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ABSTRACT 

 

 Connected Automated Vehicles (CAV) technologies are developing rapidly, and 

one of its more popular application is to provide mobility-on-demand (MOD) services. 

However, with CAVs on the road, the fuel consumption of surface transportation may 

increase significantly. Travel demands could increase due to more accessible travel 

provided by the flexible service compared with the current public transit system. Trips from 

current underserved population and mode shift from walking and public transit could also 

increase travel demands significantly. In this research, we explore opportunities for the 

fuel-saving of CAVs in an urban environment from different scales, including speed 

trajectory optimization at intersections, data-drive fuel consumption model and eco-routing 

algorithm development, and eco-MOD fleet assignment. 

First, we proposed a speed trajectory optimization algorithm at signalized 

intersections. Although the optimal solution can be found through dynamic programming, 

the curse of dimensionality limits its computation speed and robustness. Thus, we propose 

the sequential approximation approach to solve a sequence of mixed integer optimization 

problems with quadratic objective and linear constraints. The number of integer states is 

the number of green windows of all traffic lights in the planning horizon, thus the number 

of integer variables is limited. The speed and acceleration constraints at intersections due 

to route choice are addressed using a barrier method. In this work, we limit the problem to 

a single intersection due to the route choice application and only consider free flow 

scenarios, but the algorithm can be extended to multiple intersections and congested 

scenarios where a leading vehicle is included as a constraint if an intersection driver model 

is available. 

Next, we developed a fuel consumption model for route optimization. The 

mesoscopic fuel consumption model is developed through a data-driven approach 

considering the tradeoff between model complexity and accuracy. To develop the model, 
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a large quantity of naturalistic driving data is used. Since the selected dataset doesn’t 

contain fuel consumption data, a microscopic fuel consumption simulator, Autonomie, is 

used to augment the information. Gaussian Mixture Regression is selected to build the 

model due to its ability to address nonlinearity. Instead of selected component number by 

cross-validation, we use the Bayesian formulation which models the indicator of 

components as a random variable which has Dirichlet distribution as prior. The model 

parameters are obtained through max-a-posterior inference from data, and the conditional 

expectation of fuel consumption on input variables can be obtained in closed form since 

the individual components follow the Gaussian distribution. The model is used to estimate 

fuel consumption cost for routing algorithm. In this part, we assume the traffic network is 

static. 

Finally, the fuel consumption model and the eco-routing algorithm are integrated 

with the MOD fleet assignment. The MOD control framework models customers’ travel 

time requirements are as constraints, thus provides flexibility for cost function design. At 

the current phase, we assume the traffic network is static and use offline calculated travel 

time and fuel consumption to assign the fleet. To rebalance the idling vehicles, we 

developed a traffic network partition algorithm which minimizing the expected travel time 

within each cluster. A Model Predictive Control (MPC) based algorithm is developed to 

match idling fleet distribution with the demand distribution. A traffic simulator using 

Simulation of Urban MObility (SUMO) and calibrated using data from the Safety Pilot 

Model Deployment (SPMD) database is used to evaluate the MOD system performance. 

It’s argued from the literature that ride-sharing has the potential to reduce fuel consumption. 

However, this dissertation shows that if the objective function of fleet assignment is not 

designed properly, even if ride-sharing is allowed, the fleet fuel consumption could 

increase compared with the baseline where personal vehicles are used for travel. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

 Connected Automated Vehicle (CAV) technologies have the potential to change 

the future of ground transportation significantly. CAVs can save fuel, reduce traffic 

accidents, ease congestion, and provide better mobility service to the elderly, physically 

challenged, and vision-challenged population [1]. The Society of Automotive Engineers 

(SAE) defined six levels of automated driving in the SAE J3016 Standard [2] as shown in 

Table 1.1.  

The key distinction is between levels 3 and 4. A vehicle of levels 1-3 still requires 

a licensed driver to operate, while levels 4-5 vehicles allow driverless operations. 

Table 1.1 SAE 6 Levels of Automation Vehicles 

L
ev

el
 

Name 

Execution of 

steering and 

acceleration/ 

deceleration 

Monitoring of 

driving 

environment 

 

Fallback 

performance 

of dynamic 

driving task 

System 

capability 

(driving 

modes) 

Human driver monitors the driving environment 

0 
No 

Automation 
Human Human Human N/A 

1 
Driver 

Assistance 
Human/System Human Human Some modes 

2 
Partial 

Automation 
System Human Human Some modes 

Automated driving system monitors the driving environment 

3 
Conditional 

Automation 
System System Human Some modes 

4 
High 

Automation 
System System System Some modes 

5 
Full 

Automation 
System System System All modes 
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Currently, the industry is moving from level 1 and up, possibly to level 4 in the next few 

years, with Waymo started the autonomous mobility service in 2018 [3]. Since Electronic 

Stability Control (ESC) has been mandatory in the U.S. since 2012, and most vehicles are 

equipped with the conventional cruise control feature, most light-duty vehicles in the US 

can be said to be at least having some automated capabilities already.  

Almost all major car companies have initiated researches and development 

programs for CAVs, and some new light-duty vehicles are equipped with automated 

driving functions such as Autopilot from Tesla [4], Supercruise from GM [5] and Pilot 

Assist from Volvo [6]. However, as the level of automation increases, robust perception 

and decision making require additional hardware such as LiDARs, Radars, high-resolution 

Cameras, and high-performance computers. Currently, one of the most popular sensors, 

LiDAR, costs $4,000 to $70,000 per unit [7]. IHS Automotive predicts that the self-driving 

technologies can lead to $7,000 to $10,000 increase in new vehicle price by 2025 [8]. The 

hardware and software need to be maintained routinely [9] to avoid the potentially fatal 

effects of system failure, which could further increase the operational cost and slow down 

the adoption of CAVs [10]. One potential solution is to use connected vehicle technologies 

[11] to reduce the necessity of high-performance sensors for individual vehicles. For 

example, instead of relying on advanced localization technologies such as Real-Time 

Kinematic (RTK) GPS, connected vehicles can exchange the relative location information 

with each other and the infrastructure to achieve better localization accuracy [12]. 

However, a high penetration ratio is required to achieve a reliable level of performance, 

which is likely to take a while [9]. Mobility-on-Demand (MOD) service using the shared 

automated vehicles (SAV) is proposed as a solution [13, 14] to make CAV technologies 

more accessible.  

MOD service such as Uber and Lyft have brought significant changes, especially 

in densely populated urban areas. In 2015, the mobility service accounted for 4% of global 

mileage traveled, and by 2030, Morgan Stanley estimates that the number could reach 26%  

[15], as shown in Figure 1.1. Compared with the fixed-schedule and fixed-route public 

transit systems, it can provide a more flexible and convenient service. Compared with 

privately owned cars, the travel cost per mile is lower by sharing the cost with others having 

similar itineraries [16]. A recent study [17] found that 18,000 shared vehicles are enough 



3 

 

to serve 120,000 customers who use their cars less than 70 miles per day in Ann Arbor, 

which is 60% of all customers.  Combined with highly automated vehicle features such as 

Cooperative Adaptive Cruise Control (CACC) and eco-routing as well as battery electric 

vehicles, [15] predicted that by 2030, the cost per mile for MOD service is 33% lower than 

personally owned non-autonomous vehicles. MOD service has the potential to change 

vehicle ownership and travel behavior dramatically. An analysis of the Car2go program 

[18] revealed that the shared-vehicle service could reduce vehicle ownership. Also, a 

nation-wide survey [19] found that the shared-vehicle service can reduce personal vehicle 

ownership by 49%.  

 

Figure 1.1 Global Shared Miles Forecast [15] 

 

Figure 1.2 Cost per Mile: Shared v.s. Owned [15] 
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The increasing market share of MOD service and cost reduction due to highly 

automated vehicles can change travel demand dramatically. On the one hand, vehicle travel 

could increase due to current non-drivers traveling, the empty vehicle travels for pick-up 

and drop-off, and reduced travel cost [18, 20–22]. On the other hand, the change in car 

ownership and reduction in activities such as hunting for parking could reduce vehicle 

travel. [23] predicted that the trips due to current non-drivers can contribute to an 11% 

increase in vehicle travel. Moreover, [9] predicted that with the current policy and vehicle 

pollution level, the emission could increase 10-30% and even more on major corridors. A 

recent study by several U.S. national labs [24] found that although the CAV technologies 

have the potential to reduce fuel consumption by 90%, the increased travel mileage can 

increase emission by 200%. As one of the most significant segments for energy 

consumption, ground transportation consumes 26.5% of the world energy in 2016 [25]. 

With increased travel demand due to automated vehicles and MOD service, fuel 

consumption needs to be considered by the fleet operators.  

To mitigate the potential impact on emission and reduced operation cost for MOD 

fleet operator, researches [26–29] have explored opportunities to reduce fuel consumption 

and emission using the CAV technologies.  In highway driving, the concept Eco 

Cooperative Adaptive Cruise Control (ECACC) is proposed. While the primary goal of 

traditional CACC is to maintain string-stability to improve safety and road capacity, the 

shorter inter-vehicle distance can reduce wind resistance, and thus the fuel consumption by 

more than 6% [30, 31]. Besides fuel savings through reduced drag, the concept of eco-

driving is applied to the car-following scenario in ECACC by switching between two 

efficient engine operating points [32–34], showing that fuel consumption can be reduced 

by up to 8.9% [32]. The “pulse-and-glide” eco-driving strategy has also been applied to the 

mixed automated and human-driven vehicle platoon [35] and can reduce fuel consumption 

by 10%, but the smoothness of traffic flow can suffer. [34] designed a car-following 

strategy based on bounded stability to vehicle platoon, which achieved more than 20 % 

fuel saving without sacrificing string stability. To achieve the full potential of platooning, 

[36] developed a routing strategy for the truck fleet to maximize the probability of platoon 

formulation, resulting in 1.2% fuel reduction.  
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In city driving, where MOD service can have a transformative impact [37], stop-

and-go and idling due to congestion and signalized intersections wasted a significant 

amount of fuel [38]. Recently, an experimental study [39] showed that in some cities, fuel 

consumption at signalized intersections is more than 50% of the whole trip on average. 

Currently, the primary technique to address this issue is through adaptive traffic signal 

controls such as SCOOT and SCATS [40]. These infrastructure-centric solutions have 

limitations due to the delayed response to traffic flow and low effectiveness when the 

number of vehicles is low. Broadcasted by the road-side equipment (RSE), signal phase 

and timing (SPaT) contains the current and future signal phase and timing information, 

which enables predictive control and smooth driving at signalized intersections. The 

National Highway Traffic Safety Administration (NHTSA) performed a preliminary 

analysis of the benefits of broadcasting SPaT, which showed a 90% reduction in red-light 

violations and up to 35% energy saving [41]. The infrastructure-to-vehicle (I2V) 

communication enables the vehicle-centric solutions for fuel-saving at signalized 

intersections [42], which advises drivers to anticipate traffic signals to avoid unnecessary 

acceleration, deceleration, and stops. The drivers who follow eco-driving advice on 

average consume 12.9% less fuel, but the travel time increases by 12.7%.  With the 

information of traffic signals and surrounding vehicles available, the vehicle speed 

trajectory can be planned to reduce fuel consumption at the signalized intersections as 

 

Figure 1.3 Location trajectory comparison of a human driver and a CAV at a signalized 

intersection 
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shown in Figure 1.3. This concept is known as Eco-Approach/Departure (EAD). Several 

pioneering works proposed speed planning algorithms based on the idea of idling 

minimization [28, 43, 44], finding that the fuel consumption can be reduced by 10% to 

15% without explicitly optimizing the powertrain operations. The speed trajectory can be 

optimized to achieve higher powertrain efficiency using trajectory optimization algorithms 

such as Dynamic Programming (DP) [45], Pseudospectral [46] and Pontryagin's Maximum 

Principle (PMP)[47], showing that the full potential for fuel saving is about 40%. However, 

current studies on EAD are focusing on longitudinal speed optimization, and the extra fuel 

consumptions due to left and right turns are not addressed. 

The fuel consumption benefits of CAV technologies are due to two factors. The 

I2V communication can provide the future schedule of the traffic lights, and the effective 

range can be as long as 500 meters using DSRC [11], which enables longer optimization 

horizon compared with non-connected vehicles. As illustrated in Figure 1.3, with 

knowledge of future traffic light status, the vehicle can avoid unnecessary decelerations 

and accelerations. Since the speed trajectory can be controlled optimally, fuel consumption, 

travel time, and longitudinal jerk can be minimized. Traffic conditions at intersections is 

also an important factor for vehicles’ route choice. The vehicles’ route choice at 

intersections can be formulated as a Markov Decision Process (MDP) as follows 

 𝑥𝑖
∗ = argmin𝑥𝑖∈𝑎𝑑𝑗𝑜𝑢𝑡(𝑥𝑖−1 )𝑔(𝑥𝑖, 𝑥𝑖−1) + 𝔼(𝑓

∗(𝑥𝑖)) 
(1.1) 

where 𝑥𝑖 is the optimal next link, xi-1 is the current link. The next link should be in the 

adjacent set of current link. 𝔼(𝑓∗(𝑥𝑖)) is the expected optimal value function from the next 

link to destination, 𝑔(𝑥𝑖, 𝑥𝑖−1) is the transitional cost from the current link to the next link. 

Due to the high variance in travel speed prediction [48], the value function can only be 

evaluated as an expected value. However, as the traffic condition including surrounding 

vehicles and traffic light status are known to the CAV on the current link, the transitional 

cost can be evaluated deterministically by solving the EAD problem. Since the motivation 

of our EAD algorithm is to assist route choice decision making, speed and acceleration 

limit at intersections due to left and right turns are included as constraints in the 

optimization problem.  
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In chapter 2 of this dissertation, we present a speed trajectory optimization 

algorithm with turning motion constraints using the sequential convex optimization method 

[49]. Sequential convex optimization is a method to obtain local optimal solutions by 

forming convex sub-problems sequentially.  It finds local optimal solutions which do not 

suffer from the curse of dimensionality. We assume that the traffic signal is known within 

the problem horizon, and we do not consider the influence of the surrounding vehicles. 

Also, we do consider the effect of turning at intersections. The turning speed is determined 

by considering the characteristics of the intersection. The proposed algorithm is flexible in 

problem formulation: it can consider multiple objectives and can be applied to multiple-

vehicle and multiple-intersection cases. In addition to having a flexible problem 

formulation, it is also important to use a robust numerical solver.  We use Gurobi [50] in 

this research.  

While eco-driving can save fuel at the microscopic level, vehicle trip planning and 

routing based on traffic information and predicted fuel consumption could save fuel and 

travel time at the trip level, the potential of which has not been deeply explored. An early 

study of eco-routing using average-speed-based fuel consumption model was conducted, 

which shows 25% fuel saving compared with a fastest-time routing strategy [51] without 

detailed microscopic eco-driving behavior. The user equilibrium and the system-optimal 

behavior were analyzed [52] to understand the network-wide benefits. The authors 

concluded that the potential of fuel-saving is 7.7% for user equilibrium. Other factors such 

as signalized intersections [53] and penetration ratio [54] were also studied.  

A core piece of eco-routing algorithm development is a robust fuel consumption 

model. Microscopic fuel consumption models have been studied extensively [55], but for 

eco-routing, the fuel consumption of a large number of road sections needs to be evaluated, 

thus fast computation is also required. Macroscopic models [56] have also been studied to 

estimate fuel consumption without considering heterogeneity in driving, resulting in the 

same fuel consumption for the same average speed, thus not appropriate for eco-routing.  

Mesoscopic models using road link average speed and grade are widely used for eco-

routing.  By considering link-based variables, they can address driving heterogeneity, thus 

are more accurate than macroscopic models. However, most of the existing mesoscopic 

models for eco-routing are achieved with parametric regression-based models [51] or 
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power balance models [57] and are not accurate enough due to the complexity of traffic 

scenario and nonlinearity of vehicle powertrains. Advanced data-driven methods such as 

support vector machines (SVM) [58] and neural networks (NN) [59] were also studied, and 

many outperformed the traditional methods with an increment in model complexity. 

Recently, a nonparametric model called multivariate adaptive regression spline (MARS) 

was studied [60]. MARS partitions the feature space into hypercubes with boundaries 

perpendicular to the axes of the feature space thus can model nonlinear functions.  

The main idea of our method is that the fuel consumption model should: (i) use 

credible physics-driven simulation model (such as Autonomie [55] that we choose); (ii) the 

driving speed should be from real vehicle data to reflect real-world operating condition of 

the road links; and (iii) instead of fitting individual trips, the model should aim to match 

the expected value from many trips.  We use the Gaussian Mixture Regression (GMR) to 

build our model [61]. The GMR technique models the joint density of model input and 

output then derives the conditional expectation of the output from joint density function of 

the inputs and output, thus the model is invariant under any coordinate system. After the 

fuel consumption model is developed, we use it to evaluate the expected fuel consumption 

of different routing strategies, including shortest-distance, shortest-time, eco-routing, and 

travel-time-constrained eco-routing. The framework of our model development approach 

is summarized in Figure 1.4.   

The main contributions on eco-routing presented in chapter 3 include: 1) a 

nonparametric data-driven fuel consumption model based on real-world driving data and 

Autonomie fuel consumption simulations; 2) a constrained eco-routing strategy addressing 

 

Figure 1.4 Fuel consumption modeling framework utilizing connected vehicle data 
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trade-off between travel time and fuel consumption; and 3) numerical simulation study of 

the fuel consumption and travel time trade-off of different routing strategies.  

Although eco-driving and eco-routing concepts have been proposed to reduce fuel 

consumption and emission at the operation level, as pointed out by a recent study on 

potential impact on fuel consumption of CAV technologies [24], the major cause for fuel 

consumption increase is the additional travel demand such as currently underserved 

population (2% ~ 40%), travel mode shift (~3.7%), and empty vehicle mileage (0%~11%). 

Thus, ride-sharing is proposed to reduce fuel consumption directly at the travel demand 

level [62] and has the potential to reduce vehicle mileage traveled by 12% [63]. However, 

currently the fleet assignment of MOD are either travel time oriented [64–69] or fleet sizing 

oriented [70–73], and the effect of fuel-saving is mainly due to reduced trips [18]. The full 

potential in fuel-saving by including trip-level techniques such as eco-routing or 

minimizing total fleet fuel consumption was not addressed in the literature.  

To include fuel consumption in the objective and integrate MOD fleet control with 

the recent eco-routing [74] concept, we developed a fleet control algorithm based on the 

work in [65] where the customers’ wait time and travel delay time are modeled as 

constraints. We propose a MOD fleet control algorithm, Eco-MOD, to minimize the fleet 

operation cost (fuel consumption) while satisfying the customers’ travel time constraints. 

In our numerical study, travel demands generated by POLARIS [75], a mesoscopic agent-

based transportation model, are calibrated with data from the Safety Pilot Model 

Deployment (SPMD) project [76] and used to generate the origins and the destinations of 

the customers. To evaluate the performance of Eco-MOD under realistic transportation 

environment, we developed a microscopic traffic simulator using Simulation of Urban 

Mobility (SUMO) [77] and performed a case study in Ann Arbor using the integrated 

model.   

The main contributions of our work on MOD fleet assignment are: 1) a MOD fleet 

control algorithm which minimizes fleet fuel consumption directly while satisfying 

customer travel time constraints; 2) a MOD simulation framework using SUMO and 

Matlab; 3) findings showing the importance of including fuel consumption in optimization 

to reduce fleet operating cost; and 4) a traffic network partition method minimizing 

expected travel time for fleet rebalancing control. 
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In this dissertation, we focus on fuel consumption optimization of highly automated 

vehicles (level 4-5) in an urban environment, including three closely related subjects: eco-

driving at signalized intersections, link-level fuel consumption model for route 

optimization, and MOD fleet assignment. The main contributions of this dissertation 

include: a fast algorithm to optimize vehicle speed trajectory approximately at signalized 

intersection including turns due to route choice; a data-driven fuel consumption model and 

apply it to vehicle route optimization; and a framework to combine energy-efficient route 

optimization and MOD fleet assignment. 

1.2 Literature Review  

1.2.1 Speed Trajectory Optimization at Signalized Intersections 

With the information of traffic signals available, the vehicle speed trajectory can be 

planned to reduce fuel consumption at the signalized intersections, and this concept is 

known as eco-approach/departure (EAD). Multi-stage optimization methods have been 

used in several prior works [43, 78, 79]. The vehicle speed is designed to be the maximum 

allowable speed if there is enough green time to pass or minimum allowable speed to arrive 

at the next green window without stopping to avoid idling at the signalized intersections. 

Subsequently, with the smoothed speed profile designed using the simplified rules, a 

variety of optimal trajectory following methods are used. Asadi et al. [43] used a model 

predictive control algorithm with the objective function defined as a weighted sum of 

trajectory following error and fuel consumption. The work was extended to vehicle 

platoons [80] and hybrid electric vehicles [81].  Xia et al. [28] experimentally studied the 

effect of speed advisory with rule-based speed planning and found a 14% reduction in fuel 

consumption and a 1% reduction in travel time. However, the planned speed trajectory is 

mainly based on avoiding idling at the intersections, and the powertrain nonlinearity is not 

considered, thus the potential in fuel saving is not fully addressed. 

