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ABSTRACT

Enabled by technology scaling, processing parallelism has been continuously in-

creased to meet the demand of large-scale and data-intensive computations. However,

the effort to increase processing parallelism is largely hindered by the von Neumann

bottleneck. To achieve a higher performance, domain-specific computing has become

the most promising direction. Domain-specific computing employs highly optimized

datapaths, simplified control and efficient dataflow to enable the dense integration

of processing elements with optimized memory access. Many domain-specific designs

have demonstrated significantly better figure of merit than a general-purpose CPU

or GPU, but the von Neumann bottleneck still limits the maximum achievable per-

formance.

To reduce the data transfer cost, a closer integration between memory and com-

putation is needed, which ultimately leads to the so-called in-memory computing ap-

proach. In-memory computing re-purposes memory cell array for multiply-accumulate

operations and apply both bit-line and word-line parallelism to realize large matrix

computation before memory readout, eliminating the von Neumann bottleneck en-

tirely. However, in-memory computing is inherently analog compute, where limited

precision and high sensitivity to noise pose major challenges.

This thesis work presents two approaches to address the von Neumann bottleneck:

1) reducing the amount of data that needs to be moved by sparsity and data compres-

sion; and 2) robust multi-bit in-memory compute design to extend the applicability

of in-memory compute to a wider range of applications.

x



With video input and 3D features, a video processor requires many times larger

memory size and computation than a 2D image processor. In this work, I chose a video

sequence inference processor to demonstrate sparsity-oriented optimizations using a

quantized all-spiking network, where the sparsity can reach a high 90% level. By

kernel compression and activation compression, memory size can be reduced further

by 43% and 64%, respectively. High data sparsity and memory compression lead

to two orders of magnitude of improvement in performance and energy. The design

was demonstrated in a 2.53mm2 40nm CMOS chip for video sequence inference that

achieved 1.70TOPS with a power dissipation of 135mW at 0.9V and 250MHz. The

results show the effective use of sparsity and data compression to loosen the von

Neumann bottleneck.

It is well known that in-memory computing is limited in operand and output preci-

sion, which restricts its applications to binary or low-precision applications. Through

an algorithmic transformation using a residual approach, I demonstrate that it is

possible to map a high-precision partial differential equation (PDE) solver to a low-

precision 5-bit in-memory computing. To support multi-bit computation, I adopt

both width and level modulation of word-line pulses. To reduce the cost and improve

the speed of analog-to-digital conversion, I employ a compact array of dual-ramp

single-slope (DRSS) ADCs for bit-line readout. These ideas were demonstrated in a

1.87mm2 180nm test chip made of four 320×64 multiply-accumulate (MAC) SRAMs,

each supporting 128× parallel 5b×5b MACs with 32 5-bit output ADCs and con-

suming 16.6mW at 200MHz. The prototype was able to solve a 127×127 PDE grid

at 56.9 GOPS. This SRAM based in-memory compute provides over 40× compute

density than an equivalent ASIC, demonstrating that the von Neumann bottleneck

can be removed for applications that require higher precisions.

This work shows the importance of algorithm-architecture-circuit co-design for

uncovering opportunities to mitigate and remove the von Neumann bottleneck. The

xi



design techniques and approaches can be applicable to a wide array of applications

for improving performance and efficiency.
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CHAPTER I

Introduction

The vast majority of modern computer processors are designed based on the von

Neumann architecture [7] as shown in Fig. 1.1 that roughly consists of four parts: a

processing unit for arithmetic and logic operations, a control unit that steps through

instructions, a memory that stores data and instructions, and input and output de-

vices. The architecture has served us well in the era when semiconductor devices are

relatively large, expensive and slow, and the datasets are small.

With the rapid scaling down of CMOS devices following Moore’s law [8], CMOS

devices have become exponentially smaller, cheaper, and faster. Processors can afford

to have multiple or many processing cores [9]. Graphics processing units (GPU) and

application-specific integrated circuits (ASIC) can provide hundreds or thousands of

processing units on chip to boost performance [10, 11]. Enabled by the rapid growth

of processing capabilities, new classes of applications, such as computer vision [12],

natural language processing [13], autonomous navigation [14], virtual reality [15] and

augmented reality [16], crypto currency [17] and blockchain [18], have emerged. A

commonality among all these emerging applications is that the datasets can be mas-

sive and the compute models are large and complex.

An example is shown in Fig. 1.2 for the state-of-the-art deep neural network (DNN)

models [2] compiled by Canziani, et al. A state-of-the-art DNN model contains over

1



Input/Output
System

Memory Unit

Control Unit

Arithmatic Logic Unit

Registers

Central Processing Unit

Figure 1.1: Von Neumann architecture for computer processors. [1]

Figure 1.2: Top-1 accuracy vs operations, parameters for state-of-the-art DNN archi-
tectures. The size of each blob is proportional to number of parameters,
as indicated in the legend at bottom right corner. [2]
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Table 1.1: Estimated energy cost for data access and floating-point computation on
45nm technology. [6]

FP Add

16 bit 0.4 pJ

32 bit 0.9 pJ

FP Mult

16 bit 1 pJ

32 bit 4 pJ

SRAM Cache (64 bit)

8 KB 10 pJ

32 KB 20 pJ

1 MB 100 pJ

DRAM 1.3-2.6 nJ

100 million parameters, and requires 40 GOPs to process a relatively low-resolution

image of 224×224×3 (3 channels).

One can argue that the current CMOS device technology can comfortably provide

the level of parallelism needed for the growing list of emerging applications. For exam-

ple, Nvidia’s V100 GPU accelerator already boasts a 15 TFLOPS performance [19].

However, as Horowitz famously pointed out, the compute problem we are facing is

no longer how parallel we can make the processing units, but how much it costs to

supply the input data and take away the output data from the processing units [6].

Indeed, as Table 1.1 shows, in a 45nm CMOS technology, moving data from a

relatively small-sized 8KB SRAM cache memory costs 10× more in energy than a

16-bit floating-point multiplication. The energy cost escalates by another 10× when

moving data from a larger 1MB SRAM. If data have be moved from off-chip DRAM,

we can expect to pay yet another 10× energy cost. The lopsided energy breakdown

shows that data movement, rather than parallel processing, is the determining factor

in high-performance and efficient processor designs. This is known as the von Neu-

mann bottleneck [20]. It is not surprising that the vast majority of the Nvidia V100

GPU’s 300 W thermal design power is attributed to the memory interface [19].

3



1.1 Related Work and Challenges

Architecture specialization for a domain of applications has been named as one

promising way forward [21]. Domain-specific architectures are designed for special

classes of applications. Compared to general-purpose processors that incur a high

control overhead, a less efficient processing pipeline, and frequent load and store

accesses, domain-specific architectures can be made much more efficient by simplifying

the control, optimizing the data flow, and maximizing local data reuse.

Google’s tensor processing unit (TPU) [3] is a prime example of a domain-specific

processor that is tailored to DNN workloads. The core of the TPU is a 256×256

8-bit vector-matrix product engine. The 64k multiply-accumulate (MAC) units are

wired up in a systolic array. The partial results are passed between one MAC unit to

its nearest neighbor, allowing the final results to be accumulated along the compute

path and avoiding expensive SRAM access. The massive parallelism, together with

an optimized data flow, contribute to the TPU’s record performance and efficiency:

using only half the silicon area of the Intel Haswell CPU or Nvidia Kepler K80 GPU,

and half the power, TPU provides 25× more MAC operations [22] than both.

Domain specialization allows the TPU to score a much better figure of merit than

a general-purpose CPU and GPU. However, TPU is still hurt by the von Neumann

bottleneck as evidenced in the roofline plot shown in Fig. 1.3. A roofline curve shows

the performance of a processor as the data reuse is increased. A roofline curve has

two distinct parts, a slanted part and a flat part. The flat part defines the maximum

achievable performance of the processor (the performance roof); and in the slanted

part, the performance of the processor is capped by memory bandwidth. As data

reuse is increased, the same memory bandwidth can support a higher performance.

Fig. 1.3 clearly shows that the TPU raised the performance roof compared to a CPU

and a GPU, but it also features a long slanted region. Many workloads, such as long

short-term memory (LSTM) and multilayer perceptron (MLP), are still limited by

4



Figure 1.3: Roofline performance model for CPU, GPU, and TPU. [3]

memory bandwidth.

To alleviate or resolve the von Neumann bottleneck, near-memory compute and

in-memory compute have been proposed. In near-memory compute, processing is

moved very close to memory to reduce the data movement cost [23]. 3D integra-

tion technology is a key enabler of near-memory compute. High bandwidth memory

(HBM) [24] and hybrid memory cube (HMC) [25] are schemes that stack layers of

DRAM on top of a logic layer. The layers are interconnected by a large number of

through-silicon vias (TSVs). Making use of the third dimension increases the memory

capacity, and TSVs provide short-distance and dense connectivity to memory.

Based on HMC, two near-memory designs, Neurocube [4], shown in Fig. 1.4, and

TETRIS [26], have been demonstrated. Both designs place processing units on the

bottom logic layer, which access layers of DRAMs directly on top. Benefiting from 3D

integration and the substantially reduced wiring distance and increased bandwidth,

5



Host CPU Logic die

DRAM

DRAM

DRAM

DRAM

Host - Neurocube

Neurocube

TSVs

Logic die

16 Partitions

TSVs
Vault
Controller

Vault
DRAM 
dies

Links

Figure 1.4: Neurocube architecture. [4]

Neurocube demonstrated 4× improvement in power efficiency compared to a GPU [4].

Note that near-memory compute still follows the von Neumann architecture with

a much relaxed memory access bottleneck. In comparison, in-memory compute, il-

lustrated in Fig. 1.5, relies on memory for both storage and compute. Compute is

performed inside memory cells, without moving data out of memory. As a result,

in-memory compute can offer a higher efficiency than near-memory compute. In-

memory compute also activates multiple or all the word lines of a memory array in

parallel to unleash the array’s intrinsic high parallelism.

In-memory compute has been demonstrated in a number of silicon prototypes.

Early work used SRAM for in-memory compute [27]. Lately, prototypes have been

designed based on resistive RAM (RRAM) [28]. Comparing RRAM to SRAM, RRAM

offers denser and nonvolatile storage, and it is the more attractive option for in-

memory compute. However, SRAM is made of CMOS devices, which are more ma-

ture and can be readily demonstrated. SRAM-based in-memory compute accelera-

tors, such as Conv-RAM [29], demonstrated more than 16× improvement in energy

efficiency compared to a conventional digital accelerator.

