
Inequality in Social Learning∗

Abstract

We study the spread of misinformation in a social network characterized by unequal access
to learning resources. Agents use social learning combined with their own signals to uncover
an unknown state of the world, and a principal tries to distort this learning process in or-
der to influence their beliefs. A subset of agents throughout the network is endowed with
knowledge of the true state. This gives rise to a natural definition of inequality: privileged
communities with a large proportion of knowledgeable agents experience a positive external-
ity from their presence and therefore are more resistant to the interference of the principal,
whereas marginalized communities who do not have access to these individuals are compar-
atively disadvantaged. This access is determined by the homophily structure of the network
– a highly integrated society has unimpeded access to these knowledgeable agents regard-
less of which community they reside in, whereas agents in a more segregated society face
more restricted access to these resources. We show that the role that inequality plays in the
spread of misinformation is highly complex. For instance, communities who hoard resources
and deny them to the larger population can end up exposing themselves to more misinfor-
mation. On the other hand, while more inequality generally leads to worse outcomes, the
prevalence of misinformation in society is non-monotone in the level of inequality. This im-
plies that policies that reduce inequality without completely eradicating it can sometimes
leave society more prone to misinformation.

1 Introduction

The central question of the social learning literature is whether a society or a group of people

will manage to learn an unknown state of the world.1 We study this question in a social network

characterized by unequal access to learning resources: some agents are already endowed with

knowledge of the true state, and the rest of the agents update their beliefs about this state based

on their own information (that they obtain from news sources) as well as from communicating

with their friends. A strategic actor – a principal – tampers with the learning process in order to

spread misinformation and get agents to mislearn the state of the world. This induces a form of

inequality in the network: If some agents are endowed with knowledge of the true state or with

a higher ability to learn, then being connected to these agents provides an advantage. Similarly,

∗Previously titled “Homophily is (not) Bad for Learning”
1For example, whether temperatures on earth are increasing over time, as stated in Golub and Jackson (2012).
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agents who do not have access to these individuals are comparatively disadvantaged and their

learning may be hampered as a result.

This access or lack thereof is determined by the homophily structure of the network. Ho-

mophily –the tendency of people to associate with those who are similar to themselves– provides

a realistic representation of real-world networks (see Marsden (1987); McPherson et al. (2001)),

and in our framework serves as the underlying mechanism through which inequality propagates

in society. Privileged communities with easy access to knowledgeable agents are more likely to

be protected against misinformation, but if homophily is too high and communities become

more insular, then vulnerable communities with few or no knowledgeable agents will have little

access to the more affluent communities and their resources. How does this inequality affect the

spread of misinformation in the individual communities and society as a whole?

We show that the answer to this question is complex and depends on a myriad of factors.

These factors interact to give rise to a range of outcomes, some of which are intuitive – like an

increase in inequality leading to the underprivileged communities being worse off– while others

are less so. For example, sometimes an increase in inequality can make the privileged communi-

ties worse off, or sometimes intermediate levels of inequality can make the entire society worse

off while under different conditions the same levels of inequality can protect the whole society

from misinformation. Understanding the drivers behind this range of outcomes is important

because of its potential consequences to social and economic policy: in addition to its effects

on learning inequality, homophily is also connected to segregation in society (Currarini et al.

(2009)), which leads to well-documented economic inequality.2 This makes it natural to suggest

policies that alleviate the negative effects of homophily and inequality. Our paper shows that

these policies should be carefully planned –by taking into account the factors that we identify–

in order for them to accomplish their desired goals and not result in unintended consequences.

Throughout the paper we assume that some agents are “knowledgable” – they are endowed

with knowledge of the true state, while other agents try to uncover that state through social

learning. We do not assume the network structure is deterministic; instead, we assume that

the network is generated randomly from a distribution and exploit the connection between ran-

dom graphs and homophily to examine the effects of the latter on the spread of misinformation.

This allows us to develop insights that are useful for resource allocation and policy interven-

tions. By understanding how the inequality structure of society interacts with the incentives of

a strategic principal, a social planner can respond to the spread of misinformation by shaping

2Wage inequality and differences in labor market participation across different groups are documented in Card
and Krueger (1992); Chandra (2000), and Heckman et al. (2000). Calvo-Armengol and Jackson (2004) and Calvó-
Armengol and Jackson (2007) show that these inequalities can be explained through network models of homophily.
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that inequality structure through endowing some agents with knowledge of the correct state (for

example through education or increasing awareness) or by adjusting the homophily levels in

society, for example through facilitating communication between communities.

Finally, we remark that the prevailing assumption throughout the social learning literature is

that the news that agents obtain is organic: it may or may not be accurate, but it is provided by

sources that have no stake in what the agents’ beliefs are. In reality, such sources are rarely neu-

tral, and may have an interest in shaping these beliefs in order to direct agents towards taking

certain actions. The interference of Cambridge Analytica in the 2016 US presidential election is

one example of such belief manipulation. Similarly, recent outbreaks of measles in Eastern Eu-

rope and parts of the US have been linked to Russian interference and propaganda whose goal

is to convince people that vaccines are harmful in order to make them opt against vaccinating

themselves and their children.3 Our paper provides a robustness check for some of the results in

the standard learning models. For example, while homophily is unambiguously identified as a

barrier to learning in previous literature (see Golub and Jackson (2012)), its role in this strategic

setup is much more nuanced. Successful learning under this strategic interference model there-

fore implies successful learning in the models in the literature, but the opposite implication is

not necessarily correct.

Contribution and Overview of Results. In this paper, we study the effects of inequality on the

spread of misinformation, with homophily being the underlying mechanism through which in-

equality propagates. We show in Theorem 1 and Appendix A that the study of the random net-

works arising from our homophily models can be reduced to studying the expected network.

Given this simplification, we make the following contributions:

Conceptual: We start by giving a definition of learning inequality as a measure of how com-

munities differ in their access to these knowledgeable agents. This is determined by i) the distri-

bution of these agents over different communities, and ii) the level of homophily in society. We

then show that the effect of inequality on the spread of misinformation is not monotone, and is

shaped by several factors. In particular, the principal’s technology for sending signals to agents

can be costly, and that cost is a large determinant for how inequality affects the spread of mis-

information. Theorem 3 shows that when that cost is negligible, so that the principal can target

whomever he wants, then intermediate levels of inequality are always (weakly) worst for society,

even more so than extreme inequality. Theorem 5 shows that this conclusion can be reversed

when the principal’s cost of sending misinformation is no longer negligible, i.e. intermediate

3https://www.newsweek.com/russian-trolls-promoted-anti-vaccination-propaganda-measles-outbreak-1332016
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levels of inequality can sometimes be best for society. Such a reversal might occur because the

incentives for the principal to send misinformation are highly complex when her signaling tech-

nology is relatively expensive.

We also show that another factor that determines how inequality shapes the spread of mis-

information is the relative population sizes of the different communities in society. Theorem 2

shows that when communities have the same size, an increase in inequality has an expected

effect: privileged communities are better off and marginalized communities (with little access

to knowledgeable agents) are worse off and more prone to manipulation. However, Theorem 4

shows that if the privileged communities are smaller in size compared to the rest of the under-

privileged population –as is typically the case– then an increase in inequality not only hurts the

large population, but also hurts the privileged communities themselves.

Lastly, we introduce a novel inequality model through a network structure we call strong ho-

mophily, which complements the weak homophily model commonly studied in the literature

(and throughout most of our paper). Strong homophily provides a more appropriate framework

for analyzing societies characterized by a hierarchical structure. Propositions 1 and 2 contrast

the effects of weak and strong homophily on the spread of misinformation, and show how the

latter always requires substantially more equality to protect society.

Policy Implications: The findings from our model can be used as input to policy makers

trying to curb manipulation. By understanding the inequality structure of society, resources can

best be directed towards interventions that will protect this society from misinformation. We

consider two natural interventions: first, educating specific agents in the network who will then

serve as the knowledgeable agents to protect their (and potentially other) communities. Second,

increasing connectivity across communities in order to make the network less segregated and

provide more access to these knowledgeable agents.

Our policy recommendations are parametrized by the budget that the planner has and the

cost of the signaling technology of the principal. Corollary 1 and propositions 3 and 4 show that

when the planner’s budget is large enough, the principal’s signaling costs are low, and communi-

ties are of similar size, then it is best to make society as equitable as possible. Corollary 2 follows

Theorem 4 to show that if privileged communities are small in size compared to the rest of the

population, then any policy that subjects the population at large to inequality is sub-optimal,

and that it is in the best interest of privileged communities to champion policies that allocate

resources to this large community, otherwise everyone in the population is worse off.

The above policies advocate for equitable distribution of resources, but due to the complex-

ity of the phenomena being studied, exceptions can sometimes occur. As we mentioned above,
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when the principal’s signaling costs are not cheap, some inequality in the network may be better

for society that no inequality. Similarly, when signaling costs are cheap, intermediate levels of

inequality are worst for society, and hence a budget-constrained planner who cannot drastically

reduce extreme inequality and instead opts to just reduce it can unwittingly push society into

the susceptible regime. Our results in this case advocate for a minimum budget allocation that

allows the planner to reduce inequality enough to bypass the problematic intermediate inequal-

ity region. More generally, our model provides a basic framework to think about these decisions

in terms of the primitives of the problem represented by the inequality structure, the planner’s

budget, and the principal’s signaling costs.

Related Literature The model we develop builds upon the work of Chandrasekhar et al. (2019)

and Mostagir et al. (2019). The first paper shows, experimentally, that agents update their beliefs

in ways that are consistent with Bayesian or DeGroot updating,4 and suggests that the propor-

tion of agent types in society may be driven by contextual factors (e.g. level of education). The

second paper takes this finding and builds a theoretical model where a principal tries to ma-

nipulate a society with mixed learning types, and shows that Bayesian agents always learn the

true state eventually and then can help spread this knowledge to other agents.5 For this reason,

we refer to agents who are knowledgeable about the state as Bayesian, which can correspond

to either an agent’s sophistication and reasoning abilities or her deep knowledge of the issue at

hand.

The seminal paper of Golub and Jackson (2012) shows the negative effects that homophily

has on a society that learns in a DeGroot fashion. Instead of learning rates, our focus is on un-

derstanding the role of homophily in whether a network is impervious to manipulation when

the learning horizon is long, and when information is potentially provided by a strategic source.

Lobel and Sadler (2015) show how the role of homophily in a sequential learning model depends

on the density of the network. Homophily in that paper is used to describe alignment of prefer-

ences over the agents’ decision problem,6 whereas homophily in our model captures similarities

along dimensions (race, age, profession, income, etc.) that can be orthogonal to whatever state

the agents are trying to learn.

Bayesian agents in our model are stubborn agents who know the truth. Opinion dynamics

with stubborn agents have been studied in Acemoglu et al. (2013) and Yildiz et al. (2013) among

4Bayesian agents integrate the opinions of their friends using Bayes’ law, while less-sophisticated DeGroot agents
take the opinions of their friends at face value and incorporate them into their own beliefs through a weighted aver-
age.

5This is Theorem 8 in Mostagir et al. (2019).
6For example, an agent who is deciding on a restaurant weighs the opinion of her friend differently if she and her

friend prefer the same type of food.
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others. The recent work of Sadler (2019) extends Yildiz et al. (2013) to random graphs. What

differentiates our paper from this literature is the presence of a strategic principal, which gives

rise to completely different learning dynamics and implications.

There is recent work on fake news and manipulation. In Candogan and Drakopoulos (2017)

and Papanastasiou (2020), there is no strategic news provider; fake news already exists in the

system and the focus is on how it can be identified and controlled. Keppo et al. (2019) pay less

attention to the social network aspect and focus instead on how how Bayesian agents can be ma-

nipulated through selective information dissemination. As mentioned, the manipulation prob-

lem as presented in our paper was introduced in Mostagir et al. (2019), where agents interact

over a fixed and known network topology. Our paper embeds this model in a random network

structure in order to study the role of inequality in the spread of misinformation. In addition, our

paper provides a prescriptive component to evaluate which policies may be effective in stopping

the spread of misinformation as a function of inequality in society. As mentioned earlier, these

policies also speak to issues of community integration and resource allocation.

Our paper assumes only knowledge of the random process from which the network is gen-

erated. There is recent literature that tries to recover the network structure from relational data,

e.g. Alidaee et al. (2020); Ata et al. (2018) consider a seller who does not know the network struc-

ture but, in the presence of externalities, estimates it from transaction data. Other recent work,

e.g. Auerbach (2019), tests whether a network was generated from an inhomogeneous random

graph model (which includes the class of stochastic block matrices commonly used to model

homophily). These methods can be used to estimate the structure of homophily in society and

applied as input to our model.

Finally, our paper is also related to diffusion and seeding in random networks, as exemplified

by the recent work of Manshadi et al. (2018), Akbarpour et al. (2018), and Sadler (2019). These

papers consider the classic problem of which agents to select in order to spread information

throughout the network. The primary difference with our work is that we consider an adversar-

ial, strategic principal who is trying to spread his own influence in the network, and our goal is

to identify conditions and policies under which we can stop this principal from spreading mis-

information, with a specific emphasis on the role of inequality and the social structure of the

network in propagating such information.

Organization As mentioned, our paper builds on the model of Mostagir et al. (2019), so we

present a summary of that model and the necessary definitions and results in Section 2.1. Sec-

tion 2.2 introduces the random network formation process and provides a result under which

the study of random networks can be reduced to the study of the average network. Section 3
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demonstrates some of the main technical results in the paper through a few examples. The

formal results follow in Sections 4 and 5, while Section 6 introduces strong homophily and com-

pares it to the weak homophily model. Finally, we discuss possible interventions to prevent the

spread of misinformation in Section 7 and conclude the paper in Section 8.

2 Model

We build a framework that embeds the model of Mostagir et al. (2019) into a random network

formation model. We introduce the random network model later in this section, but to make the

paper self-contained, we first present a high-level summary of the primitives and results from

Mostagir et al. (2019) that are releveant for our setup.7

2.1 Deterministic Networks: Reduced-Form Model and Solution

We consider a social network with n agents trying to learn a binary state of the world y ∈ {S,R}

over time. Time is discrete and agents learn over a finite horizon, t ∈ {1, . . . , T}.8 At time t = 0,

the underlying state y ∈ {S,R} is drawn, with P(y = S) = q ∈ (0, 1). Agents try to learn the

state of the world in order to take an action at time T , with the goal of taking the action that

matches the true state, i.e. take action S if the state is S or action R if the state is R.9 The

principal is interested in agents taking actionR regardless of what the state of the world is. These

payoffs are represented in Table 1, where the two numbers in each cell represent the payoffs to

the principal and to the agent, respectively, for the state of nature and agent action combination

corresponding to that cell. From the table, we can see that an agent would take action R if her

belief that the true state is R is at least equal to 1−b
2 . Equivalently, she would take action S if her

belief that the true state is S is at least equal to 1+b
2 . Without loss, we assume throughout that the

true state is y = S.10

News Agents receive news over time in the form of signals, where si,t ∈ {S,R} is the signal that

7For completeness, we include the full technical details in Appendix A.1. These details (e.g. arrival rates of news,
explicit form of DeGroot updating, etc.) are not pertinent for our goals but we include them in the appendix for the
interested reader. We also detail other formal concepts of the baseline model in Appendix A that are pertinent for the
results presented in this paper.

