than physically setting up the puzzle in the

world, a message “load state1” updates the internal world state to the stored symbolic

representation. This simulation had no impact on what was learned, but it eliminates the

time for typing instructions and setting up game states. All experiments were run on a

desktop computer on a single core.

6.1 Evaluation of Generality (D1)

A major goal of ITL, and this thesis, is to support task learning that is general (D1): the

agent is not limited to a small set of tasks that it can learn. We have attempted over the

years to teach Rosie an increasing variety of different games in different settings pushing

the total number of games that Rosie is capable of successfully learning to demonstrate

generality. With advancements in the complexity of learnable hierarchical concepts, the

addition of agent primitives, and the leveraging of multiple interpretations to handle

ambiguity in knowledge transfer, we have made Rosie capable of learning many more

games. Initially we were only able to teach Rosie a few games (Tower of Hanoi, Tic-Tac-

Toe), which were then expanded into a small set of 11 games (Kirk & Laird, 2014). This

was further expanded to 17 games (Kirk & Laird, 2016), then to 40 games (Kirk & Laird,

2019), and finally to the 60 games that we can now teach Rosie. An exciting aspect of the

72

work is we have reached a point where it is common that we do not need to make changes

to the system in order to handle a new game or puzzle.

 These 60 games include many versions and variants of different games and puzzles.

In the following list of these game we indicate variants by (total number) or (names). They

are Tower of Hanoi (3), N-Puzzle (5), Marking puzzles (Sudoku, Killer Sudoku,

Jigsawdoku, KenKen, Product KenKen, Logi-5, Shuffle, Survo, Suko, Sujiko, Kakuro),

Map 4-Coloring, Chess puzzles (N-Queens, N-Kings, N-Rooks, N-Bishops, N-Knights,

Knight’s tour, King’s tour, Knight swapping, 4 Corner knight swapping), Peg solitaires (2),

Card solitaires (Golf, Pyramid, Tri Peaks), River crossing puzzles (Fox, Goose & Bean,

Missionaries and Cannibals, Jealous Husbands, Jealous Wives, Family crossing), Traveling

Salesman in a grid, 3x3 stone games (Tic-Tac-Toe, Three Mens Morris, Picaria, Nine

Holes, Connect-3), Othello, Breakthough, Frogs and Toads (2), Eight men on a raft,

Stacking Frogs (3), Blocks World (2), Mazes (simple, block pushing), Sokoban, Mahjong

puzzle, and a sorting puzzle. We have created a public archive as a resource for researchers

that contains the teaching scripts and state representations for these games, as well as links

to videos of Rosie learning some of these games. This data is available online at

www.umich.edu/~jrkirk/ijcai2019.html.

We have also explored learning tasks that are isomorphisms of classic word

problems, such as determining the ages of three children given constraints on their relative

ages (“the age of Bob is 3 more than the age of Alice.”) In this isomorphism, rather than

describing initial state as part of the problem, the children are represented by blocks with

values that the agent learns to modify to solve what their “ages” are, given a set of failure

conditions. However, this is preliminary work that should be explored further in the future,

especially the ability to be taught the state through language rather than demonstrating a

physical external state.

One of the challenging aspects of the thesis has been establishing the coverage or

scope of learnable tasks and task elements using our approach. So far, we have described

this space by identifying different types of tasks (and concepts) that Rosie can and cannot

http://www.umich.edu/%7Ejrkirk/ijcai2019.html

73

learn. We have created a large list of games and puzzles, in an attempt to define a taxonomy

of games (and concepts) and show what parts of the definitions of various games make

them learnable (or not) using our approach. Although this is not a formal specification it

can, in many cases, enable someone to determine if there is a version of an arbitrary task

that Rosie could learn. This list of games, along with the explanations of whether they are

learnable and why, are shown in Table 2 in the Appendix.

Another way we demonstrate the generality of the learning capabilities of Rosie is

to show it learning in different settings. Rosie is not only capable of learning large number

of diverse games and puzzles, but is also capable of learning them in many different

environment domains and agent embodiments. Rosie has learned games in real-world

robotic environments: a table-top robot arm that manipulates blocks and a Fetch robot that

can move and manipulate objects on a table. Rosie has also learned games in simulated

environments: the April Simulator of the table-top arm, the ROS simulator (Quigley et al.,

2009) of a Fetch robot, an agent internal simulation for grid based puzzles (such as

Sudoku), and a simulated card game environment in an external Java application.

The work presented in this thesis enables Rosie to learn games and puzzles that are

goal-oriented and deterministic in fully observable environments where the only dynamics

in the environment come from changes made by the agent, teacher, or an opponent. Prior

work on Rosie (Mohan et al. 2012) explains how these representations are used to perceive

and act in noisy real-world environments, which is not a focus of this thesis.

Rosie cannot learn tasks that involve explicitly reasoning over arbitrary historic

concepts, such as events in the past (such as needing to know the most recently placed

knight in the Knight’s tour puzzle). However, Rosie can often learn a variant of these

games, by explicitly learning to deliberately mark when certain events happen, and then

use those marks for later reasoning. For example, Rosie can learn a variant of Knight’s

Tour where the agent uses a red knight for capturing the next empty square, replacing it

with a black knight every time it moves , in order to keep track of the most recently placed

knight (the only red one) while covering the entire board. Parallel work (Mininger & Laird,

74

2018) has enabled Rosie to reason over historic information and handle partially observable

scenarios when learning procedural tasks, but these capabilities have not yet been explored

with respect to learning games and puzzles.

Furthermore, we have not explored the problem of how to deal with large numbers

of objects in an environment or game, which could potentially be tackled using an attention

mechanism. Large numbers of objects do not prevent Rosie from learning, only from

learning and reasoning quickly. We also have not explored policy learning in the context

of learning the rules of games and puzzles, so although Rosie can solve the tasks it learns,

it can take a long time if the search space is large.

6.2 Evaluation of Communication (D2)

The agent should minimize communication with the teacher (D2) to avoid wasting their

time, in part by limiting the number of interactions and avoid relearning when possible.

One evaluation we have conducted related to the communication of task descriptions is

related to whether concepts learned in games can decrease the amount of instruction

required in future games, as measured by the total number of words required to teach a

task. One would expect that if you learn the Five Puzzle, it should be easy to learn the Eight

Puzzle. Transfer is possible not only for learned predicates, but also for goals, actions, and

failure states.

Results from 3000 randomly generated permutations of 17 games, are shown Figure

24. It shows the number of words, on average, used to teach each game in each position in

the teaching order. At position 0, no other games have been taught, and at position 16 all

other games have been taught. Moving from left to right, many games require fewer words,

with the largest decrease being by a factor of about three. As expected, games that have

substantial conceptual overlap, such as Five-Puzzle and Eight-Puzzle which share actions

(slide) and learned predicates (clear, matched, adjacent to), require very few words by the

end.

75

Figure 24: The number of words required to teach each game, as influenced by previously
learned games. Results are averages of 3000 permutations of the 17 games.

The gradual decrease in required words going from left-to-right is a reflection of the

gradual increase in the probability that a related game is previously taught. The games that

have very little in common with other games conceptually still share general concepts, such

as clear, and show minimal improvement: Frogs and Toads, Blocks World, Mahjong

solitaire, Maze, and the Tower of Hanoi puzzles.

Recent work has expanded the number of games learnable by the agent, so this

experiment was repeated with 40 games using 1000 permutations (Kirk & Laird, 2019).

This is too many games to label each individually, so instead specific cases are highlighted

with colors in Figure 25. More data from this experiment, with all games labeled, can be

viewed in the Appendix. All 40 games are learned correctly in each permutation. The red

line highlighted is for Killer Sudoku, a Sudoku variant that has constraints about the sum

of values in specified section (as in KenKen). The number of words required to initially

teach (position 0) this puzzle is large (239) due to the number of constraints in the puzzle.

However, because of the overlap in concepts with the other tasks (Sudoku, KenKen), it

76

benefits the most from knowledge transfer, with a decrease of more than a factor of three.

The Frogs and Toads puzzle (blue) and Blocks World puzzle (green) show the least transfer

because they share only “clear” with other tasks.

Figure 25: The number of words required to teach each of 40 games by teaching order. Results
are averages of 1000 permutations.

6.3 Evaluation of Agent Processing Time (D3)

The agent should learn task representations that minimize the execution time and the

learned representation should not hinder future learning (D3). Transfer of learned

knowledge, both declarative and procedural, should decrease the overall processing time

required to learn a new task, although the increase of knowledge could also potentially

increase processing time.

Figure 26 shows results from the same experiment conducted for Figure 24, with

the 3000 permutations of 17 games, now showing the average processing time required to

teach a game based on its position in the teaching order. The processing time for a game is

77

measured as the total time (in milliseconds - ms) the agent took to learn the game. Because

the teacher is scripted, no time is spent on speaking/typing sentences or waiting between

teacher-agent interactions. The processing time is measured as the total (cumulative) time

the agent takes to process each sentence delivered by the teacher (for the entire task), learn

the described task elements, and generated a response. The longest total processing time

for teaching an entire game is well under two seconds. The improvements, especially

visible in the different game variants, are a result of not only concept transfer (which

eliminates the need to teach the concept) but also transfer from the procedural rules learned

(which eliminates the cost of interpretation).