In-memory compute is no longer limited by the von Neumann bottleneck. How-

ever, in-memory compute is fundamentally a form of analog compute that relies on

6



Figure 1.5: Deep in-memory computing architecture. [5]

modulating analog voltages and summing analog currents. As such, in-memory com-

pute is less reliable than conventional digital compute, and it can be easily affected

by noise, variations and offsets. Although in-memory compute can be made highly

parallel, it is difficult to obtain high-precision results. Early efforts have relied on

converting the results to 1 bit [30]. With proper circuit techniques, up to 7 bits

can be obtained [29], but it requires costly analog-to-digital conversion. To sum up,

limited precision and high sensitivity to noise and variation are the key challenges of

in-memory compute.

1.2 Thesis Contribution

This thesis work provides new solutions targeting high-performance and energy-

efficient accelerator design for data-intensive applications. As the datasets are large,

the von Neumann bottleneck presents a major challenge. The proposed solutions

7



are based on two primary approaches: 1) reducing the amount of data that need

to be moved by exploiting sparsity and data compression; and 2) robust multi-bit

in-memory compute design to extend the applicability of in-memory compute to a

wider range of applications.

1.2.1 Data Sparsity

Sparsity is often inherent in large datasets. For example, sensory data can be

highly sparse in the sense that the amount of meaningful information is low relative

to the large number of raw data points. Even if the raw data appear dense, through

a signal processing technique called compressed sensing [31], the raw data can be

projected to a new space to make the data appear sparse. Popular compression

techniques make use of this principle. For example, audio and image compression

often employs discrete cosine transform (DCT) that expresses a finite sequence of

data points in terms of a sum of cosine functions at different frequencies [32]. After

applying DCT, audio and image data become sparse and can be efficiently compressed.

The brain does an amazing job in compressing input sensory data. The sensory

inputs, e.g., images, videos, audio, speech, are coded in highly sparse neuron spikes for

cognitive processing [33]. It is hypothesized that the brain employs an efficient coding

scheme that maximizes both coding accuracy and sparsity [34], akin to compressed

sensing. The high sparsity could be a key factor behind the ultra-high efficiency of

the brain.

The data sparsity inspires the design of better accelerators. Sparsity implies that

most of the data are zeros, leading to reduced workload and higher performance.

More importantly, sparsity results in a lower memory traffic, which alleviates the von

Neumann bottleneck.

In this work, a video sequence inference processor design is chosen to demonstrate

data-sparsity-optimized design techniques. A video sequence inference processor takes

8



2D + time video inputs and extracts spatio-temporal features [35]. The extracted

spatio-temporal features are used to infer the activities, or actions that are present in

the input video. The video sequence inference task is highly challenging because the

data size is significantly larger than 2D image processing that is commonly used in

benchmarking machine learning hardware. However, video inputs are highly sparse,

possibly more sparse than 2D images. By applying a neuro-inspired compressed

sensing algorithm, the video inputs are efficiently coded in the feature domain. The

data sparsity can reach a high 90% level, offering an opportunity to obtain both high

performance and high efficiency.

Chapter 2 will discuss the design of a sparse, all-spiking accelerator for the im-

plementation of a video sequence inference accelerator. This work was a joint effort

with my group member Ching-En Lee. Sparsity is inherently high in videos; and

sparsity can be further increased using a residual approach and a rectification tech-

nique. A residual approach operates on the incremental changes in each iteration,

rather than the raw data directly. It is reasonable to expect that the residuals are

sparser than the raw data. Rectification is an approximate compute technique that

quantizes intermediate data to a few finite levels, allowing the intermediate data to

be sparsified.

Backed by the high data sparsity and simple data compression techniques, the

performance and energy of the accelerator can be improved by nearly two orders of

magnitude. The substantial improvements are attributed to the effective use of data

sparsity that loosens the von Neumann bottleneck.

1.2.2 Multi-Bit In-Memory Compute Accelerator

A key limitation of in-memory compute is the limited precision. Many prior

designs resorted to storing 1-bit operands in memory or converting outputs to 1 bit,

so as to match a digital memory with binary sense amplifiers and avoid costly ADCs.
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The low precision of in-memory compute limits its applicability to simple or toy

examples, e.g., binary neural networks [36], true or false classifications [37].

A partial differential equation (PDE) solver is chosen to demonstrate the multi-bit

in-memory compute technique. A PDE solver is widely used in scientific applications.

A PDE solver is commonly implemented using Jacobi method [38]. The equation and

the solution space are first discretized to a grid, and the solutions are found through

iterations of matrix-vector products.

PDE solver is a big-data workload: discretization results in a large number of

data points. If an accurate solution is required, which is often the case, a fine grid of

fine step size and a floating-point quantization are used, producing even more data.

It can take tens of thousands of iterations to converge, requiring a large amount of

data to be passed back and forth between memory and processing units. The von

Neumann bottleneck becomes the limiter. Although in-memory compute can cut the

data movement cost, it appears to be a mismatch for a PDE solver application due

to the PDE’s high precision requirement.

Chapter 3 will discuss how a residual approach is applied to reduce the precision

requirement of a PDE solver, allowing a high-precision PDE solver can be mapped

to a low-precision in-memory compute. The key is a residual technique that operates

on the incremental differences of data between iterations rather than the raw data.

Although the raw data can be in high precision, the incremental differences of the data

between iterations are much smaller in magnitude and can be represented using a low

precision. A drawback of the approach is that the convergence speed worsens with

reduced precision. However, there exists an optimal point in the trade-off between

]hlprecision and convergence speed. The optimal point for the PDE solver is near 4

to 5 bits, where the increase in convergence latency is still manageable.

Even after the PDE solver computation is quantized to 5 bits, it is still not fea-

sible to map the computation to an existing in-memory compute accelerator. Some
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in-memory compute accelerators support only 1-bit multiplicands [27, 29, 30], 1-bit

multipliers [30, 39], or 1-bit outputs [27, 30, 39], which are not sufficient for a PDE

solver. None of the existing in-memory compute accelerators provides enough number

of multi-bit ADCs to support the bandwidth needed for iterative solution updates in

a PDE solver.

This work presents a number of new circuit approaches to enable a practical multi-

bit in-memory compute. First, both width and level modulation are used in word

line modulation to allow the multiplication of multi-bit operands. A delayed-locked

loop (DLL) is used to generate well-control word line pulses, while offering tolerance

against process voltage temperature (PVT) variations. Second, a dual-ramp single-

slope (DRSS) ADC is used to perform the analog-to-digital conversion of bit line

outputs. A DRSS ADC shortens the conversion time and it can be constructed

using a shared centralized reference generation and compact comparator circuitry

per column. The circuit techniques are demonstrated in an SRAM-based prototype.

Over 40× compute density can be achieved compared to a conventional digital ASIC

design.

A part of this work is contributed by my group member, Jacob Botimer. He has

contributed to the design of the MAC SRAM module, and the implementation of the

PDE solver chip.

This thesis work demonstrates that by exploiting sparsity, compression and multi-

bit in-memory computing, it is possible to drastically reduce and eliminate data move-

ment and overcome the von Neumann bottleneck. This work also points out the need

to perform extensive analyses of the algorithms and models to uncover algorithm-

architecture-circuits co-design opportunities. The results of this work have been

demonstrated through silicon prototypes and verified by experimental measurements.

The approaches and techniques can be applicable to a wide array of high-performance

and efficient designs of future data-intensive accelerators.
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CHAPTER II

Design of Video Sequence Inference Processor

2.1 Introduction

Object detection in videos is employed in a wide range of applications from smart

user interface to surveillance and autonomous navigation. Due to the demanding

resolution and frame rate of videos, real-time object detection has been a challenge.

Designing real-time object detection on embedded platforms is especially difficult due

to the limited energy source available on embedded platforms.

State-of-the-art object detection accelerators [40–44] have been designed based on

SIFT [45], SURF [46] and DPM [47] algorithms. These popular algorithms extract

2D features from images, and compare them with features stored in a database [45,46]

or perform classifications [47] on the features to recognize objects. The accelerators

target real-time videos, but the base operations are on 2D images.

Video sequence classification, or action classification, operates on sequences of

video frames to extract activity or action information from videos. Video sequence

classification relies on extracting spatio-temporal features and performing classifica-

tion on the spatio-temporal features, thus it is expected to demand more computation

than the 2D processing of videos.

Classic video sequence classification relies on engineered features, such as cuboid

[48], space-time Harris [49], and Hessian [50]. Each feature selection is tailored to a
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specific task, but may not deliver the best performance for every task. It is desir-

able to use automatically learned features that are most suitable for the data. An

auto-encoder is one such approach that automatically learns sparse, shift-invariant

spatio-temporal features [51]. Sparse coding is a similar approach that adapts an

overcomplete dictionary of space-time functions (features) to represent time-varying

natural images with high sparsity [35]. The space-time features resemble the motion-

selective receptive fields (RF) of simple cells in the mammalian visual cortex, sug-

gesting that the approach may be at work in the visual cortex [35].

In this work, we adopt a sparse coding approach called locally competitive algo-

rithm (LCA) [52]. LCA is formulated as a compressed sensing method. When applied

to videos, LCA learns the spatio-temporal RFs (STRFs) and encodes inputs using

a sparse set of STRFs. As such, LCA is highly effective in reducing the input size,

allowing the most salient STRFs to be extracted for classification.

LCA can be mapped to a spiking recurrent neural network (RNN) [53, 54]. Im-

plemented using iterative forward projection and backward reconstruction, a video

sequence inference processor based on spiking RNN can extract spatio-temporal RFs

(STRFs), i.e., spatio-temporal features, from videos. The extracted STRFs can in

turn enable action classification [55] and motion tracking [56] tasks.

Due to the large video data size, spatio-temporal, and iterative processing, the

computational requirement of the video sequence inference RNN is high. Even for

a relatively small-scale processing of a 6×6×64 video slice using 192 STRFs costs

200M multiply-accumulates (MACs). To enable a practical implementation, we adopt

a residual formulation of the RNN [57] and apply an algorithm transformation by

rectifying the residuals after each inference iteration to ternary spikes without costing

classification accuracy. After the transformation, the intermediate data through the

compute stages, i.e., activations and residuals, become spikes with a sparsity level well

above 90%. The transformed algorithm leads to a sparse, all-spiking video inference
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processor design that reduces the computational complexity from 200M MACs to 4M

select-accumulates per iteration, making it possible to support video processing in

real-time at a reasonable power consumption. To reduce the large on-chip storage,

we apply non-uniform delta encoding on the highly redundant STRFs and compressed

column storage (CCS) on the highly sparse activations to reduce their memory size

by 43% and 64%, respectively.

