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3.2 Figure a). While in reality the areas A, B and C are spatially sep-
arated, for the outside observer they have the same position on the
sky. The grey ring KK1 represents the area which is equally sepa-
rated from the center of the cluster O. Any galaxy in this ring as
well as on the sphere KK1 will be in the grey band R⊥ on the 3-
dimensional phase space on figure 3.3a. All the galaxies in the cone
which is created by circling the line of sight AC around the ring KK1

(we call this cone as ACKK1 cone in the text) will be in the grey
band R⊥ on figure 3.3. Figure b). Arrows represent velocities of in-
dividual galaxies. Black (red) arrows are the galaxies with velocity
directions not aligned (aligned) with the line of sight AC. Any vector
velocity of a galaxy (see formula 3.9) is a sum of tangential, radial
(green arrows in the box C) and azimuthal (not presented due to
direction pointing in/out of the plane of the figure) velocity compo-
nents. The magnitude of the line of sight velocity (blue arrow in the
box C) can be expressed in term of tangential and radial components
(see equation 3.10). The angle ε between the line of sight AC and the
line which connects the center of the cluster O and the observer while
represented big is small in reality due to the distance from observer
to the cluster much larger in comparison to the size of a cluster. The
distances between different points: OC = rC , OB = rB, OK = R⊥
and OA = rA. OK ⊥ AC. . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Figure a). Phase space, i.e. peculiar velocity [km/s] vs. distance r
[Mpc] away from the center of the cluster. vesc(r) line is a measure
of gravitational potential (see formula 3.2). Grey bands rB, rA and
rC represent areas on the phase space where galaxies from dark small
ellipses (figure 3.2a) and boxes (figure 3.2b) B, A and C would be
observed. Box Q represents area, where all the galaxies with vesc(R⊥)
from the thin shell with radius R⊥ and center O would be observed
on the phase space. Figure b). Observed phase space, i.e. observed
peculiar velocity [km/s] vs. radial distance r⊥ [Mpc] away from the
center of the cluster. vlos,esc(r⊥) lines are the maximum observed
velocities which can be obtained by taking partial derivative (3.12).
Similarly, blue lines on figure 3.1 are observed maximum velocities
in the real cluster Abell 697. The grey band R⊥ represents where
galaxies from the ellipses (figure 3.2a) and the boxes (figure 3.2b) B,
A and C would be observed on the observed phase space. Note, while
phase space on the figure a) is always positive (presenting absolute
value of velocity relatively to the center of the cluster), observed
phase space can be negative as well due to galaxy velocities being
able to point towards and away from the observer. . . . . . . . . . 71
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3.4 The projected escape velocity (colored curves) of a galaxy moving at
the full 3D escape speed versus a 3D (black curves) location in its
orbit. γ ranges from 0.1, 1 and 100 which corresponds to tangential
(lowest curve), isotropic (middle curve), and radial (upper curve) mo-
tion. The lines-of-sight range from 0.01, 0.5, to 1.5Mpc corresponding
to the blue, green, and red curves. The vertical lines represent the
two maxima of each set of colored curves. We can conclude that the
highest velocity galaxies observed at the core have r⊥ = r3D and vlos
= v3D = vesc when their motion is either purely radial or purely tan-
gential. In the virial region, only galaxies on tangential orbits have
vlos = v3D = vesc and it only occurs when r⊥ = r3D. . . . . . . . . . 76

3.5 A representation of mock phase space showing the observed maximum
line-of-sight velocity versus the projected radius for galaxies moving
at the 3D escape speed. This is not a realistic system, since all
galaxies have a fixed γ(r) which can then be mapped to the velocity
anisotropy parameter βesc. In the case where all galaxies are on tan-
gential orbits β = −99, the projected maximum velocities will popu-
late the 3D escape velocity profile. Galaxies with radial orbits never
populate vesc(r), except in the inner core. Galaxies with “isotropic”
motion populate the region around vesc/

√
2, which is about the same

level of suppression observed in simulations and in real data. . . . . 78

3.6 Schematic description of the projected view of the galaxy G by ob-
server A. xyz coordinate system is chosen, so that an elliptical orbit
of the galaxy G is placed on xy plane. A1 is the projected position
of the observer on xz plane, O is the center of coordinate system xyz
and the center of the cluster, which is in the focal point of the ellip-
tical orbit of the galaxy G. θ is the angle between the line OG and
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ABSTRACT

Galaxy clusters are the biggest gravitationally bound objects in the Universe with

various properties which allow us to test gravitational and cosmological models. One

such way of testing theoretical models is by directly measuring density profiles of

different matter components (i.e. weak lensing and X-ray provide information about

baryon and dark matter mass distributions). A recent version of Emergent Gravity

(EG) (Verlinde, 2017) predicts a specific connection between baryonic and dark mat-

ter which can be directly tested using galaxy clusters. By using a sample of 23 galaxy

clusters, we find that the EG predictions (based on no dark matter) are acceptable fits

only near the virial radius. In the cores and in the outskirts, the mass profile shape

differences allow us to rule out EG at > 5σ. However, when we account for systematic

uncertainties in the observed weak-lensing and X-ray profiles, we conclude that we

cannot formally rule our EG as an alternative to dark matter on the cluster scale and

that we require better constraints on the weak-lensing and gas mass profile shapes

in the region 0.3 ≤ r/r200 ≤ 1. We also show that EG itself allows flexibility in its

predictions, which can allow for good agreement between the observations and the pre-

dictions. The second way, which is address in current manuscript, to probe theory is

based on escape velocity profiles of galaxy clusters, which has been shown to be a com-

petitive probe of cosmology in an accelerating universe. Projection onto the sky is a

dominant systematic uncertainty for statistical inference, since line-of-sight projection

of the galaxy positions and velocities can suppress the underlying 3D escape-velocity

edge. In this work, we develop the approach based on idea of creating N galaxies with

positions and velocities on Keplerian orbits, given richness and the line-of-sight ve-

xxii



locity dispersion. We then compare the analytical escape edge to those from N-body

simulations. We show that given high enough sampling, the 3D escape velocity edge

is in fact observable without systematic bias or suppression with < 1% accuracy over

the range 0 ≤ r/r200 ≤ 1. We show that the approach model the amount of the edge

suppression (Zv) with ∼ 2% accuracy and ∼ 5% precision for massive (> 1014M�)

systems over the range 0.4 ≤ r/r200 ≤ 1. We show that the numerically modeled

suppression is independent of velocity anisotropy over the range −2.5 ≤ β ≤ 0.5.

Finally, we show that suppression is mass and cosmology independent and can be

successfully modeled by inverse power-law Zv = 1 + (N0/N)λ with best-fit param-

eters N0 = 14.205, λ = 0.467 (the bottom error bar line: N0 = 3.213, λ = 0.392,

the top error bar line: N0 = 35.822, λ = 0.454). We conclude that the 3D clus-

ter escape velocity profile can be inferred from projected phase-space data without

knowledge of cosmology or the use of simulations. We applied this suppression func-

tion to test cosmology and our preliminary results produced a tight constraints on

cosmological parameters. By statistically analyzing the set of 38 galaxy clusters,

we were able to constraint Ωm,0 = 0.325
+0.014(stat)+0.003(sys)
−0.021(stat)−0.001(sys) and the Hubble constant

h0 = 0.733
+0.007(stat)+0.035(sys)
−0.006(stat)−0.029(sys) in the framework of flat universe and fixed equation of

state of dark energy (w = −1). The systematic error budget includes ±5% uncer-

tainties on the weak lensing mass calibration and ±5% uncertainties in the density

model differences between the NFW and the Einasto functions. This result is in a

good agreement with other probes, while in general favor CMB observations of Ωm,0

by Planck Collaboration et al. (2018) and h0 by using Cepheids (Riess et al., 2019).
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CHAPTER I

Introduction

The general perception of escaping gravitational potential of a massive body such

our Earth or stars, which is familiar to everyone either from physics textbooks or

from sci-fi movies, is that one needs to have high enough velocity, so he or she has

kinetic energy higher than potential energy due to the Earth’s or star’s gravitational

field. At the same time, it was shown that Universe expands with acceleration (Riess

et al., 1998), which can be interpreted as existence of effective gravitational pull.

This effect helps any body to escape massive objects or, in other words, reduces

the speed one needs to have to leave the state of gravitational bounding with the

massive object. However, this effect is negligible in a vicinity of planets and stars and

starts to be noticeable only at very large, megaparsecs (Mpc), scale. Additionally, if

at some point the gravitational potential created by the massive objects falls under

some upper limit, it starts to be smaller than gravitational pull due to acceleration

expansion and any object above this threshold is not gravitationally bound to the

massive object. This mechanism effectively creates a limit of how big massive objects

can be. In general, the most massive and the biggest gravitationally bound objects

of the Universe are called galaxy clusters. As we have just seen, these objects exhibit

the highest effect from cosmological background on their gravitational field out of

all massive objects in the Universe and that makes galaxy clusters to be one of the

1



most sensitive tools of probing cosmology by analyzing their gravitational field and

potential.

1.1 Basic cosmology

The whole cosmology is based upon Einstein’s equation,

Rµν −
1

2
gµνR = 8πGTµν . (1.1)

The second basic idea is introduction of homogeneous and isotropic metric of our

Universe (FRLW metric),

gµνdx
µdxν = −dt2 + a2(t)

[ dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.2)

where k is the curvature parameter: 0 - flat, −1 - open and +1 - closed Universes

correspondingly. a(t) is a scalar factor - function of time which describes relative

expansion of the Universe. This function could be rewritten in terms of the redshift:

z = a0
a(t)

+ 1, where a0 is the present value of the scale factor.

The conservation of the energy-momentum tensor (Tµν = (ρ + p)uµuν − pgµν) in

FRLW metric implies

ρ̇+ 3H(ρ+ p) = 0, (1.3)

where we introduced Hubble parameter H = ȧ
a
, ρ energy density and p isotropic

pressure.

Using (1.2), Einstein’s equation (1.1) implies the first and the second Friedmann

equations

H2 =
8πG

3
ρ− k

a2
(1.4)

ä

a
= −4πG

3
(ρ+ 3p) (1.5)
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The total energy-density of the Universe consists of contributions from ordinary

baryonic matter ρb, dark matter (DM) ρDM , radiation ρr, curvature ρk and dark

energy (DE) ρΛ

ρtot = ρb + ρDM + ρr + ρk + ρΛ. (1.6)

Each of these contribution are the functions of the scale factor a(t) and all of them

could be written in common form

ρ ∝ a−3(1+ω), (1.7)

where ω = p
ρ

is the equation of state (EOS) and it is different for different types of

energy-densities, i.e. 1
3

for radiation, 0 for baryonic matter and DM, −1
3

for curvature

and −1 for DE. We can rewrite the total energy-density (1.6)

ρtot = (ρb,0 + ρDM,0)
(a0

a

)3

+ ρr,0

(a0

a

)4

+ ρk,0

(a0

a

)2

+ ρΛ,0, (1.8)

where energy-densities with the subscript 0 correspond to the present values of energy-

densities.

The final step is to introduce density parameters

Ωi =
ρi,0
ρc,0

, (1.9)

where ρc,0 =
3H2

0

8πG
∼ (10−12Gev)4 is critical energy-density today - the total energy-

density of the flat Universe, i.e.
∑
i

Ωi = 1 if Ωk ≈ 0.

Throughout current work we treat curvature energy-density of being equal to

zero Ωk ≈ 0 and we neglect radiation contribution as it is small at late stages of

the evolution of the Universe (Planck Collaboration et al., 2018), which allows us to
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express first Friedmann equation through energy-density parameters

H2(z) = H2
0

(
Ωm(1 + z)3 + (1− Ωm)(1 + z)−3(1+ω)

)
, (1.10)

where ω = −1 for the rest of the work unless explicitly mentioned otherwise and

ΩΛ = 1− Ωm, where the total energy-density of matter is Ωm = Ωb + ΩDM .

Throughout this work, we extensively use quantities R200 and M200 which are the

radius and the mass of the clusters at the point when the density drops to 200ρc,z,

where ρc,z = 3H2(z)
8πG

is the critical density of the universe at redshift z. The connection

between R200 and M200 is by definition the following: M200 = 4π
3

(200ρc,z)R
3
200.

1.2 Cosmological motivation

Dark matter (DM) and dark energy (DE) are the two main component of the

energy-density of the Universe which together account for ∼ 95% of it (Planck Col-

laboration et al., 2018).

The first ever introduction of DE was done by Einstein in 1917. After his discovery

of General Relativity (GR), Einstein introduced cosmological constant Λ in order to

have static Universe. Unfortunately for him, in 1928 E. Hubble discovered that our

Universe is expanding and Einstein admitted that Λ was the biggest blinder of his

lifetime. However, Riess et al. (1998) and Perlmutter et al. (1999) discovered using

Supernova Type Ia (SN Ia) that our Universe expands with acceleration and one

of possible explanations of this phenomena could be introduction of cosmological

constant into Einstein’s equation. In general, the source of this acceleration is called

DE and the existence of this phenomena was also proved using Cosmic Microwave

Background (CMB) and Baryon Acoustic Oscillations (BAO). A broad introduction

to these cosmological probes is presented in the next section 1.3.

Jacobus Kapteyn was the first one who by using stellar velocities suggested ex-
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istence of dark matter (DM) (Kapteyn, 1922). The first to observe signs of dark

matter on a galaxy clusters scale was Fritz Zwicky (Zwicky , 1933), who introduced

it to explain deviations from virial theorem in observations of Coma cluster. Later

works only increased confidence of DM existence as it was needed to explain the de-

viation from Newtonian dynamics for galaxy rotation curves (Rubin and Ford , 1970).

In addition to requiring need for DE, cosmological probes SNIa, CMB and BAO all

support DM existence as well as observations of individual systems such as Bullet

Cluster (Clowe et al., 2006) and analyzing gravitational lensing of galaxy clusters

(Natarajan et al., 2017).

As we can see, there are plenty of probes which imply that DE and DM exist

and expands with acceleration (Riess et al., 1998; Perlmutter et al., 1999; Amanullah

et al., 2010; Betoule et al., 2014b; Ade et al., 2016; Planck Collaboration et al., 2018;

Hinshaw et al., 2013). However, we still do not know the origin of dark matter

and dark energy, neither the theory of these phenomena. Dark matter observations

mostly favor particle models such weakly interacting massive particles (WIMPs) and

axions (we refer reader to Freese (2017) for a review of this topic), while DE require

some extension to general relativity either simple explanation based on the idea of

cosmological constant or non-trivial theories, which involve additional tensor fields or

change Einstein’s equation adding terms with infinite number of derivatives or extra

dimensions (for a briefly review of a few possible theoretical ways to explain DE see

section 1.4). Emergent Gravity (EG) is one of the recent theories that tightly connects

both of these ”dark” components (Verlinde, 2011, 2017). This theory is quite unique

as it does not modify Einstein’s equation directly, but rather describes gravity as an

emergent phenomenon from a spacetime quantum entanglement. EG predicts direct

connection between DM and baryonic matter

Mb(r) =
6

a0r

r∫
0

GM2
DM(r′)

r′2
dr′, (1.11)
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where M(r) in the total mass inside some radius r, index b corresponds to baryons and

index DM to dark matter. For a broader introduction to the EG model see chapter

II.

1.3 Cosmological probes of dark energy

This work focuses primarily on the utilization of galaxy clusters to test gravita-

tional and cosmological models. In addition to galaxy clusters, there are various type

of cosmological evidences of DE and DM. In this section we are going to discuss main

of them, which are SN Ia, CMB and BAO. Moreover, we will briefly talk about pie

picture of the Universe.

1.3.1 Standard candles - SN Ia

The first ever evidence of DE was discovered in works Riess et al. (1998); Perl-

mutter et al. (1999). They discovered that the luminosity of the SN Ia are lower than

it should be if the Universe would be decelerating and would not have contribution

from DE.

The SN Ia are standard candles, i.e. objects which have the same luminosity.

Nowadays, there are various projects which have discovered hundreds of SN Ia. The

biggest samples are Union 2 (Amanullah et al., 2010) with 557 SNIa by the Supernova

Cosmology Project and JLA sample Betoule et al. (2014b) with 740 SN Ia by SDSS-II

and SNLS collaborations.

In order to use SN Ia, their distance modulus µ is employed on assumption that

supernova with identical color, lightcurve shape and galactic environment have on

average the same intrinsic luminosity for all redshifts

µ = m−M + αX − γY, (1.12)
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where m is the observed peak magnitude in the restframe B band, X describes the

time stretching of light curves, Y describes the color at the maximum brightness and

M , α, γ are nuisance parameters in the distance estimates.

From theoretical point of view the luminosity distance is related to the difference

of apparent and absolute magnitude M

µ = m−M = 5 log10(dL) + 25, (1.13)

where dL is measured luminosity distance in megaparsecs

dL(z) =
1

H0

(1 + z)r(z), (1.14)

where the ”comoving transverse distance” in the flat Universe is

r(z) =

z∫
0

H0

H(z′)
dz′. (1.15)

It could be seen that our Universe expands with acceleration and we can find dif-

ferent cosmological parameters comparing sample data from Amanullah et al. (2010);

Betoule et al. (2014b) and theoretical models from equations (1.12), (1.13). This

comparison is represented on the fig. 1.1.

1.3.2 CMB

The CMB tells us how the Universe looked like at the redshift of decoupling

zd ≈ 1100. By looking at the CMB we can see the history of the Universe from the

decoupling epoch to the present one. Before the decoupling, baryons were strongly

coupled to the photons. However, after recombination baryons started to be free from

scattering with photons and they stayed at a fixed radius. This radius is called sound

horizon and it determines the first acoustic peak of the CMB (see fig. (1.2)). The
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Figure 1.1: Top left : the distance modulus redshift relation of the best-fit ΛCDM
cosmology for a fixed H0 = 70 km s−1Mpc−1 is shown as the black line.
Bottom left : Residuals from the best fit ΛCDM cosmology as a function
of redshift. Top and bottom right : best-fit ΛCDM cosmology and their
residuals. Various lines correspond to different sets of parameters. (Left
figure is adopted from Betoule et al. (2014b), right figure from Perlmutter
et al. (1999)).

sound horizon can be observed directly. This radius is predicted from the theory and

it could be served as a standard ruler by measuring the angular scale of the acoustic

peak.

The best measurement of the angular power spectrum of the CMB (fig. (1.2))

was done by WMAP collaboration (Hinshaw et al., 2013) and Plank collaboration

(Planck Collaboration et al., 2018).

Moreover, we can use Sunyaev-Zel’dovich (SZ) effect as the standard ruler (Cooray

et al., 2001). The SZ effect is the effect of distortion CMB photons by scattering with

the high energy electrons from galaxy clusters.

1.3.3 BAO

As was discussed in the previous subsection, the baryons stayed at the sound

horizon distance after decoupling while DM stayed at the center of overdensity. They

attracted matter and later this led to the formation of galaxies. From this argument,

we expect that some galaxies should be separated by the specific distance, i.e. the
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Figure 1.2: The Plank 2015 [Ade et al. (2016)] temperature power spectrum. The
best-fit base ΛCDM theoretical spectrum fitted to the Plank TT+lowP
likelihood is plotted in the upper panel. Residuals with respect to this
model are shown in the lower panel. The error bars show ±1σ uncertain-
ties (The figure is adopted from Plank 2015 [Ade et al. (2016)]).

sound horizon. This phenomena is called BAO signal.

In order to measure the sound horizon, it is enough to measure only three-

dimensional position of each galaxy. Since one do not need to care about galaxy

images and magnitudes, it is one of the rare methods of probing DE which is clear

from astronomical uncertainties.

By using two-point correlation function, we can analyze the data. The main data

set is provided by the Sloan Digital Sky Survey (SDSS) (Blanton et al., 2017). We

can actually observe the bump in the observations of BAO. Both CMB and BAO

imply that the sound horizon is approximately 150 Mpc.

1.3.4 Pie chart of the Universe and the equation of state (EOS)

In addition to three discussed above, there are other types of observational probes

such as galaxy clusters, weak gravitational lensing, gamma ray bursts (GRB), etc.

All of them imply the fact that our Universe expands with acceleration. Moreover,

9



Figure 1.3: Pie chart shows relative
energy-densities of differ-
ent constituents of the
Universe.

Figure 1.4: Ωm - ΩΛ fit of CMB,
BAO and Union 2 with
the contours constraint
68.3%, 95.5% and 99.7%
regions. (The figure is
adopted from Amanullah
et al. (2010).)

DE component plays a huge role since its contribution to the total energy-density is

the biggest. Energy-density of DE is more than twice higher than the matter one and

orders of magnitude higher than energy-densities of radiation and curvature. One of

the most informative ways to show this fact is to use pie chart of the Universe (1.3).

More accurate results of the combine fit (Ade et al., 2016) gives following numbers:

ΩΛ = 0.6911± 0.0062, Ωm = 0.3089± 0.0062 and H0 = 67.74± 0.46 km/s/Mpc. The

results of fitting Union 2 (Amanullah et al., 2010) together with CMB and BAO

presented at the fig. 1.4.

One of the main characteristics of DE is its EOS

ω =
p

ρ
(1.16)

We can expand EOS

ω = ω0 + (1− a)ωa (1.17)
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Figure 1.5: Samples from the distribution of the DE parameters ω0 and ωa using Plank
TT+lowP+BAO+JLA data, colour-coded by the value of the Hubble
parameter H0. Contours show the corresponding 68% and 95% limits.
(The figure is adopted from Ade et al. (2016)).

where ω0 corresponds to the present value of the EOS of DE, a is a scale factor and

ωa is a first term in expansion in time of the EOS.

EOS of cosmological constant (CC) is equal to ω0 = −1 and ωa = 0 . The

observational results of Plank 2015 (Ade et al., 2016) are presented on the fig. (1.5).

These results favor ω0 ≈ −1 and ωa ≈ 0.

Frieman et al. (2008) provides a broad review on the topic of DE probes.

1.4 Alternative theories of gravity

1.4.1 Cosmological constant

The most easy way to explain DE is to use cosmological constant (CC), the same

idea which was originally proposed by Einstein. CC modifies Einstein’s equation (1.1)

Rµν −
1

2
gµνR = 8πGTµν + Λgµν . (1.18)
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Therefore, the Friedmann equations (1.4), (1.5) must be also changed by intro-

duction new constant term Λ
3

on the right hand side of both equations.

In general, CC is not only the easiest possible model of DE, but also it fits obser-

vational data very nicely (fig. 1.1 and 1.4). Unfortunately, there are two problems

related to CC: fine-tuning problem (1.4.1.1) and coincidence problem (1.4.1.2).

1.4.1.1 Cosmological constant problem

CC problem arises from treating CC as a vacuum energy. We can look at our

quantum vacuum field as a set of harmonic oscillators and each of them has the lowest

energy state. Since we trust our theory only up to some scale which is characterized

by the Plank mass Mpl, we could get energy-density of the vacuum

ρΛ ∼ ~M4
pl ∼ 1072 Gev4. (1.19)

From observations we know that

ρc,obs ∼ 10−48 Gev4. (1.20)

Comparing these two number we see that theoretical value is approximately 120

orders of magnitude higher than the observational one. There were introduced many

different explanation to this problem, but non of them is successful enough to clearly

explain this discrepancy.

1.4.1.2 Cosmic coincidence problem

If we look at the evolution of energy-densities of different constituents (fig. (1.6)

we can see that energy-densities of matter and DE are approximately equal today.

Moreover, the transmission to acceleration expansion (the intersection of red and blue

dashed lines) happens in a very narrow region and it happened almost ”yesterday”
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on a cosmological scale.

In order to find the exact redshift of transmission from deceleration to acceleration,

we write Friedmann equation (1.4) through the density parameters (1.9)

( ȧ
a

)2

=
8πG

3
ρc,0

(
Ωm,0

(a0

a

)3

+ ΩΛ,0

(a0

a

)3(1+ω))
. (1.21)

Imposing ω → −1, we find 2nd Friedmann equation (1.5) in this case

ä =
4πG

3
ρc,0a

(
2ΩΛ,0 − Ωm,0

(a0

a

)3)
. (1.22)

Applying latest observational results of Plank 2015 [Ade et al. (2016)], we get

redshift of this transmission

zacc =
(2ΩΛ,0

Ωm,0

)1/3

− 1 ≈ 0.63. (1.23)

Cosmic coincidence problem states following question: why are we so lucky to

life in such a unique time? Why did the transition to acceleration is happening now

and not at different time? This is a problem, because if this transition happened

earlier there would be not enough time to form the gravitationally bounded objects

like stars, galaxies etc.

Of course, one of the possible solutions could be anthropic principle. However,

a lot of scientists do not accept this idea as a valid explanation. For review about

cosmological constant we refer reader to Carroll (2001); Martin (2012).

1.4.2 Modified gravity theories

The Lovelock’s theorem (Lovelock , 1971; Lovelock , 1972) claims that there are

limited amount of ways to modify Einstein’s equation (1.1). We are going to present

the list of the types of these modifications with the examples of the theories.
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Figure 1.6: Density parameters Ωi (1.9) as a function of scale factor are plotted. Blue
dashed line corresponds to DE, red dashed (with small increments) line
corresponds to matter and black line to radiation. a0 = 1 is chosen as a
present value of the scale factor.

1.4.2.1 Extra fields

In addition to the ordinary tensor field which is metric, we can add extra fields. By

doing that, we modify the right hand side of the Einstein’s equation (1.1). We can call

these models as modified matter models. The main idea is that energy-momentum

tensor has some additional matter component which creates accelerated expansion,

i.e. it has negative pressure.

1). Scalar-Tensor : Quintessence; Brans-Dicke theory; Horndeski’s theory; coupled

DE and matter; unified DE and matter - Chaplygin gas.

2). Vector-Tensor or Einstein-Æther theories : Milgrom’s Modified Dynamics

(MOND) (Milgrom, 1983).

3). Bimetric theories : Drummond’s theory; Massive gravity (Hassan and Rosen,

2012a) - assumes additional non-dynamical tensor field; Bigravity (Hassan and Rosen,
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Figure 1.7: Generic scalar potential V (φ). The scalar field rolls down the potential
eventually settling at its minimum, which corresponds to the vacuum.
The energy associated with the vacuum can be positive, negative, or zero.
(Adopted from Frieman et al. (2008).)

2012b) - assumes additional dynamical tensor field which works as extra metric; Multi-

metric gravity; Bimetric MOND (Milgrom, 2009).

4). Tensor-Vector-Scalar theories : TeVeS; Scalar-Vector-Tensor theory of gravity

(STVG).

5). Other theories : the Einstein-Cartan-Sciama-Kibble (ECSK) theory - equiva-

lent to GR, but at least one matter field has intrinsic spin.

Now, we are going to make a bit more precise look at a couple extra field theories.

Quintessence. The main idea of the quintessence model is that DE has the form

of a scalar field which is going slowly to the potential minimum (fig. 1.7). The

Einstein-Hilbert action in this case

S =

∫
d4x
√−g

(
− 1

16πG
R +

1

2
gµν∂µφ∂νφ− V (φ)

)
+ SM , (1.24)

where SM denotes usual matter action and φ is a scalar field.
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Equation of the evolution of the φ-field

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.25)

The pressure and energy-density of the φ-field are

ρφ =
1

2
φ̇2 + V (φ) (1.26)

pφ =
1

2
φ̇2 − V (φ) (1.27)

Using definition of the EOS (1.16), we can write

ωφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(1.28)

In the case when the kinetic term 1
2
φ̇2 is much smaller than the potential energy

term V (φ), the EOS ω is close to −1 and it behave like CC and it agrees with

observational data (see fig. 1.5).

Chaplygin gas. We can assume that the energy-density of the background fluid

changes with time. This fluid is called Chaplygin gas and the relation between pres-

sure and energy-density has the form

p = − A
ρα

(1.29)

where A is a positive constant. Using conservation equation (1.3), we get

p(t) =
(
A+

B

a3(1+α)

) 1
1+α

. (1.30)

In the early epoch, i.e. when scale factor is small, it behaves like ρ ∝ a−3 and

corresponds to matter dominant Universe. In the late epoch, i.e. for the big scale
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factors, ρ ≈ A
1

a+α = const, which corresponds to the de Sitter Universe. We see that

Chaplygin gas behaves as matter at the early stage and as DE at the late epoch. This

is the reason why we call it unified DE and matter.

1.4.2.2 Higher derivatives

We can modify the left hand side of the Einstein’s equation (1.1). In the previous

section, we were adding extra fields. In this section we are going to modify gravity

itself.

1). Time derivatives : f(R) theories - adding extra Ricci scalars R to the action;

theories with extra Ricci and Riemann curvature tensors RµνR
µν and RµνρλR

µνρλ.

2). Space derivatives : Horava-Lifschitz gravity - space and time are not equivalent

at the high energy limit.

3). Infinite derivatives : occurs in string theory.

4). Galileons : 2nd order in derivatives, but it has non-trivial derivative interaction

term. Scalar field, the galileon, has derivative self-interactions. Graviton and galileon

are coupled only trough matter fields.

f(R) gravity. We are going to briefly review the simplest f(R) gravity and its

cosmological consequences.