Trajectory optimization techniques such as dynamic programming were frequently 

used [45, 82] to realize the full potential of fuel-saving. Instead of precisely known traffic 

signal states, [45] also studied the cases with inaccurate traffic signal states. An analytical 

solution was obtained for a single-vehicle case using the Pontryagin's minimum principle 
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[83]. [46] included the queuing vehicles at an intersection in the analysis. They estimated 

the queue clearing time and used the pseudospectral method to solve the optimal speed 

trajectory. In [84], a discretized solution was obtained.  They assumed the vehicles only 

cross the intersection at specific time point such as at the beginning, the middle and at the 

end of the green phase window. The discrete choices are modeled as nodes in a graph, and 

a minimum cost path problem was solved using the Dijkstra’s algorithm. In many of the 

works cited above, additional assumptions are made to reduce the computation load, e.g., 

constant traveling speed along each road section. Also, in urban driving, turning happens 

frequently.  During a turn, the vehicle may incur significant penalty both in fuel economy 

and time.  However, to our best knowledge, the effect of turning has not been considered 

in the literature.  

1.2.2 Data-Driven Fuel Consumption Model and Route Optimization 

A series of pioneering works have been conducted to study the energy-saving 

impact of eco-routing.  [51] built a macroscopic fuel consumption model with average 

speed and road grade as input variables to perform eco-routing on a large scale, resulting 

in 13% fuel saving and 21% increase in travel time. [85] extended the analysis and included 

multiple vehicle classes, including heavy-duty diesel trucks, medium-duty diesel trucks, 

and light-duty gasoline vehicles. The trade-off of fuel consumption and travel time for 

route choice by travelers is further explored experimentally [86] by providing emission 

information to households and examining their daily commute decisions. Guo et al. [54] 

studied the influence of market penetration ratio of CAV on fuel-saving, showing that with 

increased penetration ratio, fuel-saving can be up to 12% and travel time can be reduced 

by up to 8%. Recently, [53] took the time window effect of signalized intersections into 

consideration and designed a routing algorithm based on Markov Decision Process (MDP), 

and the fuel usage was reduced by 10%. [87] developed an eco-reliable routing algorithm 

to minimize fuel consumption and late arrival probability in a network with dynamic 

stochastic travel time. The user equilibrium and system-optimal behavior were analyzed in 

[52] to understand the network-wide benefits, and the authors concluded that the potential 

of fuel-saving is 7.7%. Besides the decentralized strategies, centralized traffic assignment 

is also studied to understand the full potential of energy saving for the whole traffic network 
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[88–90], which showed that the energy consumption and the travel time could be reduced 

simultaneously at the system level.  

The fuel consumption model used in the routing algorithm plays a central role in 

the system design. Previously, power balance model based on the vehicles’ longitudinal 

speed was used to develop the macroscopic fuel consumption MOVES [56] and was used 

by [91–93] to develop eco-routing algorithms., Data-driven approaches such as 

exponential-polynomial model [51], Support Vector Machines (SVM) [58], neural 

networks (NN) [59], and Multivariate Adaptive Regression Splines (MARS) [60] were also 

applied for fuel consumption estimation considering the nonlinearity of powertrain and 

complexity of traffic scenarios. The performance of data-driven exponential-polynomial 

models and power balance models were compared in [57], which concluded that the power 

balance model is not complex enough to simulate mesoscopic link-level fuel consumption. 

[94] modeled the speed profile instead of fuel consumption and used the synthetic speed 

profiles to estimate the link fuel consumption to take advantage of accurate microscopic 

models. Instead of using fuel consumption models, Rakha et al. [52, 95] used probed 

vehicles in the same class to update the fuel consumption information and studied the fuel-

saving impact of eco-routing for the entire network under high connected vehicle 

penetration ratio. A simulation study showed that the benefit could be from 3.3% to 9.3% 

compared with typical routing strategies that minimize travel time [96]. The model needs 

to be simple enough to evaluate the fuel consumption for the city-wide network and 

accurate enough to address the nonlinearity of fuel consumption and complexity of traffic 

scenarios. We choose the data-driven approach to address the trade-off between model 

complexity and accuracy. To address the trade-off between travel time and fuel 

consumption, we developed a travel-time constrained eco-routing algorithm, which only 

considers eco-routing solutions with travel time that are longer than the fastest route by no 

more than a few percentage points. 

1.2.3 MOD Fleet Optimization 

Control of MOD fleet has been studied extensively to minimize customers’ travel 

time.  The fleet assignment problem falls in the category of dynamic Vehicle Routing 

Problem (VRP) [97] in the demand-vehicle network, which is a generalization of Traveling 
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Salesman Problem (TSP) by allowing multiple vehicles to serve multiple customers. The 

problem is typically formulated as an integer programming problem. Several studies 

developed algorithms to find the exact solution [98–100]. However, considering the NP-

hardness of VRP [101] and potentially large problem size, the centralized matching 

problem is hard to solve directly [102]. Thus, heuristic algorithms such as 

Genetic/Evolutionary algorithms combined insertion algorithm [103] and bee colony 

optimization [104] are applied to find a suboptimal solution faster compared with the exact 

approach. Decomposition-based algorithms focus on reducing the problem size either 

spatially [105] or use Lagrange relaxation [106] to combine multiple smaller TSP into the 

master VRP, thus the solution process is accelerated due to the reduction in problem size 

and parallelization.  

Recently, a graph decomposition [107] methods demonstrated that current travel 

demand for taxis in New York City could be fulfilled with 15% of the existing fleet [65]. 

A data-driven approach is also used to improve the quality of the solution by considering 

future demands [64]. [108] developed a simulation optimization (SO) framework using 

continuous approximation as a metamodel to improve computational efficiency. Other 

aspects of MOD systems were also explored. A privacy-preserving algorithm was 

developed [109] to protect the location information of passengers without incurring 

significant performance drop. Continuous approximation [110] is used to study the 

dynamics of the fleet and the influence of large fleet to congestion as well as fleet routing 

problem in a congested network [67, 111].  However, none of the existing work considers 

fuel consumption when designing the controller, which is a core element in reducing the 

operation cost of the MOD service provider. 

Knowledge of travel demand distribution plays a vital role in the control of MOD 

fleet. For carpool service with private cars, travel data can be used to identify optimally 

combined trips for carpooling and can reduce daily car mileage by 44% [112]. Intelligent 

transportation techniques such as connected automated vehicles provide richer information 

about travel demand and enable centralized coordination for the MOD fleet. Han et al. 

[113] showed that with a driverless MOD fleet, the direct control approach is 29% more 

efficient compared with current price-based indirect control. For service provided by a 
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commercial fleet, travel demand distribution can be used to control the idling vehicles for 

rebalancing [113–115] to better meet future trip requests when carpooling is not allowed.  

A sampling-based algorithm is also proposed to control ride-sharing fleet using 

predicted future trip request information [64]. When solving the rebalancing problem, the 

traffic network needs to be partitioned so the travel demand and vehicle distribution can be 

characterized as a discrete random variable defined by the partitions and formulated as a 

linear optimization problem [113]. Currently, the partition is achieved through grid-based 

approximation [66, 116] and clustering analysis in the spatial coordinate [67, 112]. In dense 

cities, an integer programming can be formulated [117] to make sure every link is reachable 

within the time constraint. Thus, to apply the rebalancing algorithm to real traffic network, 

we developed a traffic network partition algorithm minimizing expected travel time from 

each link to the closest cluster centers and combined it with our eco-MOD framework.  

1.3 Objective, Approaches, and Scope of the Study 

The objective of this research is to optimize fuel consumption of connected 

automated vehicles in an urban environment, including speed trajectory optimization at 

intersections, data-driven fuel consumption model and eco-routing algorithm development, 

and eco-MOD fleet assignment. The sub-objectives are connected by the route choice of 

connected vehicle: EAD at intersections provides transit cost estimation at current 

intersection when traffic status including surrounding vehicles and traffic signal states are 

revealed to the vehicle; data-driven fuel consumption and route optimization provides 

expected value function for future links where the expected value of traffic information is 

available; using the expected fuel consumption cost, eco-MOD can assign vehicles and 

customers not only minimizing travel time but also fleet fuel consumption, which can 

reduce operation cost and reduce emission at the same time.  

To use eco-approach/departure (EAD) as transit cost for route choices, one need 

the algorithm to be fast and robust enough for online computation. Although the optimal 

solution can be found through dynamic programming, the curse of dimensionality limits 

its computation speed and robustness. Thus, we propose the sequential approximation 

approach to solve a sequence of mixed-integer optimization problems with quadratic 
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objective and linear constraints. The number of integer states is the number of green 

windows of all traffic lights in the planning horizon, thus the number of integer variables 

is limited. The speed and acceleration constraints at intersections due to route choice are 

addressed using a barrier method. In this part of the dissertation, we limit the problem to a 

single intersection due to the route choice application and only consider free flow scenarios, 

but the algorithm can be extended to multiple intersections and congested scenarios where 

a leading vehicle is included as a constraint if an intersection driver model is available. 

The mesoscopic fuel consumption model is developed through a data-driven 

approach considering the tradeoff between model complexity and accuracy. A large 

quantity of naturalistic driving data is used to develop the model. Since the selected dataset 

does not contain fuel consumption data, a microscopic fuel consumption simulator, 

Autonomie, is used to augment the information. Gaussian Mixture Regression [61] is 

chosen to build the model due to its ability to address nonlinearity. Instead of selected 

component number by cross-validation, we use the Bayesian formulation, which models 

the indicator of components as a random variable which has Dirichlet distribution as prior. 

The model parameters are obtained through max-a-posterior inference from data, and the 

conditional expectation of fuel consumption on input variables can be obtained in closed 

form since the individual components follow the Gaussian distribution. The model is used 

to estimate fuel consumption cost for routing algorithm. In this part, we assume the traffic 

network is static. 

 The fuel consumption model and the eco-routing algorithm are integrated with 

MOD fleet assignment. The MOD control framework is inspired by [65], where customers’ 

travel time requirements are modeled as constraints, thus provides flexibility for cost 

function design. At the current phase, we assume the traffic network is static and use offline 

calculated travel time and fuel consumption to assign the fleet. To rebalance the idling 

vehicles, we developed a traffic network partition algorithm which minimizing the 

expected travel time within each cluster. The demand matching algorithm [113] is used to 

assign the rebalancing fleet. It is argued in [9] that ride-sharing has the potential to reduce 

fuel consumption. However, this dissertation shows that if the objective function of fleet 

assignment is only travel time, even if ride-sharing is allowed, the fleet fuel consumption 

could increase compared with the baseline where personal vehicles are used for travel. 
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1.4 Research Contribution 

The contributions of this dissertation are listed below: 

 A speed trajectory optimization algorithm at signalized intersections with speed and 

acceleration limits due to left and right turns is presented. The algorithm can be 

extended to multiple intersections and multiple vehicles. 

 A data-driven fuel consumption model based on real-world driving data and 

Autonomie fuel consumption simulation and analysis of trade-off between travel 

time and fuel consumption of different routing strategies including fastest route, 

shortest route, eco-route, and travel time-constrained eco-route. 

 A framework for eco-MOD combining eco-routing strategy and MOD fleet 

assignment with ride-sharing is developed, showing the importance of including 

fuel consumption in the assignment algorithm.  

 A traffic network partition algorithm minimizing expected in-cluster travel time for 

MOD idling fleet rebalancing is proposed. 

 A traffic simulation framework is developed using SUMO and calibrated using the 

SPMD database.  

1.5 Outline of the Dissertation 

This dissertation is organized as follows: in Chapter 2, the speed trajectory 

optimization algorithm is presented. In Chapter 3, the data-driven fuel consumption model 

is presented, and two versions of eco-routing algorithms using the model, with and without 

travel time constraints are discussed. In Chapter 4, the eco-MOD framework is presented. 

The performance is compared with personal vehicles traveling and MOD that minimizing 

travel time. In Chapter 5, the traffic network partition algorithm and the idling fleet 

rebalancing algorithm is presented. In Chapter 6, the conclusion and future works are 

presented. 
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CHAPTER 2 

Speed Trajectory Optimization at Signalized Intersections 

2.1 Introduction 

 In this chapter, we present a speed trajectory optimization algorithm considering 

turning motion constraints using the sequential convex optimization method. Sequential 

convex optimization is a method to obtain a local optimal solution by forming convex sub-

problems sequentially.  It finds a local optimal solution in a computationally efficient 

manner and scales better for higher-dimensional problems. We assume that the traffic 

signal state (red/green) is known within the problem horizon, and we do not consider the 

influence of other road users. The problem can be solved over the whole problem horizon, 

by manipulating the speed profile over multiple road sections. The second advantage is that 

we do consider turning at intersections. The driving speed during turning is determined by 

considering the characteristics of the intersection. The third advantage is the flexibility of 

the proposed method: it can combine multiple objectives and can be applied to multiple-

vehicle and multiple-intersection cases. In addition to having a flexible problem 

formulation, it is also important to use a robust numerical solver.  We use Gurobi [50] in 

this research.  

The rest of the chapter is organized as follows:  The model of a passenger car is 

constructed in Section 2.2. Section 2.3 presents the optimization problem. Section 2.4 

shows the optimization results and their analysis. Finally, conclusions are presented in 

Section 2.5. 
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2.2 Vehicle Model 

2.2.1 Fuel Consumption Model 

In this study, we consider a passenger car equipped with a 4-cylinder 2.5-liter 

internal combustion engine and a continuously variable transmission (CVT). A simplified  

powertrain model is used with the following assumptions: (1) the powertrain efficiency is 

described by a static look-up table; (2) the CVT keeps the engine operating along the 

minimum brake specific fuel consumption (BSFC) line; (3) a simple longitudinal dynamics 

of the vehicle [118] is used. 

 𝑀𝑣̇ = 𝐹 −𝑀𝑔 𝑠𝑖𝑛 𝜃 −𝑀𝑔𝑓 𝑐𝑜𝑠 𝜃 − 0.5𝜌𝐶𝑑𝐴(𝑣 + 𝑣𝑤) (2.1) 

where 𝑀 is the vehicle mass, 𝑣 is the vehicle speed, 𝐹 is the longitudinal force, 𝑔 is the 

gravity coefficient, 𝜃 is the road grade, 𝑓 is the rolling resistance coefficient, 𝜌 is the air 

density, 𝐶𝑑 is the drag coefficient, 𝐴 is the vehicle cross-sectional area, and 𝑣𝑤 is the wind 

speed. In the following, we assume a flat road and zero wind speed. The driving force is a 

function of gear ratio and engine torque 

 𝐹 = 𝑖𝑔𝑖𝑓𝜂𝑇𝑇𝑒/𝑟𝑤 (2.2) 

 

Figure 2.1 BSFC map of an engine  
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where 𝑖𝑔  is the transmission gear ratio, 𝑖𝑓  is the final drive ratio, 𝜂𝑇 is the transmission 

efficiency, 𝑟𝑤  is the wheel radius, 𝑇𝑒  is the engine torque. The fuel consumption is 

estimated from the static fuel consumption map, as shown in Figure 2.1. 

The idling engine speed is 800 RPM, and the idling torque is assumed to be 0 Nm. 

We assume engine stop-start [119] is not available, thus there is idling fuel consumption. 

The optimal BSFC point is around 2000 RPM and 140 Nm. To incorporate the transient 

effect of engine operation on fuel consumption, we follow the methods of Li et al. [120] 

by adding a modification term to the static fuel consumption map. The total fuel 

consumption Q is 

 𝑄 = 𝑄𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑘𝑒𝑇𝑒̇ (2.3) 

where Qstatic is the fuel consumption rate from the static lookup table, ke is the coefficient 

for transient engine operations. The coefficient ke is obtained from the drive cycle FTP-72, 

based on which the transient engine operation was found to increase the fuel consumption 

by 4~5% [120, 121]. The transmission is assumed to be controlled optimally so that the 

engine stays on the best BSFC line 

 𝜔𝑜𝑝𝑡 =
𝑏

1 − 𝑘𝑇𝑜𝑝𝑡
 (2.4) 

 

Figure 2.2 Fitted fuel rate of the engine as a function of the engine power 
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where ωopt is the engine speed along the best BSFC line, Topt is the engine torque, k and b 

are parameters to be identified. With this ideal CVT, the fuel consumption rate is a function 

of the engine power. The fitted function of fuel consumption is shown in Figure 2.2. 

2.2.2 Effect of Turning 

  We assume turning imposes speed and acceleration limits at intersections. For the 

speed constraint, we consider the simplified unbanked turning model [122], which 

computes the speed limit from the friction limit 

 𝑣𝑚𝑎𝑥1 = √𝑅𝑔𝜇 (2.5) 

where R is the turning radius, μ is the friction coefficient. Also, we assume there is a limit 

on vehicle speed due to ride comfort. When the maximum allowed lateral acceleration is 

𝑎𝑦, then the maximum speed is limited by  

 𝑣𝑚𝑎𝑥2 = √𝑅𝑎𝑦 (2.6) 

2.2.3 Baseline Driver Deceleration/Acceleration Model 

  A human behavior model at intersections is used as the benchmark to evaluate the 

effectiveness of the algorithm. The human driver deceleration/acceleration behavior model 

[123] is shown in Eq. (2.7). The model was evaluated in [124] and confirmed to match 

experimental data very well. 

 𝑎 = 𝑟𝑎𝑚𝜃(1 − 𝜃
𝑚)2  (2.7) 

  In Eq. (2.7), 𝑟𝑎𝑚 is a function of m, θ is the normalized acceleration/deceleration 

time, defined as time divided by desired acceleration/deceleration time. The model 

parameters are all adopted from [123]. The reaction distance is defined as the maximum 

distance to the intersection where the driver starts to decelerate if the light state is red. The 

desired acceleration/deceleration time and distance are calculated from [123]. 

 
𝑡𝑎 =

𝑣𝑓 − 𝑣𝑖

0.5778 + 0.0669(𝑣𝑓 − 𝑣𝑖)
1
2 − 0.0182𝑣𝑖

 (2.8) 

 𝑥𝑎 = (0.467 + 0.0072𝑣𝑓 − 0.0076𝑣𝑖)(𝑣𝑓 + 𝑣𝑖)𝑡𝑎 (2.9) 
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 𝑡𝑑 =
𝑥𝑑

(0.473 + 0.0056𝑣𝑖 − 0.0049𝑣𝑓)(𝑣𝑓 + 𝑣𝑖)
 (2.10) 

 𝑟𝑎𝑚 =
[
2(𝑚 + 1)(𝑚 + 2)

𝑚2 ] |𝑣𝑓 − 𝑣𝑖|

𝑡𝑎(𝑑)
 

(2.11) 

where 𝑥𝑎  and 𝑥𝑑  are desired acceleration/deceleration distance, 𝑡𝑎  and 𝑡𝑑  are desired 

acceleration/deceleration time, 𝑣𝑓 and 𝑣𝑖 are desired final and initial speeds. The reaction 

distance is 150 m to the intersection, which is the mean distance to start deceleration from 

[125]. We assume that the desired deceleration distance is the distance to the intersection 

when the light is red and the driver is within the reaction distance. If the speed limit is 

17.88m/s, parameter m for deceleration is -0.7193, and 9.1244 for acceleration from 

 
Figure 2.3 Intersection Motion Trajectory From Human Driver Model 

 
Figure 2.4 Intersection Speed Trajectory 

from Human Driver Model 

 
Figure 2.5 Intersection Acceleration 

Trajectory from Human Driver Model 

 



22 

 

(2.8)(2.9)(2.10) and [123]. The sample motion trajectories with different traffic signal 

phase are shown in Figure 2.3.   

2.3 The Eco-Driving Problem and Solution Methodology 

2.3.1 Mixed-Integer Problem Formulation 

The speed trajectory optimization problem is formulated as a non-convex 

optimization problem. The objective is to minimize the fuel consumption, traveling time 

and meeting ride comfort requirement over the planning horizon, and the constraints 

including speed limits, acceleration limit, and red light violation. The vehicle motion is 

discretized with a sampling time, and during each sampling time, the acceleration is 

assumed to be constant. In the discrete-time, speed and displacement are 

 𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎𝛥𝑡 (2.12) 

 𝑑(𝑘 + 1) = 𝑑(𝑘) +
(𝑣(𝑘 + 1) + 𝑣(𝑘))

2
𝛥𝑡 

(2.13) 

The traction power at each time step is derived from the longitudinal vehicle model 

(2.1). 