The design is demonstrated in a 2.53mm2 40nm inference SoC that integrates a

video sequence inference core and an OpenRISC core. The chip is measured to achieve

1.70TOPS at 0.9V and 250MHz, dissipating 135mW at room temperature. With the

video sequence inference core extracting the activation response of STRFs, a soft-max

classifier programmed on the OpenRISC core achieves a 76.7% classification accuracy

on the 6-class KTH Human Action Dataset [58].

This work was a joint effort with my group member Ching-En Lee. My key con-

tributions to this work were the algorithm analysis, architectural sparsity evaluation

and the back-end layout and integration of the SoC.

The rest of the paper is organized as follows. Section II provides an overview of the

baseline inference algorithm, and Section III shows how the algorithm is transformed

to a sparse, all-spiking formulation to reduce its implementation cost. Section IV

presents the design details of each compute layer and memory, and quantifies the

performance and energy gain. Section V shows the chip implementation and measured

results, and Section VI concludes the work.

2.2 Video Inference Algorithm Formulation

In this work, we adopt the LCA algorithm [52] to perform compressed sensing

of videos. LCA can be mapped to a recurrent network of spiking leaky integrate-

and-fire neurons, where a neuron’s potential increases due to input excitation, and

decreases due to inhibition by neighboring neurons. The LCA algorithm is described
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Figure 2.1: Illustration of video inference processing.

by equation (2.1).

∆u = η

[
ΦTx−

(
ΦTΦ− I

)
a− u

]
(2.1)

a = Tλ(u),

where u is the neuron potential, ∆u is the potential update; η is the update step

size; Φ is the receptive fields (RF) of neurons, also known as the dictionary; x is

the input; a is the neuron activation; and I is the identity matrix. Tλ() is a binary

threshold function and it outputs 1 if its input exceeds λ, or 0 otherwise. Dictionary

Φ and threshold λ are trained by stochastic gradient descent, which aims to maximize

encoding accuracy and the sparsity of neuron activations.

In performing inference on video inputs, an input is divided to 3D segments for

processing. In (2.1), x is a time series of T number of X × Y × D consecutive and

overlapping video segments, as shown in Fig. 2.1. The dictionary Φ is a collection of

N RFs, and each RF is a X × Y × D spatio-temporal feature, known as STRF. u,

∆u, and a are collections of N neurons’ potentials, potential updates, and activations,

respectively, over T time steps. Mathematically, x is a V × T matrix, where V =
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XYD; Φ is a V ×N matrix; u, ∆u and a are N × T matrices.

The inference described by equation (2.1) consists of four functional steps:

1. Charge: Input x is projected to the feature space as described by ΦTx. The

projection can be understood as encoding the input x in STRFs, i.e., extract-

ing STRFs from the input. The projection increases, or charges, the neuron

potential.

2. Compete: To maintain sparse activation, active neurons suppress other neurons.

The inhibition weight between a pair of neurons is computed by correlating

their STRFs, i.e., ΦTΦ. Self-inhibition is removed by subtracting I. The closer

the two neurons’ STRFs, the stronger the inhibition between the two neurons.

Neuron activations trigger inhibitions as described by
(
ΦTΦ− I

)
a.

3. Leak : Neuron potential decreases over time, and the leakage is proportional to

the potential.

4. Activate: Neuron potential is thresholded to generate binary spikes.

The four steps above constitute one iteration of inference. Given an input x, the

inference is done by iterating the four steps until convergence. It is common to use

a fixed number of iteration I. The baseline implementation is outlined in Fig. 2.2,

where the leak step is omitted for simplicity.

The implementation complexity of one iteration of inference is analyzed and the

results are listed in Table 2.1. The dictionary storage requires V N entries. The in-

hibitory weights are computed by ΦTΦ−I, requiring N2V MACs. The N2 inhibitory

weights can be computed once and stored in memory.

In every iteration of inference, the charge step requires NV T MACs. Because

the two inputs ΦT and x to the charge step do not change between iterations, the

charge is computed only once per inference regardless of the number of iterations.
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Table 2.1: Baseline Implementation Complexity of One Iteration of Inference

Function Storage (# weights) Compute (# MACs)

Dictionary storage V N -

Inhibitory weight storage N2 -

Charge step - NV T

Compete step - N2TI

Total V N +N2 NV T +N2TI

Table 2.2: Implementation Complexity of One Iteration of Inference Using Residual
Approach

Function Storage (# weights) Compute (# MACs)

Dictionary storage V N -

Residual step - NV TI

Charge step - NV TI

Total V N 2NV TI

Table 2.3: Implementation Complexity of One Iteration of Inference Using Sparse and
All-Spiking Approach

Function Storage (# weights) Compute (# SAs)

Dictionary storage V N -

Residual step - NV TSaI

Charge step - NV TSrI

Total V N NV T (Sa + Sr)I

The compete step is driven by neuron activations, requiring N2T MACs per iteration

for I iterations.

Typically the number of neurons (N) ranges from hundreds and more for practical

applications, and video inference can be particularly challenging due to its large di-

mensionality and real-time processing requirement. A silicon implementation requires

a large area and power.
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2.3 Sparse and All-Spiking Inference Formulation

Video data is large, but it also contains high redundancy, especially from frame

to frame. The redundancy offers opportunities for significant complexity reduction

in storage and compute. The sparse coding algorithm also lends itself to an efficient

implementation by exploiting its inherent sparsity.

We formulate the algorithm such that all steps operate on spiking inputs. As

a result, expensive MACs are replaced by efficient select-accumulates (SAs); and

operations are skipped if no spikes are present.

2.3.1 Rectification and Sparsification

The LCA equation can be reformulated by factoring the term ΦT in (2.1):

∆u = η

[
ΦT (x−Φa) + a− u

]
(2.2)

a = Tλ(u).

The reformulated inference, first proposed by [57], can be interpreted as having

four steps: residual, charge, leak and activate. The leak and activate steps are iden-

tical to the original formulation. The residual and charge steps are described below.

1. Residual : The input x is reconstructed, x̂ = Φa. The reconstruction is sub-

tracted from the input to obtain the residual r = x− x̂.

2. Charge: The residual is projected to the feature space, c = ΦT r.

The residual form removes the storage of inhibitory weights and replaces it by

computing the weights on the fly. As a result, the storage required is smaller, but

the compute complexity poses a challenge, as shown in Table 2.2. To reduce the
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complexity, we propose to quantize the residuals. If the residuals can be quantized

to binary spikes (1, -1), the computational complexity of the charge layer can be

significantly simplified. However, as Fig. 2.5(a) shows, the binary quantization has a

large impact on the classification accuracy when the activation density is low. With

0 being the binary threshold, small noise values near 0 are amplified, preventing

convergence and degrading accuracy.

To fix this problem, we propose a min/max rectification to the residuals to quan-

tize the residuals to ternary spikes. The residual rectification is done by applying

thresholds of λr and −λr to quantize the residuals to 1 (above λr), 0 (between -λr

and λr), and -1 (below -λr). With appropriate threshold choices, the ternary quan-

tization outperforms binary quantization by a large margin and can even match the

unquantized accuracy, as shown in Fig. 2.5(a). The updated equation is given in

(2.3), where Tλr is the min/max rectification function.

∆u = η

[
ΦTTλr (x−Φa) + a− u

]
(2.3)

a = Tλ(u).

A key advantage of quantizing the residuals to binary or ternary spikes is that

the multiplication by these quantized values and accumulating the partial sums no

longer requires a MAC. Instead, a simpler SA can be used. Suppose a is binary (0

or 1), multiplying a by b followed by accumulation can be done using an SA that is

implemented as in Fig. 2.4(a), where a is used as the select input in the multiplexer

to choose whether 0 (if a is 0) or b (if a is 1) is accumulated by the adder. The

accumulated sum is saved in a register. Alternatively, SA can be implemented using

a skip-add shown in Fig. 2.4(b), where a is used as the enable input to the adder to

decide whether to accumulate b (if a is 1) or not (if a is 0). Although the example
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was shown for the binary spike case, the implementation can be easily modified to

support ternary spikes.

Similar to the residual rectification, neuron activation is obtained by rectifying

neuron potentials to produce sparse, binary spikes. Binary spikes allow the recon-

struction in the residual step to be implemented using SAs, presenting another op-

portunity for significant complexity and power reduction.

Taking advantage of both residual rectification and neuron activation, the sparse,

all-spiking approach can be implemented as shown in Fig. 2.3. It features a lower

complexity compared to the conventional residual approach as summarized in Ta-

ble 2.3, where Sa and Sr refer to the density, or fraction of nonzero entries, in neuron

activations and the residuals, respectively. The sparser the inputs (i.e., the lower

density), the less the amount of effectual workload. However, sparsifying the inputs

(activations or residuals) can degrade the classification accuracy. The effects are il-

lustrated in Fig. 2.5. The activation density Sa = 1% and residual density Sr = 3%

are nearly optimal for the KTH Human Action Dataset [58]. Below or above the

optimal density results in under- or over-representation of the input, and degradation

in classification accuracy.

2.3.2 Design Specification and Parameter Settings

We present a prototype video inference processor to demonstrate the sparse, all-

spiking LCA approach. The prototype design, including the model and parameters,

is based on the KTH dataset [58]. The inference processor takes video inputs in

6×6×64 slices, and divides into 57 6×6×8 (T = 57, V = 6×6×8 = 288) consecutive

and overlapping segments for processing.

The optimal X-Y patch size is determined by the size of features for a dataset. For

KTH dataset, 6×6 patch size provides the best accuracy as shown in Fig. 2.6(a). More

spatial overlap (smaller spatial stride) produces better results as shown in Fig. 2.6(b).
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Figure 2.5: Effect of a) activation density and b) residual density on classification
accuracy.
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Figure 2.6: Effect of a) patch size and b) 6×6 patch spatial stride on classification
accuracy.
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Figure 2.7: Effect of a) feature depth and b) time overlap on classification accuracy.

However, in the prototype design, we chose no overlap to reduce the processing com-

plexity. It degrades accuracy by only 2%.

The optimal STRF depth is determined by the action sequence duration for a

dataset. For the KTH dataset, a larger depth yields better accuracy as shown in

Fig. 2.7(a). We used a depth of 8, below which the accuracy drops by about 2%

per depth reduction of 1. Temporal overlap (small temporal stride) is essential for

guaranteeing a good accuracy, e.g., increasing the temporal stride from 1 to 4 reduces

the accuracy by more than 8% as shown in Fig. 2.7(b). In the prototype design, we
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Figure 2.9: Effect of number of neurons on classification accuracy.

chose a stride of 1.