8Implicit in this is that agents receive news at the same time. In Appendix A we provide a less parsimonious, but
equivalent, model where agents digest news at different rates, among other generalizations, that do not affect the
conclusions of the model.

9For example, as in Mostagir et al. (2019), they want to learn whether a particular vaccine is safe (state of the world
y = S) so that they vaccinate (take action S) or whether a vaccine is risky (state of the world y = R) so that they would
choose to avoid vaccination (take action R).

10If y = R, the results are trivial because by Proposition 1 in Mostagir et al. (2019), all agents will learn y = R even
without interference from the principal.
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Agent
R S

State y
R 1, 1 + b 0, 0

S 1, b 0, 1

Table 1. Terminal Payoffs. The parameter b is in [−1, 1].

agent i receives at time t. News is either organic or strategic. Organic news is informative and is

generated from a process that is correlated with the state of the world, and we assume that the

probability that si,t correctly represents that state is strictly greater than 1/2. However, a princi-

pal may choose specific agents in the network and jam their news process by periodically send-

ing them message ŷ ∈ {S,R} that corresponds to the state that he would like them to believe

(the principal’ targeting strategy is detailed below in the section titled Manipulation). Impor-

tantly, agents who are targeted by the principal do not know that they are targeted and cannot

tell whether a signal they are receiving is organic or strategic. This is akin to agents scrolling

through their news feed and seeing both organic and strategic stories without knowing which

stories are which.11

Learning Agents are connected in a social network and each agent i has a neighborhood of

agents denoted by N(i). Society consists of two types of agents: DeGroot and Bayesian agents.

Bayesian agents are aware of the correct state y at t = 0, and thus serve as stubborn agents

with correct beliefs. Equivalently, Bayesian agents update their beliefs about the state in a fully

Bayesian way (hence the term, Bayesian) from observing the news and the beliefs of agents in

their neighborhood. This equivalence is a consequence of Theorem 8 in Mostagir et al. (2019).12

DeGroot agents follow a similar model to Jadbabaie et al. (2012), with two components that

go into their learning and belief update process. The first component comes from the DeGroot

agent’s own personal experience, which is a Bayesian update on the true state taking the infor-

mation received (personally) at face value. In particular, given a vector of signals si,t up until

time t, we denote this personal experience by BU(si,t). The second component comes from a

linear aggregation of the opinions of friends. These components are detailed in Appendix A.1.

In general, for periods of new information, we assume DeGroot agent i updates her beliefs πi,t+1

11For the sake of the reduced-form model, it is sufficient to think of untargeted agents as reading inorganic (as
opposed to organic) news with probability 0, but targeted agents reading strategic news with some exogenous prob-
ability between 0 and 1. Again, see Appendix A.1 and Appendix A.2 for more details on the model of Mostagir et al.
(2019).

12We provide technical conditions in Appendix A.2 that guarantee that this result extends to the random network
domain.
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at time t+ 1 as follows:

πi,t+1 = θ · BU(si,t) +
1− θ
|N(i)|

n∑
i=1

πj,t

where θ is the weight that agent i places on her own Bayesian update. Note the belief at t + 1 is

a convex combination of one’s belief from reading the news and the beliefs of her neighbors at

time t. We implicitly assume in this formulation that every agent weights her neighbors equally.

Manipulation At t = 0, before the learning process begins, the principal picks an influence

strategy xi ∈ {0, 1} for each agent i in the network, where xi = 1 indicates that agent i is targeted

by the principal (and will therefore occasionally receive strategic news signals ŷ). The principal

may play any influence strategy x ≡ {xi}ni=1 over the network, and incurs an upfront investment

cost ε > 0 for each agent with xi = 1, thus the utility of the principal is the number of agents

taking action R less total investment cost.

Agent i is manipulated if she would figure out the correct state in the absence of interference

from the principal (i.e. when x = 0), but would mislearn the state when the principal has a

profitable network strategy x 6= 0, as T → ∞. Notice that the agent does not have to be directly

targeted by the principal to be manipulated. Likewise, an agent may not be manipulated even if

she is targeted.

A network is impervious to manipulation if no agents can be manipulated, i.e. if there is

no profitable strategy for the principal that results in any agent mislearning the true state. If a

network is not impervious, we say it is susceptible.

DeGroot Centrality Determining whether an agent is manipulated is equivalent to computing

her limit belief of the incorrect state and checking whether the belief is higher than the cutoff

obtained from the payoff table. The concept of DeGroot Centrality (DC) in Mostagir et al. (2019)

combines the ideas of Katz-Bonacich and PageRank centrality and can be computed using the

technique of weighted walks (Appendix A.4 provides a comprehensive primer on how to com-

pute DC). This centrality measure captures how much influence the principal’s strategy has on

a given agent’s belief, and is precisely equal to that agent’s belief of the incorrect state. With a

slight abuse of notation, we will often refer to πi as the agent’s belief of the correct state (i.e.,

πi(S)), which is equal to 1 minus agent i’s DC.

2.2 Random Networks

We embed the above setup into a class of random networks known as stochastic block networks,

which are based on inhomogeneous Erdos-Renyi graphs. Stochastic block networks were intro-

duced in Holland et al. (1983) and are the focus of the study of homophily in Golub and Jackson
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(2012). In these networks, agents interact in well-connected communities, with few links be-

tween communities.

Weak and Strong Homophily We differentiate between two cases of interest. In weakly assor-

tative networks, agents are more likely to be linked to agents within their community, but when

they reach out to agents outside that community, they are equally likely to connect to agents in

any other community. In that sense, homophily has a flat hierarchy. This model turns out to be

rather accurate in describing friendship and communication patterns, as documented in, e.g.

Marsden (1987).

We also introduce strongly assortative networks, which are communities ordered by similar-

ity, with agents in neighboring communities more likely to be linked than agents in communities

that are farther apart. This model captures the more hierarchical structure that is sometimes ob-

served in society. While this is a natural homophily model, we are not aware of any literature that

studies it compared to the much stronger focus on weakly-assortative networks. In this model,

each community ` has a vector of qualities, Λ` ∈ RL. Qualities can capture different variables

like education, profession, income, etc. Communities are sorted according to their similarity,

with the distance metric between communities ` and `′ given by d(`, `′) = ||Λ` − Λ`′ ||2. For sim-

plicity, we assume that L = 1 (the quality vector is one-dimensional) and thus communities are

(strongly) ordered by their Λ` on a line topology.

Formally, both types of random networks consist of k communities (or islands). In both mod-

els, for any two agents on the same island, there is a link probability ps. In the weakly assortative

model, there is also a link probability pd < ps for any two agents on different islands. However, in

the strongly assortative model, agents do not form links with agents on islands outside of their

neighboring islands. Agents in community ` are linked to agents in community `+1 or `−1 with

probability pd, whereas agents in “farther” communities are linked with probability 0,13 with the

exception of island 1 and island k, which are linked to island 2 and island k−1 only, respectively.

Inequality A society consists of communities connected together through a homophily struc-

ture. The existence of (Bayesian) agents who know the correct state and propagate truthful in-

formation gives rise to a degree of inequality across communities. The distribution of these

agents over communities along with a weak (or strong) homophily structure induces a form of

weak (or strong) inequality. We use the term privileged to refer to a community with a higher

proportion of Bayesians compared to a marginalized community that has a smaller proportion

13We can equivalently assume that these link probabilities are positive but decay sufficiently quickly, such as on
the order of exp(−||Λ` − Λ`′ ||2). For simplicity of exposition and illustration of the effects of our strong assortative
property, we simply set the link probabilities to 0.
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of Bayesians. Access to Bayesian agents is closely tied to the homophily structure, which deter-

mines how many (direct) connections DeGroot agents in different communities have to these

Bayesians. Thus, changes in the homophily of a network also introduce changes to inequality.

This working definition of inequality is useful for understanding the examples in Section 3; the

formal definition is deferred to Section 4 before we derive our main theorems. We compare the

differences between weak and strong inequality on misinformation in Section 6.

2.3 Reduction to Deterministic Networks

Analyzing the random networks generated according to the weak or strong homophily models

is difficult. Using the proof technique in the technical note attached to this submission, the fol-

lowing result establishes that as long as the population is large enough, it is sufficient to analyze

the deterministic analogues of these random networks:

Theorem 1. For almost all b,14 as n → ∞, the probability that a random network drawn from

the weak or strong inequality models has the same number of manipulated agents as the expected

network converges to 1.15

Theorem 1 offers a technical simplification: instead of analyzing the random networks drawn

according to the weak and strong homophily models, we can treat these networks as determin-

istic objects where the weights are chosen proportionally to the probability of link formation.

Moreover, because all of our results are invariant to a doubling of the population as long as the

proportion of Bayesians and DeGroots remain constant on every island, every example can be

extended to the case of n→∞ and Theorem 1 can be applied.

3 Demonstration of Main Ideas

This section presents three examples that demonstrate the complex role of (weak) inequality in

learning and manipulation and serves as an overview of the technical results in the paper. The

examples below show that increasing inequality can: i) have divergent effects on different com-

munities, hurting one community and making another better off, or ii) it can hurt the whole

society, or iii) it can protect the whole society. These variety of outcomes depend on a myr-

iad of factors like relative community affluence, relative community sizes, and the cost of the

manipulation technology.

14“Almost all” is meant in the measure theoretic sense; the only exceptions lie on a set of measure 0 in (−1, 1).
15The formal definitions of realized and expected networks can be found in the attached technical note.
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Section 3.1 provides an example where the role of inequality is consistent with the casual

conclusion that increasing homophily (and therefore, increasing inequality) makes some agents

in the population more susceptible to the principal’s influence. In particular, privileged commu-

nities become even more resilient while the additional inequality hurts marginalized communi-

ties and leaves them more exposed to belief manipulation. In the next two examples, however,

we show that more subtle effects may exist to reverse this conclusion.

In Section 3.2, we show that when communities have different sizes (and thus, unequal in-

fluence over other communities), it is possible for increased inequality to make all communi-

ties worse off, because this inequality directly hurts an influential core of the social network

through which a substantial amount of information flows. Therefore, in contrast to the example

in Section 3.1, an increase in inequality can can end up hurting even the privileged communities

themselves.

Finally, Section 3.3 shows that different levels of inequality can change how the principal

chooses his optimal influence strategy: as increasing inequality isolates key privileged commu-

nities, the principal may find no profitable strategy that influences even those who are most

marginalized, thereby protecting the entire population.

Below, we go through the details of each of these examples.

3.1 Inequality Hurts the Most Marginalized

We consider two communities of equal size and explore the degree of manipulation under dif-

ferent homophily structures. Two of the agents on the first island are Bayesian, compared to

only one of the agents on the other island. Thus, the former island is the privileged commu-

nity and the latter island is the marginalized community. This setup is pictured in Figure 1. In

this example, we vary homophily by setting pd = 0.2 and increasing ps > pd (note that as ps in-

creases, homophily increases). We assume that ε = 0 so that it is costless for the principal to

send misinformation (and therefore will send to everyone).

Figure 1 shows the beliefs of the agents in both communities. Recall that manipulation oc-

curs when an agent’s belief falls below a certain threshold π∗. We see that as ps increases, the

beliefs of the privileged community move closer to the truth (higher belief) whereas the beliefs

of the marginalized community move farther from the truth (lower belief). In addition, there ex-

ists a corresponding homophily threshold p̄s (approximately 0.4 in this example) whereby when

ps < p̄s, there is no manipulation, but when ps > p̄s, the marginalized community becomes

manipulated. An increase in inequality in this example leads to more manipulation in society.

Thus, an increase in inequality makes society worse off as the marginalized community becomes
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Figure 1. On the left is the setup of Section 3.1, and on the right are the beliefs of the two com-
munities. As homophily increases (i.e. as ps increases), the beliefs of the privileged community
move towards the truth while the marginalized community’s beliefs fall below the belief thresh-
old given by the dashed line, leading to the agents in that community taking the incorrect action.

susceptible to misinformation.

3.2 Inequality Hurts Everyone

We now consider three islands in a weak inequality model: a small privileged community with an

eighth of the population, a small marginalized community with an eighth of the population, and

a large community with the remaining three quarters of the population. Assume that there are

three Bayesian agents in the privileged community, one Bayesian agent in the large community,

and no Bayesian agents in the marginalized community. This setup is depicted in Figure 2.

Similar to the previous example, we set ε = 0, fix pd = 0.2, and vary ps to change the amount

of homophily in society. The beliefs of the three different communities are shown in Figure 2

as a function of ps. Given the threshold line π∗ in the plot, we see that as homophily increases,

the beliefs of all agents in the population move farther away from the truth. This is true even

for the privileged community, despite the fact that agents in this community are forming more

direct connections with Bayesian agents who spread truthful information. Such a phenomenon

occurs because the size disparity between communities leads to all of them deriving most of

their beliefs from the information spreading in the large community, so when inequality hurts

this community, it propagates to those who, on the surface, should be benefiting from it (as in

the previous example). Once homophily hits ps = 0.3, two communities are manipulated while

the privileged community is still immune. As homophily increases further to ps = 0.5, everyone
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Figure 2. On the left is the setup of Section 3.1, and on the right are the beliefs of the two com-
munities. As homophily increases (i.e. as ps increases), the beliefs of all communities move away
from the truth and fall below the belief threshold, so that all agents take the incorrect action. Fur-
ther increase in homophily restores some of the beliefs in the privileged community, but does
not bring it back to first-best levels.

in the network is manipulated.

After a point, more increase in homophily begins to restore the beliefs of privileged commu-

nity, but not to the extent of returning these beliefs to first-best levels. This is a consequence

of the large community suffering with false beliefs and dragging down the beliefs of those in

the privileged community. Thus, once homophily reaches an extreme level, the misinformation

rampant on the large island ceases to spread beyond its own community. In that sense, extreme

homophily is better than intermediate homophily because at least one of the islands is insulated

from the misinformation in the large community.

3.3 Inequality Protects Society

We now give an example to show how the spread of misinformation can be shaped by the in-

terplay between the principal’s strategy and the inequality structure of society. Consider three

communities of the same size. The privileged community has a 3% Bayesian population, the

“average” community has a 1% Bayesian population, and the marginalized community has no

Bayesians. Unlike the previous examples, we assume that ε ∈ (4/5, 1), so that it is not free for the

principal to expend resources in manipulating the beliefs of the agents. This setup is depicted
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Figure 3. Example of Section 3.3

in Figure 3.