The games with almost no conceptual overlap show little to no improvement

(Blocks world and Tower of Hanoi) and in one case (Frogs and Toads) shows a small

increase over time, due to the computational cost of added knowledge from previous

games, minus the small benefit from transfer. The only benefit from transfer with Frogs

and Toads is transferring the concept clear, as shown in Figure 25. There is some added

computational cost to constructing the recognition structures and interpretation (described

in Section 4.3) as more tasks and task elements are learned because the agent may retrieve

irrelevant knowledge (and then reject it when it doesn’t ground in the current context). This

slowdown is minimal, even in the worst case for Frogs and Toads, which shows an increase

in total average processing time from 1000 to 1104 ms for the entire game. The average

processing time per instruction for Frogs and Toads, essentially Rosie’s response time to a

sentence, increases to ~92 ms from ~83 ms, a difference not noticeable to a human. In

comparisons, the average response time over all tasks and orders is ~45 ms. The

explanation for the difference in average response, a factor of ~2, between Frogs and Toads

and the other tasks can be explained by the length of the sentences used to describe the

Frogs puzzle, which are longer on average than many of the other tasks and involve many

objects and relations. Still the difference between a 50 ms response time and a 100 ms

response time are insignificant to a human: when speaking or typing sentences to Rosie,

the time to type or speak dominates the interaction time.

78

Figure 26: The total processing time required to learn each game, influenced by previously
learned games. Results are averages from 3000 permutations.

In order to evaluate the execution time of the agent’s post-learning operation, when it is

solving tasks with the learned representations, we conducted an experiment where we

measure agent processing during interpretation and then after learning during task solving.

This is a measure of the impact of procedural compilation on agent performance. Our

hypothesis is that evaluating the rules learned through chunking will be significantly faster

than maintaining the declarative task representations in long term semantic memory and

then retrieving and interpreting them by deliberately matching them against the game state

each time the task is attempted. Figure 27 shows the processing time to learn each game,

omitting the time taken to parse the sentences and construct the declarative predicate

structure.

79

Figure 27: The processing time required to interpret (match) all concepts for each game
individually compared to the processing required once learned.

For each game, the blue bars are the processing time to interpret the declarative structure

when there is no transferred concepts or rules, and the green bars are the processing time

required after rules have been learned. The processing required to interpret all the structures

is the same processing time that would be required if the agent did not learn procedural

code through chunking. The average improvement is a factor of ~20 and the processing

using rules never exceeds 40 ms to propose and match all the task structures at the

beginning of a game; the mean time is ~13.5 ms for the decision cycles of these tasks. This

is below the roughly 50 ms cognitive cycle reported for humans in cognitive science

literature, which is a commonly targeted threshold for cognitive architecture decision

cycles.

80

6.4 Evaluation of Memory (D4)

Learning new tasks involves adding different kinds of knowledge to the agent’s memories.

Thus, one evaluation criterion is how the size of the working, semantic, and procedural

memories (D4) grow as new tasks are learned, and whether that growth negatively impacts

behavior by increasing the time it takes to use the memories. Soar, and most cognitive

architectures, maintain semantic knowledge in long-term memories while reserving short-

term working memory for data relevant to the processing of the current task.

For semantic memory (containing the declarative structures) and procedural

memories (containing the procedural rules), we expect growth in memory size. In past

agents developed in Soar, growth in semantic memory and procedural memory has not had

a significant impact on the speed of agent processing because of the underlying

implementations used for semantic memory (Derbinsky, 2012) and procedural memory,

and we expect that to be true in Rosie as well. In contrast, growth in the size of working

memory, even at a sublinear rate, can significantly slow agent procedural code execution.

In order to evaluate the growth in size of the agent’s memories as it learns many

tasks, we recorded memory data during the experiment from Figure 24 with 17 games.

Figure 28 shows the growth in size of both semantic and procedural memories. As Rosie

learns new tasks, knowledge in both semantic (database memory in KB) and procedural

(number of rules) memory grows at a sublinear rate. This is not surprising because

knowledge transfer between tasks causes a reduction in the number of procedural rules that

need to be learned and the amount of new knowledge that needs to be stored in semantic

memory for new tasks. The different permutations converge to the same value, confirming

that the total knowledge learned for all 17 games is independent of the order in which they

are taught.

81

Figure 28: On the left: the cumulative growth in semantic (long-term) memory for all games.
On the right: the accompanying growth in procedural memory (number of rules).

Figure 29 shows two analyses of working memory: the maximum size of working memory

across learning all games, and the average number of changes to working memory for each

game. Working memory is measured in working memory elements (WMEs). A WME

represents each component or arc of Soar’s working memory graph structure and changes

are counted as the additions or removals of WMEs from working memory. The maximum

size of working memory should not surpass the high-water mark set by the most

computationally intensive tasks, in this case Othello, Simple Maze, or Eight Puzzle at

almost 4000 WMEs, as shown in the left side of the figure. If the maximum converged to

a higher level, or continued to grow, it would indicate that task-specific information is

accumulating in working memory, which would likely negatively impact future processing.

Figure 29: On the left: the growth in maximum working memory, measured in working memory
elements, for each game. On the right: the number of changes to working memory to teach each
task in the given order.

82

The number of working memory changes is an indirect measure of the total processing that

occurs during the teaching of a game. It is important because the cost of rule matching is

correlated with the changes to working memory in addition to the size of working memory.

One possible concern is that the knowledge from previously learned tasks can “clog up”

working memory and interfere with new tasks. In contrast, our results show that there is

actually a decrease in WM changes through transfer from earlier tasks and that even when

there are no similarities that enable transfer, there is no growth.

83

Chapter 7 Multiple Interpretations

Ambiguous learning situations, where multiple meanings of a word are possible (C3), can

potentially lead to the agent incorrectly transferring knowledge. As an agent learns many

tasks in many different settings, there will inevitably be many-to-many mappings between

words and meanings (the components of a task). In some cases, knowledge learned in

previous tasks can interfere with a new task. So far, we have avoided such scenarios in our

experiments on accumulative learning. A simple example is a scenario where an agent is

taught a game where their pieces are red, and in the next game they are taught, the

opponent’s pieces are red. In this case, Rosie would incorrectly transfer knowledge,

overgeneralizing, when encounter the term “their pieces” in the second game.

During the task element learning process, sources of ambiguity can arise that make

it difficult to find the correct interpretation and can cause interference when trying to

transfer knowledge from previous tasks. These sources include:

Multiple Definitions: Due to the many-to-many mappings between words (C3) and

meanings across tasks and the teacher’s lack of common knowledge(C1), the agent

may learn multiple meanings for the same word (or know multiple meanings of

primitive concepts).

Environmental Distractors: The state can contain objects and features that

although not relevant to the described concept, can create ambiguity when the agent

attempts to ground the representations.

We have extended Rosie so that it can effectively learn and transfer knowledge in more

difficult learning scenarios, where ambiguity and learning distractors are present. This

extension modifies the learning strategy to enable Rosie to create, analyze, and debug

multiple interpretations of task elements in order to handle scenarios where ambiguity and

84

knowledge interference can negatively impact the ability to accurately learn and transfer

knowledge. Our approach also enables the agent to use the analysis of these interpretations

to quickly communicate with the instructor to resolve sources of ambiguity when

automated reasoning fails. Our extension improves Rosie’s ability to correctly learn

polysemic words and handle the many-to-many mappings possible from words to

definitions: a word can have many task-specific meanings and a meaning can be

represented by different words in different tasks.

For example, depending on the context, the polysemic word clear can mean that

something is uncovered or that it is transparent or that it is unmarked. This extension has

also increased the complexity of the hierarchical task elements and the breadth of terms

and games that the agent can learn.

Below we present our learning approach, which enables Rosie to communicate,

through quick, short interactions, to resolve ambiguity and select correct interpretations.

We evaluate the agent’s ability to correctly generalize, disambiguate, and transfer concepts

across variations in natural language descriptions, world representation, and game

instances, showing transfer across tasks and within tasks, with and without interference.

We examine the number of words required to teach tasks across cases of no transfer,

positive transfer, and interference from prior tasks.

7.1 Creating Multiple Interpretations of Task Elements

To ensure that it correctly interprets an ambiguous situation, Rosie generates all possible

recognition structures, f(x) from Equation 1 reproduced below, for each known meaning of

the defining terms, fi(x).

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = �𝑓𝑓𝑖𝑖�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚 (1)

85

Because Rosie generates recognition structures, f(x), for all possible combinations of the

known meaning for the given terms, the number of structures grows exponentially with

respect to n, the number of fi(x) terms, and the number of definitions for each term.

However, descriptions are limited to a single sentence and the number of terms (n) with

multiple meanings is rarely more than 3 (the maximum recorded in all 60 games that the

agent has learned is 4), so in practice, it is computationally feasible to generate all

interpretations.

To determine the correct interpretation from the set of generated structures, Rosie

leverages the situated external state example. If it finds that only one of the recognition

structures can be satisfied or detected, it learns this interpretation. If instead the agent finds

that multiple structures from different interpretations can be satisfied in the current state,

the agent analyzes each of the potential matching interpretations to try to find ways to

differentiate them. Based off this analysis Rosie, uses one of three different strategies to

try to determine which interpretation is correct. In this analysis, the agent looks for task

elements that return different numbers of results (the number of occurrences from each

interpretation).