 𝑃(𝑘) = 𝑀𝑎(𝑘)𝑣(𝑘) + 𝑀𝑔𝑓𝑣(𝑘) + 0.5𝜌𝐶𝑑𝐴𝑣(𝑘)
3  (2.14) 

As discussed in Section 2, the fuel consumption is only a function of the engine 

power along the BSFC line. Therefore, fuel consumption FC(k) is  

 𝐹𝐶(𝑘) = 𝐶𝑓(𝑃𝑒𝑛𝑔)𝑃𝑒𝑛𝑔(𝑘) = 𝐶𝑓(𝑃𝑒𝑛𝑔)𝑃(𝑘)/𝜂𝑇   
(2.15) 

where 𝐶𝑓(𝑃𝑒𝑛𝑔) is the fuel consumption coefficient. 

  A travel time penalty is imposed through a negative vehicle speed term over the 

planning horizon, and a penalty on acceleration and jerk represents the desire for better ride 

comfort.  

 𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑘) = 𝑎(𝑘)
2
+𝑤𝑗(𝑎(𝑘)− 𝑎(𝑘− 1))

2
  (2.16) 

The final objective function is defined as a weighted sum of fuel consumption, 

traveling time, and ride comfort.  

 𝐽 = 𝑤𝑓𝑐∑𝐽𝑓𝑐(𝑘)

𝑇

𝑘=1

− 𝑤𝑡
1

𝑇
∑𝑣(𝑡)

𝑇

𝑘=1

+𝑤𝑐∑𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑘)

𝑇

𝑘=1

 
(2.17) 



23 

 

where T is the horizon time, 𝑤𝑓𝑐, 𝑤𝑡, 𝑤𝑐 are weighting parameters for fuel consumption, 

traveling time and ride comfort, respectively.   

To ensure the vehicle crosses the intersection without violating the red light, we 

define the constraints to address the green phase windows. tr2g
(i) is defined as the time the 

light changes from red to green for the ith green phase window of the subject intersection, 

and tg2r
(i) is defined as the time the light changes from green to red. These time steps are 

critical for speed trajectory optimization at signalized intersections. To put the constraints 

into a matrix form, we define the vehicle location at the critical times and the indicator of 

crossing windows as follows 

 𝑘 = [𝑘1, . . . , 𝑘𝑁]
𝑇  (2.18) 

 𝑑𝑟2𝑔 = [𝑑𝑟2𝑔
(1)
, . . . , 𝑑𝑟2𝑔

(𝑁)
]
𝑇
 

(2.19) 

 𝑑𝑔2𝑟 = [𝑑𝑔2𝑟
(1)
, . . . , 𝑑𝑔2𝑟

(𝑁)
]
𝑇
 

(2.20) 

where 𝑘 is a singleton vector with only one of the indicators equals to 1, and the other 

elements are all 0. N is the total number of green phase windows in the planning horizon 

at the subject intersection. 𝑑𝑟2𝑔 and  𝑑𝑔2𝑟 are vectors of vehicle locations at critical times. 

With the variables defined in the vector form, the constraint for valid intersection crossing 

can be defined as 

 ∑ 𝑘𝑖
𝑁
𝑖=1 = 1, 𝑘𝑖 ∈ {0,1}  (2.21) 

 𝑘
𝑇
𝑑𝑟2𝑔 < 0 

(2.22) 

 𝑘
𝑇
𝑑𝑔2𝑟 > 0  

(2.23) 

  Other constraints include the speed limit constraint, the acceleration limit 

constraint, and jerk constraint. Unlike the study in [7], we do not allow the vehicle to 

exceed the speed limit to catch a green light. 

 𝑣(𝑘) ∈ [0, 𝑎𝑚𝑎𝑥], 𝑎(𝑘) ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] (2.24) 

 𝑎(𝑘) − 𝑎(𝑘 − 1) ∈ [𝐽𝑒𝑟𝑘𝑚𝑖𝑛, 𝐽𝑒𝑟𝑘𝑚𝑎𝑥] 
(2.25) 

As discussed above, the problem is formulated as a non-convex optimization 

problem, with speed and position as the state variables, and acceleration and the crossing 

green phase window indicator as the input variables. The crossing green phase window 
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indicator is an integer variable. The constraints are either linear or quadratic. However, the 

objective function is non-convex, with nonlinear fuel consumption and aerodynamic drag. 

The sequential convex optimization technique is applied to solve the problem. Sequential 

convex optimization finds a local optimal solution by forming a convex sub-problem of 

the original problem sequentially. The method has been used to solve trajectory planning 

for aircraft, manipulators, and humanoid robots [49, 126]. To make the approximation at 

each iteration valid, the trust region method is applied, that is, an additional constraint is 

applied to make the step size small. At each iteration, the two non-convex terms are 

approximated by the values from the previous iteration. At iteration 𝑗 + 1 the objective 

function of fuel consumption is shown below.   

 

𝐽𝑓𝑐
𝑗+1

= 𝑑𝑖𝑎𝑔(𝑓𝑐𝑘
𝑗
/𝑝𝑘

𝑗
)(𝑎𝑇(𝑀𝐷

              +0.5𝜌𝐶𝑑𝐴𝐷
𝑇𝑑𝑖𝑎𝑔(𝑣𝑘

𝑗
)𝐷)𝑎 + 𝑣0

𝑇𝑀𝑎

              +𝜌𝐶𝑑𝐴𝑣0
𝑇𝑑𝑖𝑎𝑔(𝑣𝑘

𝑗
)𝐷𝑎 +𝑀𝑔𝑓𝐷𝑎 + 𝐾)

 (2.26) 

where 𝐾 is a constant term related only to the initial speed, 𝑝𝑘
𝑗
 is the traction power at 

iteration 𝑗 and time step 𝑘, 𝑓𝑐𝑘
𝑗
 is the fuel consumption rate at iteration 𝑗 and time step 𝑘, 

𝑎 is the vector form of the acceleration in the planning horizon, 𝐷 is an N×N lower triangle 

matrix representing the kinematic model (2.12).  

 𝐷 = (

1 0 ⋯ 0
1 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

) , 𝑣 = 𝐷𝑎 + 𝑣0 (2.27) 

The assumption here is that in the trust region, the fuel consumption and the speed 

of the last iteration are close approximations of the actual value. The trust region method 

would impose additional linear constraints on speed and acceleration 

 𝑣(𝑘)𝑗+1 ∈ [𝑣(𝑘)𝑗 − 𝜌𝑣 , 𝑣(𝑘)
𝑗 + 𝜌𝑣] 

(2.28) 

 𝑎(𝑘)𝑗+1 ∈ [𝑎(𝑘)𝑗 − 𝜌𝑎 , 𝑎(𝑘)
𝑗 + 𝜌𝑎] 

(2.29) 

where 𝜌𝑣 and 𝜌𝑎 are the trust-region radius of speed and acceleration, respectively. It is 

also noted from the solver that since breach-and-bound is used to solve the mixed-integer 

problem, the application of the trust region at each iteration would reduce the size of the 

search tree. 
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Since the multi-objective optimization problem is solved by the weighted sum 

method, the objective function is not guaranteed to be positive-semidefinite. Therefore, 

during each iteration, standard sequential quadratic programming (SQP) is used to obtain 

the solution.  

The initial cost function for fuel consumption is set to minimize the traction power 

rather than the fuel consumption. The initialization helps to achieve a close starting point 

to a local-optimal solution considering the application of the traction power as the fuel 

consumption cost from the literature [43].  

 𝐽𝑓𝑐
0 = 𝑎𝑇𝑀𝐷𝑎 + 𝑣0

𝑇𝑀𝑎  (2.30) 

2.3.2 Incorporation of Turning Motion 

As discussed in the previous section, we assume the geometry of the intersection 

can be neglected when incorporating the turning motion, which is modeled as speed and 

acceleration limits as follows 

 0 ≤ 𝑣(𝑡𝑐𝑟𝑜𝑠𝑠) ≤ 𝑣𝑡𝑢𝑟𝑛 (2.31) 

 𝑎𝑡𝑢𝑟𝑛_𝑚𝑖𝑛 ≤ 𝑎(𝑡𝑐𝑟𝑜𝑠𝑠) ≤ 𝑎𝑡𝑢𝑟𝑛_𝑚𝑎𝑥 (2.32) 

where tcross is the crossing time at the intersection, vturn is the maximum speed during 

turning, aturn_min and aturn_max are acceleration limits. Since the intersection crossing time is 

unknown even when the crossing window is determined, the crossing speed and 

acceleration constraints are achieved through soft constraints, as shown in Figure 2.6 and 

Figure 2.7. 

 

Figure 2.6 Crossing Speed Soft 

Constraint 

 

Figure 2.7 Crossing Acceleration Soft 

Constraint 
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The soft constraint is implemented with a piecewise linear objective in Gurobi [50]. 

With the convex nature of the quadratic and the SQP approximation of the original 

problem, using soft constraints will preserve the convexity of the sub-problem at each 

iteration. However, due to the use of the trust region, at each iteration, the converging step 

size is small. Also, using soft constraints increases computation time for mixed-integer 

programming. When the crossing time change between two consecutive iterations is larger 

than a specific threshold, we reinitialize the sequential convex optimization by resetting 

the cost function as propulsion power, removing the trust-region constraint and adding 

linear constraints for crossing speed and acceleration.  

  To define the stopping criteria for the sequential optimization, the distance of 

improvement between iterations is defined. The criterial iteration variables are fuel 

consumption rate, vehicle speed, and crossing speed. The distance of improvement is 

defined as 

 Δ𝑓𝑐𝑗 = max𝑘(|𝑓𝑐(𝑘)
𝑗 − 𝑓𝑐(𝑘)𝑗−1|) (2.33) 

 Δ𝑣𝑗 = max𝑘(|𝑣(𝑘)
𝑗 − 𝑣(𝑘)𝑗−1|) (2.34) 

 Δ𝑣𝑐𝑟𝑜𝑠𝑠
𝑗 = (𝑣(𝑡𝑐𝑟𝑜𝑠𝑠)

𝑗 − 𝑣𝑡𝑢𝑟𝑛)𝑣(𝑡𝑐𝑟𝑜𝑠𝑠)𝑗>𝑣𝑡𝑢𝑟𝑛
 (2.35) 

 Δ𝐺𝑗 = √Δ𝑓𝑐𝑗2 + Δ𝑣𝑗2 + Δ𝑣𝑐𝑟𝑜𝑠𝑠𝑗2 
(2.36) 

where ΔGj is the difference between two consecutive iterations evaluated at iteration j, 

defined as the square root of the sum of the squares of the difference in fuel consumption 

rate, vehicle speed, and crossing speed. The iterative algorithm stops when ΔGj becomes 

less than the selected threshold.  

2.4 Optimization Results and Discussion 

We first start from a single vehicle, single intersection case.  The problem horizon 

is set to be 90 seconds. The speed limit is 17.9 m/s, or 40 mph. The acceleration limits are 

±3 m/s2, as used in [41]. The jerk limits are set to be ±0.5 m/s3. Mixed integer programming 

is known to be NP-hard, and the computation time depends on the number of integer states 

and the problem size [127]. For our case, the integer variable is the crossing window 



27 

 

indicator, and the number is small in the problem horizon. The problem is solved with a 

computer with Intel i7-4710MQ CPU and 16 G RAM. When the turning motion is not 

considered, the computation time varies between 0.4 s and 1.9 s depending on the traffic 

light status. When the turning motion is considered, the computation time increases 

dramatically, varying between 6.6 s and 8.4 s depending on the traffic light status and the 

gap between initial speed and the desired turning speed. 

2.4.1  Optimality Analysis 

 Sequential convex optimization (SCP) is a method to obtain local optimal solutions 

for non-convex problems. To verify the optimality of the solution, the speed trajectory is 

compared with solutions from dynamic programming (DP). Although dynamic 

programming achieves the global optimal solutions, the algorithm is computationally 

expensive and suffers from the phenomenon known as the curse of dimensionality. With 

pre-computed cost-to-go, DP would take 628 s to obtain the optimal solution. The speed 

trajectories for different traffic light phase are shown in Figure 2.8, with red dots 

representing the red phase of the traffic light and green dots representing the green phase. 

The change in the signal phase is achieved by fixing the traffic signal and changing the 

vehicle departure time. 

 

 

Figure 2.8  Vehicle Trajectories for Different Signal Phase 
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 Figure 2.9 shows the results from both DP and SCP. The waiting time is defined 

as the time difference between the actual travel time and free-flow travel time; fuel cost is 

the fuel consumed from 300 m before the intersection to 300 m after the intersection and 

reaching the original speed. In this section, the reaction distance of all optimal controllers 

are set to be 150 m, which is the mean distance of human drivers to start deceleration from  

 

Figure 2.9 Comparison between DP and SCP solutions 

 
Figure 2.10 Example results of vehicle 
position 

 
Figure 2.11 Example results of vehicle 
speed 

 
Figure 2.12 Example results of vehicle 
acceleration 

 
Figure 2.13 Example results of vehicle 
jerk 
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[125]. The relation between fuel cost and wait time can be fitted with a 2nd order curve. 

The maximum difference between DP and SCP results is 4.28%. The optimal results are 

obtained for different traffic signal phases. The average fuel consumption reduction is 

12.1%, and time reduction is 7.5% for single intersection cases compared with the human 

driver model results. The reduction in fuel is as high as 35.6%, and the reduction in time is 

as high as 16.4%. A sample trajectory comparison of location, speed, acceleration, and jerk 

are shown in Figure 2.10 to Figure 2.13.  The position trajectories obtained using the 

 
Figure 2.14 Comparison of vehicle position from proposed approach and human driver 

model under different traffic phase 

 

Figure 2.15 Performance comparison of DP, human driver model and proposed method 
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proposed approach and a human driver model are summarized in Figure 2.14. The 

optimization results achieve smoother driving compared with the results from a driver 

model because future traffic light status is known and used. The comparison of average 

fuel consumption, average travel time and average solving time are summarized in Figure 

2.15 

2.4.2 Turning Motion Consideration 

To understand the benefits of including turning motion in the optimization, we 

consider a left turn at an intersection selected from Ann Arbor road network as shown in 

Figure 2.20. The turning radius is set to be 35 m, the comfort lateral acceleration level is 

set to be 3 m/s2, and the road friction coefficient is 0.7. The longitudinal acceleration during 

turning is assumed to be 0. The maximum speed to pass through the intersection is 13.1 

m/s, and the comfortable maximum speed to pass through the intersection is 10.2 m/s. If 

the speed limit of the road is higher than the maximum safe passing speed, the method 

without turning motion constraints cannot obtain a feasible solution for free flow since the 

 

Figure 2.16 Example results of vehicle 

location during a turn 

 

Figure 2.17 Example results of vehicle 

speed during a turn 

 

Figure 2.18 Example results of vehicle 

acceleration during a turn 

 

Figure 2.19 Example results of vehicle jerk 

during a turn 
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optimal solution is passing the intersection at a constant speed. We set the speed limit to 

be 13 m/s for a fair comparison. Results with and without turning motion consideration are 

shown in Figure 2.16 to Figure 2.19. As shown in the trajectories, when turning motion is 

involved, extra deceleration and acceleration are required to satisfy the speed and 

acceleration constraints at the intersection. To demonstrate the effect of the traffic signal 

on route cost, we calculate the optimal speed trajectory using the traffic signal phase and 

timing shown in Figure 2.20. In this study, we focus on vehicles approaching the 

intersection from the south leg of the intersection. The signal cycle length is set to be 100 

s. The resultant location trajectories with initial time varying from 1 s to 100 s are shown 

in Figure 2.21.  

 
Figure 2.20 Traffic signal phase and timing of south leg at Plymouth Road - Huron 

Parkway intersection 

 
Figure 2.21 Comparison of the vehicle trajectories under different traffic phase 
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To show the influence of turn motion, fuel consumption, traveling time, and the 

fuel and time saving compared with human driver baseline are shown in Figure 2.22. Fuel 

consumption and traveling time are defined as fuel and time-lapse from 300 m before the 

intersection to 300 meters after the intersection and reaching the original speed. In this 

comparison, we only consider the single intersection, and future routing cost is not included 

here. Also, we assume the initial time follows a uniform distribution. The expected fuel 

consumption and travel time of through traffic are both lower compared with the left-turn 

traffic. On average, the fuel consumption is 12.9% lower, and the traveling time is 16.7% 

 

Figure 2.22 Comparison of fuel consumption, traveling time, and fuel and time 

reduction compared with human model for Eco-Approach and Departure for through 

and left turn traffic given signal phase and timing from Figure 2.20 

 

Figure 2.23 Travel time for through and left turn traffic with different initial time 
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less. For the given traffic signal phase and timing, the average fuel reduction compared 

with human driver is 4.8% for through traffic and 1.9% for the left-turn traffic, while the 

maximum reduction is 28.6% for through movement and 12.7% for the left-turn traffic. 

The average travel time reduction compared with the human driver is 2.8% for through 

traffic and 1.8% for the left-turn traffic. Due to the speed and acceleration constraints of 

the left turn, the fuel and time reduction are both lower compared with the through traffic 

case. However, with the SPaT information, both fuel and travel time are reduced compared 

with the human driver baseline. The comparison of fuel consumption and travel time for 

one traffic signal cycle are shown in Figure 2.23 and Figure 2.24. 

2.4.3   Parametric Study of the Weighting Parameters 

The simulations are carried out for both single-intersection and multiple-

intersection cases with a randomly generated traffic signal profile. The single intersection 

 

Figure 2.25 Acceleration Trajectories for Different Time Weights 

 
Figure 2.24 Fuel consumption for through and left turn traffic with different initial time 
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case is used to demonstrate the effect on fuel consumption and acceleration, and the 

multiple-intersection case is used to demonstrate the influence on the intersection crossing 

window. The acceleration trajectories are shown in Figure 2.25, and the fuel consumption 

and traveling time results are shown in Figure 2.26.  It can be seen from the motion 

trajectories that with increasing weight on travel time, more aggressive acceleration is used. 

Also, fuel consumption increases with higher time weighting, while travel time decreases. 

The trajectories for multiple-intersection cases are shown in Figure 2.27, and the 

corresponding fuel consumption and travel time are shown in Figure 2.28. With the 

 

Figure 2.26 Fuel Consumption and Traveling Time for Different Time Weights 

 
Figure 2.27 Vehicle Trajectories for Different Time Weight 
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increase in time weight, the vehicle uses more aggressive acceleration and fuel 

consumption increases.  

2.5 Conclusion 

  With the information of broadcast traffic signal, a vehicle’s speed trajectory can be 

optimized while approaching signalized intersections. We show that both fuel consumption 

and travel time can be reduced.  The analysis assumes that no other vehicle is present. Also, 

the analysis is based on the connected automated vehicle assumption, which means the 

computed speed trajectory is followed precisely. However, a driver-assistance speed 

advisory would be a more practical application in the near-term.  In other words, the results 

shown in this chapter can be treated as an optimistic upper bound for benefits that can be 

achieved. 

 

 

 

  

 

Figure 2.28 Multi-intersection time-fuel trade-off 
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CHAPTER 3 

Data-Driven Fuel Consumption Model for Eco-Routing 

3.1 Introduction 

A fuel consumption model that can be used to compute the fuel consumption cost 

for the road links is the basis for eco-routing algorithm development.  Such a model should 

(i) use credible physics-driven simulation models (such as Autonomie [55]), (ii) the driving 

speed should be from vehicle data which reflects the real-world operating conditions, and 

(iii) the model should fit the expected value from many trips instead of matching individual 

trips.  We use the Gaussian Mixture Regression (GMR) to build our model [61]. The GMR 

models the joint density of model input and output, then derives the conditional expectation 

of the output from joint density functions of the inputs and output, thus the model is 

invariant under any coordinate system. The framework of our approach is summarized in 

Figure 1.4.  After the fuel consumption model is developed, we use it to evaluate the 

expected fuel consumption of different routing strategies, including shortest-distance, 

shortest-time, eco-routing, and travel-time-constrained eco-routing. The main 

contributions of our work include: 1) a nonparametric data-driven fuel consumption model 

based on real-world driving data and Autonomie fuel consumption simulations; 2) a 

 

Figure 3.1 Fuel consumption modeling framework from connected vehicle data 
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constrained eco-routing strategy addressing the tradeoff between travel time and fuel 

consumption; and 3) we studied the fuel consumption and travel time trade-off of different 

routing strategies.  

The rest of the chapter is organized as follows. The naturalistic driving data used, 

the Autonomie model, the Gaussian Mixture Regression model (GMR), and the 

constrained eco-routing method are presented in Section 3.2. Section 3.3 presents results 

and discussion. Conclusions and future work are given in Section 3.4.  