In general relativity Lagrangian has the from L =
√−gR, which is changed in

f(R) gravity

L =
√−gf(R). (1.31)

Varying action with respect to metric gµν we can get modified Einstein’s equation

fRRµν −
1

2
fgµν − fR;µν + gµν�fR =

χ

2
Tµν , (1.32)

where subscript R denotes partial derivative with respect to R, χ is a constant and
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” ; ” represents covariant derivative. We can see that this equation is 4th order

in derivatives, but it has special case f(R) = R which reproduces usual Einstein’s

equation (1.1).

It should be noted that f(R) could be conformally transformed into a frame in

which the field equations (1.32) become those of GR with minimally coupled scalar

field. This is the statement of so-called Bicknell’s theorem. Since we saw in (1.4.2.1)

that the EOS is compatible with data, we can conclude that this model as well can

potentially explain DE.

Unfortunately, f(R) gravity does not survive Solar system tests. However, this

problem could be resolved using so-called Chameleon mechanism [Khoury and Welt-

man (2004)]. The idea is that in the presence of other matter fields the scalars can

acquire an effective mass parameter that is environmentally dependent: it hides extra

degrees of freedom where GR works perfectly - dense regions, but it has interesting

behavior in the less dense regions. One of the examples could be the following poten-

tial

Veff = V (φ) + ρeβφ, (1.33)

where the mass of the scalar field is mφ =
d2Veff
dφ2

.

Similar problem appears in the massive gravity and in the bigravity. The solution

to this problem was found by Vainshtein (Vainshtein, 1972) and it is called Vainshtein

mechanism.

1.4.2.3 Higher dimensions

General relativity is based on the assumption that the space and time form 3+1

dimensional manifold. However, usual Riemannian geometry is not restricted just to

these 4 dimensions and we are free to study gravity in higher dimensions. One of the

motivation to do that is supersting theory, which is formulated in 10 dimensions.

1). Kaluza-Klein theories (KK): the basic idea is to formulate GR in 4+1 dimen-
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sions and the one additional dimension is small and compact.

2). The Braneworld paradigm: extra dimensions can be larger than in KK theory

and even infinite.

3). Randall-Sundrum gravity (RS): in the braneworld the bulk (higher dimensional

space-time) is flat. However, in RS gravity the bulk is an anti-de Sitter space.

4). Cardassian model (Freese and Lewis, 2002): introduction of a new energy-

density term into Friedmann equation, which contains only matter and radiation.

5). Dvali-Gabadadze-Porrati gravity (DGP) (Dvali et al., 2000): the model as-

sumes that ordinary 3+1 dimensional space is embedded inside 4+1 dimensional

space. There are two terms in the Einstein-Hilbert action: one of them involves only

4 dimensional space and it dominates at short distances, while the second term is

extended to all the 5 dimensions and it dominates at large scales.

Cardassian model. Cardassian model was proposed by Freese and Lewis (2002).

The main idea is to add an extra energy-density term into Friedmann equation,

which contains only matter and radiation (this term could be explained using extra

dimensions Chung and Freese (2000)). In this case the Universe is flat and matter

dominant. However, this second term dominates at a late stage of the evolution of

the Universe and during its domination epoch, Universe accelerates.

Friedmann equation (1.4) could be rewritten as

H2 = Aρ+Bρn. (1.34)

During domination of the first term, we observe usual stages of the evolution of

the Universe, i.e. radiation dominant epoch and matter dominant epoch. When the

second term starts to dominate we observe accelerated expansion. In order to have

accelerated expansion, the power of the second term must be n < 2/3. It should be

noted that if n < 1/3 the Universe acceleration increases, for n > 1/3 the acceleration
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Figure 1.8: Magnitude-redshift relation. Binned data for SNIa are shown in red. Blue
dashed line corresponds to ΛCDM model with ΩΛ = 0.721, black solid
line describes the best fit power law cosmology, β = 1.52. Left panel is
plotted using the best-fit value of the Hubble parameter for the power-
law cosmology, h0 = 0.69, while right panel is plotted using the best-fit
value of the Hubble parameter for the ΛCDM model, h0 = 0.70. Note
that h0 enters only into data representation, while theoretical curves are
h0-independent here. (Adopted from Dolgov et al. (2014)).

decreases, n = 1/3 - constant acceleration and for n = 2/3 we get term H2 ∝ a−2,

which behaves as curvature term.

1.4.3 Inhomogeneous LTB model

The main idea of the inhomogeneous Lemaitre-Tolman-Bondi (LTB) (Enqvist ,

2008) is that there are inhomogeneities in the distribution of matter on a large scale

→ we live in an underdense region of the Universe and describe its behavior, a faster

expansion compares to the outside, as an apparent cosmic acceleration.

In a homogeneous Universe the expansion rate is a function of time only, but in

an inhomogeneous Universe the expansion rate varies both with time and space.
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1.4.4 Power-law cosmology

On the purely phenomenological basis, we can write power-law model. It is based

upon assumption of power-law dependence of the scale factor as a function of time

a(t) ∝ tβ. (1.35)

By fitting Union 2 (Amanullah et al., 2010), JLA (Betoule et al., 2014b) and BAO,

it was shown by Dolgov et al. (2014) that power-law and ΛCDM are both equally good

fits to the data (fig. 1.8). The best-fit value is β ≈ 1.5, which means that scale factor

behaves as a(t) ∝ t1.5.

Overall, broad range of reviews are available on the topic of alternative theories

of gravity. Clifton et al. (2012) is a great and very complete review about modified

gravity theories. Yoo and Watanabe (2012) is a good review of the basic models of

DE. Reviews about theory of DE: Copeland et al. (2006); Tsujikawa (2011); Tsujikawa

(2010).

1.5 Galaxy clusters as a cosmology probe

Galaxy clusters are one of the most fascinating objects in our Universe. These are

the biggest gravitationally bound objects which contain up to thousands of galaxies

or up to ∼ 1015 stars. While having these huge number of stars, galaxy clusters

mainly consist of intergalactic gas (∼ 10 − 15%) and dark matter (∼ 85 − 90%)

(Planck Collaboration et al., 2013) leaving only ∼ 0.5− 5% to stars (Andreon, 2010)

(the lowest stars contribution is observed in the most massive galaxy clusters with

M200 ≈ 1015M�). Moreover, galaxy clusters can be used as a cosmological and

gravitational probe in addition to other probes such as SNIa, CMB and BAO (see

section 1.3). To start with, we need to be able to describe matter distribution of

galaxy cluster.
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1.5.1 Models of galaxy clusters matter density

Galaxy clusters total density is usually measured by weak lensing and it can be

described by several models. Navarro-Frenk-White (NFW) model (Navarro et al.,

1996, 1997) is the most broadly used

ρNFW =
ρs

r
rs

(1 + r
rs

)2
, (1.36)

where ρs and rs are two parameters of the model and we can define concentration

parameter c200 = r200/rs which describes the overall shapes of the density profiles.

Generally speaking, relationship between M200 and c200 is clearly defined (Diemer and

Kravtsov , 2015). The observed weak lensing data used in this work were taken from

Sereno (2015) who uses the following m-c relationship

c200 = A
( M200

Mpivot

)B
(1 + z)C , (1.37)

where A = 5.71±0.12, B = −0.084±0.006, C = −0.47±0.04,Mpivot = 2×1012M�/h

(Duffy et al., 2008).

The first introduction of the Einasto model was made by Einasto (1965)

ρ(r) = ρ0 exp(−s1/n) (1.38)

where s ≡ r0
r

, r0 is the scale radius, ρ0 is the normalization and n is the power index.

Einasto and NFW are the two models of the total mass of galaxy clusters which are

used throughout this work. Other models include gamma model (Dehnen, 1993) and

the model proposed by Rasia et al. (2004).

It should be noted that weak lensing data provide us with the total mass distri-
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bution, so to find DM mass we need to subtract baryon mass from it

MDM = Mtot −Mb, (1.39)

where Mtot, MDM and Mb are the total mass, the dark matter mass and the baryon

matter mass of a cluster.

X-ray is used as a source of intergalactic gas mass estimation. To describe Mb and

baryon density distribution different types of models which are based on beta model

(Cavaliere and Fusco-Femiano, 1978) are used. It should be noted, that for the heavy

systems used in current work (i.e. M200 ≈ 1015M�), stellar mass contribution is on

the order of 0.5 − 1% (Andreon, 2010), which allows us to safely use X-ray data as

a description of the total baryon mass distribution. However, we do explore stellar

mass contribution effect on our results as an additional source of uncertainty.

1.5.2 Matter density profiles as a gravity probe

One basic way to test some gravity models is to use matter distribution of different

massive components of galaxy clusters. As we have seen, EG is a powerful theory

which predicts direct connection between baryonic and dark matter (1.11), i.e. simply

by knowing baryon mass distribution one can predict DM mass distribution. This

could be directly tested by utilizing baryon matter distribution measured by using

X-ray data (Vikhlinin et al., 2006) and total mass profiles from weak lensing (Sereno

et al., 2016). As we can see on the figure 1.9, while direct measurement of MDM(r)

diverges from EG prediction (i.e. MDM,EG(r)), both results agree at ∼ 0.7− 0.8R200.

More thorough analysis of the EG model based on 23 galaxy clusters is done in chapter

II.
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Figure 1.9: M(r) is the total mass inside spherical shell with radius r. Baryonic
(blue), DM (black solid) and DM predicted by EG model (see formula
1.11) based on baryonic mass distribution Mbaryons(r) (black dashed).
Vertical dot-dashed line corresponds to r = R200. It could be seen that
MDM(r) diverges from MDM,EG(r) at all radii except r ∼ 0.7− 0.8R200.

1.5.3 Models of gravitational potential

In addition to the static test of gravity using matter distribution only, we can use

dynamical properties of galaxy clusters. Poisson equation

∇2φ = 4πGρ (1.40)

allows us to describe gravitational potential φ by knowing a spherical matter density

distribution ρ. After integration, one finds an explicit expression for φ as a function

of density

φ(r) = −4πG
(1

r

r∫
0

ρ(r′)(r′)2dr′ +

∞∫
r

ρ(r′)r′dr′
)
. (1.41)

Applying Poisson equation to the total mass distribution models, we find potential
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in terms of NFW model (1.36)

φNFW (r) = −g(c200) ln
( r
rs

+ 1
)GM200

r
, (1.42)

where g(c200) =
(

ln(1 + c200)− c200
1+c200

)−1

.

Similarly, Einasto model predicts φ, but in slightly more bulky expression (Retana-

Montenegro et al., 2012)

φ(r) = −GM
r

(
1−

Γ
(

3n, s1/n
)

Γ(3n)
+
sΓ
(

2n, s1/n
)

Γ(3n)

)
. (1.43)

where Γ(a, b) =
∫∞
b
ta−1e−tdt is an incomplete gamma function.

1.5.4 Escape velocity profiles

To escape gravitational potential of a massive body, an object needs to have kinetic

energy (K) higher than potential energy (U). Kinetic energy is K = mv2

2
, where m

is a mass of the object and potential energy is P = mφ. Above statement can be

rewritten as following

mv2
esc

2
= mφ, (1.44)

where vesc is the escape velocity, i.e. the minimum velocity needed for the object to

escape gravitational field of a central massive object

vesc(r) =
√
−2φ(r). (1.45)

Above expression shows that by measuring escape velocity profile vesc(r), one can

directly measure gravitational potential of the object.

Overall, dynamical properties of galaxy clusters can be described by a distribution

of the galaxies on a phase-space diagram, which represents velocities and positions
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Figure 1.10: Projected phase-space diagram of a galaxy cluster. Dots correspond to
positions and velocities of individual galaxies. Dashed black lines corre-
spond to 3-dimensional escape velocity profile (1.45). Solid black lines
correspond to the maximum observed on projected-phase space diagram
velocity profile measured by using interloper removal prescription pro-
posed by Gifford et al. (2013).

of individual galaxies relatively to the center of the cluster (see blue dots on figure

1.10). Individual galaxies which are gravitationally bound to the cluster can not have

velocity higher than vesc(r) and the galaxies with the highest velocities are close to

be able to escape gravitational field of the central object. By directly measuring

on the phase-space diagram velocity profile, which consists of the galaxies with the

highest velocities, one can observe vesc(r), which in turn is a measure of gravitational

potential (1.45). Due to limited number of galaxies per cluster in observational data

catalogs, special procedure of measuring escape velocity profile needs to be applied.

This procedure was developed by Gifford et al. (2013) and it is applied throughout
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Figure 1.11: Left: density profiles of NFW (1.36) (top) and Einasto (1.38) (bottom)
models are used to measure density of simulated halos (Springel et al.,
2005). Partial ratios of densities predicted by these two models and
directly measured from simulations are presented. Models are fitted
for r < R200 and extrapolated at higher radii where they compared with
simulated data. One can notice substantial overestimation of the density
by NFW model, while Einasto model successfully predicts density all the
way up until ∼ 2.5h−1Mpc. Right: vesc from using best-fit parameters of
fitting densities (left figures) in application to NFW (1.42) and Einasto
(1.38) potential models. Partial ratios of vesc predicted by NFW (top)
and Einasto (bottom) with directly measured vesc are plotted. Due to
overestimation of the density at high radii, NFW model significantly
overestimates escape velocity profile all the way starting from the core.
(Adopted from Miller et al. (2016)).

this work.

It should be noted, that NFW density profile (1.36) tends to over estimate mass

in the outskirts of galaxy clusters (see top left figure 1.11), while Einasto model does

not have this issue (Miller et al., 2016). This is due to the shape of the NFW model

(1.36) which is an inverse power-law and it can not fall as quickly as exponential

expression such the one Einasto model uses to correctly describe density profiles of

galaxy clusters at high radii (i.e. r > R200). It should be noted that both of these
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profiles work great in the inner region up to R200 and start to split afterwards, so this

does not produce any negative consequence for those who are working explicitly with

density profiles in the inner regions of galaxy clusters.

However, NFW density overestimation produces highly negative effect on precision

of gravitational potential as it is obtained by integrating density all the way up to

∞ (1.41). This creates significant effect on gravitational potential starting from the

cores of galaxy clusters. Due to correct prediction of the density profile by Einasto

model all the way to ∼ 2.5h−1Mpc (see bottom left figure 1.11), vesc, predicted by

Einasto potential (1.43) using parameters from fitting densities of the simulated halos,

correctly describes the true measured escape velocity profiles (bottom right figure

1.11). For this reason, we mostly utilize the Einasto model throughout this work.

1.5.5 Escape velocity profiles in an expanding universe

Due to the presence of dark energy, simple equation (1.45) should be modified.

To calculate potential from matter density, we solve Poisson equation (1.40), by inte-

grating it up to the point, where potential is zero, i.e. up to∞. However, DE creates

a gravitational pull which effectively decreases gravitational potential. This forces

gravitational potential to be equal to zero at some finite distance, which is called

equilibrium radius

req =
(
− GM

q(z)H2(z)

)1/3

, (1.46)

where deceleration parameter is

q(z) =
1

2
Ωm(z)− ΩΛ(z). (1.47)

28



Figure 1.12: The ratio of escape velocities vesc,true/vesc,new is presented. Index true

corresponds to the cosmology with Ωm = 0.3, h0 = 0.7. Index new corre-
sponds to cosmologies with other Ωm’s: Ωm = 0 (blue), Ωm = 0.6 (green)
and red line corresponds to the case without cosmological contribution,
i.e. vesc in the form (1.45) instead of (1.48) using which the rest of the
cases were calculated.

Behroozi et al. (2013b) applied this idea and derived connection between vesc and

gravitational potential in a cosmological background

vesc =
√
−2[φ(r)− φ(req)]− q(z)H2(z)[r2 − r2

eq]. (1.48)

The effect of cosmology on vesc can be seen on figure 1.12, where we can see

substantial difference in vesc between the case without cosmology (1.45) and with

cosmological contribution (1.48) by focusing on the red line, which already in the

core overpredicts vesc by ∼ 10%.
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1.5.6 Projection effects on phase-space diagram

As we have seen, galaxy clusters provide a direct measure of gravitational poten-

tial through observation of vesc. Moreover, it provides us with opportunity of testing

cosmology. However, we observe galaxies only from one point of view, i.e. effec-

tively having only 2-dimensional information, while we need to know 3-dimensional

gravitational potential to correctly infer vesc and to test cosmology.

In general, to build projected phase-space we need to infer individual galaxy dis-

tances from the center of the cluster (r⊥)

r⊥ = rθ

( 1

1 + zg

c

H0

zg∫
0

dz′

E(z′)

)
, (1.49)

where rθ and r⊥ are angular and radial separations between galaxy and the center of

the cluster, E(z) =
√

ΩΛ + ΩM(1 + z)3. Moreover, we need to know velocities along

line-of-sight (vlos) from redshifts (zg) of galaxies and redshift of the cluster center (zc)

vlos = c
((1 + zg)

2 − 1

(1 + zg)2 + 1
− (1 + zc)

2 − 1

(1 + zc)2 + 1

)
, (1.50)

where c is the speed of light and relativistic Doppler effect formula was used (1 + z =√
1+vlos/c
1−vlos/c

).

These two expressions provide us with all the required information to build pro-

jected phase-space (e.g. blue dots on figure 1.10), from which we measure maximum

observed velocity profile (vlos,esc) by inferring the edge of this phase-space (see solid

black line on figure 1.10) in an identical manner as we infer vesc (i.e. by using in-

terloper removal prescription proposed by Gifford et al. (2013)). However, observed

edge on the projected phase-space diagram is suppressed in comparison with vesc (e.g.

dashed line is significantly lower than solid line on figure 1.10) meaning that we need

to find this suppression to be able to utilize phase-spaces and vesc to test cosmology.

30



One such approach was introduced by Diaferio and Geller (1997); Diaferio (1999).

This approach is based on idea of the suppression being function of anisotropy pa-

rameter

β = 1− σ2
θ

σ2
r

, (1.51)

where σθ and σr are tangential and radial velocity dispersions. Dispersion is

σ2(r) =< v2(r) >, (1.52)

where v(r)’s are velocities of individual galaxies measured with respect to zero (i.e. to

the cluster frame of reference) and the average < · > is over all the galaxies inside a

radial bin at r with a width ∆r that gravitationally bound to the galaxy cluster. The

range of possible values of β(r) is (−∞; 1] with individual cases β(r) = −∞, when

the galaxies inside clusters are on fully circular motion. In the case β(r) = 1 galaxies

follow radial infall and at the intermediate stage when β(r) = 0, galaxy velocities

isotropically distributed.

Diaferio (1999) derives the expression which connects vesc and vlos,esc through

anisotropy parameter β

vlos,esc(r) =
1− β(r)

3− 2β(r)
vesc(r). (1.53)

However, we show in chapter III, that this approach has issues which make it ex-

tremely problematic to apply to the real systems with small number of galaxies.

Instead, we develop and apply a novel approach to infer suppression, which we show

is independent of anisotropy parameter β(r), mass of the cluster and cosmology. This

provides us with necessary information to infer vesc, which subsequently leads to abil-

ity of testing cosmology.
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1.6 Outline of current manuscript

The primary focus of this work is to test cosmological and gravitational models.

In chapter II by utilizing baryon and dark matter density distributions we test Emer-

gent Gravity model, which is a great example of applying galaxy clusters to probe

gravity which was similarly done in Nieuwenhuizen (2017) (where information of only

one non-spherically symmetric cluster was utilized) and Ettori et al. (2019) (where

13 clusters from the narrow small redshifts range (z ≈ 0.047 − 0.091) with recon-

structed hydrostatic mass profiles which have non-negligible hydrostatic bias due to

non-thermal pressure sources were used). Our work collects 23 galaxy clusters, which

helps to address sample variance. Moreover, careful analysis of possible systematic

uncertainties in the observed weak-lensing and X-ray profiles was conducted.

Chapter III focuses on exploring possible effects due to projection, with the main

goal of answering the question of the amount of suppression of escape velocity pro-

file. The novel approach of simulation of galaxy clusters is proposed and carefully

investigated on N-body Millennium simulated data set (Springel et al., 2005). Our

approach is capable of predicting maximum observed velocity profile (vlos,esc) to a

∼ 2% agreement with simulations. Application of this approach allowed us derive

functional form of suppression and show that it is independent of anisotropy (in con-

trast to Diaferio (1999)), of mass of the cluster and cosmology. We show that it is

only a function of number of galaxies and with a high enough sampling we should be

able to reconstructs vesc in projected phase-space as it is suppressed to a < 1% in the

range withing R200.

The first attempt of the application of the functional form of the suppression to

the real data in testing cosmology is presented in the section 4.5. A list of 38 galaxy

clusters with weak lensing data and individual galaxy positions and redshift was

collected. The application of the suppression to the real data helped us to constraint

cosmological parameters Ωm and h0 to a few percent precision. While these results
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are preliminary, they are in agreement with current probes, while favoring Cepheid

observations of Hubble constant (Riess et al., 2019). This is the first to our knowledge

direct utilization of the projected phase-spaces of galaxy clusters in testing cosmology

and placing constraints on cosmological parameters.
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CHAPTER II

Testing Emergent Gravity with mass densities of

galaxy clusters

2.1 Abstract

We use a sample of 23 galaxy clusters to test the predictions of an Emergent

Gravity (EG) (Verlinde, 2017) as an alternative to dark matter. Our sample has

both weak-lensing inferred total mass profiles as well as X-ray inferred baryonic gas

mass profiles. Using nominal assumptions about the weak-lensing and X-ray mass

profiles, we find that the EG predictions (based on no dark matter) are acceptable fits

only near the virial radius. In the cores and in the outskirts, the mass profile shape

differences allow us to confirm previous results that EG can be ruled out at > 5σ.

However, when we account for systematic uncertainties in the observed weak-lensing

and X-ray profiles, we find good agreement for the EG predictions. For instance,

if the weak-lensing total mass profiles are shallow in the core and the X-ray gas

density profiles are steep in the outskirts, EG can predict the observed dark matter

profile from 0.3 ≤ r ≤ 1R200, where R200 is the radius which encloses 200× the

critical density of the Universe. The required X-ray and lensing shapes are within

the current observational systematics-limited errors on cluster profiles. We also show

that EG itself allows flexibility in its predictions, which can allow for good agreement
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between the observations and the predictions. We conclude that we cannot formally

rule our EG as an alternative to dark matter on the cluster scale and that we require

better constraints on the weak-lensing and gas mass profile shapes in the region

0.3 ≤ r ≤ 1R200.

2.2 Introduction

Galaxy clusters provide a unique opportunity to study gravity in the weak-field

regime. They are the only astrophysical objects which provide three simultaneous

measures of gravity. We can observe the dynamical properties of clusters through the

line-of-sight movement of their member galaxies. We can measure their gas content

via the Bremsstrahlung X-ray emission. We can observe the distortion of spacetime

through the shearing of the shapes of background galaxies. In turn, each of these needs

to produce a consistent picture of the underlying gravitational theory. Our standard

cosmological paradigm is based on general relativity (GR) in a de Sitter spacetime

with a positive cosmological constant, where the majority of the gravitating mass is

in a dark form (Frieman et al., 2008). Clusters should be able to test this theory on

a case-by-case basis.

This paper is concerned with one of the biggest mysteries in modern cosmology:

the origin of the dark matter, which was introduced to explain the deviation from

Newtonian dynamics for galaxy rotation curves (Zwicky , 1933; Rubin and Ford , 1970).

Current particle theory favors options such as weakly interacting massive particles,

neutrinos and axions (Freese, 2017). Alternatively, modified Newtonian dynamics

(MOND) has been shown to provide a theoretical explanation of the galaxy rotation

curves (Milgrom, 1983; Milgrom, 2008; Famaey and McGaugh, 2012).

Recently, there has been an advance in the theory of gravity as an emergent prop-

erty of the universe. It was shown by Jacobson (1995b) that general relativity is an

emergent theory and it is possible to derive Einstein’s equations from the concept of
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entropy of black holes and thermodynamic concepts such as temperature, heat and

entropy. The revised emergent gravity (EG) proposal emphasizes the entropy content

of space, which could be due to excitations of the vacuum state that manifest as dark

energy (Verlinde, 2011, 2017). Briefly, this new EG defines the spacetime geometry

as due to the quantum entanglement of structure at the microscopic level. Entropy

then describes the information content of a gravitating system and its amount is re-

flected by the number of microscopic degrees of freedom. In Verlinde (2011), anti-de

Sitter space was used to derive the surface entropic contribution around matter. In

Verlinde (2017), de Sitter spacetime was implemented in the theory which resulted

in an assumed additional bulk volume component to the entropy. This volume con-

tribution grows as the scale-size of a system increases. The excess entropy (over the

surface component) results in a scale dependence for gravity as manifested through

the elastic spacetime, which in turn mimics an apparent dark matter. This apparent

dark matter is a result of the presence of baryonic matter.

Given the observational signature of the gas content as the dominant baryonic

component in clusters, as well as the observational signature of the spacetime metric

through lensing, galaxy clusters provide a rare opportunity to test EG’s predictions.

However, the current model proposed in Verlinde (2017) makes some important sim-

plifying assumptions, such as that objects need to be spherically symmetrical, isolated,

and dynamically “relaxed”. In addition to that, Verlinde (2017) assumes that the

universe is totally dominated by the dark energy which implies that Hubble parame-

ter H(z) is a constant. Working in a small redshift regime is a good approximation

to this assumption as it implies small changes to the Hubble parameter, which makes

it close to being constant, as well as adds negligible corrections to the measurements

due to the small change in the cosmological evolution. The real galaxy clusters which

are used in the current work fit well into these assumptions as we do not include

merging systems in our sample, such as the Bullet cluster, and clusters with high
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redshifts.

Some progress has been done in testing EG model using galaxy clusters. Nieuwen-

huizen (2017) tested Emergent Gravity with strong and weak lensing data of Abell

1689 cluster (a part of our data sample) and showed that EG fits the data well only

with inclusion of neutrinos. Ettori et al. (2019) analyzed 13 clusters with recon-

structed hydrostatic mass profiles and in 0.047− 0.091 redshift range and concluded

that EG provides overall better fit in comparison with MOND especially at ∼ R500

where Emergent Gravity mass prediction matches hydrostatic mass measurements.

Our goal is to conduct a thorough analysis of all the available in the literature

galaxy clusters data. We analyze 23 clusters which cover a wide redshift range

(0.077 − 0.289) in an extended radial range (0.1R200 − 2R200) and utilization of this

number of clusters helps us to mitigate sample variance, which is a dominant system-

atic error unaddressed in Nieuwenhuizen (2017). In contrast to Ettori et al. (2019),

where only weak lensing uncertainties were analyzed, we include in our analysis sys-

tematic uncertainties on the X-ray and weak lensing observables, including biases

and additional scatter from the weak lensing inferred total mass profile shapes, biases

from X-ray inferred baryon profile shapes, as well as stellar mass contributions and

cosmology (via the Hubble parameter).

Moreover, our cluster sample does not have issues which data of Nieuwenhuizen

(2017); Ettori et al. (2019) posses: 13 clusters from Ettori et al. (2019) have hydro-

static bias due to non-thermal pressure sources and cluster Abell 1689 has discrepancy

between mass estimates based on the X-ray data and on the gravitational lensing

(Broadhurst et al., 2005) and it was shown by Sereno et al. (2012) that Abell 1689

has an orientation bias and the discrepancy could be resolved by dropping spherical

symmetry assumption used in deriving weak lensing mass (as it was mentioned above,

spherical symmetry is one of the key requirements of the EG model).

In section 2.3 we introduce the theoretical framework of the EG model. Descrip-
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tion of the observational data are presented in section 2.4. In section 2.5 the testing

procedure is described as well as constraints of the EG model are presented. Discus-

sion of the results and the conclusions are presented in sections 2.6 and 2.7.

For the observational data we assume a flat standard cosmology with ΩM = 0.3,

ΩΛ = 1 − ΩM and H0 = 100h km s−1 Mpc−1 with h = 0.7. Throughout the work

we refer to the following quantities R200 and M200 which are the radius and the

mass of the clusters at the point when the density drops to 200ρc,z, where ρc,z =

3H2/(8πG) is the critical density of the universe at redshift z and H2 = H2
0 (ΩΛ +

ΩM(1 + z)3). The connection between R200 and M200 is by definition the following:

M200 = 4π
3

(200ρc,z)R
3
200.

2.3 Theoretical framework

The full emergent gravity theory is presented in the Verlinde (2017) and here we

point out the main ideas of the EG model as well as present the equation which pro-

vides connection between baryon matter distribution of the spherically symmetrical

isolated non-dynamical system and the apparent dark matter. To do so we adopt the

EG description presented in Tortora et al. (2018).

While the original model is derived for an n-dimensional surface area1, we work in

four dimensional spacetime and in a spherically symmetric approximation, such that

the surface mass density is

Σ̃(r) =
M(r)

A(r)
, (2.1)

where A(r) = 4πr2 and M(r) is the total mass inside a radius r

M(r) =

r∫
0

4πr′2ρ(r′)dr′. (2.2)

1Σ̃ is used in order not to confuse our reader with Σ which is the integral of the mass density
along the line of sight
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By incorporating quantum entanglement entropy in a de Sitter spacetime, Verlinde

(2017) identified a thermal volume law contribution to the entropy of the universe

(SDE). Heuristically, one can think of emergent gravity as modifying the law of

gravity due to the displacement of SDE in the presence of matter. Tortora et al.