Figure 4a shows the beliefs (of the correct state) when the principal sends signals to everyone

in the population. Suppose there is no homophily, so that ps = pd = 0.2, and, as always, there

is a belief cutoff π∗ for taking the correct action. Then under this strategy, all agents are manip-

ulated, and the cost of sending signals is ε < 1, so this is indeed profitable and the network is

susceptible.16

As homophily increases, the beliefs of the privileged community move closer to the truth and

eventually pass the cutoff, thereby insulating them from the strategy where the principal exerts

maximal influence over the entire population. For instance, when ps > 0.3 in Figure 4a, the

privileged community takes the correct action even though the other two communities do not.

However, since ε > 4/5 > 2/3 (the principal is manipulating 2/3 of the population), a strategy

that targets all agents in the population is no longer profitable.

Instead, we investigate whether the principal has a profitable strategy where he incurs less

cost but still manipulates the average and marginalized communities. It is relatively easy to

show that the principal always prefers to decrease his influence on the privileged community,

as he cannot manipulate this community anyway, and, because each community has more con-

nections within their own island, exerting influence within the average and marginalized com-

16Note that it is not immediate that every agent will be manipulated in equilibrium, just that the network is suscep-
tible (see Mostagir et al. (2019), Corollary 2). However, it can be shown through a more sophisticated argument that if
the principal targets at most 5/6 of the population (regardless of the distribution across islands), then he manipulates
no one. Thus, the optimal strategy for the principal is to target sufficiently many agents to guarantee that all islands
are manipulated.
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(a) Beliefs when principal targets all agents (b) Beliefs when principal sends fewer signals

Figure 4. Beliefs of the communities in Section 3.3. The left plot shows beliefs when the principal
targets everyone. The right plot shows beliefs when the principal sends fewer signals to the
privileged island.

munities distorts beliefs the most within these communities. For a profitable strategy then, the

principal must abandon sending misinformation to 1− 2
3ε proportion of the population; in par-

ticular, given ε > 4/5, he must abandon sending misinformation to 1/6 of the population, or

1/2 of the privileged community. The beliefs of the agents under this strategy are pictured in

Figure 4b.

Notice though that under this strategy, when ps = 0.3, none of the agents in the average com-

munity are manipulated either, while the agents in the marginalized community are. This in turn

implies that this strategy is unprofitable, as the principal expends 5εn
6 > 2

3n but only receives a

benefit of 1
3n. Instead, the principal must abandon sending misinformation to 1− 1

3ε > 7/12 pro-

portion of the population. Once again, it can be shown that the principal is better off targeting

the marginalized community directly, before sending misinformation to the other communities.

The principal’s maximal influence, while still being possibly profitable, comes from sending ev-

eryone on the marginalized community misinformation and then either: (i) not sending signals

to the privileged community but sending signals to 1/12 of the average community, or (ii) not

sending signals to the average community but sending signals to 1/12 of the privileged commu-

nity. The beliefs under both these strategies are pictured in Figure 5.17

As can be seen, under either of these strategies there is not enough misinformation sent to

distort even the marginalized island’s beliefs. The network is impervious to manipulation be-

17Any convex combination of targeting agents in both the average and privileged communities lead to the same
conclusion.
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Figure 5. Beliefs of the communities in Section 3.3 when the principal attempts to manipulate
only the marginalized community. On the left (right) are the beliefs when the principal targets
a fraction of the average (privileged) community in addition to the marginalized community.
Neither strategy is profitable as no one is manipulated.

cause of this domino effect: as one community becomes more insulated, its beliefs move closer

to the truth and spill over to the next community and the process repeats until all communities

are protected and the principal had no profitable strategy. As such, the presence of some in-

equality can end up protecting everyone by discouraging strategic manipulation of beliefs. We

call this phenomenon protection contagion and explore it further in Section 5.

4 Inequality and the Spread of Misinformation

In this section, we focus our attention on the weak inequality model when the cost of sending

misinformation, ε, is close to 0. In such instances, the principal’s optimal strategy is trivial: he

sends misinformation to everyone in the network. This decouples the belief dynamics from the

principal’s strategy and allows us to study these dynamics in isolation. The case where ε � 0,

and when the principal’s optimal strategy is non-trivial, is the focus of Section 5.

4.1 Inequality and Network Homophily

In the weak inequality model, a society (ps, pd,m) is specified by three objects:18

1. ps: the communication within islands (i.e., the within-island link probability).

18We use “communities” and “islands” interchangeably throughout.
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2. pd: the communication across islands (i.e., the across-island link probability).

3. m ≡ (m1, . . . ,mk): the vector of Bayesian counts for each island ` ∈ {1, . . . , k}.

We refer to the pair (ps, pd) as the homophily of the network; these parameters completely deter-

mine the social network structure. We always assume ps ≥ pd. Next we define what it means for

one society to exhibit less inequality than another:

Definition 1. (Inequality) We say that society (ps, pd,m) exhibits less inequality than society

(p′s, p
′
d,m

′) if:

(a) There is more communication across islands; namely, pd ≥ p′d;

(b) There is less communication within islands; namely, ps ≤ p′s;

(c) The distribution of Bayesian agents across groups is more “equally distributed”; formally,

m′/s is a majorization19 of m/s.

with at least one condition strict.

If Society A has less inequality than Society B, this suggests two features. First, any agent in

Society A is more likely to talk to agents outside her own island, relative to the higher inequality

Society B. This is a direct consequence of less homophily. Second, less inequality also implies

less inequality in terms of direct connections to Bayesian agents: any two agents in Society A

are more likely to have a similar number of (weighted) connections to Bayesians as compared to

Society B. The most equitable distribution of Bayesians occurs when they are the same constant

fraction of the population on every island.

Inequality provides a partial (as opposed to total) ordering on societies. This occurs for the

following reasons. First, if we simultaneously increase homophily and more evenly distribute

Bayesian agents, then we create more even access to resources but also restrict how commu-

nities share these resources, resulting in an ambiguous inequality comparison. For example,

assuming equal island sizes, a society described by (ps, pd,m1,m2) = (0.5, 0.5, 3, 0) is no more or

less equitable than a society described by (p′s, p
′
d,m

′
1,m

′
2) = (0.8, 0.2, 2, 1). Second, majorization

itself defines only a partial order, so it is possible that two Bayesian distributions m and m′ are

not comparable. For instance, assuming equal island sizes, (m1,m2,m3) = (1, 1, 4) is no more

or less equitable than (m′1,m
′
2,m

′
3) = (0, 3, 3). For this reason, we use the following definition in

order to compare inequality structures:

19A majorization x′ of x satisfies (i)
∑k
`=1 x` =

∑k
`=1 x

′
` and (ii)

∑`∗

`=1 x` ≥
∑`∗

`=1 x
′
` for all `∗ ∈ {1, . . . , k}, where the

components of x and x′ are sorted in ascending order (see Marshall et al. (2011)). An equivalent condition is whether
one can transform m′ into m via a sequence of “Robin Hood” operations: one can recover m from m′ via a sequence
of transferring Bayesians from islands with more Bayesians to those islands with fewer (see Arnold (1987)).
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Definition 2. We say a society has the most inequality if there exists no other society with (strictly)

more inequality. We say a society has the least inequality if there exists no other society with

(strictly) less inequality. We say a society has intermediate inequality if it is neither a society with

the most or least inequality.

Note that a society with the most inequality necessarily has homophily structure (ps, pd) =

(1, 0) and a society with the least inequality necessarily has (ps, pd) = (0.5, 0.5). However, all the

analysis that follows is continuous in ps and pd, and so holds for (non-empty) open intervals

around these homophily parameters as well. Finally, we remind the reader that we use the term

marginalized to refer to a community that has a smaller proportion of Bayesians compared to a

privileged community (which has a higher proportion of Bayesians).

4.2 Misinformation in Equal-Sized Communities

We start with a basic setup in which there is a constant number of islands, k, arranged according

to the weak inequality model. Each island has an equal share of the population s1 = s2 = · · · =

sk = 1/k. In the same vein as Section 3.1, we show that the intuition of “increased inequality is

bad for learning” is accurate in the special case where a) islands have equal sizes (as in Golub

and Jackson (2012)) and b) the only criterion is whether society as a whole is impervious (i.e. no

agent is manipulated) or not, rather than the number of agents manipulated.

Theorem 2. If Society (ps, pd,m) is susceptible to manipulation and has less inequality than So-

ciety (p′s, p
′
d,m

′), then Society (p′s, p
′
d,m

′) is also susceptible to manipulation.

In other words, Theorem 2 states that there is an inequality threshold20 whereby increasing

inequality eventually flips the network from impervious to susceptible. This result corroborates

the evidence that inequality hurts learning; in particular, inequality always negatively affects

learning in the most marginalized communities. However, Theorem 2 does not claim that total

manipulation —the number of manipulated agents— is monotone in the degree of inequality. In

particular, once the network becomes susceptible, it may be possible that increasing inequality

leads to a reduction in the extent of manipulation, though it does not return the network to its

first-best state of imperviousness. This property holds generally:

Theorem 3. For any society with k ≥ 3 islands of equal size and m total Bayesians:

20Because there is only a partial ordering of societies, this threshold holds two of three inequality parameters con-
stant while changing the third one. For example, if the Bayesian distribution is the parameter being changed, then
one can apply the threshold for any partially ordered sequence of distributions.
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(i) For a given b,m, if there is an impervious network for some inequality structure, the network

with the least inequality is impervious;

(ii) For all b,m, there always exists a network with intermediate inequality that has (weakly)

more manipulation than some network with more inequality.

(iii) There exist values for b,m such that the network of (ii) with intermediate inequality has

strictly more manipulation than some network with more inequality.

Theorem 3 states that an “intermediate” amount of inequality is worse than an extreme

amount of inequality, which in turn is worse than no inequality at all. While removing all in-

equality improves learning, simply reducing inequality in an extremely homophilous society can

actually lead to worse learning and manipulation outcomes.

Underlying the previous result is the fact that social connections have both positive and neg-

ative externalities. On one hand, they serve as a transmission mechanism for spreading the (cor-

rect) beliefs of Bayesian agents. However, they also allow the principal to spread misinformation

in a more effective way, by using social forces to manipulate other agents as well. When ho-

mophily is strong, the principal cannot use one community to influence another. These missing

connections can prevent the principal from manipulating certain communities, who had previ-

ously derived their beliefs from more marginalized communities when homophily was not too

extreme. On the other hand, when homophily is quite weak, access to Bayesians is relatively

similar across islands, which allows them to communicate truth most effectively. It is the inter-

mediate homophily case that often acts as a perfect breeding ground for manipulating beliefs.

This result provides a sleek connection to models of contagion in financial networks (see

Acemoglu et al. (2015), Babus (2016), Kanak (2017), for example). Similar to the degree of ho-

mophily in our setting, in these models, connections both serve to reduce and exacerbate the

propagation of negative forces. On one hand, when a bank’s linked institutions are in distress,

the bank finds itself less well-capitalized and more likely to default. However, when a bank faces

an idiosyncratic or temporary problem, it can rely on neighboring (safe) institutions to protect

it from insolvency. Hence, the stability of a financial network can be subtle, and the effect of

increased interconnectivity is typically ambiguous, just as with social learning in the presence

of homophily and inequality.

4.3 Misinformation with Different Community Sizes

We now consider the case when communities are not the same size. We begin with the following

definition:
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Definition 3. We say that an island ` is least privileged if (i) its belief of the correct state is the

least of any island (i.e., π` ≤ π`′ for all `′) and (ii) it has the least Bayesian percentage of the

population (i.e., m`/s` ≤ m`′/s`′ for all `′).

Observe that condition (i) is also equivalent to island ` having the largest DeGroot centrality.

Note that with islands of the same size, condition (i) holds if and only if condition (ii) holds for

island `, so is redundant. However, with islands of different sizes, because influence is asymmet-

rical across islands, neither condition implies the other.

As we saw in Section 3.2, when communities have different population sizes, the results of the

previous section need not hold. When there is a large community, it is possible that additional

inequality can hurt the entire society. Because most communities draw their beliefs from the

belief of the “masses,” the effect of inequality on the masses determines how society as a whole

is affected by inequality:

Theorem 4. Suppose there are k islands of unequal sizes. Assume the largest island, island 1, is

the least privileged. For almost all b (see Footnote 14), there exists size threshold s̄ such that if

s1 > s̄, the number of manipulated islands is monotonically increasing in inequality, provided

that island 1 remains the least privileged.

Theorem 4 states that if we are to decrease inequality with a large least privileged island,

manipulation can only decrease. Put more simply, if the masses are the least privileged, then

decreasing inequality helps everyone, including very privileged communities. This is because

these communities still form a sizable number of connection with the large island, just by virtue

of the size disparity, and hence draw a large part of their beliefs from there. Indeed, as inequality

decreases, Bayesian agents in privileged communities can have their voices amplified through

talking to agents in the large community, who then spread these beliefs over the network (in-

cluding back to DeGroot agents in the privileged communities). The flip side of this is that if

the masses are the least privileged, increasing inequality helps no one: in fact, moving resources

from the masses to the privileged communities ends up making both the masses and the priv-

ileged communities worse off. Theorem 4 thus establishes that inequality benefits society as a

whole (in a Pareto sense) if it benefits the large community that wields heavy influence. Likewise,

even the privileged islands should want to move their resources to reduce inequality.

Note the assumption that island 1 is the least privileged (and remains so after decreasing in-

equality) cannot be dispensed with. If island 1 is simply underprivileged, non-monotone com-

parative statics might exist following an increase in inequality. The intuition is as follows. While

this inequality hurts island 1’s access to more privileged communities’ resources, it also exposes
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island 1 less to communities which are less affluent than itself and may have more misinformed

beliefs. This effect does not exist, of course, when island 1 starts off as the least well-off commu-

nity.

5 Strategic Influence and Inequality

The results in Section 4 are obtained under the assumption that the cost of sending misinforma-

tion is negligible, and therefore the principal targets every agent in the population. This ε = 0

case enabled us to measure how misinformation propagates as a function of the inequality struc-

ture in society, without introducing strategic considerations on the part of the principal.

We now relax this by assuming ε � 0, and for simplicity also assume that all communities

are the same size. The latter assumption allows us to isolate the effects of the principal’s strat-

egy from the population size effects identified in Sections 3.2 and 4.3. The ε � 0 assumption

requires a strategic choice by the principal of who to target, and is of critical importance in un-

derstanding the spread of misinformation in the presence of a strategic actor.

We start with an example where ε varies from small to large in a society with two commu-

nities, and observe that some inequality can protect the entire society by initially protecting the

privileged community. Theorem 5 extends this to an arbitrary number of communities by show-

ing that such a network where intermediate inequality is best for society always exists when the

principal faces non-negligible signaling costs. This contrasts with Theorem 3, where intermedi-

ate inequality is not only never optimal, but is always (weakly) worst for society when signaling

costs are low. Finally, we conclude with some numerical experiments that show how manipu-

lation changes as a function of simultaneously varying the investment cost and the inequality

structure under the principal’s optimal strategy.

