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Abstract 
 
Artificial agents, from robots to personal assistants, have become competent workers in 

many settings and embodiments, but for the most part, they are limited to performing the 

capabilities and tasks with which they were initially programmed. Learning in these 

settings has predominately focused on learning to improve the agent’s performance on a 

task, and not on learning the actual definition of a task. The primary method for imbuing 

an agent with the task definition has been through programming by humans, who have 

detailed knowledge of the task, domain, and agent architecture. In contrast, humans quickly 

learn new tasks from scratch, often from instruction by another human. If we desire AI 

agents to be flexible and dynamically extendable, they will need to emulate these learning 

capabilities, and not be stuck with the limitation that task definitions must be acquired 

through programming. 

This dissertation explores the problem of how an Interactive Task Learning agent 

can learn the complete definition or formulation of novel tasks rapidly through online 

natural language instruction from a human instructor. Recent advances in natural language 

processing, memory systems, computer vision, spatial reasoning, robotics, and cognitive 

architectures make the time ripe to study how knowledge can be automatically acquired, 

represented, transferred, and operationalized. We present a learning approach embodied in 

an ITL agent that interactively learns the meaning of task concepts, the goals, actions, 

failure conditions, and task-specific terms, for 60 games and puzzles. In our approach, the 

agent learns hierarchical symbolic representations of task knowledge that enable it to 

transfer and compose knowledge, analyze and debug multiple interpretations, and 

communicate with the teacher to resolve ambiguity. Our results show that the agent can 

correctly generalize, disambiguate, and transfer concepts across variations of language 

descriptions and world representations, even with distractors present.
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Chapter 1 Introduction 

If an agent is going to acquire new tasks, we must consider the different ways that tasks 

can be defined or formulated. Some tasks can be defined strictly by a procedure to follow, 

such as following a recipe or directions, where the teacher already knows the correct 

procedure. In contrast, we are interested in tasks that are defined by the legal actions that 

can be taken and the goals to be achieved, such as games (Tic-Tac-Toe), puzzles (Sudoku), 

or other discrete goal-oriented tasks (sorting, cleaning). We adopt Newell’s proposal that 

goal-oriented tasks can be formulated as problem spaces (Newell, 1980). In the problem 

space computational model, a task is represented by an initial state, a goal state, and the 

constraints (preconditions) of available operators. The task may also include failure 

conditions, or illegal states. This research focuses on games and puzzles, which provide a 

large set of goal-oriented problems, but also require a large variety of concepts and 

capabilities. This thesis is an exploration of what is required to support learning across 

these types of diverse tasks and concepts, while taking advantage of the constraint provided 

by the problem space formulation for goal-oriented tasks. 
Specifically, we are looking at how an agent can learn all the elements of a task 

(such as Tic-Tac-Toe) so that it can acquire and then perform the task. These task elements 

that the agent must learn to recognize and operationalize include the goals (three in a row), 

failure conditions (opponent three in a row), legal actions (marking an empty square), and 

task-specific terms (empty) used to define a task. We define operationalizing a task element 

as applying the recognized task element in the current environment. For example, 

operationalizing an action task element means proposing available actions. Rather than 

require an agent to be preprogrammed with this knowledge, we explore how the agent can 

learn the task interactively and online, drawing inspiration from how a human novice might 

learn a novel task from an expert teacher. Specifically, we enable an instructor to provide 
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natural language descriptions to the agent, sentence by sentence, of the task elements 

grounded in a shared situated example of the task, where each described task element is 

present in the external environment. The description of a task element includes conditions 

that must be true for that goal, action, failure condition, or term to be applicable to the 

current situation. 

In many environments, the problem of recognizing and applying task elements is 

straightforward because there is an assumption of fixed vocabulary usage and 

representations of external environments. For example, the term “empty” will only ever 

have a single meaning: there is only one way “empty” maps to objects in the environment, 

without any consideration that the meaning of an “empty” square might vary for different 

versions of Tic-Tac-Toe, one where squares are marked with X’s and O’s and one where 

squares are covered with black and white stones. If a novel environment feature or word is 

encountered, it is assumed that it correlates directly with an internal symbol known a priori 

by the agent (Chai et al. 2016). For example, in these environments if the word “red” is 

used, learning it means finding a mapping to a pre-existing symbol, such as R23, that is 

linked to a classifier for the color red. In contrast, we do not make these assumptions: the 

language meanings and external world are not known a priori and there may not exist an 

internal symbol that directly corresponds with the vocabulary used. Therefore, the agent 

must learn how novel terms ground to the external world, which may require a combination 

of existing features and knowledge that the agent already knows.  

Learning how to recognize and operationalize novel task elements is challenging 

given these assumptions. Characteristics of this learning problem that make it difficult 

include (1) the inability of the agent to see into the mind of the teacher and know what their 

words mean, (2) the multiplicity of possible words and meanings, (3) the complex 

compositional definitions of concepts and how they connect to the world, and (4) the 

accumulation of knowledge overtime. To avoid learning from ‘scratch’ each time, and 
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reduce teaching time, the agent should be capable of transferring knowledge from other 

tasks while it is accumulating knowledge over many tasks. However, accurate knowledge 

transfer is difficult given the other characteristics, which can cause negative transfer. The 

inability of the agent to know the intended meanings of a word, given the multiplicity of 

possible meanings, can lead to the incorrect meanings being used in a new task. These 

problem characteristics are discussed below in detail in Section 1.1. 

The result of this work is a learning methodology embodied in an agent that can start 

with no task or domain specific knowledge, enter a novel setting with a teacher, and learn, 

through quick interactions with context-specific language, to recognize all the task 

elements (actions, goals, failure, etc.) and then use them to solve the task. Furthermore, 

this agent can use the learned knowledge on future tasks, transferring relevant knowledge, 

and handling ambiguous scenarios where knowledge interference and/or distractors are 

present. 

 

1.1 Problem Characteristics 

There are many characteristics of this problem that make it challenging for an agent to 

effectively learn many tasks quickly in succession, over changing context-specific terms, 

in disparate environments. These characteristics and the accompanying challenges are 

highlighted with the example depicted in Figure 1, where a human instructor and robotic 

agent are situated in a shared environment that contains an instance of a river crossing 

problem, involving actors and their managers who don’t want their clients to be poached. 

The task is to ferry everyone from one bank to another, with at most two in the boat, and 

without upsetting any managers by having one of their clients on the other bank with 

another manager. 
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Figure 1: A depiction of an instructor attempting to teach a situated version of a river crossing 
problem and the agent’s internal model derived from its perception and knowledge.  

 
 An example shared environment for this task is depicted on the bottom of Figure 1. The 

task environment, shown between the instructor (left) and agent (right), consists of blocks 

and surfaces, with different colors and shapes that represent actors, managers, the boat, the 

river, and the river banks. The green surfaces represent the banks with the blue surface 

between them representing the river. The brown block is the boat and cylinders and stars 

are the managers and actors, respectively, waiting on the banks. Each manager-actor pair 

shares a single color, red, blue, or purple. In the figure, the instructor in attempting to teach 

the failure condition of the task. This is just one possible embodiment for this task. 

The agent’s internal model that it derives from perception are depicted at the top of 

the Figure 1. The agent’s detection of objects is illustrated by bounding boxes with unique 

identifiers (numbers 1-9) for each object. The agent’s symbolic representations that it 

extracts from perception are listed to each side. The unary features detected from the 
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objects, such as red, are listed by their unique identifier to the (top) left. The spatial 

relations detected between those objects are listed as predicates where the arguments are 

the object identifiers, such as on(1,8) for the relation detected between the brown block 

(the boat) and the bank on the right. The agent does not initially know how the terms used 

by the instructor, “manager,” “actor,” “stranded,” and “accompanied,” map to its 

representation of the environment; it only has general knowledge that is not task-specific. 

We have identified four major problem characteristics (C1-C4) that create challenges 

for learning: 

 C1: Lack of Common Ground 

The first problem characteristic is that the human instructor and the agent do not have 

access to each other’s internal representations: they lack common ground (Clark & 

Brennan, 1991). The teacher is not guaranteed to know or use terms that correspond 

to the agent’s knowledge. In Figure 1, when the instructor describes the failure 

condition as “if a stranded actor is accompanied by another manager, then you lose,” 

the instructor uses task-specific terms (“stranded,” “accompanied,” “actor,” 

“manager”) that may not exist in the agent’s internal model of the current 

environment. To detect the failure condition, the term “accompanied” must be 

mapped to a calculation of on the same bank, the term “stranded” to on a bank 

without their manager, “actor” to an object having a star shape, and “manager” to 

an object having a cylinder shape. These mappings can connect to not only symbolic 

primitives; the agent can also learn a mapping to nonsymbolic classifiers, such as 

classifiers for color, shape, or size. 

  Chai et al. (2016) discuss in detail the problems that arise from the mismatch 

between the perceptual basis and capabilities of a robotic agent and human teacher 

and explore how an interactive agent can collaborate with the teacher to help resolve 

these mismatches. Task learning approaches often avoid this problem by assuming 
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that the environment, terminology, or agent knowledge and capabilities are fixed, or 

only vary in limited, predictable ways. This is a very constraining assumption to 

make, especially for robotic applications with unknown environments. 

 C2: Compositional Concepts 

A second characteristic is that task elements (actions, goals, terms) can be defined by 

the instructor using compositions of other task elements (that have been learned 

previously in the task or other tasks). These compositions can involve conjunctions, 

disjunctions, modifiers, functions, set operations, and other elements described by 

First Order Logic as well as hierarchical compositions. Compositionality enables the 

learning of a theoretically infinite number (bounded only by time and memory) of 

concepts from a set of primitive elements (Fodor & Pylyshyn, 1988). 

  Approaches to task learning have generally considered learning the different 

elements of a task (actions, goals, failure conditions, task-specific terms) 

independently: both in terms of the learning algorithms used and the final 

representations that are learned. They don’t consider how these various elements can 

be combined using first order logic or hierarchical composition. Rather than learning 

hierarchies and maintaining intermediate representations that can be composed, they 

learn mappings directly to subsymbolic sensorimotor representations (Socher et al., 

2013; Bhargava et al., 2016; Chauhan & Lopes, 2011; Dindo & Zambuto, 2010; 

Orhan et al., 2013). 

  Through the composition of concepts, the agent can learn definitions of failure 

conditions using new terms, such as with “stranded” and “accompanied” in Figure 1, 

definitions of goals using actions (capturable), and definitions of new task-specific 

terms using previously defined task-specific terms. For example, the teacher could 

define “stranded” by “if the manager of the actor is not on the same bank then the 

actor is stranded,” but then would need to define “manager of” as well: “if a manager 
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has the same color as the actor then…” The learning of hierarchical compositions of 

these task elements is vital to supporting the types of high-level definitions that 

humans often use. Furthermore, supporting hierarchical representations of learned 

knowledge has implications for the accumulation (C4) and transfer of knowledge. 

With hierarchical, compositional representations, compared to direct mappings to 

nonsymbolic representations, it is easy to replace component parts to achieve partial 

knowledge transfer, such as learning a new grounding of “actor” for the failure 

condition, without having to relearn the entire failure condition. 

 C3: Many-to-many Mappings 

A third characteristic is that the possible mappings from terms to definitions are 

many-to-many, due to the polysemic nature of words (a word can have many possible 

meanings and a meaning can be represented by many possible words) and due to 

variations in external environments. For example, the term “clear” can be used to 

mean not below anything. In another situation it can be used to mean transparent in 

opacity, and in another, the term “empty” can also be used instead of “clear” to mean 

not below anything. The required mappings from terms to meaning change 

depending on the terminology used, how the instructor decomposes the task 

elements, the setting of the problem in the external environment, and the agent’s 

perception and prior knowledge. 

  Consider all the variations that could occur in the problem depicted in Figure 1. 

For task-specific terms, the teacher could have used the word “separated” instead of 

“stranded.” For the task element decomposition, the teacher could instead define the 

failure condition by saying “If an actor is poachable then you lose.” For the external 

environment setting, instead of stars and cylinders, the “actors” and “managers,” 

respectively, could be represented with different objects, such as cubes and cones. 

For the agent’s perception and knowledge, the agent could possess spatial knowledge 
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of below rather than on or only have knowledge of the x, y, z coordinates of each 

object with no known spatial prepositions. Given all these variations, the space of 

possible mappings from the task elements to their external embodiments is huge. If 

the desire is for an agent X (with unknown knowledge and capabilities), operating in 

an environment Y (with unknown representations), to learn and do a task Z (with 

unknown terms), this will be a significant, unavoidable, and reoccurring problem. 

 C4: Accumulative Learning 

A fourth characteristic is that the agent should be able to accumulate many tasks (and 

task elements) over the learning of many different problems in different settings. A 

key to reducing task teaching time during accumulative learning is the ability to 

reuse, or transfer, knowledge previously learned to new tasks and avoid learning from 

scratch each time. However, this introduces the problem of potential knowledge 

interference from past learning: the possibility of incorrect knowledge transfer or 

overgeneralization. For example, due to the many possible meanings of words (C3), 

the agent could learn a meaning of the term “empty” for Tic-Tac-Toe (meaning 

unmarked) and then incorrectly use that definition when the term is used to define a 

subsequent task, such as Othello, where the meaning is different (not below a piece). 

With the accumulation of many tasks, correctly inferring what knowledge can be 

transferred will become increasingly difficult. 

  Consider that after learning the problem in Figure 1, the agent is asked to solve a 

identical puzzle, but one that uses cubes and cones to distinguish “managers” and 

“actors” respectively. Like a human student, the agent should adapt to the new 

instance by transferring all the task definition knowledge from the previous 

incarnation, rather than relearning all the goals, actions, and constraints of the puzzle, 

and only learn new mappings for “managers” and “actors” to cubes and cones. If a 

new river crossing puzzle is taught that only shares a goal (“all objects are on the 
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right bank”) or an action (“move the boat”), the agent should transfer the relevant 

knowledge and only learn what is novel. Consider instead that the agent is presented 

with a similar but different river crossing problem to learn. If the puzzle is setup 

using the same objects (cylinders and stars), the agent might incorrectly infer that 

they are “managers” and “actors,” or if the term “accompanied” is used in a different 

manner by the teacher, the agent might attempt to transfer the concept. The challenge 

for an ITL agent is to transfer as much knowledge as possible without 

overgeneralization, avoiding incorrect knowledge transfer. 

  Existing approaches to task definition learning do not have a theory for how 

knowledge transfer can occur because they don’t maintain intermediate knowledge 

representations. Most have focused on learning mappings directly from task terms to 

subsymbolic sensorimotor representations (Roy, 2002; Socher et al., 2013; Bhargava 

et al., 2016; Yürüten et al., 2013; Chauhan & Lopes, 2011; Dindo & Zambuto, 2010; 

Orhan et al., 2013; Matuszek et al., 2012). Other approaches (Hinrichs and Forbus, 

2014) don’t learning mappings but instead compile the natural language specification 

into a high-level programming language. Neither approach has explored how partial 

knowledge transfer can occur, such as when a new task variation uses pieces of a 

different shape or color. 
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1.2 Learning Example 

 
Figure 2: A tabletop environment with blocks and a robotic arm used for teaching a version of 
the Tower of Hanoi puzzles. 

 
Figure 3 shows an example dialogue between our agent (marked in bold) and an instructor, 

where the agent, embodied in a tabletop robot, is taught a version of the Tower of Hanoi 

puzzle using blocks. The tabletop environment is shown in Figure 2. 

“The name of the puzzle is Tower-of-Hanoi.” 

“Please setup the puzzle.” 

* Teacher moves blocks to setup the initial state. * 

“Ok.” 

“Please describe the actions, goals, and failure conditions.” 

“You can move a clear block onto a clear object that is larger than the block.”  

“Please describe the meaning of clear in this context. ” 

“A location that is not below an object is clear.” 

“Ok, Ive learned the meaning of clear for this context.”  
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“Please describe the meaning of larger -than in this context. ”  

“If the volume of a block is more than the volume of an object then the block is larger 
than the object.”  

“Ok, Ive learned the meaning of larger -than for this context. ”  

“Ive learned the action.” 

“The goal is that a small block is on a medium block and the medium block is on a 
large block and the large block is on the leftmost location.”  

“Please setup the goal state.” 

*Teacher moves blocks to setup the final state. * 

“Ok.”  

“Ive learned the goal .”  

“Done.”  

“Ive learned Tower-of-Hanoi. Should I try to solve the puzzle?” 

Figure 3: Dialogue of an instructor teaching Rosie the Tower of Hanoi puzzle using blocks. 

 

The agent quickly learns the task elements that define this task: preconditions of the legal 

moves (can move blocks onto larger objects if both are clear) and the goal of the puzzle 

(three blocks stacked smallest to largest on the leftmost location), along with supporting 

context specific terminology (“clear” and “larger than”). This learning process is 

summarized in the following section and described in detail in Chapter 4. 

 

1.3 Learning Approach 

In our approach, there is a single integrated agent that quickly learns new tasks online, in 

real time from an instructor by learning all of the task elements that define the task. A key 

aspect of our approach is that all task elements, goals, failure conditions, actions, and task-

specific terms, are represented uniformly and are learned through the same process. Thus, 
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to describe the learning of the entire task in our approach, we just describe the process of 

learning a task element. For most task elements, the actions, goals, and failure conditions, 

the teacher initiates the start of the learning process by teaching the name of a task element 

(“The name of an action is stack”) or by starting a new description (“The goal is that…”). 

In contrast, the agent initiates the start of the task element learning process for a task-

specific term. This occurs when the term is used to define another task element and the 

agent cannot determine the correct meaning (or has none): “Please describe the meaning 

of ‘clear’ in this context.” The teacher initiates the learning of a new task by naming it: 

“The name of the puzzle is Tower-of-Hanoi.” 

We decompose the process of learning a task element through interactive language 

instruction into four learning phases: 

 L1: Internal Model Creation 

In order to interact with and reason about the outside world, the agent uses its 

perception and existing knowledge to create an internal relational model of the 

current state of the environment, including its beliefs about the objects and relations 

between them. In order to learn a task element, the task element being described 

must be currently present in the world so that the agent can ground the terms to its 

internal state. An example of an internal model is depicted in Figure 1 for a river 

crossing task, showing the objects the agent observes and their relations (the boat 

is on a bank). It is possible that the agent could create this internal state through 

another method, such as having it described (as in most word problems), but this 

has not been explored in this thesis.1 It vital to our learning approach that the 

                                                 

1 Parallel work (Mininger & Laird, 2018) has enabled the agent to handle partially observable 
scenarios when learning procedural tasks (not games) where the goal is not currently present. 
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described concept can be grounded in an accurate internal model that contains the 

concept, but the source of that model could vary. 

 L2: Language Instruction 

Next the agent converts the teacher’s natural language sentences that describe each 

task element into an internal relational representation. This relational representation 

contains all the conditions that need to be true for the task element to be applicable 

in the current situation. For example, if the teacher describes “pinned” with the 

sentence “if a piece is blocking your king, then it is pinned” then the agent creates 

a representation equivalent to blocking(piece, king) →pinned(piece).2  

 L3: Recognition Structure Learning 

In order to recognize the task element in the environment, the agent creates a 

declarative structure that connects the language-derived relational representation to 

the agent’s internal model. The agent grounds each referenced term (i.e. blocking, 

piece, king) so that the conditions of the task element can be evaluated. For 

example, the conditions for an action stack might be that the destination is clear 

and the block is movable, which are evaluated in order to determine valid actions. 

This process includes verifying that the task element is applicable in the current 

context. If the agent is unable to ground a term in its internal model, the agent asks 

the teacher for a definition (the meaning) of the new task-specific term, another 

new task element. This causes the learning to loop recursively back to L1 for this 

new task element. (However, the world should already contain an instance of the 

term, so the agent will not need to request that the environment be modified to setup 

                                                 

2 Throughout this paper we use quotes (“pinned”) to denote terms used in language descriptions 
and italics (pinned) to denote elements of the agent’s internal state. 
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a relevant state.) During this process the agent learns procedural rules that condense 

the agent processing during interpretation into procedural knowledge that directly 

evaluates the declarative recognition structure. 

 L4: Operationalization 

In order to operationalize the task element, the agent instantiates this knowledge 

for the current situation in its internal model of the task environment. The exact 

form of the operationalization depends on the type of task element; whether it is a 

goal, action, failure, or task-specific term. The instantiation of an action, such as 

stack, involves proposing the primitive actions that were used to teach it, such as 

move obj1 onto obj2, using the objects in the world that satisfy the preconditions. 

The agent only instantiates a task-specific term, such as pinned¸ when it is a 

condition of another task element. The result of operationalizing a task-specific 

term is returning the detected instances of that term in the current context, in order 

to evaluate the conditions of the task element using the task-specific term. 

