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SO. Introduction

in 1979 Aho and unman [au] noted that the relational calculus Is unable

to express the transitive closure of a given relation, and suggested extending
the relational calculus by adding the least fixed point operator. The
relational calculus [Ul] is a standard relational query language; from the

point of view of expressive power, the relational calculus is exactly
first-order logic. Aho and Ullman's paper triggered an extensive study of the

expressive power of fixed-point extensions of first-order logic [CH, Im, Va,

Li, Gu, BGK, etc.] with emphasis on finite structures.

There are two fields where fixed-point extension of first-order logic
were extensively studied earlier. One is the theory of inductive definitions
[Ac, HK, HM, Mo, Mo2, Ri, Sp, etc]. The other is semantics of programming

landuages where a fixed-point extension of first-order logic is known as

first-order ji-calculus [DR, HP, Pa, SD, etc.]. But neither of the two fields put
finite structures into the center of attention.

Proviso. All structures are finite unless the contrary is said explicitly.

Let us explain how fixed-point operators arise in the frame of first-

order logic. A first-order formula <P(P,x) with a distinguished predicate

variable P and a distinguished sequence x of free individual variables yields
an operator f(p)={8: <p(P,8)}. The formula <p may have additional free

individual variables; they are viewed as parameters. If the arity of P equals
the length of x then the operator F can be applied repetitively. If this

operator is monotone then it has a least (with respect to the inclusion

relation) fixed point LFP(F) which is the union of the predicates 0, F(0),

F(F(0)), etc., see §1.
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For example, if Edge is a binary predicate constant, P is a binary

predicate variable, and <P(P,x,y) is the formula

Edge(x,y) or 3z[P(x,z) and P(z,y)]
then LFP(F) is the transitive closure of Edge. If f is a binary function symbol,
P is a unary predicate variable and <p(P,x,u,v) is the formula

x=u or x=v or 3y3z[P(y) and P(z) and x=f(y,z)]
then LFP(F) is the closure of the set {u,v} under the operation f.

This suggests extending first-order logic by the following formation
rule: if <p(P,x) is a well-formed formula, arity(P)=length(8) and the operator

F(P)={x: <P(P,x)} is monotone (on all structures where it is defined) then

LFPp;8<p(P,x) is a well-formed predicate. This extension (let us call it

FO+LFP') does not form a nice logic because recognizing well-formed
formulas is undecidable (whether infinite structures are allowed or not) [Gu].

Fortunately, there is a simply recognizable syntactic property which is a

sufficient condition for monotonicity: if a first-order formula <p(?.*0 is

positive in P i.e. every occurrence of P in <P(P,R) is positive then the operator

F(P)={R: <P(P,R)} is monotone on every structure where it is defined. Using

positivity instead of monotonicity gives the most popular fixed-point
extension FO+LFP of first-order logic, see details in §2. Neil Immerman

proved (Im] that every FO+LFP formula is equivalent to an FO+LFP formula
with only one application of LFP.

The monotonicity of an operator F(P)={R: <p(P,R)} ensures that the

sequence F(X(0) increases and the union is a least fixed point of F. Call F

inductive if the sequence F(X(0) increases. If F is inductive then (J O<F(X(0) is
a fixed point of F that will be called the inductive fixed point IFP(F) of F;

the inductive fixed point may be not a least fixed point of F (an inductive F

may have no least fixed point) but it is very natural from the computational
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point of view. Call an operator F is inflationary if VP[P£F(P)]. The

inflation property garantees that F is inductive. Note that the operator

F'(P)={R: P(R) or <p(P,R)} is always inflationary, and if F is monotone then

1FP(F')=LFP(F). This suggests the following formation rule: if <p(P,8) is a

well-formed formula and arity(P)=length(R) then IFPp.R[P(R) or <P(P,R)] is a

well-formed predicate. The resulting extension of first-order logic will be
called FO+1FP, see details in §2.

Obviously, FO< FO+LFP<FO+LFP'<FO+IFP by expressive power. The

expressive power of FO+LFP vastly exceeds the expressive power of first-
order logic. On the other hand, every FO+IFP query is computable within time

polynomial in the size of a given structure. In the presence of linear order,

every polynomial time computable relational query is expressible in FO+LFP

Urn, Val; hence in the case of finite structures with a linear order, FO+LFP and

FO+IFP have the same expressive power. In general, however, not every

polynomial time computable query is expressible in FO+LFP [CH] or even in
FO+IFP [BGK]. (This general case is important computationally: a query may

depend on the isomorphism types of structures rather than the presentations.)