(2018) emphasizes the “strain” as the ratio of entropy from the baryonic matter in

some volume compared to the entropy from the vacuum expansion of the universe:

εDM(r) =
SDM
SDE

=
8πGΣ̃DM(r)

a0

, (2.3)

where a0 = cH0 is the acceleration scale (Milgrom, 1983). In regions of normal matter

density with a large number of microscopic states εDM(r) > 1, the theory recovers the

simple Newtonian equations as a limit to the theory of general relativity. However,

as the number of microscopic states becomes small (i.e., in low density regions of the

Universe) (εDM(r) < 1), not all of the de Sitter entropy (SDE) is displaced by matter.

The remaining entropy modifies the normal gravitational laws in the GR weak-field

limit (i.e., the Newtonian regime). This gravitational effect can be described by an

additional surface density component

Σ̃DM =
a0εDM
8πG

. (2.4)

where the subscript DM refers to the apparent dark matter.

To get the ”mass” of the apparent DM one needs to estimate the elastic energy

due to the presence of the baryonic matter. The calculations (see Verlinde (2017))

lead to the following inequality

∫
B

ε2DMdV 6 VMb
(B), (2.5)

where εDM is defined in formula 2.3 and B is the spherical region with the area
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A(r) = 4πr2 and radius r. The r.h.s. of the inequality 2.5 is the volume which

contains an equal amount of entropy with the average entropy density of the universe

to the one which is removed by the presence of baryons

VMb
(r) =

8πGrMb(r)

3a0

, (2.6)

where Mb(r) is the total mass of the baryonic matter inside some radius r.

Tortora et al. (2018) notes that most of the recent papers on the EG theory focus

on the equality in the expression 2.5, but there is no particular reason to choose this

case as it places the upper bound on the amount of the apparent DM. However, if we

work at the maximum, we can combine equations 2.4 and 2.6 with equality in 2.5 to

get

Mb(r) =
6

a0r

r∫
0

GM2
DM(r′)

r′2
dr′. (2.7)

To find the apparent dark matter we can differentiate both sides of the equation (2.7)

MDM(r) =
[a0r

2

6G

(
Mb(r) + r

∂Mb(r)

∂r

)]0.5

. (2.8)

Equations 2.7 and 2.8 provide predictions from the theory to test the data against.

We use the observed baryonic matter density through the emitting X-ray gas com-

bined with a total (dark matter plus baryonic) inferred from weak lensing to make

these tests.

2.4 Data

We require inferred total mass and baryonic mass profiles for a large set of galaxy

clusters. The weak lensing data are given in the NFW formulism Navarro et al.

(1996). The baryonic data are given via a β profile Vikhlinin et al. (2006). Because

we are going to focus on the virial region of clusters, we simplify the analysis by
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using a single analytical form for all of the mass profiles. There has been much recent

work (Merritt et al., 2006; Miller et al., 2016) on the dark matter mass profiles of

clusters in simulations which show that the preferred profile is close to an Einasto

form (Einasto, 1965). The Einasto profile is described by

ρ(r) = ρ0 exp(−s1/n), (2.9)

where s ≡ r0
r

, r0 is the scale radius, ρ0 is the normalization and n is the power index.

Below, we discuss how we convert between the Einasto and the NFW or β models,

as well as the implication of this profile homogenization.

2.4.1 Total Mass Profiles

We are using Sereno meta catalog (Sereno, 2015) as a source of weak lensing data

of the galaxy clusters. The weak lensing parameters are presented in the NFW form

(Navarro et al., 1997)

ρNFW =
ρs

r
rs

(1 + r
rs

)2
, (2.10)

where ρs and rs are two parameters of the model and we can define concentration

parameter c200 = r200/rs, which describes the overall shapes of the density profiles.

Sereno (2015) uses the following relationship between M200 and c200

c200 = A
( M200

Mpivot

)B
(1 + z)C , (2.11)

where A = 5.71±0.12, B = −0.084±0.006, C = −0.47±0.04, Mpivot = 2×1012M�/h

(Duffy et al., 2008).

We convert the NFW profiles to the Einasto form (2.9). Sereno et al. (2016)

has already showed that both the NFW and the Einasto density profiles are nearly

identical outside the core region of clusters up to R200. We confirm this and find
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Table 2.1: List of Galaxy Clusters and References
Name2 Redshift WL3 M200,w R200,w ρ0,w r0,w nw Bar4 ρ0,b r0,b nb

(1014M�)5 (Mpc) (1017M�) (pc) (1015M�)6 (pc)

A1682 0.227 P07 6.05 1.62 6.1 65.8 4.21 G17 1.62 8980 2.89
A1423 0.214 OK15 6.7 1.68 5.8 71.9 4.19 G17 40.5 20.8 5.08
A2029 0.077 C04 10.28 2.03 5.2 86.3 4.19 V06 54.0 111.6 4.2
A2219 0.226 MULT 15.33 2.21 4.46 122.7 4.13 G17 4.63 6347.8 2.95
A520 0.201 H15 12.75 2.09 4.63 111.6 4.14 G17 0.46 97100 1.8
A773 0.217 MULT 15.45 2.22 4.43 123.7 4.13 G17 8.36 1670 3.36
ZwCl3146 0.289 OK15 7.94 1.73 5.36 86.6 4.15 G17 1170.0 1.8 5.38
RXJ1720 0.16 OK10 5.38 1.59 6.43 58 4.23 G17 250.0 7.1 5.07
RXCJ1504 0.217 OK15 8.26 1.8 5.46 81.2 4.18 Gi17 1280.0 0.9 5.58
A2111 0.229 H15 8.08 1.78 5.38 83.5 4.17 G17 9.49 535 3.9
A611 0.287 OK10 8.68 1.78 5.19 92.2 4.15 G17 260.0 6.3 5.12
A697 0.281 OK10 15.16 2.15 4.47 125.9 4.12 G17 3.16 11500 2.67
A1689 0.184 U15 18.86 2.4 4.2 137.2 4.12 Gi17 311.0 3.9 5.29
A1914 0.166 H15 11.2 2.03 4.89 99 4.16 G17 74.51 174 3.95
A2261 0.224 OK15 18.01 2.33 4.25 135.7 4.12 G17 526.0 1.1 5.79
A1835 0.251 H15 16.88 2.26 4.35 131.3 4.12 G17 568.0 4.9 5.15
A267 0.229 OK15 9.07 1.85 5.26 87.7 4.17 G17 383.0 2.2 5.48
A1763 0.231 H15 14.13 2.14 4.48 120.9 4.12 G17 2.19 11000 2.75
A963 0.204 OK15 10.66 1.97 4.95 97.9 4.15 G17 2.36 14634 2.42
A383 0.189 OK15 8.06 1.8 5.54 78.2 4.19 V06 450.0 1.9 5.39
A2142 0.09 OK08 13.63 2.22 4.74 104.4 4.16 Gi17 333.0 1.1 5.86
RXCJ2129 0.234 OK15 7.24 1.71 5.67 75.8 4.18 G17 23.8 443 3.73
A2631 0.277 OK15 12.34 2.02 4.7 112.5 4.13 G17 1.11 36800 2.17

that the Einasto parametrization can recreate a given NFW profile in the region

0.15 6 r 6 R200 to less than 1% accuracy. This defines the statistical floor of our

total mass profiles. We include additional error on the total mass profiles from the

published errors in (Sereno, 2015).

The use of a specific mass versus concentration relationship adds a systematic

uncertainty from the observations. The average concentration of our sample is <

c200 >= 3.15 with specific concentrations in the range 2.57 < c200 < 3.58. We

also explore the effect of an additional systematic error in the concentrations on our

conclusions.

2Cluster name. The original papers are cited above, but actual spherical weak lensing masses (and
their respective errors) we use in our analysis were taken from the Sereno (2015) meta catalog. More
specifically, Sereno (2015) standardizes the M200 masses for the clusters shown above (as inferred
from each reference listed in the ”weak lensing” column) for the fiducial cosmology mentioned in
our introduction.

3Weak lensing. The abbreviations in this column refer to the following papers: H15= Hoekstra
et al. (2015), OK08 = Okabe and Umetsu (2008), OK10 = Okabe et al. (2010), OK15= Okabe and
Smith (2015), A14 = Applegate et al. (2014), C04 = Cypriano et al. (2004), D06 = Dahle (2006),
P07 = Pedersen and Dahle (2007), U15= Umetsu et al. (2015). MULT = we averaged over multiple
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2.4.2 Baryon profiles

In what follows we are using only gas density profile as a source of baryon density

while neglecting stellar mass contribution as it is around or less than 10% of the

overall baryon mass for the clusters with the masses of the clusters we use in our

analysis (Giodini et al., 2009; Andreon, 2010; Laganá et al., 2013). We will test the

assumption of neglecting stellar contribution later in the text. Also, we do not take

into account the brightest cluster galaxy (BCG) in each of the galaxy clusters, since

it was shown by ZuHone and Sims (2019) that the BCG contribution is negligible

outside r ∼ 100 kpc (in our analysis, we focus on the region outside r ∼ 0.1 × R200

which is r ∼ 160 − 240 kpc for the analyzed clusters (see table 2.1)). The gas

density profiles are taken from several sources Giles et al. (2017); Vikhlinin et al.

(2006); Giacintucci et al. (2017). Unlike the weak lensing data, the baryon density

uncertainties are not reported in the papers from which the data used in this work

were taken.

Giles et al. (2017); Vikhlinin et al. (2006) use beta profile to infer the baryon

density distribution

npne = n2
0

(r/rc)
−α

(1 + r2/r2
c )

3β−α/2
1

(1 + rγ/rγs )ε/γ
+

n2
02

(1 + r2/r2
c )

3β2
, (2.12)

where np and ne are the number densities of protons and electrons in a gas, rc is the

characteristic radius and n0 is the central density. Giles et al. (2017) uses the same

profile but without the second term in the sum, i.e. without
n2
02

(1+r2/r2c )3β2
.

To get the actual baryon matter density distribution, relation 2.12 is used (Vikhlinin

weak lensing sources to get M200 as well as the errors of the clusters A2219 (OK10/0K15/A14) and
A773 (OK15/D06).

4Baryons. The abbreviations in this column refer to the following papers: G17 = Giles et al.
(2017), V06 = Vikhlinin et al. (2006), Gi17 = Giacintucci et al. (2017)

5Index w stands for weak lensing in the Einasto parameters (2.9)
6Index b stands for baryon gas in the Einasto parameters (2.9)
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et al., 2006)

ρb = 1.624mp(npne)
0.5, (2.13)

where mp is the proton mass.

Giacintucci et al. (2017) uses so called double beta model which provides the

number density of the electrons in the gas

ne =
n0

1 + f

(
(1 +

r2

r2
c1

)−1.5β1 + f(1 +
r2

r2
c2

)−1.5β2
)
, (2.14)

where n0 is the central density, the rest of the parameters are free parameters and in

order to infer the baryon matter profile the following relation is used (Schellenberger

and Reiprich, 2017)

Mb(r) = 4.576πmp

r∫
0

ne(r
′)r′2dr′. (2.15)

We transform the beta profiles into Einasto profiles in the identical manner as

the NFW profiles what was described in the previous subsection. The Einasto profile

recreates the beta profile with a high precision in the region from around the core

until R200 (see fig. 2.4.2). While we chose to transfer beta to the Einasto profile in

the region up to R200, we could do this procedure with almost identical accuracy in

the region up to 2R200.

We note that like for the case of the weak lensing profiles, the shapes of the baryon

profiles are systematics limited. In equation 2.12, the parameter ε governs the shape

of the baryon profile in the outskirts. Large values indicate steeper slopes. Vikhlinin

et al. (2006) applies an upper limit of ε = 5 and his original sample has a 〈ε〉 = 3.24.

On the other hand, the fits to our subset of the cluster data by equation 2.12 have

significantly shallower slopes at 〈ε〉 = 1.69. Uncertainties on ε are not available, and

so like concentration in weak lensing NFW fits, we explore systematic errors in this

parameter later on.
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Figure 2.1: Partial difference between Einasto and beta profiles. Blue lines are the
partial differences of individual clusters. Red solid line is the mean value
and dashed lines are 68.3% error bars around the mean. As we can see
they are almost identical all the way until R200 and starts to deviate
outside this range. Moreover, the beta profile at average tends to over-
estimate the mass M(r) since the partial difference is smaller than zero
after R200.

2.4.3 Dark Matter profiles

In what follows, we treat the weak lensing masses as total masses of the galaxy

clusters and the dark matter mass is calculated as

MDM = Mtot −Mb, (2.16)

where Mtot, MDM and Mb are the total mass, the dark matter mass and the baryon

matter mass of a cluster.

2.4.4 The Clusters

We list all the 23 clusters in the table 2.1. The average mass of our set of 23

observed galaxy clusters is < M >= 1.14 × 1015M� while individual masses are in

rather broad range (5.4× 1014M�, 1.89× 1015M�). To create a list of galaxy clusters
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used in this work, the following selection procedure was followed. The first criteria

is the data availability, i.e. only clusters with the available in the literature weak

lensing and baryon density profiles were selected. The second stage is to remove from

the sample merging systems (e.g. the Bullet cluster) and clusters with high redshifts

(e.g. BLOXJ1056 with z = 0.831). All of the clusters in our list have rather small

redshifts (< 0.289) and that fits well into approximation made by the EG theory, i.e.

constant Hubble parameter. However, we will still test this assumption later in the

current manuscript.

2.5 Testing Emergent Gravity

We have two ways of comparing the EG model with the data. The first one is

based on equation 2.7 such that we compare the observed baryon mass profile to the

one predicted from the “observed” dark matter profile. Recall from Section 2.4.3 that

the observed dark matter profile is actually the total mass profile from weak lensing

minus the observed baryon profile. The second approach is based on equation 2.8

which represents opposite situation. In this case, we use the observed baryon profile

to make a prediction for the dark matter profile and compare that to the “observed”

dark matter profile.

2.5.1 Qualitative assessment of the EG model

Figure 2.2 shows the results of applying equation 2.7, which makes a prediction for

the baryon profile from the dark matter profile. The red line is the observed baryon

profiles using the X-ray data and including a 10% additional stellar component. The

blue line comes from applying equation 2.7 using the dark matter mass profile from

equation 2.16. We note that in figures 2.2 and 2.3, we have normalized each cluster

baryon profile to the value at the observed weak lensing R200 for clarity. Actual

radii (in terms of Mpc) were used in all of the statistical analyses. The solid lines
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Figure 2.2: The normalized by Mb at R200 average total baryon mass inside a spherical
region of a radius r (see f-la 2.2) for all the 23 galaxy clusters from the
data of the baryon density distribution (red lines) and by applying EG
relation 2.7 to the dark matter from the data (blue lines). Solid and
dashed lines are the mean and 68.3% error bars around the mean. The
Baryon density here was increased by 10% to account for the stellar mass.
Note the agreement in the total baryonic mass at ∼ R200, except that EG
predicts most of the baryons to be in the cluster cores.

represent the means of the samples and the dashed lines the observed 1σ scatter from

the 23 systems. We find that the data (red) and the model (blue) agree at ∼ R200

and beyond. However, EG predicts that the majority of the baryons are enclosed

within the cluster core. Specifically, EG predicts that 50% of the baryons are within

∼ 0.2×R200. However, the observed baryons do not reach 50% until ∼ 0.5×R200.

Figure 2.3 shows the results of applying equation 2.8, which makes a prediction

for the dark matter profile from observed baryon profile. The red line is from the

observed dark matter profiles. The blue line comes from applying equation 2.8 to the

observed baryon profiles. The solid lines represent the means of the samples and the
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Figure 2.3: The normalized by MDM at R200 average total dark matter mass inside
a spherical region of a radius r (see f-la 2.2) from the data (red lines)
and by applying EG relation 2.8 to the baryon density distribution data
(blue lines). Solid and dashed lines are the mean and 68.3% sample
variance around the mean. Baryon density here was increased by 10% to
account for the stellar mass. One might be able to notice that blue line
increases linearly starting from around R200 which does not look physical
as we expect the mass of the galaxy clusters to stop growing at some
finite radius close to a few R200. Moreover, we see significant difference
between blue and red solid lines especially at high radii.

dashed lines the observed 1σ scatter from the 23 systems. We normalize each of the

cluster’s dark matter profile to the value at the weak-lensing inferred R200 in order

to conduct a combined analysis of all 23 galaxy clusters.

From figures 2.2 and 2.3 we find a qualitative agreement between the observations

and EG theory. A key success of the theory is the amplitude it predicts, which is close

to what we observe near the virial radius. In other words, using just the observed

baryons, EG predicts the observed dark matter mass at ∼ R200. Likewise, the differ-

ence between the total weak-lensing inferred mass and the baryon mass at ∼ R200 is
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what is predicted from EG using just the baryons alone. However, differences become

apparent at smaller and larger7 radii. Unfortunately, the observed baryon profiles

are not highly constraining in the core regions and in the outskirts of clusters. The

cores of clusters are active environments with varying levels of astrophysical processes

which could alter the profiles. Likewise, X-ray surface brightnesses drop steeply be-

yond R500, to the point where it becomes impossible to constrain the gas density

profile out beyond the virial radius. We discuss these issues in the next subsections.

In the meantime, we can first apply a more stringent quantitative comparison in the

region where the data is more certain.

2.5.2 Data analysis and statistical constraint of the EG model

To compare the EG model with the data we apply fitting procedure which is based

on minimization of χ2

χ2 =
∑
i

(M(ri)−Mth(ri))
2

σ(ri)2
, (2.17)

where Mth(ri) is given by the r.h.s. of the equation 2.8 (the apparent dark matter

prediction by the EG model) while M(ri) and σ(ri) are provided by the weak lensing

data. The relevant quantity to compare the model with the data is a reduced χ2

which is calculated as χ2
d.o.f = χ2/Nd.o.f , where Nd.o.f. is the number of degrees of

freedom.

As shown previously, the best qualitative agreement is the radial region around

the virial radius. In what follows, we measure each of the cluster mass profiles with

a step 0.1R200 and for example in the range from 0.3R200 to R200 that gives us 8 data

points per clusters and 184 data points in total as we have 23 clusters in our data

sample. The total Nd.o.f. = 181, since the Einasto matter density model has three

7One can notice strange behaviour in EG predictions at high radii which is especially noticeable on
the figure 2.2 where Mb(r) starts to decrease at ∼ 1.5×R200. This result can be derived analytically:
equation 2.7 leads to Mb(r) ∝ 1

r2 assuming convergence of MDM (r) to a constant number at high
radii.
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Figure 2.4: The mass ratio MGR

MEG
of the observed dark matter (MGR) and the apparent

dark matter (MEG) which is predicted by the EG model. Thing blue lines
are the individual mass ratios of the real 23 galaxy clusters. Red solid
and dashed lines are the mean and 68.3% error bars around the mean of
all the blue lines. In order for the EG model to be compatible with the
observational data the red mean line should be as close as possible to the
unity. Unfortunately, this is not the case all the way until approximately
0.6R200 when the red dashed line crosses unity. This result means that the
EG model does not describe the observed data in all the regions except
∼ 0.6R200, i.e. the EG model underestimates the amount of matter close
to the core and overestimates the mass at high radii.

free parameters.

In spite of the fact that at∼ R200 the predicted by the EG model the apparent dark

matter is similar to the observed dark matter, quantitatively we find that the profiles

predicted by EG differ from the observed profiles by > 5σ. The best agreement we

find is within the narrow range 0.55R200 6 r 6 0.75R200, where the EG model is only

ruled out at the 2σ level.

Having uncertainties of the baryon density profiles could not easing significantly

the level of the precision of the constraint of the EG model. To confirm this statement

we add some error of the baryon profiles by treating σ(ri)
2 in the formula 2.17 as a
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sum of the squares of the errors of the weak lensing (σweak) and baryon masses (σbar),

i.e. σ(ri)
2 = σweak(ri)

2 + σbar(ri)
2. Placing uncertainties on the baryon matter even

half of the uncertainties of the weak lensing data (i.e. σbar(ri) = 0.5σweak(ri)) does

not decrease significantly the level of constraining EG model in the range 0.3R200 6

r 6 R200 as it is still ∼ 5σ. However, with these baryon matter uncertainties the EG

model is compatible with the observations at almost 1σ level in the ”narrow” range.

Given that the amplitude predicted by EG is reasonably well represented by the

model, we focus our comparison on the profile shapes. Fig. 2.4 shows the mass

ratio MGR

MEG
of the observed dark matter (MGR) and the apparent dark matter (MEG),

which is predicted by the EG model. One can see that the observed dark matter

is almost two times higher than the apparent dark matter in the area close to the

cores (0.1R200) of the galaxy clusters (around 40% higher at 0.3R200) and it also can

be seen that the mass profiles of the dark matter and the apparent dark matter are

very different. EG underestimates the dark matter mass in the regions closer to the

core while overestimating the mass in the regions beyond approximately 0.9R200. At

the current stage we must claim that the EG model is unable to describe the real

observational data at Mpc scales.

2.5.3 Systematic uncertainty from concentration

As it was discussed above (see subsection 2.4.1), the mass-concentration relation

of the galaxy clusters is a source of systematic uncertainty. We can include these

systematics in the following way: σ(ri) in the formula 2.17 is now a sum of statistical

and systematical uncertainties, i.e. σ(ri)
2 = σweak(ri)

2 +σsys(ri)
2. We neglect σbar(ri)

here as discussion of the baryon uncertainty was done in the previous subsection.

We define σsys(ri) as the difference between true value of the MDM,true, i.e. at the

concentration which is given by the data 2.11 and MDM,new at the concentration
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Figure 2.5: The mass ratio MGR

MEG
of the observed dark matter (MGR) and the apparent

dark matter (MEG) which is predicted by the EG model. Solid lines and
shaded regions around them are the mean and 68.3% error bars around
the mean. Green color correspond to the case with the concentrations c200

which are given by Sereno (2015). Red, blue and black colors correspond
to the concentrations c200 = 1, 2 and 5 with M200 given by Sereno (2015).
As it was pointed out in subsection 2.4.1, the mean concentration of the
data from Sereno (2015) is < c200 >= 3.15. It can be seen from the plot
that the EG model prefers smaller concentrations.

motivated by Groener et al. (2016),

σsys(ri) = MDM,true −MDM,new. (2.18)

Through this technique, we allow the systematic uncertainty in the concentration

to impact the uncertainty on the amplitude of the profiles, but not the shape. We

consider the effect of systematic uncertainties by concentrations up to c200,new = 10.

We focus our analyses only on the range (0.3R200 6 r 6 R200) where the mass densities

are measured with the step 0.1R200. The effect of the systematic uncertainty starts to

be noticeable at c200,new ≈ 4.1 were the median σ(ri)/σsys(ri) ≈ 5. This effect pushes
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Figure 2.6: The mass ratio MGR

MEG
of the observed dark matter (MGR) and the apparent

dark matter (MEG) which is predicted by the EG model. Solid lines and
shaded regions around them are the mean and 68.3% error bars around
the mean. Baryon matter distribution in our sample have rather small
steepness which is described by ε in the form 2.12: < ε >= 1.69 for
20 clusters and zero ε for the three clusters with double beta profiles
(2.14). However, in general steepness parameter is higher (for example it
is < ε >= 3.24 in Vikhlinin et al. (2006)). To take that into account we
have increased ε of the 20 clusters by 1 (green) and by 2 (red), which made
steepness parameter to be < ε >= 2.69 and < ε >= 3.69 respectively.
Blue color corresponds to the implementation of the data with the original
steepness parameters.

the constraint level down to ∼ 3σ and at c200,new = 10 the EG model is compatible

with the observations at 1σ.

2.5.4 Systematic shape bias from concentration

An alternative approach to simply increasing our mass measurement errors as a

result of systematic uncertainties in our χ2 analysis, we can fix the mass measurement

with our current errors but allow the profiles shapes to be more uncertain. As we can

see from the figure 2.5, if we assume that the cluster weak-lensing inferred masses are
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unbiased, the EG model becomes more consistent with the data for c200 ≈ 2. While

small, this average value for the NFW concentration of the weak-lensing mass profiles

of massive clusters is close to those obtained in simulations (Groener et al., 2016;

Klypin et al., 2016; Correa et al., 2015).

2.5.5 Baryon profile bias

Three clusters from Giacintucci et al. (2017) utilize double beta profile (2.14)

which does not take into account steepness parameter ε in equation 2.12. The re-

maining 20 clusters in our sample have average steepness parameter < ε >= 1.69

which is significantly smaller than the average steepness parameter < εV >= 3.24

of Vikhlinin et al. (2006) data set. Increasing ε in our data rotates the apparent

DM distribution curve and shifts it upwards which makes the EG prediction of the

apparent DM more consistent with the observation of DM (see figure 2.6). Recent

results from Ettori and Balestra (2009); Eckert et al. (2012) suggest that the baryon

profiles are in fact much steeper than the original beta profile and in agreement with

the high ε values from Vikhlinin et al. (2006).

2.5.6 Other Systematics

One of the assumptions of the EG model, which was discussed above in the in-

troduction, is the fixed value of the Hubble parameter. To test this assumption we

divided by redshifts our data sample of 23 galaxy clusters into two bins, i.e. one bin

contained 11 clusters with the lowest redshifts (< z >= 0.17) and the second bin con-

tained 12 clusters with the highest redshifts (< z >= 0.25). Utilization of both bins

produced almost completely identical results which supports the assumption made.

The second assumption which we made on the data is that the hot gas represents

the total baryon mass of the clusters which is not totally true as stars contribute as

well. However, stellar mass is less than 10% (Giodini et al., 2009; Andreon, 2010;
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Figure 2.7: The ratio of baryon mass to the total mass of the galaxy cluster as a
function of radius of the observed data set of 23 galaxy clusters. Red
line and red shaded region represent the baryon fraction of the observed
clusters, i.e. Mb/Mtot,GR, where Mb is the observed baryon mass, Mtot,GR

is the total mass from the weak lensing data and this result correlates
with other results (Giodini et al., 2009; Andreon, 2010) as we expect to
see higher baryon fraction for heavier galaxy clusters and the average mass
of the clusters in our sample is high (< M200 = 1.14×1015M�). Green line
and green shaded region correspond to the effective baryon fraction which
is predicted by the EG model, i.e. Mb/Mtot,EG, where Mtot,EG is the total
mass predicted by the EG model, i.e. the sum of the apparent dark matter
and the baryon matter. Solid lines are the mean values and shaded regions
are 68.3% error bars around the means. One can observe that the EG
model prediction diverge from the observed baryon fraction starting from
the cores of the clusters up to ∼ 0.6R200 which means that the EG model
predicts that the baryon fraction is the biggest in the regions around the
core of the clusters while the observations predict the baryon fraction to
increase with a distance from the core. Interestingly, the baryon fraction
prediction of the EG model agrees well with the baryon fraction which is
observed from the CMB (Ade et al., 2016) (see blue flat line) at around
R200.
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Figure 2.8: Left: the predicted dark matter mass ratio MGR/MEG in the case of the
baryon fraction Mb,pred/Mtot,GR in the form from the right figure. Mb,pred

is the predicted baryon matter, Mtot,GR is the total observed mass from
the weak lensing data, MGR is the observed dark matter and MEG is the
predicted apparent dark matter with the predicted baryon matter Mb,pred.
For the EG model to be able to properly describe the weak lensing data
(left figure) the baryon fraction should have rather weird shape (right
figure). One of the biggest problems with such baryon fraction is the
huge amount of baryon matter in the core which is in total contradiction
with the observations (compare with red line on figure 2.7) as it requires
baryon fraction to be close to unity there.

Laganá et al., 2013) of the hot gas for the clusters with the masses we use in this

paper (< M200 >= 1.14×1015M�). To check this assumption, we increased the baryon

mass by 10% which shifted the mass ratio MGR

MEG
in figure 2.4 only by approximately

0.05 − 0.08 or changed this ratio by around 6%. This small shift in the mass ratio

not only does not change the precision of constraining the EG model, but also does

not change at all the main conclusion of incompatibility of the EG model with the

galaxy clusters. So, the assumption of neglecting stellar masses is totally valid.

2.6 Discussion

In this section, we discuss the consequences of the current EG predictions in the

context of the observation data. We also explore alternatives to our fiducial analysis

which could bring the EG predictions and the data into better agreement.
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2.6.1 Effect on the baryon fraction

One of the consequences of the EG model is in the distribution of the baryons in

clusters. We can define the effective baryon fraction which is predicted by the EG

model by introducing the following ratio

fb,EG =
Mb

Mtot,EG

, (2.19)

where Mb is the observed baryon mass and Mtot,EG is the total mass which is predicted

by the EG model.

The results of the fig. 2.7 imply that the EG effective baryon fraction is different in

many aspects from the observed baryon fraction with the total mass Mtot,GR defined

by the weak lensing data. The first difference is the shape of the lines in 2.7: the EG

model has a monotonically decreasing behaviour while the data shows that the baryon

fraction is an increasing with the radius function. In agreement with Nieuwenhuizen

(2017) this means that the EG predicts baryons to be concentrated in the region

around the cores of the galaxy clusters while the observations imply that the baryons

are actually spread in the broader regions with highest fraction in the outskirts of

the clusters. Secondly, the effective baryon fraction is almost twice as high close to

the core (at r ≈ 0.1R200) which should be detected as it implies brighter cluster cores

than we would observe in GR. This effect could be actually smaller if BCG would be

correctly taken into account by weak lensing data. In spite of these differences, the EG

model predicts correctly the baryon fraction at the distances approximately 0.4R200 6

r 6 0.8R200. Additionally, the EG model predicts the effective baryon fraction to be

close to 15.6% (the number which is expected from the CMB observations (Ade et al.,

2016)) at the distances close to R200 .