3.2 Methodology 

3.2.1 Naturalistic Driving Data  

The real-world travel speed and trajectories are obtained from the Safety Pilot 

Model Deployment (SPMD) database [76]. The SPMD program aims to deploy and 

demonstrate connected vehicle technologies. It records naturalistic driving data from up to 

 

Figure 3.2 Links with more than 100 trips each from the queried data 
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2,842 equipped vehicles, which is about 3% of the total vehicle population in Ann Arbor, 

Michigan, for more than three years. As of April 2016, 56.2 million kilometers have been 

logged, making SPMD one of the largest naturalistic driving databases. The query criteria 

used for this study are as follows: 

 From May 2013 to October 2013 

 All passenger cars 

 Trip duration longer than 10 minutes and shorter than 1 hour 

 

Figure 3.3 Trip Average Speed and Trip Max Speed Histogram  

 

Figure 3.4 Trip Duration Histogram  
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 Trip distance longer than 300 meters 

 Trips in the Ann Arbor area: latitude between 42.18o and 42.34o, and longitude 

between -83.85o and -83.55o 

The queried results include 321,945 trips, with a total distance of 3.7 million 

kilometers and a total time of 93,926 hours from 2,468 drivers. The data covers 9,745 of 

the 11,506 links in the Ann Arbor area, with 5,599 links covered by more than 100 trips. 

The links with more than 100 trips are highlighted in Figure 3.2, which consist of major 

roads, minor roads, ramps, and highway sections. The trip statistics are summarized in 

Figure 3.3 and Figure 3.4. A clustering analysis on trip maximum speed indicates that 

14.5% of the trips involve highway driving.  

The speed and grade trajectories are used as the inputs to Autonomie [55], a 

microscopic fuel consumption model developed by the Argonne National Lab. The key 

vehicle parameters are listed in Table 3.1. We assume the target vehicle is a mid-sized 

gasoline engine vehicle. Including multiple vehicles and powertrain types may be 

considered in the future work. 

Table 3.1 Key vehicle parameters for Autonomie simulations 

Vehicle Mass [kg] 1,246 

Max Engine Power [kW] 178.7 

Max Engine Efficiency [%] 36 

Max Engine Speed [rad/s] 628.2 

Idle Engine Speed [rad/s] 62.8 

Transmission Gear Number 6 

Fuel Type Gasoline 
 

3.2.2 Data Processing 

Speed trajectories and grade profiles are required to use Autonomie for fuel 

consumption simulations.  However, the elevation measurement from the onboard GPS 

suffers from noise and bias. The median filter is a simple and efficient way for removing 

the shot noise and is widely used in image processing. In our research, a one-dimensional 

median filter [128] is employed. 
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 After the shot noise is removed, a simple low pass filter is applied to deal with the 

high-frequency noise. A third-order Butterworth digital filter is applied, and the cutoff 

frequency is chosen to be 0.01 Hz. Furthermore, to avoid phase distortion after IIR filtering, 

a zero-phase digital filtering technique is adopted by processing the input signal in the 

forward and reverse directions. An example filtered grade trajectory is shown in Figure 

3.5. Finally, the grade estimated from all vehicles passing the link is used to estimate the 

mean link grade, which is used to augment the original map and estimate the grade 

trajectories for Autonomie simulations.   

 

Figure 3.5 Low-pass filtering example of the trip grade data   

3.2.3 Fuel Consumption Model 

We use simulation output from Autonomie as the ground truth to develop our fuel 

consumption model, which fits the average fuel consumption of all trips on all road links 

in Ann Arbor. We treat the speed limit as a categorical variable and fit a distinct set of 

model parameters for links with different speed limits. The fuel consumption model for 

each speed limit category is obtained using the Gaussian Mixture Regression model (GMR) 

technique. Instead of modeling the regression function directly, GMR models the joint 

distribution of input and output variables and get the regression function through the 

 {
𝑦(𝑘) = median of 𝑥 (𝑘 −

𝑛 − 1

2
: 𝑘 +

𝑛 − 1

2
)  if 𝑛 is odd

𝑦(𝑘) = median of 𝑥 (𝑘 −
𝑛

2
: 𝑘 +

𝑛

2
− 1)  if 𝑛 is even

 (3.1) 
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conditional distribution of the output as functions of the inputs. We denote the input 

variable as = [𝑥1, … , 𝑥𝑖 , … , 𝑥𝑃] ∈ 𝑅
𝑁×𝑃 , where 𝑥𝑖 ∈ 𝑅

𝑁are the individual input variables, 

N is the sample size, P is the number of input variables, and Y is the output variable, i.e., 

fuel consumption. The optimal model parameters are obtained by solving 

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃‖𝑌 − 𝑓(𝑥, 𝜃)‖ (3.2) 

where 𝑓(𝑥, 𝜃)  is the modeled regression function. The objective of the optimization 

problem is to minimize the norm of the regression error, which is equivalent to maximize 

the conditional likelihood of the output on the input variables 

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∏ 𝑝(𝑌𝑖|𝑋𝑖, 𝜃)
𝑁

𝑖=1
 (3.3) 

The joint distribution of input and output can be factorized as  

 𝑃(𝑌, 𝑋|𝜃) = 𝑃(𝑌|𝑋, 𝜃)𝑃(𝑋|𝜃) (3.4) 

Since 𝑃(𝑋|𝜃)  depends only on the input variable and thus is independent of 𝜃 , 

maximize the conditional likelihood of output is equivalent to maximize the joint 

likelihood function of the input and output.   

 𝜃∗ = 𝑎𝑟𝑔𝑚ax𝜃∏ 𝑃(𝑌𝑖, 𝑋𝑖|𝜃)
𝑁

𝑖=1
 (3.5) 

In GMR, the joint distribution is modeled as a Gaussian mixture model (GMM). 

 𝑓𝑋,𝑌(𝑥, 𝑦) =∑ 𝜋𝑘𝑓𝑋,𝑌,𝑘(𝑥, 𝑦)
𝐾

𝑘=1
 (3.6) 

 𝑓𝑋,𝑌(𝑥, 𝑦) =∑ 𝜋𝑘𝑓𝑌|𝑋,𝑘(𝑦|𝑥)𝑓𝑋,𝑘(𝑥)
𝐾

𝑘=1
 (3.7) 

where 𝑓𝑋,𝑌(𝑥, 𝑦) is the overall joint density function, 𝜋𝑘 is the mixing coefficient for each 

component, 𝑓𝑋,𝑌,𝑘(𝑥, 𝑦)  is the joint density for each component, which follows a 

multivariate Gaussian distribution. For each component of GMM, the conditional 

distribution of output on the input still follows Gaussian distribution and can be presented 

in a closed-form. The marginal distribution of X is  

 𝑓𝑋(𝑥) = ∫𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦 =∑ 𝜋𝑘
𝐾

𝑘=1
𝑓𝑋,𝑘(𝑥) 

(3.8) 

Thus, the conditional density of output is 

 𝑓𝑌|𝑋(𝑦|𝑥) =∑ 𝑤𝑘(𝑥)
𝐾

𝑘=1
𝑓𝑌|𝑋,𝑘(𝑦|𝑥) 

(3.9) 
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where the posterior of component probability 𝑤𝑘(𝑥)  is obtained from the marginal 

distribution of X.    

 𝑤𝑘(𝑥) =
𝜋𝑘𝑓𝑋,𝑘(𝑥)

∑ 𝜋𝑘𝑓𝑋,𝑘(𝑥)
𝐾
𝑘=1

 (3.10) 

One of the most popular approaches to obtain parameters of the GMM for the joint 

density is to apply the Expectation-Maximization (EM) algorithm and use the maximum 

likelihood method. In the Expectation (E) step, the mixing coefficient is estimated using 

the mean and covariance of each component by calculating the posterior; in the 

Maximization (M) step, the mean and covariance are estimated from the maximum 

likelihood method using the mixing coefficient from the E step. To apply the EM 

algorithm, one needs to specify the component number of the GMM, which can be 

achieved through cross-validation. However, since we have multiple sets of parameters due 

to the categorical variable (road link speed limit), specifying the component number for 

each speed limit through cross-validation can be time-consuming. Thus, instead of the EM 

algorithm, we adopt the Bayesian modeling framework, which models the parameters as 

latent random variables and inference the expectation of the parameters from the data 

[129]. Multiple approaches can be used to solve the inference problem, including Markov 

Chain Monte Carlo (MCMC) and Variational Inference (VI). We apply the VI approach to 

get the expected values of the parameters due to the large sample size. The approach is 

summarized as follows. Denote 𝑋̃ = [𝑋, 𝑌] as joint of input and output, 𝑍 = {𝑧𝑛𝑘}𝑁×𝐾  as 

the indicator variable of the component for each data point, which is a binary variable. The 

conditional likelihood of 𝑍 on mixing coefficient 𝜋 is 

 𝑃(𝑍|𝜋) =∏ ∏ 𝜋𝑘
𝑧𝑛𝑘

𝐾

𝑘=1

𝑁

𝑛=1
 (3.11) 

The parameters are modeled as random variables with their corresponding 

conjugate priors, i.e., Dirichlet distribution for 𝜋 and Gaussian-Wishart distribution for 

mean and covariance. 

 𝑃(𝜋) = 𝐷𝑖𝑟(𝜋|𝛼0) = 𝐶(𝛼0)∏ 𝜋𝑘
𝛼0−1

𝐾

𝑘=1
 (3.12) 

  𝑃(𝜇, Σ) = 𝑃(𝜇|Σ)𝑃(Σ)  =∏ 𝑁(𝜇𝑘|𝑚0, 𝛽0Σ𝑘)𝑊(Σ𝑘
−1|𝑊0, 𝑣0)

𝐾

𝑘=1
 (3.13) 
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where 𝛼0, 𝑚0, 𝛽0,𝑊0, 𝑣0 are hyper-parameters. The hidden variables to inference include 

the indicator variable Z and the model parameters 𝜋, 𝜇, Σ. The joint distribution is factorized 

as 

 𝑃(𝑋̃, 𝑍, 𝜋, 𝜇, Σ) = 𝑃(𝑋̃|𝑍, 𝜋, 𝜇, Σ)𝑃(𝑍|𝜋)𝑃(𝜋, 𝜇, Σ) (3.14) 

Thus, given data 𝑋̃, the posterior of latent variables is 

 𝑃(𝑍|𝜋, 𝑋̃)𝑃(𝜋, 𝜇, Σ, 𝑋̃) ∝ 𝑃(𝑋̃|𝑍, 𝜋, 𝜇, Σ)𝑃(𝑍|𝜋)𝑃(𝜋, 𝜇, Σ) (3.15) 

The VI approach uses a tractable posterior distribution of the hidden variables to 

approximate the original posterior distribution and minimize the Kullback-Leibler (KL) 

divergence between the actual distribution and the approximated distribution or 

equivalently, maximize the evidence lower bound (ELBO). The approximate posterior 

distribution of Bayesian GMM using mean field approximation approach is 

 𝑞(𝑍, 𝜋, 𝜇, Σ) = 𝑞(𝑍)𝑞(𝜋, 𝜇, Σ) (3.16) 

The approximate posterior can be obtained by solving the ELBO maximization 

problem. Since the sum of ELBO and KL divergence between the actual posterior and 

approximate posterior is the total loglikelihood of samples, maximize ELBO is equivalent 

to minimize KL divergence between the actual posterior and the approximate posterior. 

 max
𝑞(𝑍),𝑞(𝜋,𝜇,Σ)

∫𝑞(𝑍)𝑞(𝜋, 𝜇, Σ) ln
𝑃(𝑋̃, 𝑍, 𝜋, 𝜇, Σ)

𝑞(𝑍)𝑞(𝜋, 𝜇, Σ)
𝑑𝑍𝑑𝜋𝑑𝜇𝑑Σ 

(3.17) 

It can be shown [129] that the stationary point of the ELBO maximization problem 

under mean field approximation satisfies 

 ln 𝑞∗(𝑍) = 𝐸𝜋,𝜇,Σ(ln 𝑝(𝑋̃, 𝑍, 𝜋, 𝜇, Σ)) + 𝑐𝑜𝑛𝑠𝑡  
(3.18) 

  ln 𝑞∗(𝜋, 𝜇, Σ) = 𝐸𝑍(ln 𝑝(𝑋̃, 𝑍, 𝜋, 𝜇, Σ)) + 𝑐𝑜𝑛𝑠𝑡 (3.19) 

From the stationary point condition, we can update 𝑞(𝑍) and 𝑞(𝜋, 𝜇, Σ) alternately 

and iterate until convergence. The algorithm is initialized with hyperparameters of prior 

distributions. The approximated posterior of 𝑍 is first updated through (3.18), the mixing 

coefficient, mean and covariance are then obtained using the variation posterior of 𝑍. For 

more details, one can refer to chapter 10 of [129]. The expectation of the mixing coefficient 

is 
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 𝐸(𝜋𝑘) =
𝛼0 + 𝑁𝑘
𝐾𝛼0 + 𝑁

 (3.20) 

For a component with a small sample size, 𝑁𝑘 ≈ 0, if a small hyperparameter 𝛼0 is 

used, as sample size approaches infinity 

 lim
N→∞

𝐸(𝜋𝑘) = lim
N→∞

𝛼0 + 𝑁𝑘
𝐾𝛼0 + 𝑁

= 0 (3.21) 

  Thus, a small hyperparameter for mixing coefficient can be used to remove the 

redundant components. As suggested by [129], during the iterations, point estimation of 

mixing coefficient can be used to remove components that provide insufficient contribution 

to explain the data. The algorithm can start from a large initial value of component number 

and allow surplus components to be pruned out. In this way, we do not need to specify the 

component number for GMM. As the sample size increases, the influence of 

hyperparameters decreases. To see this, take the mixing coefficient for example, since 𝛼0 

and K are finite, as N and Nk approaches infinity, the expectation is determined by the total 

sample size and the sample size for each component. Thus, the algorithm is less sensitive 

to tuned parameters compared with other algorithms such as SVM and neural networks. 

Table 3.2 Input variables for fuel consumption model 

Motion Related 
Average Speed [m/s] 

Speed Change [m/s] 

Link Related 

Average Grade [rad] 

Link Length [m] 

Posted Speed Limit [m/s] 
 

The input variables we use for the fuel consumption model are listed in Table 3.2. 

We include both linear and the 2nd order terms, including cross-coupling 2nd order terms of 

the input variables. Since we treat the speed limit as a categorical variable, with the 

assumption that the posted speed limit can approximate free-flow speed, the average speed 

is also an indicator of the congestion status. Speed change and average grade are included 

to capture the kinetic and potential energy change. 
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3.2.4 Constrained Eco-Routing 

To evaluate the benefit of eco-routing, we developed a travel-time-constrained eco-

routing strategy. In this study, we define the links as nodes in a routing graph, and a directed 

edge connects two nodes if traveling from one link to its adjacent link is allowed. By using 

this definition, we can include speed change as part of the action cost to evaluate the 

expected fuel consumption. In this problem, we model all links as directed and do not allow 

U-turns. The algorithm is based on dynamic programming [130], which solves the 

optimization problem recursively based on the Bellman optimality principle.  

 𝑥𝑖
∗ = argmin𝑥𝑖∈𝑎𝑑𝑗𝑜𝑢𝑡(𝑥𝑖−1 )𝑔(𝑥𝑖, 𝑥𝑖−1) + 𝑓

∗(𝑥𝑖) 
(3.22) 

 𝑓∗(𝑥𝑖−1) = min𝑥𝑖∈𝑎𝑑𝑗𝑜𝑢𝑡(𝑥𝑖−1 ) 𝑔(𝑥𝑖, 𝑥𝑖−1) + 𝑓
∗(𝑥𝑖) 

(3.23) 

 𝑓∗(𝑥𝑑) = 0 (3.24) 

where 𝑥𝑖 is the optimal next link location, xi-1 is the last link location. The next links should 

be in the adjacent set of the last link. 𝑓∗(𝑥𝑖) is the optimal value function of the next link. 

𝑔(𝑥𝑖) is the transition cost defined as the weighted sum of travel time and fuel consumption 

in the travel-time-constrained eco-routing. 𝑓∗(𝑥𝑑) is the value function associated with the 

destination link, and is defined to be 0. The transition cost is defined as  

 𝑔(𝑥𝑖) = (1 − 𝑤𝑡)𝑐(𝑥𝑖 , 𝑥𝑖−1) + 𝑤𝑡𝑡(𝑥𝑖) 
(3.25) 

where 𝑐(𝑥𝑖 , 𝑥𝑖−1) is the expected fuel consumption and 𝑡(𝑥𝑖) is the expected travel time 

for link 𝑥𝑖. To address the travel time constraint, a soft constraint is defined with respect to 

the time limit 𝑡𝑐. The soft constraint is achieved through a weighting parameter 𝑤𝑡 between 

fuel consumption cost and travel time cost. The soft constraint is modeled with a sigmoid 

function as shown in Figure 3.6, where the travel time limit is calculated from 

 𝑡𝑐(𝑥𝑖) = (1 + 𝜖)𝑡∗(𝑥𝑖) 
(3.26) 

where 𝜖 is a constant and 𝑡∗(𝑥𝑖) is the travel time of the shortest time solution from the 

destination to link 𝑥𝑖. The travel time constraint indicates that we allow the travel time to 

increase no more than a certain percentage compared with the travel time of the fastest 

route. For shortest time routing and unconstrained eco-routing, 𝑤𝑡 in (3.25) is set to be 1 

and 0, respectively. For shortest distance routing, the transition cost is the link length.  
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Figure 3.6 Weighting parameter for travel-time-constrained eco-routing 

3.2.5 Travel Demand Location Identification 

To estimate the expected fuel consumption and travel time for different routing 

algorithms, we use origin-destination pairs from real-world driving data. We assume that 

the number of vehicles using the proposed routing algorithm is small, i.e., the routed 

vehicles do not cause notable change to the travel speed of the links. The data to estimate 

travel demand is from May 2013 to October 2013, from 17:00 to 19:00 on weekdays. 

25,001 trips were identified within the specified time. Since our objective is to identify 

frequently visited locations, the origin and destination locations are identified through a 

density-based cluster algorithm OPTICS [131]. The advantage of this algorithm compared 

with other distance-based clustering algorithms such as DBSCAN [132] is that it can 

cluster data with density change, which is critical in our analysis since the spatial densities 

of trip origin and destination locations can be affected by factors such as parking lot size. 

The algorithm is summarized as follows. 

Given a set of points, define 𝜖 as the maximum distance between two points that 

can be considered to belong to the same cluster, and 𝑚 as the minimum number of points 

required to form a cluster. A point 𝑝 is a core point if at least 𝑚 points are found within its 

𝜖 neighborhood. For each point, the core distance 𝑑𝑐 is defined as the minimum radius for 

it to be a core point of a cluster. For each pair of points, the reachability distance 𝑑𝑟(𝑝𝑖. 𝑝𝑗) 

is defined as the minimum distance from 𝑝𝑖 to 𝑝𝑗 if 𝑝𝑗 is a core point. Thus, the reachability 

distance 𝑑𝑟(𝑝𝑖, 𝑝𝑗) cannot be smaller than the core distance of 𝑝𝑗. Once the core distance 
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and reachability distance are identified for all points, the points are ordered by recursively 

selecting the point with minimum reachability distance from the current point in the 

unordered point set. In this way, the algorithm keeps clusters near each other in the output 

order. We only include trips happening at least once per week. There are 3,031 frequently 

visited origin-destination pairs identified, and the identified 80 starting and 123 ending 

locations are shown in Figure 3.7 These O-D pairs will be used later in this chapter as 

representative travel demands to compute the benefits of eco-routing.  

3.3 Results and Discussion 

3.3.1 Fuel Consumption Model  

The fuel consumption model accuracy is measured using the coefficient of 

determination (R2) and mean absolute percent error (MAPE). Since the objective of the 

model is to predict the conditional expectation of fuel consumption on motion and link 

variables, we compare the model output with the conditional expectation of fuel 

consumption given the average speed and speed change. To get the conditional expectation, 

we fit individual GMR for all links with more than 100 trips. Through the model of 

individual link, we can get the conditional expectation of fuel consumption as the complete 

model described in Section 3.2.3. We randomly selected 70% of the links with more than 

100 events as the training dataset, and the rest as verification dataset. We use the 

conditional expected fuel consumption of test dataset as the ground truth. We compared 

(a) (b) 

Figure 3.7 Trip locations identified with OPTICS: (a) Trip starting locations; (b) Trip 

ending locations 
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our model with several benchmarks including the average speed model [51] shown in 

(3.27), the power balance model which is the foundation of MOVES [56] as shown in 

(3.28), and the neural network model.  

 ln (
𝑓

𝑡
) = 𝛽0 + 𝛽1𝑣 + 𝛽2𝑣

2 + 𝛽3𝑣
3 + 𝛽4𝑣

4 + 𝛽5𝑠 
(3.27) 

 𝑓 = 𝛽0𝑣𝑡 + 𝛽1𝑣𝑎𝑡 + 𝛽2𝑠𝑣𝑡 + 𝛽3𝑣
3𝑡  (3.28) 

where 𝑓 is the expected link fuel consumption, 𝑡 is average link travel time, 𝑣 is average 

link travel speed, 𝑎  is average link acceleration, 𝑠  is average link grade, 𝛽1, … , 𝛽5  are 

parameters of the corresponding model. Parameters of the benchmark models are also 

estimated from the training dataset. For the neural network model, we used a two-layer 

structure with two fully connected layers, and sigmoid function as the activation function 

for the output of layer 1. The relative error histograms of the models are shown in Figure 

3.8 and model performance are summarized in Table 3.3. 