5.1 Illustrative Example

Suppose there are two islands of equal size. We assume that 5% of the population is Bayesian,

and we have a fixed homophily structure of (ps, pd) = (0.5, 0.2). Moreover, suppose that b = 0, so

that agents choose the action corresponding to the state they believe is more likely. We explore

how inequality, in the form of the distribution of Bayesian agents across the islands, affects the

principal’s strategy as we vary the cost ε:

1. Extreme inequality: Suppose Bayesians constitute 10% of the population of the first island

and the second island has no Bayesians. Let κ` denote the proportion of agents targeted by

the principal on island `. Then the fraction (of the total population) of agents manipulated,
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Figure 6. The principal’s optimal strategy for various values of ε under extreme inequality. De-
pending on the curve, (Respective) fraction refers to either the fraction of the entire population
manipulated, or the fraction of a given island that is targeted. For example, when ε = 0.5, the
principal targets no one on the first island and almost everyone on the second island and ends
up manipulating half the population.

along with the proportions of island 1 and island 2 targeted by the principal (i.e., κ1 and κ2)

are given in Figure 6. With extreme inequality, the principal “gives up” on the island with

more Bayesians, and sends no misinformation to any agents on this island (κ1 = 0). On the

other hand, he sends misinformation to almost all of the second island and manipulates

everyone on that island, until the cost of sending signals exceeds a threshold ε̄ > 1.

2. Intermediate inequality: Now suppose the first island has 7.5% Bayesians and the second

island has 2.5% Bayesians. The principal’s strategy and resulting manipulation are shown

in Figure 7. The principal sends misinformation to everyone on the second island, but

importantly, this alone is not enough to manipulate the agents on that island: he also has

to send misinformation to the first island in order to be able to manipulate the second

island. However, this strategy targets more agents on the whole than when there is extreme

inequality, and thus is more expensive. After a point ε̄ < 1, the principal has no profitable

strategy. This network is therefore more resilient than one with extreme inequality, since

the cost range that allows the principal to (profitably) spread misinformation is smaller.

3. No inequality: Finally, suppose both islands have 5% Bayesians. The plot of the principal’s

strategy and resulting manipulation are shown in Figure 8. Similar to the case of extreme

inequality, there is a threshold ε̄ > 1 such that the principal has no profitable strategy

above that threshold, and so this inequality structure is again less resilient than the case of
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Figure 7. The principal’s optimal strategy for various values of ε under some inequality. De-
pending on the curve, (Respective) fraction refers to either the fraction of the entire population
manipulated, or the fraction of a given island that is targeted.

intermediate inequality. However, unlike the case of extreme inequality, the entire popula-

tion is manipulated before this threshold is met. Thus, for ε < 1, the absence of inequality

leads to maximal manipulation relative to the other inequality structures.

The computation of the principal’s optimal strategy when there are two islands with the same

population, as in the example above, can be easily generalized via the algorithm presented in

Appendix B.3.

5.2 Protection Contagion: The Case for Some Inequality

Recall from Section 3.3 that when there was no inequality, the principal had a profitable strategy

to target and manipulate everyone. With some inequality, however, the principal was unable

to manipulate one of the more privileged communities, which in turn made his strategy too

expensive. To maintain a profitable strategy, the principal had to reduce his direct influence on

that community in order to save costs, while still trying to retain the same extent of (indirect)

overall influence on the other communities. However, this reduction made the principal unable

to manipulate the next privileged community, which similarly led to him reducing his direct

influence in that community, and so on. We refer to this cascade effect as protection contagion.

This effect is not an artifact of Section 3.3, or the example presented in the previous section.

In fact, when the principal has intermediate costs for sending misinformation, protection conta-

gion can sometimes lead to a complete unraveling of his influence when there is some inequality

in the network. This is summarized in the next result.
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Figure 8. The principal’s optimal strategy for various values of ε under no inequality. Depending
on the curve, (Respective) fraction refers to either the fraction of the entire population manipu-
lated, or the fraction of a given island that is targeted.

Theorem 5. Suppose there are k ≥ 2 islands of equal size. There exists b∗ < b∗∗, ε∗ < ε∗∗, such that

if b ∈ (b∗, b∗∗) and ε ∈ (ε∗, ε∗∗), there exists a network with intermediate inequality that is impervi-

ous, despite every network with the most inequality being susceptible, and every network with the

least inequality admitting strictly more manipulation than networks with the most inequality.

Theorem 5 describes a range where intermediate inequality is best for protecting society

from the spread of misinformation. Suppose we order the communities based on their privi-

lege, i.e. the proportion of Bayesian agents in the population, and protect the most privileged

community from manipulation. This protection forces the principal to decrease his effort in

this community to try and maintain a profitable strategy. By doing so, the beliefs in that com-

munity move closer towards the truth, and because there is still some communication across

communities, this provides a positive externality to the rest of the network. The principal then

is unable to manipulate the next privileged community, and so stops targeting that community

as well, leading to a recursive process that repeats for all communities, and the principal cannot

target anyone while retaining a positive payoff. However, if inequality becomes extreme, this

contagion effect fails to take place: the positive spillovers from protecting one community are

minimal in the face of gross inequality. Extreme homophily leads to little communication across

communities and so protecting one community still leaves the rest exposed to misinformation.

Note the connection between Theorem 5, when ε � 0, and Theorem 3(a), when ε ≈ 0.

Theorem 3(a) states that if some inequality model is impervious, then the least inequality attains

imperviousness. This is not the case for ε � 0; in particular, Theorem 5 states that it may be
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Figure 9. Heat map showing fraction of the population manipulated as a function of pd (cross-
island connectivity) and the signaling cost ε. Note that increasing pd implies decreasing ho-
mophily/inequality. Light blocks indicate no manipulation, while gray (dark) blocks indicate
half (all) the population is manipulated.

possible for an intermediate inequality model to be the only model that attains imperviousness.

5.3 Numerical Simulations

We provide results from two numerical simulations that illustrate the non-monotonic behav-

ior from the previous section on the broader parameter space. Recall that we can increase the

level of inequality by increasing homophily or by having a more uneven Bayesian distribution

between islands of equal size. We simulate both of these scenarios. In the first simulation, we

vary the extent of homophily through varying pd (while holding ps fixed). The second simulation

varies the distribution of Bayesians across the islands. In both cases, we simultaneously vary the

cost ε that the principal faces.

Homophily. We fix ps = 0.8 and take b = 0, so that an agent takes an action based on the state

she believes is most likely. There is a total population of 1000 agents split equally across two

islands; one island has 80 Bayesians and the other has the remaining 20.

Figure 9 shows the results of this simulation. In the range of ε ∈ (1.1, 1.7), we notice the non-

monotonicity described in Theorem 5 as we increase pd (i.e., decrease homophily/inequality).

For small values of pd (large homophily), half the agents are manipulated. As we decrease ho-

mophily through increasing pd, we transition to a region where the network is impervious. Fi-

nally, as homophily decreases further, we end up in a region where all agents in the network are

manipulated. This is the same effect seen in the example of Section 5.1.
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Figure 10. Heat map showing fraction of the population manipulated as a function of the num-
ber of agents on the first island, m1, and the principal signaling cost ε. Light blocks indicate no
manipulation, while gray (dark) blocks indicate half (all) the population is manipulated.

Bayesian distribution. We fix (ps, pd) = (0.5, 0.2) and take b = 0. There is a total population of

1000 agents, split over two islands of equal size, and we vary the number of Bayesians, m1, on

the first island from 0 to 100 (with the other island containing the remainder, m2 = 100−m1) .

The results are shown in Figure 10. Inequality between islands is most severe whenm1 = 0 or

m1 = 100, with the least inequality atm1 = 50. In the range ε ∈ (0.9, 1.7), we see that the network

is impervious provided there is sufficient inequality in the distribution of Bayesians; otherwise,

all agents are manipulated. This inequality protects one island from manipulation and, through

protection contagion, prevents the principal from having any profitable strategy.

6 Weak vs Strong Inequality

Up until now, we have focused almost entirely on the weakly assortative network model, where

agents associate more with those in their own group, but do not differentiate their social interac-

tions amongst “other” groups. In this section, we compare how this model of inequality differs

from the strongly assortative model, where agents further differentiate their social interactions

by only affiliating with groups who have characteristics that are close –in the sense defined in

Section 2.2– to those of their own group. We consider how this type of strong inequality affects

society at large relative to the weaker notion of inequality we have studied. Our main finding,

which we make precise over the next two sections, is that “good” strong inequality models are

still much worse, in terms of manipulation, than “bad” weak inequality models. Thus, the exis-
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Figure 11. An illustration of Proposition 1: under weak homophily, a linear number of Bayesian
agents is enough to prevent manipulation anywhere in the network. This could include stacking
them all on one island.

tence of hierarchical homophily structures is much more detrimental to the spread of misinfor-

mation.

6.1 Weak Inequality

Section 4 and Section 5 documented the effects of weak inequality on manipulation. To make

the comparison between strong and weak inequality most transparent, we consider worst-case

inequality for weak inequality i.e., the inequality structure that makes the principal most easily

able to manipulate. Toward this end, the following result establishes a condition on the total

number of Bayesians in the weak homophily model needed for imperviousness, independent of

their placement across communities:

Proposition 1. For any (ps, pd), there exists θ̄ such that if θ < θ̄, there exists a constant c < 1 such

that if there are m = cn Bayesian agents anywhere, then any weak inequality model (regardless of

the number of communities k) is impervious. Moreover, c is increasing in ps and decreasing in pd.

In other words, there exists a threshold c whereby if a proportion c of the population is

Bayesian, the principal will be unable to manipulate anyone, regardless of the depth of weak in-

equality present. This includes the most extreme inequality configuration where all the Bayesians

are on one island, and the rest of the k−1 islands are all DeGroot (for any k). A visual depiction of

Proposition 1 is given in Figure 11. The assumption that θ is not too large ensures that agents use

social learning as a primary means of learning; clearly when θ is too close to 1, the presence of

Bayesian agents is irrelevant because agents place too much weight on their own (manipulated)

28



news.

Proposition 1 also sheds some light on whether homophily helps or hurts the worst-case

Bayesian lower bound. Because m is increasing in ps and decreasing in pd, we see the num-

ber of Bayesians needed to apply Proposition 1 increases as we increase inequality through the

network homophily structure. This result reinforces the general idea that increasing inequality

makes it more challenging for society to avoid manipulation, despite the exceptions presented

earlier. The intuition is clear: as homophily becomes more severe, configurations like that of

Figure 11 do little to help communities with few to no Bayesians.

6.2 Strong Inequality

For illustration, we assume that the first community has m Bayesian agents and all other com-

munities consist of DeGroot agents. At the end of this section, we discuss the robustness of the

result to other configurations. There are k communities which may or may not be the same

size and we fix (ps, pd). In the strong inequality model we obtain a much different result from

Proposition 1:

Proposition 2. For any θ > 0 and c < 1, there exist k̄ (independent of k) and ε > 0 where all

communities except k̄ are manipulated, even with cn Bayesian agents.

Proposition 2 shows the stark difference between weak and strong inequality. First, with

weak inequality, we can always find a proportion c such that cn Bayesians will make the network

impervious, even with rampant (weak) inequality. On the other hand, we can never find such a

proportion c in the strong inequality model: no constant fraction guarantees society is safe from

manipulation because the influence of Bayesian agents is too diluted under strong homophily,

as seen in Figure 12. Second, the strong inequality network is not only susceptible, but ma-

nipulation is actually ubiquitous in society. Note that k̄ does not depend on k, so when there

are several communities, only a vanishing fraction of them will not be manipulated. Except for

a very small set of communities who happen to have close ties to Bayesian agents, almost all

communities will be negatively impacted by the existence of strong inequality.

The intuition for the result is as follows. Notice that with strong inequality, as in Figure 12,

agents receiving misinformation communicate their beliefs both forwards and backwards, which

leads to more propagation of misinformed beliefs. This creates a strong echo chamber effect,

where the influence from misinformation, as reflected in the agents’ beliefs, gets inflated be-

cause they fail to recognize their own influence on their own neighboring islands’ beliefs. For

agents who are not in communities extremely close to the Bayesian community, this echo cham-
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Figure 12. An illustration of Proposition 2: even with many Bayesian agents, strong homophily
allows the principal to manipulate plenty of agents in the network. In the figure above, commu-
nities which are not “close enough” to the Bayesians will not be very influenced by their beliefs,
so will be manipulated.

ber is strong enough to completely mask any influence the Bayesians might have in spreading

accurate beliefs. Contrast this with weak inequality in Figure 11, where every community has

some direct interaction with the Bayesians, even if there are no Bayesians in that community

itself. This not only provides a direct positive influence on everyone’s beliefs, but also prevents

these echo chambers from wielding too much power, precisely because other communities are

also directly interacting with Bayesians.

Robustness. Finally, we consider how robust these strong inequality results are to the initial

setup. Suppose instead of stacking all of the Bayesians on the first island, we instead redis-

tribute them in a way that dampens these echo chamber effects. Would this mitigate the effects

of Proposition 2? An affirmative answer to this question requires this redistribution to be signif-

icant. From Proposition 2, it is easy to see that any island with a Bayesian cannot protect more

than a constant number of communities on either side of it. Therefore, the number of Bayesians

would need to be dispersed very evenly across all communities to have any hope of preventing

manipulation. For example, simply moving the Bayesians to a more central community or dis-

tributing them across a couple of islands throughout would have no significant effect, and the

conclusion of Proposition 2 remains intact. Thus, while agents can be protected in the strong

homophily model, the requirements on the Bayesian distribution are much stricter: nearly ev-

ery island has to have some Bayesian agents of its own, which requires drastically less inequality.

Second, Mostagir et al. (2019) show that higher density, while not a perfect measure, is of-

ten related to lower manipulation (for instance, see Theorem 4 in Mostagir et al. (2019)). It is

clear that the average degree with strong inequality will be lower than that of weak inequality,

so a natural question is to wonder whether this difference in density is what drives the differ-

ence in manipulation we observe between the two models. For concreteness, assume we have

k communities of the same size in both the strong (with ps, pd) and weak inequality (with p′s, p
′
d)
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models. In the strong inequality model, we take ps = αp′s and pd = αp′d, where α = ps+(k−1)pd
ps+2pd

.21

This equalizes the average degree (i.e., connections) of the strong and weak inequality models,

but has no effect on any of the beliefs of the agents (or on their DeGroot centralities).22 There-

fore, we see that the differences in density alone cannot explain the differences seen across the

two models.