One of the tenets of EG is that there is no particle-like dark matter. In the case

of a flat universe, the only two contributions to the energy density are baryons and
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dark energy (Ade et al., 2016). We can build a toy model for how the baryons should

be distributed in EG such that at the core of a virialized system one finds ∼ 100% of

the baryons, while in the outskirts the EG baryon fraction falls to the global value of

5-10%. This toy model is shown in figure 2.8 right. If this toy model would describe

how the real baryons are distributed in our Universe, we would find a high level of

consistency between what we observe with what weak lensing predicts for the dark

matter profiles and what EG predicts for the apparent dark matter. This is just a

toy model, but it is an example of how one could achieve closer agreement between

the EG predictions and the current observations.

2.6.2 Modifying EG

As opposed to reconsidering the distribution of the baryons inside clusters, one

could alter the maximal strain of the EG model as described in Section 3 in equation

2.5. Recall that we chose equality in the inequality of the EG model in equation 2.5.

We could have chosen some form away from its maximum value. As a new toy model,

we propose a modification to the EG model which consists in changing r′2 → r0r
′

in the denominator on the r.h.s. of the equation 2.7. For r0 = 1.2Mpc, the l.h.s. is

smaller than its maximum value until beyond this radius. In the case r0 = 1.2 Mpc

the result is consistent with the observations (see fig. 2.9). While the modification

is based purely on phenomenological ground it might help in developing the theory

of the EG model as we can see that the data favor the proposed form instead of the

original form 2.7. This results leads to the conclusion that while by default equality is

chosen in most of the works related to the testing and development of the EG theory,

it is not necessarily the right or only choice.
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Figure 2.9: The mass ratio MGR

MEG
of the observed dark matter (MGR) and the apparent

dark matter (MEG). Solid lines and shaded regions are the means and
68.3% error bars around the means. Green color corresponds to the phe-
nomenological modification of EG prediction (see subsection 2.6.2) in the
case of substituting r2 in the denominator of the r.h.s. of the equation 2.7
by 1.2r. Blue color corresponds to the adjusting both weak lensing data
(shifting concentration parameter so it is c200 = 1.5 for all the data (see
subsection 2.5.3 for motivation of this modification)) and baryon matter
distribution (increasing steepness parameter by ∆ε = 1.5 for all the clus-
ters (see subsection 2.5.5 for motivation of this modification)). It can be
seen that both modifications presented in the figure make EG model to
be consistent with the observed data as the mass ratio MGR

MEG
≈ 1 in the

radial region 0.3 ≤ r/R200 ≤ 2.

2.6.3 Combining Systematics

As it was mentioned in the section 2.5, concentration parameter (c200) of the weak

lensing and the steepness parameter (ε) could be changed to make EG to be more

compatible with the observed data. Moreover, by adjusting both of these parameters

at the same time the prediction of the EG model correlates nicely with the observed

data (see figure 2.9).
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2.7 Conclusions

The first attempt on testing Emergent Gravity was done by Nieuwenhuizen (2017),

where in contrast to our approach of using only weak lensing in determining matter

profiles, combination of strong and weak lensing data (which compliment each other

and overall better than weak lensing along determine matter profiles (Umetsu, 2013))

of one cluster A1689 showed that EG does not work in the region up to 0.4−0.5R200,

while inclusion of neutrinos into EG framework helps to achieve a very good fit.

Brouwer et al. (2017) showed that the EG model is in good agreement with the

galaxy data. Ettori et al. (2019) tested the EG theory with 13 clusters in the narrow

small redshifts range (z ≈ 0.047 − 0.091) with reconstructed hydrostatic mass pro-

files which have non-negligible hydrostatic bias due to non-thermal pressure sources.

By analyzing 4 clusters, ZuHone and Sims (2019) confirmed conclusion of current

manuscript as well as supported results of Nieuwenhuizen (2017) that at small radii

(∼ 3− 100 kpc), EG produces a bad fit to the data.

In this work, the cluster data set was extended and resulted in utilization of 23

galaxy clusters in wider radial (0.1R200 − 2R200) and redshift (0.077− 0.289) ranges.

In addition to testing the nominal EG model, we consider an extension to the basic

predictions of the framework (see also Hossenfelder (2017)).

EG provides good results only in the area near the virial radius and by taking

into account the cores and the outskirts, the mass profile shape differences allow us

to rule out EG at > 5σ. However, given our current level of systematic errors in the

observed shape profiles, our results lead to the conclusion that the EG model is a

viable alternative to dark matter in the range 0.3 ≤ r ≤ 1R200. Under the nominal

assumptions (i.e., without systematics), EG favors a radially decreasing baryon frac-

tion which peaks in the cluster core (this effect could be slightly amplified due to the

BCG not always taking into account by weak lensing data). This is a different baryon

fraction profile when compared with the standard dark matter model (see Ade et al.
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(2016)).

The EG model predicts a flatter shape of the dark matter mass distribution than

the observed data, as well as steep X-ray gas density profiles. One of the successes

of the model is that the observed weak lensing data and the predicted apparent dark

matter are almost identical in the region close to R200.

Finally, we investigate the level of systematic errors needed to reach good agree-

ment between EG and the data. We find that within the current systematic limits,

there are combinations of shape profiles which can match EG to the data. Likewise,

we investigate whether the EG model itself has the flexibility to better match the data

and we find that it does through a lowering of the maximal strain. Given the level

of systematic uncertainties in the data, as well as the depth of the theoretical frame-

work, we are unable to formally rule out in the wide region (i.e. in 0.3 ≤ r ≤ 1R200)

the EG model as an alternative to dark matter in galaxy clusters.
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CHAPTER III

Quantifying the projected suppression of galaxy

clusters 3D escape velocity profiles

3.1 Abstract

The radial escape-velocity profile of galaxy clusters has been shown to be a promis-

ing and competitive probe of cosmology in an accelerating universe. Projection onto

the sky is a dominant systematic uncertainty for statistical inference, since the ob-

served line-of-sight galaxy positions and velocities can suppress the underlying 3D

escape-velocity edge. In our work, we utilize Keplerian orbital dynamics to numeri-

cally model cluster phase-spaces. We then compare the analytical escape edge to those

from N-body simulations. We show that given high enough sampling, the 3D escape

velocity edge is in fact observable without systematic bias or suppression with < 1%

accuracy over the range 0 ≤ r/r200 ≤ 1. In the case of moderate sampling (< 500

galaxies), we model the amount of the edge suppression (Zv) with ∼ 2% accuracy and

∼ 5% precision for massive (> 1014M�) systems over the range 0.4 ≤ r/r200 ≤ 1. The

model incorporates observables such as richness and the line-of-sight velocity disper-

sion. We show that the numerically modeled suppression is independent of velocity

anisotropy over the range −2.5 ≤ β ≤ 0.5. Finally, we show that suppression is mass

and cosmology independent and can be successfully modeled by inverse power-law
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Zv = 1 + (N0/N)λ with best-fit parameters N0 = 14.205, λ = 0.467 (the bottom error

bar line: N0 = 3.213, λ = 0.392, the top error bar line: N0 = 35.822, λ = 0.454) and it

is a function of richness only. We conclude that the 3D cluster escape velocity profile

can be inferred from projected phase-space data without knowledge of cosmology or

the use of simulations.

3.2 Introduction

Galaxy clusters are the most recently formed cosmological objects. Galaxies inside

the reach of the potential are sparsely distributed and represent a small fraction of the

baryonic content. The majority of the baryons that do exist are in the mostly smooth

gaseous intra-cluster medium. In the current ΛCDM paradigm, the cluster potential

is dominated by dark matter which does not interact with the member galaxies or

the gas. Through the Poisson equation, the cluster potential governs the dynamics of

galaxies which have recently undergone (or are still undergoing) gravitational infall.

In this scenario, we expect that galaxies which have been accelerated to escape speeds

will be largely unaffected by dynamical friction, tidal interactions or encounters with

other galaxies (for a review, see Aguilar (2008)). Therefore, the escape velocity profile

becomes an observable property of clusters representing the underlying potential with

few systematics.

The escape velocity profile (vesc(r)) of a cluster is a clearly defined edge in the

radius/velocity phase space diagram. In 3D, only the galaxies with the maximum

possible speed and which are still gravitationally bound to the cluster will contribute

to this edge (Miller et al., 2016). The power of utilizing the observed vesc(r) is in its

direct connection to the total potential, enabling cluster mass estimations, tests of

gravity on the largest scales in the weak field limit, and placing tight constraints on

the ΛCDM cosmological parameters (Gifford and Miller , 2013; Gifford et al., 2013;

Stark et al., 2016b; Stark et al., 2017).
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It is difficult to reconstruct cluster 3D phase-space data because we only measure

the projected galaxy positions and velocities. Up until now, simulations have always

shown that the observed edge is lower than the underlying radial or tangential vesc

profile. Because of this, most researchers have utilized N-body simulations to cali-

brate the amount of suppression of the projected escape velocity profile (Diaferio and

Geller , 1997; Diaferio, 1999; Serra et al., 2011; Gifford et al., 2013). However, Stark

et al. (2016a) used a novel technique where they combined weak lensing mass profiles

and cluster phase-space data to observationally constrain the suppression without

simulations. Combined, these studies find a suppression of the 3D escape edge down

to the projected edge of about 70% → 80%. This is the dominant systematic when

using the observed phase-space edge to infer cluster mass profiles or in cosmological

parameter estimation.

In this work, we take a new approach to determine the amount of projected

escape edge suppression which does not require simulations or weak lensing obser-

vations. Our approach is rather simple and is based on populating mock halos with

galaxies on Keplerian orbits. While these mock phase-spaces do not contain the full

dynamical information of a true massive and fully evolved halo, we show that the 3D

and projected phase-space edges accurately and precisely match those of simulations.

The plan of the paper is following. First, we introduce physics of connection

of escape velocity profiles with gravitational potentials and cosmological parameters

(i.e. motivation of the whole work) as well as we show the math behind projection

effects and the way the real systems are observed. In the section 4, we make some

observations of conclusions that can be made based on Diaferio (1999) approach

and show that in theory the actual escape velocity profile can be observed. The

section 5 is devoted to deriving Keplerian orbits in a vicinity of a galaxy cluster.

We follow with the section where we describe our approach. We spend some time

describing simulations against which we test our approach. After that, we show that
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the approach indeed works by testing on two sets of simulations as well as we present

the suppression function with a proof that is is only a function of the number of

galaxies per cluster. We finish with a discussion and conclusions.

For the simulation data a flat standard cosmology with ΩM = 0.25, ΩΛ = 1−ΩM

and H0 = 100h km s−1 Mpc−1 with h = 1.0 is assumed. Throughout this chapter

we refer to the following quantities R200 and M200 which are the radius and the

mass of the clusters at the point when the density drops to 200ρc,z, where ρc,z =

3H2/(8πG) is the critical density of the universe at redshift z and H2 = H2
0 (ΩΛ +

ΩM(1 + z)3). The connection between R200 and M200 is by definition the following:

M200 = 4π
3

(200ρc,z)R
3
200.

3.3 Motivation

3.3.1 Escape velocity profile in an expanding universe

The main conclusion of general relativity is the Einstein equation which relates

matter/energy density to the curvature of space-time Jacobson (1995a). Through the

Poisson equation, this curvature in-turn governs the dynamical behavior of the local

matter. Nandra et al. (2012) derived an invariant fully general relativistic expression,

valid for arbitrary spherically symmetric systems, for the force required to hold a

test particle at rest relative to the central point mass in an accelerating universe. As

then also noted by Behroozi et al. (2013a), in a ΛCDM universe there is a location

in space (req) which is well-defined and relative to a massive body (like a cluster),

where the radially inward gravitational force acting a tracer from the massive object

is equivalent to the effective radially outward force due to the acceleration of the

underlying space-time,

req =
(
− GM

q(z)H2(z)

)1/3

, (3.1)
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where G is the gravitational constant, M is the mass of the cluster, and the deceler-

ation parameter is q(z).

An important observational consequence of equation 3.1 is in the definition of the

escape velocity on cosmological scales. In the Newtonian or weak-field limit where

vesc =
√
−2Φ, (3.2)

Φ becomes the total potential, which includes the gravitational potential (φ) as well

as the potential in the expanding space-time (Riess et al., 1998; Calder and Lahav ,

2008). As discussed in (Behroozi et al., 2013a), the radial1 escape velocity profile is

of the following form

vesc =
√
−2[φ(r)− φ(req)]− q(z)H2(z)[r2 − r2

eq]. (3.3)

Equation 3.3 tells us that the slope of the escape velocity profile runs downward with

radius due to the q(z)H2(z)r2 contribution and also that the overall amplitude of

the escape edge shifts downward due to req, the latter being the dominant effect.

Equation 3.3 was tested to high precision and accuracy (percent level) using N-body

simulations (Miller et al., 2016).

3.3.2 From 3D to the Projected Data

In order to infer 3D escape velocity profiles (vesc) of the galaxy clusters from

observational data, we need to follow several steps. The first step is to collect the

galaxy velocities along line-of-sight (vlos) by measuring their redshifts (zg) as well as

1Objects on tangential escape trajectories also have a revised escape velocity, as presented in
Behroozi et al. (2013a).
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Figure 3.1: Projected phase space, i.e. peculiar velocity [km/s] (vlos) vs. radial dis-
tance [Mpc] away from the center of the cluster A697. Blue lines are the
measured maximum velocity profiles (vlos,esc). The procedure of inferring
vlos,esc from positions and redshifts of individual galaxies (black dots) with
line-of-sight velocities vlos (3.4) and radial distances r⊥ (3.5) is done by
finding galaxies which have the top 1% velocities in each of the 0.2 Mpc
radial bins. The interloper removal prescription proposed by Gifford et al.
(2013) is followed. The vertical line is the weak-lensing inferred 3D r200.

the redshift of the cluster center (zc)

vlos = c
((1 + zg)

2 − 1

(1 + zg)2 + 1
− (1 + zc)

2 − 1

(1 + zc)2 + 1

)
, (3.4)

where c is the speed of light and relativistic Doppler effect formula was used (1 + z =√
1+vlos/c
1−vlos/c

).

We then need to infer the galaxy projected radial distances from the center of the

cluster (r⊥),

r⊥ = rθ

( 1

1 + zg

c

H0

zg∫
0

dz′

E(z′)

)
, (3.5)

where rθ and r⊥ are angular and radial separations between galaxy and the center of
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the cluster2, E(z) =
√

ΩΛ + ΩM(1 + z)3. By knowing both (vlos) and (r⊥) we create

a projected phase space for each cluster, i.e. vlos vs. r⊥ (see an example using real

data in Fig. 3.1).

The edge in the projected phase space is the maximum velocity profile (see blue

lines on figure 3.1). To infer the underlying escape velocity profiles vesc from the

projected phase space edge, we need to understand the effects of projection on the

galaxy positions and velocities.

Diaferio and Geller (1997) and Diaferio (1999) laid the initial foundations for the

projected escape velocity technique using the idea of “caustics” in the 2D phase-space

density. They worked in potential units, such that they were using the observed escape

velocity to infer the square of the escape velocity profile. Thus, the underlying premise

involves a geometric projection of the classic anisotropy parameter, β. Formally, the

velocity anisotropy is

β = 1− σ2
θ

σ2
r

, (3.6)

where σθ and σr are tangential and radial velocity dispersions. In general, dispersion

σ2(r) =< v2(r) >, (3.7)

where v(r)’s are velocities of individual galaxies measured with respect to zero (i.e.

to the cluster frame of reference) and the average < · > is over all the galaxies inside

a radial bin at r with a width ∆r that gravitationally bound to the galaxy cluster.

Using simple geometric arguments, Diaferio posits the following relation between the

l.o.s. and 3D escape velocity of a cluster:

〈v2
esc,los〉(r) =

(1− β(r))

(3− 2β(r))
〈v2
esc〉(r) = (g(β(r)))−1〈v2

esc〉(r) (3.8)

2We assume that with a large enough galaxy sample in the phase-space data (∼ 100 galaxies),
or with ancillary X-ray data, the cluster center can be well determined. Clusters which show signs
of mergers or other significant substructure can be excluded from this type of scientific analysis.
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This premise suffers from an important statistical issue that was never tested in

simulations. The problem lies in the fact that it is based on projected dispersions

averaged over projected radii (see Figure 3.2). The dispersion measured in the small

box B is not the same as that of the dispersion measured through the integrated

line-of-sight. By necessity of monotonic potentials, the dispersions in boxes A and C

must be smaller than at B. Therefore, a simple average over the line-of-sight is not

valid.

As another approach in considering validity of equation 3.8, consider a highly

sampled phase space (e.g., of dark matter particles). With enough sampling, one

would surely identify a tracer near the escape speed with its velocity perfectly aligned

with the line-of-sight and with a projected radius identical to the 3D radius (i.e.,

position K in Figure 3.2). In this case, one could observe the full 3D escape speed

at the radius regardless of the radially averaged anisotropy of the underlying system,

because the maximum possible velocity of any other tracer along the l.o.s. must

necessarily be less than (or equal to) the velocity of this special tracer see Figure

3.3.)

Instead of equation 3.8, we posit that the projected l.o.s. escape profile is depen-

dent solely on the sampling of the phase space. We test this using the Millennium

simulation data (see details in Section 3.7). In Figure 3.13, we show how we can in

fact recover the full 3D escape velocity given proper sampling. In the next section, we

propose a new analytical model to determine the projection term which suppresses

vlos,esc compared to the underlying vesc.
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Figure 3.2: Figure a). While in reality the areas A, B and C are spatially separated,
for the outside observer they have the same position on the sky. The grey
ring KK1 represents the area which is equally separated from the center
of the cluster O. Any galaxy in this ring as well as on the sphere KK1 will
be in the grey band R⊥ on the 3-dimensional phase space on figure 3.3a.
All the galaxies in the cone which is created by circling the line of sight
AC around the ring KK1 (we call this cone as ACKK1 cone in the text)
will be in the grey band R⊥ on figure 3.3. Figure b). Arrows represent
velocities of individual galaxies. Black (red) arrows are the galaxies with
velocity directions not aligned (aligned) with the line of sight AC. Any
vector velocity of a galaxy (see formula 3.9) is a sum of tangential, radial
(green arrows in the box C) and azimuthal (not presented due to direction
pointing in/out of the plane of the figure) velocity components. The
magnitude of the line of sight velocity (blue arrow in the box C) can be
expressed in term of tangential and radial components (see equation 3.10).
The angle ε between the line of sight AC and the line which connects the
center of the cluster O and the observer while represented big is small
in reality due to the distance from observer to the cluster much larger
in comparison to the size of a cluster. The distances between different
points: OC = rC , OB = rB, OK = R⊥ and OA = rA. OK ⊥ AC.
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Figure 3.3: Figure a). Phase space, i.e. peculiar velocity [km/s] vs. distance r [Mpc]
away from the center of the cluster. vesc(r) line is a measure of gravita-
tional potential (see formula 3.2). Grey bands rB, rA and rC represent
areas on the phase space where galaxies from dark small ellipses (figure
3.2a) and boxes (figure 3.2b) B, A and C would be observed. Box Q rep-
resents area, where all the galaxies with vesc(R⊥) from the thin shell with
radius R⊥ and center O would be observed on the phase space. Figure b).
Observed phase space, i.e. observed peculiar velocity [km/s] vs. radial
distance r⊥ [Mpc] away from the center of the cluster. vlos,esc(r⊥) lines
are the maximum observed velocities which can be obtained by taking
partial derivative (3.12). Similarly, blue lines on figure 3.1 are observed
maximum velocities in the real cluster Abell 697. The grey band R⊥ rep-
resents where galaxies from the ellipses (figure 3.2a) and the boxes (figure
3.2b) B, A and C would be observed on the observed phase space. Note,
while phase space on the figure a) is always positive (presenting absolute
value of velocity relatively to the center of the cluster), observed phase
space can be negative as well due to galaxy velocities being able to point
towards and away from the observer.
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3.4 General approach

3.4.1 Relative position

From the prospective of the outside observer many galaxies in the same cluster

are at the same distance. Some of the galaxies are physically closer to the observer

(arrows in the box A in figure 3.2b), some further away from the observer (box C)

and some are somewhere at an intermediate distance (box B). At the same time,

galaxy’s physical distances relatively to the center of the cluster (point O) are not the

same rB < rA < rC (see figure 3.2) and that can be depicted on the physical phase

space diagram (figure 3.3a), i.e. on the plot of the full 3-dimensional peculiar velocity

v(r) vs. physical distance in relation to the center of the cluster r. However, for the

outside observer the relative position of all the boxes (i.e. A, B and C) in respect to

the center of the cluster (point O) are the same and equal to OK = R⊥ (see figure

3.3b). This observation means that all the galaxies in the cone which is created by

circling the line of sight AC around the ring KK1 (we will call this cone as ACKK1

cone below) are depicted in the narrow range R⊥ on the phase space diagram (figures

3.2a and 3.3).

3.4.2 The maximum observed velocity

The total velocity can be written down in terms of 3 individual vector components

~v(r) = ~vθ(r) + ~vφ(r) + ~vr(r), (3.9)

where ~vθ(r), ~vφ(r) and ~vr(r) (see green vectors on figure 3.2b) are tangential, az-

imuthal and radial component of the total velocity ~v(r).

The projected component of the ~v(r) along line of sight (see blue vector on figure

3.2b)

vlos(rC) = vθ(rC) cos(
π

2
− ]OCB)− vr(rC) cos]OCB, (3.10)
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where rC is the actual distance between point C and the center of the cluster O.

In general, expression 3.10 can be written down in terms of R⊥ (the radial sepa-

ration between galaxy at the point C and the center of the cluster)

vlos(r, r⊥) = vθ(r)
r⊥
r
− vr(r)

(r2 − r2
⊥)0.5

r
, (3.11)

where rC (R⊥) has been substituted by r (r⊥) so the formula can be applied to any

galaxy.

The maximum observed velocity vlos,esc is what we actually get from observations

(see blue lines on figure 3.1). In order to get this maximum vlos,esc at r⊥ we need to

calculate the maximum value of equation 3.11 by taking partial derivative

∂vlos,esc(r, r⊥)

∂r
= 0. (3.12)

The maximum observed velocity (vlos,esc) is a function of both vr and vθ. In general,

as it was noted in Diaferio (1999), this maximum is at some r = rM which could

differ from r⊥.

3.4.3 Connection between vesc and vlos,esc

Generally, there are many galaxies in the boxes A, B and C (see figure 3.2b).

Some small number of these galaxies will have a velocity which is closely aligned with

the line of sight. An even smaller number will be in their orbits such that their 3D

velocity is at the escape speed. And yet an even smaller number will have their 3D

radius at the same location as the projected radius. In other words, for all of the

galaxies along the l.o.s. in Figure 3.2, few will be the red line at position K. The other

concern is whether any galaxy could have vlos higher than the escape speed at any

projected radius. We address these concerns analytically in the next few subsections.

Let’s define several parameters. The galaxy’s velocity will be changing throughout
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its orbit. For elliptical orbits, the highest speed is reached at perihelion and the slowest

at aphelion. Therefore, we define a parameter to represent the ratio of velocity of the

galaxy to its escape velocity

α(r) =
vg(r)

vesc(r)
, (3.13)

where 0 ≤ α(r) ≤ 1 and vg(r) is the full 3-dimensional velocity of the galaxy.

We also define the ratio of radial component to the tangential component of the

velocity

γ(r) =
vr(r)

vθ(r)
. (3.14)

It should be noted that we treat our galaxies as having zero azimuthal velocity com-

ponent. One could always shift the coordinate frame accordingly to accomplish this.

Using the above parameters we can express vlos (eq 3.11) in terms of vesc. First,

we need to define tangential and radial components in terms of these parameters and

vesc(r)

vθ(r) =
α(r)vesc(r)√
γ2(r) + 1

vr(r) =
α(r)γ(r)vesc(r)√

γ2(r) + 1
.

And we are ready to write down the expression of our interest

vlos(r, r⊥) =
αvesc√
γ2 + 1

r⊥
r
− αγvesc√

γ2 + 1

(r2 − r2
⊥)0.5

r
, (3.15)

where α, γ and vesc are all functions of r. To simplify analysis, from now on we treat

α and γ as constants.

As one can notice, α(r) is simply a factor to vlos and so we can apply the maximum

value α(r) = 1 throughout our analysis. This allows us to focus only on the γ(r)

parameter.
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One might notice the similarity between γ(r) and anisotropy parameter: both β

and γ describe the ratio of velocity components. However, they differ in the fact that

anisotropy parameter describes the averages of squares of velocity components, while

γ(r) describes individual galaxies by simply taking the ratio of velocity components.

Connecting these two variables is possible only in special cases, such as for a constant

γ(r)), which allows us to drop averages in equation 3.7 such that

βesc(r) = 1− v2
θ(r)

v2
r(r)

≡ 1− γ−2(r). (3.16)

3.4.4 Predictions for a Single Galaxy

In Figure 3.4 we inspect equation 3.15 for a cluster with an Einasto density profile

with a galaxy moving at the escape speed in 3D. We consider three values for γ: 0.1,

1 and 100 which correspond to tangential, isotropic, and radial motion. These lines

are the colored curves increasing in their value with increasing γ. We identify three

lines-of-sight: 0.01, 0.5, 1.5 projected Mpc corresponding to the blue, green, and red

curves. The vertical lines represent the two maxima of each set of curves. From this

we can conclude that the highest velocity galaxies observed at the core have r⊥ = r3D

and vlos = v3D = vesc when their motion is either purely radial or purely tangential.

In the virial region, only galaxies on tangential orbits have vlos = v3D = vesc and it

only occurs when r⊥ = r3D.

Figure 3.4 can also explain the general trumpet shape phase-space density profile.

The outer envelope is defined purely by the Einasto parameters and cosmology. The

multiple escape-speed galaxies which would populate the phase-space lie within this

envelope, with most having l.o.s. velocities lying within vlos/
√

2 envelope. We will

come back to this later.

The three colored stars on Figure 3.4 are important, as they represent galaxies
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Figure 3.4: The projected escape velocity (colored curves) of a galaxy moving at the
full 3D escape speed versus a 3D (black curves) location in its orbit. γ
ranges from 0.1, 1 and 100 which corresponds to tangential (lowest curve),
isotropic (middle curve), and radial (upper curve) motion. The lines-of-
sight range from 0.01, 0.5, to 1.5Mpc corresponding to the blue, green,
and red curves. The vertical lines represent the two maxima of each set
of colored curves. We can conclude that the highest velocity galaxies
observed at the core have r⊥ = r3D and vlos = v3D = vesc when their
motion is either purely radial or purely tangential. In the virial region,
only galaxies on tangential orbits have vlos = v3D = vesc and it only occurs
when r⊥ = r3D.

which would appear on a phase space having both the true underlying 3D radius and

velocity, even though they are measured in projection.

Suppose we now sample a “mock” galaxy cluster phase space from Figure 3.4 with

lots of galaxies, each with the same γ. We show how such a mock cluster’s observed

line-of-sight maximum velocity profile would look in Figure 3.5. To facilitate the

interpretation, we map the γ’s to the typical velocity anisotropy β via equation 3.16.

We stress that this is not representative of any real system, since we forced every
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galaxy to have the same ratio between its radial and tangential velocity. However, the

trends are enlightening. As noted in Figure 3.4, galaxies with tangential orbits would

enable a direct measure of the 3D escape velocity edge, regardless of the projected

viewpoint from Earth. Galaxies on radial orbits will always lie below the 3D escape

velocity, except in the extreme case of β = 1 and in the innermost core. However, the

most important trend in this figure is for β = 0, which is around the average value for

clusters observed in simulations and in the real Universe. In this case, the maximum

line-of-sight velocity is near vesc/
√

2. This suppression of the observed escape edge

is near the value we have measured in data and in simulations as mentioned in the

Introduction 3.2.

We stress again that Figure 3.5 is not representative of any real cluster and does

not imply that there is an inherent relationship between the maximum observed line-

of-sight velocity and a cluster’s anisotropy profile measured through averaging the

velocity dispersion components. There mere existence of galaxies on tangential orbits

is what sets the phase-space edge, which is clarified in Figure 3.4 and which we address

further in the next section. The treatment in this section is simple, and so we move

to a more realistic cluster with Keplerian orbits and then we populate the clusters

with the full variety of galaxies in their orbital locations and velocity vectors.

3.5 Keplerian Orbits

In this section, we move to a much more realistic cluster with orbital parameters

that represent a physical reality. We utilize the vis-viva equation which has a rather

simple expression for the orbital velocity of a tracer around a central point mass

v(r)2 = GM
(2

r
− 1

a

)
, (3.17)
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Figure 3.5: A representation of mock phase space showing the observed maximum
line-of-sight velocity versus the projected radius for galaxies moving at
the 3D escape speed. This is not a realistic system, since all galaxies
have a fixed γ(r) which can then be mapped to the velocity anisotropy
parameter βesc. In the case where all galaxies are on tangential orbits
β = −99, the projected maximum velocities will populate the 3D escape
velocity profile. Galaxies with radial orbits never populate vesc(r), except
in the inner core. Galaxies with “isotropic” motion populate the region
around vesc/

√
2, which is about the same level of suppression observed in

simulations and in real data.

where G is gravitational constant, M is a mass of a point mass, r is a distance of an

object from the central point mass and a is a semi-major axis of the object’s orbit.