 

After learning all the task elements for a new task, the agent uses the acquired knowledge 

for recognizing and operationalizing each task element to perform each associated task 

function and attempt to solve the problem through search or other problem-solving 

strategies. Thus, in order to solve the newly learned task, the agent creates an internal model 

of the current situation from its perception of the environment, and applies the task 

elements to: detect and propose legal action actions, generate the resulting substates using 

primitive action models, avoid failure states, and search until the goal is recognized. 

Building the internal state (L1), language processing (L2), and problem solving (search) 

have been implemented in prior research (Mohan et al. 2012; Kirk & Laird, 2016). This 

thesis focuses on the third and fourth phases (L3 and L4), the problem of learning a 



 

 

 

15 

 

connection between the described task elements and the agent knowledge required to 

recognize and apply them. 

 

1.4 Desiderata 

To qualitatively evaluate the agent and provide guidance for agent design, we have 

developed a list of desiderata. These desiderata may not be requisites for every ITL system, 

but they are general principles that can guide the development and common evaluation of 

such systems, which are inherently difficult to compare. We have described a larger space 

of possible desiderata for Interactive Task Learning agents (Laird et al., 2017), but here we 

focus on four major desiderata for ITL agents that serve as a basis for the goals, claims, 

subsequent evaluation of our research on learning task elements. These desiderata focus on 

minimizing or maximizing certain aspects of task learning, while maintaining correctness 

of the learning. To be clear, the objective is reducing or increasing these ITL aspects, not 

finding a theoretical maximum or minimum. 

 D1: Maximize Generality 

The agent should be able to learn a diverse set of tasks, requiring a diverse set of 

concepts (objects, relations, actions). The level of generality of a task learning agent 

increases as it becomes capable of learning more tasks and more kinds of tasks. 

Meeting this challenge requires avoiding task specific representations or processing 

mechanisms. 

 D2: Minimize Agent-Teacher Communication 

The communication of the task should be concise, avoiding repetition, verbosity, 

and unnecessary communications. The agent should try to minimize the number of 

words, interactions, and demonstrations, as well as the overall time, required to 
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learn a new task, to reduce the burden on the teacher and speed the learning process. 

The learning must be fast, online, and in real-time. 

 D3: Minimize Agent Execution Time 

The agent should try to learn task representations that minimize execution time, by 

learning procedural representations that do not need to be interpreted to be 

executed. Their execution should be similar in behavior to the execution of the code 

of the underlying agent architecture. The newly learned knowledge must integrate, 

and not interfere, with existing behavior and any future knowledge that might be 

learned. 

 D4: Minimize Memory Size Growth 

The agent should minimize the growth of memory (working, procedural, and 

semantic) to avoid negative (slow) memory behavior. The agent should minimize 

the time required to access or add memory elements, the size of the memory, and 

their growth overtime as the agent learns many successive tasks. We expect 

different memory systems to have different growth patterns, the objective is to 

avoid excessive, harmful memory growth which negatively impacts agent behavior. 

 

1.5 Contributions 

We present our learning approach embodied in an agent called Rosie, an interactive task 

learning robotic platform built on the Soar cognitive architecture. A key aspect, and 

contribution of our approach is identifying the underlying structure and similarities in this 

learning space across the different types of task elements in order to learn them through a 

singular process into a single type of representation. This uniformity of representation 

across task elements supports the compositional nature (C2) of task knowledge. The ability 
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to learn composable representations is a critical feature to enabling better, long-term 

knowledge transfer during accumulative learning (C4). Using this approach, Rosie can 

learn an entire problem definition from the ground up, by using the knowledge that the 

agent already has and the definitions the human provides, despite a lack of knowledge 

overlap (C1), learning new task elements based on their word choice and task 

decomposition, learning a multiplicity of words and meanings (C3), and transferring 

knowledge over many tasks, even in ambiguous scenarios, as the agent accumulates 

knowledge (C4). 

We evaluate how well how our approach addresses the challenges associated with 

each of the aforementioned problem characteristics. We show that our learning approach 

works independent of changes to the terminology used, agent knowledge representations, 

and environments by learning new definitions to establish common ground (C1). We 

demonstrate that Rosie can learn, through interactive instruction, compositions of existing 

concepts through hierarchical composition (C2) and can learn a multiplicity of terms and 

meanings for the many-to-many possible mappings between words and meanings (C3). We 

evaluate Rosie in online, accumulative long-term learning scenarios and Rosie’s ability to 

transfer knowledge over many tasks (60) and domains, including scenarios with distractors 

and knowledge interference (C4). 

We evaluate our approach across a wide variety of tasks (D1), from Tic-Tac-Toe to 

Sudoku, through quick natural language communication (D2). We also evaluate the 

execution, or processing, time of the agent during and after learning (D3), and the agent’s 

growth in memory size (D4) as it accumulates tasks.  

In brief, the core contributions of this thesis are: 

1. A general, online method for learning mappings between task elements (actions, 

goals, failure conditions, and task-specific terms) and hierarchical compositions of 

the agent knowledge required to recognize and operationalize them. This learning 
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method enables an ITL agent to gain the necessary knowledge to formulate and 

solve a novel task in a novel environment.  

2. A strategy for handling ambiguous learning situations, where distractors and/or 

knowledge interference are present, that enables Rosie to consider multiple possible 

interpretations and interact with the instructor to resolve ambiguities and accurately 

transfer knowledge. 

3. A characterization of the space of learnable tasks and task elements through this 

approach. From this characterization, it should be possible to determine whether 

Rosie is capable of learning a specific novel game, task, or problem. 

4. An evaluation of these methods over many tasks for each of the given desiderata. 

This evaluation covers agent-teacher communication (sentences used to teach the 

task), the growth in size of semantic, procedural, and working memory, the timing 

of agent execution, and the handling of ambiguous learning scenarios that could 

lead to negative knowledge transfer. 

5. An evaluation of the generality of the learning approach across different tasks 

(puzzles, games, logic problems), domains (cards, board games, marking puzzles, 

computer games), environments (real and simulated), language usage 

(terminology), task decompositions, and agent embodiments (virtual, robotic). 

6. A publicly available archive (www.umich.edu/~jrkirk/ijcai2019.html) of all the 

games (and task elements) learned and the sentences, world environments, and 

primitive concepts used to each them. A list of these games is shown in Table 2 in 

the Appendix, including examples of games that cannot be learned and the reasons 

why. This will be a resource for other researchers investigating Interactive Task 

Learning. 

 

http://www.umich.edu/%7Ejrkirk/ijcai2019.html
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1.6 Outline 

In Chapter 2 we discuss the related work and briefly contrast those approaches with our 

own approach. 

  

In Chapter 3 we describe some background on the development of Rosie and supporting 

work. 

 

In Chapter 4 we provide a detailed description our task-independent approach to learning 

to recognize and operationalize all types of task elements, the actions, goals, failure 

conditions, and task-specific terms. During this description we note how the design 

decisions were motivated by the problem characteristics (C1-C4) and desiderata (D1-D4). 

 

In Chapter 5 we provide a detailed description of a complex example of the agent learning 

an entire task, the problem from the introduction, as well as examples of a variety of task 

elements that agent has learned. 

 

In Chapter 6 we describe evaluations of task learning and knowledge transfer we have 

conducted using the desiderata as criteria. These experiments have been performed in a 

variety of domains, learning many successive tasks, where we analyze the memory growth 

(agent knowledge), timing (agent processing), interactions (teacher natural language 

descriptions), knowledge correctness, and the accuracy of the solutions the agent produces 

after learning the complete task. Our results show that the agent can correctly generalize, 

disambiguate, and transfer concepts within variations in language descriptions and world 

representations of the same task, and across variations in different tasks. Rosie has 

successfully learned 60 distinct games and puzzles, from Missionaries and Cannibals to 

Othello to Sudoku, and thousands of actions, goals, failures, and terms. 
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In Chapter 7 we describe handling scenarios where ambiguity and knowledge interference 

can negatively impact the ability to accurately learn and transfer knowledge, by enabling 

Rosie to create, analyze, and debug (through interactions with the teacher) multiple 

interpretations of task elements. We evaluate the correctness of learning and the number of 

words required to teach tasks across cases of no transfer, positive transfer, and interference 

from prior tasks. 

 

In Chapter 8 we summarize the contributions of the thesis and discuss the potential impact 

of the work, limitations of the work, and possible directions for future work. 
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Chapter 2 Related Work 

In this chapter we review related research, starting with research on learning the rules of 

games, followed by approaches that support task execution and specification, but not 

incremental acquisition, to work that supports learning the grounding of novel terms, and 

finally ending by discussing how these approaches contrast with ours. 

 

2.1 Learning the Rules of Games 

Early research on understanding natural language descriptions of games was conducted by 

Simon and Hayes (1976) in a program called UNDERSTAND, which extracted the actions, 

or operators, and goals from natural language specifications of various isomorphism of the 

Tower of Hanoi puzzle. puzzle. They showed that differences in task specification led to 

differences in task formulation, both in humans and with UNDERSTAND. This was an 

early attempt at task specification through language, however a complete agent 

implementation was not implemented; the language translation and concept learning 

processes were simulated by hand. 

Hinrichs and Forbus (2014) have developed an agent in the Companions architecture 

that learns to play Tic-Tac-Toe and Hexapawn through a combination of language 

instruction and sketching using CogSketch. Their system generates a GDL (Game 

Description Language) specification (Love, Hinrichs, Haley, Schkufza, & Genesereth, 

2008) of the task, which is interpreted so that a Companions agent can play the game. Their 

approach focuses more on the naturalness of agent-teacher interaction than learning new 

concepts or maximizing the generality of task learning (D1). They do not have a theory for 

task knowledge transfer. GDL is a high-level program-like formalism that lets one specify 
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a large variety of games; it is used in the General Game Playing competition (Genesereth 

& Love, 2005). Research on transfer of knowledge with agents that use GDL specifications 

has so far focused only on policy transfer (Banerjee & Stone, 2007).  

We have identified the following issues with the approach of converting natural 

language into an intermediate formal language, such as GDL or STRIPS/PDDL, and then 

using an interpreter to produce behavior. This approach does not include a theory of how 

the acquisition and execution of a new task and new task knowledge fits into the overall 

ongoing agent operation. These languages, and their interpreters, assume batch operation 

of a single task where the complete task description is available all at once. This approach 

does not support the accumulation of multiple tasks, nor the sharing of knowledge among 

tasks, nor interactive learning where the agent asks for clarification and missing 

knowledge, so that the instructor does not need to know exactly what must be taught. 

In a very different approach, Barbu et al. (2010) describe a robotic system that learns 

to play simple 3×3 board games, like Tic-Tac-Toe and Hexapawn, by observing random 

legal game play between two other agents. Kaiser (2012) makes many improvements on 

learning board game rules through visual observation by reducing the amount of pre-coded 

background knowledge and using more expressive representations of state. This system 

represents the game state with relational structures, instead of formulas, but these structures 

are predefined, namely rows, columns, and diagonals in the board grid. Approaches using 

visual observation can be effective at successfully learning tasks, as well as learning 

competent game play, but they require a large number of demonstrations, including in some 

cases labeled illegal game play, in order to learn. 

 

2.2 Task Specification Languages 

Task learning research has usually focused on learning a procedure to follow or a policy. 

In other prior work on agents learning tasks through instruction, such as by Langley et al. 

(2010) and Allen et al. (2007), a human teaches a specific policy or procedure for solving 
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a task, such as giving directions to a location. Rather than teaching the problem 

specifications, these approaches teach a solution to a problem, which is sufficient for tasks 

where there is a single, fixed solution or policy for all problem instances (and not goal-

oriented tasks such as games and puzzles). Policy task learning has been explored with 

Soar in the past, with Instructo-Soar (Huffman & Laird, 1995) an agent that learned simple 

but novel block manipulation tasks from simple natural language instructions, and in the 

present, with parallel work (Mininger & Laird, 2018) conducted on Rosie to enable the 

learning of procedural tasks. 

There have been many efforts to create abstract task specification languages that 

make it easier for a user to develop agents. The Task Acquisition Language or TAQL (Yost, 

1993) was an abstract language based on the problem space model of computation that was 

compiled into Soar. Other task specification languages that compile into Soar include 

HERBAL (Cohen, 2008) and HLSR (Jones et al., 2006). Cohen (2008) provides an 

extensive review of these task specification languages. Langley et al. (2010) described a 

related approach in which an instructional command language allows the specification of 

behavior for agents in ICARUS. These projects all require independent batch systems that 

compile the task specifications into the target language. 

Salvucci (2013) introduced another approach to cognitive skill acquisitions (with 

ACT-R) focusing on the integration and reuse of previous skill knowledge and the 

proceduralization of this knowledge. The commands are limited to a restrictive syntax that 

only specifies the policy of a task. Cantrell et al. (2012) describe a mobile robotic system 

that can be taught individual commands via language by specifying preconditions (“you 

are at a closed door”), action definitions (“you push it one meter”), and postconditions 

(“you will be in the room”). It does not learn new predicates, nor can it learn tasks that 

involve constraints, failure states, and specific goal conditions. 

The Tailor system (Blythe, 2005) allowed the teacher to modify task information 

though natural language instructions and ensured that there were no undesirable side effects 

caused by the modifications. PLOW (Allen et al., 2007) is a collaborative task-learning 



 

24 

 

agent that acquires procedural knowledge through demonstration and dialog. The instructor 

provides tutorial instructions accompanied by related demonstrations, which the agent uses 

to acquire new procedural knowledge. The teaching is done largely by demonstration, but 

unlike most learning from demonstration, the human is not required to provide a large 

number of examples due to agent generalization mechanisms. LIA (Azaria et al., 2016) is 

an interactive agent that learn new commands for managing email through step-by-step 

instructions from a human in natural language. These systems learn new tasks or 

modifications to tasks but are limited the types of tasks they can learn: only tasks defined 

by sequences of actions. 

 

2.3 Learning New Word Grounding 

Research on learning the groundings of words in situated domains has focused on learning 

new symbols grounded directly in the robots subsymbolic sensorimotor representations. 

One exception is TRIG (Gold et al., 2009), a system that learns from primitive symbolic 

relationships though demonstrations. Agents that do learn groundings from existing 

symbolic concepts only learn synonyms; they assume that for any term there is a single 

matching concept with the identical meaning (Goldwasser & Roth, 2014). Many of these 

approaches use machine learning techniques and require a large number of demonstrated 

positive (and sometimes negative) examples of the described concepts. These methods 

have been successful at learning new adjectives, prepositions, and nouns by learning 

mappings directly from task terms to subsymbolic sensorimotor representations (Roy, 

2002; Socher et al., 2013; Bhargava et al., 2016; Chauhan & Lopes, 2011; Dindo & 

Zambuto, 2010; Yürüten et al., 2013; Orhan et al., 2013; Matuszek et al., 2012). 

Systems that can handle novel environment features or words, often assume that 

they correlate directly with an internal symbol known a priori by the agent, just that the 

mapping has not been established (Chai et al. 2016). For example, Thomason, Zhang, 

Mooney, and Stone (2015) describe an agent that incrementally learns a semantic parser 
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through interactive natural language in robotic domains, as well as an online domain that 

utilizes Mechanical Turk for training. Their system creates a lambda-calculus 

representation that includes predicates defined over objects. However, it only learns one-

to-one mapping as the semantics for novel terms, assuming that a preexisting symbol is 

functionally a synonym. It does not learn new tasks; the focus is on learning a semantic 

parser so that the agent can understand and execute the procedural commands it is given. 

Another common assumption of learning systems is that each term only has a single 

meaning, however some research has explored learning one-to-many mappings from terms 

to meanings for polysemic words. Thomason (2016) presents an extension to the previously 

mentioned work, that enables learning multi-modal classifiers for polysemic words, for 

example, learning classifiers for both “light,” as in lightweight, and “light,” as in light-

colored. The system learns one-to-many mappings to nonsymbolic representations, not to 

combinations of symbolic knowledge. 

 

2.4 Contrast with our Approach 

In general, these approaches assume that the agent only learns a single task (rather than a 

sequence of many tasks), that concepts can be directly mapped to known primitives or 

subsymbolic representations, and that learning and acting are separate processes, where 

learning can be an offline batch process. 

In contrast, in our approach, there is a single integrated agent that both acquires 

new tasks and executes those tasks, using a single underlying cognitive architecture. 

Furthermore, the agent learns uniform representations for the different aspects of the 

problem space, the actions, goals, failure conditions, and supporting concepts, so that they 

can be composed and combined to support continuous and accumulative learning. Task 

acquisition is just another task that uses the same memories, learning mechanisms, and 

decision procedures as are used for task performance. An advantage of this approach is that 
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whenever new task knowledge is acquired, it is immediately available for both the 

assimilation and execution of future tasks. 

We focus on learning many tasks at once with instruction that is fast, interactive, 

and on-the-fly, and importantly builds knowledge over time, handling the many-to-many 

possible matchings between language, the external environment, and the agent’s own 

knowledge representations. A key aspect of our approach is that the elements of the 

problem space learned are uniform in representation, logically composable, and teachable 

in hierarchical combinations that enable partial transfer. This allows the agent to 

opportunistically engage the teacher to fill in gaps, resolve discrepancies, and transfer 

already learned relevant knowledge. 
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Chapter 3 Background 

Why are humans so good at quickly teaching and learning novel tasks? From observing 

human-human learning scenarios, where an expert teaches a student unfamiliar with the 

task, it is clear that in part it is because the teaching is: interactive, allowing for corrections 

to mistakes and incomplete models of their partner; situated in a shared grounded 

experience of the task with the expert; multimodal, using language, demonstrations, 

gestures, and other means to convey information; and continuous and accumulative, 

leveraging past knowledge. These aspects of human learning motivate our research into 

how an artificial agent can interactively and naturally learn tasks though task-oriented 

dialog. Although there are other means for teaching an agent a new task, task-oriented 

dialog is ubiquitous in human instruction and can be fast, effective, and natural for humans 

to use (Mohan et al., 2015). 

The goal of Interactive Task Learning is to support the development agents that can 

learn novel tasks through natural interactions with a human teacher. An ITL agent will need 

to integrate many capabilities, including but not limited to natural language processing, 

dialog management, knowledge representation, memory, computer vision, spatial 

reasoning, and general problem solving. Integrated approaches provide a platform for 

studying how each process can be more directly informed by each other in the context of 

the current environment.  

The agent used for this research and subsequent experimentation and evaluation is 

Rosie (Mohan et al., 2012), an Interactive Task Learning agent built on the Soar cognitive 

architecture (Laird, 2012), that learns through instruction and demonstration in a shared 

environment with a human teacher. 
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3.1 Rosie 

Rosie is an ITL agent that relies upon task-oriented dialog with a human instructor to 

acquire new knowledge. It learns many aspects of tasks, including colors, shapes, sizes, 

spatial relations, procedural actions, and execution policy. Rosie has been under 

development by the University of Michigan Soar Lab since 2012, and the project has had 

the benefit of many collaborators in the Soar lab, as well as other robotic labs, that has 

made possible the development of the capabilities an ITL robot needs, including vision, 

actuation, reasoning, dialog management, and natural language processing.  

Natural language is processed using a parser, implemented in Soar, that is integrated 

with Rosie. The parser takes as input grammatical English sentences and produces a 

semantic interpretation. The parser was developed by John Laird for Rosie, and was not a 

contribution of this thesis and so is only briefly described here. There are two modes for 

the parser that Rosie can select to affect the content of the semantic interpretation. In the 

first mode, the interpretation grounds all references to objects to specific objects in Rosie’s 

perceptual system that match the conditions for the objects specified in the sentence. For 

example, “a red object that is on a bank” grounds to an object in Rosie’s model of the world 

that is both red and on a bank. If there are multiple red objects that are on a bank, such as 

in Figure 1 with the river crossing puzzle, then one of the objects, such as the object 

identified with id 1 that is a red cylinder, is randomly selected. 

The second mode of parsing is for when the agent does not want the parser to ground 

directly to any specific object, and instead just reflect the conditions in the language 

description. This is the parsing mode that is used for the work in this thesis that enables 

Rosie to learn games and puzzles. The reason for using this parsing mode for learning 

concepts for games is to help Rosie make correct generalizations. Rosie assumes that all 

the features the instructor mentioned are defining characteristics, such as “red,” and those 

not included can be ignored, such as “cylinder.” The descriptions of concepts for games 

are not directly referencing a specific object in the world, even though at least one valid 

instance of the described concept must be present for later grounding. In this mode the 



 

29 

 

parser creates an internal representation of a hypothetical object which contains predicates 

for all the constraints that were present in its description, in the above example “red,” 

“object,” “bank,” and “on.” The parser produces a relational representation that includes 

information derived from the linguistic structure of the sentence, such as specific relative 

clauses. 

  

3.2 Environment 

To demonstrate the generality of agent design of Rosie, it has been ported to multiple 

domains and embodiments, including four robots and many simulated environments. 