Main Theorem (see §3). For every FO+LFP formula <p(P,R) with

arity(P)=length( R) there is an FO+LFP formula <p*(R) that expresses the

inductive fixed point of the inflationary operator P<-»{R: P(R) or <P(P,R)}.

Corollary. FO+LFP, FO+LFP' and FO+IFP have the same expressive power.

Dana Scott have asked whether the proof gives <p*(R) as a formula with a

parameter f. The answer is yes except the parameter is not <P(P,x) itself but

the formula $(P,P\R) obtained from <P(P,R) by replacing the negative
occurrences of P by the negation of a new predicate variable P' of the same
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arity. To make this answer apparent we have changed the exposition. A

stronger theorem is proved in §3 which implies Main Theorem. A related
result is proved in Appendix.

Even though the expressive power of FO+LFP equals that of FO+IFP,
sometimes things are naturally expressible in FO+IFP but not in FO+LFP. For
example, Tim Fernando, a student of Kechris, proved that every polynomial
time recognizable class of finite groups with a fixed number of generators is
definable in FO+IFP.

In connection to the Corollary let us mention Lyndon's Theorem: if

<P(P.J?) is first-order and the operator F(P)={R: <p(P,R)} is monotone on all -

finite or infinite - structures where it is defined then <P(P,R) is logically

equivalent to a first-order formula <P'(P,R) that is positive in P. (Lyndon's
Theorem does not require arity(P)=length(R).) However, there is no total
recursive function that constructs the desired <p' from the given <p [Kr, Fr, Gu]

(though Lyndon's proof provides a partial recursive function for the purpose).
In the case of finite structures Lyndon's Theorem fails [AGl.

The proof of Main Theorem uses finiteness of structures. We did not

investigate the infinite case but on some point we had an impression that the

proof of a weaker version of Main Theorem does not use finiteness; Alekos

Kechris and Phokion Kolaitis cought the error. After seeng a version of this
paper Kechris sent us unpublished manuscripts [HK2, HK3, HM] with related

results in the infinite case. Alekos Kechris and Yiamis Moschovakis

informed us that the following seems to be deducible from those

manuscripts: the expressive power of FO+LFP equals to that of FO+LFP' on

all (necessarily infinite) structures, called acceptable in [Mo]; and the

expressive power of FO+LFP' equals to that of FO+IFP on all (finite or

infinite) structures.

We are thankful to Alekos Kechris, Phokion Kolaitis, Yiannis

Moschovakis and Dana Scott.
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Si. The least fixed point and the inductive fixed point

We start with recalling some well known definitions and facts. (The
proviso of §0 is not in force in this section.) A partially ordered set A is
complete if every subset of A has a supremum and an infimum in A. It
suffices to request the existence of suprema: the supremum of the set of

lower bounds for a set X is the infimum of X. In particular, a complete

partially ordered set A has the least element inf(A)=sup(0) and the greatest
element sup(A)=inf(0). Thus the real line is not complete but the usual

extension of the real line by means of ♦«> and is complete.
A function f from a partially ordered set A to a partially ordered set B

is monotone if for all x,y in A, x<y implies fx<fy. Let f be a function from a

partially ordered set A to the same partially ordered set A; an element x of
A is a fixed point of f if fx=x, and a fixed point x of f is a least fixed point

of f if for every fixed point y of f, x<y. To indicate that x is the least fixed
point of f, we write x=LFP(f).

Theorem 1 [Ta]. Let A be a complete partial ordered set with a least

element A, and let f: A-»A. If f is monotone then it has a least fixed point.

Proof. By a transfinite induction define f<x(A)=sup{f^(A): 0<<x}. There
is an ordinal p such that <x<^<)i->f0<(A)<f^(A) and p<<x-» f^A) = f^(A).
In particular, f^(A) is a fixed point of f. Given any fixed point y of f, prove

by induction on o< that f0^A) <y. Thus f^(A)=LFP(f). Q.E.D.