While the central point mass is a good starting point, it is rather unrealistic for

the type of systems we work with. To properly describe the total physical velocity

of a galaxy, we need to derive the vis-viva equation in the framework of an extended

mass and with cosmological background.

We use the the semi-major axis (a) and semi-minor axis (b) as parameters to

describe ellipses. However, it is easier to derive velocity equations in a non-point-like

central mass gravitational field using apsides (minimum (rmin) and maximum (rmax)
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distances from the focus to the ellipse, i.e. the elliptical orbit of the galaxies). By

definition

a =
rmin + rmax

2
,

b =
√
rminrmax.

Using these two definitions, we can express

ra ≡ rmin =
b2

a+
√
a2 − b2

, (3.18)

rp ≡ rmax = a+
√
a2 − b2. (3.19)

To find the total velocity of a galaxy on elliptical orbit we follow the nominal steps

used in the derivation of the vis-viva equation. We know that the total energy is a

conserved quantity, i.e. E/m = v(r)2

2
+ Φ(r) = const. We can write this expression

for both ra and rp

v(ra)
2

2
+ Φ(ra) =

v(rp)
2

2
+ Φ(rp).

Using conservation of angular momentum (rav(ra) = rpv(rp)) and adding to both

sides Φ(ra)

v(ra)
2

2
+ Φ(ra) = (Φ(rp)− Φ(ra))

r2
p

r2
p − r2

a

+ Φ(ra). (3.20)

Due to the energy conservation, we can rewrite the above expression for any radial

distance by substituting ra by r

E/m =
v(r)2

2
+ Φ(r) = (Φ(rp)− Φ(ra))

r2
p

r2
p − r2

a

+ Φ(ra), (3.21)
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Figure 3.6: Schematic description of the projected view of the galaxyG by observer A.
xyz coordinate system is chosen, so that an elliptical orbit of the galaxy
G is placed on xy plane. A1 is the projected position of the observer on
xz plane, O is the center of coordinate system xyz and the center of the
cluster, which is in the focal point of the elliptical orbit of the galaxy G.
θ is the angle between the line OG and x-axis and describes position of
the galaxy on its orbit, η is the angle between the line OA1 and x-axis,
ξ is the angle between the lines OA and OA1. η and ξ describe relative
position of the observer and the orbit of a galaxy. r = OG, the physical
distance between center of the cluster O and galaxy G, is ≥ r⊥, where
r⊥ is projected distance between galaxy G and the center O along line of
sight OA, i.e. r⊥ is the distance between O and G as seen by observer A.
R = OA is the distance between observer and the center of the cluster.

where on the right hand side we have a constant which depends on the semi-major

and semi-minor axes.

The total velocity is then a function of r and can be derived from 3.21

v =
√

2(P − Φ(r)), (3.22)

where P = (Φ(rp)−Φ(ra))
r2p

r2p−r2a
+ Φ(ra). In the case of high ellipticity (i.e. rp � ra)

P → Φ(rp), which is the same case as for a point mass (equation 3.17).
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The total dynamical potential Φ(r) is a function of both the mass distribution

and cosmology. Overall, it can be derived from expressions 3.2 and 3.3

Φ(r) = φ(r)− φ(req) +
qH2[r2 − r2

eq]

2
, (3.23)

where φ(r) is described by Einasto model (Einasto, 1965)

ρe(r) = ρ0 exp

[
−
(
r

r0

)1/n
]
. (3.24)

By using integral form of the Poisson equation, gravitational potential can be derived

(Retana-Montenegro et al., 2012)

φe = −GM

r

[
1−

Γ
(
3n,
(
r
r0

)1/n)
Γ(3n)

+
r

r0

Γ
(
2n,
(
r
r0

)1/n)
Γ(3n)

]
, (3.25)

where ρ0, r0 and n are the parameters of the Einasto model and Γ(a, b) =
∫∞
b
ta−1e−tdt

is an incomplete gamma function. We use the Einasto model instead of other models

such as NFW (Navarro et al., 1996, 1997), since it correctly predicts escape velocity

profiles in full N-body simulated halos (Miller et al., 2016).

3.5.1 Keplerian orbits from a distant observer’s point of view

To find the phase space in a projected view, we need to derive the projected

distance between a galaxy and the center of a cluster and the projected velocity as

seen by the observer. To assist in the derivation, we refer the reader to the schematic

representation of the geometry in Figure 3.6.

3.5.1.1 Projected distance

To find the expression for the projected distance r⊥ as seen by the observer (see

figure 3.6), we need to find x - distance from the center of the cluster O and the point
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of intersection of perpendicular from the point G on OA and OA itself.

The position of the observer in terms of the spherical coordinates is

xA = R cos ξ cos η

yA = R sin ξ cos η

zA = R sin η.

The position of the galaxy is

xG = r cos θ

yG = r sin θ

zG = 0,

where in this derivation we have placed the galaxy in the x− y plane.

Knowing the distance from the observer to the galaxy

rAG =
√

(xA − xG)2 + (yA − yG)2 + (zA − zG)2 (3.26)

and using the fact that r⊥ is perpendicular to OA

r2
⊥ = r2 − x2 = r2

AG − (R− x)2,

we can find the expression for the x distance

x =
R2 + r2 − r2

AG

2R
.

From Pythagorean theorem the projected distance is then

r⊥ =
√
r2 − x2. (3.27)
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3.5.1.2 Projected velocity

To derive the projected velocity of a galaxy, we need to know the angle between

the total velocity vector (3.22) and the vector that connects the observer and the

galaxy, i.e.
−→
AG in figure 3.6. Using this angle, we can project the total velocity on

the line of sight.

We start with deriving velocity vector ~v. In order to do that we need to know tan-

gential and radial components of the total velocity 3.22. We enforce the conservation

of angular momentum

L ≡ rvt(r) = rava(ra), (3.28)

where we used the fact that at the apsides the radial component of the velocity is

zero. From equation 3.28 we get the tangential velocity component as a function of

angle θ

vt(θ) = (1 + e cos θ)

√
φ(rp)− φ(ra)

p(rp − ra)
, (3.29)

where we used the expression of a distance

r(θ) = p/(1 + e cos θ) (3.30)

and introduced parameter p = b2/a and eccentricity

e =
√

1− (b/a)2. (3.31)

Note, that from now on we use the angle θ (see figure 3.6) as the main parameter

that characterizes the position of the galaxy in its orbit. For elliptical orbits, θ = 0

represents the galaxy at its minimum distance from the focus or perihelion (ra) and

83



θ = 0 represents the galaxy at aphelion (rp).

The radial component of the total velocity (eq. 3.22) is

vr(θ) =
√
v(θ)2 − vt(θ)2, (3.32)

where the total velocity is a function of the angle θ instead of the distance r, which

is done by using equation 3.30.

By knowing the lengths of the individual components of ~v, we can determine an

expression for ~v in the xyz coordinate system. ~vr is on the line OG and it is pointing

towards O. Using coordinates of the point G (see subsection 3.5.1.1)

~vr = [vr cos θ, vr sin θ, 0], (3.33)

where the magnitude vr is expressed in equation 3.32.

Since both ~v and ~vr have zero z component, we can present vector ~vt in terms of

the magnitude of the vt and some angle θ1, i.e. ~vt = [vt cos θ1, vt sin θ1, 0]. Knowing

that ~vt is perpendicular to ~vr, we can find θ1 by taking the scalar product ~vt · ~vr,

which is equal to zero due to the perpendicularity of two vectors. After doing some

straightforward calculations, one can show that

θ1 = arctan (− cot θ). (3.34)

Finally, we arrive at an expression for the vector description of the total velocity

~v = [vt cos θ1 + vr cos θ, vt sin θ1 + vr sin θ, 0], (3.35)

where angle θ1 is a function of the angle θ and the magnitudes of vt and vr are

expressed in equations 3.29 and 3.32 respectively.
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Vector
−→
AG can be expressed using coordinates of points A and G (see subsection

3.5.1.1)

−→
AG = [r cos θ −R cos ξ cos η, r sin θ −R sin ξ cos η,−R sin η]. (3.36)

Projection of the vector ~v on
−→
AG can be found using expression of the angle (we

call it θ2) between the two vectors (i.e. cos θ2 = ~v
−→
AG

|~v||
−→
AG|

). We then arrive at our final

expression of the velocity along line-of-sight, which is

vlos =
~v
−→
AG

|−→AG|
. (3.37)

3.5.2 Energy ratio for Keplerian Orbits in an Extended Mass Profile

Later, will show that the ratio between a galaxy’s kinetic to potential energy

places constraints on the maximum possible observed line-of-sight velocity. For a

point mass, this ratio is simply 1/2 in a virialized orbital system (Eddington, 1916).

To derive the ratio between the kinetic to potential energy for an extended mass

source, we start with the force balance equation

−dφ
dr

=
v2

r
, (3.38)

where we cancelled the mass of the tracer, m. By definition, kinetic energy per unit

mass is k = v2/2. To find a simple analytical expression for φ, instead of the bulky

Einasto potential (3.25), we use the expression for the NFW potential (Navarro et al.,

1996)

φ(r) = −4πGρ0(r0)2 ln(r/r0 + 1)

r/r0

= −c ln(r/r0 + 1)

r
, (3.39)
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where c is a constant. ρ0 and r0 are parameters of the model. Taking the derivative

with respect to r, we find the following expression for kinetic energy

dφ

dr
=
c ln(r/r0 + 1)

r2
− c/r0

r(r/r0 + 1)
. (3.40)

Note that a point mass does not have the log contribution, i.e. no second term in

derivative and no ln in the first term in derivative: dφ/dr = c/r2. From here we can

get expression for kinetic energy

k = −0.5
(c ln(r/r0 + 1)

r
− c/r0

r/r0 + 1

)
. (3.41)

The ratio of the kinetic to potential energy in the NFW case without a cosmological

background is then

k

φ
=

1

2
− 1

2 ln(r/r0 + 1)

1

1 + r0/r
. (3.42)

Compared to a point mass, for the extended mass distribution the ratio is not a

constant (1
2
), but is a function of r/r0. Moreover, we can notice that the energy ratio

for the NFW profile is smaller than for the point mass source due to the negative

second term in equation 3.42.  Lokas and Mamon (2001) evaluated this ratio in the

context of the Jeans equation for an entire cluster and a given anisotropy profile. Our

context is much different, with a focus on individual galaxy orbits. In what follows,

we also require a cosmological background.
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3.5.3 Energy ratio in a Cosmological Background

To incorporate cosmology we change from the gravitational form φ to the total

potential Φ using equation 3.23

u(r) = −vesc
2

= φ(r)− φ(req) +
q(z)H2(z)[r2 − r2

eq]

2
. (3.43)

We can then express the energy ratio

k

u
=
P − u(r)

u(r)
=

u(rp)

u(r)
r2
p − u(ra)

u(r)
r2
a

r2
p − r2

a

− 1, (3.44)

where ra and rp are functions of minimum (perihelion) and maximum (aphelion)

distance from the center of the cluster to the galaxy on an elliptical orbit (equation

3.18).

We show the energy ratio in Figure 3.7 for a galaxy with an perihelion distance of

1Mpc and on various orbits with different eccentricities. We show four locations in the

galaxy’s orbit with 0 degrees at perihelion (top left) and approaching aphelion at 180

degrees. We note that there is a maximum allowed eccentricity, which is a function of

the perihelion distance ra and due to the ratio vtot/vesc being lower for smaller e. The

consequence of equation 3.1 in an accelerating space-time is that galaxies with orbits

that take them beyond req will escape. The reader can ignore the energy ratio beyond

this maximum eccentricity in Figure 3.7, where our formalism becomes meaningless.

Figure 3.7 is quite informative. We notice that the extended density profile lowers

the energy ratio. We also see that in a non-accelerating space-time, galaxies cannot

escape the cluster (i.e., requiring an energy ratio > 1). Adding in the acceleration

term changes the potential by lowering it and thus raising the energy ratio. As a

galaxy just above a ratio of one at perihelion approached aphelion, it ends up with

an energy ratio that enables escape. This does not mean that the galaxy’s is sped
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Figure 3.7: The ratio of kinetic (k) to potential (u) energy as a function of eccentricity
for a mock cluster and fixed perihelion distance of ra = 1Mpc. Galaxies
with ratios near one will populate the escape edge of a cluster phase-space
and those even slightly above one will escape at some point. The gray
band delimits the eccentricity such that galaxies with those orbits will
gain enough energy to escape from the system and so the ratio can be
ignored. The extended density profile lowers the ratio while adding in
an accelerating space-time raises the ratio. The top left plot shows the
galaxy at perihelion, where it is moving the fastest where eccentricities
above ∼ 0.8 will enable future escape. As the galaxy approaches aphelion
(180 degrees), we see that those galaxies with the highest eccentricities
can reach ratios such that they escape. As we increase (decrease) the
perihelion distance the gray band moves left (right), but the curves remain
the same. This implies that we will have fewer galaxies to populate the
escape edge in cluster outskirts (i.e. near aphelion).
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up during its orbit which would be unphysical. It simply means that an accelerating

space-time changes the energy boundary for escape. The effect is amplified with the

shape of the orbit, such that radial orbits are more likely to escape.

Figure 3.7 explains what previous researchers have characterized about particles

escaping a cluster in simulations. Behroozi et al. (2013a) found that kinetic and

potential energies are a poor predictor of escape and that orbits matter. They also

found that the mass fraction of unbound particles increases towards the edges of halos

and decreases significantly at higher redshifts. Our analytical approach can explain

each of these findings. Miller et al. (2016) showed that the phase space dynamical

radial escape edge in simulations requires a potential of the form in equation 3.43,

i.e. that particles must have escaped over time as acceleration kicks in. They also

show that this effect becomes lessened with increasing redshift. Again, both of these

findings can be explained by considering the energy ratio for a galaxy inside an

extended mass profile having a Keplerian orbit.

Finally, we return to our main purpose of observing vesc. Figure 3.7 shows that

galaxies moving at their escape speeds will be near their perihelion. If we re-make

the orbits using a galaxy with a smaller ra (perihelion distance), the gray band will

shift to right and then our system can have galaxies with higher eccentricities and

those galaxies can populate the escape edge. On the other hand, as the perihelion

distance of a galaxy increases, the gray band moves towards smaller eccentricities

and a galaxy is less able to ever reach escape speeds. This places a constraint on the

vesc that we are able to actually observe. A galaxy with a large perihelion distances

and which lives in the outskirts will populate the region below the escape edge in the

radius/velocity phase-space, but not contribute to it.
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3.5.3.1 Observed Velocities for Galaxies on Elliptical Orbits

In the previous subsection we showed that some galaxies inside an extended mass

profile having Keplerian orbits within a cosmological background can populate the

escape edge of the radius/velocity phase space. The question remains as to whether

this velocity is observable given the line-of-sight projection. In this subsection we

focus on the case with zero azimuthal velocity component (η = 0 on figure 3.6) and

consider observer’s line of sight being parallel to the orbit of the galaxy. This allows

us to focus on the maximum possible observed velocity.

We first note that for the distances between the galaxy and the observer, which

are large enough to allow for the use of small-angle approximation, the specific choice

of distance does not matter. We then require a new angle, which is the orientation of

the semi-major axis of the galaxy’s orbit with respect to the observer. In Figure 3.6,

this is noted as ξ, where ξ = 0 is the semi-major axis aligned with the line-of-sight

and ξ = ±90 perpendicular to the line-of-sight. In both cases, the observer is aligned

with the focus of the ellipse.

In Figure 3.8, we plot the escape velocity, the galaxy total velocity in 3D, and the

observed line-of-sight velocity as a function of the orbit location for two eccentricities

and from two viewing angles. Galaxies with low eccentricity never reach escape speeds

whereas for high eccentricity they do. This is consistent with Figure 3.7. When the

semi-major axis is aligned along the line-of-sight (left and middle panels), there are

many regions in the orbit where the observed vlos captures the full 3D speed. In

the case of high eccentricity, this occurs closer to aphelion, which on the sky will be

towards the inner region of its projected orbit. For an orbit aligned with the semi-

minor axis (right panel), vlos captures the full velocity at perihelion, which is also

near the inner region of the orbit. For a cluster with galaxies of high eccentricity

but randomly orientated orbital axes, an observer would have many opportunities

to observe velocities at their full escape speed, but only for the inner regions of the
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(a) (b)

(c)

Figure 3.8: We plot the escape velocity, the galaxy total velocity in 3D, and the ob-
served line-of-sight velocity as a function of the orbit location for two
eccentricities and from two viewing angles (ξ). Galaxies with low eccen-
tricity never reach escape speeds whereas for high eccentricity they do.
This is consistent with Figure 3.7. When the semi-major axis is aligned
along the line-of-sight (top panels), there are many regions in the orbit
where the observed vlos captures the full 3D speed. In the case of high
eccentricity, this occurs closer to aphelion. For an orbit aligned with the
semi-minor axis (bottom panel), vlos captures the full velocity at per-
ihelion. For a cluster with galaxies of high eccentricity but randomly
orientated orbital axes, an observer would have many opportunities to
observe velocities at their full escape speed.
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cluster.

3.5.4 Quantifying the Escape Velocity Suppression

To quantify the projected escape velocity edge to the 3D edge, we introduce the

ratio of the maximum possible observed velocity vlos,esc to the escape velocity (vesc)

Zv(r⊥) =
vlos,esc(r⊥)

vesc(r⊥)
. (3.45)

This ratio quantifies the suppression of the 3D escape edge due to all of the effects

discussed in this section and exemplified in Figure 3.8. This is all because of the fact

that a distant observer only has one line-of-sight to the galaxy orbits.

We plot Zv in Figure 3.9. In section 3.4, we argued that even from one position

the distant observer is able to observe the actual vesc for any radii with high enough

number galaxies per cluster. From this figure we see that this is only the case out to

∼ r200.

In agreement with the statement in subsection 3.4.3, observing galaxies with vlos ≈

vesc is a very challenging task (the second Kepler’s law (0.5Pr2 dθ
dt

= πab) is one of the

reasons, e.g. see figure 3.10) and due to a limited number of galaxies the observed ratio

Zv (3.45) is higher than the theoretically predicted value simply due to sampling. The

higher number of galaxies per cluster (N) we observe, the higher chance of observing

galaxies that satisfy the above conditions which pushes vlos,esc closer to vesc. In order

to actually figure out the ratio Zv for each individual cluster, we can create our own

mock cluster by populating with galaxies on Keplerian orbits. From this, we can

create statistical samples based purely on the analytical formulism described in this

section.
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Figure 3.9: The ratio of maximum possibly observed velocity to the escape velocity
(3.45). While the effect is significant at high r⊥ it is small in the area
of our interest when we work with the real data where we focus only on
small distance, i.e. 0.3 × r200 < r⊥ < r200. The change in the ratio Zv
reaches only 1% at r200 which is smaller than the ordinary uncertainty on
the weak lensing data (∼ 20− 30%).

3.6 Statistical Approach

The statistical approach is based on the idea that we can create a cluster which

would mimic the basic characteristics of a given galaxy cluster (observed or N-body

simulated). To do so, we randomly place galaxies inside of the clusters while forcing

them to satisfy several constraints:

1. The galaxies must be on Keplerian orbits.

2. The projected dispersion profile of simulated galaxies must match with high

precision the given dispersion profile of the cluster of interest.

3. The normalized density profile must match the weak lensing mass density pro-

file.

4. The number of galaxies inside of the range 0.3× r200 < r < r200 should be the
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Figure 3.10: The top figure presents the time to cover ∆θ = 1◦ by the galaxy on
elliptical orbit relatively to the period of one rotation, i.e. t(θ,∆θ =
1◦)/P . The bottom figure shows the actual velocity vtot galaxy has on
each of the angular positions θ.

same as of a given cluster.

While on the first glace this approach lacks crucial characteristics, meaning we do

not take into account gravitational interactions (galaxy-galaxy, galaxy-DM etc.), we

show on simulations that for our purpose we can safely neglect it.

3.6.1 Approach step-by-step realization

The approach consists of several steps. We describe these steps in this subsections.

3.6.1.1 Step #1

Infer from any given cluster several characteristics:

1. Parameters (r0, ρ0, n0) of the Einasto model (3.24) which describe matter den-

sity distribution (ρw) obtained from weak lensing (green line on the bottom left

figure 3.11).

94



Figure 3.11: To create an analytical mocked cluster phase-space, we first need to
be provided an Einasto density profile, a projected velocity dispersion
profile and an observed richness measured between a projected 0.3 ≤
r/r200 ≤ 1. The mock cluster is then generated by selecting galaxies
with positions and velocities from a random selection of Keplerian orbits
in a cosmological background such that it matches (a) the 3D density
distribution; (2) the projected velocity dispersion; (3) the richness. The
top figure is an example phase space of a simulated cluster which is
populated by 250 galaxies. The 3D escape edge is shown in red and the
measured edge (top 1%) is shown in green. Green and red lines on the
bottom left (right) figure are the density (dispersion) profiles. In this
case, we are mocking a cluster from the Millennium simulation and we
also show the 3D velocity dispersion profile in blue.
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Figure 3.12: We apply the first 5 steps multiple times to find the average prediction
for Zv and its scatter. The thin blue lines are the velocity ratio (Zv =
vesc/vlos,esc) of 50 individual clusters created by 50 repeats of steps #2-
5. Thick blue line and blue shaded region around it are the median
and 67% scatter around it of 50 thin blue lines. The thick black line
is the actual Zv of a given cluster, which is available in this case since
it is from a simulation. We see that for this one cluster, our analytical
prediction of Zv agrees quite well with the observed suppression in the
N-body simulation.

2. Number of galaxies (N) in the projected phase space in the area 0.3 × r200 <

r⊥ < r200.

3. Dispersion profile σ(r) (3.7) (green line on the bottom right figure 3.11).

4. Maximum velocity profile of the projected phase space (vlos,esc). As it was

mentioned above in the subsection 3.3.2, the interloper removal prescription

proposed by Gifford et al. (2013) is followed to infer the edge of the phase

space.
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This provides us all the needed information about a given cluster.

3.6.1.2 Step #2

Apsides rmin and rmax (see section 3.5) are used to describe elliptical orbits of

galaxies. Apsides of individual galaxies are randomly chosen from a given distribution

rmin = A1pn(A2, A3) (3.46)

rmax = B1pn(B2, B3), (3.47)

where A2, B2 are the means and A3, B3 are standard deviations of Gaussian distribu-

tion pn(µ, σ).

Parameters Ai, Bi (i = 1 : 3) are drawn randomly from distributions

A1 = pu(0, r200)

A2 = pu(0, r200)

A3 = pu(0, req)

B1 = pu(0, 2× r200)

B2 = pu(0, 2× r200)

B3 = pu(0, req),

where pu(s1, s2) is a uniform distribution inside range (s1 − s2). While above param-

eters are drawn randomly, the resulting rmin and rmax has to satisfy basic condition:

req > rmax > rmin > 0.

Note, each cluster is characterized by Ai, Bi (i = 1 : 3), i.e. Ai, Bi are drawn just

once to describe the cluster, so all the galaxies in the cluster have apsides which are

drawn from a fix distribution.
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3.6.1.3 Step #3

Position of a galaxy on its elliptical orbit is described by angle θ and position of the

orbit relatively to the observer is described by angles ξ and η (see figure 3.6). Angles

ξ and η are drawn from a uniform distribution pu(0, 2π) while angle θ is drawn from

normal distribution pn(π, 0.5π) to account for time effect described on figure 3.10.

The distance from the observer to the center of the cluster is calculated based on the

redshift and cosmological parameters

R =
c

H0

zg∫
0

dz′

E(z′)
, (3.48)

where E(z) =
√

ΩΛ + ΩM(1 + z)3.

3.6.1.4 Step #4

Procedure from steps #2 and #3 is repeated until number of galaxies in the range

0.3 × r200 < r⊥ < r200 becomes equal to the number of galaxies of a given cluster.

This ends creation of the simulated cluster (see top panel on figure 3.11).

Dispersion profile is calculated using created cluster (red line on the bottom right

figure 3.11).

From distribution of galaxies of the created cluster, profile of galaxy density distri-

bution (ρg) is calculated (red line on the bottom left figure 3.11). Mass Mg = 1011M�

is assigned to each galaxy. Since we want created cluster to have density equal to

the density of a given cluster, to compare with weak lensing profile (which is always

higher due to a presence of dark matter), normalization needs to be applied. Normal-

ization is done by multiplying galaxy density distribution by ρw(rs)/ρg(rs), where rs

is close to the core and in what follows rs = 0.1× r200 (the choice is motivated by the

real clusters which have bad quality of the data at small radii).
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3.6.1.5 Step #5

Both dispersion and galaxy cluster density is compared with dispersion and weak

lensing density of a given cluster. The comparison is done by calculating the difference

between logarithms of two profiles

∆ρ =
∑
i

(log(ρw(ri))− log(ρg(ri)))
2

∆σ =
∑
i

(log(σw(ri))− log(σg(ri)))
2

where ri = [0.2, 0.98]× r200 with a step ∆r = 0.13× r200.

Upper limits ∆ρmax and ∆σmax are placed on quantities ∆ρ and ∆σ. If any of these

two quantities are higher than upper limit, the cluster is disregarded and all the steps

#2-5 are repeated (Ai, Bi are redrawn as well) until both of these quantities lower

than upper limits ∆ρmax and ∆σmax. The choice of upper limits is discussed below in

section 3.7 and it is based on comparison with Millennium simulations (section 3.7).

Some of the clusters are disregarded to make sure that only clusters with a similar

characteristics (density and dispersion) as of a given cluster are used in the step #6.

3.6.1.6 Step #6

Based on steps #2-5, total Ncl = 50 clusters are created (thing blue lines on

figure 3.12 are the ratio of vesc to vlos,esc which are individually red and green lines

on the top panel on figure 3.11). The median and 67% scatter around the median

are calculated based on individual clusters. Overall, we can see based on this one

cluster from Millennium simulations (section 3.7) that approach has predicting power

(compare black and thick blue lines on figure 3.12) which we test in section 3.7 based

on 100 simulated halos.
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Figure 3.13: The ratio of the escape velocity to the observed phase space edge
(vesc/vlos,esc) by increasing the number of galaxies per cluster in the
range 0.3×r200−r200 while mass and dispersion are kept without change.
Thick lines and shaded regions with the same colors on the left figure are
the medians and 67% scatters around them. The higher the number of
galaxies, the lower the ratio Zv with the case of high number of galaxies
(i.e. N = 1000) being only ∼ 10% away from 1 and for N = 104 (right
figure) vlos,esc ≈ vesc as substantial amount of galaxies are on escape ve-
locity profile. One can notice an agreement with theoretical derivation
depicted on figure 3.9 as for higher radii maximum observed velocity is
a few percent lower than vlos,esc, while for small radii up to ∼ 1 − 1.5
Mpc there are galaxies on red line.

3.6.2 Discussion of the approach

The key parts, which are needed to populate the projected phase space, are the

expressions of the projected distance r⊥ (3.27) and vlos (3.37) which are functions of

many parameters which can be combined into four groups:

1. Cosmological parameters: Hubble constant (H0), matter density (Ωm) and dark

energy density (ΩΛ = 1− Ωm).

2. Parameters that describe the galaxy cluster: redshift (z), total number of galax-

ies per cluster (N), dispersion profile, matter density distribution (in terms of
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Einasto parameters: r0, ρ0, n) as well as R200 and M200 which can be derived

from matted density distribution and cosmological parameters.

3. Description of the position and velocity of the galaxy inside of the cluster:

angle θ, distance from the center of the cluster to the galaxy (r). Note, that

while the total velocity relatively to the center of the cluster (v) is important

in simulations, we do not need to know it as the Keplerian orbit defines the

total velocity, i.e. all the parameters from these three groups define the total

velocity.

4. The parameters describe position of the observer: two spherical angles (η and

ξ) and the distance from the observer to the center of the cluster (R) which is

a redundant parameter of the parameters mentioned above as it is a function

of the redshift and cosmology.

Based on the approach we can not only predict vlos,esc for a given number of

galaxies, but also predict how vlos,esc will change if we get more observational data

from future surveys. Moreover, we can see that by increasing number of galaxies per

cluster the ratio Zv (3.45) decreases and moves closer to 1 which is equal to vlos,esc

increasing and moving closer to vesc (see figure 3.13).

3.7 Results

From here on we describe the algorithm defined in the previous section as our

“analytical model”. This is because it is based purely on an analytic description of

elliptical orbits in an extended mass profile and in a cosmological background. The

choice of orbital parameter and orientations is infinite, but they all obey Keplerian

dynamics. In order to create a mock cluster phase space, which is based on many

galaxies each at some locations in their respective orbits, we are required to use Monte

Carlo techniques to sample from the analytical formulae. Also as noted in the previous
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section, we are also required to first define the parameters which describe the system

itself, including the mass profile, the dispersion profile, and the number of phase space

galaxies. There is no unique projected phase space for any cluster. However, each

Monte Carlo realized phase space has the correct 3D escape profile (based on the

mass profile), the correct dispersion profile, and the correct phase space richness.

Once we have realized a projected phase space profile, we measure the maximum

velocity edge. We can create multiple realizations of a single cluster to place statistical

constraints on the measurement of the edge itself. Likewise, we are able to create

samples of different clusters with different mass profiles, change the cosmology, or

change the phase space sampling. In this section, we use a sample of simulated

halos and galaxy catalogs to quantify the precision and accuracy of the analytical

formalism.