Pictures of some of these environments for different games are shown in Figure 4. The 

robots include a table-top robot arm (with a Kinect for sensing) that can manipulate 

variously colored and shaped foam blocks, an April MagicBot that can navigate hallways, 

a Fetch robot that can move and manipulate objects on a table, and most recently a Cozmo 

toy robot that can move and pick up small cubes. The simulated domains include the April 

Simulator of the table-top arm, the ROS simulator (Quigley et al., 2009) of a Fetch robot, 

an agent internal simulation for grid based puzzles (such as Sudoku), a simulated card game 

environment in an external Java application, and AI2-Thor (Kolve et al., 2017). 

 

 
Figure 4: Pictures of different environments in which Rosie has learned games. From left to 
right: the tabletop arm solving Tower of Hanoi with blocks, the Fetch robot learning a block 
representation of the Five-Puzzle, and an internal simulation for learning the puzzle Ken-Ken. 
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The teaching of puzzles and games has mostly focused on the tabletop domain (real and 

simulated), and specifically on tasks that can be defined by movable objects, the locations 

those objects can occupy, and the relationships, functions, and attributes over those objects. 

For each domain, Rosie initially knows (and has internal models of) primitive domain-

specific actions such as picking up a block (tabletop), navigating down a hallway (mobile 

robot), or writing a number onto a square (simulated grid).  

In real world domains, Rosie translates the noisy continuous state produced by 

sensors into discrete symbolic states or representations of the world (Mohan et al., 2012; 

Mininger & Laird, 2019). For the learning of games and puzzles, we assume fully 

observable environments that can be mapped onto high-quality discrete symbolic 

representations that are not subject to noise or uncertainty. 

 

3.3 Soar Cognitive Architecture 

Since we are adopting the problem space model of problem representation, as well as 

attempting to integrate many capabilities, the Soar cognitive architecture (Laird, 2012), 

developed on the problem space model, is a natural choice for the development of an 

Interactive Task Learning agent. As Newell, one of the creators of Soar, defined it: “a 

problem space consists of a set of symbolic structures (the states of the space) and a set of 

operators over the space… A problem in a problem space consists of a set of initial states, 

a set of goal states, and a set of path constraints.” (Newell, 1980) 

Rosie is implemented in Soar, which has been applied to a wide variety of domains 

and tasks, including natural language understanding and robot control (Laird, 2012). 

Recent extensions to Soar, including episodic and semantic memories, as well as a visual-

spatial system, enhance Soar’s ability to support grounded language learning. Relevant 

components are described in the following paragraphs. 
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Figure 5: Soar architecture block diagram showing interaction (input and output) between the 
long term memories, working memory, and the Spatial Visual System (SVS) used for perception. 

 

Soar contains a task-independent spatial visual system (SVS) that supports translations 

between the continuous representations required for perception and the symbolic, relational 

representations in Soar. The continuous environment state is represented in SVS as a scene 

graph composed of discrete objects and their continuous properties. Binary spatial 

predicates are computed when an agent issues a query for a specific predicate such as X-

axis-aligned(A,B). The set of predicates is task independent and fixed, but predicate 

extraction is controlled using task-specific knowledge. 

Figure 5 shows a block diagram of Soar picturing the organization and interactions 

between working memory, SVS, and the long-term memories: procedural, semantic, and 

episodic memory. 

In Soar, working memory maintains symbolic relational representations of current 

and recent sensory data, current goals, and the agent’s interpretation of the current situation 
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including mappings between objects in the scene and internal symbols and words. Working 

memory buffers provide interfaces to Soar’s long-term memories, the perception and action 

systems, and the instructor interface. 

Procedural memory contains Soar’s knowledge of how to select and perform 

actions (called operators), encoded as if-then rules. The locus of decision making is not the 

selection of a rule. Instead, Soar fires all rules in parallel. The rules propose, evaluate, or 

apply operators, which are the locus of decision making. Only a single operator can be 

selected at a time, and once an operator is selected, rules sensitive to its selection and the 

current context perform its actions (both internal and external) by modifying working 

memory. Whenever procedural knowledge for selecting or applying an operator is 

incomplete or in conflict, an impasse occurs and a substate is created in which more 

reasoning can occur, including task decomposition, planning, and search methods. In Soar, 

complex behavior arises not from complex, preprogrammed plans or sequential procedural 

knowledge, but from the interplay of the agent’s knowledge (or lack thereof) and the 

dynamics of the environment. In Rosie, procedural memory holds rules that implement the 

processing capabilities such as lexical processing, human-agent interaction, grounded 

comprehension, and acquisition of grounded representations of words. The agent also has 

rules that implement the primitive actions and their models. The acquired action-execution 

knowledge for verbs is stored in procedural memory. 

Chunking is a learning mechanism that creates rules from the reasoning that 

occurred in a substate. When a result is created in a substate, a rule is compiled. The 

conditions of this rule are the working-memory elements that existed before the substate 

and were necessary for creating the result, and the actions are the result. The rule is added 

to procedural memory and is immediately available. Chunking is the mechanism that learns 

the action-execution knowledge for novel verbs. 

Semantic memory stores context-independent declarative facts about the world. The 

agent can store working memory elements in semantic memory. Elements are retrieved by 

creating a cue in a working memory buffer and finding the best match (biased by recency 
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and frequency) in semantic memory. In Rosie, semantic memory stores linguistic mapping 

knowledge, such as the mapping between a word and a perceptual symbol (red color 

corresponds to symbol r43). Apart from linguistic mapping knowledge, semantic memory 

also stores compositions of spatial primitives and action-concept networks (discussed 

later). One advantage of semantic memory over procedural memory is that any aspect of a 

memory structure can be used for retrieval, whereas in procedural memory, there is an 

asymmetry between the conditions and actions. An agent can use red as a cue, or it could 

use r43 as a cue, depending on what knowledge is available and what knowledge needs to 

be retrieved. 
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Chapter 4 Task Learning Process 

This section provides a detailed description of the entire task learning process. In our 

approach, learning a task requires learning many task elements: the goals, failure 

conditions, actions, and task-specific terms. Before showing how an entire task is learned, 

we describe how each task element is learned. This learning process is the same for all task 

elements irrespective of whether they are a goal, action, or task-specific term. The only 

difference, besides the way each type of element is applied, is that the teacher initiates the 

learning of a goal, action, or failure condition (“The name of the goal is three-in-a-row.”) 

and the agent initiates the learning of a task-specific term (“Please describe the meaning of 

‘clear’ in this context.”). Essentially, after the instructor begins teaching a new task (“The 

name of the game is Tic-Tac-Toe.”), the agent prompts the teacher to provide definitions 

of the actions, goals, and failure conditions, interacting to learn the meaning of task-

specific terms when necessary.  

This explanation is followed by an illustrative example detailing the complete 

process of learning a specific puzzle, learning all the task elements, drawn from the 

example presented in the introduction. Finally, we describe how this knowledge is used to 

solve and complete the task through search. Throughout, we use examples from different 

games and puzzles that Rosie has learned to illustrate the learning process. We also explain 

how the problem characteristics (C1-C4) and desiderata (D1-D4) have motivated decisions 

about the agent design and learning process. In Chapter 7 we describe an extension to the 

task learning process described here that enables Rosie to handle sources of ambiguity 

during learning caused by the problem characteristics. 

There are multiple types of task elements that must be learned to specify a goal-

oriented task: actions, goals, failure conditions, and new task-specific terms. All of these 

involve detecting the states in which the task element is appropriate: when an action can 
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be legally applied, when a goal has been achieved, when a failure state has been reached, 

or when a task-specific term is applicable. Each task element is defined by a linguistic term 

(“stack,” “three-in-a-row,” “clear”), a conjunction of predicate tests, and the usage 

knowledge specific to that task element type. We use predicate to generally refer to all the 

components that test arguments in the logical definition of the task element. Each 

individual predicate can refer either to a learned task element, such as clear(x), or 

knowledge that is part of the internal state derived from perception and primitive 

knowledge, such as red(x). 

For example, in teaching an action “stack” from the Blocks World, the following 

sentence could be used: “You can move a clear block onto a clear location.” The linguistic 

term is “stack,” the conjunction of predicate tests is clear(X) ∧ block(X) ∧ clear(Y) ∧ 

location(Y), and the usage knowledge for an operator has to do with its actions: ‘move X 

onto Y.’ 

In the sections below we describe in detail the four phases of the task element 

learning process: internal state creation (L1), language instruction (L2), recognition 

structure learning (L3), and operationalization (L4). 

 

4.1 Internal Model Creation (L1) 

In order to learn a new task element, Rosie must first be situated in a relevant environment, 

where the task can be performed, and it must build an internal model of the environment. 

The task element learning process requires that the described concept be present so that the 

correct grounding can be learned. Rosie starts by asking the instructor to configure the 

world into a state in which the conditions of the task element are satisfied. For an action, 

this is a state in which the action legally applies, while for the goal, it is a goal state, and 

so on. 
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Figure 6: The predicate relationships extracted for the displayed external environment are to the 
right. The predicates are between movable blocks (A,B,C) and immovable locations (X,Y,Z). 

The symbolic relational model of the external environment is maintained in Rosie’s 

working memory. This model is automatically updated as new perceptual information 

comes in from the external world. This world state model consists of a set of objects and 

predicates over those objects. The left side of Figure 6 shows blocks and locations in an 

external domain (table-top robotic arm). Overlaying the picture are the internal identifying 

labels (A, B, C, X, Y, Z) created by the agent for the objects in the world. The right side of 

the figure shows the derived internal state. 

Unary predicates defined over a single object, such as A or B, describe properties 

of that object, such as small(A) or block(B). Binary predicates defined over two objects 

describe spatial relations between those objects, such as on(A,B) or below(B,A). All 

relational predicates are represented symbolically, but are grounded in continuous 

representations maintained in the agent’s spatial/visual short-term memory (when not in a 

simulated environment). The teacher can see the current scene (on the left), excluding the 

object labels, but does not have access to Rosie’s internal state (on the right). The lack of 

common ground (C1) between the teacher and Rosie, and the many-to-many possible 

mappings between words and meanings (C3), makes learning more difficult.  

When Rosie is embodied in a robotic platform, its perceptual systems extract the 

objects and primitive features and relations, including colors (red, green), sizes (large, 

small), spatial relations (next to, below), object types (location, block), and labels (bank, 

destination). A complete list of Rosie’s primitive perceptual knowledge, including all 

concepts used for teaching the games evaluated in this thesis, is shown below in Table 1, 

organized by type. 
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Types   Primitives 
Object types location, block 
Colors* red, green, purple, yellow, orange, black, white,  

blue, brown, gray, pink 
Labels garbage, destination, card, bank, boat, pawn, king,  

knight, rook, queen, bishop, missionary, cannibal 
Shapes* cube, sphere, cylinder, rectangle, triangle, arch 
Sizes* tiny, small, medium, large 
Spatial relations on*, below*, near*, near*, left of*, right of*, under*, 

above*, behind*, in front of*, between (inclusive), 
between (exclusive), adjacent, diagonal, linear 

Table 1: Primitive perceptual knowledge about the external environment initial encoded in the 
agent. Previous implementations have learned classifiers for the “*” concepts. 
 
Many of these primitives were previously learned through simple KNN classifiers from a 

few training examples, but this has not been a recent focus of this work, which assumes 

initial knowledge of these primitive concepts (provided by either by stored training data 

for robotic platforms or directly from the world state for simulated environment). 
 

4.2 Language Instruction (L2) 

The instructor begins by teaching the name of the new task element, such as “The name of 

an action is stack.” Again, Rosie must have an instance of the described task element visible 

(for the internal state creation L1) to learn the correct grounding of the task element for the 

current context, so Rosie requests that the instructor set up a state that contains at least one 

instance of the described element, be that an action, goal, or failure condition. For example, 

it will request that the instructor show it an example of a state in which the action stack is 

applicable. Once the request has been satisfied, Rosie asks for a description from the 

instructor that defines that concept in the current setting: “Teach me the action stack.” 

In order to understand sentences that are typed or uttered by the instructor, Rosie 

uses a single path, incremental, construction-based parser developed in Soar by John Laird. 

Off the shelf parsers are inadequate because they lack semantic precision and are difficult 
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to dynamically extend online with new words. Rosie can parse a restricted form of natural 

language that is sufficient for descriptions of the many games and puzzles studied in the 

thesis. Some example of sentences used to teach these games and puzzles are in Figure 7. 

The parser can process multiple clauses, embedded clauses, and many natural forms 

of anaphoric references so that multiple references to the same object can be easily made 

in a sentence, thereby supporting moderately complex sentence structures. For example, 

Rosie can learn a goal from the sentence “The goal is that a small block is on a medium 

block and a large block is below the medium block.” This goal state is visible in Figure 6.  

The parser produces a relational representation that includes information derived 

from the linguistic structure of the sentence, such as specific relative clauses. Because of 

the many possible meanings (C3) that can be associated with the spelling of a new task 

element (such as “clear”), a unique symbol is created from the spelling of the word (such 

as clear5). A future usage of the term “clear” that has a different meaning will get its own 

unique symbol (clear7) when learned. The numbers are sequentially generated and not 

associated with any particular task or domain. Multiple definitions of the same term can be 

learned for a single task. 

“An object that is not below a block is clear.” 

“If the volume of a block is less than the volume of an object then the object is larger than 
the block.” 

“You can move a clear block onto a clear object that is larger than the block.” [Tower of 
Hanoi] 

“If a block is adjacent to a clear location then you can move the block onto the location.” 
[Eight Puzzle] 

“The goal is that there are eight matched locations.” [Eight Puzzle] 

“If the value of a location is equal to the value of the block that is on the location then the 
location is matched. [Eight Puzzle] 

“You can move a passenger of the boat onto the current bank.” [Fox River Puzzle] 

Figure 7: Example sentences used in teaching different tasks. 
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4.3 Recognition Structure Learning (L3) 

Once a relational representation of the sentence describing the new task element has been 

created, Rosie builds a structure to recognize it. The task element recognition structure 

learning process is decomposed into two phases, structure construction and structure 

interpretation. 

In the structure construction phase (described in detail in Section 4.3.1), the agent 

extracts a conjunction of predicates from the linguistic descriptions of the combinations of 

objects and relations. Rosie creates a declarative predicate structure that orders the 

conjunction of predicates to optimize later interpretation and support hierarchical 

composition. An example of the tree structure created is graphically depicted in Figure 8. 

From the goal “a small block is on a medium block and a large block is below the medium 

block,” the agent constructs the structure with the unary predicates at the bottom (block) 

and the binary predicates at the top. The leaf nodes are predicate tests that are evaluated 

against the agent’s perception of the world, and any objects that satisfy a predicate are 

passed up to the parent node during the grounding of concepts. 

 

 

Figure 8: A graphical representations of the declarative structure Rosie creates from natural 
language that orders the predicate tests. 
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The conjunction of predicates, p(x,...), is defined over a set of objects, x, which can be 

objects in the environment, as well as strings, numeric values, or sets of x. For example, 

from the goal description example, Rosie learns the conjunction: goal(x1,x2,x3) = small(x1) 

^ medium(x2) ^ large(x3) ^ on(x1,x2) ^ below(x3,x2). More generally, the conjunction can be 

represented as the intersection of n predicates fi() and m objects xj as shown in Equation 1. 

 

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = �𝑓𝑓𝑖𝑖�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

      1 ≤ 𝑗𝑗 ≤ 𝑚𝑚                                           (1) 

 
Predicates, p(x, ...), represent perceptual features: binary values over unary features (red, 

large...) and n-ary relationships (on, behind,...), but also set operations (choose K), 

functions (count, sum), comparators (less than), and actions (move). Predicates in the 

conjunction can be negated (¬below). A complete list of Rosie’s primitive knowledge that 

is not directly available in the agent’s internal model of the environment (L1), including 

all concepts used for teaching the games evaluated in this thesis, is shown below in Table 

2. For our purposes, we label predicates as functions if they generate or return a different 

result from their input arguments, such as choose K which generates all subsets of size K 

from a larger set or attribute of which returns the value of the specified attribute (color, 

size, etc.) of an object. For the discrete primitive actions that the agent can perform, such 

as “write” and “move,” Rosie knows the preconditions and effects, and can model each 

action during internal simulation. 

The results of functions, where y=f(x...), are represented as predicate p(y, x...) with 

the result y as the first argument. For example, the representation created for “the number 

of blocks is three” is count(3, blocks). Knowledge about primitives includes how they are 

referred to in relational representations created by the parser, so that the agent can convert 

utterances such as “the number of X is Y” to the predicate count(Y, X). 
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Types   Primitives 
Comparators less than, more than, equal to, x less than, 

x more than, same 
Functions product, choose K, numeric between, 

attribute of, count, sum, difference 
Actions pick up, put down, move, write  

Table 2: Primitive knowledge for actions, functions, and comparators encoded in the agent. 

 

New predicates can be learned from the primitives as the agent learns task elements for 

task-specific terms, which enables the definition of hierarchical task elements through 

composition. Rosie converts the predicate conjunction into the tree structure (Figure 8) to 

help support composition of task elements and partial knowledge transfer (and reduce 

computation).  

Next in the structure interpretation phase (described in detail in Section 4.3.2), the 

agent interprets that structure within the context of its representation of the external 

environment, also using its internal knowledge about the meaning of primitive predicates 

(such as on), learned predicates (such as clear), and internal functions (such as count). 

Rosie attempts to interpret the structure immediately after creating it, both to verify that 

the learned structure can be successfully grounded in the environment and to enable 

learning of procedural interpretation code that will be used for task performance. After 

verifying the learned structure, Rosie links it to the linguistic term for the task element and 

stores the structure into semantic memory (long-term declarative memory). 

These two phases of recognition learning, structure construction and structure 

interpretation, which enable the agent to detect the task element in the external 

environment, are described in detail in the following sections. 

4.3.1 Predicate Tree Construction 

Evaluating a conjunction of predicates to determine possible matches can be 

computationally expensive. This is especially true for functions if they are tested on many 
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possible objects or sets. Rather than trying to jointly satisfy all predicate tests at once, Rosie 

learns a hierarchical tree structure to order the tests and minimize computation. This is also 

critical to supporting the compositionality (C2) of task elements and knowledge transfer 

during accumulative learning (C4). An example of the tree structure that Rosie constructs 

from a conjunction of predicates is graphically displayed in Figure 8. The predicates are 

ordered so they can be efficiently evaluated, from bottom to top in the following 

interpretation phase. 

To construct this predicate structure, Rosie iterates through each predicate and adds 

it to the structure one by one, keeping track of the last predicate added to the structure that 

tested the same object or value. Rosie orders the adding of predicates based on the predicate 

arity and dependency information extracted during parsing, in order to minimize the 

number of objects tested by each predicate and thus reduce the time required to evaluate 

the structure. The pairwise effect of testing all combinations of objects causes evaluations 

of higher arity predicates to require more computation than lower arity predicates. For 

example, from the structure created for the goal in Figure 8, the predicate below will only 

be evaluated on object pair (A, B), the small and medium blocks from Figure 6. If the agent 

did not order predicate tree construction by arity and below was on the bottom of the 

structure it would have to test all objects pairwise: (A, B), (A, C), (A, D), (A, X), (A, Y), 

A, Z), (B, C), etc. This design decision also reduces the space of options to consider when 

contrasting multiple interpretations of task elements, which is an extension that we will 

describe later in Chapter 7, along with an explanation of how this design reduces the space 

of options. 

Here, the objective is to reduce the computation time required to use these task 

elements after learning, thereby minimizing agent execution time (D3). First, unary 

predicates (block, small,...) are added, followed by any predicates created from dependent 

clauses (such as “the block that is on a location is...”), followed by binary predicates (on, 

below) and finally n-ary predicates (such as between). 
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When defining a task element for a new task-specific terms such as “clear,” rather 

than an action, goal, or failure condition, the sentence is always structured as an if-then 

clause. Logically the clauses are considered to be if and only if statements, but this does 

not prevent the learning of multiple definitions for “clear” due to the generation of separate 

versions clear3 and clear4. 

For example, “clear” could be defined with the sentence “if a location is not below 

an object then the location is clear.” The objects referenced in the then-clause that are tested 

by the predicate being taught are labeled as the inputs of the new predicate. The input object 

for the definition of clear is the location. Figure 9 shows a graphical representation of the 

learned structure for an action from the Eight Puzzle that contains two task-specific terms, 

“clear” and “adjacent to.” For unary predicates, such as clear, there is only one input. For 

binary predicates, such as adjacent to, the inputs are labeled input1 and input2 for predicate 

arguments x1 and x2 respectively. The subgraphs showing the recognition structures learned 

for the new predicates clear and adjacent to are also displayed, with the accompanying text 

for teaching adjacent to. In this figure, each predicate is labeled with its type: unary feature, 

relation, function, input, or learned predicate. In addition, the graph shows the argument 

attachment of the verb, which is exclusive to action task elements. 
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Figure 9: A simplified graphical view of the representations Rosie learns for an action in Eight 
puzzle. Included are graphs for the hierarchical concepts used (clear) and taught (adjacent to). 
The words and boxes are highlighted according to their part of speech or type. 