Recall that the direct product A*B of partially ordered sets A,B is the
direct product of their universes ordered componentwise: (x,y)<(x',y') »

[x<x' and y<y']. The direct product of complete partially ordered sets A,B is

complete: for every Z£A><B, sup(Z)=(sup{x: 3y((x,y)eZ», (sup{y: 3x((x,y)fZ})).
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In our applications of Theorem 1, a typical complete partially ordered

set is the collection Predr(U) of all predicates of a given arity r on a given

nonempty set U ordered by inclusioa Theorem 1 allows to define new

predicates by induction. The next theorem reduces an induction in

Pred^^xPredrCU), satisfying a certain restriction, to an induction in

Predl+r(U). To simplify notation, we identify pairs ((xj ,...,x j),(yj ,...,y r))
with tuples (xj x j,y j ,...,y r); this makes Pred^lOxPredpOJ) a subset of

Predl+r(U).

Theorem 2. Suppose

U is a nonempty set. and I, r are positive integers,

L: Pred^lOxPredpCU) -» Pred^U) is monotone,

R.* Pred^^xPredj-Cu) -»Predr(U) is monotone,

F(X,Y)=(L(X,Y), R(X,Y)) for all XePred^U) and YePredr(U),
G: Predl+r(U) -» Predl+r(U), and for every ZePredl+r(U),
G(Z)=L(X,Y)xR(X,Y) where X={R: 3g((R,g)eZ)}, Y={Q: 3*((X,g )eZ)}.

Then F and G are monotone and have least fixed points, and if L(0,0)*0,

R(0,0)*0, and (X*,Y*) is the least fixed point of F then X*xy* is the least

fixed point of G.

Proof. Clearly, F and G are monotone. By Theorem 1 they have least
fixed points. Suppose that l(0,0)*0, r(0,0)*0, and (X*,Y*) is the least

fixed point of F. Since (X*,Y*) is a fixed point of F we have L(X*,Y*)=X* and

r(X*,Y*)=Y*. Hence G(X*xy*)=l(x«,Y*)xr(x«,y*)=X*xy* i.e. x*xy* is a

fixed point of F.
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It remains to prove that every f ixpoint Z of g includes x*xy*. Let

x={r: 3g((5?.g)€Z)>. y={g: 38((s?.g )€Z)}. Then Z=g(z)=l(x.y)*R(x.y). Note that

l(x,y)*r(x,y) is not empty because it includes L(0,0)XR(0,0) which is not

empty. Hence L(x,y)={R: 3g((R,g)€Z)}=x and R(x,y)={g: 3R ((R,g)*Z)}=y. Thus

(x,y) is a fixed point of F. Then (x*,y*)<(x,y) and x**y*cx*y=Z. Q.E.D.

Coming back to the proof of Theorem 1, let us note that the elements

f^A) are defined in the general case when f is not necessarily monotone. If

they form an increasing sequence then their supremum is a fixed point of f.

Definition. Let A be a partially ordered set with a least element A, and
let f: A-»A. By induction on ordinal <x define f<x(A)=sup{f^(A): 0<<x}. If the

sequence f^A) is (non-strictly) increasing i.e. if <x<^-»f0<(A)<f^(A) then

the function f is inductive, if f is inductive then there is ji=inf{oo
f0^ (A)=f<x(A)} and f^(A) is a fixed point of f; f^(A) is the inductive

fixed point IFP(f) of f.

Definition. Let A be a partially ordered set. A function f: A-»A is

inflationary if fx>x for every xeA.

Theorem 3. Let A be an arbitrary complete partially ordered set.

(a) Every inflationary function from A to A is inductive.

(b) If f is an arbitrary function from A to A then the function

f'=sup{x,fx} is inflationary.
(c) If f: A-»A is monotone and f'=sup{x,fx} then !FP(f')=LFP(f).
Proof is clear. Q.E.D.
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Examples. Let U={0,1, 2} and X range over A=Predj (U).
(i) Define F(X)=Xu{the cardinality of X} if X*U, and F(U)=U. Clearly, F

is inflationary, F'(0)={j: j<i} for i<3, and IFP(F)=U. However. F is not
monotone: {0.2} includes {0} but F{0,2}={0,2} does not include F{0}={0,l}.