First, the agent determines if it can find a difference for the highest task element in

the hierarchy f(x), the one describing a goal, action, or failure condition, such as when the

different interpretations of an action result in different numbers of actions being detected.

Rosie counts the relative occurrences and determines the correct interpretation by asking

the teacher: “How many actions are present X or Y?”

If the agent cannot detect a difference between the numbers of results for different

interpretations of that task element f(x), it examines numerical differences in the occurrence

of the supporting task elements fi(x), such as clear(x). If Rosie finds a task element fi(x)

that produces different numbers of results in different interpretations, Rosie uses this

difference to generate a similar disambiguating question: “How many clear locations are

present X or Y?”

86

Finally, if the agent fails to detect any differences in the number of occurrences of

task elements in different interpretation, it abandons attempting to resolve the differences

through questioning, and asks the teacher to provide a different state demonstration:

“Can you setup another state that contains the [goal, action, failure]?” The hope is that in

this new state, the agent can satisfy and detect only one interpretation, or if there are

multiple, find a numerical difference in the occurrence of one of the task elements, using

the first two strategies. The agent will continue to ask for new state demonstrations until it

can select a single interpretation.

7.2 Ambiguity Case Study

We use a series of case studies to illustrate the agent’s ability to handle interference using

the process described in the previous section: determining if multiple interpretations can

be satisfied, detecting the relative occurrences of each task element in the competing

interpretations, and asking disambiguating questions to determine the correct

interpretation.

7.2.1 CASE 1: Ambiguous Word Meanings

One source of ambiguity is that the agent may know multiple definitions for the same word.

Consider when the agent has previously learned two definitions for clear: that a location is

not below anything (from the blocks world) and that a location is unmarked (from

KenKen). Figure 30 shows the internal symbolic representation (right side) Rosie generates

of the external state (left side) for a version of the Frogs and Toads side-swapping puzzle.

The teacher’s description of the first action of the puzzle, moving a toad, includes the term

clear, as shown in the dialog below. Instead of asking for a definition of clear, Rosie

attempts to use its existing definitions, which leads to two recognition structures, shown in

Figure 31, one for each interpretation of clear.

87

Figure 30: The internal state generated by the agent for the Frogs and Toads puzzle, with objects
identified by red indexes. On the right are unary features and binary relations that the agent
extracts from the state.

Figure 31: Recognition structures created for two interpretations of an action. Red values
indicate the indexes of objects in the environment that results from grounding the structure to the
external state.

If a toad is to the right of a clear location then you can move the toad onto
the location.
Rosie: How many actions are present two or one?
There is one.

Rosie analyzes these structures to find a difference in how they map to the current state. In

this case, they generate different numbers of actions due to the agent believing that for the

structure on the left, where clear is an unmarked location, location 4 is clear. Rosie uses

this difference to disambiguate between the two interpretations by asking a simple question

about the relative number of actions. When the teacher responds “There is one,” Rosie can

88

determine that the representation on the right, that only detects the action move (object) 8

onto (object) 3, is the correct structure, and then uses it for learning this task element.

7.2.2 CASE 2: Ambiguous External State

Another source of ambiguity is that the state can contain objects, features, and relations

that are distractors, irrelevant to the concept the agent is trying to learn. For example,

consider the state given in Figure 32 for teaching the second action for the Frogs and Toads

puzzle, jumping over a frog. When given the following action description, Rosie once again

generates two recognition structures for each meaning of clear.

If a toad is to the right of a frog that is right of a clear location then you can
move the toad onto the location.
Rosie: How many clear locations are there one or five?
There is one.

When Rosie analyzes how these interpretations ground to the current example, they refer

to the same action: move object 9 onto object 3. This is due to the constraint provided by

the position of the frog: even in the interpretation where all locations are clear, the toad

(object 9) can only jump over the frog (object 7). Although both interpretations ground to

the same action, Rosie needs to determine which interpretation of clear is correct so that

the correct condition is learned. Rosie finds a distinguishing result further down the

recognition structures, where the predicate clear produces a different number of objects for

each interpretation. As shown above, Rosie uses that difference to generate a

disambiguating question. When the teacher responds indicating there is only one clear

location, Rosie selects the correct interpretation structure to learn.

Figure 32: A representation of the internal state generated by the agent for describing jumping in
the Frogs and Toads puzzle.

89

7.2.3 CASE 3: Symmetric State Ambiguity

In some scenarios, the occurrences of task elements in different interpretations is the same.

This often occurs in states with symmetry. For example, consider when Rosie is learning

the goal of Tic-Tac-Toe, but where the state contains winning conditions for both Rosie

and the opponent. If Rosie knows multiple definitions for captured from previous games

where the ownership of red and blue pieces have swapped, from its perspective, there is no

way to disambiguate between the different interpretations. When the other strategies fail,

Rosie’s final disambiguation strategy is to ask the teacher to demonstrate another example

of the concept in the environment: “Can you setup another state that contains the goal?” If

the teacher creates a state that contains only the goal, or a state with more red blocks placed

than blue ones, the agent can determine the correct interpretation (automatically in the first

case and by asking about the number of captured locations in the second).

7.3 Creating Synonym/Antonym Interpretations

To further expand the ability of the agent to transfer knowledge to new tasks and situations,

we created an option for Rosie to use a synonym/antonym table. Using this feature presents

similar tradeoffs as before, between quickness of learning and correctness of learning. It is

much easier to avoid incorrect learning by not attempting to automatically transfer any

knowledge. This table was added to Rosie’s primitive knowledge in semantic memory,

allowing Rosie, if specified, to lookup common antonyms and synonyms of a given word,

such as “clear,” and automatically generate interpretations that replace the predicate with

a synonym, such as empty, or antonym, such as ~filled. Table 4 below shows the content

and format of this knowledge.

Word Synonyms Antonyms
clear empty, uncovered, transparent covered, filled
covered occupied, filled clear, empty, uncovered
empty clear, uncovered, transparent covered, filled
filled full, covered empty

90

box cube

Table 4: A lookup table of common synonyms and antonyms for common words.

The ability to use synonyms and antonyms allows the examination of a greater space of

interpretations without requiring additional declarative knowledge or teaching interactions:

it can increase cases of knowledge transfer and decrease the amount of required instruction.

However, using this ability also increases the chance of incorrectly transferring knowledge

because it considers more options and doesn’t verify the knowledge that is transferred if it

leads to a single valid (successfully maps to the world) interpretation. This can occur in

cases where the incorrect knowledge does not prevent Rosie from recognizing an instance

of the term, such as “clear,” in the environment. For example, if Rosie has learned a

definition for filled (from Sudoku) that a “filled” location “has a value,” when later learning

Tower of Hanoi with blocks, Rosie will try ~filled for the meaning of “clear.” In this case

because there are no values for the blocks Rosie will be successful at detecting ~filled even

though for this context Rosie needs a different meaning of “clear” (“not below anything”).

If the agent detects multiple interpretations that map to the agent’s internal model then it

can still potentially learn which meaning is correct through disambiguating interactions

with the teacher, as described above. Examples of each of these situations are discussed in

the evaluations in Section 7.4.3.

7.4 Evaluation

To analyze knowledge transfer in different scenarios, with and without interference, we

performed a set of experiments similar to the experiments in Chapter 6, where we teach

different order permutations of a sequence of tasks. In these experiments, we teach small

clusters of three games and examine the number of words required to teach tasks across

cases of no transfer, positive transfer, and interference from prior tasks.

91

7.4.1 Positive Transfer

The experimental results for the task clusters A-D are shown in Figure 33. For each cluster,

the results are averaged over all (6) possible permutations of the three tasks. To explore

positive transfer, we selected very similar tasks with large conceptual overlap for each task

clusters: (A) Tic-Tac-Toe, Three Mens Morris, and Nine Holes; (B) Killer Sudoku,

KenKen, and Sudoku; (C) N Queens, N Rooks, and N Kings; and (D) Jealous Husbands,

Fox, Goose, and Bean, and Missionaries and Cannibals. The Plots A-D in Figure 33 show

the dramatic effects of transfer in clusters of similar tasks, in some cases, such as Sudoku

cluster B, reducing the number of words required to learn roughly 4:1. Task learning

approaches that learn mappings directly to nonsymbolic representation have failed to

replicate this type of task transfer, which leads to dramatic learning speed up.

Figure 33: Number of words required to teach clusters of closely related tasks A-D.

92

7.4.2 No Transfer

The experimental results for the task clusters E-H are shown in Figure 34. Again, the results

are averaged over all (6) possible permutations of the three tasks in each cluster. To explore

absence of transfer, we selected dissimilar tasks with little conceptual overlap for each task

clusters. The entire set is the same as before, just arranged in different clusters. The

unrelated task clusters are: (E) Killer Sudoku, Three Mens Morris, and N Queens; (F)

Sudoku, Nine Holes, and Missionaries and Cannibals; (G) Fox, Goose, and Bean, Tic-Tac-

Toe, and N Rooks; and (H) KenKen, Jealous Husbands, and N Kings.