When constructing the declarative predicate structure for “adjacent,” the objects in the 

then-clause that are referenced by adjacent are labeled as the inputs. The references to the 

input objects from the if-clause establish the necessary conditions for the new predicate 

defined over the inputs. 

Only the predicates contained exclusively in the if-clause are added to the predicate 

structure, so the structure learned for clear(x) only contains ~below(x, object). This last 

decision was made to allow Rosie to generalize and reuse the definition during 

accumulative learning (C4), but in some cases it causes Rosie to overgeneralize and 

transfer knowledge it should not. However, in the above example for “clear,” where Rosie 

assumes that the object being a location is not relevant because the predicate exists in both 

if and then clauses, this is a useful generalization; the learned representation ~below(x, 

object) will also work for non location objects, such as a block that is clear.  

If instead Rosie learned ~below(x, object) ^ location(x) it would need to learn 

another definition of clear for blocks. However, in a different example “if a banana is 

yellow then it is ripe,” the agent will overgeneralize and learn that ripe(x) means yellow(x), 

even though obviously not all yellow objects are ripe; it would be better to have learned 
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yellow(x) ̂  banana(x). This is a greedy design choice (which could be easily reversed) done 

to maximize potential transfer and minimize teach-agent communication (D2). For the 

tasks and environments we have explored teaching, this has not caused many problems, 

but it could for other tasks and environments, where it may be worthwhile to prioritize 

correctness of learning over quickness of teaching. Future work will explore mechanisms 

for verifying the correctness of learning and correcting mistakes created by 

overgeneralization or incorrect knowledge transfer. 

The existence of many possible meanings (C3) and the lack of knowledge of the 

instructors meaning (C1) makes correct generalization difficult. A more complex, complete 

example is discussed in Section 4.4.3. 

Strictly non-hierarchical, or flat, representations that attempt to encode the same 

knowledge are problematic, not only because they increase the required computation (D3) 

and communication (D3), but also because they make it difficult to parse the sentence, 

make appropriate anaphoric references, and resolve ambiguity. For example, without using 

clear or adjacent to define the action in Figure 9, the sentence would become: “If a block 

is next to a location that is not below a block but it is not diagonal with the block then you 

can move the block onto the location.” Determining the correct attachment of the clauses 

and the object references is difficult: which of the blocks referred to in the if-clause are the 

ones references in the then-clause? Hierarchical composition (C3) helps reduce the number 

of objects, predicates, and the overall complexity of each task element. 

After Rosie has finished creating the recognition structure, it stores the declarative 

structure in long-term semantic memory, so that it be linked with the linguistic term for the 

task-element, such as “clear” or “three-in-a-row,” and the name of the task being taught, 

such as “Tic-Tac-Toe.” This structure can be retrieved from semantic memory at a later 

time, such as when it is used in another task, using the linguistic term or the task name as 

a cue. 
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4.3.2 Structure Interpretation (Grounding) 

Once Rosie has created a recognition structure, it tries to use it to recognize the task element 

in its internal model of the environment (L1). As previously mentioned, the task element 

must be present in environment so that Rosie can learn the correct task-specific grounding 

of each term. This is necessary to verify the correctness of the recognition structure for the 

current context, learn procedural knowledge for directly evaluating the structure (though 

chunking), and to determine if the agent requires additional knowledge: it may need to 

learn another task element for a task-specific term used in the recognition structure. Rosie 

interprets the declarative predicate structure using internal knowledge about functions, 

primitive predicates, and learned predicates, and grounds it in the agent’s perception of its 

external environment. Essentially Rosie is figuring out how to interpret, or ground, the 

declarative structure in a situated context given its current state of knowledge so that is can 

recognize the task element that structure defines. 

Figure 6 displayed an example external environment that can be used to interpret 

the Blocks World goal described above. The interpretive process finds all possible 

matchings of the environmental state to the task element. This process is decomposed into 

two parts: first, the constituent predicates of the structure are individually evaluated by 

matching them against internal knowledge to produce sets of candidates from the 

environment that individually satisfy each predicate; second, the candidates generated by 

the predicates are joined or intersected, filtering out objects that do not simultaneously 

satisfy all the constraints. 

 

Individual predicate matching: 

Different types of predicates (such as spatial relations, unary features, and functions) are 

evaluated using different methods. Each method evaluates the predicate within the context 

of the world state by retrieving the predicate’s associated semantics based on the linguistic 

term. For example, for the function referenced by “number of,” Rosie uses an internal count 
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operation that calculates the size of the set. The predicate matching process completes when 

results have been calculated for every predicate in the learned representation. 

Figure 10 shows the results of predicate matching for the example Blocks World 

goal and world state shown in Figure 6. The results of a predicate are depicted at the top of 

each box representing the predicate. Rosie first evaluates the unary predicate block over all 

the objects in the world state (A, B, C, X, Y, Z), successfully matching only against A, B, 

and C. Due to the ordering constraints that Rosie imposes through the learned structure, 

when Rosie evaluates the predicates for small, medium, and large, they are tested against 

only the blocks A, B, and C. The predicates for on and below are evaluated last and are 

tested against only the blocks A, B and C, B respectively. This helps Rosie to achieve faster 

execution (D3), especially when there are many predicates and functions in the description. 

 
Figure 10: A graphical representations of the declarative structure from Figure 8, now marked 
with the results of predicate matching indicated by object identifier numbers in red. 

Joining/satisfying intersection: 

After each constituent predicate has been evaluated, Rosie attempts to jointly satisfy the 

arguments of the declarative predicate structure by evaluating the intersection of the results 

from the predicate matching. The results are the objects and values in the external world 

that satisfy all constraints. For the Blocks World goal in Figure 6, the join is trivial because 



 

48 

 

there is only one block of each kind, small, medium, and large, and blocks A, B, and C 

satisfy all the predicates jointly. 

4.3.3 Learning procedural rules through chunking 

The processing described above is implemented in Soar as a hierarchy of problem spaces 

with associated operators. Thus, the interpretation phase is dynamically decomposed into 

operators that perform the component processing steps of predicate matching, term linking, 

and joining. Each of these is implemented in its own substate through operators that 

manipulate the appropriate data structures.  

A critical aspect of this process is that as a side effect of the processing, Soar’s 

chunking mechanism creates rules that capture the input-output mappings of the 

processing. Chunking dynamically compiles the processing in a substate into procedural 

rules, so that when the situation that led to the substate arises in the future, the processing 

in the substate is bypassed by those rules. During the interpretation process, rules are 

learned for each of these component processing steps so that in the future, the deliberate, 

sequential processing is replaced by procedural rules (native Soar production code D3). 

These rules can directly recognize and apply the task elements, but much faster 

(approximately 80x) than the initial interpretation process. During the interpretation 

process, three different kinds of rules are learned. 
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Figure 11: A representation of the procedural knowledge, the soar rule, learned through chunking 
for resolving “volume of.” 

 

The first type of rule Rosie learns though chunking is from predicate matching (Section 

4.3.2). Rosie learns rules to evaluate primitive unary features, spatial relations, and internal 

functions. The processing of some predicates lead to multiple rules being learned, such as 

those dealing with functions and sets of objects. For example, consider that Rosie is 

learning the task-specific term “larger than,” which the teacher has defined with “If the 

volume of an object is more than the volume of a block then the object is larger than the 

block.” Figure 11 shows the recognition structure learned for “larger than” during the 

process of predicate matching. The figure also shows a representation of the agent’s 

internal model of the environment (at the bottom), and a representation of the Soar rule that 

is learned for evaluating volume of (on the right). 

Once a rule is learned, it replaces the processing via the hierarchy of operators used 

to interpret the predicate. The interpretation process is impasse driven, only the absence of 

results causes the predicate interpretation process to begin. In this example, this would 

involve retrieving knowledge about the predicates from semantic memory,  and then using 

the context of its internal model of the current state of the world (shown on the bottom of 
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the figure) to determine that volume is an object property that is a unary primitive numeric 

attribute of objects that are currently visible in the world. Recent improvements to 

chunking have improved its ability to generalize, so that the elements highlighted in blue 

in the rule shown in Figure 11 are variablized: this rule will also be able to evaluate a 

similar predicate, such as for color of, without learning a new rule, thus transferring 

knowledge. This type of knowledge transfer does not reduce the amount of instruction 

required from the teacher, but does reduce the time it takes for structure interpretation 

during the learning of future task elements.  

Figure 12 shows another example of a rule learned for the evaluation of the more 

than predicate, which can be evaluated now that volume of has generated results (for both 

input arguments). In this example, Rosie learns a rule for evaluating binary predicates that 

compare two integer objects (A and B) and returns a pair (A, B) as a positive result if the 

first number (A) is larger than the second number (B). This rule is not very general: the 

agent would need to learn another rule for less than or equal to. Not all learned rules have 

the level generality shown in rule from Figure 11. 

 

 
Figure 12: A representation of the procedural knowledge, the Soar rule, learned through 
chunking for resolving “more than.” 
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The second type of rule Rosie learns is during the process of linking the linguistic term to 

the learned structure. These rules test the name of the task element used, whether it is a 

goal, failure, action, or new predicate for a task-specific term, and then add the 

corresponding recognition structures into working memory (WM). Figure 13 show a 

representation of the procedural knowledge learn for larger-than1. The existence of the 

predicate larger-than1 in part of another task element, such an action, will cause this rule 

to match and fire, so that larger-than can be evaluated over its input arguments. These rules 

are not general, they are specific to a single task element. 

 

Figure 13: A representation of the procedural knowledge learned through chunking for creating 
the recognition structure of a task-specific term, “larger than,” in working memory. 

These rules prevent Rosie from retrieving the recognition structures from semantic 

memory, because the existence of the task element’s name in working memory causes the 

rules to match and fire, adding the structures directly to working memory. Figure 14 shows 

a representation of the procedural rule learned for a goal from the blocks world example. 

 
Figure 14: A representation of the procedural knowledge learned through chunking for creating 
the recognition structure of a task element, the goal example, in working memory. 



 

52 

 

The final type of procedural knowledge that Rosie learns is learned during the linking of 

the name of the task to the actions, goals, and failures. Figure 15 shows a representation of 

the procedural knowledge learned for the eight puzzle, which links the name of the game 

to its action, slide2, and goal, eight-matched5. 

 

 

Figure 15: A representation of the procedural knowledge learned through chunking for link the 
names of the goal, action, and failure conditions for a task, in this case the eight puzzle. 

In the future, when the task is attempted again, these rules cause Rosie to add to working 

memory the names of all the goals, actions, and failure conditions learned for that task, 

without needing to retrieve them from semantic memory. This in turn causes the second 

type of rule to match and fire, populating working memory with the recognition structures 

for those actions, goals, and failure conditions. If there are any task-specific terms, their 

existence in the recognition structures of the other task elements will cause additional rules 

to match and fire, adding into working memory the recognition structures for those task-

specific terms. These structures can be directly evaluated against the agent’s internal model 

using the first type of rules that it learned. 

Although the declarative structures are still maintained in long-term semantic 

memory, these rules, stored in procedural memory, are all that Rosie needs to be able to 
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attempt or solve a task. No semantic memory retrieval or interpretation is necessary after 

learning. The agent runs as normal but with the addition of the procedural rules that avoid 

the impasses and enable the agent to recognize every task element when it is prompted to 

attempt the task. 

4.3.4 Recursive Learning Algorithm 

As mentioned previously, the learning can recursively loop through L1-L4 when Rosie 

requests a definition for a task-specific term. However, in many cases there are multiple 

options to pick from: there is more than one predicate that cannot be satisfied or grounded 

in the current context given the agent’s current state of knowledge. In the past, Rosie 

selected the first term mentioned, but with an increasing numbers of terms it could learn, 

and for cases where many task-specific terms needed to be defined for a single task-

element, we have had to develop a more sophisticated recursive learning algorithm to guide 

the learning process. 

 The process of learning to ground all parts of the task element is described by the 

Recursive Grounding Function (RGF) depicted in Algorithm 1. The input is the generated 

recognition structure, here represented as a conjunction of predicates as shown in Equation 

1. The terminal condition is that the input function f(x) can be satisfied, meaning that an 

instance of the task element is detected in the environment by applying the recognition 

structure. If no definition is known for f(x), the agent prompts the teacher for a definition. 
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Otherwise, for each of the unsatisfied predicates fi() used to define f(x), Rosie proposes a 

recursive function call RGF[fi()]. The agent also proposes RGF[f()] to consider learning a 

new definition for f(x) even though it already has one (many-to-many mappings). Because 

there may be many unsatisfied predicates, heuristics are used to select which recursive 

function call to make.  

These heuristics leverage the hierarchical tree structure of the task elements to bias 

the selection of the next unsatisfied predicate to attempt to learn a new meaning for. The 

heuristics used for this process are listed below in order, with heuristics listed earlier taking 

precedence over those that follow. Rosie prefers learning predicate p over predicate q, 

where f(x) is undefined for both, if the arguments of p, its child predicates in the recognition 

structure, have both returned results. This prevents trying to learn a new definition for a 

predicate that has no chance of being successfully learned: it has no values or objects as 

input arguments to test. Rosie prefers learning predicate p over q if p is a descendant of q 

(block is a descendant of below in Figure 14, small is not). Rosie prefers learning predicates 

that are lower in the hierarchy of task elements (RGF[fi()] > RGF[f()]). This learning 

function terminates when it has learned to recognize and apply the task element f(x) and all 

supporting task-elements fi(x) used to describe it. 
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4.4 Operationalization of Task Elements (L4) 

Once the declarative predicate structure has been successfully interpreted and grounded in 

the agent’s perception of its environment, and procedural rules for this process have been 

learned, the task element has been recognized and can now be operationalized, or applied, 

in the task environment. The type of task element being taught determines the details of 

the operationalization learning phase. To operationalize an action task element is to identify 

available legal actions. Those actions are then proposed to search or to act in the world. 

To operationalize a goal task element is to indicate that the goal state has been 

detected: the agent has won the game. For example, if Rosie recognizes the goal three-in-

a-row in the internal state created by simulating an action in Tic-Tac-Toe, it now knows 

that that action will win the game. To operationalize a failure condition task element is to 

indicate that a terminal state has been detected: the agent has lost the game or found a bad 

solution path. For example, if Rosie recognizes the failure condition of Tower of Hanoi 

puzzle, larger-on-smaller, in an internal state while searching for the solution, Rosie stops 

searching down that path. To operationalize a task-specific term task element is to indicate 

a successful match of a predicate that is part of the definition of another task element. For 

example, if Rosie recognizes the unary term captured in a game state of Tic-Tac-Toe, the 

knowledge of which squares are captured allows Rosie to determine if the goal (“three 

captured locations in a line”) is present. The procedural rules Rosie has learned (Section 

4.3.3), such as the example in Figure 13, are sufficient for operationalizing a task-specific 

element because it only involves recognition, so no additional code is required to 

operationalize it, unlike the other task elements. 

4.5 Task Solving 

The instructor signals that they are done teaching the actions, goals, and failure condition 

of the task by telling the agent they are “done.” At this point Rosie has learned declarative 
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knowledge (the recognition structures) and procedural knowledge (the chunked rules) for 

recognizing and operationalizing the goals, actions, failure conditions, and supporting task-

specific terms, by recursively applying the learning process described (L1-L4) for each 

unknown task element. 

After completing learning the task, Rosie asks the instructor if it should attempt to 

solve the task: “I have learned the task. Should I try to solve the puzzle?” The agent solves 

the task through straightforward search, by using the task element knowledge to propose 

actions, apply them through internal simulation, and evaluating the resulting states and 

whether they contain a goal or failure condition. If the task is a multiplayer game, not a 

puzzle, instead the agent asks “Shall we play a game?” and only searches forward one step. 

For single-player puzzles, it uses iterative deepening, implemented as recursive 

substates in Soar (Laird, 2012), to search for the goal. For each state in the search, Rosie 

determines whether a goal or failure state is present, and if not, iteratively extends the 

search by generating the legal actions for the new state until the current depth limit is 

reached. If a failure state is encountered, that search path is abandoned. If a goal state is 

encountered, the search terminates, and the appropriate action is selected, and the 

associated verb command is executed. If the task is a single-player puzzle, Rosie 

successively selects and executes the actions it discovered that were on the path to the goal. 

These actions are retrieved from an “actions to perform” stack that Rosie maintains; each 

action that is in the path to the goal is pushed onto the stack. 

The internal search is possible because even though the full action model of a task 

action is not specified by the instruction, the agent has the action knowledge of the 

associated primitive verbs. A full action effect model specifies not only the direct result of 

the action, but all the related relationships that change as a result. For example, an action 

in the Eight Puzzle, slide, does not verbally encode the fact that a new location is made 

empty. That is, the preconditions of an action are encoded, but not all of its effects. 

However, because Rosie has primitive knowledge of the verbs used to define the task 

actions, such as pick up or move, it can simulate these actions using built in action models. 
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When embodied in real non-simulated environments, Rosie also has the capability to 

simulate actions in its spatial visual system to determine not only their primary effects 

(such as the movement of a tile to a new location), but also secondary effects (such as 

changes in spatial relations with other objects). This capability is unique compared to other 

game player systems, such as those using the Game Description Language (Genesereth & 

Love, 2005), which must explicitly represent all primary and secondary action effects. 

When playing a two-player game, Rosie only searches forward one step. The agent 

currently lacks knowledge about the opponent, or its actions. If the agent is one move away 

from a goal, the one-step search is sufficient; in other cases, the agent uses a general 

heuristic that approximates the state’s distance to the goal. It calculates this approximation 

by counting the number of partially matched goal parameters, which produces better than 

random behavior for many games. These limitations of the solution strategies of the agent 

(iterative deepening and one step look-ahead) are not a result of fundamental limitations of 

the system (and the representation it learns) rather they have not been a focus of our 

research; we have not put effort into more sophisticated search techniques.
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Chapter 5 Task Learning Examples 

This chapter provides a verbose example of task learning, showing everything that is 

learned for an entire task, and examples of different task-specific terms that Rosie has been 

able to learn for various tasks. The example task is drawn from the example river crossing 

puzzle from Chapter 1. 

 

5.1 Learning the Jealous Managers Puzzle 

This section illustrates the previously described learning process through an example of 

learning the task elements of the puzzle introduced in the first chapter. In this instance there 

are only two pairs of agent-managers as shown in Figure 16, in order to simplify analysis 

of the learned representations and how they map to this environment. 

 

Figure 16: A depiction of an instructor attempting to teach a situated version of a river crossing 
problem and the agent’s internal model derived from its perception and knowledge. 
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This puzzle requires that you ferry managers and actors across a river, with at most two in 

the boat at once, while avoiding the actors from being “poached:” the actor cannot be on a 

bank with another manager when their own manager isn’t there. Given such a sparse 

representation of the environment, only the colors, shapes, and simple relations of blocks 

are known, how could a robot learn the complete puzzle? 

One possible way that the task could be taught is shown in the dialog below 

showing the interactive dialog between the teacher and Rosie (highlighted in red). Each 

sentence is ordered with red numbers (referenced by superscripts) and each task elements 

that the agent learns are enumerated in bold (referenced by subscripts). The details of each 

task element description will be explained throughout the learning process below. 

 

1. The name of the puzzle is jealous-managers. 
2. Please setup the puzzle. 
3. Ok. 
4. Please describe the actions, goals, and failure conditions. 
5. The name of an action is ferry-one1. 
6. What are the conditions of the action? 

  
The instructor initiates the teaching a new task by give it a name: “The name of the puzzle 

is jealous-managers.”1 If the agent knows this task already (by name), it will ask if it should 

try to solve the puzzle or play the game, otherwise it will learn a new task. Rosie starts by 

asking the teacher to setup the puzzle in the current environment, as shown in Figure 16, 

and then asks the teacher to initiate the teaching of actions, goals, and failure conditions. 

The agent initiates the learning of task-specific terms. The instructor begins by teaching 

the name of an action to be learned: “The name of an action is ferry-one.” 5 When Rosie 

decides it needs a new definition for a task element, in this case it doesn’t know any task 

element named ferry-one1, using the process described in section 4.3.4, it initiates an 

interaction with the teacher to learn that concept: “What are the conditions of the action?”6 

This learning is guided by the process described in section 4.3.4, but will not be described 

in detail here.  
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When Rosie prompts the teacher for a definition of the action the teacher responds “You 

can move the boat and a person2 on the current3 bank onto the opposite4 bank.”7 However, 

Rosie does not know the meanings of the task-specific terms “person,” “current,” and 

“opposite.” These terms do not show up in the task environment (Figure 16) and Rosie 

does not know how to ground them. 