Moreover, F does not have a least fixed point: {1} and {0,2} are fixed points

of F but 0 is not a fixed point of F.

(ii) Define G(X)=F(X) if X is an initial segment of U, and G(X)=0
otherwise. Then G is inductive but neither inflationary nor monotone.

(iii) Any constant function H: A-»A with H(X)*U is monotone but not

inflationary (this example was suggested by several people).

Remark. Our treatment of inductive fixed points follows (Gul but the

phenomena of Theorem 3 were well known much earlier by the name of
non-monotone induction [Mo2].
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§2. Two fixed-points logics

We describe in this section tne extension FO+LFP of first-order logic by

the least fixed point operator and the extension FO+IFP of first-order logic

by the inductive fixed point operator. The proviso of §0 is not in force in
this section. Our treatment follows iGu). For definiteness we deal with the

version of first-order logic that allows free and bound occurrences of the
same individual variable in the same formula.

The syntax of logic FO+LFP is the result of augmenting the syntax of
first-order logic by the following formation rule.

The LFP formation rule. Let r be a positive integer, R be an r-tuple

X| x r of individual variables, P be an r-ary predicate variable, and <P(P,R)
be a well-formed formula where all free occurrences of P are positive.

Then LFPp.8<p(P,R) is a well-formed predicate, and [LFPp.^P.RWR) is a

well-formed formula.

All occurrences of P and Xj x r in the new predicate are bounded; the
occurrences of individual variables in the tail (R) of the new formula are

free. If Q is a predicate variable different from P then every free

(respectively, bound) occurrence of Q in <p(P,R) remains free (respectively,
bound) in the new predicate and the new formula, and every positive

(respectively, negative) occurrence of Q in <P(P,R) remains positive

(respectively, negative) in the new predicate and the new formula. If y is an

individual variable diffirent from Xj,...,x r then every free (respectively,
bound) occurrence of y in <P(P,R) remains free (respectively, bound) in the
new predicate and the new formula.
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Remark. We do not give a complete definition of well-formed

predicates: one can easily avoid speaking about well-formed predicates

altogether and speak only about well-formed formulas (as it is customary in
first-order logic). However, the LFP formation rule creates a new predicate
more naturally than a new formula. Note that a simplified notation

LFPpf(P.x) for the formula [LFPp.s<p(P,8)](8) is deficient: just try to express

the formula [LFPp;X^(P,x)](t) in the simplified notation.

To be on the safe side, let us emphasize that logic FO+LFP allows

interleaving of the LFP formation rule with propositional connectives

(including negation) and quantifiers: in particular, one can negate an LFP
formula then use the LFP formation rule again, etc.

Definition. Let <p be an FO+LFP formula or predicate. An individual

(respectively predicate) variable with free occurrences in <p is a free
individual (respectively predicate) variable of <p. The vocabulary of <p
consists of

the individual constants and the free individual variables of <p,

the predicate constants and the free predicate variables of <p, and

the function symbols of <p.

The meaning of the predicate LFPp.s9(P,8) is the least fixed point of the

operator F(P)={R: <P(P,R)}. This operator is defined in every structure M

whose vocabulary (also called signature and similarity type) is the

vocabulary of <P(P,R) without the predicate symbol P and the individual

variables x. Since the formula <P(P,R) is positive in P, the operator F is

monotone in M and therefore has a least fixed point in M.
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Logic FO+LFP is closed under simultaneous induction, see Simultaneous
Induction Lemma in [Mo]. A minor drawback of that Lemma is the use of indi¬

vidual constants. The following theorem will suffice for our purposes here.

Theorem 1. Suppose that

<P(P,Q,R) and <KP,Q,g) are FO+LFP formulas,

arity(P)=length( R)=l and arity(Q)=length( g)=r,
P,Q have only positive occurrences in the two formulas,

F is the operator (P.Q) ►+ ({8: <P(P,Q,R)}, {y: f(P,Q,Q)}),
R is a predicate variable of arity l+r that occurs neither in <p nor in f,

X(FUQ) = <P(3gR(_g),38R(x_),R) &«K3gR(_g),3RR(R-).Q).
Then F is monotone and has a least fixed point (X*,Y*), and the

conjunction [38(<P(0,0,8)) and 3g(<K0,0,g ))] implies the equivalence

fcx* « 3g[LFPR;8 g x(R.8.g)l(R.g) •

Proof. Use Theorem 2 in §1. Q.E.D.