The number of neurons, i.e., the number of STRFs, is dependent on the input size

and it affects the classification accuracy as shown in Fig. 2.9. In testing the prototype

design, we employ 192 neurons (N = 192). Each neuron’s STRF is sized 6×6×8. The

STRF weights are quantized to 8 bits. Simulations show that 6 to 8 iterations are

sufficient in Fig. 2.8, beyond which the accuracy saturates. We used 8 iterations (I

= 8) for measurement in this work. Based on the STRFs extracted from the video,

action classification can be performed.
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sor.

To realize this prototype chip, 54KB memory is needed to store the dictionary.

The density of neuron activations and residuals are optimally set to Sa = 1% and Sr =

3%, respectively. The sparse, all-spiking approach reduces the number of operations

per inference from 200M MACs to 4M SAs, which translates to a significant reduction

in complexity and power consumption.

2.4 Design of Video Inference Processor

The video inference processor is made of three compute layers: residual layer,

charge layer, and activate layer as illustrated in Fig. 2.10. Each layer corresponds

to one step outlined in the previous section (the leak step is absorbed as part of

the charge layer). The residual and charge layers are the workhorse of the inference

processor. The inputs to the residual layer are sparse binary neuron spikes. The

inputs to the charge layer are sparse residuals in the form of ternary spikes. Inputs

are streamed through the three layers and back to the residual layer for the next

iteration.
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2.4.1 Dictionary Compression and Non-Uniform Quantization

The dictionary Φ and its transpose ΦT are accessed by the residual layer and the

charge layer, respectively. Since the two layers operate concurrently in a streaming

pipeline and the dictionary elements’ access orders are different, both Φ and ΦT are

stored on chip, requiring 108KB of memory for the prototype design. Due to the

high access bandwidth needed for highly parallel processing, the dictionary memory

is divided into banks, sacrificing the storage efficiency. The dictionary memory alone

is estimated to take 2mm2 chip area in a 40nm CMOS technology.

In the prototype design, each dictionary element is a 6×6×8 8-bit STRF that

is essentially a sequence of 8 6×6 frames. Redundancy exists between consecutive

frames, making it possible to compress each STRF to save memory, chip size and

power. In Fig. 2.11(a), we plot the distribution of the pixel-by-pixel differences be-

tween consecutive frames of STRFs that are learned by training on the KTH dataset.

The results show that 95% of the pixel-by-pixel differences cover a narrow range of

only 4 LSBs.

The similarity between consecutive frames motivates the delta encoding of STRFs

by storing the first 6×6 8-bit frame as the anchor frame, and subsequent frames as
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Figure 2.12: a tree generator for decompressing delta-encoded STRF.

4-bit deltas to the previous frame. The delta encoding reduces the dictionary storage

by 43%.

Although 4 bits are sufficient to cover 95% of the deltas, a better result requires

a larger coverage. To keep deltas to 4 bits while increasing the range of coverage,

we propose the non-uniform quantization of deltas as shown in Fig. 2.11(b). The

non-uniform quantization is specifically tailored to the delta distribution: smaller

quantization step sizes are used at the lower end, and increasingly larger quantization

step sizes are used towards the higher end to keep the number of quantization steps

to 15.

The delta-encoded dictionary elements need to be decompressed before being used

in compute. We employ a tree generator, shown in Fig. 2.12 to take the anchor frame

as the base, and sequentially add the deltas to recover the remaining frames. With

delta encoding and taking into account the overhead of tree generator, the dictionary

memory storage in our prototype design, including compression and decompression,

occupies 27% less area compared to the baseline.

2.4.2 Residual Layer

The residual layer computes the reconstruction x̂ (V ×T ) by multiplying Φ (V ×

N) by a (N × T ). Recall that since a consists of binary activations, the matrix

multiplication is done by SAs. The input a is provided to the residual layer one
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Figure 2.13: Visualization of residual compute.

column at a time, as the time-series output of N neurons from the activate layer.

Since activations are sparse, we use a spike detector to skip 0 activations and provide

the addresses of the activated neurons.

The residual layer computation is illustrated in Fig. 2.13. For each column of

a, the spike detector looks at a block of entries at a time and finds the address of

the first entry that is 1. Suppose in processing column i of a, the spike detector

outputs j as the first entry in column i that is 1, then column j of Φ is read from

memory, decompressed by the tree generator, and accumulated by the SA array as

the temporary output of column i of x̂. We employ an array of V SAs to compute

one vector accumulation at a time. The process continues with the spike detector

providing the next nonzero entry. Upon completion, the reconstruction is subtracted

from the input x; and the results are rectified to obtain the residuals. Since the

reconstruction is computed column by column, the residuals are obtained column by

column and provided to the charge layer in this order.

An implementation of the residual layer is shown in Fig. 2.14. The number of

actual accumulations done by the SA array is NV TSa, with Sa being the density of

1’s in a. Since V SAs operate in parallel, the residual layer takes on average NTSa

= 192×57×1% = 109 cycles.
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2.4.3 Charge Layer

The charge layer computes the charge c by multiplying ΦT (N ×V ) by r (V ×T ).

Since r is a collection of ternary spikes {0, -1, 1}, the matrix multiplication is also

done by SAs.

A similar architecture as the residual layer can be designed to implement the

charge layer. The input r is provided one column at a time, as shown in Fig. 2.15. In

processing a column of r, a nonzero entry triggers the accumulation of a column of ΦT

to compute c. An array of N SAs is employed. The number of actual accumulations

done by the SA array is NV TSr. Since N SAs operate in parallel, the charge layer

takes V TSr to complete. Given the prototype specification, the charge layer takes
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Figure 2.16: Charge layer design.

492 cycles.

To balance the layers, we apply temporal aggregation to shorten the latency of

the charge layer. Each column of r represents a X × Y × D frame. We compress r

to ra by pooling pixels at the same (x, y) location across D frames in a time series.

If at least one of the D pixels is nonzero, pooling will output 1 for the pixel. After

pooling, each entry of ra represents an “aggregated” pixel i (in the XY-plane) across

D frames. Note that temporal aggregation does not make use of any approximation.

It essentially collects a vector of inputs and applies parallel processing. The technique

has no impact on the encoding fidelity or classification accuracy.

Temporal aggregation enables shorter latency. As shown in Fig. 2.16, ra is passed

to a spike detector to output the first nonzero entry. As illustrated in Fig. 2.15,

suppose the spike detector outputs address i (in the XY-plane), the address is used

to read the D columns of ΦT that correspond to pixel i, and the D r values that are

associated with pixel i. The D columns of ΦT are vector summed by the pool units

located inside the SA array, as shown in Fig. 2.16, with the D r values as the control

bits that determine whether the respective columns are zeroed, added or subtracted.

The aggregate processing increases the parallelism by a factor of D. The tem-
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poral aggregation the D frames to one aggregate frame increases the density of 1’s

in the aggregate frame. If the D frames are completely independent, the density S ′r

increases by D. However, the D frames belong to a time series and are highly corre-

lated. In the prototype design, the density increases from 3% to 5%. With temporal

aggregation and aggregate processing, the charge layer latency is reduced to XY TS ′r

= 6×6×57×5% = 103 cycles on average for the prototype design.

2.4.4 Activate Layer

The activate layer accumulates potential updates ∆u (N × T ) to compute new

neuron potentials. ∆u is received column by column from the charge layer. The

activate layer uses an array of N accumulators to update one column of potentials at

a time. The potentials are thresholded to obtain binary activations a.

The activations a (N ×T ) are binary and sparse. As described in Section 2.4.2, a

is fed to a spike detector to locate the nonzero entries for processing in the residual

layer. The spike detector can be used to encode a in a CCS format, referring to storing

only the addresses of nonzero entries in every column. as illustrated in Fig. 2.17.

Due to high sparsity, we can limit the number of nonzero entries in a column to
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Figure 2.18: Effect of nonzero activation limit on classification accuracy.

a small fixed number. Simulations show that at least 4 nonzero activations need to

be stored to ensure a high accuracy. If only 2 nonzero activations are stored, the

accuracy is reduced by 10% as shown in Fig. 2.18. In the prototype design, we allow

up to 8 nonzero activations to be stored. Additional nonzero entries are dropped with

negligible impact on the accuracy due to the extremely low likelihood of occurrence.

CCS effectively reduces the storage by 64%.

Putting the three layers together, the timing diagram for processing one 6×6×64

input is illustrated in Fig. 2.19. The input is divided into T = 57 temporally over-

lapped frames to be dispatched to the 3-layer processing in series. The processing is

repeated for I = 8 iterations. Input data stream through the layers in sequence.

2.4.5 Summary of Design Optimizations

In the above subsections, we present the design techniques based on the prototype

specification. The techniques are generally applicable and not limited to the given

specification.

To quantify the benefits of the design techniques, we synthesized a baseline design

in 40nm CMOS, along with design points after every step of the optimization. The
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results are shown in Fig. 2.20. The baseline design employs a V -parallel MAC array

in the residual layer, an N -parallel MAC array in the charge layer, and an N -parallel

accumulator array in the activate layer. The design uses dense processing without

spike detectors; and the residuals are not rectified. The baseline design reflects a

standard parallel implementation without any sparsity or spiking optimizations. The

latency of one iteration of processing is 211k cycles. The design is estimated to occupy

2.83mm2 and consume 168mW.

The residual and charge layers account for the majority of the workload. Intro-

ducing sparsity optimizations has a major impact on the performance and the energy

efficiency. In the first step of the optimization, we take advantage of sparse binary

neuron activations to change the MAC array in the residual layer to an SA array, and

use a spike detector to skip computations when activation is 0. The area and power

increase by 1% and 4%, respectively, to support the net increase of the spike detection

overhead minus the savings of the SA array, and the processing latency decreases by

36%. The latency is now entirely dominated by the charge layer.
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In the second step, we apply ternary rectification to the residuals to change the

MAC array to an SA array, and apply temporal aggregation to the charge layer. The

area and power are reduced by 7% and 11%, respectively, and the latency is reduced

by 32×.

In the third step, we compress the activations stored in the activate layer. The

compression results in 5% area reduction and 13% power reduction.

In total, the three optimization steps increase the throughput by 51×, reduce

the energy by 63×, and the area is reduced by 11%. Assume the KTH dataset with

6×6×64 inputs and the following parameter settings: N = 192, X×Y ×D = 6×6×8,

temporal stride of 1, spatial stride of 6, I = 8, Sa = 1% and Sr = 3%. At a clock

frequency of 240MHz, the real-time processing of 1080p HD video at 60 frames per

second (FPS) requires the processing of a 6×6×64 input to be completed in 4.16k

cycles. The optimizations proposed in this work are crucial for meeting this latency

requirement.