 
7. You can move the boat and a person2 on the current3 bank onto the 

opposite4 bank. 
8. Please describe the meaning of current in this context.  
9. If the bank is below a boat then it is the current4 bank. 
10. Please describe the meaning of below in this context.  
11. If a block is on an object then the object is below5 the block. 
12. Ok, Ive learned the meaning of below for this context.  
13. Ok, Ive learned the meaning of current for this context.  

 
 
The first task specific term Rosie attempts to learn a new meaning for is current4. When 

prompted by Rosie, the teacher describes “current” as “If a bank is below a boat then it is 

the current bank.”9 However, looking at Figure 16 again, the agent only knows the primitive 

spatial relationship on. The inability to detect any results for “below” prompts Rosie to ask 

for a new definition for below5, which the teacher defines simply as the inverse of on: “If 

a block is on an object then the object is below the block.”11 With this knowledge, Rosie 

can now satisfy the recognition structure for below5 which enables it to satisfy the 

recognition structure learned for current4, and finally it can evaluate the action again, 

which prompted this recursive learning of the unknown terms. However, Rosie is still 

unable to ground two of the terms. 

14. Please describe the meaning of opposite in this context.  
15. If the bank is not current then it is the opposite8 bank. 
16. Ok, Ive learned the meaning of opposite for this context.  
17. Please describe the meaning of person in this context.  
18. If an object is a block and it is not a boat then it is a person3. 
19. Ok, Ive lear ned the meaning of person for this context.  
20. Ive learned the action.  
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When prompted by Rosie for a definition of opposite8 (line 14), rather than defining it 

from primitives, the teacher uses a term that we have already defined, and defines a concept 

using its negative: “If a bank is not current then it is the opposite bank.”15 Once Rosie has 

successfully learned how to recognize and apply opposite8 in the current environment, 

Rosie prompts for a definition another ungroundable concept person3. In this instance of 

the puzzle, from looking at Figure 16, we can see that all the people are represented by 

blocks, but the boat is also a block. In this example, the instructor decides to teach the 

meaning of person3 as “If an object is a block and it is not a boat then it is a person3.” 18 

With these new definitions, Rosie can now recognize the action ferry-one1 and 

operationalize it: move a person on the current bank (with the boat) and the boat on to the 

opposite (not current) bank. 

 
21. The name of an action is ferry-two6. 
22. What are the conditions of the action? 
23. You can move a person3 that is on the current bank and another person3 

that is on the current4 bank and the boat onto the opposite8 bank. 
24. Ive learned the action.  

 
Now that Rosie knows how to ferry a single person with the boat, Rosie is taught how to 

ferry two persons with the boat, ferry-two6 (line 21). When Rosie prompts the teacher for 

a definition “What are the conditions of the action?”22 the teacher responds with “You can 

move a person3 that is on the current4 bank and another person3 that is on the current4 

bank and the boat onto the opposite8 bank.”23  Rosie has just learned meanings for these 

terms, and because they lead to matches in the environment, though intra task transfer 

Rosie does not require or ask for additional definition of terms and is immediately able to 

detect the new action. 

Rosie has now learned all the necessary action knowledge for solving this puzzle 

and must now learn the failure condition and goal. This learning example is completed on 

the online archive at umich.edu/~jrkirk/ijcai2019.html, where we also include figures and 

analysis of each recognition structure that is learned for each of the task elements, which 

was too verbose to include here. 
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5.2 Examples of Learned Task-Specific Terms 

A list of some of the task elements that Rosie has learned, specifically task-specific terms, 

is shown below in Table 3, organized by the Part of Speech (POS) of the word. This is not 

a complete list of everything Rosie has learned, but shows many of the different types of 

terms it can learn in different situations.  

Part of Speech   Task-specific Terms Learned 
Nouns frog, toad, box, boat, actor, manager, missionary, 

cannibal, grapefruit 
Nouns used as 
Functions (with of) 

passenger of, husband of, wife of, occupant of, 
manager of, position of, neighbor of, score of 

Prepositions adjacent to, below, on, under, in a line, in a group, 
left of, right of, … 

Adjectives covered, free, clear, current, your, small, large, huge, 
wild, frog-covered, toad-covered, matched, matching, 
occupied, colorless, shapeless, surrounded, center, 
fork, raw, cooked, well-done 

Comparative 
Adjectives 

smaller than, colder than, heavier than, higher than, 
lower than, weaker than, stronger than, warmer than 

Superlative 
Adjectives 

coldest, hottest, largest, smallest, highest, heaviest, 
lowest, top, bottom 

Stative Verbs attackable by, attacking, capturable by, occupied by, 
conquerable by, matched by, captured by, captured 

Table 3: A list of some examples of task-specific terms that Rosie has learned organized by the 
part of speech of the term. 

The ability to compose hierarchies of task elements enables Rosie to learn many different 

types of task elements (C2). Essentially Rosie can learn new classes of knowledge based 

on the types of available primitives. In various domains these primitives have included 

colors (red, green), sizes (large, small), relations (next-to, smaller-than), labels (location, 

destination), and functions (count, attribute-of, comparison). Through hierarchical 

composition of these primitives, Rosie can learn new relations (adjacent to), labels 

(captured, current, opposite), and functions (husband-of, passenger-of). Rosie can also 
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learn synonyms (huge), antonyms (covered and clear), and homonyms (matched). The two 

different definitions learned for “matched,” as well as some of the other example learned 

task elements, are described below. 

The learned task elements can be task and domain dependent and be redefined 

based on the available knowledge and environment representations. For example, in an 

instance of the Jealous Husbands river crossing puzzle, the attribute used to designate 

couples is their “last-name,” which is unique to each pair of men and women. In this 

domain, when describing the failure condition: “If a woman is on a bank and the husband 

of the woman is not on the bank and another man is on the bank then you lose,” the 

unknown term “husband of” can be described by: “If the last-name of a woman is the last-

name of a man then the man is the husband of the woman.” 

In the following subsections we show examples of sentences used to teach different 

task-specific terms organized by the Part of Speech of the term. 

5.2.1 Nouns 

Examples of sentences used to teach task elements for task-specific terms that are nouns 

are displayed in Figure 17. 

“If an object is a block and the object is red then it is a frog.” 
“If an object is a blue block then it is a toad.” 
“If an object is a medium brown rectangle then the object is a box.” 
“If an object is brown and it is on a bank then it is a boat.” 
“If the shape of an object is a star then it is an actor.” 
“If the shape of an object is a cylinder then it is a manager.” 
“If an object is a red block and the object is on a bank then it is a missionary.” 
“If an object is a blue block and the object is on a bank then it is a cannibal.” 
“If an object is a large yellow sphere and the object is in the kitchen then the 
object is a grapefruit.” 

Figure 17: Example sentences used in teaching task elements for nouns. 
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Rosie can be taught task-specific terms for nouns by leveraging the current attributes it can 

detect for an object. This enables the instructor to use appropriate terms, such as 

“missionary” or “actor,” for teaching the actions and goals to Rosie, even when the agent’s 

sensing of the environment is limited to very simple features, such as colors and shapes. 

These definitions are often not very transferrable outside of the task (inter task transfer) 

because they are context specific, but they do support intra-task transfer, such as between 

the task actions and goals. 

5.2.2 Nouns that act as functions 

Examples of sentences used to teach task elements for task-specific terms that are nouns 

that act as functions, by combination with “of,” are displayed in Figure 18. 

“If a block is on a boat then the block is a passenger of the boat.” 
“If the last-name of a woman is the last-name of a man then the man is the 
husband of the woman.” 
“If the last-name of a man is the last-name of a woman then the woman is the 
wife of the man.” 
“If a block is on a location then the block is an occupant of the location.” 
“If the color of a manager is the color of an actor then it is the manager of the 
actor.” 
“If a location is below a block then the location is the position of the block.” 
“If a location is adjacent to another location then the former location is a 
neighbor of the later location.” 

Figure 18: Example sentences used in teaching task elements for nouns that act as functions. 

 

Rosie can be taught task-specific terms for functional nouns, or nouns that act as functions, 

such as “passenger of” or “position of.” 
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5.2.3 Prepositions 

Examples of sentences used to teach task elements for task-specific terms that are 

prepositions are displayed in Figure 19. 

“If a location is next to an object but it is not diagonal with the object then it is 
adjacent to the object.” 
“If a block is on an object then the object is below the block.” 
“If a block is blue and the column of the block is the column of a location then 
the block is below the location.” 
“If a block is below an object then the object is on the block.” 
“If a location is above an object then the object is under the location.” 
“If the blocks have the same row then they are in a line.” 

Figure 19: Example sentences used in teaching task elements for prepositions. 

 

Rosie can also be taught task-specific terms for prepositions, such as “adjacent to” or “in a 

line,” using primitive spatial relations, such as “diagonal” or “next to,” or other learned 

prepositions. 

5.2.4 Adjectives 

Examples of sentences used to teach task elements for task-specific terms that are 

adjectives are displayed in Figure 20. 

“If a location is below an object then it is covered.” 
“If a block is not on a location then it is free.” 
“If a location is not below an object then it is clear.” 
“If a bank is below the boat then it is the current bank.” 
“If a block is red then it is your block.”  
“If the volume of a block is more than 2 then it is small.” 
“If the volume of a block is more than 5 then it is large.” 
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“If a block is large then it is huge.” 
“If the value of a card is eight then the card is wild.” 
“If a location is below a red block then the location is frog-covered.”                                      
“If a location is below a blue block then the location is toad-covered.” 
“If the color of a location is the color of the block that is on the location then the 
location is matched.” 
“If the value of a location is the value of the tile that is on the location then the 
location is matched.” 
“If the locations have the same value then they are matching.” 
“If a location is below a blue block then it is occupied.” 
“If the color of an object is absent then the object is colorless.” 
“If the shape of an object is absent then the object is shapeless.” 
“If the number of covered locations near a clear location is eight then the clear 
location is surrounded.” 
“If the number of locations diagonal with another location is four then the 
location is a center location.” 
“If the number of captured locations near a clear location is more than one then 
the location is a fork location.” 
“If the color of a steak is red then the steak is raw.” 
“If the color of a steak is brown then the steak is cooked.” 
“If the temperature of a steak is more than 150 and the steak is brown then the 
steak is well-done.” 

Figure 20: Example sentences used in teaching task elements for adjectives. 

 

Rosie can also be taught task-specific terms for adjectives. For example, instructor might 

use (and then be forced to define) the adjectives “center” and “fork” while teaching Tic-

Tac-Toe. 
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5.2.5 Comparative Adjectives 

Examples of sentences used to teach task elements for task-specific terms that are 

comparative are displayed in Figure 21. 

“If the volume of a block is less than the volume of an object then the block is 
smaller than the object.” 
“If the temperature of a block is less than the temperature of an object then the 
block is colder than the object.” 
“If the weight of an object is more than the weight of another object then the 
former object is heavier than the latter object.” 
“If the value of a card is more than the value of an object then the card is higher 
than the object.” 
“If the value of a card is less than the value of an object then the card is lower 
than the object.” 
“If the number of blocks on a location is less than the number of blocks on an 
object then the location is weaker than the object.” 
“If the number of blocks on a location is more than the number of blocks on an 
object then the location is stronger than the object.” 
“If the temperature of a block is more than the temperature of an object than the 
block is warmer than the object.” 
“If the kelvin-value of a block is more than the kelvin-value of an object than 
the block is warmer than the object.” 
“If an object is red then it is warmer than an object that is blue.” 

Figure 21: Example sentences used in teaching task elements for comparative adjectives. 

 

By using the primitive comparative knowledge that Rosie knows, it is easy to teach it task-

specific terms for many different comparative adjectives, such as “colder than” or “smaller 

than,” by comparing different attributes of objects, such as “temperature” or “volume.” 

There are many possible meanings of these terms (C3), such as shown with “warmer than,” 

which vary widely based on the context. 
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5.2.6 Superlative Adjectives 

Examples of sentences used to teach task elements for task-specific terms that are 

superlative adjectives are displayed in Figure 22. 

“If an object is not hotter than any block then the former object is coldest.” 
“If an object is not colder than any block then the former object is hottest.” 
“If an object is not smaller than a block then the former object is largest.” 
“If a block is not larger than any object then the block is smallest.” 
“If an object is not lower than any card then the former object is highest.” 
“If an object is not higher than any card then the former object is lowest.”  
“If a card is on a deck and it is not below another card then it is a top card.” 
“If a card is on a deck and it is not on another card then it is a bottom card.” 

Figure 22: Example sentences used in teaching task elements for superlative adjectives. 

 

With the comparative adjectives that Rosie can learn, shown above, it is easy to then teach 

Rosie task-specific terms for superlative adjectives. For example, the instructor can teach 

Rosie the meaning of “smallest” using “larger than,” an object that is not larger than any 

object. 

5.2.7 Stative Verbs 

Examples of sentences used to teach task elements for task-specific terms that are stative 

verbs, which are often verb-derived adjectives, are displayed in Figure 23. 

“If a location is under an object and the location is diagonal with the object then 
the object is attackable by the location.” 
“If you can move a piece onto a location then the piece is attacking the 
location.” 
“If an occupied location is above a clear location then the clear location is 
capturable by a block on the occupied location.” 
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“If a location is below a block and the block is blue then the location is 
occupied by the block.” 
“If an occupied location is above a clear location then the clear location is 
conquerable by a block on the occupied location.” 
“If the color of a block is the color of an object then the block is matched by 
the object.” 
“If a location is below a red block then the location is captured.” 
“If a location is below a blue block then it is a captured location.” 
“If a location is below a red block then the location is captured by the block.” 
“If a blue block is on a location then the location is captured by the opponent.” 
“If the value of a location is X then the location is captured.” 

Figure 23: Example sentences used in teaching task elements for stative verbs. 

 

Rosie can learn stative verbs, or verbs that describe a state, such as that a location is 

“occupied by” a block or that a square is “captured.” Similar to the case of “warmer than” 

there are many possible meanings (C3) for “captured” depending on the usage, the task, 

and the environment. Although not explored in this work, there has been research 

conducted on Rosie (Mohan, 2015; Mininger & Laird, 2019) on teaching new procedural 

non-stative verbs, such as stack. For the games and puzzles (over 60) we have explored in 

this thesis, the agent has only been required to know only a couple procedural non-stative 

verbs, move and write, which are pre-coded as primitive knowledge (including action-

model knowledge) in the agent. A list of the primitives required, and task-specific terms 

learned, for each game Rosie can learn are listed in the appendix and the dialogues for 

teaching all 60 games are available in the public archive created at 

umich.edu/~jrkirk/ijcai2019.html.
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Chapter 6 Evaluating Task Learning 

We have run many different experiments on Rosie in order to evaluate its handling of the 

problems associated with the problem characteristics, (C1) lack of common ground,  

(C2) compositional concepts, (C3) many-to-many mappings, and (C4) accumulative 

learning, using the criteria set by the desiderata, (D1) maximizing generality, (D2) 

minimizing communication, (D3) minimizing agent execution, and (D4) minimizing 

memory growth, that we defined in Chapter 1. 

The games in the following evaluations were chosen so that there were some with 

considerable conceptual overlap (Eight Puzzle and Five Puzzle, Jealous Husbands problem 

and Missionaries and Cannibals, Picaria and Three Men’s Morris), and others with very 

little overlap, such as Othello and the Frogs and Toads puzzle. Rosie correctly learns the 

task knowledge for all of these games. 

Many of our evaluations concern the accumulation and transfer of knowledge 

between games and the ability of the system to continue running efficiently as multiple 

games are learned. The agent should be task general (D1), not be designed for any specific 

task, or set of tasks, and should be able to learn a large variety of different kinds of tasks 

and concepts. The agent should minimize communication during learning (D2) and not 

require large amounts of instructions or interactions. It should limit what is learned from 

scratch through the transfer (reuse) of knowledge, while avoiding negative knowledge 

transfer. After the agent has learn all task knowledge, the resulting learned representations 

should minimize agent execution time (D3), as if it had been hand-programmed with that 

task knowledge. As the agent accumulates task knowledge, the agent should minimize the 

growth in size of semantic, procedural, and working memory (D4), limiting what is added 

to the agent’s memories.  
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To evaluate how well Rosie meets the criteria laid out in the desiderata, we designed 

an experiment where we teach thousands of randomly generated permutations of the 

teaching order of a set of games. In each permutation, every game is taught, one after 

another via scripts. The scripts ensure that only those concepts required for a game are 

taught, so if a concept has been previously learned in another game, it will not be taught in 

the current game. These scripts are auto-generated by an independent (python) program 

that takes hand-written scripts for each task in the set and analyzes which meanings have 

been previously taught for each task in each permutation to generate a script that teaches 

all tasks. To simplify the experiment execution, we created rules in Soar that internally 

simulate the external environments. Rather than physically setting up the puzzle in the 

world, a message “load state1” updates the internal world state to the stored symbolic 

representation. This simulation had no impact on what was learned, but it eliminates the 

time for typing instructions and setting up game states. All experiments were run on a 

desktop computer on a single core. 

 

6.1 Evaluation of Generality (D1) 

A major goal of ITL, and this thesis, is to support task learning that is general (D1): the 

agent is not limited to a small set of tasks that it can learn. We have attempted over the 

years to teach Rosie an increasing variety of different games in different settings pushing 

the total number of games that Rosie is capable of successfully learning to demonstrate 

generality. With advancements in the complexity of learnable hierarchical concepts, the 

addition of agent primitives, and the leveraging of multiple interpretations to handle 

ambiguity in knowledge transfer, we have made Rosie capable of learning many more 

games. Initially we were only able to teach Rosie a few games (Tower of Hanoi, Tic-Tac-

Toe), which were then expanded into a small set of 11 games (Kirk & Laird, 2014). This 

was further expanded to 17 games (Kirk & Laird, 2016), then to 40 games (Kirk & Laird, 

2019), and finally to the 60 games that we can now teach Rosie. An exciting aspect of the 
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work is we have reached a point where it is common that we do not need to make changes 

to the system in order to handle a new game or puzzle. 

 These 60 games include many versions and variants of different games and puzzles. 

In the following list of these game we indicate variants by (total number) or (names). They 

are Tower of Hanoi (3), N-Puzzle (5), Marking puzzles (Sudoku, Killer Sudoku, 

Jigsawdoku, KenKen, Product KenKen, Logi-5, Shuffle, Survo, Suko, Sujiko, Kakuro), 

Map 4-Coloring,  Chess puzzles (N-Queens, N-Kings, N-Rooks, N-Bishops, N-Knights, 

Knight’s tour, King’s tour, Knight swapping, 4 Corner knight swapping), Peg solitaires (2), 

Card solitaires (Golf, Pyramid, Tri Peaks), River crossing puzzles (Fox, Goose & Bean, 

Missionaries and Cannibals, Jealous Husbands, Jealous Wives, Family crossing), Traveling 

Salesman in a grid, 3x3 stone games (Tic-Tac-Toe, Three Mens Morris, Picaria, Nine 

Holes, Connect-3), Othello, Breakthough, Frogs and Toads (2), Eight men on a raft, 

Stacking Frogs (3), Blocks World (2), Mazes (simple, block pushing), Sokoban, Mahjong 

puzzle, and a sorting puzzle. We have created a public archive as a resource for researchers 

that contains the teaching scripts and state representations for these games, as well as links 

to videos of Rosie learning some of these games. This data is available online at 

www.umich.edu/~jrkirk/ijcai2019.html. 

We have also explored learning tasks that are isomorphisms of classic word 

problems, such as determining the ages of three children given constraints on their relative 

ages (“the age of Bob is 3 more than the age of Alice.”) In this isomorphism, rather than 

describing initial state as part of the problem, the children are represented by blocks with 

values that the agent learns to modify to solve what their “ages” are, given a set of failure 

conditions. However, this is preliminary work that should be explored further in the future, 

especially the ability to be taught the state through language rather than demonstrating a 

physical external state.  

One of the challenging aspects of the thesis has been establishing the coverage or 

scope of learnable tasks and task elements using our approach. So far, we have described 

this space by identifying different types of tasks (and concepts) that Rosie can and cannot 

http://www.umich.edu/%7Ejrkirk/ijcai2019.html
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learn. We have created a large list of games and puzzles, in an attempt to define a taxonomy 

of games (and concepts) and show what parts of the definitions of various games make 

them learnable (or not) using our approach. Although this is not a formal specification it 

can, in many cases, enable someone to determine if there is a version of an arbitrary task 

that Rosie could learn. This list of games, along with the explanations of whether they are 

learnable and why, are shown in Table 2 in the Appendix. 

Another way we demonstrate the generality of the learning capabilities of Rosie is 

to show it learning in different settings. Rosie is not only capable of learning large number 

of diverse games and puzzles, but is also capable of learning them in many different 

environment domains and agent embodiments. Rosie has learned games in real-world 

robotic environments: a table-top robot arm that manipulates blocks and a Fetch robot that 

can move and manipulate objects on a table. Rosie has also learned games in simulated 

environments: the April Simulator of the table-top arm, the ROS simulator (Quigley et al., 

2009) of a Fetch robot, an agent internal simulation for grid based puzzles (such as 

Sudoku), and a simulated card game environment in an external Java application. 