Extending the usual terminology, an FO+LFP formula <P will be called
positive in a predicate symbol P if every free occurrence of P in ^ is

positive. Since the formula <P(P,R) in the LFP formation rule is required to

be positive in P, the operator F(P)={R: <P(P,8)} is monotone and therefore has

a least fixed point. As we have mentioned in the introduction, direct

replacing positivity by monotonicity does not lead to a nice logic. Note,

however, that the operator F'(P)={8: P(x) or <P(P,R)} is always inflationary
and therefore has an inductive fixed point. According to Theorem 3 in Si, if F
is monotone then IFP(F')=LFP(F). This leads to a more liberal extension

FO+IFP of first-order logic. The syntax of logic FO+IFP is the result of

augmenting the syntax of first-order logic by the following formation rule.
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The IFP formation rule. Let r be a positive integer, 5? be an r-tuple of

individual variables, P be an r-ary predicate variable, and <p(P,R) be an

arbitrary well-formed formula. Then IFPp.8(P(R) or <p(P,R)) is a well-formed

predicate, and lIFPp.8(P(R) or <KP,R))KR) is a well-formed formula.

With respect to free versus bound occurrences as well as positive

versus negative occurrences the IFP formation rule behaves exactly as the
LFP formation rule. The definition of vocabulary remains valid for FO+IFP
formulas.

The meaning of the predicate IFPp.8(P(R) or 9(P.R)) is the inductive fixed

point of the operator F'(P)={R: P(R) or <P(P,R)}.

52, Page4 Gurevich and Shelah Fixpoint Extensions May 05



§3. Expressing the inductive fixed point

Extend first-order logic Dg means of a symbol r of an operator that,

given two unary relations and an element, produces a boolean value; formulas
of the extended logic will be called pseudo first-order. The notion of

positivity is generalized to pseudo first-order formulas in the obvious way.

Let P and P' be unary predicate variables. The sign ~ will denote both the

negation and the complementation. Let <P(P,x)=lP(x) or r(P,~P,x)]. The

operator F(P)={x: <p(P,x)} is inflationary. We express the inductive fixed point
of F as (essentially) a projection of the least fixed point of a monotone

operator definable by a positive pseudo first-order formula. Then we present

this result in a vector form that implies Main Theorem.

The proviso of §0 is in force: all structures are finite. For expositary

purposes we choose a nonempty finite set U as our universe of discourse.

For every natural number n, let Pn=Fn(0); thus Po=0 andPn+1 =F(Pn). The

sequence Pn is (non-strictly) increasing. Let m=min{n: Pn=Pn+j); Pm is the

inductive fixed point of F. In addition, let P00=U. For every xeU, let

stage(x)=min{n: xePn). Note that stage(x)>0. Let x<y abbreviate the

conjunction [x*Pn and stage(x)<stage(y)], and let x<y abbreviate

stage(x)<stage(y). Note that x<x «* xcPm. We start with constructing an

inductive operator G whose inductive fixed point is the relation <.

Lemma 1 [Stage Comparison Theorem, Mo].

xsy ** <p({x': x'<y},x), x«y «♦ ~<p({y': -x<y'}, y), and

x<y « <p({x': ~f({y': ~x'<y')), y)). x).
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Proof sketch. To check the first equivalence, consider separately the
cases stage(y)«» and stage(y)=<». To check the second equivalence, consider

separately the cases stage(x)«» and stage(x)=°°. The third equivalence
follows from the first two. We skip details because, formally speaking, the
lemma will be not used. But in essence the lemma gives the desired G.

Let Q and Q' be binary predicates variables,

A(Q,Q',x',y)=r ({y': Q'(x'.y')}, (y': Q(x'.y')}. y). and

A'(Q,Q',x',y)=-A('vQ'-Q,x',y).
Obviously, A and A' are positive in Q and Q',

A(Q,~Q,x',y) » 9({y,:~Q(x'.y')},y), and

A'(Q ~Q,x',y) « ~A(Q ~Q,x',y) «♦ ~<p({y': ~Q(x',y')},y).