From the histogram and performance metrics, we can see that both our GMR model 

and the neural network model have superior performance over the other two models. 

Neural network models with well-tuned structure and parameters can fit the training data 

well. However, the main advantage of the GMR model is that it has significantly fewer 

parameters to be tuned compared with the neural network model. Therefore, it should be 

more robust compared with the neural network model. 

Figure 3.8 Histograms of  the prediction error of the fuel consumption models  
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The GMR model performance for links with different speed limits are shown in 

Figure 3.9. The worst performance happens at links with speed limit 11.18 m/s (25 mph) 

with MAPE 13.78%.  The MAPE for links with higher speed limits is less than 10%. The 

reason, we believe, is that links with lower speed limit contain more speed and traffic 

variation due to traffic signals, cross-walk, bus stops, etc. Also, at low speed and low 

torque, the engine fuel consumption is highly nonlinear, while for high power operation, 

the fuel consumption – power relation is more linear. 

3.3.2 Routing Results 

The routing algorithm is applied to the 3,031 identified frequent OD pairs as 

described in Section 3.2.5. The studied Ann Arbor traffic network consists of 21,569 

directed links with variate link types including local, minor, major, collector, ramp, and 

highway. The computation time to solve all-to-one routing result is around 13 seconds on 

a computer with Intel Core i7 and 16 G RAM. Considering the requirement for the travel 

time of shortest-time routing, the computation time for constrained eco-routing is about 26 

s. The routing costs are evaluated based on historical average speed during the studied 

Table 3.3 Performance of the fuel consumption models 

Model R2 MAPE [%] 

Average speed model 0.77 37.63 

Power balance model 0.86 46.22 

Neural Network 0.98 15.60 

GMR 0.98 10.08 
 

 
 

(a) (b) 

Figure 3.9 Model performance for different speed limits: (a) MAPE; (b) R2 
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hours. The uncovered links are imputed with their posted speed limits. Since they are never 

traveled by any sample vehicles over six months, we hypothesize these links are usually 

not congested and the posted speed limit is a reasonable approximation for the travel speed. 

To get the historical average speed, we use GMM to approximate average speed 

distribution of individual links and estimate the posterior of mixing coefficient based on 

speed during the sampled hours.  Samples of local and highway speed models for one road 

 

Figure 3.10 Speed histogram and GMM fitting for one local road section with a 

speed limit at 17.88 m/s (40 mph) 

 

Figure 3.11 Speed histogram and GMM fitting for one highway road section with a 

speed limit 31.29 m/s (70 mph) 
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section are shown in Figure 3.10 and Figure 3.11.  The expectation of travel speed is 

estimated using the estimated posterior of the mixing coefficient. 

To compare travel time and fuel consumption of different routing strategies, travel 

time and fuel consumption of different strategies are normalized with the travel time of the 

fastest route and the fuel consumption of unconstrained eco-route, respectively. Some 

sampled routing results are shown in Figure 3.12. The normalized costs are shown in Figure 

3.13. The scatter plot is overlaid with the expectation of cost estimated with the OD pair 

travel frequency. The error bars for each routing solution are 10% and 90% percentiles 

respectively. The expected values travel time and fuel consumption are summarized in 

Table 3.4.  

  

 

 

Figure 3.12 Sampled routing results 
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From the results, we can see that the shortest path consumed less fuel compared 

with the fastest routing algorithm, while the travel time is increased significantly. Also, 

with a maximum of 6.48% increase in travel time, the constrained eco-routing solution has 

expected fuel saving of 5.16% and the maximum saving is 51.8%, compared with the 

fastest-path solution. It is also noted that for the given OD pairs, 28% of the eco-routing 

solution is identical to the fastest-path solution, and 27% is the same as the shortest-path 

solution. For constrained eco-routing results, 55% is the same as the fastest-route solution, 

and 27% is the same as the shortest-path solution. Besides that, 28% of the shortest path 

and fastest-path are the same. The difference between eco-routing and constrained eco-

routing is due to the travel time constraints. To see the influence of traffic status on the 

routing results, we normalize the results of different strategies with the travel time of fastest 

 
Figure 3.13 Normalized travel time and fuel consumption for different routing strategies 

during the evening rush hour (16:00 – 18:00)  

Table 3.4 Expected travel time and fuel consumption of different routing strategies 

during the evening rush hour (16:00 – 18:00) 

 Fuel consumption [kg] Travel Time [s] 

Shortest 0.4809 611.37 

Fastest 0.5312 554.45 

Eco-routing 0.4576 601.04 

Constrained eco-routing 0.5038 559.49 
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route and the fuel consumption of the unconstrained eco-route under free traffic condition 

of which routing costs are estimated using the posted speed limits. The results are shown 

in Figure 3.14. The expected values of travel time and fuel consumption under the free-

flow condition (posted speed limit) are summarized in Table 3.5.  

The results show that with congestion during rush hour, travel time and fuel 

consumption are increased compared with the free-flow case. Shortest-path results on 

average take 14.12% more time and 10.04% more fuel. Fastest-path takes 12.67% more 

time and 8.74% more fuel (compared with non-rush hour-results). The constrained eco-

routing increased fuel consumption by 6.96%, lowest compared with other routing 

strategies, but the travel time increases by 13.01%, which is more than the fastest-path 

solution, but less than the shortest-path solution. In summary, constrained eco-routing 

 
Figure 3.14 Travel time and fuel consumption obtained with historical cost normalized 

with results from routing results of posted speed limit 

Table 3.5 Expected travel time and fuel consumption of different routing strategies 

under the free-flow condition (posted speed limit) 

 Fuel consumption [kg] Travel Time [s] 

Shortest 0.4370 535.71 

Fastest 0.4884 492.09 

Eco-routing 0.4177 536.79 

Constrained eco-routing 0.4711 495.09 
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achieves a trade-off between travel time and fuel cost. It also seems that the shortest routing 

is a good approximation to (unconstrained) eco-routing.  If no other information is 

available, and when fuel consumption is the only concern, shortest-distance routing can be 

used.  

3.4 Conclusion and future work 

A nonparametric fuel consumption model is developed to estimate expected link 

fuel consumption conditional on prevailing trip speed and road link variables. The model 

parameters are estimated from a large scale connected vehicle test database with simulated 

fuel consumption from the Autonomie software. The model is used to calculate constrained 

eco-routing results, which saves 3.54% fuel while incurring 0.6% longer travel time, 

compared with the fastest-route solution during non-rush hours.  During the rush hour, the 

results of the constrained eco-routing strategy are 5.16% lower fuel and 0.9% more time, 

compared with the fastest-route solution. 
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CHAPTER 4 

Eco-Mobility on Demand with Ride-Sharing  

4.1 Introduction 

Today’s Mobility-on-Demand (MOD) service matches drivers with passengers 

based on their distance away or time-to-pickup.  When the vehicles become driverless, fuel 

cost becomes an important element and may be considered in vehicle-passenger pairing, 

as well as route choice.  This is the basis of the Eco-MOD concept we are studying in this 

Chapter.  To include fuel consumption in the objective and integrate MOD fleet control 

with the Eco-Routing [74] concept, we developed a fleet control algorithm based on the 

work in [65] with customer wait time and delay time modeled as constraints. We propose 

a MOD fleet control algorithm, Eco-MOD, to minimize the fleet operation cost (fuel 

consumption) while satisfying the customers’ travel time constraints. In our numerical 

study, travel demands are generated by POLARIS [75], a mesoscopic agent-based 

transportation model developed by the Argonne National Lab.  It was calibrated with data 

from the Safety Pilot Model Deployment (SPMD) project [76] so that it emulates the Ann  

Arbor vehicle trips. The calibration dataset consists of trip information collected from up 

to 2,800 vehicles since 2012. To evaluate the performance of Eco-MOD under realistic 

transportation environment, we developed a microscopic traffic simulator based on SUMO 

[77] and performed a case study in Ann Arbor with generated travel demand.   

The main contributions of this Chapter include: 1) a MOD fleet control algorithm 

which minimizes fleet fuel consumption while satisfying customer travel time constraints; 

2) a simulation framework for MOD system with microscopic simulation using SUMO; 3) 

demonstrating the importance of including fuel consumption in optimization to reduce fleet 

operating cost.  

The rest of this chapter is organized as follows: Section 4.2 presents the trip 

assignment algorithm. Section 4.3 presents the simulation framework to evaluate the 
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performance of the MOD fleet. Section 4.4 presents the Eco-MOD framework. Section 4.5 

presents two approaches to estimate the fleet size necessary for the envisioned mobility 

service. Section 4.6 presents the simulation results. Conclusions and future work are given 

in Section 4.7. 

4.2 Travel Demand Assignment 

Our fleet control algorithm is based on the graph decomposition method proposed 

in [65]. The algorithm can solve the trip matching and routing problem for ride-sharing of 

thousands of vehicles and customers fast enough for real-world implementation. We 

further improve the algorithm by considering fuel consumption as part of the fleet operation 

cost. 

As a starting point, we reproduce the work in [65]  by assuming the road network 

is static and solving all optimal routes considering travel time and fuel consumption offline. 

The trip assignment algorithm is based on a shareability graph. The graph is defined as an 

undirected graph with nodes defined as customers and vehicles. The constraints for each 

customer consist of wait time and delay time. Wait time is defined as the time between the 

customer travel request and pickup. Delay time is defined as the difference between 

planned travel time and the shortest travel time possible after pickup, which is from the 

minimum-time routing solution from origin to destination. An edge exists between two 

customers if a vehicle can depart from the origin of one of the customers and fulfill the 

travel demands of both customers without violating travel time constraints. An edge exists 

between a vehicle and a customer if the demand can be served by the vehicle without 

violating travel time constraints. Thus, a necessary condition for a trip to be feasible is that 

the customers of the trip can form a clique with a vehicle presented in the shareability 

network. A clique is a subgraph such that every node is connected to every other node 

within the same clique. It is noted that the cliques do not need to be maximum cliques in 

the shareability graph. The cliques in a graph can be found with the Bron-Kerbosch 

algorithm [133] with worst-case time complexity O(𝑑𝑛3𝑑/3) where 𝑛 is the number of 

nodes and 𝑑  is degeneracy of the graph, which is a measure of sparseness. Instead of 

evaluating the cost of trips for all possible combinations of customers and vehicles, one 
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can solve single-vehicle-multiple-customer problems for every clique, a necessary 

condition for a trip to be feasible. 

Trip scheduling for each clique is a traveling salesman problem (TSP) with pickup 

and delivery. The problem can be solved with multiple algorithms. If the number of 

customers is small, (e.g., less than 5), the exact solution can be found by Dynamic 

Programming in less than 1 sec on a standard desktop computer. Heuristic-based 

algorithms such as T-share [134] can be used to find the solution if the problem size is 

large. In our study, the vehicle capacity is assumed to be 4, and Dynamic Programming is 

used to find the optimal solution. The states are defined as  

 𝛅t = [𝛿1,𝑡
𝑃 ,⋯ , 𝛿𝑖,𝑡

𝑃 , ⋯ , 𝛿𝑁,𝑡
𝑃 , 𝛿1,𝑡

𝐷 , ⋯ , 𝛿𝑖,𝑡
𝐷 , ⋯ , 𝛿𝑁,𝑡

𝐷 ] = [𝛅t
P, 𝛅t

D] (4.1) 

where 𝛿𝑖,𝑡
𝑃  and 𝛿𝑖,𝑡

𝐷  are indicator variable for pickup location and drop-off location of 

customer i at step t, respectively, the value is 1 if the location has been visited and 0 

otherwise. If two customers have the same pickup or drop-off locations, we assign separate 

variables for them but define the transitional cost as 0. 𝑁 is the total number of customers 

in the clique. The problem is then to find the optimal trajectory to travel from the initial 

state, which is 𝛅0 = {0}1
2N , to the terminal state, which is 𝛅T = {1}1

2N . The valid 

pickup/dropoff constraints are  

 𝛅t
D − 𝛅t

P ≥ 0, ∀t (4.2) 

The constraint indicates that the drop-off locations are visited after the pickup 

locations of each customer. The vehicle capacity constraints are 

 ∑𝛿𝑖,𝑡
𝑃 − 𝛿𝑖,𝑡

𝐷

𝑖

≤ 𝑉𝑐, ∀t 
(4.3) 

where 𝑉𝑐 is the capacity of the vehicle (=4), limiting the number of onboard customers. The 

continuity constraint is defined as  

 ‖𝛅t+1 − 𝛅t‖ = 1, ∀t 
(4.4) 

This constraint indicates that only one pickup/dropoff happens for each state. If the 

objective for fleet assignment is to minimize waiting time and delay time of customers, the 

transitional cost is defined as 

 𝑔(𝑡, 𝑡 + 1) =∑𝑇𝑡,𝑡+1 ((1 − 𝛿𝑖,𝑡
𝑃 ) + 𝑤𝐷(𝛿𝑖,𝑡

𝑃 − 𝛿𝑖,𝑡
𝐷 ))

𝑖

 (4.5) 
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where 𝑇𝑡,𝑡+1 is the travel time from the location associated with the state of 𝑡 to 𝑡 + 1, 𝑤𝐷 

is the weighting parameter between waiting time and travel time. If the objective of the 

fleet assignment is to minimize fuel consumption of the fleet, the fuel consumption of 

traveling between locations associated with the states is used as the transitional cost. The 

objective of the traveling salesman problem is to minimize the sum of transitional cost 

from the initial state to the terminal state 

 𝐽𝑇𝑆𝑃 =∑𝑔(𝑡, 𝑡 + 1)

𝑇−1

𝑡=0

 
(4.6) 

where 𝐽𝑇𝑆𝑃 is the objective of the TSP step of each clique. A trip is feasible if the waiting 

time and delay time constraints are satisfied for all customers in the clique. After all feasible 

trips are found through solving the scheduling problem for all cliques, the optimal trip 

assignment problem is formulated as a bipartite matching problem and solved through 

Integer Linear Programming (ILP). The cost of a trip is defined as 𝑐𝑡
𝑖 for trip 𝑖. In the time-

minimization formulation, 𝑐𝑡
𝑖 is defined as the weighted sum of total wait time and delay 

time of customers served. In the Eco-MOD formulation, 𝑐𝑡
𝑖 is defined as the total trip fuel 

consumption. The states of the system are 𝛿𝑡 which is the indicator variable for trip/clique 

and 𝛿𝑐 which is the indicator variable for a customer and can be represented as a function 

of 𝛿𝑡. At an assignment instant, if there are m feasible trips from TSP step and n customers, 

then 𝛿𝑡 = {𝛿𝑡
𝑖 ∈ {0,1}, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚} and 𝛿𝑐 = {𝛿𝑐

𝑖 ∈ {0,1}, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑛}. 𝛿𝑡
𝑖  is 1 

if trip 𝑖 is selected and 𝛿𝑐
𝑖  is 1 if customer 𝑖 is assigned. The objective function is then  

where 𝐷 is the penalty for unserved customers. In the original fleet control problem, a 

weighted sum of total wait time and delay time of each trip is used as the cost, and in the 

EcoMOD framework, the total fuel consumption is used as the cost. The constraint is that 

each vehicle can only serve one trip in each solution, i.e. 

where 𝑎𝑗
𝑖 is the indicator variable for vehicle 𝑗 and trip 𝑖, 𝑎𝑗

𝑖 = 1 if vehicle 𝑗 can serve trip 

𝑖. The constraint for all customers is that a customer is either assigned or ignored 

 ∑𝑐𝑡
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1

+∑𝐷(1 − 𝛿𝑐
𝑖)

𝑛

𝑖=1

 
(4.7) 

 ∑𝑎𝑗
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1

≤ 1, ∀𝑗, 
(4.8) 
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where 𝑏𝑗
𝑖 is the indicator variable for customer 𝑗 and trip 𝑖, 𝑏𝑗

𝑖 = 1 if customer 𝑗 is served 

by trip 𝑖. With linear constraints and the objective function, the trip assignment problem is 

an integer linear programming. Since all candidate trips are feasible from construction, the 

travel time constraints are satisfied. For online optimization, we follow the approach in 

[65] to keep a pool of customers, and a customer is removed from the pool if it is picked 

up by a vehicle or cannot be served within the time constraint. If a customer is ignored, a 

vehicle from the idling fleet is assigned to serve the customer with the minimum wait time 

as the objective. A rebalancing algorithm using MPC is presented in chapter 5. The 

framework to solve the fleet control problem is summarized in Figure 4.1. Gurobi [50] is 

 ∑𝑏𝑗
𝑖𝛿𝑡
𝑖

𝑚

𝑖=1

+ (1 − 𝛿𝑐
𝑗
) = 1, ∀𝑗, 

(4.9) 

 

Figure 4.1 Travel demand assignment framework: (a) system receive travel demand; (b) 

shareability graph formulation based on routing strategy; (c) solve TSP for each clique in 

shareability graph to get all feasible trips; (d) assign trips to vehicles and assign ignored customers 

to idling vehicles for rebalancing, with thick solid line indicating feasible trip assignment and 

dashed line showing rebalancing assignment 
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used to find the solution to the ILP problem. The optimization problem is solved every 

assignment interval, reacting to new travel requests. 

 The road network partition results shown in Figure 4.2 from Chapter 5 is used to 

reduce the search space for shareability graph construction. Details of the road network 

partition algorithm will be discussed in Chapter 5. When constructing the customer – 

customer and customer – vehicle edges, we only consider customers and vehicles located 

in the same partition or adjacent partitions. The geometric heuristic for search space 

reduction is based on the construction of the partitions, where the expected travel time to 

the nearest partition center is minimized.  

 

Figure 4.2 Network partition using the proposed algorithm in the approximation space 

for generated demand, partition centers are denoted as circles 



61 

 

4.3 Traffic Network Simulator 

4.3.1 Background 

POLARIS is an agent-based software developed by the Argonne National Lab [75] 

focusing on travel demand and mesoscopic traffic simulations. The travel demands are 

generated using the ADAPTS (Agent-based Dynamic Activity Planning and Travel 

Scheduling) model, which formulates the activity planning of individuals as a dynamic 

model [135]. The demand model is calibrated by the Argonne National Lab using the 

dataset from the Safety Pilot Model Deployment project to simulate the city of Ann Arbor. 

The data is aggregated over 5 months, from May 2013 to October 2013. The data coverage 

from 16:00 to 16:30 on weekdays from the calibration dataset is shown in Figure 4.3. The 

average sample size per minute is shown in Figure 4.4. During the evening rush hour, the 

highway links and major links are covered by more than 80 events, thus the average speed 

of those links can be estimated. The estimated average speed ratio (average speed 

 

Figure 4.3 Observations per link from 16:00 to 16:30 during weekdays in calibration 

dataset from Safety pilot Model deployment 
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normalized against the posted speed limit) during morning rush hour (7:30 – 8:00) on 

weekdays is shown in Figure 4.5. The comparison between sampled calibration dataset and 

The POLARIS generated travel demand are shown in Figure 4.6, Figure 4.7, and Figure 

4.8. 

 

 

Figure 4.4 Average sample size per minute 

  

Figure 4.5 Estimated Average Speed Ratio (average speed normalized with posted speed 

limit) During Weekday Morning Rush Hour (7:30-8:00)   
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 As a mesoscopic simulator, POLARIS’s ability to simulate individual vehicles is 

limited. Thus, POLARIS is used as travel demand generator, with which 110,000 trips are 

generated from 17:00 to 19:00 and a microscopic transportation simulator, Simulation of 

Urban Mobility (SUMO) [77] is used for realistic verification. However, due to the 

difference in link models, demand generated by POLARIS cannot recreate the observed 

average link speed from SPMD, thus it’s used as prior for demand calibration using the 

SPMD data. 

 

Figure 4.6 Distribution of trip start time from SPMD and POLARIS simulations 

 

Figure 4.7 SPMD sampled initial trip 

location heatmap during the evening rush 

hour (17:00-18:00) 

 

Figure 4.8 POLARIS simulated initial trip 

location heatmap during evening rush 

hour (17:00-18:00) 
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4.3.2 Detailed verification model 

SUMO is an open-source microscopic traffic simulator with the ability to generate 

realistic speed profile. In the simulations, the background traffic is calibrated using data 

from SPMD and demand generated by POLARIS is used as prior. A random subset of 

demands is assumed to be served by the MOD fleet. We assume the ratio of MOD 

customers to the total demand is fixed. The fleet size is assumed to be fixed and ride-

sharing is allowed. A fleet controller based on Matlab is used to control the route choice of 

the MOD vehicles. The simulation framework is summarized in Figure 4.9.  

 

Figure 4.9 Transportation Simulation Framework 

The background traffic model is calibrated using the measured average speed from 

SPMD. In the calibration process, we focus on route choice and travel demand distribution. 