Figure 34: Number of words required to teach clusters of unrelated tasks E-H.

93

Plots E-H shows almost no transfer between the unrelated tasks, however there is still some

positive transfer (in E and G) due to a slight conceptual overlap of very common terms:

clear and available.

7.4.3 Negative Transfer

To explore negative transfer, we selected tasks from the previous experiments, but

modified the simulated environments and term usage in the task element descriptions in

order to create problematic cases for our learning approach (which is greedy and doesn’t

ask for extra verification when transferring knowledge). In these cases, not only can there

be an increase in the required number of words to teach, but incorrect knowledge can be

learned without the agent (or teacher) being aware of it. The experimental results for task

cluster G, which consists of modified versions of KenKen, Frogs and Toads, and the Eight

Puzzle, are shown in Figure 35. In this case, rather than an average across permutations,

we show the results of each of the 6 possible permutations of the three tasks, with a graph

for each task. The bar graphs for each task show the number of words used to teach the

task in each position in the learning order. There are only five results on each graph rather

than six, because we do not show the duplicate results for learning position 0 (both times

it will be the same).

Figure 35: Number of words required to teach all permutations of task cluster G. The colors are
used to highlight the cases of no transfer (in blue), positive transfer (in green), negative transfer
(in orange), and incorrect knowledge transfer (in red).

94

Results shown in blue are cases where there was no transfer. In this version, KenKen has

no overlapping concepts and shows no transfer. Results shown in green are cases where

there was positive transfer, reducing the number of words required to teach. The cases of

positive transfer occur for both Frogs and Toads and Eight Puzzle: Rosie takes advantage

of synonym and antonym knowledge to transfer knowledge of the concepts clear, empty,

and filled. Results shown in orange are cases where there is negative transfer: there is still

overall positive transfer from learning position 0, but a reduction from the positive transfer

(green) case. This occurs in the Frogs and Toads puzzle, in the permutations where the task

is positioned at the end of the teacher order, because Rosie is forced to ask, “How many

actions are there?” to differentiate between the multiple meanings of clear that it has

learned.

Finally shown in red is the case where incorrect knowledge is transferred. In this

case, Rosie transfers the meaning of “clear” from KenKen, not marked, when it needs the

meaning not covered, and the state of the task environment is such that it still detects a

single valid interpretation despite this meaning being incorrect. Rosie requires fewer words

to learn in this case but learns incorrect groundings. If Rosie was less greedy in its attempt

to reduce the number of interactions and amount of teacher instruction, it could ask for

verification in transfer cases like this. This approach, and how to recover from incorrect

knowledge learning, will be explored in the future.

95

Chapter 8 Discussion and Conclusion

Learning novel tasks through online instruction from ‘scratch’ (primitive non-task specific

knowledge) presents many challenges for an Interactive Task Learning agent. The lack of common

ground (C1) between the agent and the teacher, their joint inability to access each other’s internal

models of the environment or view the contents of each other’s memories, makes it difficult for

the teacher and agent to effectively communicate by using appropriate terms (that are already

known) and provide the necessary knowledge (that is missing). The many-to-many possible

mappings between words and meanings (C3) further complicates the problem caused by lack of

common ground because it creates a large space of possible interpretations. Without access to the

teacher’s internal model, the agent cannot know the intended context specific meaning of a term,

such as “clear,” out of a huge space of options, such as not covered, transparent, unmarked, etc.

The compositional nature of the meanings of concepts (C2) used to define tasks necessitates that

the mappings are not only between synonymous concepts, such as “clear” and transparent, but

also between a term, such as “adjacent,” and a combination of concepts, such as next to each other

but not dialog with each other. Compounding the difficulty of the problem further is the desire for

the agent to accumulate knowledge over many tasks (C4), which introduces the challenge of

creating and maintaining knowledge representations that enable the agent to transfer knowledge.

 We have attempted to address each of these problem characteristics in the design of our

learning process. Rosie learns symbolic representations of task elements that are interpretable and

can be used to communicate about its knowledge representations of the task and how they map to

its internal model of the environment, to help establish common ground with the teacher (C1).

Rosie creates multiple interpretations of task elements to evaluate, through comparative analysis

and interactive debugging, the many-to-many possible mappings between terms and meanings

(C3). Rosie learns hierarchical compositions of concepts (C2) through the recognition structures

it creates and the recursive learning algorithm it uses to learn new predicates for task-specific

terms. These hierarchical recognition structures also support the transfer and accumulation of

96

knowledge overtime (C4). The modularity of the hierarchical recognition structures enables Rosie

to find and relearn small portions of the structure that it cannot currently ground, such as learning

a new meaning for a term, without relearning the entire structure from scratch.

These problem characteristics make learning challenging given the objectives of ITL as

reflected in the desiderata we have created. These desiderata serve both as guiding criteria for

agent design and metrics for evaluation. The agent should attempt to maximize its level of

generality (D1) and not be limited to a small set of tasks, task knowledge, or types of tasks that it

can learn. The agent should attempt to minimize the amount of agent-teacher communication (D2)

to reduce the effort and time required for the human instructor to teach a new task. The agent

should learn representations of the task and task knowledge that minimize its execution time (D3)

during agent’s processing of the task, or during other tasks. The agent should minimize memory

size growth (D4) – avoiding growth that significantly increases the time it takes to use its

memories.

We use these desiderata to evaluate the learning of the agent. Rosie’s learning approach is

general (D1) – it learns goal-oriented tasks that can be represented with a problem space

formulation. To demonstrate generality, we have shown that the agent can learn a large number

(60) of different tasks in different domains and environments, including various robotic

embodiments and simulated environments. To evaluate agent-teacher communication (D2), agent

execution time (D3), and memory size growth (D4), we ran experiments teaching many different

permutations of a sequence of different tasks and analyzed the relevant data. In nearly all cases,

the number of words it takes to teach new tasks decreases as it accumulates tasks due to transfer

of knowledge. The procedural, native (to Soar) representations that the agent learns enable it to

process and apply task knowledge much faster than when they were initially interpreted and the

accumulation of knowledge over many tasks does not significantly increase the agent’s decision

cycle time. The growth in memory does not significantly impact (slow down) the speed of memory

usage for procedural, semantic, and working memories.

A broader question that this research, and the burgeoning research area of Interactive Task

Learning, tries to address is: how should AI agents be trained or taught? The current popular

answer in the AI community is machine learning, and especially deep learning – learning in neural

97

nets through large amounts of training data. This approach has been successful at making AI agents

the best at many specific tasks. For the past 3 decades, AI research has focused on making AI

agents the best in the world at many different tasks: at Chess (DeepBlue), at Go (AlphaGo), and at

Poker (Libratus).

However, when these agents are ‘taught’ the game, they still require a human to pre-encode

the legal actions of the game and a reward function that helps approximate the goal. Moreover,

these agents cannot simply switch from learning one task, such as Chess, to learning another, such

as Poker or Go, without extensive changes to their underlying code. These code changes often

require human supervised experimentation to select the proper parameters and settings for

‘learning’ the task in the new domain. We use quotes in jest to make a point: none of these

approaches are actually learning the structure and definition of the task, they start with this task

knowledge, and learn how to better perform the task.

These types of approaches require that for every single task, the agent must be

programmed, debugged, trained, and evaluated offline in order for it to perform the task. Deep

learning approaches have also not demonstrated how knowledge transfer between tasks, such as

those explored in this thesis, can occur. A Deep RL model that has been trained on the game

Breakout has been shown to fail horribly when a minor change is made to the game by simply

moving the paddle down a few pixels (Kansky et al., 2017). The problem of how a generally

intelligent agent, that is task agnostic, could acquire the basic knowledge of these tasks, without

being handcrafted to only understand and perform that single task, has been largely ignored.

The representations learned from these Deep Learning approaches are also not

interpretable. Neither a human, nor a computer program, can examine the learned representations

to understand what was learned. Uninterpretable representations impede knowledge transfer and

the ability to generalize and have other negative ramifications. Not being able to understand why

a machine made a decision drastically hurts the ability to debug the agent, understand the choices

it made, and assign fault (even possibly the legal sense of fault). With the growing proliferation of

smart machines, from personal assistants (such as Siri) to self-driving cars, these properties are

beginning to come under greater scrutiny and will continue to be an important problem for AI

researchers to solve.

98

In contrast, in our approach the learned representations are both interpretable and native to

the underlying architecture. Achieving both learning properties simultaneously is a difficult task,

one that most systems or architectures fundamentally cannot support. In terms of interpretability,

most agent architectures are written in programming language (C++, python, etc.) that can be

interpreted, but the learned representations that the agent acquires is rarely in the form of a new

segment of that code. One exception is the work of Hinrichs and Forbus (2014), where the English

description is translated into GDL, the Game Description Language, which is interpretable, but is

not the same type of code as the Companions agent that interprets them. This type of approach,

where the learned representation is a high-level programming language, is the closest task learning

research to easily interpretable representations, but also the furthest from native representations

(they must be interpreted). Learning a native representation often requires that the representation

is not the same as the underlying agent.

In our approach, the underlying agent architecture, Soar, is built on symbolic

representations, making it possible to learn representations that are both native and interpretable.