The simulated data we use was based on the Millennium simulations (Springel

et al., 2005). Particles from these simulations are used to calculate Einasto mass

density profiles (equation 3.24) which we treat as observed weak lensing data. Overall,

100 halos are selected to test our approach. The masses are widely spread (9.3×1013−

1.03× 1015M�) with the average mass < M >= 2.34× 1014M� and < R200 >= 0.95

Mpc. To infer galaxies and the phase spaces in general, the semi-analytical galaxy

catalog from Guo et al. (2011) is used.

To cover a typical range of the number of galaxies per cluster (N) as of realistic

data, we create subsets of projected galaxy positions and velocities for these halos

using varying apparent magnitude limits. Since our goal is to compare how well our

approach predicts the observed edge in simulations, we project every simulated halo

and its semi-analytic galaxies to a distance of 30 Mpc and create projections for 100

random viewing angle orientations. We measure the average phase space edges and

calculate the average projected dispersion profiles and the average number of galaxies

in the projected region 0.3 × r200 < r < r200 and its scatter. Based on the number

102



of semi-analytic galaxies, the dispersion and the density profiles, our approach allows

us to predict the projected edge and compare to simulations.

The galaxy dataset with the bright magnitude limit provides clusters with pro-

jected phase space richnesses from 19 < Nl < 257 with the average number < Nl >=

58. While the deeper dataset contains around twice as many galaxies per cluster as

the set Nl: 40 < Nh < 525 with the average < Nh >= 118. Note, these sets are dif-

ferent descriptions of the same halos with the only difference being a higher number

of dimmer and less massive galaxies per cluster.

3.7.1 Velocity ratio of Millennium simulations as a function of number

of galaxies per cluster (N)

In subsection 3.6.2 we showed that when using a cluster with a mass profile,

dispersion profile, and phase space richness defined by a single halo in the Millennium

simulation, we were able to recover the true suppression ratio using our analytical

model (see figure 3.12). In that specific case, we used a single richness as defined by

the “observed” (i.e., line-of-sight projected) data after applying a specific magnitude

limit to a projected halo. We also used the observed projected velocity dispersion

profile and the underlying 3D mass profile to create the analytical mock Keplerian

system.

However, our premise is that the suppression value (Zv) should depend on the

phase space richness: we predict an increase in vlos,esc (or a decrease in the projected

suppression) as the number of galaxies per cluster increases. Our sample of Millen-

nium clusters is big enough to split it into 6 groups based on number of projected

phase space galaxies N : 0− 25, 25− 50, 50− 75, 75− 100, 100− 150, 150− 200 and

200+. The first four groups are taken from the bright magnitude dataset (Nl), while

the last two groups from the sample with a deeper magnitude limit (Nh). We treat

these datasets as being realistic observational data, such that the phase spaces are in
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Figure 3.14: Zv(r) (3.45) as a function of number of galaxies per cluster (N) for the
bright magnitude limit dataset (bins with Nl = 0− 150) and the deeper
dataset (bins with Nh = 150 − 525). Thick lines and shaded regions
with the same colors are the medians and 67% scatters around them.
Overall, we can easily detect clear consistency in this results with our
theoretical and the approach predictions, as the increase in the number
of galaxies per cluster in the range 0.3 × r200 − r200 from N = 0 − 25
all the way to N = 200 − 525 pushes the ratio Zv lower which is equal
to pushing maximum observed velocity vlos,esc higher and closer to the
escape velocity vesc. Moreover, the magnitudes of the ratios presented
on this figure practically match results presented on the left figure 3.13.

principle observable to these magnitude limits with typical astronomical instrumen-

tation. Recall that we are sampling the projected positions and velocities from the

Guo et al. (2011) semi-analytic galaxy catalogs projected to a distance of 30Mpc.
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Figure 3.15: Comparison cluster-by-cluster Millennium simulations (vlos,sims) with
the approach predictions (vlos,analytics) of vlos,esc for the 10 heaviest
systems with the masses typical observed clusters have (i.e. M200 =
3.7 × 1014 − 1.1 × 1015M�). Thick lines and shaded regions with cor-
responding colors are the weighted means and weighted errors around
these means. Blue (green) color correspond to the case with tight (weak)
density constraint and weak (tight) dispersion constraint. We can see
great predicting power of vlos,esc by the approach for the case with tight
dispersion and weak density constraint in the range of our interest (i.e.
0.3r200 − r200), while blue line is significantly off.

3.7.2 Cluster-by-cluster comparison Millennium simulations with the ap-

proach

We saw that our approach is capable of predicting vlos,esc profile for one cluster (see

figure 3.12). However, the main question is how well our approach predicts maximum

velocity profile for all the simulated halos available. Appears that the approach

predictions are statistically in a great agreement with measured vlos,esc profiles.

As it was discussed in section 3.6 step #5, we place upper limits on density
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(∆ρmax) and dispersion (∆σmax). It appears that results are not sensible to the

density constraints while highly sensible to dispersion constraints (compare green

and blue lines and shaded regions on figure 3.15). This allows us to conclude that

tight upper dispersion (density) limit is (not) required to produce precise prediction

of vlos,esc. It should be noted that despite placing tight density constraints, density

is fitted practically identically well (i.e. similar values of ∆ρ) for the case with very

high upper bound on density. This is due to the tight dispersion constraint and

the fact that velocities of individual galaxies are functions of gravitational potential,

which indirectly forces galaxies to satisfy density constraints. We conclude that when

creating a mock cluster phase space, it is more important to constrain against the

dispersion profile than the density profile. This is an obvious consequence of the

tight underlying connection between the velocity dispersion and the cluster mass

(e.g., Evrard et al. (2008)).

First, we can look at the halos with the masses of real clusters (Halenka and Miller ,

2018), i.e. M200 = 3.8× 1014 − 1.1× 1015M� and there are 10 halos in total with the

masses falling into this range. Both Nl and Nh sets produce great agreement with

the actual simulations (e.g. see green line on 3.15) and the approach predicts escape

velocity profile with ∼ 2% accuracy in the range 0.35r200 − 1.05r200 with weighted

errors not leaving tight 5% range.

Due to the way our approach is created (i.e. we create a cluster with the ran-

dom distributions and only then compare dispersion with a given dispersion), it is

computationally demanding and it is hard to place any sensible upper limit ∆σmax

which is different cluster-by-cluster since different clusters need different upper limit

on dispersion to produce vlos,esc close to the actual measured maximum observed ve-

locity (this happens mostly due to a bumpy shape of dispersion profile, e.g. green

and red lines on dispersion panel on figure 3.11). To solve both of these problems, we

simply run our approach 10 times and choose the one with the dispersion closest to
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a given dispersion, i.e. lowest ∆σ, while not choosing clusters based on ∆ρ. Based

on our analysis, it appears that 10 runs is enough as we draw galaxies with velocities

a priopi being functions of density. Moreover, using median and scatter allows us to

effectively drop those clusters which have bad vlos,esc.

The real systems used for analysis have at least 50 galaxies per cluster. We apply

10 runs approach to both simulated halo sets. Nl set has 45 of such systems, while

Nh has 96 (all but 4 halos have more than 50 galaxies). As we can see on the figure

3.16, the approach predicts correctly maximum observed velocity profile with ∼ 2%

accuracy in the range 0.4r200 − r200.

The success in predicting vlos,esc allows us to argue that the approach is capable

of correctly predicting maximum velocity edge by mimicking dispersion, density and

N of a given cluster.

3.7.3 Independence from anisotropy

Diaferio (1999) introduced the approach of connecting vesc and vlos,esc using the

anisotropy parameter β(r). As noted in section 3.3.2, this cannot be valid for multiple

reasons, including the fact that the 3D edge is in principle observable given enough

data and regardless of the average cluster anisotropy. We can test this with our

analytical model, since we can create mock cluster phase spaces that are otherwise

identical, except that they have different levels of (average) velocity anisotropy.

We do this by selecting galaxies from the orbits in Step 3, such that the radial

and tangential velocities produce the desired anisotropy. Of course when we do this,

we ensure that all nominal requirements are still met (e.g., on the density profile,

the dispersion profile, and the richness). With enough orbits, we are able to define

different mock clusters with different anisotropies. We can selectively keep galaxies

that are on elliptical orbits and at positions well beyond ra such that their velocities

are mostly radial. Similarly, we could choose to keep galaxies that are on more circular
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Figure 3.16: Comparison cluster-by-cluster of vlos,esc for Millennium simulations with
the approach predictions for the halos with > 50 galaxies per cluster in
the 0.3 × r200 − r200 range. Thick blue (green) line and shaded region
around it correspond to the mean and 1σ standard deviation around
the mean for the Nh (Nl) set with at least 50 galaxies. For each halo
from simulations (sims on the label) the median prediction of vlos,esc was
calculated for 50 clusters created by the approach (analytics on the label),
with each of these 50 clusters being chosen from 10 randomly created,
so it has the closest dispersion to the simulated halo out of these 10
clusters.

orbits or near ra, such that their tangential motion dominates. In practice, we simply

draw different distributions from the angle θ which defines a galaxy’s location in its

orbit (and thus its ratio of the radial versus tangential velocity).

To make this test, we create 50 clusters and split them into two bins: 25 clusters

with the highest β and 25 with the lowest (see green and blue lines on the bottom

figures 3.17). We then measure the suppression ration Zv. We created 4 bins in

anisotropy with average values β ∼ -2.5, -1, 0, +0.5, which spans the range of possible

values that is currently seen in data and simulations Stark et al. (2019). For each of
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Figure 3.17: The top panel shows the velocity ratio Zv for a typical cluster modeled
on a specific cluster from the Millennium sample. The bottom panel
shows the anisotropy profile for 25 realizations of this mock cluster after
choosing galaxies such that their orbits are either mostly radial (β = 0.5)
or mostly isotropic β = 0. As we see in the top panel, the suppression
ratio is independent of anisotropy. This independence between Zv and
β holds down to at least β = −2.5, where galaxies are mostly on a
tangential component of their orbit.
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these 4 average values of β the suppression is the same (e.g. see figure 3.17 for β ≈ 0

and ≈ 0.5), which allows us to conclude that the suppression ratio is independent of

anisotropy in the range −2.5 ≤ β ≤ 0.5.

3.7.4 Mass and cosmology independence

The goal of this subsection is to show that for the clusters with different masses

and for different cosmologies, but the same N the ratio Zv is the same. This way

we can create a map or grid of ratios as a function of N which would allow us to

test cosmology, since we know measured vlos,esc from the data and vesc changes with

cosmology.

3.7.4.1 Indirect dependence of vlos,esc from cosmology

First, we see that for a fixed dispersion, but for different cosmologies we get the

same vlos,esc, i.e. the approach populates clusters with galaxies individual velocities

of which are calculated for different cosmological parameters. Results on figure 3.18

show that for a very wide range of cosmologies, vlos,esc is practically unchanged. Note,

in reality dispersion does change with the change in cosmological background, but

we fix it unchanged (i.e. as if we have same dispersion in different environments),

which leads to the conclusion of independence of vlos,esc from cosmological background

directly, while it is highly dependent of dispersion profile. This makes vlos,esc depend

on cosmology indirectly as evolution of the cluster and subsequently dispersion would

change for different cosmologies.

3.7.4.2 Zv independence from cosmology and mass

Overall, we can not test and prove independence using the approach or simula-

tions alone: the approach needs dispersion (i.e. we need to know mapped dispersion

with mass and cosmology), but we do not know how dispersion and mass are con-
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Figure 3.18: vlos,esc for a fixed velocity dispersion (σ), but in different cosmological
backgrounds (different h0 and Ωm parameters), the approach was applied
to create cluster with mimicking dispersion of a given system. h =
1,Ωm = 0.25 is the true cosmology. There is practically no change in
the maximum observed velocity profile for a fixed σ.

nected. Millennium simulations have direct correlation between number of galaxies

and masses, i.e. the higher N consequently the higher m200, so we can not split data

into several mass bins with the same number of galaxies to test our hypothesis. For-

tunately, there is a way to combine the approach with simulations. We need to follow

several steps:

1. We know from simulations correct dispersion, cosmology, number of galaxies

and matter distribution profile.

2. Using the approach we fit it in a traditional manner (i.e. apply the approach)

which allows us to create multiple copies of a given cluster.
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3. We know how the velocities and positions change with the change in matter

distribution and cosmology (see 3.22 and 3.27). We change individual galaxy

velocities and positions according to these expressions (e.g. see figure 3.19,

where for different matter distributions positions of the galaxies on the phase-

space change).

4. New ”modified” clusters is used to measure new variance and vnewlos,esc (see thick

lines on figure 3.19).

5. Compare Znew
v = vnewesc /v

new
los,esc (where new means new mass or cosmology) with

the old original Zv. If the original idea about independence of the ratio from

cosmology and mass is correct, we will get Znew
v = Zv.

While by fitting the same dispersion for different cosmological backgrounds or

equivalently matter distributions produces the same vlos,esc (see previous subsection),

change in cosmology should change dispersion itself. We can see it on figure 3.19,

where for different matter distributions individual positions and velocities do change,

which in turn changes maximum observed velocity profile as well as dispersion itself.

Calculating Znew
v for a wide range of cosmological parameters and masses, we see

that the velocity ratio Zv does not change much at all (see figure 3.20), while on the

first glance a significant change in the mass of the cluster is observed (see figure 3.19).

This effect is due to a synchronization of changes in both escape velocity profile and

vlos,esc and these changes practically (∼ 3 − 4 times smaller than the 67% scatter)

cancel each other out which leads to the proof of independence of the velocity ratio

from cosmological parameters and mass of the cluster as we change all 3 parameters

in the very wide region, i.e. Ωm = 0− 0.5, h0 = 0.7− 1.3 and mass was increased and

decreased by 20%.

This analysis reinforces the important concept which is the premise of this chap-

ter: the suppression of the 3D to 2D escape edge is due to statistical sampling alone.
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Figure 3.19: One cluster with a given from simulations dispersion, density and num-
ber of galaxies. Using approach a mock cluster is created. Since we
know all the characteristics of individual galaxies, we can calculate how
they will change due to the change of gravitational potential, which is a
function of mass of the cluster, Hubble constant and Ωm. While results
are presented only for change in ρ (amplitude of matter density), similar
changes on phase-space diagram occur when Ωm and h0 change.

Having searched for Zv dependencies on velocity anisotropy, cluster mass, and cos-

mology and found none, the remaining choice is to identify the dependence on the

number of phase-space galaxies.

3.7.5 Velocity ratio as a function of number of galaxies

Since it was shown above, that Zv is independent of the cosmology and mass of

the cluster and the approach predicts correctly observed velocity profile, we can find

velocity ratio simply by running approach for a specific cluster with different number

of galaxies. This does not change vesc (no mass, cosmology changes), but substantially
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Figure 3.20: One cluster with a given from simulations dispersion, density and num-
ber of galaxies. Using approach 100 mock clusters are created. Since we
know all the characteristics of individual galaxies, we can calculate how
they will change due to gravitational potential change by changing mass
of the cluster (top left), Hubble constant (top right) and Ωm (bottom).
Label ρ means the proportion of the total mass of the given system. The
change in cosmological parameters or mass changes the ratio Zv ∼ 3− 4
times less that the uncertainty of the approach, which allows us to safely
count Zv as being constant.
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Figure 3.21: Velocity ratio Zv as a function of number of galaxies. To find veloc-
ity ratio which is independent of cosmology and mass of a cluster (see
subsection 3.7.4), we use a cluster and change number of galaxies (N)
while measuring both vesc and vlos,esc to calculate velocity ratio. Left:
thick lines and shaded regions correspond to medians and 67% scatters
around the medians by measuring at 3 radial positions: 0.3R200 (blue),
0.5R200 (red) and R200 (green). Note, suppression function is clearly
moving towards unity in logarithmic scale. Right: statistical analysis
of Nh = 100 clusters at 0.3R200 (blue), 0.5R200 (red), R200 (green) and
best-fit (black solid and dashed lines) fitted to the red line and shaded
region based on functional form 3.49. Solid lines and shaded region with
the same color correspond to the weighted means and weighted errors
around the weighted means of 100 individual lines (e.g. see left figure).
Black (yellow) dots are individual velocity ratios measured at 0.5R200 of
systems from Millennium simulations set Nl (Nh). Note, while results
are presented for Nh set, identical results (change < 2%) are produced
by Nl > 50 set. Black (yellow) error bars on the left (right) figure are the
means and 1σ standard deviations of the scatter based on Millennium
clusters and 30 lines of sight to each cluster (particle instead of galaxies
were utilized to achieve high richness N).
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changes vlos,esc (due to change in N).

We measure median and 67% scatter at 3 points along radial axis: 0.3R200, 0.5R200

and R200. We can see clearly that suppression goes to 1 at high N and by N = 104 it

is 7% away from being Zv = 1 (see left figure 3.21). While the ratio looks the same at

difference radii for one specific case (see left figure 3.21), it is actually the same only

for 0.5R200 and R200, while being slightly lower (by ∼ 2%) for 0.3R200 case, which is

in agreement with prior results (e.g. see figure 3.13) as we saw that at 0.3R200 our

approach overestimates vlos,esc. This result also implies that the ratio is constant for

different radii. This allows us to focus our statistical analysis of velocity ratio at one

radial point and without loss of generality we use r = 0.5R200.

Overall, we can see clear inverse power-law functional form of the velocity ratio.

This allows us to propose the following power-law model

Zv(N) = 1+
(N0

N

)λ
, (3.49)

where N0 and λ are the parameters of the model.

The best-fit model of statistically analyzed velocity ratio of 100 halos from Nh

sample (red line on right figure 3.21) is presented as solid and dashed black lines on

the right figure 3.21 with the best-fit parameters: N0 = 14.205, λ = 0.467 (the bottom

error bar line: N0 = 3.213, λ = 0.392, the top error bar line: N0 = 35.822, λ = 0.454).

This result correlates well with individual ratios from Millennium simulations (see

black and yellow dots on the right figure 3.21). Moreover, much greater agreement of

the approach is with the Millennium simulation when 30 different lines of sight were

used to quantify suppression (see black (yellow) error bars on the left (right) figure

3.21). Note, that in this case particles instead of galaxies were used to achieve high

richness. This high level of agreement supports the choice of the functional form of

the suppression (3.49) and the corresponding best-fit values of the parameters of the
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model.

3.8 Discussion and Conclusions

In this work we showed that in projected phase space the full 3D escape velocity

can be measured with 1% accuracy at small radii (see subsection 3.5.3.1). Unfortu-

nately, to do that we need a lot of galaxies and in reality we do not have high enough

number of galaxies to actually fill out the phase space to have enough galaxies to

contribute to the edge. To find how much we underestimate escape velocity profile

on a cluster-by-cluster basis, we created a novel approach of predicting it, which is

based on the idea of creating a mock cluster with a galaxies on Keplerian orbits so

that they satisfy several constraints such as the mock cluster should have the same

number of galaxies, identical dispersion and matter density profiles as a given cluster.

The general idea is to develop a way of predicting based on the phase space and

the density distribution the actual observed edge on the phase space diagrams. While

we create the simplified version of simulations which does not take into account any

interactions between particles (or galaxies and dark matter), it allows us to quickly

estimate the actual observed edge. This is in contrast to conventional simulations

which would require heavy computations to run one round of simulations as well

as traditional simulations do not allow us to control specific characteristics of the

clusters, which is extremely important for us to be able to correctly estimate the

actual observed edge of the real galaxy clusters (we simply use as a granted mass

distribution from weak lensing and galaxy distribution on the phase space diagram).

Being able to change by our choice all the mentioned above characteristics of galaxy

clusters is an extremely powerful tool. One of the main applications is that we

can utilize phase spaces to test variety of gravitational models and place constraints

on cosmological parameters. Previously, people did use galaxy clusters for these

applications. However, they utilize only one data point per clusters as their focus was
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explicitly on equilibrium radius req (point at which gravitational push by matter of a

cluster is equal to the gravitational pull by dark energy). In contrast, our approach

allows to utilize the whole phase-space, which gives us 6 − 10 (depending on the

binning approach utilized) data points per cluster. Moreover, these data points are in

the most sensitive regions where the gravity is the strongest and precision of the data

is the highest. It has a big potential in allowing us to place high precision constraints

on the parameters and models of interest while utilizing the full constraining power

of the phase-spaces of the galaxy clusters.

There were no attempts in the literature to connect the ratio of escape velocity

profile to the observed edge (Zv = vesc/vlos,esc) with the number of galaxies per

clusters. Moreover, it was previously thought that anisotropy plays crucial role in

predicting this ratio (Diaferio, 1999). However, we argue based on our approach

and our results that the number of galaxies plays very important role while the

anisotropy does not and we showed that there is a direct correlation between number

of galaxies N and the velocity ratio Zv. We also argue that in principle, under specific

circumstances, we can observe the actual vesc (i.e. Zv ≈ 1) even in projected view.

Moreover, we showed that the velocity ratio is mass and cosmology independent which

makes Zv to be a function of N only and it exhibits inverse power-law behaviour which

can be described by the model 3.49 and be fitted with power ∼ 0.5 effectively meaning

that Zv ∼ N−0.5.

We tested our approach against N-body Millennium simulations and predictions

of the escape velocity profile broadly agree with the simulations with ∼ 2% accuracy

in the wide radial range 0.4R200 −R200 where we focus our analysis when work with

the real clusters. One of the interesting conclusions of our work is the ability to

predict the escape velocity profile based on mock clusters with galaxies which do not

interact directly (the only interaction is a global gravitational field created by all the

massive objects in the clusters and described by spherically symmetrical models such
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as Einasto and NFW) as we populate our clusters with random galaxies on Keplerian

orbits. This could potentially lead to the conclusion that most of the clusters are

relaxed and 3-body interactions are rare. However, more work on this topic needs to

be done.
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CHAPTER IV

Conclusions

4.1 Dissertation overview

Huge amount of effort is done towards explaining the origin and the theory of

DE and DM, but we are still far away from solving one of the greatest mysteries

in present science. Our hope is that this work provides an important piece towards

understanding of our Universe. Overall, the goal of the current work is to utilize

the galaxy clusters to test gravity and cosmology. We use the galaxy clusters in

two different ways: by utilizing matter density profiles and by using escape velocity

profiles. The first method is used in the chapter II to test Emergent Gravity model

proposed by Verlinde (2017), while the development of the second method is the goal

of the chapter III, where we derived the suppression of the escape velocity profile

due to the observation of the galaxy clusters in 2-dimensions. This allows us to have

direct measure of gravitational potential through observation of the escape velocity

profiles. Moreover, the first attempt to utilize this derived suppression to probe

cosmological parameters is done in the section 4.5, where preliminary constraints on

the cosmological parameters were placed by statistically analyzing 38 galaxy clusters

using the Bayesian approach. Below, we summarize scientific results of each of these

chapters.
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4.2 The Emergent Gravity Test

While this works does not provide the first test of Emergent Gravity, it tests

EG in the more statistically accurate way in comparison with the first attempts

by Nieuwenhuizen (2017) and Ettori et al. (2019). We utilized the data set of 23

galaxy clusters for each of which high precision weak lensing and X-ray data were

collected from the literature. The data cover a wide radial (0.1R200 − 2R200) and

redshift (0.077− 0.289) ranges. The statistical analysis of the collected data sample

allows us to rule out EG at > 5σ. This high level of constraint is due to the significant

difference between the observed DM profile (inferred from the weak lensing and X-ray

data) and the apparent DM profile (predicted by the EG model from the underlying

baryon matter distribution).

It should be noted that EG provides good results in the area near the virial

radius, where the observed DM and the predicted apparent dark matter are almost

identical. Overall, EG model predicts a flatter than the observed data shape of the

dark matter mass distribution, as well as steep X-ray gas density profiles and under

the nominal assumptions (i.e., without systematics), EG favors a radially decreasing

baryon fraction which peaks in the cluster core. This is a different baryon fraction

profile when compared to the standard dark matter model (see Ade et al. (2016)).

Moreover, we investigate the level of systematic errors needed to reach good agree-

ment between EG and the observational data. Our conclusion is that within the

current systematic limits, there are combinations of shape profiles which can match

EG to the data. Additionally, we investigated whether the EG model itself has the

flexibility to better match the data and we find that it does through a lowering of the

maximal strain. Overall, given our current level of the systematic uncertainties in

the observed shape profiles of the weak lensing and baryon matter density as well as

the current stage of the development of the theoretical framework of EG model, our

results lead to the conclusion that we can not formally rule out EG model and it is a
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viable alternative to dark matter in the galaxy clusters in the range 0.3 ≤ r/R200 ≤ 1.

4.3 Deriving the Escape Velocity Suppression due to Projec-

tion Effects

It was shown (Miller et al., 2016; Stark et al., 2016a) that the radial escape-velocity

profiles of galaxy clusters are a promising and competitive probe of cosmology in an

accelerating universe. However, projection effects produce a significant systematic

uncertainty as the observed line-of-sight galaxy positions and velocities suppress the

3-dimensional escape-velocity edge. To predict this level of the suppression (Zv),

we utilize Keplerian orbital dynamics to numerically model cluster projected phase-

spaces. The test of the approach on N-body simulations shows that the developed

approach models the edge suppression to ∼ 2% accuracy and with ∼ 5% precision for

massive (> 1014M�) systems over the range 0.4 ≤ r/r200 ≤ 1. We showed that the

true 3-dimensional escape velocity profile can be observed in projected phase-spaces

with high enough richness. Moreover, we showed that the suppression is a function of

richness (N) only as it is anisotropy, mass and cosmology independent. This allows

us to model the suppression with a simple power-law model (Zv ∼ N−0.5). Note,

that no other information except richness is required to predict the projected sup-

pression. Our conclusion is that full 3D escape velocity profiles can be inferred from

the projected phase-spaces without knowledge of cosmology or the use of simulations.

One additional conclusion of our work is that it is possible to predict escape velocity

profiles based on mock clusters with galaxies which do not interact directly (the only

interaction is a global gravitational field created by all the massive objects in the clus-

ters and described by spherically symmetrical models such as Einasto and NFW) as

we populate our clusters with random galaxies on Keplerian orbits. This observation

potentially leads to the conclusion that most of non-merging clusters are relaxed and
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3-body interactions are rare. However, deeper investigation of this argument needs

to be done.

4.4 Probing ΛCDM Model with Weak Lensing and Escape

Velocity Profiles of Galaxy Clusters

Direct utilization of the suppression derived in the chapter III is done to test stan-

dard cosmological model on the set of 38 galaxy clusters, which contains well-sampled

radius/velocity phase-space data and weak lensing mass profiles. Our preliminary re-

sults are the following: in an accelerating flat ΛCDM universe with fixed equation of

state (ω = −1), we constrain the matter energy-density Ωm,0 = 0.325
+0.014(stat)+0.003(sys)
−0.021(stat)−0.001(sys)

and the Hubble constant h0 = 0.733
+0.007(stat)+0.035(sys)
−0.006(stat)−0.029(sys) with the systematic error bud-

get coming from ±5% uncertainties on the weak lensing mass calibration and ±5%

uncertainties in the density model due to utilization of the NFW model, which sig-

nificantly overestimates escape velocity profiles. Our preliminary the best-fit results

favor the matter energy-density inferred from Plank CMB (Planck Collaboration et al.,

2018), while agreeing with the Hubble constant measured by Cepheids (Riess et al.,

2019). Alternate techniques, such as the one we present in our work, to indepen-

dently constrain h0 are vital to resolve a very significant tension (> 4.4σ) between

observations of the Hubble constant by analyzing Cepheids and from Plank CMB

observations.
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4.5 Preliminary results of constraining cosmological param-

eters Ωm and H0 using galaxy clusters weak lensing and

escape velocity profiles

4.5.1 Abstract

As we showed in the chapter III, one can quantify the level of the suppression of the

observed escape velocity profile of galaxy clusters using an analytical representation of

Keplerian orbits in a cosmological background. This section is devoted to the applica-

tion of this suppression function to test cosmology: we apply it to a set of 38 observed

galaxy clusters which contain well-sampled radius/velocity phase-space data and weak

lensing mass profiles. Our preliminary results are the following: in an accelerating

ΛCDM universe, we constrain the matter density Ωm,0 = 0.325
+0.014(stat)+0.003(sys)
−0.021(stat)−0.001(sys) and

the Hubble constant h0 = 0.733
+0.007(stat)+0.035(sys)
−0.006(stat)−0.029(sys). The systematic error budget in-

cludes ±5% uncertainties on the weak lensing mass calibration and ±5% uncertainties

in the density model differences between the NFW and the Einasto functions.

4.5.2 Introduction

In the ΛCDM paradigm, the way our Universe is dynamically evolving is governed

by general relativity (GR). There are several cosmological observations which require

adjustments to the simplest GR theory such as the requirements for dark matter

(DM) and dark energy (DE). These are non-trivial additions, as they not only sum

up to around %95 of the total matter density of the universe, but their study has

dominated the cosmological research landscape for decades.

While the first indirect proof of the existence of DE came rather recently from

the observation of the accelerated expansion of the universe from the supernova Ia

(Riess et al., 1998), the first signs of the need for DM came in the first half of

the 20th century from deviations from the virial theorem in observations of Coma
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cluster (Zwicky , 1933). The search for the explanation of DM has continued since

then and includes dynamical measurements of galaxy rotation curves (Rubin and

Ford , 1970), statistical measurements from temperature fluctuations in the Cosmic

Microwave Background (CMB) (Ade et al., 2016), and more direct visual evidence

from the separation of the weak lensing shear structure compared to the X-ray gas

structure in the Bullet cluster (Clowe et al., 2006). In this work, we will present the

results of a new probe of DM with high precision.