Demand generated by POLARIS is used as prior for demand distribution estimation from 

the measured average speed. The microscopic model parameters including the car-

following model and the lane-change model parameters are obtained from [136]. In the 

simulation framework, we only consider passenger cars. To estimate the demand 

distribution given the average speed measurement, we use a data-driven approach to model 

the relationship between the vehicle density and the average travel speed for links in 

SUMO, which is used to estimate the expected flow rate at each link given the measured 

average speed. A second-order polynomial is used when the density is below critical 

density for simplicity. When the vehicle density is higher than the critical density 𝜌𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 

we assume the average speed is constant.  
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 𝑣𝑛̅̅ ̅ = {
𝜖 𝜌 ≥ 𝜌𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝛼2𝜌
2 + 𝛼1𝜌 + 𝛼0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.10) 

where 𝑣𝑛̅̅ ̅ is normalized average speed, defined as average speed normalized by the free-

flow speed. 𝜌 is the vehicle density on each link, 𝜖 is the normalized average speed when 

vehicle density is higher than the critical density.  Flow rate, vehicle density, and average 

speed are related by 

 𝑞 = 𝑁𝜌𝑣̅ (4.11) 

where 𝑣̅ is average speed, 𝑞 is flow rate, and 𝑁 is the number of lanes. The simulated 

fundamental diagram and polynomial regression are shown in Figure 4.10, where simulated 

data are shown in the scatter plot, and the regression model is shown in the solid line. Given 

measured average speed from SPMD, the flow rate 𝑞𝑆𝑃𝑀𝐷̂ is estimated. 

To estimate travel demand and route choice, we assume the drivers follow the 

shortest distance route, empirical shortest time route or real-time shortest time route. Under 

the assumption that the system has reached steady state, given flow rate between origin-

destination pair 𝑞𝑜𝑑, the flow rate for each link is given by 

 𝑞𝑙 =∑(𝑞𝑜𝑑
𝑘,𝑑𝑖𝑜𝑑,𝑑

𝑘,𝑙 + 𝑞𝑜𝑑
𝑘,𝑡𝑖𝑜𝑑,𝑡

𝑘,𝑙 )

𝑘

 (4.12) 

where 𝑖𝑜𝑑,𝑑
𝑘,𝑙

  and 𝑖𝑜𝑑,𝑡
𝑘,𝑙

 are indicator variables to show that link 𝑙  is used by OD pair 𝑘 

following shortest distance route and empirical shortest time route respectively, 𝑞𝑜𝑑
𝑘,𝑑

  and 

 
Figure 4.10 Data driven link model of SUMO 
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𝑞𝑜𝑑
𝑘,𝑡

 are flow rate for OD pair 𝑘 following the shortest distance route and empirical shortest 

time route, respectively.  

 𝑞𝑜𝑑
𝑘 = 𝑞𝑜𝑑

𝑘,𝑑 + 𝑞𝑜𝑑
𝑘,𝑡

 
(4.13) 

The objective of calibration is to minimize the difference between the simulated 

flow rate and the estimated flow rate from SPMD 

 min
𝑞𝑜𝑑
𝑘,𝑡,𝑞𝑜𝑑

𝑘,𝑑
∑‖𝑞𝑙 − 𝑞𝑙,𝑆𝑃𝑀𝐷̂ ‖

2

𝑙

+∑𝜓‖𝑞𝑜𝑑
𝑘 − 𝑞𝑜𝑑,𝑃𝑂𝐿𝐴𝑅𝐼𝑆

𝑘 ‖
2

𝑘

 (4.14) 

where 𝑞𝑙,𝑆𝑃𝑀𝐷̂  is the estimated link flow rate from SPMD, 𝑞𝑜𝑑,𝑃𝑂𝐿𝐴𝑅𝐼𝑆
𝑘  is the generated OD 

flow rate from POLARIS. 𝜓 is the weighting parameter between flow rate approximation 

and the regularization term using POLARIS. Given the assumption that the OD flow rate 

follows Gaussian distribution, the objective function is equivalent to the maximum-a-

posterior estimation of OD flow rate using POLARIS OD flow rate as prior. Assuming the 

total flow rate follows the total flow rate generated by POLARIS, we have the constraint 

 ∑𝑞𝑜𝑑
𝑘

𝑘

=∑𝑞𝑜𝑑,𝑃𝑂𝐿𝐴𝑅𝐼𝑆
𝑘

𝑘

 (4.15) 

 The objective function is quadratic in OD flow rate and the constraints are linear, 

thus the optimization problem is convex. The optimization problem is solved using Gurobi.  

The shortest distance route and the empirical shortest time route are generated offline, and 

the ratio of drivers following shortest distance in each OD flow is obtained by solving 

(4.14) and the ratio of drivers follow shortest time routes is estimated by simulation. To 

generate the empirical shortest time route, we use the measured average speed, and assume 

vehicle on links with not enough data follows the posted speed limit. We assume that 

drivers follow real-time shortest time routes are uniformly distributed in the road network. 

Also, we assume that the average speed on each link is normally distributed. The real-time 

routing ratio with the maximum likelihood of average speed is selected as the optimum 

value. If variances of average speed distribution are equal for all links in the network, this 

is equivalent to minimize the squared error between simulated and measured mean value 

of average speed. The average speed distribution and the fitted Gaussian distribution of 6 

selected links with the sample size larger than 800 are shown in Figure 4.11. 
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4.4 Eco-MOD 

Two levels of strategies can be used by the MOD fleet to reduce fuel consumption. 

On the trip assignment level, the objective function for fleet assignment of feasible trips 

can be the total fleet fuel consumption instead of the sum of individual’s wait time and 

delay time as defined in the original fleet assignment problem. However, for assignment 

of the rebalance fleet, where the main objective is to serve the customers whose travel 

demand cannot be satisfied within the travel time constraint, we use their travel time as the 

objective function when assigning idling vehicles on the rebalancing trips. At the trip 

execution level, the routing strategy can be either shortest-time routing or eco-routing, and 

the corresponding routing cost is applied for trip assignment. Nine test configurations are 

defined based on different combinations of cost function and routing strategy to assess the 

fuel-saving benefit from the two levels. In all configurations, the rebalancing trips are 

assigned to minimize the travel time under the corresponding routing policy. The 

 
Figure 4.11 Average speed distribution of 6 selected links 
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configurations are summarized in Table 4.1, where the assignment of feasible trips is 

denoted as assignment, and the assignment of reactive rebalance trips is denoted as 

rebalance. Configuration 9 is the baseline where personal vehicles are used. 

As shown in Table 4.1, configurations 1-4 minimize trip time, which is defined as 

the sum of wait time and delay time using different routing strategies, and configurations 

5-8 minimize total fuel consumption of the fleet. The travel time requirement of customers 

are addressed as constraints and are satisfied by the graph decomposition based 

formulation. Configuration 8 is fuel-consumption-oriented, which consumes the least 

amount of fuel but result in the longest travel time.  Configuration 1 is travel-time-oriented, 

which has the least travel time but consumes the most fuel. The configurations are 

compared with the baseline that personal vehicles are used for the trip. Routing strategies 

of configuration 2 and 6 are determined by the occupancy of the vehicles. If the vehicle is 

occupied, then the shortest time route is used. Otherwise, the eco-route is used. The 

baseline is configuration 9, for which case personal vehicles are used for the trips. The 

route choice is determined by the calibration of traffic simulator in the previous section.  

4.5 Fleet Size Estimation 

To estimate the size of the fleet required to serve the travel demands, we apply the 

distance-based approach from [137] and the queuing network approach from [138]. When 

Table 4.1 MOD Fleet Assignment Strategy Configuration Summary 

 Assignment Cost Assignment Routing Strategy  Rebalance Routing Strategy  

1 Customer Trip Time Shortest Time Routing Shortest Time Routing 

2 Customer Trip Time Shortest Time / Eco Routing Shortest Time / Eco Routing 

3 Customer Trip Time Eco Routing Shortest Time Routing 

4 Customer Trip Time Eco Routing Eco Routing 

5 Fleet Fuel Shortest Time Routing Shortest Time Routing 

6 Fleet Fuel Shortest Time / Eco Routing Shortest Time / Eco Routing 

7 Fleet Fuel Eco Routing Shortest Time Routing 

8 Fleet Fuel Eco Routing Eco Routing 

9 - Shorest Distance/Time - 
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using the methods to estimate fleet size, we assume that each vehicle can only serve one 

customer. Thus the upper bound of fleet size is estimated for each method. However, this 

does not indicate that all travel demands can be served within their time constraints using 

the algorithm described in section 4.2. In the demand assignment step, idling vehicles are 

sent to serve customers whose time constraints cannot be satisfied by the assignment trips, 

while [138] assumes customers cannot be served will leave the system instead of waiting 

for available vehicles and [137] does not consider travel time. Thus, a parametric study is 

performed to analyze the influence of fleet size on system performance. In this section, we 

briefly introduce the fleet size estimation methods from [137] and [138]. 

4.5.1 Distance-Based Approach 

Given the average trip distance, average travel speed and trip generation rate, the 

fleet size can be estimated by  

 𝐹 =∑
𝜆𝑂𝐷(𝑑

𝑂𝐷 + 𝐷(𝑓𝐷 , 𝑓𝑂))

𝑣𝑂𝐷
𝑂,𝐷

 (4.16) 

where 𝑑𝑂𝐷 is average trip distance, 𝜆𝑂𝐷 is the generation rate of trip served by the fleet 

traveling from O to D, 𝑣𝑂𝐷 is average travel speed of the fleet, 𝐷(𝑓𝐷 , 𝑓𝑂) is the travel 

distance corresponding to rebalancing flow from O to D. Given partitioned network defined 

in Chapter 5, the rebalancing flow estimation problem can be formulated into a minimum 

cost flow problem, where sources and sinks are partitions where the density of destination 

distribution is larger and smaller than origin distribution respectively. The objective 

function is to minimize the total cost for rebalancing flow 

 min
rij

∑𝑐𝑖𝑗𝑞𝑖𝑗
𝑖𝑗

 (4.17) 

where 𝑞𝑖𝑗 is the flow rate on edge 𝑖𝑗 and 𝑐𝑖𝑗 is the corresponding cost. The flow needs to 

meet the flow conservation constraint 

 ∑𝑞𝑖𝑗
𝑗

−∑𝑞𝑘𝑖
𝑘

= 𝑑𝑖 − 𝑜𝑖 (4.18) 

where 𝑞𝑖𝑗 and 𝑞𝑘𝑖 are the flow out of and into partition 𝑖, respectively.  𝑑𝑖 is the density 

value of destination distribution and 𝑜𝑖 is the density value of origin distribution at partition 

𝑖. Given the rebalancing flow on each edge, the expected travel distance can be estimated. 
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4.5.2 Queuing Network Based Approach 

The distance-based approach can provide a simple estimation of the fleet size that 

can cover the travel distance of trips, but the wait time can be too long. Thus to estimate 

fleet size considering the availability of the vehicle in each partition, we apply the queuing 

network approach from [138]. Similar to the distance-based approach, each vehicle is 

assumed to serve only one customer. By assuming customers leave the system if the 

mobility needs cannot be satisfied upon entering the system, the MOD system is modeled 

as a closed Jackson network with respect to the vehicles. Each partition is modeled as a 

single-server (SS) node, and traveling between partitions are modeled as infinite-server 

(IS) nodes. For each partition, the customers are assumed to enter the system follow the 

Poisson process with the entering rate 𝜆𝑘 for partition 𝑘, thus the service rate for the SS 

node 𝑘  is 𝜆𝑘 . The IS nodes models traveling between partitions, and each IS node 

corresponds to an edge connecting two SS nodes (partitions). The service rate 𝜆𝑖 of IS node 

𝑖 corresponds to the travel time between partitions, which we assume is independent of the 

number of vehicles at the node if the fleet size is small. The vehicles form a queue at each 

SS node while waiting for customers and are serviced when a customer arrives. The vehicle 

then moves from the origin SS node to the IS node connecting the origin and destination. 

After spending the corresponding travel time in the IS node, the vehicle is then moved to 

the destination SS node. Given fleet size 𝐹, the state space of the queuing network model 

is defined as   

 𝒮 = {(𝑛1, … , 𝑛𝑁):∑𝑛𝑖

𝑁

𝑖=1

= 𝐹, 𝑛𝑖 ≥ 0} 
(4.19) 

where 𝑛𝑖 is the number of vehicles at node 𝑖. Given the routing probability 𝑟𝑖𝑗 from node 𝑖 

to node 𝑗, the closed queuing network satisfies the balance condition 

 𝜋𝑖 =∑𝜋𝑗𝑟𝑗𝑖
𝑗

 (4.20) 

where 𝜋𝑖  is the expected number of vehicles at node 𝑖 , which is also known as the 

throughput. The stationary density function of the system follows the product form 

expression under the small fleet assumption  
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 𝑝(𝑛1, … , 𝑛𝑁) =
1

𝐺(𝐹)
∏(

𝜋𝑖
𝜆𝑖
)
𝑛𝑖

𝑁

𝑖=1

 
(4.21) 

where  𝐺(𝐹)  is a normalization constant. The availability of node 𝑖  is defined as the 

probability that the queue length at SS node 𝑖 is larger than 0 [139] 

 𝐴𝑖(𝐹) = 1 − 𝑃(𝑄𝑖 = 0) =
𝜋𝑖𝐺(𝐹 − 1)

𝜆𝑖𝐺(𝐹)
 (4.22) 

where 𝑄𝑖 is the queue length at node 𝑖. The availability for each SS node is solved using 

mean value analysis (MVA) following [140], which can be used to estimate the fleet size 

without solving the normalization constant explicitly. MVA is an iterative algorithm to 

calculate the mean wait time 𝑊𝑖(𝐹) and the mean queue length 𝐿𝑖(𝐹) of each node. Under 

the closed network formulation, the initial condition given by 𝑊𝑖(0) = 0, 𝐿𝑖(0) = 0, ∀𝑖 

since there is no vehicle in the network. Then for each fleet size 𝐹, the mean wait time and 

queue length for each node is calculated by 

 𝑊𝑖(𝐹) = {

1/𝜆𝑖 𝑖 ∈ 𝐼𝑆
1

𝜆𝑖
(1 + 𝐿𝑖(𝐹 − 1)) 𝑖 ∈ 𝑆𝑆

 (4.23) 

 𝐿𝑖(𝐹) =
𝐹𝜋𝑖𝑊𝑖(𝐹)

∑ 𝜋𝑗𝑊𝑗(𝐹)
𝑁
𝑗=1

 (4.24) 

  Given queue length and expected wait time, [140] showed that the availability could 

be estimated by  

 𝐴𝑖(𝐹) =
𝐿𝑖(𝐹)

𝜆𝑖𝑊𝑖(𝐹)
 (4.25) 

At steady state, the rebalancing flow is estimated by solving the minimum cost flow 

problem from the previous section. The updated service rate at SS node 𝑖 is now the sum 

of customer arrival rate 𝜆𝑖 and rebalance vehicle departure rate ∑ 𝑞𝑖𝑗𝑗 . However, due to the 

assumptions and approximation required by the approach, the system performance is 

evaluated with simulation. 

4.6 Results and Discussion 

In the following sections, numerical simulation results from the detailed 

verification model are presented. First, we demonstrate that our calibrated simulator can 
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recreate average speed during the evening rush hour of Ann Arbor, and then use the model 

to estimate the effect of eco-MOD at the city-scale. Then the fleet size required to serve 

4% of the total travel demands for Ann Arbor during 17:00 to 19:00 is estimated using the 

distance-based approach and the queuing network-based approach. Due to the 

approximations made by the models, a parametric study with respect to fleet size is 

performed using the calibrated traffic simulator to evaluate the system performance. 

Finally, the numerical results of eco-MOD using configurations from section 4.4 are 

presented. 

4.6.1 Traffic Simulator Calibration 

 Assuming microscopic driving behavior by using parameters from [136], the 

demand distribution and route choice are calibrated using data from SPMD. Links with 

more than 80 events are used for calibration. The marginal distribution of origins and 

destinations are shown in Figure 4.12 and Figure 4.13, with high density indicated by 

yellow and low density indicated by blue. Measured and simulated average speed 

normalized using posted speed limit from 17:00 to 17:30 are shown in Figure 4.14 and 

Figure 4.15 respectively, with low speed indicated by red and fast indicated by green, and 

links without enough data are shown in light gray. The relative error distribution is shown 

in Figure 4.16, with mean relative error equals -1% and the standard deviation equals 25%. 

As shown in Figure 4.14 and Figure 4.15, the simulation results show less congestion in 

 

Figure 4.12 Marginal distribution of 

generated trip origins during weekday 

evening rush hour 

 

Figure 4.13 Marginal distribution of 

generated trip destinations during 

weekday evening rush hour 

 

 



73 

 

the downtown area, possibly due to our assumption that the flow is only generated by 

passenger cars, thus our ability to simulate pedestrians and public transits in the downtown 

is limited. As a result, the extended stops due to pedestrian crossings and slow down due 

to bus stops are not captured in our model. However, developing a detailed high fidelity 

 

Figure 4.14 Measured normalized average 

speed from 17:00 to 17:30 

 

Figure 4.15 Simulated normalized average 

speed from 17:00 to 17:30 

 
Figure 4.16 SUMO simulation average speed relative error distribution 

  
Figure 4.17 SUMO simulated network 

average speed 

Figure 4.18 SUMO simulated active vehicle 

amount in network 
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traffic simulator is out of the scope of this study and is left for future work. In the 

simulation, 150,457 trips are generated from 17:00 to 19:00, following an average 

generation rate of 20.89 trips per second. 

When using the simulator to evaluate the Eco-MOD framework, we simulate 16:00 

to 19:00. Only background traffic is generated in the first hour to reach the steady-state of 

the traffic network. MOD fleet starts to be deployed in the second hour to reach the steady-

state of service fleet. Data from the third hour is used to evaluate the efficiency of the 

system. Average speed and the total number of running vehicles of background traffic 

simulation are shown in Figure 4.17 and Figure 4.18, respectively. As shown in the figures, 

the system reaches the steady-state within the first hour, and the standard deviation of 

average speed is 0.18 m/s at steady state.  

4.6.2 Fleet Size Estimation 

The distance-based approach and queuing network-based approach are used to 

estimate fleet size required to serve 4% of the total travel demand in Ann Arbor during the 

 
Figure 4.19 Generated Trip Travel 

Distance Distribution 

 
Figure 4.20 Rebalance Trip Travel Distance 

Distribution 

 
Figure 4.21 Demand Generation Rate 

Distribution of Partition Pairs 

 
Figure 4.22 Average Speed Distribution  of 

Partition Pairs 
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evening rush hour. The average travel speed and distance are estimated for shortest time 

routing and eco-routing. The distributions of network statistics required to estimate fleet 

size using the distance-based approach are shown from Figure 4.19 to Figure 4.22. The 

estimated minimum fleet size for eco-routing is 1,176, and when shortest time routing is 

used, the minimum fleet size is 1,039 to serve 4% total travel demand generated from 17:00 

to 19:00. Since the approach only addresses the minimum fleet size problem using travel 

distance and average speed, the wait time of customers can be too long [137]. Therefore, 

the distance-based approach can be used as a lower bound estimation if no shared ride is 

allowed.  

Availability as a function of fleet size using both shortest time routing and eco-

routing are shown in Figure 4.23 and the number of extra vehicles needed when eco-routing 

is used to achieve same availability as shortest time routing is shown in Figure 4.24. Due 

to the lower average speed results from eco-routing strategy, more vehicles are required to 

achieve the same availability compared with the shortest time routing. Under the 

assumptions of the queuing network based formulation, to achieve more than 95% 

 

Figure 4.23 Vehicle Availability 

Estimated Using Queuing Network 

Model 

 

Figure 4.24 Number of Extra Vehicle 

Required for Eco Routing to Achieve Same 

Availability as Shortest Time Routing 

 

 

 
Figure 4.25 Fuel consumption normalized 

with served customer amount 

 
Figure 4.26 Travel distance normalized 

with served customer amount 
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availability for all partitions, 1,321 vehicles are required when using the eco-routing 

strategy, and 1,134 vehicles are required when using the shortest time routing strategy.  

Numerical simulations are used for performance evaluation using different fleet 

sizes given the max wait time of 5 minutes and the max delay time of 5 minutes for 

configuration 1 and configuration 8. The fleet performance is summarized from Figure 

4.25 to Figure 4.35. The fuel oriented configuration (configuration 8) consumes less fuel 

compared with the travel time oriented configuration (configuration 1) as shown in Figure 

4.25, and so is total travel distance. Due to the fleet cost-oriented objective function in the 

assignment step, the average number of customers per vehicle is higher for configuration 

 

 
Figure 4.27 Average number of customers 

assigned per running vehicle 

 
Figure 4.28 Average number of customers 

on-board per running vehicle 

 
Figure 4.29 Empty vehicle travel mileage 

ratio 

 
Figure 4.30 Customer served within travel 

time constraints 

 
Figure 4.31 Average wait time 

 
Figure 4.32 Average delay time 
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8, indicating more trips are shared when the fleet size is larger than 1,300. However, the 

average wait time and delay time of configuration 8 are longer than configuration 1 for all 

fleet sizes, and fewer customers are served within their travel time constraints. For all 

configurations, the ratio of customers served within time constraints increases with the 

increasing of fleet size. For configuration 1, 1,200 vehicles can serve more than 80% of the 

customers within time constraints, while 1,500 vehicles are required for configuration 8 to 

serve 80% customers. In the following sections, fleet size 1,500 is used. 