Lastly, note that activation sparsity and ternary rectification of residuals caused

most of the accuracy loss as shown in Fig. 2.5. However, these two techniques also

contributed most of the performance and energy efficiency gain, as shown in Fig.2.20.

2.5 Prototype Implementation, Measured Results and Com-

parison

We design a prototype SoC for video inference applications. The system block

diagram is shown in Fig. 2.21. The core of the SoC chip is the video inference pro-

cessor that is made of three compute layers and memory to store dictionary, neuron

potentials and input video frames for testing. The SoC also consists of an Open-

RISC processor for programming, control, configuration and classification. Through

the OpenRISC processor, the video inference processor is configurable with several
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Table 2.4: Action Classification Results of KTH Human Action Database
Boxing Clapping Waving Jogging Running Walking Average

On-chip softmax classifier 70.0% 68.4% 85.0% 73.7% 94.4% 70.0% 76.7%

Off-chip SVM classifier 85.0% 78.9% 85.0% 73.7% 94.4% 80.0% 82.8%

settings: 64, 128 or 192 neurons (N), frame size (X ×Y ) from 1 to 36 and depth (D)

from 1 to 8.

The video inference SoC chip is implemented in 40nm CMOS, occupying 3.98mm2.

The core area measures 1.77mm × 1.43mm. The chip photo is shown in Fig. 2.22. The

chip is tested for the KTH dataset with 6×6×64 inputs and the following parameter

settings: N = 192, X × Y ×D = 6×6×8, temporal stride of 1, spatial stride of 6, I

= 8, Sa = 1% and Sr = 3%. At room temperature, the chip is measured to achieve

an effective performance of 1.70TOPS (including skipped OPs) at 0.9V and 240MHz.

The performance meets the 60FPS 1920×1080 HD video data rate, while dissipating

135mW. The measured power and performance at room temperature are shown in

Fig. 2.23.

The 6-class KTH Human Action Dataset [58] is used for action classification test-

ing, with 600 samples and a training/testing split ratio of 5:1. Using the core extract-
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ing the activation response of STRFs and a soft-max classifier programmed on the

OpenRISC processor, the SoC achieves a 76.7% classification accuracy.

We also designed an SVM classifier based on a feed-forward network with two

hidden layers of 40 and 50 neurons. The inputs to the classifier are extracted STRF

features, i.e., spiking neuron outputs of the feature extraction network; and the out-

puts are the action class labels. The SVM is trained using a conjugate gradient

method. The SVM classifier achieves an 82.8% accuracy as shown in Table 2.4.

In software and full precision, the state-of-the-art for the KTH dataset classifi-

cation has now reached 92% accuracy [59]. The approach used differential gating of

long short-term memory (LSTM), and the LSTM model consists of 450 input units,

300 memory cell state units, and 6 output units. There is not yet a clear path towards

an efficient implementation of such a large model. In comparison, we sacrificed about

10% accuracy to obtain an efficient hardware implementation.

In Table 2.5, this work is compared with video processors for keypoint match-

ing [42] in SIFT-based object recognition, and DPM-based object detection [44], as

well as a convolutional sparse coding processor for feature and depth extraction [54].

Direct comparisons are not possible due to the major differences in algorithms and
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Table 2.5: Comparison with Prior Work
JSSC’15 JSSC’17 JSSC’18 This Work

Lee [42] Suleiman [44] Liu [54]

Application Object matching Object detection
Feature & depth Action

extraction classification

Algorithm Vocabulary forest
Deformable parts

LCA LCA
model

Process 65nm 65nm 40nm 40nm

Core Area (mm2) 2.3 12.8 2.56 2.53

Voltage (V) 1.2 0.77 - 1.11 0.6 - 0.9 0.65 - 0.9

Frequency (MHz) 250 62.5 - 125 120 - 380 50 - 250

Power (mW) 27.6 58.6 - 217 45 - 257 29.2 - 135

Performance (TOPS) 0.191 0.068 - 0.137 0.227 - 0.718 [a] 0.340 - 1.700 [b]

Power Efficiency
6.920 1.169 - 0.624 5.038 - 2.793 14.946 [c] - 12.583

(TOPS/W)

[a] 1 OP is defined as an 8b MAC. [b] 1 OP is defined as an 8b add. (including skipped OPs)

[c] Power efficiency is 14.946TOPS/W at 0.65V, 100 MHz, (including skipped OPs)

applications. This work is the first video action classification processor that extracts

spatio-temporal features from videos for sequence classification. The 2.53mm2, 40nm

test chip achieves up to 1.70TOPS at a power efficiency above 12.5TOPS/W (in-

cluding skipped OPs). The performance and power efficiency are competitive with

the other designs. Compared to [54] that used a similar algorithm for feature ex-

traction and depth extraction, this work demonstrates higher performance and power

efficiency.

2.6 Conclusion

We present an inference SoC for video sequence classification based on an RNN

implementing LCA, a neuro-inspired compressed sensing algorithm. Due to the large

video data size, spatio-temporal, and iterative processing, the computational require-

ment of the RNN is high. We adopt a residual form of the LCA algorithm and apply

a transformation by rectifying the residuals after each inference iteration to ternary

spikes.

The algorithm reformulation leads to a sparse all-spiking RNN architecture re-
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alized in three layers: residual layer, charge layer and activate layer. All layers are

implemented primarily in SAs. Data are seamlessly streamed across the layers in

iterations. To balance the processing layers and avoid stalling, we use a temporal

aggregation and aggregate processing technique to shorten the processing latency of

the slowest charge layer. To reduce the chip area and power, we apply delta compres-

sion and non-uniform quantization to STRFs to reduce the memory by 42% and CCS

encoding to sparse activations to reduce the memory by 64%. In all, the algorithm

and architecture techniques increase the processing throughput and reduce the energy

by 51× and 63×, respectively, while the area is kept nearly constant.

The design is prototyped in a 2.53mm2 40nm CMOS video inference SoC chip.

The chip is measured to achieve 1.70TOPS (including skipped OPs) at 0.9V and

250MHz, dissipating 135mW. Tested with the 6-class KTH Human Action Dataset,

the chip provides a 76.7% classification accuracy.

Not every video application in practice can directly benefit from a design that

supports XY ≤ 36. As a small research prototype, we chose XY = 36 to target

the KTH dataset. Even for this relatively small dataset, multiple optimizations are

needed to keep the hardware complexity within bounds. Video sequence classification

is a demanding task. For larger and practical applications, we expect more substantial

compute resources to be needed. The same optimizations demonstrated in this work

are equally applicable to larger and more demanding applications.
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CHAPTER III

Design of SRAM-Based Accelerator for Solving

Partial Differential Equations

3.1 Introduction

Many physical phenomena, such as heat and fluid dynamics, are described by par-

tial differential equations (PDE). Most PDEs are solved numerically, by first quan-

tizing the solution space in a grid and then applying iterative methods to refine the

solution to a desired error tolerance [60].

High-precision PDE solutions require fine grids and high numerical precision, lead-

ing to a significant amount of data that needs to be processed, moved and stored.

Moreover, a PDE solver commonly requires tens of thousands of iterations to converge.

For example, solving a 2D Poisson equation using a 128×128 grid on a graphics pro-

cessing unit (GPU) in floating-point is estimated to take 15mJ/iteration. To shrink

the error tolerance from 10-4 to 10-7 costs at least 320J!

High-performance digital PDE solvers have been proposed [61, 62], but they still

require high-bandwidth DRAM access to sustain the massive number of parallel, high-

precision compute. Analog computers [63,64] were proposed to accelerate PDE solvers

by approximate compute to reduce the IO requirement and mixed-signal approach to

speed up core computations. However, analog compute requires large area, limiting
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the parallelism and efficiency in supporting large PDE problems.

To enable a more efficient and practical PDE accelerator design, we apply two

algorithm approaches: 1) we adopt a multigrid method that divides the PDE solver

to a fine-grid compute and a coarse-grid compute and iterates between the two to

accelerator convergence by 5 to 10× on average; 2) we transform both fine-grid com-

pute and coarse-grid compute to a residual form, lowering the precision to 5b for a

low error tolerance below 10-8.

Even with faster convergence and much-reduced precision, the implementation

cost can still be high using a conventional digital approach. Recently, process in

memory (PIM) has been proposed as a new technique that computes directly on

a large array of data in place, within memory [27, 65]. SRAM-based PIM relies

on level- and/or width-modulating word lines (WL) of the SRAM array to encode

multipliers, and activating multiple WLs in parallel [27, 30, 65, 66]. The SRAM cells’

currents in discharging the bit lines (BL) represent the products, and the current

on each BL represents the sum of products. Alternatively, BLs can be modulated

to encode multipliers, and BLs are joined to produce the sum of products [29]. By

partly eliminating data movement cost and providing a high degree of parallelism,

PIM holds the potential of achieving both high performance and efficiency in tasks

that involve parallel multiply-accumulate (MAC) operations, such as classification

and neural networks. Prior work has demonstrated PIM in SRAM that achieved

633.4 pJ/classification [27] and 1.2 nJ/classification [66], translating to 1.17 pJ/op

where an op is defined as a multiply-accumulate (MAC) operation.

Current SRAM-based PIM designs are limited by SRAM’s binary storage and the

overhead of multi-bit A/D conversion. Some designs support only binary multipli-

cands [27, 29, 30]; and some choose binary outputs [27, 30]. To reduce the number of

ADCs, some designs are tailored to computations in a cone structure that requires

only one or a small number of ADCs at the final output [65, 66]. These approaches
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are not applicable to a PDE solver that requires iterative multi-bit operations and

solutions to be updated in every iteration.

In this work, we combine the multigrid, residual algorithmic approach with the

optimal mapping on 5b MAC SRAMs to produce a high-performance and efficient

PDE solver accelerator. A MAC SRAM supports 5b×5b MACs with full-bandwidth

5b outputs to support a PDE solver. We design a DLL-based 5b driver that pro-

duces WL pulses down to 1
8

of a clock period with PVT tolerance. The WL pulses

are level-modulated to match 5b multiplicands stored in SRAM. We employ a dual-

ramp single-slope ADC [67] that employs a coarse ramp followed by a fine ramp to

increase conversion speed and minimize area. A 1.87mm2 180nm chip consisting of

four 320×64 MAC SRAMs is demonstrated at 200MHz, each providing 1.42G MAC/s

and 32 5b ADCs at a power consumption of 16.6mW.

3.2 Numerical PDE Solver by Finite Difference Method and

Jacobi Iteration

We use the solution to 2D Poisson’s equation, shown in (3.1), to explain the PDE

solver design. Poisson’s equation is widely used in practical applications [68].

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= b, (3.1)

where b(x, y) is given, boundary conditions are specified on the perimeter of the

domain, and the solution u(x, y) is sought.