7 Optimal Interventions

We now discuss the role that a social planner has in combating misinformation. We consider two

possible interventions: Bayesian interventions and homophily interventions. In the former, we

assume the planner may improve the sophistication type of a subset of agents, perhaps through

targeted education. In the latter, the planner may decrease the extent of homophily through

efforts to integrate communities (i.e. by increasing pd). The social planner wants to enact a

policy that protects as many agents as possible from manipulation.

We say a policy is optimal if it minimizes the number of manipulated agents. Similarly, we

say some policy X dominates another policy Y if all agents’ beliefs of the correct state are higher

under X than under Y. While an optimal policy is never dominated, there may be non-optimal

policies that are not dominated, and thus lie at the Pareto frontier of effective interventions.

We can write the beliefs of the agents, π, as:

π(ps, pd,m,x) =

(
I

1− θ
−B(ps, pd,m,x)

)−1

a

whereB is a function of (i) the homophily structure (ps, pd), (ii) the distribution m of Bayesians

across islands m, and (iii) the principal’s strategy x. Recall that the belief (of the correct state)

threshold is given by 1+b
2 and the principal wants to maximize the number of agents whose

beliefs fall below this threshold, less the total cost of manipulation, so as before, the principal

solves:

x∗(ps, pd,m) = arg max
x

n∑
i=1

(
1πi(ps,pd,m,x)<(1+b)/2 − εxi

)
Then the planner solves the min-max optimization problem:

min

n∑
i=1

1πi(ps,pd,m,x∗(ps,pd,m))<(1+b)/2

21For this, we have to naturally assume p′s and p′d are not too large so that pd < ps < 1 and this is possible. Otherwise,
there is no way to equalize the average degrees of the two models.

22Technically, this equalizes the average degree for only the islands in the “middle” of the line, but not those on the
ends. However, assuming there are a large number of communities, this difference will be negligible.

31



The combinatorial nature of these problems preclude a general solution. We derive the opti-

mal policies for some special cases and show the nuances of optimal policies via simulation.

For a number of cases, we prove the optimal policy attempts to minimize inequality. However,

this is not always true: if the planner cannot completely eradicate inequality, then sometimes

measures that only slightly reduce it can be counterproductive.

7.1 Bayesian Interventions

We consider the possibility of endowing some agents in the population with Bayesian abilities.

We assume that this process is costly and that the planner’s budget constraint is of the form∑n
i=1 1type(i)=B ≤ M , where the (non-bolded) letter B designates a Bayesian agent and M is an

integer. Note that the planner will always use the entire budget in an optimal policy.

Intervention with Large Budget and Cheap Signals. First, we derive the optimal policy when

the planner’s budget is sufficiently large and the principal’s cost of sending signals is nearly free:

Corollary 1. Suppose that the budget M is large enough so that it is possible for the planner to

make the network impervious when ε is small. Then if all islands are the same size, the optimal

policy is to minimize inequality.

This result is in-line with the conclusion of Theorem 2, which argues that when impervious-

ness is possible, the least inequality is always first-best. As a special case, if M is big enough to

make the Bayesian populations equal on every island, then this is the optimal policy.

Note the assumption that M is big enough that imperviousness is attainable for small ε is

necessary. First, if imperviousness is attainable only for a given ε � 0, then it is possible that

a configuration with some inequality may be optimal, as we show next. This is a direct con-

sequence of Theorem 5. Second, if M is small and so imperviousness is impossible, then an

optimal policy may involve creating some inequality to protect at least a fraction of the pop-

ulation. For instance, placing Bayesians equally may lead to every island being manipulated,

whereas stacking them all on one island would protect at least this island.

Intervention with Costly Signals. We simulate the optimal policy for the planner when the prin-

cipal’s signals are costly. Consider Figure 13 with budget M = 4, n = 100, two islands of equal

size, and homophily structure (ps, pd) = (0.8, 0.2). We investigate whether the optimal policy can

make the network impervious as a function of ε.

As ε ranges from 0 to 0.5 (small ε region), there is no distribution of Bayesians that admits

imperviousness. Corollary 1 allows us to quickly check this by distributing the Bayesians evenly
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Figure 13. Policies that obtain imperviousness with budget M = 4. The number of Bayesians
on the first island is m1 and ε is the signaling cost of the principal. Every highlighted point is a
Bayesian placement that leads to imperviousness, e.g. m1 = 1 and m2 = 4− 1 = 3 when ε = 0.6.

across the two islands and checking if manipulation exists, which it does. As ε becomes slightly

higher than 0.5, the most inequitable distribution (4 Bayesians on one island and 0 on the other)

or the most equitable distribution (m1,m2) = (2, 2) leads to manipulation. On the other hand,

an unequal distribution of (m1,m2) = (3, 1) or (m1,m2) = (1, 3) leads to imperviousness. When

ε continues to increase, only the even distribution (m1,m2) = (2, 2) makes society susceptible, i.e.,

(0, 4) and (4, 0) are also impervious, and splitting the Bayesians equally across both islands is the

worst distribution for society. Of course, eventually, all distributions are impervious when the

cost becomes too prohibitive for the principal to have a profitable strategy. In summary, for the

planner, the most equitable distribution (m1,m2) = (2, 2) is weakly dominated by every other

distribution over the entire cost range of ε.

Therefore, in the case of costly signals for the principal, the planner may want to introduce

some inequality in the Bayesian distribution. This is precisely to generate the protection conta-

gion effect documented in Theorem 5.

Intervention with One Large Island. We next consider a setting where there is one large island

and many small islands; without loss, let the large island be island 1:

Corollary 2. When ε is small, there exists s̄ such that if s1 > s̄, any policy that makes island 1 the

least privileged is dominated by a policy with more Bayesians on this island, provided that such a

policy does not already use the entire budget on island 1.

Corollary 2 complements Theorem 4: when there is a single large island, a policy which sub-

jects the masses (on the large island) to inequality is not only sub-optimal, it actually hurts all

33



agents in society. In particular, if we start with a configuration of many small privileged com-

munities and one large under-privileged community, then even the privileged communities

are negatively impacted by taking resources (Bayesians) from the under-privileged community.

Therefore, the social planner and those agents in privileged communities should (rationally)

support expending more resources on the least privileged community.

7.2 Homophily Interventions

We now consider a fixed homophily model with parameters (ps, p
o
d) and Bayesian distribution

m. We assume the social planner pays a positive, convex cost φ(pd−pod) with φ(0) = 0 to increase

(or decrease) connections between islands. As before, we assume the planner has a budget to

spend; that is, the planner must satisfy φ(pd − pod) ≤ Budget.

For the remainder of this section, we focus on the case where the principal’s signaling cost ε

is small. Similar conclusions to the previous section apply when ε � 0. Our first result shows

that an equally-distributed Bayesian policy eliminates the need for a homophily intervention:

Proposition 3. If Bayesians are equally distributed (i.e., m` = Ms` for all `), then pd = pod is an

optimal policy.

When Bayesians are distributed proportional to the islands’ populations, the beliefs of all

agents in society are the same regardless of the homophily parameters. Therefore, no additional

intervention is necessary because access to Bayesian agents is perfectly equitable.

Large Budget. We first focus on the case where the planner’s homophily budget is fairly large.

Based on our observations in Theorem 2 and Theorem 3 we have:

Proposition 4. Suppose the budget is greater than φ(ps − pod) and large enough to make the net-

work impervious. Then if all islands have the same size, pd = ps is the optimal policy when ε is

sufficiently small.

When homophily can be fully corrected, some intervention is desirable. By Theorem 3, we

know that if the budget is big enough for the planner to implement pd = ps, this obtains the

first-best outcome. Thus, the optimal policy is always to completely eliminate any homophily

that exists in the network.

Small Budget. When the planner’s budget is limited, implementing pd = ps may not be feasible.

In this case, it may not be optimal to simply reduce inequality by minimizing (ps − pd); as we

saw in Theorem 3, often some inequality can be worse than extreme inequality. In other words,
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Figure 14. Optimal (Simulated) pd with limited budget. The dotted curve is the level of ho-
mophily achieved by spending the entire budget available, whereas the solid curve is the op-
timal level of homophily given that budget. A planner should always ask for a minimum budget
(around 1.3 in the figure) allocation that makes these two curves coincide.

a planner who simply helps decrease inequality without eradicating it completely can do unin-

tended harm. In fact, unlike with Bayesian interventions, the planner may not want to use the

entire budget.

We simulate the optimal pd with three islands of equal size, n = 999, which have 100, 60,

and 10 Bayesians, respectively. We assume the cost function φ(α) = 10α2, pod = 0, and ps = 0.8.

Note the principal can set pd ≤
√
Budget/10 < 0.8 provided that the budget is at most 5. As in

Proposition 3, we assume the cost of the principal’s signaling technology is small, i.e., ε ≈ 0.

In Figure 14, we show both the optimal homophily (pd) choice of the planner and the maxi-

mum pd attainable by the budget. We see that when the budget is small, the planner prefers to

leave relatively extreme homophily in society as opposed to making the more substantial cor-

rection allowed by the budget. Once the budget exceeds a threshold (around 1.3 in the figure),

however, the planner uses all of it up to remove as much homophily from the network as possi-

ble. Thus, a planner tasked with stopping misinformation through reducing inequality should

always ask for a budget allocation that is at least equal to that threshold, in order to guarantee

that this reduction will indeed achieve the desired effect and be beneficial to society.

8 Conclusion

This paper analyzes the role of inequality in social learning when the information that agents

receive is a mixture of organic news and news originating from a strategic actor. This setup re-
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sembles many scenarios where an information provider may have their own agenda and exerts

costly effort to influence agents to take certain actions. Inequality in society results from the

distribution of knowledgeable agents who know the true state of the world. Privileged com-

munities have a higher proportion of these agents, and the homophily structure of the network

determines access to these agents across communities.

We show that the role that inequality plays in the spread of misinformation is shaped by

relative community privilege, relative community sizes, and the cost of the principal’s signaling

technology. This leads to a range of outcomes depending on how these factors interact. For

example, when the privileged communities are small in size compared to the population at large,

as is often the case, then an increase in inequality not only makes the large population worse off,

but it also makes the privileged communities themselves more prone to misinformation, thus

it is in the privileged communities’ best interest to encourage allocating resources to the larger

community. Generally, the spread of misinformation in not monotone in the level of inequality

in the network. Even more so, intermediate levels of inequality can be worst for society when

the signaling costs of the principal is low, but can be best for society when the principal’s costs

are high.

In a similar vein, policies that counteract manipulation depend on the principal’s signaling

costs as well as the social planner’s budget. When signaling costs are low, so that the principal

can target everyone, then the planner’s optimal policies with a large budget involve eradicating

inequality through equitable Bayesian placement and removing homophily from the network.

When signaling costs are no longer trivial, the planner needs to be more careful, as inequality ex-

tremes might be worse for society than intermediate inequality regimes. This is a consequence

of a protection contagion phenomenon that precludes the principal from having a profitable

manipulation strategy. Generally, the complexity of computing these optimal strategies pro-

vides a wealth of interesting algorithmic challenges that can be explored further and constitute

a promising area for future work.

Finally, our model provides a basic framework to analyze the phenomena described in the

paper in terms of the primitives of the problem represented by the inequality structure, the plan-

ner’s budget, and the strategic injection of misinformation. Given the salience of these points

in modern social learning environments, the model provides a step towards understanding the

complex interactions of these factors, and offers guidelines that can help inform policies that

aim to reduce inequality and protect society from misinformation.
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Appendix

A Technical Conditions and Model Details

Appendix A.1 provides more technical details about the deterministic model, while Appendix
A.2 give conditions under which the Bayesian learning results hold in the random network gen-
eration model. In Appendix A.3 we show how to adapt the model in Mostagir et al. (2019) to one
with different communities with different levels of access to resources. Finally, Appendix A.4
demonstrates the main methods used in the proofs of this paper.

A.1 News Generation and Belief Evolution

The following model details are from Mostagir et al. (2019) and are presented here for contextu-
alization of Section 2.1.

(a) Organic News: We assume agents receive organic information about the state y over time.
News is generated according to a Poisson process with unknown parameter λi > 0 for each
agent i; for simplicity, assume λi has atomless support over (λ,∞) and λ > 0. Let us denote
by (t

(i)
1 , t

(i)
2 , . . .) the times at which news occurs for agent i. For all τ ∈ {1, 2, . . .}, the organic

news for agent i generates a signal s
t
(i)
τ
∈ {S,R} according to the distribution:

P
(
s
t
(i)
τ

= S
∣∣∣y = S

)
= P

(
s
t
(i)
τ

= R
∣∣∣y = R

)
= pi ∈ [1/2, 1)

i.e., the signal is correlated with the underlying truth.

(b) News from Principal: In addition to the organic news process, there is a principal who may
also generate news of his own. At t = 0, the principal picks an influence state ŷ ∈ {S,R}. The
principal then picks an influence strategy xi ∈ {0, 1} for each agent i in the network. If the
principal chooses xi = 1, for any agent i, then he (the principal) generates news according
to an independent Poisson process with (possibly strategically chosen) intensity λ∗i which is
received by all agents where xi = 1. We assume the principal commits to sending signals at
this intensity, which may not exceed some threshold λ̄.

(c) News Observations: Agents are unable to distinguish news sent by the principal or that or-
ganically generated. We denote by t̂(i)1 , t̂

(i)
2 , . . . the arrival of all news, either from organic

sources or from the principal, for agent i. At each time t̂(i)τ , if the news is organic, the agent
gets a signal according to the above distribution, whereas if the news is sent from the princi-
pal, she gets a signal of ŷ.

(d) DeGroot Update: DeGroots use a simple learning heuristic to update beliefs about the un-
derlying state from other agents. We assume every DeGroot agent believes signals arrive ac-

cording to a Poisson process and all signals are independent over time with P
(
s
i,t̂

(i)
τ

= y
)

=

pi (i.e., takes the news at face value). DeGroot agents form their opinions about the state both
through their own experience (i.e., the signals they receive) and the beliefs of their neighbors.
Given history hi,t = (s

i,t̂
(i)
1

, s
i,t̂

(i)
2

, . . . , s
i,t̂

(i)
τi

) up until time t with τi = max{τ : t̂
(i)
τ ≤ t}, each

agent forms a personal belief about the state according to Bayes’ rule. Let zSi,t and zRi,t denote
the number of S andR signals, respectively, that agent i received by time t; then the DeGroot
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agent has a direct “personal experience”:

BU(S|hi,t) =
p
zSi,t
i (1− pi)z

R
i,tq

p
zSi,t
i (1− pi)z

R
i,tq + p

zRi,t
i (1− pi)z

S
i,t(1− q)

As mentioned in Section 2.1, each DeGroot i then updates her belief for all k∆ < t ≤ (k+1)∆
according to:

πi,t = θiBU(hi,t) +
n∑
i=1

αijπj,k∆

for some weights θi, αij with θi+
∑n

j=1 αij = 1, and ∆ is a time period of short length. Note for

simplicity in this paper we assume θi = θ for all DeGroots i and αij = 1−θ
|N(i)| for all j ∈ N(i).