Although not immediately comprehensible, a person that has been taught the representation can in

most case read and interpret the learned representations easily. Related research (Ramaraj & Laird,

2018) has shown that Rosie can use these representations to communicate about specific grounding

failures (“A medium block is not on a large block.”) and generate language descriptions (“Clear

means that it is not below a block.”) These sentences are not stored or generated from the sentences

that were used when their meaning was initially learned. They are generated from the recognition

structures the agent learns.

We have also shown that the interpretability of these representations allows Rosie to

analyze and debug what was learned through straightforward strategies: it can understand what

parts of a representation are and are not successfully being grounded, and then ask questions. This

allows Rosie to move from a task it has learned to an unknown similar one, or from one version

of a task (marking X’s and O’s Tic-Tac-Toe) to another version (placing black and white blocks

Tic-Tac-Toe), and reuse the learned representations from the prior task, by identifying the small

portions of knowledge that are incorrect for this new context and engaging the teacher to quickly

99

learn the new meanings. In these scenarios the agent can transfer the majority of the task

knowledge.

8.1 Current Limitations and Future Work

A limitation of this work is that it is computationally expensive to detect task elements for states

with large number of objects and relations (such as in Chess). Rosie’s inability to quickly reason

over large numbers of objects in a single state is why we often teach versions of games that have

a limited number of objects, such as the 5x5 version of Othello. We hypothesize that some type of

attention mechanism together with deliberate reasoning is needed so that all concepts are not

simultaneously computed for every state.

A second limitation is that the language Rosie understands, although sufficient for these

games, is more rigid than natural language. An instructor would not be able to teach Rosie without

first becoming familiar with the types of sentences Rosie can understand. Rosie also cannot learn

concepts that deal with historical events. Future work should focus on allowing Rosie to learn

concepts that interface with Soar’s episodic memory. Another shortcoming of our work is that it

assumes error-free unambiguous instructions. In the future, we plan to study how an agent can

recovery from incorrect knowledge through instructions.

Another limitation of our approach is that it can be overaggressive in generalizing or

transferring concepts. We assume that the agent is situated in a grounded example where the

described concept is present, but it is also possible that many such concepts or closely related

concepts are present, and that could lead to incorrect generalization. For example, if we teach a

version of Tic-Tac-Toe with black and red pieces after learning Red-Blue Tic-Tac-Toe, rather than

prompting the teacher for a new definition of ‘yours,’ Rosie will incorrectly latch on to the

opponent’s pieces, which due to the symmetrical nature of the game will still lead to detectable

actions given those definitions. Solutions to these problems are being explored in parallel research,

where rather than just asking for specific redefinitions, or making generalization assumptions, the

agent communicates why something didn’t match or how known concepts do match to allow for

the teacher to give quicker, more useful instructions. This work explores how in an ITL setting,

100

the teacher and agent can negotiate and communication their knowledge states and discrepancies,

by asking and answering questions such as “do you see the goal,” “why did it fail,” and “what part

of the goal didnt match? ”

In the future, we plan to expand the types of learnable concepts by adding primitive

knowledge (quantifiers, functions, actions), support for direct disjunction (“If it is green or blue

then it is a frog”), and grammar constructions. These will allow us to study transfer and scaling of

knowledge across a wider variety of more complex games. Finally, our focus has been on learning

the rules of a game, not on how to play well. We plan on exploring learning to perform a game

well, both through additional instruction, such as teaching heuristics, action models, and value-

functions, but also by learning from experience using Soar reinforcement learning mechanism.

8.2 Future of Interactive Task Learning

One of the long-term goals for the future of Interactive Task Learning is to replace programming

as the primary method of adding new capabilities and knowledge to an agent with online

interactive instruction. The agent architecture should supply general memory, problem solving,

and reasoning mechanisms, but knowledge specific to new tasks, situations, collaborative agents,

and environments should be learnable by the agent through natural online interactions with an

expert (of the new task). One possibility to explore is the capabilities required to achieve ‘universal

instructability,’ where the instruction mechanisms are sufficient to learn all knowledge encoded in

an agent. This is not currently the case in our approach to learning goal-oriented tasks with Rosie,

as there are many types of knowledge that Rosie cannot learn, such as explicit historical references,

but this is not a fundamental limitation of the approach, just a current limitation we have yet to

address. Future work could extend Rosie to learn concepts for games and puzzles that interface

with Soar’s episodic memory and to enable this type of knowledge learning.

Historically the problem of translating from high level task descriptions to executable

machine behavior has been accomplished by programmers, requiring expertise of the task being

instructed and the underlying agent architecture and the associated programming language and

any existing agent code. Programming an agent for novel tasks requires design, coding, testing,

101

and debugging. Reuse of existing functionality requires extensive knowledge of the existing code

and is usually limited and difficult to achieve. There is no automatic leveraging (or transfer) of

existing knowledge or code, or any guarantees that the added functionality will not break existing

agent functionality. Learning though instruction allows the rapid acquiring of novel tasks, which

will be essential if we want more generally intelligent autonomous agents that are not handicapped

by their need to be programmed for every kind of task they encounter.

102

Appendix

 Game/
Puzzle

player
#s

Type Brief Rule Summary External link Can
learn
?

Why Not

1 Tower
of
Hanoi

1 blocks Move a stack of N discs (or blocks)
all with different sizes that are
ordered with the smallest on top, to
a destination pillar (or location) by
moving the objects individually
onto empty pillars or discs larger
than themselves

https://en.wiki
pedia.org/wiki/
Tower_of_Han
oi

YES

2 Eight
(N)
Puzzle

1 blocks Given a 3x3 grid, slide tiles (or
blocks) to adjacent clear grid
locations to create the goal state
with ordered numbers (or colors)

https://en.wiki
pedia.org/wiki/
15_puzzle

YES

3 Blocks
world
puzzles

1 blocks Move clear blocks onto clear
destinations in order to create a
specified arrangement of those
blocks.

 YES

4 Frogs
and
Toads

1 blocks Given N frogs and M toads split on
separate sides of a (N+M+1) strip
of squares, move the frogs and
toads one square, or two by
jumping over an occupied square,
in order to swap the sides.

https://en.wiki
pedia.org/wiki/
Toads_and_Fr
ogs

YES

5 Stacking
frogs

1 blocks Given a strip of Nx1 squares (or
lily pads) each covered by a single
frog, move a stack of frogs on a
square the same distance as the size
of the stack, until

https://www.yo
utube.com/wat
ch?v=X3HDnr
ehyDM

YES

6 Lazy
Stacking
frogs

1 blocks Stacking frogs, but end on a
specified square (lily pad)

https://www.yo
utube.com/wat
ch?v=X3HDnr
ehyDM

YES

7 Mission
aries
and
Canniba
ls

1 river
cross

Move the missionaries and
cannibals from one bank to the
other using the boat, with capacity
of two, and do not let there be more
cannibals on a bank than
missionaries.

https://en.wiki
pedia.org/wiki/
Missionaries_a
nd_cannibals_
problem

YES

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem

103

8 Fox,
Goose,
& Beans

1 river
cross

Move the fox, goose, and beans to
the opposite bank, carrying one at a
time, and do not let the goose alone
with the beans or fox alone with
the goose.

https://en.wiki
pedia.org/wiki/
Fox,_goose_an
d_bag_of_bean
s_puzzle

YES

9 Manage
r, Actor

1 river
cross

Move the actors and their managers
from one bank to the other using
the boat, with capacity of two, and
do not let an actor be on a bank
with another manager when their
manager is not present.

http://aperiodic
al.com/2016/1
1/a-more-
equitable-
statement-of-
the-jealous-
husbands-
puzzle/

YES

10 Jealous
Husban
ds

1 river
cross

Move the couples from one bank to
the other using the boat, with
capacity of two, and do not let a
woman be on a bank with another
man when her husband is not
present.

https://brilliant.
org/problems/t
he-jealous-
husbands-
problem-
extended/

YES

11 Family
Crossin
g

1 river
cross

Move adults and children from one
bank to the other using the boat.
The boat can hold one person, or
two children.

 YES

12 Peg
solitaire

1 blocks Given an arrangement of holes,
filled with pegs except for one, use
a peg to jump over and remove
another, until only one peg
remains.

https://en.wiki
pedia.org/wiki/
Peg_solitaire

YES

13 Mahjon
g
solitaire

1 blocks Given a stack of assorted tiles,
remove two tiles at a time if they
are both clear (not covered or
surrounded) and have the same
symbol, until no tiles remain.

https://en.wiki
pedia.org/wiki/
Mahjong_solit
aire

YES

14 Simple
maze

1 blocks
/grid

Move an object along adjacent
clear squares, avoiding walls, to
navigate to a destination square.

https://en.wiki
pedia.org/wiki/
Maze

YES

15 Block
pushing
maze

1 blocks
/grid

Move an object along adjacent
clear squares, avoiding walls, to
navigate to a destination square.
You can push blocks covering
squares onto other clear squares.