Most PDE problems do not have analytical solutions. Instead, numerical ap-

proaches using grid discretization is popular. For the 2D Poisson’s equation above,

the finite difference method (FDM) can be applied to convert u and b into a M ×N

grid of step size ∆x and ∆y along x and y as shown in Fig. 3.1(a) [38]. The dis-

cretization results in a system of MN equations:
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Figure 3.1: (a) Illustration of a 2D finite difference grid; and (b) rendition of matrix
A for a 7×7 grid.
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ui−1,j + ui+1,j − 2ui,j
∆x2

+
ui,j−1 + ui,j+1 − 2ui,j

∆y2
= bi,j, (3.2)

2 ≤ i ≤M − 1, 2 ≤ j ≤ N − 1,

where ui−1,j is the value of u at grid position (i − 1, j), ui+1,j is the value of u at

(i+ 1, j), and so on. ux,y is known on the boundaries of the grid, and unknown in the

interior of the grid. The u values can be put in a MN × 1 vector u, and similarly the

b values are put in a NM × 1 vector b. The system of equations (3.2) can be written

as

Au = b, (3.3)

where A is aMN×MN matrix that stores the weights of u’s in (3.2). For a sufficiently

large grid, A is highly sparse. A rendition of matrix A for a 7×7 grid is shown in

Fig. 3.1(b), where black dots indicate nonzero entries.

To solve u, the system of equations (3.2) can be rewritten by shifting the ui,j

terms to the left:

ui,j =
∆x2

2(∆x2 + ∆y2)
(ui−1,j + ui+1,j) (3.4)

+
∆y2

2(∆x2 + ∆y2)
(ui,j−1 + ui,j+1)

− ∆x2∆y2

2(∆x2 + ∆y2)
bi,j,

=s1 (ui−1,j + ui+1,j) + s2 (ui,j−1 + ui,j+1) + ci,j,

2 ≤ i ≤M − 1, 2 ≤ j ≤ N − 1,

Starting from the boundary conditions and initial guess of interior points of u, the

system of equations (3.4) can be solved iteratively by the Jacobi method:
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u
(n+1)
i,j =

∆x2

2(∆x2 + ∆y2)

(
u
(n)
i−1,j + u

(n)
i+1,j

)
(3.5)

+
∆y2

2(∆x2 + ∆y2)

(
u
(n)
i,j−1 + u

(n)
i,j+1

)
− ∆x2∆y2

2(∆x2 + ∆y2)
bi,j,

=s1

(
u
(n)
i−1,j + u

(n)
i+1,j

)
+ s2

(
u
(n)
i,j−1 + u

(n)
i,j+1

)
+ ci,j,

2 ≤ i ≤M − 1, 2 ≤ j ≤ N − 1,

where the superscript (n) in u
(n)
i,j indicates the value of ui,j in iteration n. Since ∆x

and ∆y are known and bi,j does not change each iteration, s1, s2 and ci,j can be

pre-computed. Each Jacobi iteration updates all (M − 2)(N − 2) interior u values

based on their values in the previous iteration. Using FDM, each ui,j update requires

its neighboring 4 points, {ui−1,j, ui+1,j, ui,j−1, ui,j+1}, called a 4-point stencil, as il-

lustrated in Fig. 3.1(a). In the matrix form, the Jacobi iterations can be described

as

u(n+1) = Tu(n) + c, (3.6)

where T is a MN×MN matrix that stores the stencil weights. T essentially contains

the off-diagonal entries of A, and it is also highly sparse for a sufficiently large grid.

Higher-order PDEs use higher-order grids, but the same formulation applies.

In addition to FDM, there are two other popular discretization methods: the finite

element method (FEM) and the finite volume method (FVM) [69]. In FEM, a set

of bases is defined to approximate integrals and allow discretization of any shape.

The discretization is non-uniform. In FVM, each discretized point is viewed as a

small sub-region, where the estimation is based on the flux from the entire sub-region

surfaces. The stencil weights are non-sharable. Compared to FEM and FVM, FDM

uses a uniform grid and common stencil weights, which enables highly parallel, regular
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computation with smaller memory. FDM is more computationally friendly than FEM

or FVM, and amenable to acceleration.

3.3 Algorithm Formulation For Faster Convergence and Lower

Precision

Our baseline PDE solver applies a single grid with the Jacobi method. To reach an

accurate solution, a fine grid of fine step sizes is required. However, a fine grid results

in a large volume of data and the Jacobi method has a relatively slow convergence rate.

To speed up convergence, we adopt an alternative iterative method and a multigrid

approach. The multigrid approach can also be transformed to the residual form to

enable aggressive precision reduction to simplify the computation.

3.3.1 Hybrid Layer Update Method

Using the Jacobi method, the next iteration u values are computed based entirely

on the u values from the current iteration. Thus, the next iteration cannot start until

the current iteration is complete and saved in a buffer memory. To reach a faster

convergence and possibly remove the buffer, the Gauss-Seidel method computes the

next iteration u values based on the latest available u values.

Shown in Figure 3.2(a), the Gauss-Seidel method updates ui,j one by one, e.g.,

from left to right, and then top to bottom. The updated values are immediately

applied in computing the neighboring ui,j value. By always using the latest available

values, the Gauss-Seidel method leads to a faster convergence than the Jacobi method.

The Gauss-Seidel method also removes the buffer, but it introduces data dependency:

ui,j has to be updated in a sequential order, limiting parallelism.

The choice of iterative method trades parallelism with number of iterations. Al-

though the Gauss-Seidel method takes fewer iterations, the Jacobi method with full
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Figure 3.2: PDE iterative methods with sequential updates: (a) Gauss-Seidel update;
(b) hybrid layer update.
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parallelism computes quadratically faster per iteration, which dominates the overall

computational speed. However, for a large PDE problem, limited computational re-

source and memory storage efficiency often prohibit fully parallel iteration updates.

To speed up convergence given the available parallelism, we employ a hybrid layer

update method [70,71].

Shown in Figure 3.2(b), the grid is divided into layers. A layer of u values can be

updated in parallel without data dependency, following the Jacobi method. Updated

u values from one layer are used in computing the updates for the next layer, following

the Gauss-Seidel method. For a large grid, plenty of parallelism is available in one

layer to enable parallel processing. The layer-to-layer sequential update using Gauss-

Seidel provides a faster convergence. The hybrid layer update method uses a layer

buffer, smaller than a block buffer needed for the complete Jacobi method.

3.3.2 Multigrid and Low-Precision Complete Residual Approach

To further speed up convergence, the multigrid method introduces a m× n (m <

M , n < N) coarse grid in addition to the fine grid [38]. Coarse grid vertices represent

a local region of grid values. By interleaving coarse-grid iterations with fine-grid

iterations, convergence is accelerated thanks to faster propagation. A coarse grid

reduces the computation workload, e.g., using a 2×2 downsampled coarse grid reduces

the workload by 75%.

Illustrated in Figure 3.3(a), the residual r is obtained after a round of fine-grid

iterations, and restricted to r∗ by multiplying by a mn×MN restriction matrix R.

After transitioning to the coarse grid, we can use an iteration method, e.g., the layer

update method, to obtain e∗ in A∗e∗ = r∗. Note that the mn×mn matrix A∗ is the

downsampled version of A. After a round of coarse-grid iterations, e∗ is interpolated

by multiplying by a MN ×mn interpolation matrix I, and then it is used to update

u to start the next round of fine-grid iterations. The restriction and interpolation are
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Figure 3.3: Residual approaches: (a) standard residual approach applied to fine grid
only; (b) complete residual approach applied to both fine grid and coarse
grid; and (c) reformulated complete residual approach without high-
precision multiplication.

commonly done by pooling and averaging.

Because coarse-grid compute operates on errors e∗ and residuals r∗, i.e., the small

differences between consecutive iterations, the precision of the errors and the residuals

can be relaxed. Realizing the potential benefit of the residual approach, we extend

the residual approach to fine-grid compute, as shown in Figure 3.3(b), so that the

fine-grid iterations also work on errors e and residuals r.

Note that in Figure 3.3(b), after a round of fine-grid or coarse-grid iterations, u

is updated, and then the updated u is used to update the residuals. Since u is in

full precision, updating the residuals requires costly multiplications Au. To avoid
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full-precision multiplication, we note that r(i+1) = b−Au(i+1) = b−A(u(i) + e(i)) =

r(i) − Ae(i), where the superscripts indicate iteration number. Using this identity,

the complete residual approach is reformulated to Figure 3.3(c). We dropped the

iteration number in the figure for simplicity. Note that the reformulation does not

require any high-precision multiplications.

3.3.3 Evaluation of Algorithm Improvement

In Figure 3.4, we compare the average convergence speed of solving 2D Pois-

son’s equation using the Jacobi method and an error tolerance 10-7. A 32b-quantized

127×127 grid is applied using the baseline approach (single grid, non-residual for-

mulation), and 74k iterations are needed to reach convergence. If the single grid is

replaced by multi grids, i.e., a 127×127 grid and a 64×64 grid, the convergence is

shortened by more than 12× to 6k iterations.

The complete residual approach allows the precision to be aggressively reduced to

allow a shorter bit width, but at the cost of slower convergence. For example, when the

computations are quantized to 8b, the latency increases by 33%. Further quantizing

to 5b and 4b results in 2.1× and 2.3× latency increase, respectively. A shorter bit
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width is preferred for lower implementation cost, and the optimal is between 4b and

8b. Reducing the bit width below 4b slows down the convergence drastically, and

ceases to be practical.

In Figure 3.5, we compare the convergence speed of Jacobi, hybrid layer update,

and Gauss-Seidel methods, assuming 5b computations and the same experimental

setup as above. The layer update method results in 31% fewer iterations compared

to the Jacobi method. Although the layer update converges 50% slower than the

Gauss-Seidel method, it provides the opportunity for more parallel processing to

achieve a higher throughput.

3.4 Mapping of PDE Solver on MAC SRAM

The core computation in a multigrid PDE solver is for solving Ae = r in the fine

grid, and A∗e∗ = r∗ in the coarse grid, as shown in Figure 3.3(c). Similar to solving

Au = b, both Ae = r and A∗e∗ = r∗ are solved by iterations:

e(n+1) = Te(n) + c (3.7)

e∗(n+1) = T∗e∗(n) + c∗,
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where e(n+1) and e(n) are MN × 1 vectors, T is a MN ×MN matrix, e∗(n+1) and

e∗(n) are mn× 1 vectors, and T∗ is a mn×mn matrix. The matrix-vector products,

Te(n) and T∗e∗(n), take the most computation resources.