(e) Bayesian Update: Bayesian agents know the network G and the signal structures {pi}ni=1.
Each Bayesian observes the history of beliefs in her neighborhood N(i) for all time t′ ≤ t.
Moreover, the Bayesian is aware the principal may be strategic and has accurate conjectures
about the equilibrium (influence) strategy of the principal (as is typical in a Nash equilib-
rium). At time t+ dt, the Bayesian agents makes a Bayesian update about the state given her
private history of signals and her history of observed neighbor beliefs, forming πt+dt.

(f ) DeGroot Centrality Vector: To figure out the limit beliefs of the DeGroot agents when the
principal targets everyone who is not a Bayesian, denote by γ the vector in {0, 1}n that des-
ignates which agents are targeted by the principal and let γi = xi = 1 wherever agent i is
DeGroot and γi = 0 everywhere else. DeGroot centrality, which is equivalent to the belief in
the incorrect state in the limit is then given by D(γ) = (I−W)−1γ =

∑∞
k=0 W

kγ, where I is
the identity andW is the adjacency matrix of weights given in Mostagir et al. (2019). DeGroot
agent i is manipulated if her belief in the false state is above the cutoff, i.e. ifDi(γ) > (1−b)/2.
More detailed methods on the computation of DeGroot centrality is given in A.4.

A.2 Reduction of Bayesians to Stubborn Agents

Consider a sequence of growing societies Sn each with n agents. Agent n is born in society Sn
with sophistication type type(n) ∈ {B,D}, signal intensity λn ∈ R+, and signal strength pn ∈
(1/2, 1), which never changes. We make the following assumption:

Assumption 1. Consider the vectorsλn ≡ {λi}ni=1,pn ≡ {pi}ni=1. Then, pn,λn satisfy Assumption
2 from Mostagir et al. (2019) for all n.

Recall that our average network consists of a set of “average” neighborhoods for the agents.
For DeGroot agents, who simply perform linear aggregations of their neighbors’s beliefs, it is im-
mediate how to define the “average” neighborhood. But because Bayesians update according
to Bayes’ rule, and Bayesians know which links are realized in their neighborhood, we cannot
simply take the Bayesian’s belief update as a (linear) expectation of the updates across these
realizations. Therefore, we require additional conditions. For this, we make the additional as-
sumption:

Assumption 2. The realized network is connected almost surely.23 Moreover, the weights αij
23By “connected” we mean there is a path between any two agents i, j, where the “links” are given by positive

DeGroot weights and Bayesian neighborhoods.
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between any two agents i, j in the realized network is perturbed by some random εij from a
continuous distribution over finite support F (·), with limn→∞ εij

a.s.→ 0 for all agents i, j.

The first condition is guaranteed in both the weak and strong inequality models as n →
∞. The second condition, while more stringent, considers small perturbations to the network
weights to guarantee genericity. Without it, there are some special cases where a Bayesian agent
might have an identification problem when observing the beliefs of her neighbors. This is dis-
cussed in more detail in Mostagir et al. (2019). Under both of these assumptions, Bayesian agents
may be treated as stubborn agents as the learning horizon T →∞.

A.3 Model Adaptation to Stochastic-Block Networks

In the original model of Mostagir et al. (2019), the authors derived results for arbitrary (but deter-
ministic) network structures, where the principal must make (essentially) a binary decision for
each agent whether to send her misinformed signals. In this paper, we instead adapt this model
for random social networks which embed a notion of inequality in the form of unequal access
to educational resources. At the core of the random network process are “islands” (or commu-
nities) where agents within an island have similar resources, but can have different resources
from agents on different islands. Thus, the principal’s optimal strategy instead is more subtle:
he can target a fraction of the population on a given island (a rational number between 0 and 1).
Because of symmetry, the principal does not care which agents on the island he actually targets,
just the total percentage. Recall agents put θ weight on their own personal experience. This im-
plies that, in the standard model, there will be two belief types within a given island, depending
on whether the principal targets the agent directly or not.

To avoid this, and to add parsimony to the model, we assume agents will perform the personal-
experience Bayesian update using the “average” news sent to the island. In particular, if the
principal targets κ` fraction of the population on an island, the Bayesian update part of the be-
lief update converges to 1− κ` as T →∞. This implies that all agents’ beliefs on the same island
will be the same, and allows us to study manipulation in the context of how certain communities
are affected versus others.

Note this adaptation does not change much from the standard model. For instance, if θ is
not too large (and agents rely significantly on social learning), then the differences in beliefs of
two agents on the same island will be small in the standard setup. Thus, our results generalize
easily to the case of the standard model as well, where agents are treated as individual binary
decisions for the principal.

Finally, we note that all results implicitly assume that n → ∞, because only under these
conditions does Theorem 1 equate the manipulation in random networks with that of their ex-
pected counterparts. Thus, while Bayesian counts are technically discrete objects, because all of
our results are closed under multiplication of the Bayesians and DeGroot populations on each
island by the same constant, we can think of “Bayesian proportions” on each island and need
not worry about whether such proportions divide the population size without remainder.

A.4 DeGroot Centrality: General Methods

Note that given a fixed strategy for the principal, the beliefs of (DeGroot) agents within a given
island are the same due to symmetry as n→∞.24 Here, we will introduce the general methodol-
ogy for determining whether a population (or community) whose structure is randomly drawn

24See Appendix A.3.
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Figure 15. An illustration of computing weighted walks to Bayesian agents, for agent 1. Solid
circles are DeGroot agents and shaded circles are Bayesians. Solid lines represent higher weights
“within-community links” than dashed lines. Consider the top-left agent, and for each walk,
multiply the weights of the links along the walk. The figure on the left shows a first-order walk,
i.e. a walk of length 1, which consists of the link directly connecting that agent to a Bayesian
agent. The second-order walk displayed on the right consists of walks of length 2, so that there
is a link to another DeGroot agent who is linked to a Bayesian agent, and the weight of that walk
is the product of the two link weights and so on. Total weighted walks is the sum over all orders
(i.e., walk lengths) of walks 1, 2, . . ..

from either the strong or weak homophily model is susceptible to manipulation. Let us define
some notation:

(i) κ` is the fraction of island ` targeted by the principal (note that who he specifically targets
on the island is immaterial);

(ii) N` is the “neighborhood” of island `; in the weak homophily model it is equal to {`′|`′ 6= `}
whereas in the strong homophily model it is equal to:

{2}, if ` = 1

{`− 1, `+ 1}, if ` ∈ {2, . . . , k − 1}
{`− 1}, if ` = k

One can compute DeGroot centralities by simply counting the weighted walks to misin-
formed agents, as in Figure 15. However, DeGroot centrality computations are easiest when
considering the linear recursive formulation of weighted walks, as in Figure 16.

This calculation is done in two parts. The first part involves computing weighted walks to
Bayesian agents from agent i living on some island `, which we denote as wB` . The second part
involves computing weighted walks to DeGroots who do not directly consume misinformation
from the principal, which we denote as wD` . The belief of the agent on island ` is then given by
w` = wB` + wD` .

We can calculate this explicitly as:

wB`
1− θ

=
psm` +

∑
`′∈N` pdm`′

pss`n+
∑

`′∈N` pds`′n
+(1−θ) ps(s`n−m`)

pss`n+
∑

`′∈N` pds`′n
wB` +(1−θ)

∑
`′∈N` pd(s`′n−m`′)

pss`n+
∑

`′∈N` pds`′n
wB`′
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Figure 16. An analytic approach to computing Bayesian walks for the top-left agent (which
equals her belief of the true state). Each agent’s sum of walks equals a weighted-average of her
neighbors’ sums of walks.

Similarly, we have:

wD`
1− θ

= θ
1− κ`
1− θ

+ θ
ps(1− κ`)(s`n−m`) +

∑
`′∈N` pd(1− κ`′)(s`′n−m`′)

pss`n+
∑

`′∈N` pds`′n

+(1− θ) ps(1− κ`)(s`n−m`)

pss`n+
∑

`′∈N` pds`′n
wD` + (1− θ)

∑
`′∈N` pd(1− κ`′)(s`′n−m`′)

pss`n+
∑

`′∈N` pds`′n
wD`′

In particular, beliefwB` andwD` both admit linear matrix equations with a closed-form solutions:

IwB

1− θ
= aB +BBw =⇒ wB =

(
I

1− θ
−BB

)−1

aB

IwD

1− θ
= aD +BDw =⇒ wD =

(
I

1− θ
−BD

)−1

aD

where the total belief of the correct state is w` = wB` + wD` , which is the complement of agent i
on island `’s DeGroot centrality (i.e.,D` = 1− w`).

B Proofs

Preliminaries The following notation is used throughout the proofs. The vector γ ∈ {0, 1}n
denotes which agents are targeted by the principal, and the DeGroot Centrality vector resulting
from this targeting is denoted by D(γ). DeGroot agent on island ` is manipulated if D`(γ) >
(1− b)/2. Equivalently, we write π` or w` as the belief of an agent on island ` (the latter explicitly
referring to walk counting, but is equivalent to π`).

B.1 Section 2

Proof of Theorem 1. Note that Assumption 1 from (redacted to preserve anonymity – please see
Assumption 1 in attached technical note) holds because both the strong and weak inequality
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models are drawn from an inhomogenous Erdos-Renyi model. Assumption 2 from (attached
technical note) is also satisfied because θ is constant and the weak and strong inequality models
are connected almost surely. Similarly, the expected degrees condition is satisfied because the
expected degrees grow linearly in n in both the weak and strong inequality models. Moreover,
the normal society condition holds trivially because θ is the same for all agents. Therefore, we
can apply Theorem 1 from (attached technical note) for DeGroot centrality on an arbitrary γ,

i.e., limn→∞ P
[
||D̃(n)(γ)− D̄(n)(γ)||∞ > ε

]
= 0. Thus, as n→∞:

lim
n→∞

(
P
[
D̃(n)
i < (1− b)/2 < D̄(n)

i for some i
]

+ P
[
D̄(n)
i < (1− b)/2 < D̃(n)

i for some i
])

= 0

except for countably many b. Thus, for generic b, the number of manipulated agents is the same
under both the expected and realized networks in the weak and strong inequality models, as
n→∞.

B.2 Section 4

Proof of Theorem 2. Notice the network is susceptible to manipulation (with high probability) if
there exists an agent j with Dj(1D) > (1 − b)/2; similarly, the network is impervious to manip-
ulation (with high probability) if for all agents j, Dj(1D) < (1 − b)/2. We show that increasing
homophily leads to an increase in the inequality of DeGroot centralities (i.e., D(1D)). We have
the system of equations:

1

1− θ
w =

k

n(ps + (k − 1)pd)


psm1 + pd

∑
`6=1m`

psm2 + pd
∑

`6=2m`

· · ·
psmk + pd

∑
`6=km`



+
k(1− θ)

n(ps + (k − 1)pd)


ps(n/k −m1) pd(n/k −m2) · · · pd(n/k −mk)
pd(n/k −m1) ps(n/k −m2) · · · pd(n/k −mk)

· · · · · · · · · · · ·
pd(n/k −m1) pd(n/k −m2) · · · ps(n/k −mk)

w

which is equivalent to:

k

(1− θ)n(ps + (k − 1)pd)
w =


psm1 + pd

∑
` 6=1m`

psm2 + pd
∑

` 6=2m`

· · ·
psmk + pd

∑
` 6=km`



+ (1− θ)


ps(n/k −m1) pd(n/k −m2) · · · pd(n/k −mk)
pd(n/k −m1) ps(n/k −m2) · · · pd(n/k −mk)

· · · · · · · · · · · ·
pd(n/k −m1) pd(n/k −m2) · · · ps(n/k −mk)

w
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Without loss of generality suppose that island k has the least Bayesian agents of any island. Con-
sider the map T given by:

T : w 7→


psm1 + pd

∑
6̀=1m`

psm2 + pd
∑
6̀=2m`

· · ·
psmk + pd

∑
6̀=km`

+(1−θ)


ps(n/k −m1) pd(n/k −m2) · · · pd(n/k −mk)
pd(n/k −m1) ps(n/k −m2) · · · pd(n/k −mk)

· · · · · · · · · · · ·
pd(n/k −m1) pd(n/k −m2) · · · ps(n/k −mk)

w

We claim that T has the property that (w` ≥ wk) =⇒ T (w`) ≥ T (wk). Suppose that w` ≥ wk,
then:

m` + (1− θ)w`(n/k −m`) ≥ mk + (1− θ)w`(n/k −mk)

≥ mk + (1− θ)wk(n/k −mk)

which moreover implies that

ps(m` + (1− θ)w`(n/k −m`)) + pd(mk + (1− θ)wk(n/k −mk)) +
∑
`′ 6=`,k

pd(m`′ + (1− θ)w`′(n/k −m`′))

≥ pd(m` + (1− θ)w`(n/k −m`)) + ps(mk + (1− θ)wk(n/k −mk)) +
∑
`′ 6=`,k

pd(m`′ + (1− θ)w`′(n/k −m`′))

because ps > pd. Because ps, pd, n are fixed, this suggests the map k
(1−θ)n(ps+(k−1)pd) · T also has

this property, so any fixed point of T must have w` ≥ wk by Brouwer’s fixed point theorem for all
islands `. Since the system is linear and non-singular, there is a unique fixed-point withw` ≥ wk.
This implies the DeGroot centrality of the island with the least Bayesians is always maximal and
determines whether the network is impervious.

For the remainder of this part of the proof, we define a new operator T which maps w,
parametrized by ps, pd, and m, respectively. We show the following: (i) T |ps is decreasing in
ps for wk, (ii) T |pd is increasing in pd for wk, and (iii) T |m subject to

∑
m` = m is increasing with

every “Robin Hood” operation that puts more Bayesians on island k for wk.25 This result suf-
fices in order to show that there exists a fixed-point of T which obeys the desired properties of
Theorem 2 (by Brouwer26), and by linearity, this fixed-point is unique.

1. Decreasing in ps: Let us define T as:

T |ps : w 7→ 1

ps + pd

[
psm1 + pd

∑
`6=1m`

psm2 + pd
∑

`6=2m`

· · ·
psmk + pd

∑
`6=km`



+ (1− θ)


ps(n/k −m1) pd(n/k −m2) · · · pd(n/k −mk)
pd(n/k −m1) ps(n/k −m2) · · · pd(n/k −mk)

· · · · · · · · · · · ·
pd(n/k −m1) pd(n/k −m2) · · · ps(n/k −mk)

w
]

25Note that other “Robin Hood” operations do not affect wk, so does not affect the imperviousness of the network.
26In particular, let (w1, w2) be the old fixed-point and (w′1, w

′
2) the new fixed point. We illustrate for the case of

increasing ps: all other cases are similar. By increasing ps, we know that T maps all w1 larger and all w2 smaller.
Therefore, the convex compact set [w1, 1]× [0, w2] maps into itself, which implies the new fixed-point (w′1, w

′
2) lies in

this set.
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Computing directly:

∂T (wk|ps)
∂ps

= pd
(mk + (1− θ)(n/k −mk)wk)−

∑
` 6=k (m` + (1− θ)(n/k −m`)w`)

(ps + pd)2
< 0

where the inequalities follow from the analysis above.

