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1 Introduction

In Physics and Philosophy: The Revolution in Modern Science, Heisenberg made an ontic distinc-
tion which is encapsulated in the following passage:

In the experiments about atomic events we have to do with things and facts, with
phenomena that are just as real as any phenomena in daily life. But the atoms or the
elementary particles themselves are not as real; they form a world of potentialities or
possibilities rather than of things or facts.(p. 160)

Clearly, for Heisenberg there is a quantum-classical dualism, and furthermore, it is grounded in an
ontological dualism in which the duals are mutually exclusive. However, no corresponding dualism
can be found in the mathematical formalism of quantum mechanics. Here, we present an attempt
to formally implement it.

2 Heisenberg’s Distinction in Classical Probability

As a warm-up to implementing Heisenberg’s distinction in quantum mechanics, let us first imple-
ment it in classical probability. Consider the following: I hold a fair six-sided die in my hand,
ready to throw it. The possible outcomes can mathematically be considered as elements of a fiber
of six potentialities on the actual outcome of a throw. So, to generalize, we need to define two dis-
tinct sets, one which represents outcomes as ‘potentialities or possibilities’ and another one which
represents outcomes as ‘things or facts’, such that that the former is a fiber on each element of the
latter. I prefer the term ‘actualizability’ over ‘potentiality’ because the latter has many different
connotations whereas the former does not, which allows the former to be associated rather exclu-
sively with Heisenberg’s distinction. To implement this formally, add new structure and a zeroth
axiom (underlined) to Kolmogorov’s axioms (Kolmogorov, 1950):

Let Q = Ufil E; be a set where N is either finite or countably infinite, 4 C P(Q)
a set of its mutually exclusive subsets E;, and call the pair (£2,.4) a measurable
space. Let I' = {f(w)} be a set where f: Q — T is a bijection. A real-valued function
P: A — R satisfying

e Axiom 0: 2 is a fiber on each v € T’

e Axiom 1: 0 < P(E;) <1

e Axiom 2: P(Q2) =1

o Axiom 3: P, E; =Y | P(E;)
is called a probability.

The implementation is trivial but addresses a well-known problem in the foundations of probability,
namely that Kolmogorov’s axioms do not in any way distinguish a probabilistic measure from non-
probabilistic unit measures such as unit lengths or volumes. This can give rise to confusion,
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as can be seen by the fact that if we accepted the zeroth axiom, we would end up definining
non-probabilistic unit measures by omitting axiom zero, yielding nothing other than our current
definition of probability.

3 The Heisenberg Interpretation Postulates

The implementation of Heisenberg’s ontic distinction in quantum mechanics is analogous to what
was just done in classical probability: its standard postulates (Shankar, 1994) are modified by the
minimum necessary in order to accommodate his distinction (modifications are again underlined).
This modified set of postulates is what I call the Heisenberg Interpretation of Quantum Mechanics

(HI):

o Postulate 0: The L? complex Hilbert space H is an actualizability space.

e Postulate 1: The physical states of a quantum systems are completely represented
by elements of #, denoted by V.

e Postulate 2: Observables are represented by linear Hermitian operators acting on
the elements of H.

e Postulate 3: The time evolution of an element ¥ of H is given by the Hamiltonian.

e Postulate 4: A “Measurement” of the property of a state is represented by a map
€ :H — C, where C is the collection of all basis states of H in all bases as actual-
ities, which will be called ‘classical states’, and & will be called the actualization
map. The image of the map domain is denoted B C C, the collection of basis states
as actualities in the measurement basis.

e Postulate 5: The Probability of obtaining a classical state (%) upon a measure-
ment of ¥ is given by the Born Rule.

e Postulate 6: The Completion of a measurement is represented by the map & : B — H
such that G(£(¥)) = 1, an eigenstate of ¥, where & will be called the deactual-
1zation map.

The HI is not meant to make any operational changes to how quantum mechanics is used, save
possibly for situations involving quantum measurements and state reduction, for it models those
clearly very differently. Figure 1 gives an overview of how state reduction is conceptualized under

the HI:

Actualization
E(w
governed by Born Rule ()

‘H “disappears”

State Reduction

¢ = 6(E(V))

Figure 1: In standard quantum mechanics, there is just state reduction upon a “measurement",
but under the HI this is the result of the composition of two maps which model the actualization
and deactualization of a classical state. Notice that while the state is classical, there is no Hilbert
space involved in its representation because the state is not one of its elements.

4 Advantages over the Copenhagen Interpretation
The Heisenberg Interpretation can be considered a variant of the ‘Copenhagen Interpretation’

(though there is in reality no single such interpretation) but offers a number of advantages over
other variants which are discussed in the full paper but only outlined in this abstract:



1. The HI eliminates a possibly incoherent aspect of the Copenhagen interpretation which in-
volves mixing representations of actualities with actualizabilities.

2. The HI circumvents the violation of unitary time evolution in the standard quantum formal-
ism.

The HI grounds the ‘Heisenberg cut’ directly in the quantum formalism
The HI directs attention to a feature absent in the standard formalism: deactualization.
The HI may provide a refinement for the scope of quantum decoherence

The HI reframes quantum non-locality in terms of correlated actualization.
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The HI may set the stage for yielding novel experimental predictions pertaining to the rela-
tionship between gravity and the quantum.

5 Conclusion

The HI implements at the level of mathematical formalism a distinction into quantum mechanics
which has heretofore only been expressed in words. A major outstanding problem is that a “mea-
surement” is still treated as a black box. If this distinction is really “out there” in reality, then
the interpretation points toward a deeper theory, a successor to quantum mechanics in which the
elucidation of the black box of measurement comes out of the mathematical structures themselves.
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