Let ^(Q,Q'1xIy)=r({x': A'(Q.Q\x\y)}, (x': A(Q,Q',x',y)}, x),
>('(Q,x,y)=1'(Q,~Q,x,y).
Obviously, ¥ is positive in Q and Q*.

Lemma 2. <KQ,x,y) ♦» ?({*': ~ ~Q(x'.y')).y),x).
Proof. f(Q,~Q,x,y) = T({x': A'(Q,'vQ,x',y)}, {x': A(Q~Q.x,,y)}, x) «

r({x': -A(Q -Q.x'.y)}. {X': A(Q,~Q,x\y)}, x) <p((x': ~A(Q ~Q.x\y)},x)«
~9({y':~Q(x',y')}.y),x). Q.E.D.

Let G(Q)={(x,y): f(Q,x,y)} and Qk=Gk(0).

Lemma 3. For every natural number k, Qk=U {(Pj*Pjj): k>i<0} where J*
may be equal to

Proof by induction on k. The case k=0 is clear. We suppose

Qk=U ((P|XP3): k>i<3) and prove Qk+1 =(J k+1>i<0}.
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First, we analyze the formula ~<p({y': ~Qk(x',y')}, y). If i'=stage(x')sk
then ~Qk(x\y')«stage(y')<i\ {y'; ~Qk(x',y')}=P , and ~<P(PM ,y)«

stage(y)>i'. If i,=stage(x')>k then ~Qk(x',y')*TRUE, {y': ~Qk(x\y')}=U, and

~<P(U,y)«FALSE. Thus, ~<P({y': ~Qk(x',yOl.y)♦»stage(y)>stage(x')<k.

Second, let |J=stage(y). We have {x': ~<p({y': ~Qk(x',y')}, y))={x':

3>stage(x')^k}=P j where j+1=min{£,k+1}.
Third, let i=stage(x). Then (x,y)eQk+j « <P(Pj.x) «♦ i^j+1 «♦ (tefl and

i<k+1) « (x,y)fU {(PjxP£); ^>i<k+0. Q.E.D.

Corollary 4. The operator G is inductive, Qm is the inductive fixed point

of G, and the relation < coincide with Qm.

Let Ft and S be ternary predicate variables. Let p(R,S,x,u,v) be the pseudo
first-order formula

xePj and (u,v)eQj, or R(x,u,v), or there is y such that R(y,y,y),
<P(R(y„),S(y„_),u,v ), S(y,x,x), and ¥(R(y„),S(y„),x,x ).

Let o(R,S,x,u,v) be the pseudo first-order formula

xePj and (u,v)$Q|, or S(x,u,v), or there is y such that R(y,y,y),
~"P(~S(y_),~R(y„),u,v ), S(y,x,x), and 9(R(y_),S(y_),x,x ).

Here the expressions xcPj and (u,v)€Qj abbreviate pseudo first-order
formulas <p(0,x) and *K0,u,v) respectively. Obviously, p and o are positive in
R and S. Therefore the operator

H(R,S) = ({(x,u,v): p(R,S,x,u,v)}, {(x,u,v): o(R,S,x,u,v)}).
is monotone and has a least fixed point.
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Lemma 5. The least fixed point of H is

(U k<ml(pk*1 "pk)xQk+1 U k<mKpk*l 'pk)x,vQk+1 ^
Proof. For each natural number k, let (Rk,Sk)=Hk(0,0). It suffices to

prove that

pk=U i<k^pi+l "pi)xQj+| I ^ ^k=(J j<k((Pj+i ~Pj)x~Q|+| )•
The case k=0 is clear. The case k=1 is clear too: the formulas

p(Ro,So,x,u,v), o(Ro.S0XU,v) are equvalent to their first disjuncts, and those

disjuncts describe Rj ,S| explicitly. Assuming that the claim is proved for

k>1, we prove that

p(Rk,Sk,x,u,v)«(x,u,v)eR' where R'=Rku^pk+l "pk^x^k+1 ^ and

o(Rk«Sk,x,u,v)**(x,u,v)eS' where S'=Sku[(Pk+1-Pk)x~Qk+j ].