2. Increasing pd: Let us define T in the same way as in (1), except parametrized by pd. Then in
exactly the same way:

∂T (wk|pd)
∂pd

= −ps
pd

∂T (wk|ps)
∂ps

> 0

which is the desired result.

3. Majorization: Assume that we remove a Bayesian from island `∗ and add it to island k, with
the assumption that mk + 1 ≤ m`∗ − 1. There are two cases: (i) island k still has the fewest
Bayesians (and thus the greatest DeGroot centrality), or (ii) some other island had the exact
same number of Bayesians as island k. In the latter case, the majorization does not affect
whether the network is impervious or susceptible. In the former case, define T as:

T |m : w 7→
[

psm1 + pd
∑

` 6=1m`

psm2 + pd
∑

` 6=2m`

· · ·
psmk + pd

∑
` 6=km`



+ (1− θ)


ps(n/k −m1) pd(n/k −m2) · · · pd(n/k −mk)
pd(n/k −m1) ps(n/k −m2) · · · pd(n/k −mk)

· · · · · · · · · · · ·
pd(n/k −m1) pd(n/k −m2) · · · ps(n/k −mk)

w
]

Computing the directional derivative along the gradient u = ek−e`∗ (where ei is the vector
of all 0’s except for a 1 in ith spot):

∂T (wk)|m
∂mk

− ∂T (wk)|m
∂m`∗

= pd (1− (1− θ)wk)− ps (1− (1− θ)w`∗)

Note that because wk ≤ w`∗ , (1− (1− θ)wk) ≥ (1− (1− θ)w`∗). Because ps > pd, the above
expression is positive.

Lastly, we need to argue that in the case of islands of equal size, increased DeGroot centrality
inequality (i.e., the island with larger centrality increases its centrality while the other’s centrality
decreases) cannot make the network go from susceptible to impervious. To check if the network
is impervious, all that needs to be checked is maxiDi(1D) > (1−b)/2. When inequality of the De-
Groot centrality increases, then maxiDi(1D) increases, and so the above inequality is more likely
to be satisfied when inequality is increased. Therefore, the network can go from impervious to
susceptible, but not the other direction.

Proof of Theorem 3. Part (i) is a direct implication of Theorem 2: it is impossible for an increase in
inequality to make the network switch from susceptible to impervious. Thus, if some inequality
configuration makes the network impervious, it must necessarily be the case that the network
with the least inequality is impervious.
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For parts (ii) and (iii), consider the following construction of the inequality structures. If for
all choices of (m, pd) the DeGroot centralities of all of the islands are monotone in ps (either
monotonically increasing or decreasing) then choose ps sufficiently close to 1 such that manip-
ulation is the same under this inequality structure and ps = 1 (i.e., extreme homophily). Such
a ps < 1 is guaranteed because centralities are continuous in the inequality parameters. Other-
wise, there exists (m, pd) such that at least one island has non-monotone centrality in ps. First,
note that all centralities are concave in ps; this can be seen from considering the map in the proof
of Theorem 2 for ps and noting that:

∂2T (w`|ps)
∂p2

s

=

m` + (1− θ)(n/k −m`)w` −
∑
`6=k

(m` + (1− θ)(n/k −m`)w`)

 · p2
s − p2

d

(ps + pd)4
> 0

because both terms in the above expression are positive. (Recall that w` is equal to 1 minus cen-
trality, so convexity ofw` corresponds to concavity of centrality.) Second, note that the centrality
curve of an island with more Bayesians always lies above an island with fewer (this was shown
in Theorem 2). Suppose some island that exhibits the non-monotonicity of centrality in ps; if
there are multiple, pick the island whose centrality apex occurs at the largest value for ps (call
this is the “special” island); call this value p∗s. If we choose b so that (1 − b)/2 lies just below the
apex of the centrality curve, then this island will be manipulated for p∗s, but not at ps = 1 because
the centrality curve for the special island is concave (and thus is decreasing after p∗s). All islands
with more Bayesians than the special island are protected when there is the most inequality, and
all islands with fewer Bayesians than the special island are manipulated under p∗s. Similarly, ev-
ery other island has either: (i) monotonically decreasing centrality, (ii) monotonically increasing
centrality, or (iii) non-monotone centrality. In the case of (i) and (iii), by assumption, the island
cannot be manipulated at ps = 1 but is at p∗s. Moreover for islands of type (ii), the centrality must
naturally lie above the centrality curve of the special island, so is manipulated at p∗s. Thus, this
intermediate inequality structure has strictly more manipulation than the most inequality.

It just remains to show that for every k ≥ 3, there exists a choice of m and distribution m
that has at least one non-monotone centrality curve. For this, we provide an explicit example for
k = 3. The parameters are given by θ = 1/20, pd = .2, m1 = 44, m2 = 29, m3 = 0, n = 1000, for
three islands. The plot is given in Figure 17.

Figure 17. DeGroot centrality for island 2 as a function of ps.

45



To generalize to more communities, simply add a community with all DeGroot agents. This
will make the centrality of the special island increase for intermediate inequality relative to most
inequality because the centrality of the all DeGroot island will exceed that of the special island.
Thus, there will still be manipulation with intermediate inequality, but not with the most in-
equality.

Proof of Theorem 4. As in the proof of Theorem 2, let us consider each of the inequality cases
separately and define corresponding maps T . We show that all beliefs decrease following an
increase in ps, decrease in pd, or a reverse “Robin Hood” operation.

1. ps: Let us define T as:

T |ps : w 7→




psm1+pd
∑
6̀=1m`

pss1+(1−s1)pd
psm2+pd

∑
6̀=2m`

pss2+(1−s2)pd

· · ·
psmk+pd

∑
6̀=km`

pssk+(1−sk)pd

+ (1− θ)


ps(s1n−m1)
pss1+(1−s1)pd

pd(s2n−m2)
pss1+(1−s1)pd

· · · pd(skn−mk)
pss1+(1−s1)pd

pd(s1n−m1)
pss2+(1−s2)pd

ps(s2n−m2)
pss2+(1−s2)pd

· · · pd(skn−mk)
pss2+(1−s2)pd

· · · · · · · · · · · ·
pd(s1n−m1)

pssk+(1−sk)pd

pd(s2n−m2)
pssk+(1−sk)pd

· · · ps(skn−mk)
pssk+(1−sk)pd

w


Computing directly for island 1:

∂T (w1|ps)
∂ps

= pd
(1− s1) (m1 + (1− θ)(ns1 −m1)w1)− s1

∑
`6=1 (m` + (1− θ)(ns` −m`)w`)

(pss1 + pd(1− s1))2

=
1

(pss1 + pd(1− s1))2

m1

s1
+ (1− θ)(n−m1/s1)w1 −

∑
`6=1m`

1− s1
− (1− θ)

∑
6̀=1

ns` −m`

1− s1
w`


By assumption, m1/s1 <

∑
6̀=1m`/(1− s1) and w1 ≤ w`, thus,

∂T (w1|ps)
∂ps

<
w1(1− θ)

(pss1 + pd(1− s1))2

n−m1/s1 −
∑
` 6=1

ns` −m`

1− s1


=

w1(1− θ)
(pss1 + pd(1− s1))2

(
n−m1/s1 − n+

m−m1

1− s1

)
=

w1(1− θ)
(pss1 + pd(1− s1))2

s1m−m1

s1(1− s1)
< 0

Thus, the beliefs of the agents on island 1 decrease following an increase in ps. Then ob-
serve that for other islands ` 6= 1:(

1

1− θ
− (1− θ) ps(s`n−m`)

n(pss` + pd(1− s`))

)
w` =

psm` + pd
∑

`′ 6=`m`′

n(pss` + pd(1− s`))
+ (1− θ)

∑
`′ 6=`

pd(s`′n−m`′)

n(pss` + pd(1− s`))
w`′

when s1 is sufficiently close to 1, the above simplifies to:

1

1− θ
w` =

pdm1

n(pss` + pd(1− s`))
+ (1− θ) pd(s1n−m1)

n(pss` + pd(1− s`))
w1

Both pdm1

n(pss`+pd(1−s`)) and pd(s1n−m1)
n(pss`+pd(1−s`)) are decreasing in ps, and we just showed that w1 is

decreasing in ps. Thus belief of island ` is also decreasing in ps.

46



2. pd: Recall that

∂T (w1|pd)
∂pd

= −ps
pd

∂T (w1|ps)
∂ps

> 0

And the expression for w` when s1 is sufficiently close to 1 is:

1

1− θ
w` =

pdm1

n(pss` + pd(1− s`))
+ (1− θ) pd(s1n−m1)

n(pss` + pd(1− s`))
w1

Both pdm1

n(pss`+pd(1−s`)) and pd(s1n−m1)
n(pss`+pd(1−s`)) are increasing in pd, and we showed prior that w1 is

increasing in pd. Thus belief of island ` is also increasing in pd.

3. Majorization: We consider a “Robin Hood” operation that adds a Bayesian to the large
island. Once again we compute the directional derivative along the gradient u = e1 − e`∗

for some island `∗:

∂T (w1|m)

∂m1
− ∂T (w1|m)

∂m`∗
=
ps(1− (1− θ)w1)− pd(1− (1− θ)w`)

pss1 + (1− s1)pd
> 0

because w1 ≤ w` and ps ≥ pd. Similarly, when s1 is sufficiently close to 1:

1

1− θ
w` =

pdm1

n(pss` + pd(1− s`))
+ (1− θ) pd(s1n−m1)

n(pss` + pd(1− s`))
w1

which is increasing in m1 given that w1 is increasing in m1.

Note that when s1 is sufficiently large, a reverse “Robin Hood” operation that does not
impact island 1 will have little effect on the beliefs of the islands. Thus, provided that no
island’s centrality lies directly at (1 − b)/2 (which holds for b on a set of full measure), this
operation will have no impact on which agents are manipulated.

B.3 Section 5

Algorithm. Let the marginalized island be the island with fewer Bayesians and the privileged
island be the island with more Bayesians (if the number of Bayesians is equal, label them ar-
bitrarily). Moreover, let κm, κp be the proportion of agents targeted on the marginalized and
privileged islands, respectively. The principal’s optimal strategy can be computed as follows:

(i) Consider the strategy where the principal targets all agents.

(a) If neither island is manipulated, the principal’s optimal strategy is x = 0.

(b) If both islands are manipulated, then decrease κm until the belief on the marginalized
island matches that of the privileged island or κm = 0. Then decrease κm and κp one-
for-one,27 (if κm = 0, just decrease κp), until both (identical) beliefs fall below the
cutoff. (Note that if κp = κm = 0, no island will be manipulated, so such κp, κm always
exist.) Record the payoff 1− κp+κm

2 ε.

27Formally, “one-for-one” here means decrease them simultaneously so that the beliefs of both island remain iden-
tical as these decrease, which may not necessarily correspond to the same change for κm as κp to achieve this.
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(c) If just the marginalized island is manipulated, decrease κp until the marginalized is-
land’s belief is below π∗. If κp = 0 still results in the marginalized island’s manipula-
tion, begin decreasing κm until this island is no longer manipulated. If the payoff of
1
2 −

κp+κm
2 ε > 0, this is the principal’s optimal strategy.

(ii) If case (i)(b) holds, consider the strategy where the principal targets no one and no island
is manipulated. The principal then increases κm until the marginalized island is manip-
ulated; if the marginalized island is not manipulated at κm = 1, then the principal be-
gins increasing κp until the marginalized island is manipulated. (If κp = κm = 1 and the
marginalized island is still not manipulated, then default to case (i)(a).) Record the payoff
1
2 −

κp+κm
2 ε.

(iii) Compare the recorded payoffs and the payoff of 0. If the largest payoff is 0, the principal’s
optimal strategy is x = 0. Otherwise, the principal should employ the strategy (either (i)(b)
or (ii)) corresponding to the largest payoff.

Proposition 5. The aforementioned algorithm is correct, i.e., it provides the principal’s optimal
strategy for any ε.

Proof of Proposition 5. The principal first decides the cheapest way to manipulate 0, 1, and 2
islands, respectively, and then compares the payoffs and chooses whichever is maximal. The
cheapest way to manipulate no islands is x = 0, which is always the recommended outcome of
the algorithm for 0 islands.

To manipulate one island, it is always cheaper to manipulate the marginalized island. Note
wBm does not depend on κm or κp, and that ∂wDm/∂κm > ∂wDm/∂κp. Thus, the optimal way to
manipulate the marginalized island is to decrease κp as much as possible, leaving κm = 1, until
the marginalized island is no longer manipulated. If it is still manipulated atκp = 0, then the only
more cost effective strategy would be to decrease κm until you lose this island. This is precisely
the strategy identified in (i)(c) and (ii). In the case of (i)(c), we know this to be the optimal strategy
if it beats manipulating no one, because it is impossible to manipulate both islands.

To manipulate two islands, we show that it is always optimal for either: (1) κm = 0 and κp
is chosen smallest to manipulate both islands, or (2) both islands have the same belief at the
optimal strategy (right at the cutoff (1 + b)/2). Recall that ∂wD` /∂κ` > ∂wD` /∂κ`′ for both islands,
where `′ 6= `. The privileged island will have beliefs closer to the truth when κm = κp, it must be
the case that κp ≥ κm in the optimal strategy for 2-island manipulation. Of these strategies, (1)
is clearly then optimal provided that κm = 0 does not cause the marginalized island’s belief to lie
above the cutoff (and thus, not manipulate both islands). Otherwise, if some island `’s belief is
strictly above the cutoff, then one can decrease κ` a small amount and increase κ`′ for `′ 6= ` by
a smaller amount, again, because ∂wD` /∂κ` > ∂wD` /∂κ`′ for both islands `. This is cheaper than
the previous strategy, a contradiction. So (2) must be optimal.

Finally, step (iii) checks whether 0-island, 1-island, or 2-island manipulation is the most prof-
itable.