 YES

16 Sokoban 1 blocks
/grid

Move the player along adjacent
clear squares, avoiding walls.
Solve by pushing specified blocks
onto their desired locations.

https://en.wiki
pedia.org/wiki/
Sokoban

YES

17 Map (4)
Colorin

1 grid Color the sections of a map with 4
different colors, completing all

https://en.wiki
pedia.org/wiki/

YES

https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://en.wikipedia.org/wiki/Peg_solitaire
https://en.wikipedia.org/wiki/Peg_solitaire
https://en.wikipedia.org/wiki/Peg_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Maze
https://en.wikipedia.org/wiki/Maze
https://en.wikipedia.org/wiki/Maze
https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Four_color_theorem

104

g
Problem

sections without any adjacent
sections having the same color.

Four_color_the
orem

18 Sorting
Puzzle

1 blocks Move objects of each color (or
other attribute) into a specified
location, so that each location only
contains blocks of that color.

 YES

19 Knight’s
tour

1 blocks
/grid

Given a chess board move a knight
(using the rules of knight jumping)
around the board such that each
square is visited exactly once.

https://en.wiki
pedia.org/wiki/
Knight%27s_t
our

YES

20 Sudoku 1 mark/
grid

Fill a NxN grid with numbers 1-N
such that no two grid locations in
the same section, row, or column
have the same number

https://en.wiki
pedia.org/wiki/
Sudoku

YES

21 Killer
Sudoku

1 mark/
grid

Sudoku, but with no initial filled
squares and additional regions that
must contain numbers that sum to a
specified value

https://en.wiki
pedia.org/wiki/
Killer_sudoku

YES

22 Jigsawd
oku

1 mark/
grid

Sudoku, but with irregular shaped
sections rather than squares.

http://www.the
puzzleclub.co
m/jigsaw/

YES

23 Logi-5 1 mark/
grid

Jigsawdoku, but using letters (A,
B, C...) instead of numbers
(1,2,3…)

http://www.the
puzzleclub.co
m/logi5/

YES

24 KenKen 1 mark/
grid

Sudoku, but the numbers in a
section must also sum, multiply,
divide, or subtract to achieve a
specified number

https://en.wiki
pedia.org/wiki/
KenKen

YES

25 Tic-Tac-
Toe

2 blocks
/grid

Place stones onto empty squares on
a 3x3 grid, win by achieving three
in a row of your pieces before your
opponent does.

https://en.wiki
pedia.org/wiki/
Tic-tac-toe

YES

26 Connect
-4

2 blocks
/grid

Drop pieces into a vertical (gravity
constrained) grid, win by achieving
four pieces in a row before your
opponent does.

https://en.wiki
pedia.org/wiki/
Connect_Four

YES

27 Othello/
Reversi

2 blocks
/grid

Place your stone on a clear square
on a grid, such that all the squares
between that one and another of
your stones are opponent pieces.
Flip those opponent pieces so that
they become yours. Win by having
more captured squares than your
opponent once all are covered.

https://en.wiki
pedia.org/wiki/
Reversi

YES

https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Killer_sudoku
https://en.wikipedia.org/wiki/Killer_sudoku
https://en.wikipedia.org/wiki/Killer_sudoku
http://www.thepuzzleclub.com/jigsaw/
http://www.thepuzzleclub.com/jigsaw/
http://www.thepuzzleclub.com/jigsaw/
http://www.thepuzzleclub.com/logi5/
http://www.thepuzzleclub.com/logi5/
http://www.thepuzzleclub.com/logi5/
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Reversi

105

28 Breakthr
ough

2 blocks
/grid

Given a grid board with pawns on
each side, advance your pawns
(one square), or capture opponent
pawns, in order to be the first cross
the board with a pawn to the other
side.

https://en.wiki
pedia.org/wiki/
Breakthrough_
(board_game)

YES

29 Three
Men’s
Morris

2 blocks
/grid

Tic-Tac-Toe, but each player only
has 3 pieces. One all pieces have
been place, move your piece onto
adjacent clear square to achieve
three in a row before your
opponent.

https://en.wiki
pedia.org/wiki/
Three_Men%2
7s_Morris

YES

30 Picaria 2 blocks
/grid

Three men’s morris, but after all
pieces are placed, you can move
your piece to any near by clear
location.

https://en.wiki
pedia.org/wiki/
Picaria

YES

31 Nine
Holes

2 blocks
/grid

Three men’s morris, but after all
pieces are placed, you can move
your piece to any clear location.
Diagonal three in a row’s do not
count.

https://en.wiki
pedia.org/wiki/
Nine_Holes

YES

32 Simplifi
ed Risk

2+ blocks
/grid

Given units dispersed over sections
on a map, and more than 1 unit on
a specific section, capture adjacent
section occupied by opponent units
by rolling higher dice rolls, until all
sections are captured.

https://en.wiki
pedia.org/wiki/
Risk_(game)

YES

33 Presiden
t

2+ cards Card shedding game, discard a card
from your hand if its value it
greater or equal to the top card on
the discard pile. Play a two to clear
the discard deck and start again. If
doubles are played, you must play
two cards of the same value that is
great or equal to the top card. Win
by discarding all cards before your
opponent.

https://en.wiki
pedia.org/wiki/
President_(car
d_game)

YES

34 Crazy
Eights

2+ cards Card shedding game, on your turn
discard a card from your hand if it
has the same suit or value as the
top card on the discard pile. Play
an eight at any time as a wild card,
and choose the suit. If you cannot
play a card draw a card until you
can, or have drawn three cards.
Win by discarding all cards before
your opponent.

https://en.wiki
pedia.org/wiki/
Crazy_Eights

YES

https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Picaria
https://en.wikipedia.org/wiki/Picaria
https://en.wikipedia.org/wiki/Picaria
https://en.wikipedia.org/wiki/Nine_Holes
https://en.wikipedia.org/wiki/Nine_Holes
https://en.wikipedia.org/wiki/Nine_Holes
https://en.wikipedia.org/wiki/Risk_(game)
https://en.wikipedia.org/wiki/Risk_(game)
https://en.wikipedia.org/wiki/Risk_(game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/Crazy_Eights
https://en.wikipedia.org/wiki/Crazy_Eights
https://en.wikipedia.org/wiki/Crazy_Eights

106

35 N-
Rooks

1 blocks
/grid

Place N Rooks on an NxN grid
such that none are attacking each
other.

http://mathwor
ld.wolfram.co
m/RooksProbl
em.html

YES

36 N-Kings 1 blocks
/grid

Place N kings on an NxN grid such
that none are attacking each other.

http://mathwor
ld.wolfram.co
m/KingsProble
m.html

YES

37 N-
Knights

1 blocks
/grid

Place N knights on an NxN grid
such that none are attacking each
other.

http://mathwor
ld.wolfram.co
m/KnightsProb
lem.html

YES

38 Bishop
swap

1 blocks
/grid

Move bishops according to chess
rules so that the black pieces end
up where the white pieces were and
vice versa and at no point can
opposing colors be attackable by
each other

http://www.che
ssvariants.com/
solitaire.dir/bis
hops.html

YES

39 Knight
swap

1 blocks
/grid

Bishop swap but with knights https://en.wiki
pedia.org/wiki/
Mathematical_
chess_problem

YES

40 Knight
corner
swap

1 blocks
/grid

Knight swap but with only 4
knights in the corners, and no
restrictions on attacking

http://mathema
ticscentre.com/
taskcentre/task
cent.htm#knig
htswap

YES

41 N-
Queens

1 blocks
/grid

Place N Queens on an NxN grid
such that none are attacking each
other.

https://en.wiki
pedia.org/wiki/
Eight_queens_
puzzle

YES

42 Golf
solitaire

1 cards Move a uncovered card to the
discard if it has a value of one less
or one more than the top discarded
card, you can also draw cards from
the deck onto the discard

https://en.wiki
pedia.org/wiki/
Golf_(patience
)

YES

43 Tri
Peaks
solitaire

1 cards Similar to golf solitaire but the
cards are in 3 pyramids rather than
a grid

https://en.wiki
pedia.org/wiki/
Tri_Peaks_(ga
me)

YES

44 Pyramid
Solitaire

1 cards Cards arranged in a pyramid with
each card lower in the pyramid
covering two in the row above it.
Remove two clear cards if their
sum is 13. A card from the deck
can be used for one of the cards.

https://en.wiki
pedia.org/wiki/
Pyramid_(solit
aire)

YES

http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)

107

45 Shuffle 1 grid/
mark

Given a 3x3 grid filled partially
with numbers, and answer grids for
each column and row that are
partially filled, fill each empty grid
with a number, such the answer
grids contain the sum of the values
of their column or row.

http://www.me
nneske.no/shuf
fle/eng/

YES

46 Kakuro 1 grid/
mark

MxN shuffle, no row col duplicates http://www.me
nneske.no/kak
uro/eng/
https://en.wiki
pedia.org/wiki/
Kakuro