In addition to DE and DM, the Hubble parameter (H0) is of equal importance,

since it characterizes the expansion speed of the universe. We are beginning to see

tension arise between the measurement of H0 on local scales (e.g., from Cepheid

variable distances) and inferences of H0 in the distant universe (e.g., Planck) (Riess

et al., 2019). Alternate techniques to independently constrain H0 are vital, such as

the one we present here.

In this current manuscript we focus on testing the standard ΛCDM cosmological

model using a new probe based on data from galaxy clusters. This probe was first

discussed in Miller et al. (2016) and Stark et al. (2016a) and connects the observed

escape velocity profile, the weak lensing density profile, and the term qH2, where

q is the classic deceleration parameter. For the probe to be successful, we require

well sampled cluster radius/velocity phase-spaces and reasonably precise weak lensing

mass profiles.

A key development in this effort was the recent work by Halenka & Miller 2019

(hereafter HM19 and it is referred to the chapter III), which enables an analytical

determination of the suppression of the observed maximum velocity profile. This

suppression can be calculated numerically and it is a function of the number of galaxies

per cluster only. HM19 tested their predictions in simulations and found percent

level precision and accuracy. Without this quantification of the 2D projection in the

phase-space, the systematic errors associated with the technique would dominate the
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error budget. Our data set contains 38 galaxy clusters with enough phase-space data

to provide 6 − 10 degrees of freedom per cluster depending on a binning procedure

applied. Therefore, we have ample data to make statistically precise constraints on

the cosmological parameters. We note that unlike the mass function or the spatial

correlation function of clusters, this probe and its associated theory does not require

calibration to output from N-body simulations.

We start our paper with the section 4.5.3 where the description of the effects of

accelerating universe on escape velocity profiles is presented. Section 4.5.4 introduces

description of projection effects as well as procedure of measuring escape and observed

maximum velocity profiles. Data used in our paper is described in the section 4.5.5.

The Bayesian approach used to statistically analyze data is described in the section

4.5.6. Section 4.5.7 presents results of constraining cosmological parameters. We

finish with discussion and conclusions in the section 4.5.8.

Similarly to the previous chapters, we refer in this section to the R200 and M200,

which are the radius and the mass of the clusters at the point when the density

drops to 200ρc,z, where ρc,z = 3H2(z)/(8πG) is the critical density of the universe

at redshift z and H2(z) = H2
0 (ΩΛ,0(1 + z)3(1+ω) + Ωm,0(1 + z)3), where ω is the

equation of state (EOS) and superscript 0 denotes present values of cosmological

parameters. The connection between R200 and M200 is by definition the following:

M200 = 4π
3

(200ρc,z)R
3
200. In addition to that, everywhere in this section a flat standard

cosmology is assumed. The weak lensing data provided by Sereno (2015) meta catalog

uses Ωm,0 = 0.3, ΩΛ,0 = 1 − Ωm,0 and H0 = 100h0 km s−1 Mpc−1 with h0 = 0.7 as a

benchmark.
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4.5.3 Escape velocity profile in an expanding universe

4.5.3.1 Cosmological effect on escape velocity profile

In general, to infer escape velocity profile in ΛCDM universe one needs to integrate

Poisson equation up to infinity which produces result not consistent with observations

as the gravity potential at infinity is poorly defined. Instead the integration should be

done until equilibrium radius req (1.46), which is a function of deceleration parameter

(1.47). At this distance gravity pull from matter is equal to the gravity push due

to DE which means that to correctly infer dynamical mass from the escape velocity

profiles some underlying cosmology should be utilized. This leads to the modification

of the connection between escape velocity and gravity (1.48).

In general, deceleration parameter (1.47) is a function of a scale factor

q(a) = − äa
ȧ2
, (4.1)

where dot denotes time derivative. More direct description of the acceleration of the

Universe is presented by parameter that combines both deceleration parameter and

the square of Hubble parameter (H(a) = ȧ/a)

qH2 = − ä
a
. (4.2)

While generally speaking vesc (1.48) is a function of several cosmological parame-

ters (for a flat Universe on the late stage of its evolution: energy-densities of matter

and DE, Hubble constant and EOS), they all can be combined into only one parame-

ter qH2 and vesc provides us with direct measure of it (see expressions 1.46 and 1.48).

It should be noted that below we use parameter qH2/H2
0 instead of (4.2), which is

done to account for the present speed of the expansion of the Universe.
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4.5.3.2 Correction to the escape velocity profile

While the data are given in the NFW form (1.36), one needs to work with the

Einasto model 1.38 instead. Recently, it was shown that the dark matter mass profiles

of the galaxy clusters in simulations prefer profile in the Einasto form (1.38) as the

NFW form tends to overestimates the matter density in the outskirts of the galaxy

clusters (Diemer and Kravtsov , 2015) (i.e. the total mass inside some spherical region

increases as a function of radius r without converging to any particular number) and

this is due to the shape of the NFW model (1.36) which is an inverse power-law and

it can not fall as quickly as exponential expression such the one Einasto model uses

to correctly describe density profile of galaxy clusters at high radii (i.e. r > R200).

It should be noted that both of these profiles work great in the inner region up to

R200 (Sereno et al., 2016) and start to split afterwards, so this does not produce any

negative consequence for those who are working with density profiles in the inner

regions of galaxy clusters.

The NFW density overestimation leads to the significant overestimation of the

escape velocities (Miller et al., 2016) starting from the cores of the clusters. This is

due to the gravitational potentials (and vesc subsequently) being derived using Poisson

equation by integrating density all the way up to ∞ (or up to req in the expanding

with the acceleration Universe (Behroozi et al., 2013a))

φ(r) = −4πG
(1

r

r∫
0

ρ(r′)(r′)2dr′ +

∞∫
r

ρ(r′)r′dr′
)
. (4.3)

On the other hand, due to correct prediction of the density profiles by the Einasto

model all the way up to ∼ 2.5h−1Mpc (Miller et al., 2016), vesc, predicted by the

Einasto potential (1.43) using parameters from fitting densities of the simulated halos

with the Einasto density model (1.38), correctly describes the true measured escape

velocity profiles.
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The most straightforwards way to solve the NFW overestimation problem is by

directly transferring the NFW density to the Einasto and the description of this

procedure is done in Stark et al. (2019); Halenka and Miller (2018). By following

these prescriptions we are able to fit the NFW density model with the Einasto model

to a high precision (∼ 0.5% accuracy) in the region 0 ≤ r/R200 ≤ 1. However, the

Einasto model successfully reproduces the NFW density all the way up to several

R200 without showing any signs of steeper than the NFW model shape. This is due

to the fact that the NFW model utilizes the inverse power-law (1.36), which can not

be as steep as the exponential form of the Einasto model (1.38) and as the actual

density profiles of the galaxy clusters. However, the Einasto model can be as flat as

the NFW model. In other words, one can fit the Einasto model to the flatter NFW

model, but one can not always fit NFW to the steeper Einasto or simulated density

profiles.

To account for the NFW overestimation of vesc, we apply the linear escape veloc-

ity correction motivated by the Millennium simulations (Springel et al., 2005) and

exported directly from Miller et al. (2016)

vcorr = 0.021 + 0.104R200, (4.4)

which is equal to ∼ 0.075 at 0.3R200 and ∼ 0.125 at 0.3R200. These numbers are

measured at ∼ 0.57h−1 Mpc and ∼ 1.89h−1 Mpc, so they correspond to 0.3R200 and

R200 of the galaxy clusters utilized in the current work (the average R200 of the data

sample is 1.89 Mpc). The velocity correction suppresses the escape velocity profile

vesc,corr = (1− vcorr)vesc. (4.5)

We apply ∼ 2−3 times wider than presented in Miller et al. (2016) uncertainty on

escape velocity correction (dvcorr = 0.05) to account for possible mass and cosmology
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dependence of the velocity correction. Moreover, we account for 0.05 contribution to

the systematic uncertainty due to the escape velocity correction.

Note, to account for cosmology we need not only to use correct expression of

the escape velocity (1.48), but also change matter parameters accordingly as they

are provided for a fixed cosmology (see last paragraph of the section 4.5.2). As

we can see, M200 is a function of critical density (ρc,z), which is in turn function

of cosmological parameters (Ωm,0, h0) and redshift (z). Subsequently, concentration

parameter (1.37) changes with cosmology as well due to being proportional to M200.

Unfortunately, we do not have direct measurements of the matter density profiles in

cosmology independent manner, so we need to treat one of three matter parameters

(M200, R200, C200) as cosmology independent. Our choice is radius R200, which stays

unchanged for different cosmological parameters, while both M200 and C200 account

for cosmology. It should be noted, that direct shear measurements of the weak lensing

is preferred as it is cosmology independent, so all the cosmological contribution is in

qH2 parameter and not in (M200, R200, C200), which would allow us to directly utilize

one parameter (qH2) fit to the data. Moreover, by using shear measurements we can

directly fit density profile to the Einasto model, which would dramatically decrease

the error contribution from the escape velocity correction (4.4) due to the NFW

density overestimation.

1The original papers are cited above, but actual weak lensing masses (and their respective errors)
we use in our analysis were taken from the Sereno (2015) meta catalog. More specifically, Sereno
(2015) standardizes the M200 masses for the clusters shown above (as inferred from each reference
listed in the ”weak lensing” column) for the fiducial cosmology mentioned in our introduction.

2Positions and redshifts of the galaxies from the cluster. The abbreviations in this column refer
to the following papers: R13 = Rines et al. (2013), M08 = Maurogordato et al. (2008), T13 = Tyler
et al. (2013), OW11 = Owers et al. (2011), G08 = Girardi et al. (2008), A16 = Agulli et al. (2016),
T07=Tran et al. (2007), T15 = Treu et al. (2015), M07 = Moran et al. (2007), D10 = Demarco
et al. (2010), H14 = Hwang et al. (2014), G14 = Geller et al. (2013), G15 = Girardi et al. (2015),
E11 = Edwards and Fadda (2011), F17 = Foëx et al. (2017), B09=Boschin et al. (2009).

3The abbreviations in this column refer to the following papers: H15= Hoekstra et al. (2015),
OK08 = Okabe and Umetsu (2008), OK10 = Okabe et al. (2010), OK15= Okabe and Smith (2015),
CL00=Clowe et al. (2000), S13=Sereno and Covone (2013), A14 = Applegate et al. (2014), C04 =
Cypriano et al. (2004), D06 = Dahle (2006), H11=Huang et al. (2011), P07 = Pedersen and Dahle
(2007), R08 = Radovich et al. (2008), M16 = Medezinski et al. (2016), D02 = Dahle et al. (2002),
F12 = Foëx et al. (2012), S97 = Smail et al. (1997), H12 = High et al. (2012), U15= Umetsu et al.
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Table 4.1: List of Galaxy Clusters and References
Cluster 1 z Galaxies 2 Weak lensing3 M200 dM200 N4

(1014M�) (1014M�)

A1246 0.192 R13 H15 7.44 1.92 64
A1682 0.227 R13 P07 6.05 3.48 66
A1553 0.167 R13 C04 7.65 4.18 86
A1423 0.214 R13 OK15 6.7 1.59 82
A2163 0.201 M08 H15/R08 16.33 3.04 207
A2034 0.113 R13 OK08 8.09 4.85 102
A2029 0.077 T13 C04 10.28 1.88 284
A2009 0.152 R13 OK10 4.95 1.33 77
A2219 0.226 R13 OK10/OK15/A14 15.33 2.9 183
A2744 0.306 OW11 M16 20.6 4.2 175
A520 0.201 G08 OK15 12.75 2.5 100
A959 0.288 B09 D02 7 2.17 54
A85 0.055 A16 C04 7.24 1.97 296
A773 0.217 R13 OK15/D06 15.45 4.7 79

ZwCl3146 0.289 R13 OK15 7.94 1.53 41
BLOXJ1056 0.831 T07 CL00 5.63 2.25 90
MACSJ0717 0.546 T15 U15 26.57 5.32 228
MCXCJ0454 0.54 M07 F12 14.8 2.8 136

RXJ1720 0.16 OW11 OK15 8.3 2.54 210
RXJ0152 0.837 D10 S13 3.68 1.16 73

A2111 0.229 R13 H15 8.08 1.94 70
ZwCl0024 0.395 M07 S97 4.15 1.68 80

A2259 0.161 R13 H15 6.74 2.08 59
A697 0.281 H14 OK15 13.96 2.86 120
A1689 0.184 R13 OK15 16.39 2.28 109
A1914 0.166 R13 H15 11.2 1.99 133
A1835 0.251 R13 H15 16.88 3.02 107
A267 0.229 R13 OK15 9.07 1.56 108
A1763 0.231 R13 H15 14.13 2.93 97
A963 0.204 H14 OK10 8.64 1.74 117
A383 0.189 G14 H11 7.04 1.94 91
A2142 0.09 OW11 OK08 13.63 5.98 527

RXCJ2129 0.234 R13 OK15 7.24 2.01 59
A2631 0.277 R13 OK15 12.34 3.84 63

MACS1206 0.44 G15 A14 13.67 5.44 146
Coma 0.023 E11 OK14 10.26 2.94 118

RXCJ0516 0.295 F17 H12 9.48 3.42 42
A2537 0.297 F17 OK15 11.36 2.84 128

4.5.4 Connecting theory with the data

Galaxy clusters are positioned on a high distance away from us, which places

constraint on our ability to observe clusters only from one position. This limitation

distorts the way we observe both the escape velocity profiles and the phase-spaces in

general.

(2015). We averaged over multiple weak lensing sources to get M200 as well as the errors of the
clusters A2163, A2219 and A773.

4Number of galaxies in the range 0.3 ≤ r/r200 ≤ 1.
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4.5.4.1 Projection effects

To build phase-space from a given observational data of galaxies and then infer

maximum observed velocity profile (vlos,esc), we follow specific procedure. First, we

get vlos - galaxy velocities along ling-of-sight (1.50). Besides that, we calculate rg

- the physical projected distance from a galaxy to the center of the galaxy cluster

(1.49). Phase space (vlos vs. rg) for each cluster is created by applying these two

steps to all the galaxies of the cluster.

To infer maximum observed velocity profiles (vlos,esc) from the phase-spaces, we

find galaxies which have the top 1% velocities in each of the 0.2 Mpc radial bins,

which is done by following interloper removal prescription proposed by Gifford et al.

(2013). It was shown by Miller et al. (2016) on N-body simulations that the escape

velocity profiles (vesc) can be obtained with approximately 5% accuracy. vesc (black

dashed lines on the figure 4.1) describes 3-dimensional escape velocity profile and it

is a measure of the effective gravitational potential, while vlos,esc (black solid lines on

the figure 4.1) is created by galaxies with the maximum velocities on the projected

phase-space diagram and it is a suppressed version of vesc due to observing clusters

in 2-dimensional perspective. In general, this suppression is significantly larger than

the effect due to change in cosmology (compare the difference between red lines and

black dashed lines with the difference between black solid and black dashed lines on

the figure 4.1).

4.5.4.2 Quantifying the suppression

To connect escape velocity profile and maximum observed velocity profile, we

follow HM19 results and the approach which was introduced in the chapter III. A

thorough discussion and introduction of the approach is presented in the chapter III,

while this subsection aims to provide a brief description of this approach.

The goal of the approach is to produce an easy way to describe vlos,esc and the
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Figure 4.1: An example of a projected phase-space of an individual cluster created by
the approach with a measured maximum observed velocity vlos,esc (black
solid) and the unsuppressed 3-dimensional escape velocity profile vesc
(black dashed). Red solid (dashed) lines correspond to the cosmology
with Ωm,0 = 0,ΩΛ,0 = 1 (Ωm,0 = 0.5,ΩΛ,0 = 0.5). One can see a signifi-
cant difference between vlos,esc and vesc due to the projected suppression
(4.7).

ratio between the escape velocity profile and the maximum observed velocity profile

Zv(r) =
vesc(r)

vlos,esc(r)
. (4.6)

This is done by creating clusters which are populated by galaxies on Keplerian orbits

in a vicinity of gravitational potential created by a galaxy cluster and modified due to

cosmological background. While the procedure is done randomly, all together these

galaxies has to satisfy several conditions such as they need to be on Keplerian orbits

on which galaxies do not have r > req at any point on their orbit, galaxies should be

distributed so they create a density profile which mimics weak lensing profile and in

total there should be the same number of galaxies in the range 0.3 × R200 − R200 as
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in a given system.

This analytical approach allows us to have a controlled environment, so we can

create a cluster which would precisely mimic needed requirements of a given system

(this is in contrast to a traditional N-body simulations where a lot of computational

power is required to simulate such cluster and it is hard to create systems with the

same characteristics as given clusters, which in turn leads to a high level of uncertainty

in quantifying vesc suppression due to the projection effects).

By applying this approach, the independence of the velocity ratio Zv (4.6) from

cosmology (Ωm,0, h0) and cluster masses was shown in the chapter III as well as that

Zv is a function of the number of galaxies per cluster (N) only and with a high enough

number of galaxies, one can potentially reconstruct actual escape velocity profile even

in projected phase-space, i.e. Zv → 1 for N →∞. The functional form can be fitted

with a simple power-law (3.49)

Zv(N) = 1+
(N0

N

)λ
, (4.7)

where N0 and λ are the parameters of the model, N represents the number of galaxies

in the range 0.3 ≤ r/R200 ≤ 1 and the best-fit parameters, which were derived

by analyzing simulated data set as well as by using the analytical approach, are

N0 = 14.205, λ = 0.467 (the bottom error bar line: N0 = 3.213, λ = 0.392, the top

error bar line: N0 = 35.822, λ = 0.454). These are the main results of the analytical

approach which we directly utilize to place constraints on cosmological parameters.

4.5.5 Data

In this section we present the data we are using in our analysis. We start with

describing matter density content of the galaxy clusters measured by using weak

lensing, then we move to the description of the positions and redshifts of the galaxies
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and we finish with the description of the data selection criteria.

4.5.5.1 Total mass

In our analysis we utilize inferred total mass profiles for a set of 38 galaxy clusters.

The weak lensing data are given in the NFW formulism (1.36). The weak lensing data

give us the information about the size and the total mass of the clusters: M200 and

uncertainty dM200 of individual clusters are listed in the table 4.1. Most of the weak

lensing data are taken from Sereno meta catalog (Sereno, 2015) which lists results

from other works. Names of the clusters together with the initial references are

listed in the table 4.1 (see footnotes for the meanings of the abbreviations). Note,

all the weak lensing parameters are presented for a fixed cosmology Ωm,0 = 0.3,

ΩΛ,0 = 1 − Ωm,0 and H0 = 100h0 km s−1 Mpc−1 with h0 = 0.7. We change weak

lensing parameters to account for cosmology change (see section 4.5.3).

The weak lensing masses (radii) of the 38 galaxy clusters are spread in the wide

region 3.68× 1014M� 6 M200 6 2.66× 1015M� (1.08 Mpc 6 R200 6 2.36 Mpc) with

the mean mass (radius) < M200 >= 1.07 × 1015M� (< R200 >= 1.89 Mpc). Most

of the clusters have redshifts withing a tight range around z = 0.2 while individual

cluster redshifts are ranged 0.023 6 z 6 0.837 with the mean redshift < z >= 0.26.

Number of galaxies of individual clusters cover a very wide range [41; 527] with the

mean (median) number of galaxies 127 (101). While the total number of galaxies

provided by the data catalogs are actually higher, the above numbers describe number

of galaxies in the range 0.3 ≤ r/R200 ≤ 1 to comply with the definition of the

suppression function.

4.5.5.2 Galaxy positions and redshifts

Positions and redshifts of individual galaxies were taken from various sources

which are listed in the table 4.1 (see footnotes for the meanings of the abbreviations).
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The data transformation procedure to the phase spaces as well as the way escape

velocity profiles are inferred from the phase spaces against which theoretical models

are tested are described in the section 4.5.4.

4.5.5.3 Data selection criteria

The following selection procedure was followed to create a list of the galaxy clusters

(see table 4.1):

1. Only clusters with the available in the Sereno meta catalog (Sereno, 2015) weak

lensing profiles were selected.

2. By using ”SIMBAD Astronomical Database - CDS (Strasbourg)”, only clusters

with high enough total number of galaxies (50+) were further selected.

3. By visually inspecting phase-spaces, the galaxy clusters which exhibit a sig-

nificant drop in the measured vlos,esc at high radii due to a small number of

galaxies in the outskirts (∼ 0.6 < r/r200 < 1) were dropped. Merging systems

were dropped as well.

While the selection procedure was not very strict, it allowed, nevertheless, to

create a high quality data set of 38 galaxy clusters.

4.5.6 The Bayesian approach

For our statistical analysis, we will be comparing the observed line-of-sight escape

velocity measured for our 38 clusters against the predicted vlos,esc given some cos-

mological parameters, a cluster redshift (z), and the number phase-space projected

galaxies within 0.3 ≤ r/r200 ≤ 1 (N). The predicted vlos,esc is:

vlos,esc = (1− vcorr)vesc(M200, qH
2, z)/Zv(N), (4.8)
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where M200 comes from the measured weak lensing mass, vcorr is the NFW correction

term and Zv(N) is the suppression term which is based on N . For a flat ΛCDM

universe, equation 4.8 becomes:

vlos,esc = (1− vcorr)vesc(M200,Ωm,0, h0, z)/Zv(N), (4.9)

We specifically choose a Bayesian analysis so that we can incorporate the statis-

tical and systematic error on the weak lensing masses, the statistical error on the

suppression term, and the statistical and systematic error on the NFW correction

term. For equation 4.9, we choose a Gaussian likelihood for each radially observed

measurement of vlos,esc. We treat each measurement as independent with binning of

0.1× r200. This binning is wide enough so that we expect very little correlations be-

tween the bins, which would be caused by mis-identified interlopers (see Stark et al.

(2017) for more details). We then maximize the sum of the log-likelihoods. We treat

the other observables as random variables and simultaneously constrain the values

of M200, the suppression Zv and the velocity correction vcorr. However, unlike the

observed vlos,esc, these other parameters have priors as described below. We then ex-

amine the posterior distributions of the interesting free parameters Ωm,0 and h0 and

infer the best-fit values and their uncertainties.

The measured maximum observed velocity at any given radius is treated as a

normally distributed observable

a0i ∼ N (ai, σ
2
ai

), (4.10)

where ai is the underlying true maximum observed velocity profile and σai = 50 km/s

is the uncertainty on the measurement. This error corresponds to a typical redshift

uncertainty with modern instruments like HECTOSPEC, which is used for much or

our data (Rines et al., 2013).
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Each cluster’s weak lensing M200 is treated as being a normally distributed ob-

servable

b0i ∼ N (bi, σ
2
bi

), (4.11)

where σbi is the observed M200 uncertainty and bi is the underlying cluster M200 mass.

Since in practice bi is an observed property, we treat it statistically for each cluster

by modeling it as a Gaussian drawn from the full underlying distribution of our weak

lensing masses

bi ∼ N (µbi , σ
2
µbi

), (4.12)

where µbi = 1.07 × 1015M� (σµbi = 4 × 1014M�) and equal to the mean (variance)

of the masses of the galaxy clusters in our sample, which fits our dataset well. By

treating M200 as a random variable, we then constrain it as a nuisance parameter in

the final analysis.

The suppression function is treated as being normally distributed observable

d0i ∼ N (di, σ
2
di

), (4.13)

where σdi is the uncertainty of the suppression Zv and di is the underlying Zv sup-

pression. The suppression function and its error is calculated analytically for each

cluster as described in HM19. This function depends on the observed projected phase-

space galaxy count within 0.3 ≤ r/r200 ≤ 1. This functional representation of the

edge suppression has cluster-cluster variance which is also modeled in HM19 and con-

firmed against N-body simulations. Since this suppression is based on the observed

properties of the clusters, we treat it as a random variable drawn from a Gaussian:

di ∼ N (µdi , σ
2
µdi

), (4.14)

where µdi = 1.41 (σµdi = 0.15) and equal to the mean (variance) of the values
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of the suppression of the galaxy clusters in our sample. As with M200, we treat the

suppression term as a nuisance parameter which is constrained against the “observed”

corrections based on the richness for each cluster.

Finally, we also use a normal distribution to define the NFW velocity correction

f0i ∼ N (fi, σ
2
fi

), (4.15)

where the uncertainty is fixed σfi = 0.05 and µfi is modeled as uniformly distributed

in the range [0.025; 0.0175], which is 0.05 wider than the range of the values we work

with (see description to the 4.4). These values are taken from simulations (Miller

et al., 2016).

Overall, the Bayesian model regresses against the 4 observed quantities: observed

maximum velocity profile, M200 masses, suppression function and velocity correction.

The parameters of our interest are Ωm,0 and h0, while the rest of the parameters

are marginalized over for presenting posterior probability distributions. We treat the

parameters we are interested in as uniformly distributed in wide ranges

h0 = [0.5; 0.9] (4.16)

Ωm,0 = [0; 0.6]. (4.17)

Overall, we utilize in our analysis 36 clusters. We drop 2 clusters for this analysis

due to their high redshifts which is discussed in the subsection 4.5.7.1. We are using

8 radial bins per cluster from 0.3 ≤ r/r200 ≤ 1 (see blue error bars on the projected

phase-spaces of each of 38 galaxy cluster in Appendix A), summing to Nd.o.f. = 288

degrees of freedom before accounting for the parameters.
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Figure 4.2: The posterior distribution function for Ωm,0 and h0 for the data sample
of 36 galaxy clusters.

4.5.7 Results

Both escape velocity profile vesc and maximum observed velocity profile vlos,esc

change with cosmology. However, as it was pointed out in section 4.5.4, they do

it in synchronized way leading to their ratio staying without change for different

cosmologies while only changing with the number of galaxies. This creates a room for

us to probe cosmology, as we know vlos,esc from measured phase-space and can vary

vesc based on cosmology to match the true velocity ratio Zv (4.7) with the best-fit

parameters N0 = 14.205, λ = 0.467 (the bottom error bar line: N0 = 3.213, λ = 0.392,

the top error bar line: N0 = 35.822, λ = 0.454).
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4.5.7.1 Ωm,0, h0 statistical analysis

As it was discussed in the previous section, we probe cosmology by using Bayesian

statistical approach. We make a two parameters fit: Ωm,0 and Hubble constant h0.

Equation of state parameter is fixed (ω = 1) and we neglect curvature of the Universe

(Ωc = 1), which allows us to connect the energy densities of dark energy and matter

(ΩΛ,0 = 1− Ωm,0).

Note, two clusters (BLOXJ1056 and RXJ0152) have redshifts higher than the

redshift when the Universe started to expand with an acceleration. For the standard

cosmology (i.e. Ωm,0 = 0.3) it is equal to zeq ≈ 0.67 and for the higher redshifts there

is no defined equilibrium radius req. For this reason, escape velocity profile of these

two clusters has simplified expression vesc(r) =
√
−2φ(r) as we need to integrate

up until infinity, where potential is equal to zero. However, these two clusters still

exhibit cosmology dependence through mass profile parameters, since M200, C200 and

R200 change with cosmology. These two clusters are not used in this subsection, but

they will be used in the next subsection.

In general, due to the transition from the deceleration to the accelerated expansion,

we need to apply a step function, which defines transition of vesc at different acceler-

ation stages of the Universe, i.e. for the case when qH2 < 0 we use the full version

of vesc (1.48), while for qH2 > 0 the simple version vesc =
√−2φ should be utilized.

The redshift of the transition is calculated for each set of cosmological parameters

individually by setting l.h.s. of the expression 1.47 to zero (i.e. Ωm(z)− 2ΩΛ(z) = 0

in the case ω = −1), which in general is a function of Ωm,0 and ω

Ωm,0(1 + z)3 + (1 + 3ω)(1− Ωm,0)(1 + z)3(1+w) = 0. (4.18)

Solving above equation leads to the functional expression of the redshift of the tran-
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sition

ztr = −
( Ωm,0

(1 + 3ω)(1− Ωm,0)

)1/(3ω)

− 1, (4.19)

which is in the case ω = −1 simplifies to

ztr =
(2(1− Ωm,0)

Ωm,0

)1/3

− 1. (4.20)

Statistical analysis of 36 clusters (without 2 high redshift clusters) provides the

best-fit values

Ωm,0 = 0.325
+0.014(stat)+0.003(sys)
−0.021(stat)−0.001(sys) (4.21)

h0 = 0.733
+0.007(stat)+0.035(sys)
−0.006(stat)−0.029(sys). (4.22)

The best-fit cosmological parameters posterior distributions are presented on the

figure 4.2. Systematic error contribution comes from ±5% systematic uncertainty on

the weak lensing mass calibration and extra ±5% systematic uncertainty is due to the

uncertainties brought by velocity correction due to the NFW density overestimation

(see subsection 4.5.3.2). One can notice an edge in the posterior distribution of

the matter energy-density (Ωm,0). This is due to the acceleration transition redshift

(4.20) discussed in the previous paragraph. It appears that at the redshifts close to

ztr the absolute values of the last 3 terms in 1.48 quickly drop to zero due to being

proportional to qH2, which approaches zero. This quick change in the functional

behaviour of vesc effectively leads to the extra prior on the upper limit of the uniform

distribution of Ωm,0 (4.16). However, the analysis of the data sub samples with lower

upper cuts on the range of allowed cluster redshifts does not produce significantly

different results as they are withing ∼ 1σ standard deviation away from each other.