4.6.3 MOD and Routing Strategy’s Influence on Energy. 

The main goal of the simulations is to assess the impact of different routing 

strategies on fuel consumption.  In this Section, we fix the demand ratio served by the 

MOD fleet at 4% total demand during the weekday from 17:00 to 19:00. The simulated 

data from 18:00 ~ 19:00 is used for evaluation after the system reaches steady state. The 

fleet size is fixed at 1,500, which is the fleet size necessary to serve 80% of the customers 

within their travel time constraints for all configurations from the previous section. Of 

course, this means the fleet size is perhaps larger than truly necessary for some 

configurations.  However, when the vehicles are not dispatched, they incur neither time nor 

fuel cost, and thus will not affect the final performance measures. The performance of 

shareability is shown in Figure 4.33. It can be seen that when the fleet cost is minimized, 

 

Figure 4.33 MOD algorithm performance comparison — average customer assigned 

and onboard of each vehicle 
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more shared trips are selected, and the average number of assigned customer per vehicle 

increases from 1.1 to 1.3, and the average number of onboard customers per vehicle 

increases from 1 to 1.2, indicating that more trips are shared and empty vehicle miles is 

reduced. However, due to the difference in the origin and destination distributions as well 

as the lower trip average speed, more rebalance trips are assigned for which no shared trips 

are allowed when eco-routing is applied. The increased rebalance trips lead to a reduced 

average number of customers assigned per vehicle from 1.3 to 1.2 and the number of 

onboard customers from 1.2 to 1 when the assignment objective is fleet fuel consumption. 

The performance in fuel consumption and vehicle mileage are summarized in 

Figure 4.34 to Figure 4.35. When the objective function of the trip assignment is travel 

time and the shortest time routing strategy steady-state, the fuel consumption per customer 

is increased by 6.2% compared with the baseline that every customer uses personal vehicle. 

Use eco-routing for unoccupied vehicles can reduce fuel usage per customer served by 

1.3%, but still consumes 4.8% more fuel compared with the baseline. However, if the 

objective function is to minimize the fleet fuel consumption, the fuel consumption per 

customer can be reduced by 9% to 12% compared with the baseline.  

The results indicate that shared-rides have the potential to reduce trip fuel 

consumption by up to 12%, but if the fleet is not properly operated, the total fuel 

consumption can increase. The results also indicate that with the same objective function, 

 

Figure 4.34 Fuel Consumption per Customer 
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using eco-routing for trips can further reduce fuel consumption by 10% if the trip 

assignment objective is travel time, and 4% if the trip assignment objective function is fleet 

fuel consumption compared with the configurations that use the fastest route for trips. 

When fleet fuel is optimized, using eco-routing can reduce the average travel speed, and 

thus increase the ratio of rebalance trips and reduce shareability, making the additional 

benefit to fuel consumption limited.  

 
Figure 4.35 Empty travel distance ratio 

 

Figure 4.36 Change in fleet total travel distance and fuel consumption per customer 
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 The fleet mileage is reduced with the system optimal objective function due to the 

increase in shareability and usage of eco-routing. Compared with the baseline, the fleet 

mileage can be reduced by more than 3%. However, if the objective function is travel time, 

the mileage can be increased by 5.8% to 9.9% compared with the baseline. With the 

application of the eco-routing, the fleet travel mileage can be reduced by 3.7% for 

configurations 1-4 where routing strategy has little impact on shareability. However, for 

configurations 4-8, where the application of the eco-routing strategy reduces shareability 

of the fleet, the fleet travel mileage is increased by 3.3% due to the increase in rebalancing 

trips. With the increased rebalance trips, the empty vehicle traveling mileage is increased, 

as shown in Figure 4.35. 

The travel time performance is summarized in Figure 4.37 and Figure 4.38. Since 

the wait time and delay time of customers are modeled as constraints for trip assignment, 

all configurations can serve more than 80% of the customers within the travel time 

constraints. The mean wait time when customers‘ travel time is minimized in the 

assignment step is up to 167 seconds when the fleet fuel is optimized and eco-routing is 

applied. Compared with traveling using the shortest time route individually, the average 

delay time can be up to 147 seconds due to the shared trips and lower average travel speed 

of eco-routing.  

In summary, shared mobility has the potential to reduce total fuel consumption but 

may incur travel time increase due to shared trips. One potential solution is to use eco-

 

Figure 4.37 Time Performance Comparison of Configurations 
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routing for trip execution, which would result in reduced fuel consumption with a small 

increase in travel time. The objective function can also be defined as a weighted sum of 

individual benefit and system benefit and parametric study can be used to find the Pareto 

optimal points. 

4.6.4 MOD and Routing Strategy’s Influence on Traffic Speed 

The influence on traffic flow is evaluated with SUMO. The average speed of 

different configurations normalized using the posted speed limit are shown in Figure 4.39. 

Due to the increase in empty vehicle trips, the average normalized speed decreased 1% for 

 

Figure 4.39 Average Link Relative Speed 

 

 
Figure 4.38 Ratio of customers served within travel time constraints 
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the road network. Two-sample Kolmogorov-Smirnov test [141] is used to test against the 

null hypothesis that the normalized link speed for all configurations are from the same 

distribution as the baseline, and the results are summarized in Table 4.2. As shown in the 

table, the hypotheses are rejected with p-values less than 0.05 for all configurations, 

indicating the change in network average speed is statistically different from the baseline 

for all configurations. However, in the baseline, more than 5,000 vehicles are generated 

from the travel demand while the MOD fleet only consists of 1,500 vehicles, thus the MOD 

still outperforms personal driving in terms of traffic flow due to the reduced number of 

vehicles. Besides the influence on traffic flow, the shared fleet can also reduce parking 

spaces, which can further reduce travel time due to the reduction in travels searching for 

parking. However, the effect of parking space is not included in our simulations and is 

considered to be part of the future works. 

4.7 Conclusion and Future works 

An Eco-MOD fleet assignment framework is developed to minimize fleet fuel 

consumption while satisfying customer travel time constraints. The algorithm shows the 

potential to reduce fleet fuel consumption while serving more than 80% of the customers 

within their travel time constraints. Numerical simulations show that the benefits of 

EcoMOD increase with the percentage of customers using the service. However, in the 

current framework, the assignment only considers realization of travel demand at current 

step without considering expected future assignment cost and routing strategy is selected 

heuristically, thus developing an optimal routing strategy selection algorithm based on 

knowledge of fleet and demand distribution could be fruitful. 

 

 

  

Table 4.2 K-S test of road network normalized link average speed for all configurations 

against personal vehicle driving baseline 

Configuration 1 2 3 4 5 6 7 8 

K-S Test p value 8E-15 9E-11 1E-14 2E-11 1E-10 8E-11 7E-15 1E-13 
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CHAPTER 5 

Traffic Network Partition and Idling Vehicle Rebalancing 

5.1 Introduction 

Mobility-on-demand (MOD) services such as Uber and Lyft have changed the 

landscape of ground mobility significantly, especially in urban areas with dense population. 

When multiple passengers share the same vehicle (e.g., Lyft Line and UberPOOL), the 

service can reduce the number of vehicles on the road and parked on streets, and reduce 

congestion and energy consumption.  

Today’s MOD fleet management largely reacts to trip requests without utilizing 

predicted future supply and travel demand distribution.  Continuous approximation [110] 

is used to study the dynamics of fleets and the influence of large fleets to congestion. 

Algorithms such as mixed integer programming [98], heuristic [103], and graph-based 

decomposition [107] were developed to assign the fleet to customers. A privacy-preserving 

algorithm was developed [109] to protect the location information of passengers without 

incurring significant performance degradation. However, the potential of the fleet is not 

fully utilized due to the nature of reactive control policies. 

Knowledge of travel demand distribution plays a vital role in the control of MOD 

fleet. For carpool service with private cars, travel data can be used to identify the optimally 

combined trips for carpooling and can reduce daily car mileage by 44% [112]. Intelligent 

transportation technologies such as connected automated vehicles provide richer 

information about travel demand and enable better centralized MOD fleet control. Han et 

al. [113] showed that with driverless MOD fleet, the direct control approach is 29% more 

efficient compared with the current price-based indirect control. For service provided by 

commercial fleets, travel demand distribution can be used to control the idling vehicles for 

rebalancing [113–115] to better meet future trip requests. A sampling-based algorithm is 

also proposed to control ride-sharing fleets using predicted future trip requests [64]. 
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However, the travel location distribution is either characterized by clusters from the 

geometric coordinate of locations [112, 142] or grid-based discretization [114], neither of 

which takes the structure of the road network into consideration. Recently, an integer 

programming based approach [117] is proposed for road network partition and rebalancing 

location selection with the maximum wait time being bounded for the Manhattan island.  

Since travel demand can be characterized as a random variable on the road network, 

ignoring the underlying network structure can be problematic. To better describe the travel 

location distribution considering the structure of the road network, we propose an algorithm 

using multi-dimensional scaling (MDS) [143] to project the locations in the road network 

onto a Euclidean space. The travel locations can then be characterized by a Dirichlet 

Process Gaussian Mixture Model (DPGMM) [144]. The projection allows us to obtain 

better clustering results compared with the geometric coordinate-based methods. To utilize 

the demand distribution information for fleet management, we developed an idling fleet 

rebalancing control algorithm based on the work in [145]. We assume that the demand 

distribution is known, and the fleet can be controlled directly to take assigned trips and to 

rebalance, considering future demands.  It should be noted that we do not assume the future 

trips are known exactly, but their probability distribution is known. In our simulations, 

travel demands generated by POLARIS [75], a mesoscopic agent-based transportation 

model, are used as prior and calibrated using data from the Safety Pilot Model Deployment 

(SPMD) project [76] as presented in Chapter 4. The calibration dataset consists of trip 

information from up to 2,800 vehicles from the city of Ann Arbor running continuously 

since 2012.  

The main contributions of this work are: 1) a travel location clustering algorithm 

considering the road network structure; 2) a ride-sharing idle fleet rebalancing control 

policy considering future travel demand distribution is developed to reduce expected wait 

time of future trips.  

The rest of this chapter is organized as follows: Section 5.2 presents the proposed 

travel location clustering algorithm. Section 5.3 presents the formulation of idle fleet 

rebalancing optimization. Section 5.4 presents the simulation results. Conclusions and 

future work are given in Section 5.5. 
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5.2 Road Network Partition 

To characterize travel location distribution considering the road network structure, 

we model the road network with a Euclidean space approximation. With this 

approximation, we characterize the distribution of travel locations with the Lebesgue 

measure. 

5.2.1 Multidimensional Scaling (MDS) 

The MDS method is used to find the optimal Euclidian space that preserves pairwise 

distance in the network space. MDS can be formulated as an optimization problem defined 

as  

 min𝑥1,…,𝑥𝑁 (
∑ (𝑑𝑖𝑗

𝑝 − ‖𝑥𝑖 − 𝑥𝑗‖
𝑝
)
2

𝑖,𝑗

∑ 𝑑𝑖𝑗
2𝑝

𝑖,𝑗 

) (5.1) 

where 𝑑𝑖𝑗  is the pairwise distance between points 𝑖  and 𝑗 ,  𝑥𝑖, 𝑥𝑗 ∈ ℝ
𝑚 are the vectors 

corresponding to point 𝑖  and 𝑗  in the projection space, and m is the dimension of the 

projection space, which is determined later in this chapter.  𝑝 is the power transformation 

used by metric scaling, N is the total number of projected points. Since the projection space 

is Euclidian, the approximated distance is 

 ‖𝑥𝑖 − 𝑥𝑗‖
2
=∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2
𝑚

𝑘=1

 (5.2) 

When 𝑝 is 1, the MDS is known as the classical MDS and can be solved with 

eigendecomposition by transferring the distance matrix to an inner product through double 

re-centering 

 𝐺 = −
1

2
(𝐼𝑛 −

1

𝑛
𝟏𝟏𝑇)𝐷 (𝐼𝑛 −

1

𝑛
𝟏𝟏𝑇) (5.3) 

Where 𝐷 = {𝑑𝑖𝑗} is the distance matrix, 𝐼𝑛 is the identity matrix and 1 is the column vector 

with 1 as all its entries. With this transformation, vectors in the projection space can be 

obtained by eigendecomposition of 𝐺, which gives 

 𝑥𝑖
∗ = √𝜆𝑖𝑢𝑖 , 𝑖 = 1…𝑚 

(5.4) 
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where 𝜆𝑖 is the 𝑖-th largest eigenvalue of 𝐺, and 𝑢𝑖 is the corresponding eigenvector. When 

𝑝 ≥ 2, the optimization problem can be solved using the steepest gradient method [143] 

where the solution of the classical MDS is used as the initial point for the numerical 

algorithm. In the following analysis, we use non-classical MDS with 𝑝 = 2 to approximate 

the pairwise distance in the non-Euclidean road network space. 

The distance matrix is obtained by calculating the pairwise lowest cost path 

distance between every pair of links in the traffic network. The traffic network is defined 

as a weighted directed graph with nodes associated with links of the original road network. 

An edge from node 𝑖 to node 𝑗 exists if link 𝑗 is adjacent to link 𝑖 and if a vehicle can travel 

from link 𝑖 to link 𝑗 (one-way roads is an example when this is not the case). The weight 

of the edges is defined as  

 𝑤𝑖𝑗 =
1

2
(
𝑙𝑖
𝑣𝑖̅
+
𝑙𝑗

𝑣𝑗̅
) (5.5) 

where 𝑙𝑖, 𝑙𝑗 are lengths of links 𝑖 and 𝑗, 𝑣𝑖̅, 𝑣𝑗̅ are the travel speeds, which can be the posted 

speed limits of the road links if no real-time traffic information is available, or measured 

vehicle speed if the information is available. The graph is connected since there are no 

isolated links in the traffic network. The pairwise distance is solved using linear 

programming based on the Bellman inequality, which is the dual of Bellman-Ford 

algorithm [146] and can be solved efficiently with optimization solver such as Gurobi [50] 

 

 

Figure 5.1 Approximation Error with Different Approximation Dimension 
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which we use. The approximation performance with different projection space dimension 

is shown in Figure 5.1, with mean and standard deviation marked using error bars.  

In the following analysis, we choose 18 dimensions for the Euclidean space 

approximation (i.e., m=18), and the mean absolute percentage error (MAPE) is 5%, which 

is enough to preserve the pairwise distances of the original road network. 

5.2.2 Location Distribution Characterization 

In the literature, travel location distribution is frequently characterized using the 

Cartesian coordinate in the geometric space [112, 145, 147], which ignores road network 

structure information. With the approximation of link locations in a Euclidean space, we 

can analyze the location distribution in the approximation space using the Lebesgue 

measure, which preserves the original travel time in the network. In the following analysis, 

we assume that the origin and destination of each trip are sampled from the location 

distribution, and the union of origins and destinations is defined as locations of interests. 

Since we do not assume we know the number of clusters, we use the DPGMM to model the 

random variable. DPGMM is a Bayesian nonparametric extension of the Finite Gaussian 

Mixture Model whose probability density function can be expressed by: 

 𝑓𝑋(𝑥) =∑ 𝜋𝑘𝑓𝑋,𝑘(𝑥)
𝐾

𝑘=1
 (5.6) 

 

Figure 5.2 MAPE for different approximation dimension 
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where 𝑥 is the random variable for travel locations, 𝑓𝑋(𝑥) is the overall density function, 

𝜋𝑘 is the mixing coefficient for each component, 𝑓𝑋,𝑘(𝑥) is the density for each component, 

which follows a multivariate Gaussian distribution. Instead of a fixed component number 

𝐾, DPGMM assumes the model consists of infinite components, i.e., 𝐾 → ∞ in (5.6). With 

this method, not only the parameters for each mixture component but also the number of 

mixture components can be inferred from the data. In this way, the locations of interests 

are modeled as the mean of each mixture component, and travel demand can be modeled 

as a multinomial distribution with the discretization achieved using the mixture model. The 

posterior of parameters of the DPGMM is inferred through collapsed Gibbs sampling, 

which is an approximate inference algorithm based on Markov Chain Monte Carlo 

(MCMC) sampling and known to be unbiased asymptotically compared with other 

approximate inference methods such as variational inference. The process is summarized 

as follows. Denote 𝑐𝑖 ∈ {1,… , 𝐾}  as the indicator variable of the component for each data 

point, which is a discrete random variable parameterized by 𝜋 

 𝑃(𝑐𝑖|𝜋)~𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝜋1, … , 𝜋𝐾) 
(5.7) 

 For Dirichlet process model, 𝐾 → ∞ . The parameters are modeled with their 

corresponding conjugate priors, i.e., Dirichlet distribution for 𝜋  and Gaussian-Wishart 

distribution for mean 𝜇 and covariance 𝛴 of each component. 

 𝑃(𝜋) = 𝐷𝑖𝑟(𝜋|𝛼0) = 𝐶(𝛼0)∏ 𝜋𝑘
𝛼0−1

𝐾

𝑘=1
 (5.8) 

 𝑃(𝜇, 𝛴) = 𝑃(𝜇|𝛴)𝑃(𝛴) =∏ 𝑁(𝜇𝑘|𝑚0, 𝛽0𝛴𝑘)𝑊(𝛴𝑘
−1|𝑊0, 𝑣0)

𝐾

𝑘=1
 (5.9) 

where 𝛼0 is the hyper-parameter for Dirichlet distribution, 𝑚0, 𝛽0,𝑊0, 𝑣0 are the hyper-

parameters for the Gaussian-Wishart distribution. For simplicity, we denote 

{𝑚0, 𝛽0,𝑊0, 𝑣0} the set of hyperparameters for the Gaussian-Wishart distribution as 𝛾. The 

hidden variables include the indicator variable 𝑐𝑖 and the model parameters 𝜋, 𝜇, 𝛴. At each 

step of collapsed Gibbs sampling, we sample 𝑐𝑖 conditional on the rest of the data points 

and random variables from the posterior    

 𝑝(𝑐𝑖 = 𝑘|𝑐−𝑖, 𝑥, 𝛼0, 𝛾) ∝ 𝑝(𝑐𝑖 = 𝑘|𝑐−𝑖, 𝛼0)𝑝(𝑥|𝑐−𝑖, 𝑐𝑖 = 𝑘, 𝛾) (5.10) 

where 𝑐−𝑖 = {𝑐𝑗, 𝑗 ≠ 𝑖, 𝑗 ∈ ℕ, 1 ≤ 𝑗 ≤ 𝑁} is the set of indicator variables for other samples 

except i, 𝑁 is the sample size of the entire dataset. Since the prior of other parameters are 
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well-defined, the inference can be carried out in a closed form. Thus, no sampling is 

required to obtain the posterior of  𝜇 and 𝛴 once 𝑐𝑖’s are sampled for all data points. 

The likelihood term can be obtained in a closed form from the Gaussian-Wishart 

distribution, and the prior term can be defined by the Chinese Restaurant Process (CRP). 

The resultant cluster assignment follows the pattern that the probability of a new sample 

belonging to a cluster is proportional to the number of samples already in the cluster. 

 𝑝(𝑐𝑖 = 𝑘|𝑐−𝑖, 𝛼0) =

{
 

 
𝑁−𝑖,𝑘

𝑁 + 𝛼0 − 1
𝐼𝑓 𝑘 ≤ 𝐾

𝛼0
𝑁 + 𝛼0 − 1

𝐼𝑓 𝑘 = 𝐾 + 1
 

(5.11) 

where 𝑁−𝑖,𝑘 is the sample size of data belong to cluster 𝑘 for other samples except for 𝑖, 𝐾 

is the current number of clusters already realized. In this way, as the sample size 𝑁 goes to 

infinity, the number of clusters can go to infinity, indicating that the model is more complex 

with more samples acquired. DPGMM is used to identify the number of clusters for travel 

locations in the approximated Euclidean space, which is used for rebalancing destination 

selection if no information about the cluster number is given.    