YES

47 Sujiko 1 grid/
mark

A small version of sudoku where
the groups of 4 adjacent squares
must also sum to a specific number

https://en.wiki
pedia.org/wiki/
Sujiko

YES

48 Suko 1 grid/
mark

Sujiko but with additional extra
constraints

http://sujiko.co
.uk/puzzles.ht
ml

YES

49 Survo 1 grid/
mark

Larger version of kakuro, but any
numbers not just 1-9 can be used

https://en.wiki
pedia.org/wiki/
Survo_puzzle

YES

50 Travelin
g
salesma
n in
Solid
grid

1 mark/
grid

Move a piece in a grid such that it
visit every spot once

http://cs.smith.
edu/~jorourke/
TOPP/P54.htm
l

YES

51 Age
question
problem

1 logic/
mark

Age of blue is two more than age
of green and …

http://mathforu
m.org/dr.math/
faq/faq.age.pro
blems.html

YES

52 Blackjac
k

2+ cards Starting with two card, take action
hit to gain a new card or stay to
end. The goal is have the sum of
your cards be 21 or as close to that
without going over. Aces are 1
point or 11, and face cards are all
10 points.

https://en.wiki
pedia.org/wiki/
Blackjack

NO *worked
at one
time, need
to fixup
language

53 Hearts 4 cards Trick taking game, play a card of
the same suit as the first played if
you can, otherwise a card of any
played suit. Take the cards if you
play the highest card of the played
suit. Gain points for every heart,
and 13 for the queen of spades each
round, unless you take every point,
in which case your opponents gain

https://en.wiki
pedia.org/wiki/
Hearts

NO Minimize
points
taken over
many
actions?

http://www.menneske.no/shuffle/eng/
http://www.menneske.no/shuffle/eng/
http://www.menneske.no/shuffle/eng/
http://www.menneske.no/kakuro/eng/
http://www.menneske.no/kakuro/eng/
http://www.menneske.no/kakuro/eng/
https://en.wikipedia.org/wiki/Kakuro
https://en.wikipedia.org/wiki/Kakuro
https://en.wikipedia.org/wiki/Kakuro
https://en.wikipedia.org/wiki/Sujiko
https://en.wikipedia.org/wiki/Sujiko
https://en.wikipedia.org/wiki/Sujiko
https://en.wikipedia.org/wiki/Survo_puzzle
https://en.wikipedia.org/wiki/Survo_puzzle
https://en.wikipedia.org/wiki/Survo_puzzle
http://mathforum.org/dr.math/faq/faq.age.problems.html
http://mathforum.org/dr.math/faq/faq.age.problems.html
http://mathforum.org/dr.math/faq/faq.age.problems.html
http://mathforum.org/dr.math/faq/faq.age.problems.html
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Hearts
https://en.wikipedia.org/wiki/Hearts
https://en.wikipedia.org/wiki/Hearts

108

28. Win by having the least points
once someone reaches 100.

54 War 2+ cards Play the top card of your deck, if it
is greater than your opponents you
win the cards. Ties are settled by
playing two additional cards, only
the value of the second card counts.
The first player to possess all cards
wins.

https://en.wiki
pedia.org/wiki/
War_(card_ga
me)

NO Condition
al actions
(when
tied)

55 Memory 2+ cards From a grid of face-down cards,
select two cards to flip over. If they
match you may add them to your
pile. If not they get flipped back
over. The player with the most
matched cards at the end wins.

https://en.wiki
pedia.org/wiki/
Concentration_
(game)

NO Partially
obsrv. &
need
memory to
play
well/subgo
als

56 Hexapa
wn

2 blocks
/grid

On a 3x3 chess board advance
pawns forward by one, or capture
diagonally. Win by reaching the
other side of the board, capturing
all opponent pieces, or prevent the
opponent from taking an action

https://en.wiki
pedia.org/wiki/
Hexapawn

NO Winning
condition
to win by
inaction

57 Water
Jug

1 logic Using a 5 gallon jug and 3 gallon
jug and only filling them or
pouring from one to another, get
exactly 1 gallon in the 3 gallon jug

https://en.wiki
pedia.org/wiki/
Water_pouring
_puzzle

NO No action
models for
liquid
pouring

58 Hangma
n

1+ word
game

Given the length of a word, guess
the word by guessing letters, which
are exposed in the answer word, in
a minimum number of guesses.

https://en.wiki
pedia.org/wiki/
Hangman_(ga
me)

NO No
dictonary,
or
handling
or ordered
sets

59 Chain
reaction

1+ word
game

The first and last word of a list
must be connected by filling the
intermediate spaces with words
such that they form two-word
phrases with both the proceeding
word and following word, such as
STOP-SIGN-LANGUAGE

https://en.wiki
pedia.org/wiki/
Chain_Reactio
n_(game_show
)

NO Needs
some sort
of
language
database

60 Lingo 1+ word
game

Given an initial letter of a five
letter word, guess the word. Letters
that match, or are out of place, are
marked. Guess correctly with X
guesses

https://en.wiki
pedia.org/wiki/
Lingo_(U.S._g
ame_show)

NO No
dictionary

61 Word
Search

1 word
game

Find all the words in the bank in a
grid of letters. The words can be
spelled horizontally, diagonally,
vertically, and backwards.

https://en.wiki
pedia.org/wiki/
Word_search

NO No
handling
or ordered
sets

https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Hexapawn
https://en.wikipedia.org/wiki/Hexapawn
https://en.wikipedia.org/wiki/Hexapawn
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Word_search
https://en.wikipedia.org/wiki/Word_search
https://en.wikipedia.org/wiki/Word_search

109

62 Bananag
rams

2+ word
game

Given a set of tiles each with a
letter, spell words and connect
them horizontally and vertically
until you have used all your tiles.

https://en.wiki
pedia.org/wiki/
Bananagrams

NO No
dictionary

63 Scatterg
ories

2+ word
game

Roll a die to get a letter, for each
category on a list (ie. make of car,
type of fruit), write a word that is
part of that category and starts with
the letter

https://en.wiki
pedia.org/wiki/
Scattergories

NO Needs
category
database

64 Nine
men's
morris

2 blocks
/grid

Place stones on empty locations
until all stones have been place. If
you make a 3 in a row, remove an
opponent’s piece from the board.
Once all pieces have been place,
available actions are move them to
adjacent empty locations. Once you
have only 3 stones you can move to
any empty location

https://en.wiki
pedia.org/wiki/
Nine_Men%27
s_Morris

NO extra
action
from
achieving
subgoal
(removing
a piece
when 3 in
a row)

65 Triangle
s

2 dots
/grid

Given a space covered with some
number of dots, take a turn by
drawing a line between two
unconnected points, if that line
does not cross through any other
line or dot. If this completes a
triangle with other lines, and the
triangle does not contain a point,
mark this triangle as yours. Win by
having more triangles than your
opponent when no actions are
possible.

https://cardga
mes.io/triangle
s/#rules

NO drawing
lines

66 Dots
and
boxes

2 dots/
grid

Given a grid of unconnected dots,
take turns by drawing lines
between two adjacent unconnected
points. If this completes a square
with other lines, mark this square
as yours and take another turn. Win
by having more squares than your
opponent when no actions are
possible.

https://en.wiki
pedia.org/wiki/
Dots_and_Box
es

NO drawing
lines

Table 5: An initial list of many different games and puzzle, that includes a quick description, an
external link with more details, whether we can learn it, and a quick explanation of why, if we
cannot learn it.

https://en.wikipedia.org/wiki/Bananagrams
https://en.wikipedia.org/wiki/Bananagrams
https://en.wikipedia.org/wiki/Bananagrams
https://en.wikipedia.org/wiki/Scattergories
https://en.wikipedia.org/wiki/Scattergories
https://en.wikipedia.org/wiki/Scattergories
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://cardgames.io/triangles/#rules
https://cardgames.io/triangles/#rules
https://cardgames.io/triangles/#rules
https://en.wikipedia.org/wiki/Dots_and_Boxes
https://en.wikipedia.org/wiki/Dots_and_Boxes
https://en.wikipedia.org/wiki/Dots_and_Boxes
https://en.wikipedia.org/wiki/Dots_and_Boxes

110

Figure 36: Experimental results learning 1000 permutations of 55 games. More
permutations are required for good averages.

111

REFERENCES

Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., Swift, M., & Taysom, W.
(2007). Plow: A collaborative task learning agent. In AAAI (Vol. 7, pp. 1514-
1519).

Azaria, A., Krishnamurthy, J., & Mitchell, T. M. (2016). Instructable intelligent personal

agent. In Thirtieth AAAI Conference on Artificial Intelligence.

Banerjee, B., & Stone, P. (2007). General game learning using knowledge transfer.

Proceedings of the 20th International Joint Conference on Artifical intelligence
(pp. 672–677).

Barbu, A., Narayanaswamy, S., & Siskind, J. M. (2010). Learning physically-instantiated

game play through visual observation. Robotics and Automation (ICRA), 2010
IEEE International Conference (pp. 1879–1886).

Bhargava, D., Vega, G., & Sheffer, B. (2016). Grounded Learning of Color Semantics

with Autoencoders.

Blythe, J. (2005). Task learning by instruction in tailor. In Proceedings of the 10th

international conference on Intelligent user interfaces (pp. 191-198). ACM.

Cantrell, R., Talamadupula, K., Schermerhorn, P., Benton, J., Kambhampati, S., &

Scheutz, M. (2012). Tell Me When and Why to do it! Run-time Planner Model
Updates via Natural Language Instruction. Proceedings of the Seventh
International Conference on Human-Robot Interaction.