The work presented in this thesis enables Rosie to learn games and puzzles that are 

goal-oriented and deterministic in fully observable environments where the only dynamics 

in the environment come from changes made by the agent, teacher, or an opponent. Prior 

work on Rosie (Mohan et al. 2012) explains how these representations are used to perceive 

and act in noisy real-world environments, which is not a focus of this thesis. 

Rosie cannot learn tasks that involve explicitly reasoning over arbitrary historic 

concepts, such as events in the past (such as needing to know the most recently placed 

knight in the Knight’s tour puzzle). However, Rosie can often learn a variant of these 

games, by explicitly learning to deliberately mark when certain events happen, and then 

use those marks for later reasoning. For example, Rosie can learn a variant of Knight’s 

Tour where the agent uses a red knight for capturing the next empty square, replacing it 

with a black knight every time it moves , in order to keep track of the most recently placed 

knight (the only red one) while covering the entire board. Parallel work (Mininger & Laird, 
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2018) has enabled Rosie to reason over historic information and handle partially observable 

scenarios when learning procedural tasks, but these capabilities have not yet been explored 

with respect to learning games and puzzles. 

Furthermore, we have not explored the problem of how to deal with large numbers 

of objects in an environment or game, which could potentially be tackled using an attention 

mechanism. Large numbers of objects do not prevent Rosie from learning, only from 

learning and reasoning quickly. We also have not explored policy learning in the context 

of learning the rules of games and puzzles, so although Rosie can solve the tasks it learns, 

it can take a long time if the search space is large. 

 

6.2 Evaluation of Communication (D2) 

The agent should minimize communication with the teacher (D2) to avoid wasting their 

time, in part by limiting the number of interactions and avoid relearning when possible. 

One evaluation we have conducted related to the communication of task descriptions is 

related to whether concepts learned in games can decrease the amount of instruction 

required in future games, as measured by the total number of words required to teach a 

task. One would expect that if you learn the Five Puzzle, it should be easy to learn the Eight 

Puzzle. Transfer is possible not only for learned predicates, but also for goals, actions, and 

failure states. 

Results from 3000 randomly generated permutations of 17 games, are shown Figure 

24. It shows the number of words, on average, used to teach each game in each position in 

the teaching order. At position 0, no other games have been taught, and at position 16 all 

other games have been taught. Moving from left to right, many games require fewer words, 

with the largest decrease being by a factor of about three. As expected, games that have 

substantial conceptual overlap, such as Five-Puzzle and Eight-Puzzle which share actions 

(slide) and learned predicates (clear, matched, adjacent to), require very few words by the 

end.  
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Figure 24: The number of words required to teach each game, as influenced by previously 
learned games. Results are averages of 3000 permutations of the 17 games. 

 
The gradual decrease in required words going from left-to-right is a reflection of the 

gradual increase in the probability that a related game is previously taught. The games that 

have very little in common with other games conceptually still share general concepts, such 

as clear, and show minimal improvement: Frogs and Toads, Blocks World, Mahjong 

solitaire, Maze, and the Tower of Hanoi puzzles.  

Recent work has expanded the number of games learnable by the agent, so this 

experiment was repeated with 40 games using 1000 permutations (Kirk & Laird, 2019). 

This is too many games to label each individually, so instead specific cases are highlighted 

with colors in Figure 25. More data from this experiment, with all games labeled, can be 

viewed in the Appendix. All 40 games are learned correctly in each permutation. The red 

line highlighted is for Killer Sudoku, a Sudoku variant that has constraints about the sum 

of values in specified section (as in KenKen). The number of words required to initially 

teach (position 0) this puzzle is large (239) due to the number of constraints in the puzzle. 

However, because of the overlap in concepts with the other tasks (Sudoku, KenKen), it 
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benefits the most from knowledge transfer, with a decrease of more than a factor of three. 

The Frogs and Toads puzzle (blue) and Blocks World puzzle (green) show the least transfer 

because they share only “clear” with other tasks. 

 
Figure 25: The number of words required to teach each of 40 games by teaching order. Results 
are averages of 1000 permutations. 

 

6.3 Evaluation of Agent Processing Time (D3) 

The agent should learn task representations that minimize the execution time and the 

learned representation should not hinder future learning (D3). Transfer of learned 

knowledge, both declarative and procedural, should decrease the overall processing time 

required to learn a new task, although the increase of knowledge could also potentially 

increase processing time. 

Figure 26 shows results from the same experiment conducted for Figure 24, with 

the 3000 permutations of 17 games, now showing the average processing time required to 

teach a game based on its position in the teaching order. The processing time for a game is 
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measured as the total time (in milliseconds - ms) the agent took to learn the game. Because 

the teacher is scripted, no time is spent on speaking/typing sentences or waiting between 

teacher-agent interactions. The processing time is measured as the total (cumulative) time 

the agent takes to process each sentence delivered by the teacher (for the entire task), learn 

the described task elements, and generated a response. The longest total processing time 

for teaching an entire game is well under two seconds. The improvements, especially 

visible in the different game variants, are a result of not only concept transfer (which 

eliminates the need to teach the concept) but also transfer from the procedural rules learned 

(which eliminates the cost of interpretation). 

The games with almost no conceptual overlap show little to no improvement 

(Blocks world and Tower of Hanoi) and in one case (Frogs and Toads) shows a small 

increase over time, due to the computational cost of added knowledge from previous 

games, minus the small benefit from transfer. The only benefit from transfer with Frogs 

and Toads is transferring the concept clear, as shown in Figure 25. There is some added 

computational cost to constructing the recognition structures and interpretation (described 

in Section 4.3) as more tasks and task elements are learned because the agent may retrieve 

irrelevant knowledge (and then reject it when it doesn’t ground in the current context). This 

slowdown is minimal, even in the worst case for Frogs and Toads, which shows an increase 

in total average processing time from 1000 to 1104 ms for the entire game. The average 

processing time per instruction for Frogs and Toads, essentially Rosie’s response time to a 

sentence, increases to ~92 ms from ~83 ms, a difference not noticeable to a human. In 

comparisons, the average response time over all tasks and orders is ~45 ms. The 

explanation for the difference in average response, a factor of ~2, between Frogs and Toads 

and the other tasks can be explained by the length of the sentences used to describe the 

Frogs puzzle, which are longer on average than many of the other tasks and involve many 

objects and relations. Still the difference between a 50 ms response time and a 100 ms 

response time are insignificant to a human: when speaking or typing sentences to Rosie, 

the time to type or speak dominates the interaction time. 
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Figure 26: The total processing time required to learn each game, influenced by previously 
learned games. Results are averages from 3000 permutations. 

 
In order to evaluate the execution time of the agent’s post-learning operation, when it is 

solving tasks with the learned representations, we conducted an experiment where we 

measure agent processing during interpretation and then after learning during task solving. 

This is a measure of the impact of procedural compilation on agent performance. Our 

hypothesis is that evaluating the rules learned through chunking will be significantly faster 

than maintaining the declarative task representations in long term semantic memory and 

then retrieving and interpreting them by deliberately matching them against the game state 

each time the task is attempted. Figure 27 shows the processing time to learn each game, 

omitting the time taken to parse the sentences and construct the declarative predicate 

structure.  
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Figure 27: The processing time required to interpret (match) all concepts for each game 
individually compared to the processing required once learned. 

 

For each game, the blue bars are the processing time to interpret the declarative structure 

when there is no transferred concepts or rules, and the green bars are the processing time 

required after rules have been learned. The processing required to interpret all the structures 

is the same processing time that would be required if the agent did not learn procedural 

code through chunking. The average improvement is a factor of ~20 and the processing 

using rules never exceeds 40 ms to propose and match all the task structures at the 

beginning of a game; the mean time is ~13.5 ms for the decision cycles of these tasks. This 

is below the roughly 50 ms cognitive cycle reported for humans in cognitive science 

literature, which is a commonly targeted threshold for cognitive architecture decision 

cycles. 
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6.4 Evaluation of Memory (D4) 

Learning new tasks involves adding different kinds of knowledge to the agent’s memories. 

Thus, one evaluation criterion is how the size of the working, semantic, and procedural 

memories (D4) grow as new tasks are learned, and whether that growth negatively impacts 

behavior by increasing the time it takes to use the memories. Soar, and most cognitive 

architectures, maintain semantic knowledge in long-term memories while reserving short-

term working memory for data relevant to the processing of the current task.  

For semantic memory (containing the declarative structures) and procedural 

memories (containing the procedural rules), we expect growth in memory size. In past 

agents developed in Soar, growth in semantic memory and procedural memory has not had 

a significant impact on the speed of agent processing because of the underlying 

implementations used for semantic memory (Derbinsky, 2012) and procedural memory, 

and we expect that to be true in Rosie as well. In contrast, growth in the size of working 

memory, even at a sublinear rate, can significantly slow agent procedural code execution.  

In order to evaluate the growth in size of the agent’s memories as it learns many 

tasks, we recorded memory data during the experiment from Figure 24 with 17 games. 

Figure 28 shows the growth in size of both semantic and procedural memories. As Rosie 

learns new tasks, knowledge in both semantic (database memory in KB) and procedural 

(number of rules) memory grows at a sublinear rate. This is not surprising because 

knowledge transfer between tasks causes a reduction in the number of procedural rules that 

need to be learned and the amount of new knowledge that needs to be stored in semantic 

memory for new tasks. The different permutations converge to the same value, confirming 

that the total knowledge learned for all 17 games is independent of the order in which they 

are taught. 
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Figure 28: On the left: the cumulative growth in semantic (long-term) memory for all games. 
On the right: the accompanying growth in procedural memory (number of rules). 

 
Figure 29 shows two analyses of working memory: the maximum size of working memory 

across learning all games, and the average number of changes to working memory for each 

game. Working memory is measured in working memory elements (WMEs). A WME 

represents each component or arc of Soar’s working memory graph structure and changes 

are counted as the additions or removals of WMEs from working memory. The maximum 

size of working memory should not surpass the high-water mark set by the most 

computationally intensive tasks, in this case Othello, Simple Maze, or Eight Puzzle at 

almost 4000 WMEs, as shown in the left side of the figure. If the maximum converged to 

a higher level, or continued to grow, it would indicate that task-specific information is 

accumulating in working memory, which would likely negatively impact future processing. 

 
Figure 29: On the left: the growth in maximum working memory, measured in working memory 
elements, for each game. On the right: the number of changes to working memory to teach each 
task in the given order. 
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The number of working memory changes is an indirect measure of the total processing that 

occurs during the teaching of a game. It is important because the cost of rule matching is 

correlated with the changes to working memory in addition to the size of working memory. 

One possible concern is that the knowledge from previously learned tasks can “clog up” 

working memory and interfere with new tasks. In contrast, our results show that there is 

actually a decrease in WM changes through transfer from earlier tasks and that even when 

there are no similarities that enable transfer, there is no growth.
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Chapter 7 Multiple Interpretations 

Ambiguous learning situations, where multiple meanings of a word are possible (C3), can 

potentially lead to the agent incorrectly transferring knowledge. As an agent learns many 

tasks in many different settings, there will inevitably be many-to-many mappings between 

words and meanings (the components of a task). In some cases, knowledge learned in 

previous tasks can interfere with a new task. So far, we have avoided such scenarios in our 

experiments on accumulative learning. A simple example is a scenario where an agent is 

taught a game where their pieces are red, and in the next game they are taught, the 

opponent’s pieces are red. In this case, Rosie would incorrectly transfer knowledge, 

overgeneralizing, when encounter the term “their pieces” in the second game. 

During the task element learning process, sources of ambiguity can arise that make 

it difficult to find the correct interpretation and can cause interference when trying to 

transfer knowledge from previous tasks. These sources include: 

Multiple Definitions: Due to the many-to-many mappings between words (C3) and 

meanings across tasks and the teacher’s lack of common knowledge(C1), the agent 

may learn multiple meanings for the same word (or know multiple meanings of 

primitive concepts). 

Environmental Distractors: The state can contain objects and features that 

although not relevant to the described concept, can create ambiguity when the agent 

attempts to ground the representations. 

We have extended Rosie so that it can effectively learn and transfer knowledge in more 

difficult learning scenarios, where ambiguity and learning distractors are present. This 

extension modifies the learning strategy to enable Rosie to create, analyze, and debug 

multiple interpretations of task elements in order to handle scenarios where ambiguity and 
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knowledge interference can negatively impact the ability to accurately learn and transfer 

knowledge. Our approach also enables the agent to use the analysis of these interpretations 

to quickly communicate with the instructor to resolve sources of ambiguity when 

automated reasoning fails. Our extension improves Rosie’s ability to correctly learn 

polysemic words and handle the many-to-many mappings possible from words to 

definitions: a word can have many task-specific meanings and a meaning can be 

represented by different words in different tasks.  

For example, depending on the context, the polysemic word clear can mean that 

something is uncovered or that it is transparent or that it is unmarked. This extension has 

also increased the complexity of the hierarchical task elements and the breadth of terms 

and games that the agent can learn. 

Below we present our learning approach, which enables Rosie to communicate, 

through quick, short interactions, to resolve ambiguity and select correct interpretations. 

We evaluate the agent’s ability to correctly generalize, disambiguate, and transfer concepts 

across variations in natural language descriptions, world representation, and game 

instances, showing transfer across tasks and within tasks, with and without interference. 

We examine the number of words required to teach tasks across cases of no transfer, 

positive transfer, and interference from prior tasks. 

 

7.1 Creating Multiple Interpretations of Task Elements 

To ensure that it correctly interprets an ambiguous situation, Rosie generates all possible 

recognition structures, f(x) from Equation 1 reproduced below, for each known meaning of 

the defining terms, fi(x). 

 

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = �𝑓𝑓𝑖𝑖�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

      1 ≤ 𝑗𝑗 ≤ 𝑚𝑚                                           (1) 
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Because Rosie generates recognition structures, f(x), for all possible combinations of the 

known meaning for the given terms, the number of structures grows exponentially with 

respect to n, the number of fi(x) terms, and the number of definitions for each term. 

However, descriptions are limited to a single sentence and the number of terms (n) with 

multiple meanings is rarely more than 3 (the maximum recorded in all 60 games that the 

agent has learned is 4), so in practice, it is computationally feasible to generate all 

interpretations. 

To determine the correct interpretation from the set of generated structures, Rosie 

leverages the situated external state example. If it finds that only one of the recognition 

structures can be satisfied or detected, it learns this interpretation. If instead the agent finds 

that multiple structures from different interpretations can be satisfied in the current state, 

the agent analyzes each of the potential matching interpretations to try to find ways to 

differentiate them. Based off this analysis Rosie, uses one of three different strategies to 

try to determine which interpretation is correct. In this analysis, the agent looks for task 

elements that return different numbers of results (the number of occurrences from each 

interpretation). 

First, the agent determines if it can find a difference for the highest task element in 

the hierarchy f(x), the one describing a goal, action, or failure condition, such as when the 

different interpretations of an action result in different numbers of actions being detected. 

Rosie counts the relative occurrences and determines the correct interpretation by asking 

the teacher: “How many actions are present X or Y?” 

If the agent cannot detect a difference between the numbers of results for different 

interpretations of that task element f(x), it examines numerical differences in the occurrence 

of the supporting task elements fi(x), such as clear(x). If Rosie finds a task element fi(x) 

that produces different numbers of results in different interpretations, Rosie uses this 

difference to generate a similar disambiguating question: “How many clear locations are 

present X or Y?” 
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Finally, if the agent fails to detect any differences in the number of occurrences of 

task elements in different interpretation, it abandons attempting to resolve the differences 

through questioning, and asks the teacher to provide a different state demonstration: 

“Can you setup another state that contains the [goal, action, failure]?” The hope is that in 

this new state, the agent can satisfy and detect only one interpretation, or if there are 

multiple, find a numerical difference in the occurrence of one of the task elements, using 

the first two strategies. The agent will continue to ask for new state demonstrations until it 

can select a single interpretation. 

 

7.2 Ambiguity Case Study 

We use a series of case studies to illustrate the agent’s ability to handle interference using 

the process described in the previous section: determining if multiple interpretations can 

be satisfied, detecting the relative occurrences of each task element in the competing 

interpretations, and asking disambiguating questions to determine the correct 

interpretation. 

7.2.1 CASE 1: Ambiguous Word Meanings 

One source of ambiguity is that the agent may know multiple definitions for the same word. 

Consider when the agent has previously learned two definitions for clear: that a location is 

not below anything (from the blocks world) and that a location is unmarked (from 

KenKen). Figure 30 shows the internal symbolic representation (right side) Rosie generates 

of the external state (left side) for a version of the Frogs and Toads side-swapping puzzle. 

The teacher’s description of the first action of the puzzle, moving a toad, includes the term 

clear, as shown in the dialog below. Instead of asking for a definition of clear, Rosie 

attempts to use its existing definitions, which leads to two recognition structures, shown in 

Figure 31, one for each interpretation of clear. 



 

87 

 

 

Figure 30: The internal state generated by the agent for the Frogs and Toads puzzle, with objects 
identified by red indexes. On the right are unary features and binary relations that the agent 
extracts from the state. 

 
Figure 31: Recognition structures created for two interpretations of an action. Red values 
indicate the indexes of objects in the environment that results from grounding the structure to the 
external state. 

 

If a toad is to the right of a clear location then you can move the toad onto  
the location. 
Rosie: How many actions are present two or one? 
There is one. 
 

Rosie analyzes these structures to find a difference in how they map to the current state. In 

this case, they generate different numbers of actions due to the agent believing that for the 

structure on the left, where clear is an unmarked location, location 4 is clear. Rosie uses 

this difference to disambiguate between the two interpretations by asking a simple question 

about the relative number of actions. When the teacher responds “There is one,” Rosie can 
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determine that the representation on the right, that only detects the action move (object) 8 

onto (object) 3, is the correct structure, and then uses it for learning this task element. 

7.2.2 CASE 2: Ambiguous External State 

Another source of ambiguity is that the state can contain objects, features, and relations 

that are distractors, irrelevant to the concept the agent is trying to learn. For example, 

consider the state given in Figure 32 for teaching the second action for the Frogs and Toads 

puzzle, jumping over a frog. When given the following action description, Rosie once again 

generates two recognition structures for each meaning of clear. 

If a toad is to the right of a frog that is right of a clear location then you can  
move the toad onto the location. 
Rosie: How many clear locations are there one or five? 
There is one. 

 

When Rosie analyzes how these interpretations ground to the current example, they refer 

to the same action: move object 9 onto object 3. This is due to the constraint provided by 

the position of the frog: even in the interpretation where all locations are clear, the toad 

(object 9) can only jump over the frog (object 7). Although both interpretations ground to 

the same action, Rosie needs to determine which interpretation of clear is correct so that 

the correct condition is learned. Rosie finds a distinguishing result further down the 

recognition structures, where the predicate clear produces a different number of objects for 

each interpretation. As shown above, Rosie uses that difference to generate a 

disambiguating question. When the teacher responds indicating there is only one clear 

location, Rosie selects the correct interpretation structure to learn. 

 
Figure 32: A representation of the internal state generated by the agent for describing jumping in 
the Frogs and Toads puzzle. 
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7.2.3 CASE 3: Symmetric State Ambiguity 

In some scenarios, the occurrences of task elements in different interpretations is the same. 

This often occurs in states with symmetry. For example, consider when Rosie is learning 

the goal of Tic-Tac-Toe, but where the state contains winning conditions for both Rosie 

and the opponent. If Rosie knows multiple definitions for captured from previous games 

where the ownership of red and blue pieces have swapped, from its perspective, there is no 

way to disambiguate between the different interpretations. When the other strategies fail, 

Rosie’s final disambiguation strategy is to ask the teacher to demonstrate another example 

of the concept in the environment: “Can you setup another state that contains the goal?” If 

the teacher creates a state that contains only the goal, or a state with more red blocks placed 

than blue ones, the agent can determine the correct interpretation (automatically in the first 

case and by asking about the number of captured locations in the second). 

 

7.3 Creating Synonym/Antonym Interpretations 

To further expand the ability of the agent to transfer knowledge to new tasks and situations, 

we created an option for Rosie to use a synonym/antonym table. Using this feature presents 

similar tradeoffs as before, between quickness of learning and correctness of learning. It is 

much easier to avoid incorrect learning by not attempting to automatically transfer any 

knowledge. This table was added to Rosie’s primitive knowledge in semantic memory, 

allowing Rosie, if specified, to lookup common antonyms and synonyms of a given word, 

such as “clear,” and automatically generate interpretations that replace the predicate with 

a synonym, such as empty, or antonym, such as ~filled. Table 4 below shows the content 

and format of this knowledge. 