We adopt the complete residual approach to quantize the computation to 5b,

making it possible to perform the computation using MAC SRAM. Since the stencil

matrices T and T∗ are highly sparse, it is wasteful to be stored in SRAM. Instead, we

store the errors e and e∗ in SRAM with each 5b value stored in 5 cells in consecutive

rows, and 5b stencil weights are applied as WL pulses to the SRAM. The MAC

outputs are the updated errors, which are converted to 5b digital values.

3.4.1 Direct Mapping

In the direct mapping, a 5M ×N SRAM array can be used for the M ×N grid,

and the e or e∗ values are stored in the SRAM based on their grid locations. The

mapping is illustrated in Figure 3.6(a). Note that a row in Figure 3.6(a) represents

5 consecutive rows in memory as each 5b operand spans 5 rows. To avoid confusion,

we will use “group” to refer to a row of 5b operands.

As an example, to update e1,1, {e1,0, e1,2, e0,1, e2,1} need to be read, multiplied by

their respective stencil weights and then the partial sums are added. However, the

four operands {e1,0, e1,2, e0,1, e2,1} are not located on the same WL or BL, thus it is

impossible to add the partial sums in PIM. The direct mapping is also incompatible

with the hybrid layer update method due to BL access conflicts that prevent e values

to be computed in parallel.

3.4.2 Rotation Mapping

To use PIM, the operands need to be aligned in memory. We create a rotation

mapping to transform Figure 3.6(a) to Figure 3.6(b): group 0 stays in place, group

1 is right rotated by 1, and group i is right rotated by i, and so on. The rotation
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Figure 3.6: PDE mapping on MAC SRAM: (a) direct mapping; (b) rotation mapping;
(c) array splitting, and (d) bank splitting.
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allows the operands to be aligned. For example, activating group 0 and group 1 with

the respective stencil weights enables the parallel summing of pairs of partial sums

for updating e1,i, 2 ≤ i ≤M − 1.

With rotation mapping, the operands from the odd-numbered columns are read

and the results are written to the even-numbered columns, and vice versa. Therefore

we split the odd and even columns and store them in separate even and odd SRAM

arrays as shown in Figure 3.6(c). Each array provides two ports: one port for read to

perform MAC operations, and another port for write-back. The odd and even arrays

run in parallel. The read output of the odd array is written back to the even array,

and vice versa.

After the rotation mapping, one 4-point stencil is separated into two halves. For

example, the stencil {e1,0, e1,2, e0,1, e2,1} stored in the odd SRAM array needs to be

separated to two banks: one that stores {e1,0, e0,1} and the other that stores {e1,2, e2,1}

as shown in Figure 3.6(c). The partial sums of the two halves are summed on two

BLs after activating group 0 and group 1 for the left bank, and group 1 and group 2

for the right bank. To resolve this lane misalignment, each SRAM array is further

split to the left and right bank, as shown in Figure 3.6(c).

To sum up, a M × N grid is stored in two SRAM arrays, each consisting of two

banks of size 5M × N
4

. The complete update of a layer requires two steps across the

two SRAM arrays. For example, the update of layer 0 is done in two steps across

the two SRAM arrays: 1) group 0 and group 1 are activated on the left bank, while

group 1 and group 2 are activated on the right bank. The respective BLs from the two

banks are joined to complete the summing; and 2) group 1 and group 2 are activated

on the left bank, while group 0 and group 1 are activated on the right bank. The

respective BLs are then joined to complete the summing.

The rotation mapping and the array and bank splitting offer a number of advan-

tages: 1) the memory is nearly fully utilized to support stencil computation without
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duplicate storage; 2) simple and regular BL muxing and control; and 3) compatible

with the hybrid layer update method. One possible drawback of the approach is

the lower array efficiency due to the splitting into smaller SRAM arrays and banks.

However, for a sufficiently large grid size that is common in the most demanding

applications, the loss of efficiency due to banking is minimized.

We also note that in a typical PIM design, all rows of the memory are activated at

the same time to unleash the full parallelism [27, 30], but it is at the cost of reduced

BL precision. Our approach activates a subset of rows of the memory, i.e., 10 rows,

sacrifices the performance, but it also reduces the BL precision and simplifies the

ADC design.

3.5 Prototype Architecture

A prototype PDE solver chip is designed in 180nm CMOS. The CMOS chip im-

plementation and testing was done in collaboration with Jacob Botimer. The chip

architecture is shown in Figure 3.7. It consists of an iteration module, a residual

update module, and a solution update module, directly corresponding to the three

blocks in the fine-grid or coarse-grid computation shown in Figure 3.5(c). The itera-

tion module leverages MAC SRAM to perform iterative layer update in 5b to solve for

the errors, e or e∗. After a round of iterations, the residual update module is called

to apply the errors in updating the residuals, r or r∗; and the solution update module

is called to accumulate 5b errors to update the full-precision u values in memory.

Shown in Figure 3.8, the iteration module consists of 4 MAC SRAM arrays. A

pair of arrays are used together as the even and odd array to support the rotation

mapping. In the prototype design, each array consists of 320×64 8T SRAM cells that

are completed with peripherals. The PDE iteration module can be used to compute

two independent grids of up to 64×128 (5b grid values), or they can be joined to

support a grid of up to 128×128 (5b grid values). The precision is configurable from
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Figure 3.7: Top-level architecture of PDE solver.

1b to 5b. A separate memory is used to store the offsets c. Offset subtraction is

done at the output of each array. A buffer is added to store the updated solutions for

writing back to the neighboring even or odd array.

A 320×64 MAC SRAM array is internally split into two 320×32 banks to be used

as the left and right bank, as shown in Figure 3.9. The MAC SRAM array occupies

0.467mm2 in 180nm CMOS and is clocked at 200MHz. It provides two ports: a single

read/write port for normal memory access, and a group read port for MAC operations.

In the MAC mode, up to 20 WLs (i.e., four 5b groups, two for each bank) are selected

in parallel by the group decoder. 5b width-modulation of WL is controlled by a DLL,

and 5b level-modulation is done via current mirrors. Select muxes allow the analog

summation of partial sums from the two banks. The 32 merged BLs are digitized by

32 5b ADCs.

Figure 3.10(a) illustrates the timing diagram for the Jacobi update method on a

128×128 grid. The process calculates two rows at a time (top and bottom), and takes

63 rounds of row updates per iteration. Row computation is similar in the hybrid

method. Shown in Figure 3.10(b), the hybrid method performs non-blocking updates

by writing back for each half-row computation. This grid update process is repeated
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until the desired iteration limit is reached.

3.6 Group Read and Word Line Pulse Generation

The group read mode is illustrated in Figure 3.11, showing 4 stencil entries

(s1, s2, s3, s4) applied to 4 error vectors (e1, e2, e3, e4) stored in 20 rows of the SRAM

banks for MAC operations. The MAC operations are conducted in groups in the

following manner: 1) the group decoder turns on the access to a group of 5 SRAM

rows; 2) the WL pulse width (PW) is selected by a 5b stencil entry; 3) current mirrors

generate the WL voltage needed to provide 1×, 2×, 4×, 8×, and 16× unit cell current

for the analog readout of 5b error values; and 4) the products between the stencil

entry and the error values are accumulated on the BLs. Up to 4 groups are activated

at the same time to enable 128 5b×5b MACs in parallel in the MAC SRAM.

If we use the 5ns clock period as the unit pulse width (PW), a 5b WL pulse will

take 32 clock cycles, or 160ns. To improve performance, we use 625ps as the unit PW,

so a 5b WL pulse only takes 20ns. To generate fine and well-controlled WL pulses,

we design a DLL to subdivide a 5ns clock period to a 625ps unit pulse width (PW)

using an 8-stage voltage-controlled delay line in a control loop and a pulse generator

logic as shown in Figure 3.12. The phases are continuously adjusted by tracking the

200MHz reference clock using the phase detector, and errors are corrected by the

control voltage of the delay line.

We allocate up to 200mV BL swing to represent the readout of one group. With

all four groups activating at the same time, the BL swings up to 800mV, from 1.8V

down to 1.0V. The swing is limited by the one-stage pre-amplifier of the ADC. The

pre-amplifier performs offset cancellation at its output for a lower area and power, but

the input common-mode range is more limited. Since 800mV BL swing is digitized

by a 5b ADC, an LSB step is 25mV.

The process variation is evaluated by Monte Carlo simulations for reading a group
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Figure 3.13: BL voltage variation.

of 5b operands. To obtain the maximum absolute variation, we used the maximum

PW of 19.375ns (31 unit PW). The BL voltage and its standard deviation are shown

in Figure 3.13. The standard deviation of the BL voltage is shown to be limited to

18mV.

The DLL occupies 1,500µm2 in 180nm and consumes 950µW. The differential

nonlinearity (DNL) and the integral nonlinearity (INL) for the DLL are evaluated

for all process corners. The DLL provides a maximum INL of sub-0.15 unit PW,

as shown in Figure 3.14. The closed-loop pulse generation is more robust than an

open-loop approach [29].

3.7 Bit Line Readout

The BL ADC needs to be compact and energy-efficient to avoid becoming a bot-

tleneck of the design. Therefore, flash or SAR architectures are excluded. Instead,

we choose a ramp ADC that consists of a ramp reference and a counter shared by

all columns, and a single comparator and latch per column. The ramp architecture

minimizes the area and energy, but a 5b conversion requires 32 time steps.

We adopt a compact dual-ramp single-slope (DRSS) ADC architecture [67] that
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Figure 3.14: Differential nonlinearity (DNL) and integral nonlinearity (INL) of WL
pulses generated by DLL.
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applies a 2b coarse-ramp comparison followed by a 3b fine-ramp comparison, as shown

in Figure 3.15. The BL voltage is first compared with the 2b coarse ramp to obtain

the 2b MSB, which then selects one of four 3b fine ramps for comparison to obtain

the 3b LSB. The dual-ramp approach performs 5b comparison in 22 + 23 = 12 time

steps, faster than a serial conversion architecture [29].

In implementing DRSS ADCs, a central circuit is shared by 32 columns and it

generates two ramps by a resistive DAC and a controller that steps through the two

conversion phases. A compact column circuit consists of a pre-amplifier followed by

a regenerative comparator and latches.

The column circuit measures only 350µm × 110µm. The 32 ADCs in a MAC

SRAM occupy 0.044mm2 and the conversion costs 8.91mW at 200MHz. The DNL of

the ADC is kept below 0.45b, and the INL of the ADC is within 0.5b as shown in

Figure 3.16.
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3.8 Results and Comparison

A 180nm 11.0mm2 PDE solver test chip was fabricated and tested. The chip

consists of a PDE solver and BIST circuits, as shown in Figure 3.17. The 4 MAC

SRAMs in the PDE solver core each takes 570µm×820µm and dissipates 16.6mW

when performing group read at 200MHz and room temperature.