 The objective of partitioning the road network and rebalancing destination selection 

is to minimize the expected travel time for customers to be reached from the closest 

rebalancing station, which is the wait time for them to be picked up if the vehicles are 

located at the partition centers. Thus, the objective function of expected wait time 

minimization is defined as 

 min
𝜇
∑∑‖𝑥𝑖 − 𝜇𝑘‖2

𝐶𝑘

𝑖=1

𝐾

𝑘=1

 
(5.12) 

where 𝑥𝑖 is the coordinate of sampled demand 𝑖 in the MDS approximation space, 𝐶𝑘 is the 

total number of demands assigned to station 𝑘, 𝜇𝑘  is the location of station 𝑘, 𝐾 is the 

number of stations, which can be identified from the DPGMM model. The problem is 

solved using the k–medoids algorithm initialized with results from DPGMM. k–medoids 

algorithm has the same objective function as (5.12), and 𝜇𝑘 is restricted to existing data 

points, while in DPGMM 𝜇𝑘 is the expectation of each component, which is not necessary 

from the samples. The stations are located at the resultant cluster medoids based on the 

assumption that the station is located close to links.  
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5.3 Idling Fleet Rebalancing 

Since there is a mismatch between trip origin distribution and trip destination 

distribution, idling vehicles tend to build up with the trip destination distribution, which 

would increase the expected wait time of new customers. To mitigate this effect, idling 

vehicles should be relocated according to the trip origin distribution to reduce the expected 

wait time for future travel demands. After the road network is partitioned, the trip origin 

distribution and idling fleet distribution can be described using random variables following 

categorical distribution. The objective of fleet rebalancing is to minimize the difference 

between these two distributions. Assuming known trip origin distribution and expected 

customer departure rate, the problem is formulated as an integer programming with 

quadratic objective function and linear constraints. To reduce the size of integer 

programming, we only consider the case that idling vehicles being relocated to immediate 

adjacent partitions.  

The decision variables are defined as indicator variables of relocating trips 

associated with each idling vehicle, 𝒯 = {𝑡𝑖𝑗 , ∀𝑖 ∈ 𝒱𝐼 , ∀𝑗 ∈ 𝑎𝑑𝑗(𝑣𝑖)}, where 𝒱𝐼 is the set 

of idling vehicles, 𝑎𝑑𝑗(𝑣𝑖) is the set of adjacent partitions of the idling vehicle 𝑣𝑖. 𝑡𝑖𝑗 = 1 

if idling vehicle 𝑖 is assigned to relocate to adjacent partition 𝑗 and otherwise is 0. For 

simplicity, we assign all relocating trips to the corresponding partition center. The objective 

function is estimated using planning horizon 𝑇, and we only consider assignment at the 

current step. The objective function is defined as 

 min
𝑡𝑖𝑗∈𝒯

(1 − 𝑤𝑐)∑∑‖
𝑛𝑘
𝜏

𝑁𝜏
− 𝑜𝑘‖

2𝑇

𝜏=1𝑘

+ 𝑤𝑐 ∑ 𝐶𝑖𝑗𝑡𝑖𝑗
𝑡𝑖𝑗∈𝒯

 
(5.13) 

where 𝑁𝜏 is the normalization constant, 𝑜𝑘 is the density function of trip origins associated 

with partition 𝑘 , 𝐶𝑖𝑗  is the traveling cost associated with relocating trip 𝑡𝑖𝑗  and fuel 

consumption is used here, 𝑤𝑐  is weighting parameter between relocating cost and 

balancing objective, 𝑛𝑘
𝜏  is the estimated number of available vehicles within partition 𝑘 at 

time 𝜏. Assuming that customers depart in each partition follow a Poisson process,  

 𝑛𝑘
𝜏 = ∑ 𝑡𝑖𝑗

𝑘,𝜏

𝑡𝑖𝑗∈𝒯

+ 𝑑𝑘
𝜏 − 𝜏𝛾𝜆𝑘 (5.14) 
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where 𝑡𝑖𝑗
𝑘,𝜏

 is trajectory indicator of rebalancing trip 𝑡𝑖𝑗, 𝑡𝑖𝑗
𝑘,𝜏 = 1 if the vehicle is located 

within partition 𝑘 at time 𝜏 after departure, which can be estimated as a function of 𝑡𝑖𝑗 

using estimated travel time,  𝑑𝑘
𝜏  is the amount of arrival vehicles within partition 𝑘 up to 

time 𝜏, 𝛾 is a discount factor to account for the ratio of trips being shared, 𝛾 ≤ 1, 𝜆𝑘 is the 

expected customer departure rate at partition 𝑘. The normalization constant is given by  

 𝑁𝜏 =∑𝑛𝑘
𝜏

𝑘

= 𝑁𝑖𝑑𝑙𝑒 +∑𝑑𝑘
𝜏

𝑘

− 𝜏𝛾∑𝜆𝑘
𝑘

 (5.15) 

where 𝑁𝑖𝑑𝑙𝑒 is the amount of idling vehicles. In addition to the trips to other partitions, 

virtual trips that the vehicle stays at the same location are also generated with the 

destination assigned to be the vehicle’s current location. Thus the constraint is that each 

vehicle is assigned to one relocating trip.  

 ∑𝑡𝑖𝑗
𝑗

= 1, ∀𝑖 (5.16) 

 Due to the large size of the problem, instead of solving the mixed integer 

programming exactly using the branch and bound algorithm, we solve the continuous 

relaxation of the original problem by relaxing 𝑡𝑖𝑗 as a real number between 0 and 1. The 

integer solution is then obtained by randomized rounding [148]. After solving the relaxed 

problem, the assigned trips are selected by random sampling using the optimum 𝑡𝑖𝑗 as the 

density function. The idling fleet rebalancing step is integrated with the MOD assignment 

framework by assigning idling fleet relocating after the reactive rebalance step to serve 

customers whose travel time constraints cannot be satisfied by the regular assignment. The 

optimization is solved with Gurobi [50]. The optimization is solved repeatedly every 

assignment interval based on the current status of the fleet. Assuming the fleet size is 

estimate accurately, i.e. all vehicles need to travel either to serve customer or rebalancing 

according to travel demand, then the first term in the objective function is transformed to 

flow conservation constraint due to the requirement of balanced operation. Thus, the 

formulation becomes the minimum cost flow rebalancing formulation presented in Chapter 

4 of this dissertation.  However, the precise fleet size is complicated to estimate when 

shared rides are involved and when the demand estimation is not accurate. 
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5.4 Results and Discussion 

In this section, we present the road network partition results using the proposed 

algorithm. The traffic demand is generated using the algorithm presented in chapter 4. In 

this study, we focus on demand generated during the evening rush hour (17:00-19:00) on 

weekdays. However, the algorithms developed can be extended to deal with time-varying 

demand distribution, which can be modeled as a piece-wise constant function. We first 

present the results of the road network partition, then demonstrate the idling fleet 

rebalancing algorithm using simulations. 

5.4.1 Road Network Partition 

To evaluate the performance of the clustering algorithm, we used the origins of trips 

generated from 17:00 to 19:00 on a weekday. The travel origins heatmap generated for the 

evening rush hour (17:00-19:00) of a weekday is shown in Figure 5.3, and the 

 

Figure 5.3 Origins heatmap generated from 17:00 to 18:00 on weekdays in Ann Arbor 
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corresponding network partition results and the partition centers indicated by circles are 

shown in Figure 5.4. The algorithm to generate the demands are presented in Section 5. 26 

components are identified using the Bayesian nonparametric algorithm, which is used to 

initialize the k-medoids in the approximation space. Different clusters are shown in 

different colors in Figure 5.4. The partition centers are represented using circles, and the 

adjacent relations are represented using edges. Two partition centers are connected if one 

can travel from one partition to the other without passing through any other partitions. 

 

Figure 5.4 Network partition using the proposed algorithm in the approximation space 

for generated demand, partition centers are denoted as circles. Two partition centers are 

connected if the two partitions are adjacent, i.e. one can travel from one partition to the 

other directly without passing through another partitions   
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The benchmarks for traffic network partition are clustering algorithms applied in 

the geometric Cartesian coordinate space using the k-means algorithm [129, 142] and 

GMM in the approximation space, without constraining the rebalancing locations to 

existing links. Since the traffic network partitioning we are interested in is clustering data 

in the network space instead of studying the connectivity of the network itself, the 

 

Figure 5.5 90th percentile of travel time to closest partition center for all demands using 

different clustering algorithm, relative reduction of MDS k-medoids compared with 

Cartesian k-means is shown in right axis 

 

Figure 5.6 Mean travel time to closest partition center for all demands using different 

clustering algorithm, relative reduction of MDS k-medoids compared with Cartesian 

k-means is shown in right axis 
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community detection algorithms [149] and grid-based discretization [116] are out of scope 

for our evaluation. Since the component number needs to be specified for the k-means 

algorithm, to make the evaluation a fair comparison, instead of using Bayesian 

nonparametric algorithm to identify the component number for GMM and our proposed 

algorithm, we use the Expectation-Maximization (EM) algorithm to identify parameters 

for the mixture models. Considering the objective of partition is to select the rebalancing 

stations, the performance metric we selected is mean value and the 90th percentile of travel 

time to cluster center, with travel time for each road section generated from SUMO during 

the studied hour. The 90th percentile and average travel time to cluster center (wait time) 

for different clustering algorithms are shown in Figure 5.5 and Figure 5.6 respectively, 

with the right axis showing relative reduction with our algorithm compared with k-means 

in yellow. 

 

Figure 5.7 Wait time histogram with 26 partitions 

Table 5.1 Statistics of wait time with 26 partitions 

 Mean [s] Std.Dev [s] 90th percentile [s] 

Cartesian k-means 267 134 455 

MDS GMM 223 105 365 

MDS k-medoids 218 106 359 
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As shown in Figure 5.5 and Figure 5.6, with the right number of mixture 

component, our algorithm can reduce expected wait time by more than 15% and the 90th 

percentile of wait time by more than 20% compared with clusters generated using the k-

means algorithm in geometric Cartesian coordinate. By considering the constraint that the 

rebalancing station can only locate close to existing links, the k-medoid algorithm further 

reduces the expected wait time by 4% and 90th percentile of wait time by 2% compared 

with GMM in the MDS approximation space directly. The wait time histogram of all travel 

demands in weekday evening rush hour (17:00~18:00) from different clustering algorithms 

using 26 partitions are shown in Figure 5.7, and the statistics are summarized in Table 5.1. 

The number of partition, 26, is identified using DPGMM in the MDS approximation space. 

As shown in the histogram and table, the proposed algorithm can reduce the mean wait 

time as well as the standard deviation, indicating that the partitions are more uniform in 

terms of in-cluster wait time and the benefit is road network-wide applicable.  

5.4.2 Parametric Study for Fleet Size 

Numerical simulations using the traffic simulator presented in Chapter 4 are used 

to demonstrate the effect of idling fleet rebalancing in this section. We fix the demand ratio 

served by the MOD fleet at 4% of the total demand during the weekday evening rush hour 

(17:00 ~ 19:00). The simulated data from 18:00 ~ 19:00 is used for evaluation after the 

system reaches steady state. In the trip assignment framework, fuel oriented assignment 

   

Figure 5.8 Idling fleet with 1,500 vehicles 

location at 19:00, without rebalancing 

Figure 5.9 Idling fleet with 1,500 vehicles 

location at 19:00, with rebalancing 
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(configuration 8) is applied. For the idling rebalancing trips, the eco-routing strategy is 

applied. The simulation is performed for fleet size 1,200 to 1,500. Customers' maximum 

wait time and delay time are 5 minutes. In this section, a small weight is chosen in (5.13) 

for fuel consumption (0.0005). The locations of the idling fleet with and without 

rebalancing trips using 1,500 vehicles are shown in Figure 4.14 and Figure 4.15. If the fleet 

is not rebalanced, the idling vehicles will follow the trip destination distribution, and thus 

the expected wait time of the future trips is increased. With the rebalancing algorithm, we 

can relocate the idling vehicles according to the origin distribution as shown in Figure 4.15, 

thus reduce the expected wait time for all trips.  

 

 
Figure 5.10 Fuel consumption per  served 

customer  

 
Figure 5.11 Travel distance per served 

customer  

 
Figure 5.12 Average assigned customer per 

traveling vehicle 

 
Figure 5.13 Average onboard customer 

per traveling vehicle 

 
Figure 5.14 Empty vehicle travel mileage 

ratio (pickup and rebalance) 

 
Figure 5.15 Customer served within travel 

time constraints 
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The system performance comparison using different fleet sizes are summarized 

from Figure 5.10 to Figure 5.20. After applying the rebalancing strategy, the empty vehicle 

travel mileage increases to more than 25% for all fleet sizes, which lead to an increase in 

the total travel distance and thus the total fuel consumption to provide the service.  Also, 

due to the extra rebalancing traveling vehicles, the average number of customers per 

vehicle is reduced. However, the balanced fleet can increase the service quality in terms of 

the wait time with the rebalancing strategy. The fleet can serve more than 90% of the 

customers within their travel time constraints with 1,200 vehicles, while only less than 60% 

of customers‘ constraints are satisfied if the fleet is not rebalanced. The mean wait time is 

 
Figure 5.16 Average wait time  

 
Figure 5.17 Average delay time 

 
Figure 5.18 KL divergence between idling 

fleet location distribution and origin 

distribution 

 
Figure 5.19 Road network average relative 

speed 

 
Figure 5.20 Number of MOD vehicles traveling on road 
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reduced by more than 37% for 1,200 vehicles and 15% for 1,500 vehicles. The performance 

improvements are due to closer matching between the idling fleet distribution and the trip 

origin distribution as indicated by the KL divergence shown in Figure 5.18. With the 

rebalancing strategy, the Kullback–Leibler (KL) divergence [150] between the idling fleet 

location distribution and the demand distribution is reduced by 40% to 85% depending on 

the fleet size. The influence on traffic flow is shown in Figure 5.19 and the amount of 

traveling vehicles are shown in Figure 5.20. As shown in the figures, the MOD vehicle 

accounts for 5% of the running vehicles in the road network, which is not large enough to 

cause a significant change in relative travel speed in the road network as indicated by 

Figure 5.19. 

5.4.3 Parametric Study for Fuel Weight 

A parametric study is conducted for the weight between fleet balance and fuel 

consumption, 𝑤𝑐 in (5.13). The fleet size is 1,200 for all simulations. The results are shown 

in Figure 5.21 to Figure 5.29. The baseline is the case of which the fuel weight is 1 (balance 

 

 
Figure 5.21 Fuel consumption per  served 

customer  

 
Figure 5.22 Empty vehicle travel mileage 

ratio (pickup and rebalance) 

 
Figure 5.23 Average assigned customer per 

traveling vehicle 

 
Figure 5.24 Average onboard customer 

per traveling vehicle 

 



100 

 

weight 0), corresponding to the case where idling vehicles are not assigned for rebalancing 

trips. With the decreasing fuel weight, more idling vehicles are assigned for rebalancing 

trips as shown in Figure 5.29, thus reducing the KL divergence between idling fleet 

location distribution and origin distribution (Figure 5.28) and increasing the ratio of 

customers served within travel time constraints (Figure 5.27). However, the shareability 

and fleet fuel efficiency would first decrease with the fuel weight due to the balanced fleet 

and then increase due to the additional rebalancing trips as shown in Figure 5.21, Figure 

5.23 and Figure 5.24. With more than 90% of customers served within their travel time 

constraints, the fuel consumed per customer can be reduced by 5% compared with the case 

when no rebalance trip is assigned. The wait time of customers first decreases with the 

 
Figure 5.25 Average wait time  

 
Figure 5.26 Average delay time 

 
Figure 5.27 Customer served within travel 

time constraints 

 
Figure 5.28 KL divergence between idling 

fleet location distribution and origin 

distribution 

 
Figure 5.29 Number of MOD vehicles traveling on road 
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decrease of fuel weight but doesn’t show significant changes when the fuel weight is 

smaller than 0.1. The results indicate that if the fleet size can be accurately estimated, then 

there exists an optimal fuel weight that can minimize the fleet fuel consumption as well as 

customers‘ wait time as shown in the existing works where shared rides are not considered 

[68, 69, 151].  

5.5 Conclusion and Future Works 

We proposed a road network partition algorithm using the Multidimensional 

Scaling (MDS) method. The partition is used to discretize the travel demand distribution 

and select idling rebalancing fleet destinations. An idling fleet rebalancing algorithm is 

developed using the partition results. With the idling fleet rebalanced according to the trip 

origin distribution, the expected wait time of customers is reduced, and more customers 

can be served within the travel time constraints. However, the increased empty vehicle 

traveling also could increase the total fuel consumption of the fleet with a small value of 

fuel consumption weight.  
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CHAPTER 6 

Conclusions and Future Works 

6.1 Conclusions  

 The objective of this research is to optimize fuel consumption of connected 

automated vehicle in an urban environment, including speed trajectory optimization at 

intersections, data-drive fuel consumption model development, eco-routing algorithm, and 

eco-MOD (mobility-on-demand) fleet assignment.  Chapter 2 introduced a speed trajectory 

optimization algorithm at signalized intersections taken the additional cost due to turning 

at intersections into consideration. Chapter 3 introduced a mesoscopic fuel consumption 

model, and an eco-routing algorithm was developed using the model. Chapter 4 integrated 

the eco-routing algorithm with a MOD with ride-sharing trip assignment framework.  The 

benefits from trip assignment level and routing strategy level are discussed. Chapter 5 

introduced a traffic network partitioning algorithm minimizing the expected waiting time.  

Also, an idling fleet rebalancing algorithm using the partitioned network is developed.  

The contributions include 

 A speed trajectory optimization algorithm at signalized intersections with speed and 

acceleration limit due to left and the right turn is developed. The algorithm can be 

extended to multiple intersections and multiple vehicles. 

 A data-driven fuel consumption model based on real-world driving data and 

Autonomie fuel consumption simulation turn is developed and analysis of trade-off 

between travel time and fuel consumption of different routing strategies including 

fastest route, shortest distance route, eco-route, and travel time constrained eco-

route is performed.  

 A framework for eco-MOD combining eco-routing strategy and MOD fleet 

assignment with ride-sharing is developed, and extensive simulation studies are 
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performed, showing the importance to include fuel consumption in the assignment 

algorithm to avoid increment in emission.  

 An integrated MOD control/simulation framework calibrated using SPMD 

database being able to recreate Ann Arbor evening rush hour average speed. SUMO 

is used as the traffic simulator, and Matlab is used as the fleet and demand 

management component for MOD fleet assignment strategy development and 

validation 

 A traffic network partition algorithm is developed to minimize the expected in-

cluster travel time for MOD idling fleet rebalancing. 

 An idling fleet rebalancing algorithm for MOD fleet to better meet future travel 

demands using the traffic network partition results 

6.2 Future Works 

This dissertation has investigated fuel-saving potentials of connected automated 

vehicle technologies, from microscopic speed trajectory optimization to macroscopic 

routing and mobility-on-demand fleet optimization. We showed that the fuel-saving effects 

of MOD fleet are promising when the fleet is operated properly, which requires further 

investigations to improve the system performance. The following are several potential 

directions for future study: 

Link-level fuel consumption model should be further developed to use real-time 

measurement to reduce model parameter uncertainties. The model developed in Chapter 3 

is under the assumption that a representative vehicle is used. However, when being applied 

for routing of MOD fleet or delivery trucks, the powertrain efficiency and characteristics 

can vary significantly. In addition, for trucks, the vehicle load can vary considerably.  Also, 

different numbers of onboard passengers and weather conditions can affect the fuel 

consumption of the MOD fleet vehicles. Currently, the model is developed under the 

Bayesian framework. Thus, instead of point estimation of the parameters, the posterior 

distributions are obtained. Given the posterior distributions of parameters, the fuel 

consumption is estimated as conditional expectation. Thus, given real-time measurements 
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of fuel consumption, the posterior of parameters can be updated using inference algorithms 

such as MCMC [129], to address model uncertainties in route optimization.  

Traffic simulator should be further developed to improve accuracy. The traffic 

simulator developed can recreate average speed in Ann Arbor. However, there is a 

significant error in the flow and speed estimation in downtown Ann Arbor. The limitations 

are due to the approximations made during the model calibration process as well as data 

availability. The traffic simulator developed for MOD performance evaluation assumes all 

vehicles belonging to the same class, and route choice is optimized to recreate the average 

speed in Ann Arbor road network. Thus the influence of bus stops, pedestrian traffic, and 

traffic signals on traffic flow is not captured by the model. Namely, the simulator can be 

extended to be multi-modal to improve its accuracy.  Since only floating vehicle 

measurement is available from the SPMD database, the traffic flow is estimated using a 

simplified data-driven polynomial model of the fundamental diagram using data from 

SUMO. Thus, the model performance can be further improved by combining other data 

sources to get the flow rate measurement for multi-modal transportation. More 

sophisticated link model also has the potential to improve flow estimation.  

MOD fleet assignment algorithm should be further developed to consider expected 

future cost function. The fleet assignment algorithm shows great potential in improving 

fleet operation efficiency and reducing fuel consumption. However, the assignment 

strategy only considers the travel demand generated at the current time. The expected 

future travel demand is addressed by assigning idling fleet to rebalance trips according to 

the trip origin distribution.  One potential approach to account for expected future demands 

in the assignment stage by modeling the system as a Markov Decision Process (MDP), and 

the main difficulty is the curse of dimensionality. Recently, model-free MDP and value 

approximation shows great potential in controlling high dimensional system [152–155], 

which could be applied to MOD fleet assignment for expected value function estimation.  
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