Word Synonyms Antonyms 
clear empty, uncovered, transparent covered, filled 
covered occupied, filled clear, empty, uncovered 
empty clear, uncovered, transparent covered, filled 
filled full, covered empty 
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box cube  

Table 4: A lookup table of common synonyms and antonyms for common words. 

 

The ability to use synonyms and antonyms allows the examination of a greater space of 

interpretations without requiring additional declarative knowledge or teaching interactions: 

it can increase cases of knowledge transfer and decrease the amount of required instruction. 

However, using this ability also increases the chance of incorrectly transferring knowledge 

because it considers more options and doesn’t verify the knowledge that is transferred if it 

leads to a single valid (successfully maps to the world) interpretation. This can occur in 

cases where the incorrect knowledge does not prevent Rosie from recognizing an instance 

of the term, such as “clear,” in the environment. For example, if Rosie has learned a 

definition for filled (from Sudoku) that a “filled” location “has a value,” when later learning 

Tower of Hanoi with blocks, Rosie will try ~filled for the meaning of “clear.” In this case 

because there are no values for the blocks Rosie will be successful at detecting ~filled even 

though for this context Rosie needs a different meaning of “clear” (“not below anything”). 

If the agent detects multiple interpretations that map to the agent’s internal model then it 

can still potentially learn which meaning is correct through disambiguating interactions 

with the teacher, as described above. Examples of each of these situations are discussed in 

the evaluations in Section 7.4.3. 

 

7.4 Evaluation 

To analyze knowledge transfer in different scenarios, with and without interference, we 

performed a set of experiments similar to the experiments in Chapter 6, where we teach 

different order permutations of a sequence of tasks. In these experiments, we teach small 

clusters of three games and examine the number of words required to teach tasks across 

cases of no transfer, positive transfer, and interference from prior tasks. 
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7.4.1 Positive Transfer 

The experimental results for the task clusters A-D are shown in Figure 33. For each cluster, 

the results are averaged over all (6) possible permutations of the three tasks. To explore 

positive transfer, we selected very similar tasks with large conceptual overlap for each task 

clusters: (A) Tic-Tac-Toe, Three Mens Morris, and Nine Holes; ( B) Killer Sudoku, 

KenKen, and Sudoku; (C) N Queens, N Rooks, and N Kings; and (D) Jealous Husbands, 

Fox, Goose, and Bean, and Missionaries and Cannibals. The Plots A-D in Figure 33 show 

the dramatic effects of transfer in clusters of similar tasks, in some cases, such as Sudoku 

cluster B, reducing the number of words required to learn roughly 4:1. Task learning 

approaches that learn mappings directly to nonsymbolic representation have failed to 

replicate this type of task transfer, which leads to dramatic learning speed up.  

 
Figure 33: Number of words required to teach clusters of closely related tasks A-D. 
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7.4.2 No Transfer 

The experimental results for the task clusters E-H are shown in Figure 34. Again, the results 

are averaged over all (6) possible permutations of the three tasks in each cluster. To explore 

absence of transfer, we selected dissimilar tasks with little conceptual overlap for each task 

clusters. The entire set is the same as before, just arranged in different clusters. The 

unrelated task clusters are: (E) Killer Sudoku, Three Mens Morris, and N Queens; (F) 

Sudoku, Nine Holes, and Missionaries and Cannibals; (G) Fox, Goose, and Bean, Tic-Tac-

Toe, and N Rooks; and (H) KenKen, Jealous Husbands, and N Kings. 

 

Figure 34: Number of words required to teach clusters of unrelated tasks E-H. 
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Plots E-H shows almost no transfer between the unrelated tasks, however there is still some 

positive transfer (in E and G) due to a slight conceptual overlap of very common terms: 

clear and available. 

7.4.3 Negative Transfer 

To explore negative transfer, we selected tasks from the previous experiments, but 

modified the simulated environments and term usage in the task element descriptions in 

order to create problematic cases for our learning approach (which is greedy and doesn’t 

ask for extra verification when transferring knowledge). In these cases, not only can there 

be an increase in the required number of words to teach, but incorrect knowledge can be 

learned without the agent (or teacher) being aware of it. The experimental results for task 

cluster G, which consists of modified versions of KenKen, Frogs and Toads, and the Eight 

Puzzle, are shown in Figure 35. In this case, rather than an average across permutations, 

we show the results of each of the 6 possible permutations of the three tasks, with a graph 

for each task. The bar graphs for each task show the number of words used to teach the 

task in each position in the learning order. There are only five results on each graph rather 

than six, because we do not show the duplicate results for learning position 0 (both times 

it will be the same). 

 

 
Figure 35: Number of words required to teach all permutations of task cluster G. The colors are 
used to highlight the cases of no transfer (in blue), positive transfer (in green), negative transfer 
(in orange), and incorrect knowledge transfer (in red). 



 

94 

 

Results shown in blue are cases where there was no transfer. In this version, KenKen has 

no overlapping concepts and shows no transfer. Results shown in green are cases where 

there was positive transfer, reducing the number of words required to teach. The cases of 

positive transfer occur for both Frogs and Toads and Eight Puzzle: Rosie takes advantage 

of synonym and antonym knowledge to transfer knowledge of the concepts clear, empty, 

and filled. Results shown in orange are cases where there is negative transfer: there is still 

overall positive transfer from learning position 0, but a reduction from the positive transfer 

(green) case. This occurs in the Frogs and Toads puzzle, in the permutations where the task 

is positioned at the end of the teacher order, because Rosie is forced to ask, “How many 

actions are there?” to differentiate between the multiple meanings of clear that it has 

learned. 

Finally shown in red is the case where incorrect knowledge is transferred. In this 

case, Rosie transfers the meaning of “clear” from KenKen, not marked, when it needs the 

meaning not covered, and the state of the task environment is such that it still detects a 

single valid interpretation despite this meaning being incorrect. Rosie requires fewer words 

to learn in this case but learns incorrect groundings. If Rosie was less greedy in its attempt 

to reduce the number of interactions and amount of teacher instruction, it could ask for 

verification in transfer cases like this. This approach, and how to recover from incorrect 

knowledge learning, will be explored in the future.
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Chapter 8 Discussion and Conclusion 

Learning novel tasks through online instruction from ‘scratch’ (primitive non-task specific 

knowledge) presents many challenges for an Interactive Task Learning agent. The lack of common 

ground (C1) between the agent and the teacher, their joint inability to access each other’s internal 

models of the environment or view the contents of each other’s memories, makes it difficult for 

the teacher and agent to effectively communicate by using appropriate terms (that are already 

known) and provide the necessary knowledge (that is missing). The many-to-many possible 

mappings between words and meanings (C3) further complicates the problem caused by lack of 

common ground because it creates a large space of possible interpretations. Without access to the 

teacher’s internal model, the agent cannot know the intended context specific meaning of a term, 

such as “clear,” out of a huge space of options, such as not covered, transparent, unmarked, etc. 

The compositional nature of the meanings of concepts (C2) used to define tasks necessitates that 

the mappings are not only between synonymous concepts, such as “clear” and transparent, but 

also between a term, such as “adjacent,” and a combination of concepts, such as next to each other 

but not dialog with each other. Compounding the difficulty of the problem further is the desire for 

the agent to accumulate knowledge over many tasks (C4), which introduces the challenge of 

creating and maintaining knowledge representations that enable the agent to transfer knowledge. 

 We have attempted to address each of these problem characteristics in the design of our 

learning process. Rosie learns symbolic representations of task elements that are interpretable and 

can be used to communicate about its knowledge representations of the task and how they map to 

its internal model of the environment, to help establish common ground with the teacher (C1). 

Rosie creates multiple interpretations of task elements to evaluate, through comparative analysis 

and interactive debugging, the many-to-many possible mappings between terms and meanings 

(C3). Rosie learns hierarchical compositions of concepts (C2) through the recognition structures 

it creates and the recursive learning algorithm it uses to learn new predicates for task-specific 

terms. These hierarchical recognition structures also support the transfer and accumulation of 
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knowledge overtime (C4). The modularity of the hierarchical recognition structures enables Rosie 

to find and relearn small portions of the structure that it cannot currently ground, such as learning 

a new meaning for a term, without relearning the entire structure from scratch. 

These problem characteristics make learning challenging given the objectives of ITL as 

reflected in the desiderata we have created. These desiderata serve both as guiding criteria for 

agent design and metrics for evaluation. The agent should attempt to maximize its level of 

generality (D1) and not be limited to a small set of tasks, task knowledge, or types of tasks that it 

can learn. The agent should attempt to minimize the amount of agent-teacher communication (D2) 

to reduce the effort and time required for the human instructor to teach a new task. The agent 

should learn representations of the task and task knowledge that minimize its execution time (D3) 

during agent’s processing of the task, or during other tasks. The agent should minimize memory 

size growth (D4) – avoiding growth that significantly increases the time it takes to use its 

memories. 

We use these desiderata to evaluate the learning of the agent. Rosie’s learning approach is 

general (D1) – it learns goal-oriented tasks that can be represented with a problem space 

formulation. To demonstrate generality, we have shown that the agent can learn a large number 

(60) of different tasks in different domains and environments, including various robotic 

embodiments and simulated environments. To evaluate agent-teacher communication (D2), agent 

execution time (D3), and memory size growth (D4), we ran experiments teaching many different 

permutations of a sequence of different tasks and analyzed the relevant data. In nearly all cases, 

the number of words it takes to teach new tasks decreases as it accumulates tasks due to transfer 

of knowledge. The procedural, native (to Soar) representations that the agent learns enable it to 

process and apply task knowledge much faster than when they were initially interpreted and the 

accumulation of knowledge over many tasks does not significantly increase the agent’s decision 

cycle time. The growth in memory does not significantly impact (slow down) the speed of memory 

usage for procedural, semantic, and working memories. 

A broader question that this research, and the burgeoning research area of Interactive Task 

Learning, tries to address is: how should AI agents be trained or taught? The current popular 

answer in the AI community is machine learning, and especially deep learning – learning in neural 
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nets through large amounts of training data. This approach has been successful at making AI agents 

the best at many specific tasks. For the past 3 decades, AI research has focused on making AI 

agents the best in the world at many different tasks: at Chess (DeepBlue), at Go (AlphaGo), and at 

Poker (Libratus). 

However, when these agents are ‘taught’ the game, they still require a human to pre-encode 

the legal actions of the game and a reward function that helps approximate the goal. Moreover, 

these agents cannot simply switch from learning one task, such as Chess, to learning another, such 

as Poker or Go, without extensive changes to their underlying code. These code changes often 

require human supervised experimentation to select the proper parameters and settings for 

‘learning’ the task in the new domain. We use quotes in jest to make a point: none of these 

approaches are actually learning the structure and definition of the task, they start with this task 

knowledge, and learn how to better perform the task.  

These types of approaches require that for every single task, the agent must be 

programmed, debugged, trained, and evaluated offline in order for it to perform the task. Deep 

learning approaches have also not demonstrated how knowledge transfer between tasks, such as 

those explored in this thesis, can occur. A Deep RL model that has been trained on the game 

Breakout has been shown to fail horribly when a minor change is made to the game by simply 

moving the paddle down a few pixels (Kansky et al., 2017). The problem of how a generally 

intelligent agent, that is task agnostic, could acquire the basic knowledge of these tasks, without 

being handcrafted to only understand and perform that single task, has been largely ignored. 

The representations learned from these Deep Learning approaches are also not 

interpretable. Neither a human, nor a computer program, can examine the learned representations 

to understand what was learned. Uninterpretable representations impede knowledge transfer and 

the ability to generalize and have other negative ramifications. Not being able to understand why 

a machine made a decision drastically hurts the ability to debug the agent, understand the choices 

it made, and assign fault (even possibly the legal sense of fault). With the growing proliferation of 

smart machines, from personal assistants (such as Siri) to self-driving cars, these properties are 

beginning to come under greater scrutiny and will continue to be an important problem for AI 

researchers to solve. 
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In contrast, in our approach the learned representations are both interpretable and native to 

the underlying architecture. Achieving both learning properties simultaneously is a difficult task, 

one that most systems or architectures fundamentally cannot support. In terms of interpretability, 

most agent architectures are written in programming language (C++, python, etc.) that can be 

interpreted, but the learned representations that the agent acquires is rarely in the form of a new 

segment of that code. One exception is the work of Hinrichs and Forbus (2014), where the English 

description is translated into GDL, the Game Description Language, which is interpretable, but is 

not the same type of code as the Companions agent that interprets them. This type of approach, 

where the learned representation is a high-level programming language, is the closest task learning 

research to easily interpretable representations, but also the furthest from native representations 

(they must be interpreted). Learning a native representation often requires that the representation 

is not the same as the underlying agent.  

In our approach, the underlying agent architecture, Soar, is built on symbolic 

representations, making it possible to learn representations that are both native and interpretable. 

Although not immediately comprehensible, a person that has been taught the representation can in 

most case read and interpret the learned representations easily. Related research (Ramaraj & Laird, 

2018) has shown that Rosie can use these representations to communicate about specific grounding 

failures (“A medium block is not on a large block.”) and generate language descriptions (“Clear 

means that it is not below a block.”) These sentences are not stored or generated from the sentences 

that were used when their meaning was initially learned. They are generated from the recognition 

structures the agent learns. 

We have also shown that the interpretability of these representations allows Rosie to 

analyze and debug what was learned through straightforward strategies: it can understand what 

parts of a representation are and are not successfully being grounded, and then ask questions. This 

allows Rosie to move from a task it has learned to an unknown similar one, or from one version 

of a task (marking X’s and O’s Tic-Tac-Toe) to another version (placing black and white blocks 

Tic-Tac-Toe), and reuse the learned representations from the prior task, by identifying the small 

portions of knowledge that are incorrect for this new context and engaging the teacher to quickly 
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learn the new meanings. In these scenarios the agent can transfer the majority of the task 

knowledge. 

  

8.1 Current Limitations and Future Work 

A limitation of this work is that it is computationally expensive to detect task elements for states 

with large number of objects and relations (such as in Chess). Rosie’s inability to quickly reason 

over large numbers of objects in a single state is why we often teach versions of games that have 

a limited number of objects, such as the 5x5 version of Othello. We hypothesize that some type of 

attention mechanism together with deliberate reasoning is needed so that all concepts are not 

simultaneously computed for every state. 

A second limitation is that the language Rosie understands, although sufficient for these 

games, is more rigid than natural language. An instructor would not be able to teach Rosie without 

first becoming familiar with the types of sentences Rosie can understand. Rosie also cannot learn 

concepts that deal with historical events. Future work should focus on allowing Rosie to learn 

concepts that interface with Soar’s episodic memory. Another shortcoming of our work is that it 

assumes error-free unambiguous instructions. In the future, we plan to study how an agent can 

recovery from incorrect knowledge through instructions.  

Another limitation of our approach is that it can be overaggressive in generalizing or 

transferring concepts. We assume that the agent is situated in a grounded example where the 

described concept is present, but it is also possible that many such concepts or closely related 

concepts are present, and that could lead to incorrect generalization. For example, if we teach a 

version of Tic-Tac-Toe with black and red pieces after learning Red-Blue Tic-Tac-Toe, rather than 

prompting the teacher for a new definition of ‘yours,’ Rosie will incorrectly latch on to the 

opponent’s pieces, which due to the symmetrical nature of the game will still lead to detectable 

actions given those definitions. Solutions to these problems are being explored in parallel research, 

where rather than just asking for specific redefinitions, or making generalization assumptions, the 

agent communicates why something didn’t match or how known concepts do match to allow for 

the teacher to give quicker, more useful instructions. This work explores how in an ITL setting, 
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the teacher and agent can negotiate and communication their knowledge states and discrepancies, 

by asking and answering questions such as “do you see the goal,” “why did it fail,” and “what part 

of the goal didnt match? ” 

In the future, we plan to expand the types of learnable concepts by adding primitive 

knowledge (quantifiers, functions, actions), support for direct disjunction (“If it is green or blue 

then it is a frog”), and grammar constructions. These will allow us to study transfer and scaling of 

knowledge across a wider variety of more complex games. Finally, our focus has been on learning 

the rules of a game, not on how to play well. We plan on exploring learning to perform a game 

well, both through additional instruction, such as teaching heuristics, action models, and value-

functions, but also by learning from experience using Soar reinforcement learning mechanism. 

 

8.2 Future of Interactive Task Learning 

One of the long-term goals for the future of Interactive Task Learning is to replace programming 

as the primary method of adding new capabilities and knowledge to an agent with online 

interactive instruction. The agent architecture should supply general memory, problem solving, 

and reasoning mechanisms, but knowledge specific to new tasks, situations, collaborative agents, 

and environments should be learnable by the agent through natural online interactions with an 

expert (of the new task). One possibility to explore is the capabilities required to achieve ‘universal 

instructability,’ where the instruction mechanisms are sufficient to learn all knowledge encoded in 

an agent. This is not currently the case in our approach to learning goal-oriented tasks with Rosie, 

as there are many types of knowledge that Rosie cannot learn, such as explicit historical references, 

but this is not a fundamental limitation of the approach, just a current limitation we have yet to 

address. Future work could extend Rosie to learn concepts for games and puzzles that interface 

with Soar’s episodic memory and to enable this type of knowledge learning. 

Historically the problem of translating from high level task descriptions to executable 

machine behavior has been accomplished by programmers, requiring expertise of the task being 

instructed and the underlying agent architecture and the associated programming language and 

any existing agent code. Programming an agent for novel tasks requires design, coding, testing, 
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and debugging. Reuse of existing functionality requires extensive knowledge of the existing code 

and is usually limited and difficult to achieve. There is no automatic leveraging (or transfer) of 

existing knowledge or code, or any guarantees that the added functionality will not break existing 

agent functionality. Learning though instruction allows the rapid acquiring of novel tasks, which 

will be essential if we want more generally intelligent autonomous agents that are not handicapped 

by their need to be programmed for every kind of task they encounter. 
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Appendix  
 

 Game/ 
Puzzle 

player 
#s 

Type Brief Rule Summary External link Can 
learn
? 

Why Not 

1 Tower 
of 
Hanoi 

1 blocks Move a stack of N discs (or blocks) 
all with different sizes that are 
ordered with the smallest on top, to 
a destination pillar (or location) by 
moving the objects individually 
onto empty pillars or discs larger 
than themselves   

https://en.wiki
pedia.org/wiki/
Tower_of_Han
oi  

YES  

2 Eight 
(N) 
Puzzle 

1 blocks Given a 3x3 grid, slide tiles (or 
blocks) to adjacent clear grid 
locations to create the goal state 
with ordered numbers (or colors) 

https://en.wiki
pedia.org/wiki/
15_puzzle  

YES  

3 Blocks 
world 
puzzles 

1 blocks Move clear blocks onto clear 
destinations in order to create a 
specified arrangement of those 
blocks. 

 YES  

4 Frogs 
and 
Toads 

1 blocks Given N frogs and M toads split on 
separate sides of a (N+M+1) strip 
of squares, move the frogs and 
toads one square, or two by 
jumping over an occupied square, 
in order to swap the sides. 

https://en.wiki
pedia.org/wiki/
Toads_and_Fr
ogs  

YES  

5 Stacking 
frogs 

1 blocks Given a strip of Nx1 squares (or 
lily pads) each covered by a single 
frog, move a stack of frogs on a 
square the same distance as the size 
of the stack, until  

https://www.yo
utube.com/wat
ch?v=X3HDnr
ehyDM  

YES  

6 Lazy 
Stacking 
frogs 

1 blocks Stacking frogs, but end on a 
specified square (lily pad) 

https://www.yo
utube.com/wat
ch?v=X3HDnr
ehyDM  

YES  

7 Mission
aries 
and 
Canniba
ls 

1 river 
cross 

Move the missionaries and 
cannibals from one bank to the 
other using the boat, with capacity 
of two, and do not let there be more 
cannibals on a bank than 
missionaries. 

https://en.wiki
pedia.org/wiki/
Missionaries_a
nd_cannibals_
problem  

YES  

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/15_puzzle
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://en.wikipedia.org/wiki/Toads_and_Frogs
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://www.youtube.com/watch?v=X3HDnrehyDM
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem
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8 Fox, 
Goose, 
& Beans 

1 river 
cross 

Move the fox, goose, and beans to 
the opposite bank, carrying one at a 
time, and do not let the goose alone 
with the beans or fox alone with 
the goose. 

https://en.wiki
pedia.org/wiki/
Fox,_goose_an
d_bag_of_bean
s_puzzle  

YES  

9 Manage
r, Actor 

1 river 
cross 

Move the actors and their managers 
from one bank to the other using 
the boat, with capacity of two, and 
do not let an actor be on a bank 
with another manager when their 
manager is not present. 

http://aperiodic
al.com/2016/1
1/a-more-
equitable-
statement-of-
the-jealous-
husbands-
puzzle/  

YES  

10 Jealous 
Husban
ds 

1 river 
cross 

Move the couples from one bank to 
the other using the boat, with 
capacity of two, and do not let a 
woman be on a bank with another 
man when her husband is not 
present. 

https://brilliant.
org/problems/t
he-jealous-
husbands-
problem-
extended/  

YES  

11 Family 
Crossin
g 

1 river 
cross 

Move adults and children from one 
bank to the other using the boat. 
The boat can hold one person, or 
two children. 