The ADC, DLL and group decoder account for 62%, 12% and 9% of the power

consumption shown in Figure 3.18. When running Jacobi and the hybrid layer up-

date iterations, the 5b multigrid PDE solver reaches an error tolerance of 10-8 while

speeding up convergence by 6× and 8× respectively, over the baseline 32b single-grid

implementation, as shown in Figure 3.19.

The 200MHz MAC SRAM completes 128 5b×5b MAC operations in 18 clock cy-

cles (4-cycle WL pulse, 1-cycle BL propagation, 12-cycle ADC and 1-cycle latching).

With 4 MAC SRAMs, the PDE solver chip performs 512 5b×5b MAC operations

every 18 clock cycles. Following [29] that counts an operation at each active SRAM

cell as 2 OPs, the performance and energy of each MAC SRAM are 14.2GOPS and
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Figure 3.20: Measured performance and energy.

857GOPS/W, respectively. At a lower precision, the performance and energy effi-

ciency can be more than doubled, as shown in Figure 3.20. We synthesized a compa-

rable digital ASIC in 180nm CMOS, but its compute density is 40× lower than this

work.

This design is the first PIM that targets solving PDEs. Prior PIM designs do

not meet the requirements of the PDE solver due to limited multiplicand precision

[27, 29, 30], limited ADC resolution [27, 30], or limited number of ADCs [65, 66]. In

Table 3.1, we attempt to compare the PDE solver chip with three SRAM-based PIM

designs, the 65nm IMCORE [66], the 65nm Conv-RAM [29] and the 55nm T8T

SRAM [72]. Our MAC SRAM provides a higher multiplicand precision than Conv-

RAM and substantially more ADCs than IMCORE, Conv-RAM and T8T SRAM

to support iterative solution updates. As a result, the power efficiency measured in

TOPS/W is lower. Note that the work was prototyped in a 180nm technology and

the results in Table 3.1 are not normalized. We expect that the energy efficiency and

compute density of this design to improve in newer technologies.

In Table 3.2, this work is compared with recently-published efficient accelerators

for solving PDEs: an analog computer accelerator [63], a hybrid computing unit [64],
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Table 3.1: Comparison with State-of-the-Art SRAM-Based PIM (Unnormalized)
IMCORE [66] Conv-RAM [29] T8T SRAM [72] This work

Application SVM CNN CNN PDE solver
Technology 65nm 65nm 55nm 180nm

Core voltage 0.925V 1.2V 1.0V 1.8V
PIM core area (mm2) 0.52 0.067 N/A 1.868

Memory size 512×256 16×16×64 64×60 4×320×64
PIM kernel precision 4b×8b 7b×1b 4b×5b 5b×5b

ADC resolution 4b 7b 7b 5b
Number of ADCs 1 16 12 128

Activated cells 4×256 16×1×64 32×1×60d 4×20×32
Latency (ns) 31 150 10.2 90

Performance (GOPSa) 66.2b 10.7c 376d 56.8
Power (mW) 3.17 0.381 0.960 66.4

Efficiency (TOPS/W) 20.9 28.1 392d 0.857
Density (GOPS/mm2) 127 160 N/A 30.5
aAn actived cell is counted as 2 OPs [29]. bIn test mode [66].
cActivates 50×16 cells and uses 4b output for testing [29].
dActivates 32×60 cells in high precision mode. [29].

Table 3.2: Comparison with Prior PDE Accelerators (Unnormalized)
Cowan [63] Guo [64] Kung [62] This work

Technology 250nm 65nm 15nm 180nm
Design Silicon Silicon Synthesis Silicon

Core voltage 2.5V 1.2V 0.8V 1.8V
Core area (mm2) 100 3.8 0.45 1.868

# Active PEs 400a 26a 64b 512b

Compute precision 8b 16b 32b 5b
Core frequency 20kHz 25kHz 600MHz 200MHz

Peak Grid Update Rate (MEntries/s) 1.6c 0.04c 66.7 1420
Power (mW) 300 1.2 523 66.4

Efficiency (MEntries/s/W) 0.005 0.033 0.127 21.4
Density (MEntries/s/mm2) 0.016 0.01 148 760

a1 PE represents an analog operation block
b1 PE represents a 5b multiplier unit for MAC operation
cAssumes outputs are continuously transferred at full bandwidth.
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and a digital hardware accelerator [62]. This work is the first to use PIM in PDE

applications. It is also the first among hardware accelerators to use a multigrid

residual approach to reduce the core precision requirement to 5b. An intrinsic benefit

of PIM is less data movement, compared to the other work that relies on frequent

accesses of external DRAMs. Optimized towards dense, low-precision compute, this

work achieves a grid update rate of 1.42 G entries/s and an energy efficiency of 21.4

M entries/s/W. The computational density and the energy efficiency of this 180nm

design are 5.1× and 168× higher than the state-of-the-art 15nm synthesis [62] without

technology normalization.

3.9 Conclusion

Numerical PDE solvers require high-precision, iterative and memory-intensive

computation. In this work, we adopt a residual form of the multigrid method to

reduce the precision requirement, and a row-by-row update to reduce the computa-

tion time while providing sufficient parallelism.

The resulting PDE solver design is mapped to a 5b SRAM-based PIM system

that consists of an iteration module, a solution update module and a residual update

module. Quantized grid values are mapped to SRAM following a rotation mapping

method for high storage utilization and efficient parallel computation. Four 320×64

SRAMs perform parallel 5b×5b MAC operations, with 5b word line level modulation

and 5b pulse width modulation. Each MAC SRAM output is digitized by 32 5b DRSS

ADCs.

The PDE solver is prototyped in 11mm2 180nm test chip. The chip is measured

to achieve a grid update rate of l1.42 G entries/s at 200MHz at a power consumption

of 66.4mW. Compared to previously published PDE solver accelerators, this work

demonstrates two orders of magnitude improvement in energy efficiency and at least

5× higher compute density without technology normalization. The results show the
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promise of using PIM in numerical PDE solver applications.
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CHAPTER IV

Conclusion

Technology scaling has enabled a wide range of data-intensive applications, and

the trend of parallel computing would continue to grow for the foreseeable future. To

further improve processing capability that is currently limited by memory bandwidth,

one promising approach is to extract and process only the meaningful information, and

the other approach is to integrate computation with the memory. This thesis work

provides new solutions targeting high-performance and energy-efficient accelerator

design for data-intensive applications. Specifically, this work presents two primary

approaches to address the von Neumann bottleneck: 1) reducing the amount of data

that need to be moved by sparsity and data compression; and 2) practical and robust

multibit-memory compute design to extend the applicability of in-memory compute to

a wider range of applications. The approaches are demonstrated in two data-intensive

applications, a video sequence inference processor and a PDE solver.

A video sequence inference processor computes on video inputs and 3D features

that are inherently more complex than image processing. We applied multiple ap-

proaches to enhance the data sparsity and reduce the computational complexity.

Using the residual form, we demonstrate the algorithm reformulation that leads to

an all-spiking three-layer architecture, all implemented primarily in SAs, instead of

MACs. The resulting data sparsity reaches a high 90% level. By applying kernel
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compression and activation compression, memory size can be reduced further by 43%

and 64%, respectively. Applying both techniques increases the processing throughput

and reduces the energy by 51× and 63×, respectively, while the area is kept nearly

constant. These optimization are essential for enabling the processing of 1080p HD

videos at 60 fps. The design was demonstrated in a 2.53mm2 40nm CMOS chip,

achieving 1.70TOPS at 0.9V and 250MHz at a power dissipation of 135mW. Tested

with the 6-class KTH Human Action Dataset, the chip provides a 76.7% classification

accuracy.

This work shows that the naturally occurring data sparsity could be leveraged to

design an architecture with reduced data size and simplified computations. These

lead to reduced memory bandwidth to address the von Neumann bottleneck, and are

essential for applications that require processing of large sparse data sets.

A PDE solver is an important scientific computation problem that is challenged

by big data and its high precision requirement. PDE solvers are most frequently

implemented on GPUs and even supercomputers. To reduce the problem size, we

adopted a residual form to quantize the the floating-point compute problem to 5b

fixed-point compute, by computing based on the incremental differences. In conjunc-

tion, we applied the multigrid method and a row-by-row update method to speed

up convergence. These optimization methods lead to a fast PDE solver design that

operates primarily in low precision, which could be mapped to in-memory comput-

ing. The quantized grid values are rotationally mapped to the MAC SRAM for high

storage utilization and efficient parallel computation. The MAC SRAM is designed

to compute 5b×5b MAC with high parallelism. To support multi-bit computation,

we adopt both width and level modulation of word-line pulses. To reduce the cost

and improve the speed of analog-to-digital conversion, we employ a compact array of

dual-ramp single-slope (DRSS) ADCs for bit-line readout.

These approaches lead to a PDE solver prototyped in a 11mm2 180nm CMOS
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chip. The chip integrates four 320×64 MAC SRAMs, each capable performing 128×

parallel 5b×5b MACs with 32 5-bit output ADCs and consuming 16.6mW at 200MHz.

The design provides 40× compute density when compared to an equivalent ASIC. The

prototype chip is measured to solve a 127×127 PDE grid with a grid update rate of

1.42 G entries/s at 200MHz and power consumption of 66.4mW. When compared to

other PDE accelerators, this work achieves two orders of magnitude better energy

efficiency and more than 5× higher compute density.

This work demonstrates the use of algorithm reformulation, precision reduction,

and in-memory computing to design a highly efficient PDE solver, where the von

Neumann bottleneck is removed entirely.

To extend PDE solver to wider applications, some PDE models require non-

uniform or even unstructured discretization to speed up convergence and reach a

higher accuracy. However, such approaches would result in non-uniform stencil ma-

trices, posing challenges in computation parallelism and storage density. New memory

designs that provide more flexibility in bit cell access patterns would be required to

support such approaches.

Applying a multigrid method on non-uniform or unstructured grids requires an

alternative approach that does not rely on geometric information. Thus, algebraic

multigrid (AMG) methods have been introduced, where grid coarsening is based on

the matrix system itself [73, 74]. Because AMG aims to generalize grid structures

for coarsening, multiple classes of AMG methods have been introduced to optimize

the formulation of the approximate compute. One notable approach is aggregation

based AMG [75], which decomposes stencil matrix in the coarsening process. An-

other approach is adaptive AMG [76], which optimizes parameters based on iteration

results. These approaches in approximate computing provide new opportunities to

design highly parallel and compact PDE solvers.
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