Chai, J. Y., Fang, R., Liu, C., & She, L. (2016). Collaborative Language Grounding

Toward Situated Human-Robot Dialogue. AI Magazine, 37(4).

Chauhan, A., & Lopes, L. S. (2011). Using spoken words to guide open-ended category

formation. Cognitive processing, 12(4), 341.

Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. Perspectives on

socially shared cognition, 13(1991), 127-149.

112

Derbinsky, N. L. (2012). Effective and Efficient Memory for Generally Intelligent
Agents.

Dindo, H., & Zambuto, D. (2010). A probabilistic approach to learning a visually

grounded language model through human-robot interaction. In Intelligent Robots
and Systems (IROS) (pp. 790-796). IEEE.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A

critical analysis. Cognition, 28(1-2), 3-71.

Genesereth, M., & Love, N. (2005). General game playing: Game description language

specification (Technical Report). Computer Science Department, Stanford
University, Stanford.

Gold, K., Doniec, M., Crick, C., & Scassellati, B. (2009). Robotic vocabulary building

using extension inference and implicit contrast. Artificial Intelligence, 173(1),
145-166.

Goldwasser, D., & Roth, D. (2014). Learning from natural instructions. Machine

learning, 94(2), 205-232.

Gluck, K. and Laird, John E. (2019). Interactive Task Learning. MIT Press.

Hinrichs, T. R., & Forbus, K. D. (2014). X goes first: Teaching simple games through

multimodal interaction. Advances in Cognitive Systems, 3, 31–46.

Huffman, S. B., and Laird. J. E. (1995). Flexibly Instructable Agents. Journal of Artificial

Intelligence Research, 3, 271-324.

Kaiser, L. (2012). Learning games from videos guided by descriptive complexity.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence.

Kansky, K., Silver, T., Mély, D.A., Eldawy, M., Lázaro-Gredilla, M., Lou, X., Dorfman,

N., Sidor, S., Phoenix, S. and George, D. (2017). Schema networks: Zero-shot
transfer with a generative causal model of intuitive physics. In Proceedings of the
34th International Conference on Machine Learning-Volume 70 (pp. 1809-1818).

Kirk, J. R. and Laird, J. E. (2019) Learning Hierarchical Symbolic Representations to

Support Interactive Task Learning and Knowledge Transfer. Proceedings of the
28th International Joint Conference on Artificial Intelligence.

Kirk, J. R. & Laird, J. E. (2016) Learning General and Efficient Representations of Novel

Games Through Interactive Instruction. In Proceedings of the Fourth Annual
Conference on Advances in Cognitive Systems, Evanston, Illinois.

113

Kirk, J. R., Mininger, A., & Laird, J. E. (2016, July). A Demonstration of Interactive Task

Learning. In IJCAI (pp. 4248-4249).

Kirk, J. R. and Laird, J. E. (2014). “Interactive Task Learning for Simple Games.”

Advances in Cognitive Systems, vol 3, pp. 13-30.

Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A., & Farhadi, A. (2017). AI2-

THOR: An Interactive 3D Environment for Visual AI. arXiv preprint
arXiv:1712.05474.

Laird, J. E. (2012). The Soar Cognitive Architecture. MIT Press.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K., Jenkins, O., Lebiere, C., Salvucci, D.,

Scheutz, M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., Kirk, J. R. (2017).
Interactive Task Learning, IEEE Intelligent Systems, 32(4), 6-21, (invited).

Langley, P., Trivedi, N., & Banister, M. (2010). A command language for taskable virtual

agents. In Sixth Artificial Intelligence and Interactive Digital Entertainment
Conference.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues

and challenges. Cognitive Systems Research, 10, 141–160.

Lindes, P., Mininger, A., Kirk, J. R., and Laird, J. E. (2017). Grounding Language for

Interactive Task Learning. Proceedings of the 1st Workshop on Language
Grounding for Robotics at ACL.

Love, N., Hinrichs, T., Haley, D., Schkufza, E., & Genesereth, M. (2008). General game

playing: Game description language specification. Technical report, Stanford
University.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., & Fox, D. (2012). A joint model of

language and perception for grounded attribute learning. ArXiv:1206.6423.

Mininger, A., and Laird, J. E. (2018). Interactively Learning a Blend of Goal-Based and

Procedural Tasks. In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, AAAI Press.

Mohan, S. (2015). From Verbs to Tasks: An Integrated Account of Learning Tasks from

Situated Interactive Instruction.

Mohan, S., Kirk, J., Mininger, A., Laird, J. (2015). Agent Requirements for Effective and

114

Efficient Task-Oriented Dialog. AAAI Fall Symposium Series, North America.

Mohan, S., Mininger, A. H., Kirk, J. R., & Laird, J. E. (2012). Acquiring grounded

representations of words with situated interactive instruction. In Advances in
Cognitive Systems.

Mooney, R. J. (2008). Learning to Connect Language and Perception. In AAAI (pp. 1598-

1601).

Newell, A. (1980). Reasoning, problem solving and decision processes: The problem

space as a fundamental category.

Orhan, G., Olgunsoylu, S., Sahin, E., & Kalkan, S. (2013, August). Co-learning nouns

and adjectives. In Development and Learning and Epigenetic Robotics (ICDL),
2013 IEEE Third Joint International Conference on (pp. 1-6). IEEE.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng,

A.Y. (2009). ROS: an open-source Robot Operating System. In ICRA workshop
on open source software (Vol. 3, No. 3.2, p. 5).

Ramaraj, P., & Laird, J. E. (2018). Establishing Common Ground for Learning

Robots. RSS 2018: Workshop on Models and Representations for Natural Human-
Robot Communication. Pittsburgh, PA.

Roy, D. (2002). Learning visually-grounded words and syntax for a scene description

task. Computer Speech and Language.

Salvucci, D. D. (2013). Integration and reuse in cognitive skill acquisition. Cognitive

Science, 37(5), 829-860.

Simon, H. A., & Hayes, J. R. (1976). The understanding process: Problem isomorphs.

Cognitive Psychology, 8, 165–190.

Socher, R., Ganjoo, M., Manning, C. D., & Ng, A. (2013). Zero-shot learning through

cross-modal transfer. In Advances in neural information processing systems (pp.
935-943).

Thomason, J. (2016). Continuously Improving Natural Language Understanding for

Robotic Systems through Semantic Parsing, Dialog, and Multi-modal Perception.

Thomason, J., Zhang, S., Mooney, R., & Stone, P. (2015). Learning to interpret natural

language commands through human-robot dialog. Proceedings of the 24th
International Joint Conference on Artificial Intelligence.

115

Thomaz, A. L., & Breazeal, C. (2008). Teachable robots: Understanding human teaching

behavior to build more effective robot learners. Artificial Intelligence, 172(6-7),
716-737.

Yürüten, O., Şahin, E., & Kalkan, S. (2013). The learning of adjectives and nouns from

affordance and appearance features. Adaptive Behavior, 21(6), 437-451.

	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Chapter 1 Introduction
	1.1 Problem Characteristics
	1.2 Learning Example
	1.3 Learning Approach
	1.4 Desiderata
	1.5 Contributions
	1.6 Outline

	Chapter 2 Related Work
	2.1 Learning the Rules of Games
	2.2 Task Specification Languages
	2.3 Learning New Word Grounding
	2.4 Contrast with our Approach

	Chapter 3 Background
	3.1 Rosie
	3.2 Environment
	3.3 Soar Cognitive Architecture

	Chapter 4 Task Learning Process
	4.1 Internal Model Creation (L1)
	4.2 Language Instruction (L2)
	4.3 Recognition Structure Learning (L3)
	4.3.1 Predicate Tree Construction
	4.3.2 Structure Interpretation (Grounding)
	4.3.3 Learning procedural rules through chunking
	4.3.4 Recursive Learning Algorithm

	4.4 Operationalization of Task Elements (L4)
	4.5 Task Solving

	Chapter 5 Task Learning Examples
	5.1 Learning the Jealous Managers Puzzle
	5.2 Examples of Learned Task-Specific Terms
	5.2.1 Nouns
	5.2.2 Nouns that act as functions
	5.2.3 Prepositions
	5.2.4 Adjectives
	5.2.5 Comparative Adjectives
	5.2.6 Superlative Adjectives
	5.2.7 Stative Verbs

	Chapter 6 Evaluating Task Learning
	6.1 Evaluation of Generality (D1)
	6.2 Evaluation of Communication (D2)
	6.3 Evaluation of Agent Processing Time (D3)
	6.4 Evaluation of Memory (D4)

	Chapter 7 Multiple Interpretations
	7.1 Creating Multiple Interpretations of Task Elements
	7.2 Ambiguity Case Study
	7.2.1 CASE 1: Ambiguous Word Meanings
	7.2.2 CASE 2: Ambiguous External State
	7.2.3 CASE 3: Symmetric State Ambiguity

	7.3 Creating Synonym/Antonym Interpretations
	7.4 Evaluation
	7.4.1 Positive Transfer
	7.4.2 No Transfer
	7.4.3 Negative Transfer

	Chapter 8 Discussion and Conclusion
	8.1 Current Limitations and Future Work
	8.2 Future of Interactive Task Learning

	Appendix
	REFERENCES