 YES  

12 Peg 
solitaire 

1 blocks Given an arrangement of holes, 
filled with pegs except for one, use 
a peg to jump over and remove 
another, until only one peg 
remains. 

https://en.wiki
pedia.org/wiki/
Peg_solitaire  

YES  

13 Mahjon
g 
solitaire 

1 blocks Given a stack of assorted tiles, 
remove two tiles at a time if they 
are both clear (not covered or 
surrounded) and have the same 
symbol, until no tiles remain. 

https://en.wiki
pedia.org/wiki/
Mahjong_solit
aire  

YES  

14 Simple 
maze 

1 blocks
/grid 

Move an object along adjacent 
clear squares, avoiding walls, to 
navigate to a destination square. 

https://en.wiki
pedia.org/wiki/
Maze  

YES  

15 Block 
pushing 
maze 

1 blocks
/grid 

Move an object along adjacent 
clear squares, avoiding walls, to 
navigate to a destination square. 
You can push blocks covering 
squares onto other clear squares. 

 YES  

16 Sokoban 1 blocks
/grid 

Move the player along adjacent 
clear squares, avoiding walls. 
Solve by pushing specified blocks 
onto their desired locations. 

https://en.wiki
pedia.org/wiki/
Sokoban  

YES  

17 Map (4) 
Colorin

1 grid Color the sections of a map with 4 
different colors, completing all 

https://en.wiki
pedia.org/wiki/

YES  

https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
http://aperiodical.com/2016/11/a-more-equitable-statement-of-the-jealous-husbands-puzzle/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://brilliant.org/problems/the-jealous-husbands-problem-extended/
https://en.wikipedia.org/wiki/Peg_solitaire
https://en.wikipedia.org/wiki/Peg_solitaire
https://en.wikipedia.org/wiki/Peg_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Mahjong_solitaire
https://en.wikipedia.org/wiki/Maze
https://en.wikipedia.org/wiki/Maze
https://en.wikipedia.org/wiki/Maze
https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Sokoban
https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Four_color_theorem
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g 
Problem 

sections without any adjacent 
sections having the same color. 

Four_color_the
orem  

18 Sorting 
Puzzle 

1 blocks Move objects of each color (or 
other attribute) into a specified 
location, so that each location only 
contains blocks of that color. 

 YES  

19 Knight’s 
tour 

1 blocks
/grid 

Given a chess board move a knight 
(using the rules of knight jumping) 
around the board such that each 
square is visited exactly once. 

https://en.wiki
pedia.org/wiki/
Knight%27s_t
our  

YES  

20 Sudoku 1 mark/
grid 

Fill a NxN grid with numbers 1-N 
such that no two grid locations in 
the same section, row, or column 
have the same number 

https://en.wiki
pedia.org/wiki/
Sudoku  

YES  

21 Killer 
Sudoku 

1 mark/
grid 

Sudoku, but with no initial filled 
squares and additional regions that 
must contain numbers that sum to a 
specified value 

https://en.wiki
pedia.org/wiki/
Killer_sudoku  

YES  

22 Jigsawd
oku 

1 mark/ 
grid 

Sudoku, but with irregular shaped 
sections rather than squares. 

http://www.the
puzzleclub.co
m/jigsaw/  

YES  

23 Logi-5 1 mark/ 
grid 

Jigsawdoku, but using letters (A, 
B, C...) instead of numbers 
(1,2,3…) 

http://www.the
puzzleclub.co
m/logi5/  

YES  

24 KenKen 1 mark/
grid 

Sudoku, but the numbers in a 
section must also sum, multiply, 
divide, or subtract to achieve a 
specified number 

https://en.wiki
pedia.org/wiki/
KenKen  

YES  

25 Tic-Tac-
Toe 

2 blocks
/grid 

Place stones onto empty squares on 
a 3x3 grid, win by achieving three 
in a row of your pieces before your 
opponent does. 

https://en.wiki
pedia.org/wiki/
Tic-tac-toe  

YES  

26 Connect
-4 

2 blocks
/grid 

Drop pieces into a vertical (gravity 
constrained) grid, win by achieving 
four pieces in a row before your 
opponent does. 

https://en.wiki
pedia.org/wiki/
Connect_Four  

YES  

27 Othello/ 
Reversi 

2 blocks
/grid 

Place your stone on a clear square 
on a grid, such that all the squares 
between that one and another of 
your stones are opponent pieces. 
Flip those opponent pieces so that 
they become yours. Win by having 
more captured squares than your 
opponent once all are covered. 

https://en.wiki
pedia.org/wiki/
Reversi  

YES  

https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Knight's_tour
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Killer_sudoku
https://en.wikipedia.org/wiki/Killer_sudoku
https://en.wikipedia.org/wiki/Killer_sudoku
http://www.thepuzzleclub.com/jigsaw/
http://www.thepuzzleclub.com/jigsaw/
http://www.thepuzzleclub.com/jigsaw/
http://www.thepuzzleclub.com/logi5/
http://www.thepuzzleclub.com/logi5/
http://www.thepuzzleclub.com/logi5/
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Tic-tac-toe
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Reversi
https://en.wikipedia.org/wiki/Reversi
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28 Breakthr
ough 

2 blocks
/grid 

Given a grid board with pawns on 
each side, advance your pawns 
(one square), or capture opponent 
pawns, in order to be the first cross 
the board with a pawn to the other 
side. 

https://en.wiki
pedia.org/wiki/
Breakthrough_
(board_game)  

YES  

29 Three 
Men’s 
Morris 

2 blocks
/grid 

Tic-Tac-Toe, but each player only 
has 3 pieces.  One all pieces have 
been place, move your piece onto 
adjacent clear square to achieve 
three in a row before your 
opponent. 

https://en.wiki
pedia.org/wiki/
Three_Men%2
7s_Morris  

YES  

30 Picaria 2 blocks
/grid 

Three men’s morris, but after all 
pieces are placed, you can move 
your piece to any near by clear 
location. 

https://en.wiki
pedia.org/wiki/
Picaria  

YES  

31 Nine 
Holes 

2 blocks
/grid 

Three men’s morris, but after all 
pieces are placed, you can move 
your piece to any clear location. 
Diagonal three in a row’s do not 
count. 

https://en.wiki
pedia.org/wiki/
Nine_Holes  

YES  

32 Simplifi
ed Risk 

2+ blocks
/grid 

Given units dispersed over sections 
on a map, and more than 1 unit on 
a specific section, capture adjacent 
section occupied by opponent units 
by rolling higher dice rolls, until all 
sections are captured. 

https://en.wiki
pedia.org/wiki/
Risk_(game)  

YES  

33 Presiden
t 

2+ cards Card shedding game, discard a card 
from your hand if its value it 
greater or equal to the top card on 
the discard pile. Play a two to clear 
the discard deck and start again. If 
doubles are played, you must play 
two cards of the same value that is 
great or equal to the top card. Win 
by discarding all cards before your 
opponent. 

https://en.wiki
pedia.org/wiki/
President_(car
d_game)  

YES  

34 Crazy 
Eights 

2+ cards Card shedding game, on your turn 
discard a card from your hand if it 
has the same suit or value as the 
top card on the discard pile. Play 
an eight at any time as a wild card, 
and choose the suit. If you cannot 
play a card draw a card until you 
can, or have drawn three cards.  
Win by discarding all cards before 
your opponent. 

https://en.wiki
pedia.org/wiki/
Crazy_Eights  

YES  

https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Three_Men's_Morris
https://en.wikipedia.org/wiki/Picaria
https://en.wikipedia.org/wiki/Picaria
https://en.wikipedia.org/wiki/Picaria
https://en.wikipedia.org/wiki/Nine_Holes
https://en.wikipedia.org/wiki/Nine_Holes
https://en.wikipedia.org/wiki/Nine_Holes
https://en.wikipedia.org/wiki/Risk_(game)
https://en.wikipedia.org/wiki/Risk_(game)
https://en.wikipedia.org/wiki/Risk_(game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/President_(card_game)
https://en.wikipedia.org/wiki/Crazy_Eights
https://en.wikipedia.org/wiki/Crazy_Eights
https://en.wikipedia.org/wiki/Crazy_Eights
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35 N-
Rooks 

1 blocks
/grid 

Place N Rooks on an NxN grid 
such that none are attacking each 
other. 

http://mathwor
ld.wolfram.co
m/RooksProbl
em.html  

YES  

36 N-Kings 1 blocks
/grid 

Place N kings on an NxN grid such 
that none are attacking each other. 

http://mathwor
ld.wolfram.co
m/KingsProble
m.html  

YES  

37 N-
Knights 

1 blocks
/grid 

Place N knights on an NxN grid 
such that none are attacking each 
other. 

http://mathwor
ld.wolfram.co
m/KnightsProb
lem.html  

YES  

38 Bishop 
swap 

1 blocks
/grid 

Move bishops according to chess 
rules so that the black pieces end 
up where the white pieces were and 
vice versa and at no point can 
opposing colors be attackable by 
each other 

http://www.che
ssvariants.com/
solitaire.dir/bis
hops.html  

YES  

39 Knight 
swap 

1 blocks
/grid 

Bishop swap but with knights https://en.wiki
pedia.org/wiki/
Mathematical_
chess_problem 

YES  

40 Knight 
corner 
swap 

1 blocks
/grid 

Knight swap but with only 4 
knights in the corners, and no 
restrictions on attacking 

http://mathema
ticscentre.com/
taskcentre/task
cent.htm#knig
htswap  

YES  

41 N-
Queens 

1 blocks
/grid 

Place N Queens on an NxN grid 
such that none are attacking each 
other. 

https://en.wiki
pedia.org/wiki/
Eight_queens_
puzzle  

YES  

42 Golf 
solitaire 

1 cards Move a uncovered card to the 
discard if it has a value of one less 
or one more than the top discarded 
card, you can also draw cards from 
the deck onto the discard 

https://en.wiki
pedia.org/wiki/
Golf_(patience
)  

YES  

43 Tri 
Peaks 
solitaire 

1 cards Similar to golf solitaire but the 
cards are in 3 pyramids rather than 
a grid 

https://en.wiki
pedia.org/wiki/
Tri_Peaks_(ga
me)  

YES  

44 Pyramid 
Solitaire 

1 cards Cards arranged in a pyramid with 
each card lower in the pyramid 
covering two in the row above it. 
Remove two clear cards if their 
sum is 13. A card from the deck 
can be used for one of the cards. 

https://en.wiki
pedia.org/wiki/
Pyramid_(solit
aire)  

YES  

http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/RooksProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KingsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://mathworld.wolfram.com/KnightsProblem.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://www.chessvariants.com/solitaire.dir/bishops.html
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
http://mathematicscentre.com/taskcentre/taskcent.htm#knightswap
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Golf_(patience)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Tri_Peaks_(game)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
https://en.wikipedia.org/wiki/Pyramid_(solitaire)
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45 Shuffle 1 grid/ 
mark 

Given a 3x3 grid filled partially 
with numbers, and answer grids for 
each column and row that are 
partially filled, fill each empty grid 
with a number, such the answer 
grids contain the sum of the values 
of their column or row. 

http://www.me
nneske.no/shuf
fle/eng/  

YES  

46 Kakuro 1 grid/ 
mark 

MxN shuffle, no row col duplicates http://www.me
nneske.no/kak
uro/eng/ 
https://en.wiki
pedia.org/wiki/
Kakuro 

YES  

47 Sujiko 1 grid/ 
mark 

A small version of sudoku where 
the groups of 4 adjacent squares 
must also sum to a specific number 

https://en.wiki
pedia.org/wiki/
Sujiko  

YES  

48 Suko 1 grid/ 
mark 

Sujiko but with additional extra 
constraints 

http://sujiko.co
.uk/puzzles.ht
ml 

YES  

49 Survo 1 grid/ 
mark 

Larger version of kakuro, but any 
numbers not just 1-9 can be used 

https://en.wiki
pedia.org/wiki/
Survo_puzzle  

YES  

50 Travelin
g 
salesma
n in 
Solid 
grid 

1 mark/
grid 

Move a piece in a grid such that it 
visit every spot once 

http://cs.smith.
edu/~jorourke/
TOPP/P54.htm
l 

YES  

51 Age 
question 
problem 

1 logic/ 
mark 

Age of blue is two more than age 
of green and … 

http://mathforu
m.org/dr.math/
faq/faq.age.pro
blems.html  

YES  

52 Blackjac
k 

2+ cards Starting with two card, take action 
hit to gain a new card or stay to 
end. The goal is have the sum of 
your cards be 21 or as close to that 
without going over. Aces are 1 
point or 11, and face cards are all 
10 points. 

https://en.wiki
pedia.org/wiki/
Blackjack  

NO *worked 
at one 
time, need 
to fixup 
language 

53 Hearts 4 cards Trick taking game, play a card of 
the same suit as the first played if 
you can, otherwise a card of any 
played suit. Take the cards if you 
play the highest card of the played 
suit. Gain points for every heart, 
and 13 for the queen of spades each 
round, unless you take every point, 
in which case your opponents gain 

https://en.wiki
pedia.org/wiki/
Hearts  

NO Minimize 
points 
taken over 
many 
actions? 

http://www.menneske.no/shuffle/eng/
http://www.menneske.no/shuffle/eng/
http://www.menneske.no/shuffle/eng/
http://www.menneske.no/kakuro/eng/
http://www.menneske.no/kakuro/eng/
http://www.menneske.no/kakuro/eng/
https://en.wikipedia.org/wiki/Kakuro
https://en.wikipedia.org/wiki/Kakuro
https://en.wikipedia.org/wiki/Kakuro
https://en.wikipedia.org/wiki/Sujiko
https://en.wikipedia.org/wiki/Sujiko
https://en.wikipedia.org/wiki/Sujiko
https://en.wikipedia.org/wiki/Survo_puzzle
https://en.wikipedia.org/wiki/Survo_puzzle
https://en.wikipedia.org/wiki/Survo_puzzle
http://mathforum.org/dr.math/faq/faq.age.problems.html
http://mathforum.org/dr.math/faq/faq.age.problems.html
http://mathforum.org/dr.math/faq/faq.age.problems.html
http://mathforum.org/dr.math/faq/faq.age.problems.html
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Hearts
https://en.wikipedia.org/wiki/Hearts
https://en.wikipedia.org/wiki/Hearts


 

108 

 

28. Win by having the least points 
once someone reaches 100. 

54 War 2+ cards Play the top card of your deck, if it 
is greater than your opponents you 
win the cards. Ties are settled by 
playing two additional cards, only 
the value of the second card counts. 
The first player to possess all cards 
wins. 

https://en.wiki
pedia.org/wiki/
War_(card_ga
me)  

NO Condition
al actions 
(when 
tied) 

55 Memory 2+ cards From a grid of face-down cards, 
select two cards to flip over. If they 
match you may add them to your 
pile. If not they get flipped back 
over. The player with the most 
matched cards at the end wins. 

https://en.wiki
pedia.org/wiki/
Concentration_
(game)  

NO Partially 
obsrv. & 
need 
memory to 
play 
well/subgo
als 

56 Hexapa
wn 

2 blocks
/grid 

On a 3x3 chess board advance 
pawns forward by one, or capture 
diagonally. Win by reaching the 
other side of the board, capturing 
all opponent pieces, or prevent the 
opponent from taking an action 

https://en.wiki
pedia.org/wiki/
Hexapawn  

NO Winning 
condition 
to win by 
inaction 

57 Water 
Jug 

1 logic Using a 5 gallon jug and 3 gallon 
jug and only filling them or 
pouring from one to another, get 
exactly 1 gallon in the 3 gallon jug 

https://en.wiki
pedia.org/wiki/
Water_pouring
_puzzle  

NO No action 
models for 
liquid 
pouring 

58 Hangma
n 

1+ word 
game 

Given the length of a word, guess 
the word by guessing letters, which 
are exposed in the answer word, in 
a minimum number of guesses. 

https://en.wiki
pedia.org/wiki/
Hangman_(ga
me)  

NO No 
dictonary, 
or 
handling 
or ordered 
sets 

59 Chain 
reaction 

1+ word 
game 

The first and last word of a list 
must be connected by filling the 
intermediate spaces with words 
such that they form two-word 
phrases with both the proceeding 
word and following word, such as 
STOP-SIGN-LANGUAGE 

https://en.wiki
pedia.org/wiki/
Chain_Reactio
n_(game_show
)  

NO Needs 
some sort 
of 
language 
database 

60 Lingo 1+ word 
game 

Given an initial letter of a five 
letter word, guess the word. Letters 
that match, or are out of place, are 
marked. Guess correctly with X 
guesses 

https://en.wiki
pedia.org/wiki/
Lingo_(U.S._g
ame_show)  

NO No 
dictionary 

61 Word 
Search 

1 word 
game 

Find all the words in the bank in a 
grid of letters. The words can be 
spelled horizontally, diagonally, 
vertically, and backwards. 

https://en.wiki
pedia.org/wiki/
Word_search  

NO No 
handling 
or ordered 
sets 

https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/War_(card_game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Concentration_(game)
https://en.wikipedia.org/wiki/Hexapawn
https://en.wikipedia.org/wiki/Hexapawn
https://en.wikipedia.org/wiki/Hexapawn
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Hangman_(game)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Chain_Reaction_(game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Lingo_(U.S._game_show)
https://en.wikipedia.org/wiki/Word_search
https://en.wikipedia.org/wiki/Word_search
https://en.wikipedia.org/wiki/Word_search
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62 Bananag
rams 

2+ word 
game 

Given a set of tiles each with a 
letter, spell words and connect 
them horizontally and vertically 
until you have used all your tiles.  

https://en.wiki
pedia.org/wiki/
Bananagrams  

NO No 
dictionary 

63 Scatterg
ories 

2+ word 
game 

Roll a die to get a letter, for each 
category on a list (ie. make of car, 
type of fruit), write a word that is 
part of that category and starts with 
the letter 

https://en.wiki
pedia.org/wiki/
Scattergories  

NO Needs 
category 
database 

64 Nine 
men's 
morris 

2 blocks
/grid 

Place stones on empty locations 
until all stones have been place. If 
you make a 3 in a row, remove an 
opponent’s piece from the board. 
Once all pieces have been place, 
available actions are move them to 
adjacent empty locations. Once you 
have only 3 stones you can move to 
any empty location 

https://en.wiki
pedia.org/wiki/
Nine_Men%27
s_Morris  

NO extra 
action 
from 
achieving 
subgoal 
(removing 
a piece 
when 3 in 
a row) 

65 Triangle
s 

2 dots 
/grid 

Given a space covered with some 
number of dots, take a turn by 
drawing a line between two 
unconnected points, if that line 
does not cross through any other 
line or dot. If this completes a 
triangle with other lines, and the 
triangle does not contain a point, 
mark this triangle as yours. Win by 
having more triangles than your 
opponent when no actions are 
possible. 

https://cardga
mes.io/triangle
s/#rules  

NO drawing 
lines 

66 Dots 
and 
boxes 

2 dots/ 
grid 

Given a grid of unconnected dots, 
take turns by drawing lines 
between two adjacent unconnected 
points. If this completes a square 
with other lines, mark this square 
as yours and take another turn. Win 
by having more squares than your 
opponent when no actions are 
possible. 

https://en.wiki
pedia.org/wiki/
Dots_and_Box
es  

NO drawing 
lines 

Table 5: An initial list of many different games and puzzle, that includes a quick description, an 
external link with more details, whether we can learn it, and a quick explanation of why, if we 
cannot learn it. 

https://en.wikipedia.org/wiki/Bananagrams
https://en.wikipedia.org/wiki/Bananagrams
https://en.wikipedia.org/wiki/Bananagrams
https://en.wikipedia.org/wiki/Scattergories
https://en.wikipedia.org/wiki/Scattergories
https://en.wikipedia.org/wiki/Scattergories
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://en.wikipedia.org/wiki/Nine_Men's_Morris
https://cardgames.io/triangles/#rules
https://cardgames.io/triangles/#rules
https://cardgames.io/triangles/#rules
https://en.wikipedia.org/wiki/Dots_and_Boxes
https://en.wikipedia.org/wiki/Dots_and_Boxes
https://en.wikipedia.org/wiki/Dots_and_Boxes
https://en.wikipedia.org/wiki/Dots_and_Boxes
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Figure 36: Experimental results learning 1000 permutations of 55 games. More 
permutations are required for good averages.
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