We note that the Plank constraints from cosmic microwave background are Ωm,0 =
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0.315±0.007, h0 = 0.674±0.005 (Planck Collaboration et al., 2018), Cepheids produce

h0 = 0.7403 ± 0.0142 (Riess et al., 2019) and SNIa Ωm = 0.295 ± 0.034 (Betoule

et al., 2014a). Our results of fitting 36 galaxy clusters (4.21, 4.22) support Hubble

constant from Cepheids, while agree with Ωm,0 from CMB. This potentially leads to

the contradiction of decaying DM models, which are devised to easing the tension

between observations of Hubble constant from CMB and Cepheids (Berezhiani et al.,

2015).

4.5.7.2 qH2 statistical analysis

Statistical analysis in the previous subsection significantly supports acceleration

expansion of the Universe and supports non-zero magnitude of the energy density of

the dark energy with > 5σ certainty. This result can be explicitly seen on Figure 4.3,

where the value q(z)H2(z)/H2
0 is plotted. This figure is done by fitting cosmology for

individual clusters and then individual magnitudes of q(z)H2(z)/H2
0 are combined

into redshift bins. While similar to the described in section 4.5.6 Bayesian approach

is utilized here, it is simplified as we analyze each cluster individually. The only ob-

servable is the maximum observed velocity, which we treat with the same distribution

as in 4.10, but with the bigger uncertainty on the measurements (σai = 100 km/s) to

partially account for dropping uncertainties of other observables, since M200, Zv and

the velocity correction vcorr are all kept as fixed values provided by the data.

We analyze two sets of free parameters to reconstruct q(z)H2(z)/H2
0 : Ωm,0, h0 and

Ωm,0, h0, ω (ω is added to the list of free parameters in 4.9). Note, that in principle

we can actually reduce number of parameter to one free parameter qH2 in 1.48, but

due to the weak lensing data being presented for the fixed cosmology, we need to

have more free parameters, which in turn increases uncertainties and widens error

bars. Ideally, by utilizing cosmology independent shear measurements, one can apply

fitting procedure with one free parameter qH2 and use H0 from the analysis of the
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Figure 4.3: q(z)H2(z)/H2
0 as a function of redshift. Individual clusters are fitted and

resulted values are combined into 8 redshift bins. Green solid line and
shaded region around it correspond to the best-fit cosmology (4.21, 4.22).
Black error bars correspond to the 2 free parameters fit (Ωm,0, h0) and red
error bars to 3 free parameters analysis (Ωm,0, h0, ω). Individual bins are
the weighted means and the weighted error bars of several galaxy clusters,
which are binned to account for possible splits in redshifts while having
approximately equal number of galaxy clusters per bin. Solid (dashed)
blue lines correspond to individual cosmologies with cosmological parame-
ters described in the legend. Overall, we see very good agreement between
individual bins (black and red error bars) and the best-fit cosmology from
fitting 36 clusters (green line).
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previous subsection to reconstruct (qH2/H2
0 vs. z) plot.

Overall, both 2 and 3 free parameters fitting approaches agree well with q(z)H2(z)/H2
0

plotted using best-fit parameters (4.21, 4.22), while 3 free parameters analysis pro-

duces better overall agreement having wider error bars due to the extra free parameter

(see Figure 4.3). Moreover, we see good agreement of two very high redshift clusters

(which were not included in the analysis in the subsection 4.5.7.1) with the best-fit

parameters (see the tall error bar at z ∼ 0.84).

4.5.7.3 Velocity ratio as a function of the number of galaxies per cluster

Individual escape velocity profiles for the best-fit cosmology (4.21, 4.22) of each

of the 38 galaxy clusters together with measured vlos,esc and later adjusted due to

the suppression function (4.7) and the velocity correction (4.5) are presented in the

Appendix A. We can follow HM19 steps and analyze results of the velocity ratio (Zv)

as a function of the number of galaxies. Figure 4.4 shows individual velocity ratios

Zv = vesc
vlos,esc

of all 38 galaxy clusters provided by our data sample measured at 0.5R200

by using the best-fit cosmology for calculating vesc, which was subsequently adjusted

due to the velocity correction (see the subsection 4.5.3.2). Overall, we can see good

agreement with the theoretically predicted by HM19 Zv (black line and shaded region

on Figure 4.4).

The second way to compare our results with the HM19 predictions is to split our

data into 4 bins by number of galaxies. We calculate the velocity ratio Zv for the

best-fit cosmology obtained by analyzing 36 clusters (4.21, 4.22). Overall, we see

correlation with the HM19 results, as for the higher number of galaxies the velocity

ratio moves closer to being equal to one (figure 4.5).
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Figure 4.4: Zv (measured at 0.5R200) vs. richness (i.e. number of galaxies in the range
0.3 ≤ r/R200 ≤ 1). Black solid lines and corresponding shaded region are
the best-fit model (4.7) from HM19. Individual error bars correspond to
individual clusters from our data sample and they represent the measured
Zv at 0.5R200 vs. richness, where to calculate Zv of individual clusters
the best-fit cosmology (4.21, 4.22) of fitting 36 clusters was used. Two
blue error bars correspond to the two high redshift clusters. Error budget
comes from the velocity correction (4.4) and uncertainties of M200.

4.5.8 Discussion and conclusions

Galaxy clusters have a lot of unrealized potential as a tool to probe cosmological

and gravitational models. In principle, we can measure potentials by analyzing phase-

spaces of individual clusters as the galaxies with the highest velocities provide tool

of observing gravitational potentials directly through a simple expression: vesc(r) =√
−2Φ(r), where gravitational potential Φ(r) is generally a cosmology dependent

function (see the expression 1.48). Unfortunately, we are able to observe clusters

only from one position, which provides us only with a limited information about
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Figure 4.5: Velocity ratio as a function of the number of galaxies. Best-fit cosmology
(4.21, 4.22) of fitting 36 clusters is utilized to calculate vesc and later
adjusted to account for the velocity correction due to the NFW density
overestimation (see the subsection 4.5.3.2). vlos,esc are directly measured
by utilizing removal prescription proposed by Gifford et al. (2013). The
galaxy clusters are split by the richness N as described in the legend.
Solid lines and shaded regions correspond to the median and 67% scatter
calculated from individual velocity ratios.

the phase-spaces, which effectively leads to a suppression of the true 3-dimensional

escape velocity profile. However, the magnitude of this suppression is mass and

cosmology independent (HM19), which provides us with all the needed information

to connect maximum observed velocity profile (vlos,esc) with gravitational potential

profile through vesc. The suppression derived by HM19 is indeed nicely predicts vesc

on a cluster-by-cluster basis (compare red lines and shaded regions with blue error

bars on the phase-spaces of individual clusters in Appendix A). In should be noted,

that this is done only by using the inferred from the projected phases-space vlos,esc
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and the richness (the number of galaxies in the radial range 0.3 ≤ r/r200 ≤ 1).

Miller et al. (2016) and Stark et al. (2016a) discussed this approach of probing

cosmology and in the second of these works, the Fisher matrix formalism was used

to predict the constraining power on cosmological parameters by utilizing the escape

velocity profiles as a cosmology probe in different cosmological scenarios. The authors

came to the conclusion that constraints can be improved by reducing errors in the

weak lensing mass and in the anisotropy parameter (which is the suppression function

in our case) as well as by increasing the number of the galaxy clusters analyzed (Ncl).

The authors looked at two cases with Ncl = 100 (1000) and came to the conclusion

that the uncertainties on the matter energy-density and the EOS can be as low as

σΩm,0 = 0.007(0.025) and σω = 0.138(0.431) after marginalizing over h0. Due to our

sample having only 38 galaxy clusters and because we had to utilize extra statistical

uncertainty due to the velocity correction (see the subsection 4.5.3.2), we were able

to place sensible constraints only on a set of two cosmological parameters (Ωm,0, h0),

while fixing the EOS ω = −1.

Currently, there is a very significant tension (> 4.4σ) between observations of the

Hubble constant by analyzing Cepheids (Riess et al., 2019) and from CMB observa-

tions (Planck Collaboration et al., 2018). Our approach could be a necessary brick in

the construction of the building of the understanding the discrepancy between CMB

and Cepheids results of measuring Hubble constant. Our best-fit results (4.21, 4.22)

favor the matter energy-density inferred from Plank CMB, while agreeing with the

Hubble constant measured by Cepheids. This result places question mark on the

models of decaying dark matter (Berezhiani et al., 2015), which are one of the ways

of easing tension in the Hubble constant observations.

While this section provides a preliminary results as well as an introduction to

the novel approach of testing cosmology and gravity using phase-spaces of galaxy

clusters, there is a room for improvements. First, we need the galaxy clusters with
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higher number of galaxies per cluster, which would allow us to measure vlos,esc from

a projected phase-space more accurately, while also decreasing uncertainty produced

by the suppression (4.7). Secondly, we can use direct shear measurements of the

weak lensing data as in this work we utilized modeled matter density distributions.

Additionally, this would allow us to utilize the Einasto model 1.38, which does not

overestimate vesc and it would allow us to drop the need to utilize the velocity correc-

tion (4.5), which is currently required due to the overestimation of the escape velocity

by the NFW model (1.36). Moreover, the weak lensing data can be combined with

the strong lensing data to increase precision of the weak lensing data (Umetsu, 2013).

4.6 Future Work

The precision of the analysis presented in this work will greatly improve with

better data samples of the weak lensing and the measurements of positions and red-

shifts of the higher number of galaxies in the higher number of the galaxy clusters.

However, even with the current level of the data significant future progress can be

made. First, Emergent Gravity model theory should be improved to solve many as-

sumptions it currently employs. The approach developed in the chapter III can be

utilized to probe EG as well as other modified theories of gravity (see section 1.4)

as it is able to predict the observed maximum velocity profiles with ∼ 2% accuracy.

The approach provides us with a controlled environment to simulate galaxy clusters

with a given requirements in the framework of any gravity and cosmology model. The

natural step is to use the approach to predict the suppression function for a given

richness and projected dispersion in application to the models such as EG and f(R)

with subsequent utilization of derived suppression on the real galaxy clusters data in

a similar fashion as we tested standard ΛCDM cosmological model. Moreover, our

results show that knowing richness and dispersion profile in addition to the matter

density distribution allow us to provide high accuracy (∼ 2%) mass estimate of the
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galaxy clusters using the approach developed in the chapter III, which means that

by using phase-spaces the approach is capable of estimating masses of galaxy clusters

with high precision. The level of accuracy of constraining cosmological parameters

presented in the chapter 4.5 can be greatly improved with current data by using

direct shear measurements of the weak lensing data, which provide cosmology inde-

pendent mass distribution profile. Moreover, it can be modelled using Einasto profile,

which in turn does not require introduction of any velocity correction function used

in the chapter 4.5. Finally, the current approach can be combined with the existing

probes to provide even higher precision in constraining cosmological parameters and

alternative theories of gravity.
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APPENDIX A

Individual phase-spaces

Projected phase-spaces of individual galaxy clusters. Black solid lines are the

measured (by applying removal prescription proposed by Gifford et al. (2013) on

the galaxies on the projected phase-spaces) maximum velocity profiles vlos,esc. Red

lines and red shaded regions around them are vesc with the best-fit cosmology (4.21,

4.22) and uncertainty around it due to the uncertainty of the weak lensing masses.

Blue error bars correspond to the 8 radial bins of the adjusted measured maximum

velocity profile due to the suppression function (4.7) and the velocity correction (4.5),

i.e. vlos,esc×Zv/(1−vcorr). Binning is done in the range [0.3; 1]×R200 with the 0.1R200

steps.
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Figure A.1: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.
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Figure A.2: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.
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Figure A.3: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.
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Figure A.4: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.
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Figure A.5: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.
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Figure A.6: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.
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Figure A.7: Projected phase-spaces of individual galaxy clusters. The meaning of
individual lines and error bars is described in the text of Appendix A.

159



BIBLIOGRAPHY

160



BIBLIOGRAPHY

Ade, P. A. R., et al. (2016), Planck 2015 results. XIII. Cosmological parameters,
Astron. Astrophys., 594, A13, doi:10.1051/0004-6361/201525830.

Aguilar, L. A. (2008), Dynamics of Galaxies and Clusters of Galaxies, pp. 71–118,
Springer Netherlands, Dordrecht, doi:10.1007/978-1-4020-6941-3 3.

Agulli, I., J. A. L. Aguerri, R. Sánchez-Janssen, C. Dalla Vecchia, A. Diaferio, R. Bar-
rena, L. Dominguez Palmero, and H. Yu (2016), Deep spectroscopy of nearby galaxy
clusters - I. Spectroscopic luminosity function of Abell 85, MNRAS, 458, 1590–1603,
doi:10.1093/mnras/stw422.

Amanullah, R., et al. (2010), Spectra and Hubble Space Telescope Light Curves of
Six Type Ia Supernovae at 0.511 &lt; z &lt; 1.12 and the Union2 Compilation, ApJ,
716 (1), 712–738, doi:10.1088/0004-637X/716/1/712.

Andreon, S. (2010), The stellar mass fraction and baryon content of galaxy clusters
and groups, MNRAS, 407, 263–276, doi:10.1111/j.1365-2966.2010.16856.x.

Applegate, D. E., et al. (2014), Weighing the Giants - III. Methods and measure-
ments of accurate galaxy cluster weak-lensing masses, MNRAS, 439, 48–72, doi:
10.1093/mnras/stt2129.

Behroozi, P. S., A. Loeb, and R. H. Wechsler (2013a), Unbound Particles in Dark
Matter Halos, JCAP, 1306, 019, doi:10.1088/1475-7516/2013/06/019.

Behroozi, P. S., A. Loeb, and R. H. Wechsler (2013b), Unbound Particles in Dark
Matter Halos, JCAP, 1306, 019, doi:10.1088/1475-7516/2013/06/019.

Berezhiani, Z., A. D. Dolgov, and I. I. Tkachev (2015), Reconciling Planck results
with low redshift astronomical measurements, Phys. Rev., D92 (6), 061,303, doi:
10.1103/PhysRevD.92.061303.

Betoule, M., et al. (2014a), Improved cosmological constraints from a joint analysis
of the SDSS-II and SNLS supernova samples, A&A, 568, A22, doi:10.1051/0004-
6361/201423413.

Betoule, M., et al. (2014b), Improved cosmological constraints from a joint analysis
of the SDSS-II and SNLS supernova samples, A&A, 568, A22, doi:10.1051/0004-
6361/201423413.

161



Blanton, M. R., et al. (2017), Sloan Digital Sky Survey IV: Mapping the Milky
Way, Nearby Galaxies, and the Distant Universe, AJ, 154 (1), 28, doi:10.3847/1538-
3881/aa7567.

Boschin, W., R. Barrena, and M. Girardi (2009), Internal dynamics of the galaxy
cluster Abell 959, A&A, 495 (1), 15–26, doi:10.1051/0004-6361:200811043.

Broadhurst, T. J., M. Takada, K. Umetsu, X. Kong, N. Arimoto, M. Chiba, and
T. Futamase (2005), The Surprisingly steep mass profile of Abell 1689, from a
lensing analysis of Subaru images, Astrophys. J., 619, L143, doi:10.1086/428122.

Brouwer, M. M., et al. (2017), First test of Verlinde’s theory of Emergent Gravity
using Weak Gravitational Lensing measurements, Mon. Not. Roy. Astron. Soc.,
466 (3), 2547–2559, doi:10.1093/mnras/stw3192.

Calder, L., and O. Lahav (2008), Dark energy: back to Newton?, Astronomy and
Geophysics, 49 (1), 1.13–1.18, doi:10.1111/j.1468-4004.2008.49113.x.

Carroll, S. M. (2001), The Cosmological constant, Living Rev. Rel., 4, 1, doi:
10.12942/lrr-2001-1.

Cavaliere, A., and R. Fusco-Femiano (1978), The Distribution of Hot Gas in Clusters
of Galaxies, A&A, 70, 677.

Chung, D. J. H., and K. Freese (2000), Can geodesics in extra dimensions
solve the cosmological horizon problem?, Phys. Rev., D62, 063,513, doi:
10.1103/PhysRevD.62.063513.

Clifton, T., P. G. Ferreira, A. Padilla, and C. Skordis (2012), Modified Gravity and
Cosmology, Phys. Rept., 513, 1–189, doi:10.1016/j.physrep.2012.01.001.

Clowe, D., G. A. Luppino, N. Kaiser, and I. M. Gioia (2000), Weak Lensing by High-
Redshift Clusters of Galaxies. I. Cluster Mass Reconstruction, ApJ, 539, 540–560,
doi:10.1086/309242.

Clowe, D., M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones,
and D. Zaritsky (2006), A direct empirical proof of the existence of dark matter,
Astrophys. J., 648, L109–L113, doi:10.1086/508162.

Cooray, A., W. Hu, D. Huterer, and M. Joffre (2001), Measuring angular diameter
distances through halo clustering, Astrophys. J., 557, L7, doi:10.1086/323323.

Copeland, E. J., M. Sami, and S. Tsujikawa (2006), Dynamics of dark energy, Int. J.
Mod. Phys., D15, 1753–1936, doi:10.1142/S021827180600942X.

Correa, C. A., J. S. B. Wyithe, J. Schaye, and A. R. Duffy (2015), The accretion his-
tory of dark matter haloes III. A physical model for the concentrationmass relation,
Mon. Not. Roy. Astron. Soc., 452 (2), 1217–1232, doi:10.1093/mnras/stv1363.

162
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Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles
and Comparison with Parametric Models, AJ, 132, 2685–2700, doi:10.1086/508988.

Milgrom, M. (1983), A Modification of the Newtonian dynamics as a possible
alternative to the hidden mass hypothesis, Astrophys. J., 270, 365–370, doi:
10.1086/161130.

Milgrom, M. (2008), The MOND paradigm, arXiv e-prints, arXiv:0801.3133.

Milgrom, M. (2009), Bimetric MOND gravity, Phys. Rev., D80, 123,536, doi:
10.1103/PhysRevD.80.123536.

Miller, C. J., A. Stark, D. Gifford, and N. Kern (2016), Inferring Gravitational Po-
tentials From Mass Densities in Cluster-sized Halos, Astrophys. J., 822 (1), 41,
doi:10.3847/0004-637X/822/1/41.

Moran, S. M., R. S. Ellis, T. Treu, G. P. Smith, R. M. Rich, and I. Smail (2007),
A Wide-Field Survey of Two z ˜ 0.5 Galaxy Clusters: Identifying the Physical
Processes Responsible for the Observed Transformation of Spirals into S0s, ApJ,
671, 1503–1522, doi:10.1086/522303.

Nandra, R., A. N. Lasenby, and M. P. Hobson (2012), The effect of an expand-
ing universe on massive objects, MNRAS, 422 (4), 2945–2959, doi:10.1111/j.1365-
2966.2012.20617.x.

Natarajan, P., et al. (2017), Mapping substructure in the HST Frontier Fields cluster
lenses and in cosmological simulations, Mon. Not. Roy. Astron. Soc., 468 (2), 1962–
1980, doi:10.1093/mnras/stw3385.

Navarro, J. F., C. S. Frenk, and S. D. M. White (1996), The Structure of cold dark
matter halos, Astrophys. J., 462, 563–575, doi:10.1086/177173.

Navarro, J. F., C. S. Frenk, and S. D. M. White (1997), A Universal density profile
from hierarchical clustering, Astrophys. J., 490, 493–508, doi:10.1086/304888.

Nieuwenhuizen, T. M. (2017), How Zwicky already ruled out modified grav-
ity theories without dark matter, Fortsch. Phys., 65 (6-8), 1600,050, doi:
10.1002/prop.201600050.

167



Okabe, N., and G. P. Smith (2015), LoCuSS: Weak-lensing mass calibration of galaxy
clusters, ArXiv e-prints.

Okabe, N., and K. Umetsu (2008), Subaru Weak Lensing Study of Seven Merg-
ing Clusters: Distributions of Mass and Baryons, PASJ, 60, 345–375, doi:
10.1093/pasj/60.2.345.

Okabe, N., M. Takada, K. Umetsu, T. Futamase, and G. P. Smith (2010), Lo-
CuSS: Subaru Weak Lensing Study of 30 Galaxy Clusters, PASJ, 62, 811–870,
doi:10.1093/pasj/62.3.811.

Owers, M. S., S. W. Randall, P. E. J. Nulsen, W. J. Couch, L. P. David, and J. C.
Kempner (2011), The Dissection of Abell 2744: A Rich Cluster Growing Through
Major and Minor Mergers, ApJ, 728, 27, doi:10.1088/0004-637X/728/1/27.

Pedersen, K., and H. Dahle (2007), Calibration of the Mass-Temperature Relation
for Clusters of Galaxies Using Weak Gravitational Lensing, ApJ, 667, 26–34, doi:
10.1086/520945.

Perlmutter, S., et al. (1999), Measurements of Omega and Lambda from 42 high
redshift supernovae, Astrophys. J., 517, 565–586, doi:10.1086/307221.

Planck Collaboration, et al. (2013), Planck intermediate results. V. Pressure pro-
files of galaxy clusters from the Sunyaev-Zeldovich effect, A&A, 550, A131, doi:
10.1051/0004-6361/201220040.

Planck Collaboration, et al. (2018), Planck 2018 results. VI. Cosmological parameters,
arXiv e-prints, arXiv:1807.06209.

Radovich, M., E. Puddu, A. Romano, A. Grado, and F. Getman (2008), A weak
lensing analysis of the Abell 2163 cluster, Astron. Astrophys., 487, 55, doi:
10.1051/0004-6361:200809731.

Rasia, E., G. Tormen, and L. Moscardini (2004), A dynamical model for the dis-
tribution of dark matter and gas in galaxy clusters, MNRAS, 351 (1), 237–252,
doi:10.1111/j.1365-2966.2004.07775.x.

Retana-Montenegro, E., E. Van Hese, G. Gentile, M. Baes, and F. Frutos-Alfaro
(2012), Analytical properties of Einasto dark matter haloes, Astron. Astrophys.,
540, A70, doi:10.1051/0004-6361/201118543.

Riess, A. G., S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic (2019), Large Mag-
ellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination
of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, ApJ,
876 (1), 85, doi:10.3847/1538-4357/ab1422.

Riess, A. G., et al. (1998), Observational evidence from supernovae for an accel-
erating universe and a cosmological constant, Astron. J., 116, 1009–1038, doi:
10.1086/300499.

168



Rines, K., M. J. Geller, A. Diaferio, and M. J. Kurtz (2013), Measuring the Ultimate
Halo Mass of Galaxy Clusters: Redshifts and Mass Profiles from the Hectospec
Cluster Survey (HeCS), ApJ, 767, 15, doi:10.1088/0004-637X/767/1/15.

Rubin, V. C., and W. K. Ford, Jr. (1970), Rotation of the Andromeda Nebula
from a Spectroscopic Survey of Emission Regions, Astrophys. J., 159, 379–403,
doi:10.1086/150317.

Schellenberger, G., and T. H. Reiprich (2017), HICOSMO cosmology with a com-
plete sample of galaxy clusters I. Data analysis, sample selection and luminos-
itymass scaling relation, Mon. Not. Roy. Astron. Soc., 469 (3), 3738–3761, doi:
10.1093/mnras/stx1022.

Sereno, M. (2015), CoMaLit III. Literature catalogues of weak lensing clus-
ters of galaxies (LC2), Mon. Not. Roy. Astron. Soc., 450 (4), 3665–3674, doi:
10.1093/mnras/stu2505.

Sereno, M., and G. Covone (2013), The mass-concentration relation in massive
galaxy clusters at redshift 1, Mon. Not. Roy. Astron. Soc., 434, 878, doi:
10.1093/mnras/stt1086.

Sereno, M., S. Ettori, and A. Baldi (2012), Shape and orientation of the gas dis-
tribution in A1689, Mon. Not. Roy. Astron. Soc., 419, 2646, doi:10.1111/j.1365-
2966.2011.19914.x.

Sereno, M., C. Fedeli, and L. Moscardini (2016), Comparison of weak lensing by NFW
and Einasto halos and systematic errors, JCAP, 1601 (01), 042, doi:10.1088/1475-
7516/2016/01/042.

Serra, A. L., A. Diaferio, G. Murante, and S. Borgani (2011), Measuring the escape
velocity and mass profiles of galaxy clusters beyond their virial radius, MNRAS,
412 (2), 800–816, doi:10.1111/j.1365-2966.2010.17946.x.

Smail, I., R. S. Ellis, A. Dressler, W. J. Couch, A. Oemler, R. M. Sharples, and
H. Butcher (1997), A Comparison of Direct and Indirect Mass Estimates for Distant
Clusters of Galaxies, ApJ, 479, 70–81, doi:10.1086/303844.

Springel, V., et al. (2005), Simulating the joint evolution of quasars, galaxies and
their large-scale distribution, Nature, 435, 629–636, doi:10.1038/nature03597.

Stark, A., C. J. Miller, and D. Gifford (2016a), On Escaping a Galaxy Cluster in an
Accelerating Universe, Astrophys. J., 830, 109, doi:10.3847/0004-637X/830/2/109.

Stark, A., C. J. Miller, N. Kern, D. Gifford, G.-B. Zhao, B. Li, K. Koyama, and R. C.
Nichol (2016b), Probing Theories of Gravity with Phase Space-Inferred Potentials
of Galaxy Clusters, Phys. Rev., D93 (8), 084,036, doi:10.1103/PhysRevD.93.084036.

Stark, A., C. J. Miller, and D. Huterer (2017), Cosmology with galaxy cluster phase
spaces, Phys. Rev. D, 96 (2), 023543, doi:10.1103/PhysRevD.96.023543.

169



Stark, A., C. J. Miller, and V. Halenka (2019), Deriving galaxy cluster velocity
anisotropy profiles from a joint analysis of dynamical and weak lensing data, As-
trophys. J., 874 (1), 33, doi:10.3847/1538-4357/ab06fa.

Tortora, C., L. V. E. Koopmans, N. R. Napolitano, and E. A. Valentijn (2018),
Testing Verlinde’s emergent gravity in early-type galaxies, Mon. Not. Roy. Astron.
Soc., 473 (2), 2324–2334, doi:10.1093/mnras/stx2432.

Tran, K.-V. H., M. Franx, G. D. Illingworth, P. van Dokkum, D. D. Kelson, J. P.
Blakeslee, and M. Postman (2007), A Keck Spectroscopic Survey of MS 1054-03 (z
= 0.83): Forming the Red Sequence, ApJ, 661 (2), 750–767, doi:10.1086/513738.

Treu, T., et al. (2015), The Grism Lens-Amplified Survey from Space (GLASS).
I. Survey Overview and First Data Release, ApJ, 812, 114, doi:10.1088/0004-
637X/812/2/114.

Tsujikawa, S. (2010), Modified gravity models of dark energy, Lect. Notes Phys., 800,
99–145, doi:10.1007/978-3-642-10598-2 3.

Tsujikawa, S. (2011), Dark Energy: Investigation and Modeling, in Astrophysics and
Space Science Library, Astrophysics and Space Science Library, vol. 370, edited by
S. Matarrese, M. Colpi, V. Gorini, and U. Moschella, p. 331, doi:10.1007/978-90-
481-8685-3 8.

Tyler, K. D., G. H. Rieke, and L. Bai (2013), Star-forming Galaxy Evolution in
Nearby Rich Clusters, ApJ, 773, 86, doi:10.1088/0004-637X/773/2/86.

Umetsu, K. (2013), Model-Free Multi-Probe Lensing Reconstruction of Cluster Mass
Profiles, Astrophys. J., 769, 13, doi:10.1088/0004-637X/769/1/13.

Umetsu, K., et al. (2015), Three-dimensional Multi-probe Analysis of the Galaxy
Cluster A1689, ApJ, 806, 207, doi:10.1088/0004-637X/806/2/207.

Vainshtein, A. I. (1972), To the problem of nonvanishing gravitation mass, Phys.
Lett., 39B, 393–394, doi:10.1016/0370-2693(72)90147-5.

Verlinde, E. P. (2011), On the Origin of Gravity and the Laws of Newton, JHEP, 04,
029, doi:10.1007/JHEP04(2011)029.

Verlinde, E. P. (2017), Emergent Gravity and the Dark Universe, SciPost Phys., 2 (3),
016, doi:10.21468/SciPostPhys.2.3.016.

Vikhlinin, A., A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S. S. Murray,
and L. Van Speybroeck (2006), Chandra sample of nearby relaxed galaxy clusters:
Mass, gas fraction, and mass-temperature relation, Astrophys. J., 640, 691–709,
doi:10.1086/500288.

Yoo, J., and Y. Watanabe (2012), Theoretical Models of Dark Energy, Int. J. Mod.
Phys., D21, 1230,002, doi:10.1142/S0218271812300029.

170



ZuHone, J. A., and J. R. Sims (2019), Testing Emergent Gravity with Optical, X-ray,
and Weak Lensing Measurements in Massive, Relaxed Galaxy Clusters, Astrophys.
J., 880, 145, doi:10.3847/1538-4357/ab2b34.

Zwicky, F. (1933), Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys.
Acta, 6, 110–127, doi:10.1007/s10714-008-0707-4, [Gen. Rel. Grav.41,207(2009)].

171