Proof of Theorem 5. The beliefs of all agents will be identical in the network with the least in-
equality. Let m(b) be the maximum number of Bayesians such that if the Bayesians are all dis-
tributed evenly across the islands, every agent is manipulated if the principal targets every DeG-
root, which is a function of b. Moreover, because of symmetry, it is clear that manipulating every
agent or manipulating no agent is the principal’s optimal strategy, and in particular for ε < 1,
manipulating every agent is a profitable strategy. (Note that this does not imply that γ = 1D is
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optimal, just that manipulating every agent is optimal.) When we move to an inequality con-
figuration with the most inequality, there are two cases: (1) m(b) ≤ n/k − 1 or (2) m(b) ≥ n/k.
In case (1), we stack all of the Bayesians on a single island and set ps = 1 and pd = 0, noting
that there is at least one DeGroot on this island. It is clear that this means the island with all
the Bayesians will have a decrease in their DeGroot centrality, which by definition of m(b), will
protect this island from manipulation. At the same time, this configuration is still susceptible
to manipulation, because the islands with all DeGroots agents will be manipulated given ε < 1.
In case (2), we make island 1 contain all Bayesians and one DeGroot, and then distribute the
remaining Bayesians equally amongst the rest of the islands. For sufficiently large n, this will
always (strictly) decrease the centrality of the one DeGroot agents on the island with concen-
trated Bayesians, thereby protecting her from manipulation; at the same time, the DeGroots on
the other islands will continue to be manipulated, as their centrality does not decrease (and may
increase).

Finally, we show there exists a model with intermediate inequality that is impervious for
some open interval of ε ∈ (ε∗, ε∗∗) and b ∈ (b∗, b∗∗). Once again there are two cases: (1) m(b) ≤
n/k − 1 and (2) m(b) ≥ n/k. In the former case, put all of the Bayesians on island 1 along with
one DeGroot, as before. In the latter case, put n/k − 1 Bayesians on island 1 along with one
DeGroot, and then distribute the rest of the Bayesians evenly amongst the remaining islands.
If 0 < pd < ps < 1, then we have a model of intermediate inequality where the beliefs (of the
correct state) of the agents on island 1 exceed those on the other islands (which are identical be-
cause of symmetry).28 Because the beliefs of the agents on island 1 exceed that of other islands,
we know the principal cannot manipulate the DeGroot on island 1, even if he were to target ev-
ery DeGroot in the population. Next, we show that for any δ < 1, there exists some pd and b > −1
such that the principal needs to target at least δ proportion of the DeGroots on island 1 and at
least δ proportion of the DeGroots on the rest of the islands.29 We know that π1 > π` when the
principal targets every DeGroot for all ` 6= 1 given that pd < ps. Thus, we can always choose b
such that (1 + b)/2 is arbitrarily close to π` but still satisfies π1 > (1 + b)/2 > π`. Given pd > 0,
any (substantial) deviation from γ = 1D, in the∞-norm, leads to some island ` 6= 1 not being
manipulated. Because the principal should always enact a symmetric strategy with respect to
all islands ` 6= 1, we then either have (i) the network is impervious, or (ii) the principal should
send signals to at least δ proportion of each island, where δ can be arbitrarily close to 1. In the
latter case, the payoff of the principal is no more than n

(
k−1
k

)
−m(b)− (n−m(b))δε, again, for δ

arbitrarily close to 1. Thus, there exists ε < 1 such that the principal’s payoff from this strategy is
negative. Hence, the network is impervious with a model of intermediate inequality.

B.4 Section 6

Proof of Proposition 1. Suppose there are n agents in the network, and there arem Bayesians. We
denote by w`→r the weighted walks from an agent on island ` to any Bayesian on island r. For

28This was shown in the proof of Theorem 2.
29Note that there is technically only one DeGroot on island 1, so targeting δ proportion of one DeGroot seems non-

sensical. However, Appendix A.3 reconciles this: because the analysis is always closed under multiplication of each
island by the same proportion of Bayesians and DeGroots, we can always expand the size of the DeGroot population
such that δ proportion (assuming δ ∈ Q) of δ(n/k −m1) is an integer.
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` 6= r, we can write:

w`→r ≥ (1− θ) pdmr

n(pss` + npd(1− s`))
+ (1− θ)2

(
npss`w`→r + pd(nsr −mr)wr→r + npd

∑
τ 6=r,` sτwτ→r

npss` + npd(1− s`)

)
≥ (1− θ) pdmr

n(pss` + pd(1− s`))
+ (1− θ)2

(
npss`wr + pd(nsr −mr)(wr + wr→r − wr) + npd(1− s` − sr)wr

npss` + npd(1− s`)

)
= (1− θ) pdmr

n(pss` + pd(1− s`))
+ (1− θ)2

(
wr +

npdsr(wr→r − wr)− pdmrwr→r
npss` + npd(1− s`)

)
= (1− θ) pdmr

n(pss` + pd(1− s`))
+ (1− θ)2

(
pss` + pd(1− s` − sr)
pss` + pd(1− s`)

wr +
pd(nsr −mr)

n(pss` + pd(1− s`))
wr→r

)
≥ (1− θ)2 pdmr

n(pss` + pd(1− s`))
+ (1− θ)2

(
pss` + pd(1− s` − sr)
pss` + pd(1− s`)

wr +
pd(nsr −mr)

n(pss` + pd(1− s`))
wr→r

)
where wr = minτ 6=r wτ→r. This implies that:

wr ≥ (1− θ)2 pdmr + pd(nsr −mr)wr→r
nθ(pss` + pd(1− s`))− (1− θ)pdsr

Similarly,

wr→r = (1− θ) psmr

n(pssr + pd(1− sr))
+ (1− θ)2

ps(nsr −mr)w
r
r + pd

∑
τ 6=r sτw

τ
r

npssr + npd(1− sr)

≥ (1− θ) psmr

n(pssr + pd(1− sr))
+ (1− θ)2

[
wr +

npssr(wr→r − wr)− psmrwr→r
npssr + npd(1− sr)

]
= (1− θ) psmr

n(pssr + pd(1− sr))
+ (1− θ)2

[
pd(1− sr)

pssr + pd(1− sr)
wr +

ps(nsr −mr)

n(pssr + pd(1− sr))
wr→r

]
≥ (1− θ)2 psmr

n(pssr + pd(1− sr))
+ (1− θ)2

[
pd(1− sr)

pssr + pd(1− sr)
wr +

ps(nsr −mr)

n(pssr + pd(1− sr))
wr→r

]
which moreover implies that

wr→r ≥ (1− θ) psmr + (1− θ)npd(1− sr)wr
θpsnsr + npd(1− sr) + (1− θ)psmr

Combining these two results we get:

wr ≥ (1− θ)2
pdmr + pd(nsr −mr)(1− θ) psmr+(1−θ)npd(1−sr)wr

θpsnsr+npd(1−sr)+(1−θ)psmr
nθ(pss` + pd(1− s`))− (1− θ)pdsr

=⇒ [nθ(pss` + pd(1− s`))− (1− θ)pdsr]wr

≥ (1− θ)3
pdmr + pd(nsr −mr)

psmr+(1−θ)npd(1−sr)wr
θpsnsr+npd(1−sr)+(1−θ)psmr

nθ(pss` + pd(1− s`))− (1− θ)pdsr
=⇒ [nθ(pss` + pd(1− s`))− (1− θ)pdsr]wr
≥ (1− θ)3pdmr + (1− θ)3pd(nsr −mr)

psmr

θpsnsr + npd(1− sr) + (1− θ)psmr

+ (1− θ)4pd(nsr −mr)
npd(1− sr)

θpsnsr + npd(1− sr) + (1− θ)psmr
wr
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Note that:(
[nθ(pss` + pd(1− s`))− (1− θ)pdsr] [θpsnsr + npd(1− sr) + (1− θ)psmr]− (1− θ)4p2

d(nsr −mr)(1− sr)
)
wr

≥(1− θ)3pdmr [θpsnsr + npd(1− sr) + (1− θ)psmr] + (1− θ)3pd(nsr −mr)

Therefore, we can write wr ≥ N(n)/D(n), where:

N(n) ≡(1− θ)3pdmr [θpsnsr + npd(1− sr) + (1− θ)psmr] + (1− θ)3pd(nsr −mr)

D(n) ≡ [nθ(pss` + pd(1− s`))− (1− θ)pdsr] [θpsnsr + npd(1− sr) + (1− θ)psmr]− (1− θ)4p2
d(nsr −mr)(1− sr)

If there are m = crn Bayesian agents on island r, as n→∞, we have that:

wr ≥
(1− θ)3pdcr

θ(pss̄+ pd(1− s̄))

where s̄ = maxτ∈{1,...,k} sτ . Thus, the network is impervious as long as wr > (1 + b)/2. This

moreover implies the network is impervious if cr ≥ θ(pss̄+pd(1−s̄))(1+b)
2(1−θ)3pd

for any island r. By the
pigeonhole principle, there must be an island with at least c/k proportion of the population that
is Bayesian. Thus taking c = k θ(pss̄+pd(1−s̄))(1+b)

2(1−θ)3pd
and applying the result for the island r which has

the largest proportion of Bayesian agents, we see the network is impervious to manipulation.
Moreover c < 1 provided that θ is not too large.

Proof of Proposition 2. For each θ and c we construct a strong inequality model where all but k̄
communities are manipulated. Put all cn Bayesians on the first island on the line topology and
let all other islands contain only DeGroots and be the same size as each other. We assume that
the principal attempts to manipulate the last k − k̄ communities along the line. We compute
D`(1) for every island by counting Bayesian walks for every island; we denote these walks by w`
which is equivalent to 1−D`(γ). For island 2, we have the recursion:

w2 = (1− θ) pds1

pd(s1 + s3) + pss2
+ (1− θ)2 pss2w2 + pds3w3

pd(s1 + s3) + pss2

=⇒ w2 = (1− θ) pds1

pd(s1 + s3) + pss2 − (1− θ)2pss2
+ (1− θ)2 pds3w3

pd(s1 + s3) + pss2 − (1− θ)2pss2

For ` ≥ 3:

w` = (1− θ)2 pd(w`−1s`−1 + w`+1s`+1) + psw`s`
pd(s`−1 + s`+1) + pss`

=⇒ w` = (1− θ)2 pd(w`−1s`−1 + w`+1s`+1)

pd(s`−1 + s`+1) + pss` − (1− θ)2pss`

withw1 = 1 because the island consists of all Bayesian agents. We first show that lim`→∞w` must
exist. To do this, we show that w` is monotonically decreasing in `. We know there is a unique
fixed point for w, so if we prove that a decreasing sequence of w` maps to another decreasing
sequence ofw`, then by Brouwer’s fixed point theorem the unique solution must be a decreasing
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in `. Note that:

w` ≤ (1− θ)2 pd(w`−1s`−1 + w`s`+1)

pd(s`−1 + s`+1) + pss` − (1− θ)2pss`

=⇒
(

1− pds`+1

pd(s`−1 + s`+1) + pss` − (1− θ)2pss`

)
w` ≤ (1− θ)2 pdw`−1s`−1

pd(s`−1 + s`+1) + pss` − (1− θ)2pss`

=⇒w` ≤ (1− θ)2 pdw`−1s`−1

pds`−1 + pss` − (1− θ)2pss`
≤ w`−1

where the final inequality follows from the fact that β α
α+δ < 1 for α, β, δ ∈ (0, 1). Thus, w` con-

verges to some w∞. Note that w∞ must satisfy the fixed-point equation:

w∞ = (1− θ)2 pd(s`−1 + s`+1)w∞
pd(s`−1 + s`+1) + pss` − (1− θ)2pss`

Again, since pd(s`−1+s`+1)
pd(s`−1+s`+1)+pss`−(1−θ)2pss`

< 1, clearly w∞ = 0.

Now, suppose the principal attempts to manipulate k− k̄ communities at the end of the line.
By our previous result, we know that for every δ > 0, there exists a sufficiently large k̄, such that
wk̄+1 < δ. Therefore, for any b, the principal can manipulate k− k̄ of the islands at the end of the
line. This yields a payoff of

∑k
`=k̄+1 nsk − nε(1− s1), which is positive for some sufficiently small

ε > 0. Thus, the network is susceptible to manipulation and all but k̄ islands are manipulated.

B.5 Section 7

Proof of Corollary 1. By assumption, the budget is large enough to make the network impervi-
ous. Thus, by Theorem 2, the network is impervious if the current distribution of Bayesians m is
majorized by every other distribuiton (i.e., inequality cannot be reduced by a more equal redis-
tribution of Bayesians). Minimizing inequality with a Bayesian intervention accomplishes this.

Proof of Corollary 2. Leveraging Theorem 4, we know that decreasing inequality when the big
island is the most underprivileged does not introduce more manipulation, and in fact, might
reduce it. Assuming the policy does not put all of the Bayesians on island 1, we know such a
redistribution is a different feasible policy. In the proof of Theorem 4, this is shown to be true
because decreasing inequality increases all agents’ beliefs. This is exactly the definition of a
dominant policy.

Proof of Proposition 3. We show that if the Bayesians are assigned proportional Bayesians to
island populations, i.e., m` = M · s`, then all DeGroot centralities are equal. Then, homophily
has no effect (beliefs are the same on every island), so setting pd = pod is optimal, and always
feasible because it costs nothing. Consider the map T :

T : w 7→ (1−θ)


psm1+

∑
` 6=1 pdm`

npss1+npd(1−s1)

· · ·
psmk+

∑
` 6=k pdm`

npssk+npd(1−sk)

+(1−θ)2


ps(ns1−m1)

npss1+npd(1−s1)
pd(ns2−m2)

npss1+npd(1−s1) · · · pd(nsk−mk)
npss1+npd(1−s1)

· · · · · · · · · · · ·
pd(ns1−m1)

npssk+npd(1−sk)
pd(ns2−m2)

npssk+npd(1−sk) · · · ps(nsk−mk)
npssk+npd(1−sk)

w
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Note we will simply plug in w = w∗1 to T and show it is a fixed point for some constant w∗. For
island `:

w` = (1− θ) ·
psm` +

∑
`′ 6=` pdm`′ + (1− θ)ps(ns` −m`)w` + (1− θ)

∑
`′ 6=` pd(ns`′ −m`′)w`′

npss` + npd(1− s`)

= (1− θ) ·
pss`M +

∑
`′ 6=` pds`′M + (1− θ)ps(ns` − s`M)w∗ + (1− θ)

∑
`′ 6=` pd(ns`′ − s`′M)w∗

npss` + npd(1− s`)

= (1− θ) · M(pss` + pd(1− s`)) + (1− θ)w∗(npss` + npd(1− s`)−M(pss` + pd(1− s`)))
npss` + npd(1− s`)

= (1− θ) · M + (1− θ)w∗(n−M)

n

The above expression has no dependence on `. Letting w∗ = M(1−θ)
M(1−θ)+θn , we see then that w` =

w∗, which completes the proof. This has no dependence on pd, so all pd are optimal, including
pod.

Proof of Proposition 4. The condition that the budget exceeds φ(ps− pod) is to guarantee that pd =
ps is feasible. By Theorem 2, given that all islands are the same size, a network with less inequality
cannot transition from impervious to susceptible. Thus, removing all homophily (i.e., reducing
inequality the most through the homophily parameters) must make the network impervious
given this is possible for some homomphily structure. Thus, setting ps = pd makes the network
impervious which is obviously an optimal policy.
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