First, suppose (x,u,v)eR' and check p(Rk,Sk,x,u,v). The case (x,u,v)cRk is
clear. If (x,u,v)e[(Pk+j -Pk)xQk+i 1 choose any yePk-Pk_j. Note that

Rk(y__)=Qk, Sk(y„)=-Qk> and ¥(Qk,~Qk,u,v)«^(Q k,u,vMu,v)eQ k+1. It

is easy to see that all statements Rk(y,y,y), ¥(Rk(y__),S k(y_^.),u,v ),

^(y.x.x), and ¥(Rk(y„),S k(y„),x,x ) are true.

Second, the implication (x,u,v)eS'-»o(Rk,5k,x,u,v) is proved similarly.

Note that ~1'(~S(y_r_),'»'R(y_r_),u,v )«~*(Qk,~Qk,u,v)« <vf(Qk,u,v)«

(u,v)*Qk+1.

Third, suppose p(Rk,Sk,x,u,v) and check that (x,u,v)eR'. The first disjunct
of p(Rk,Sk,x,u,v) obviously implies (x,u,v)eR't and the second disjunct of

p(Rk,Sk,x,u,v) obviously implies (x,u,v)eR'. Let y be a witness for the third

disjunct of p(Rk,Sk,x,u,v). Note that Rk(y,y,y) implies that yePj-Pj_j for
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some positive i<k, Rk(y„)=Qj, and Sk(y„) equals the complement of Qj.

Hence *(Qj,~Qj,u,v) « <KQj,u,v) « (u,v)eQj+1, Sk(y,x,x) -» x^jt and

♦(Qj.^Qj.x.x) » (x,x)fQj+j X€Pj+1; thus (x,u,v)£R\

Fourth, the imlication o(Rk,Sk,x,u,v) -» (x,u,v)eS'. Note that if

Rk(yr_^_)=Q j and Sk(y^_) equals the complement of Qj then

~<K-Sk(y„),~Rk(y„),u,v) <*-^(Qj,u,v) « (u,v)<Qj+1. Q.E.D.

Let T be a 6-ary predicate, and r(T,x,y,z,u,v,w) be the conjunction of

pseudo first-order formulas

p(3u3v3wT(..,., ,u,v,w), 3x3y3zT(x,y,z,-, , ), x,y,z) and
0(3u3v3wT( , , ,u,v,w), 3x3y3zT(x,y,z, . . ), u,v,w).

Let TT(r.x) be disjunction

Vx<p(0.x) or 3u3v3zw([LFPT;X,y,z,u,v,w ^(T,x,y,z,u,v,w)](x,x,x,u,v,w) ).

Theorem 1. xeLFP(F)«7r(r,x)}.

Proof, if Pj =u then the equivalence is obvious. We assume Pj *Uand

prove xeLFP(F) «♦ 3u3v3zw([LFPT;x>y>ZAVW r(T,x,y,z,u,v,w)Kx,x,x,u,v,w) ).
If Pj =0 then LFP(F)=0, Rj =0 hence p(0,0,x,y,z)«FALSE,

r(0,x,y,z,u,v,w)« FALSE, LFPT.XyiZjU r(T,x,y,z,u,v,w)=0, and the
equivalence is clear.

Suppose that Pj *0. Then Rj *0 and Sj *0. Let H be as in Lemma 2, and
let (X*,Y*)=LFP(H). Clearly, (x,x,x)eX* if and only if xfLFP(F). But by
Theorem 1 in §2 (with R, S, p, o, H, T, r playing the roles of P, Q, <p, F, R, X

respectively) we have

(x,x,x)eX* « 3u3v3zw([LFPT.X|yZU V|W r(T,x,y,z,u.v,w))(x,x,xfu,v.w) ). Q.E.D.
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Theorem 2. Let *(P,P',x) be an arbitrary FO+LFP formula (such that

substituting #(P,P',x) for r in tt(I\x) does not cause a collision of variables)
which is positive in P,P'. Then the FO+LFP formula tt(*,x) expresses the

inductive fixed point of the operator P +♦ {x: P(x) or *(P,^P,x)}.

Proof. This is an immediate consequence of Theorem 1. Q.E.D.

Let r be a positive integer, suppose that U is the cartesian product of r

copies of a set V, and consider V as the main universe. Then r is an operator

that, given two r-ary relations and an r-tuple of elements, produces a

boolean value. The predicate variables P, Q, R, S and T are respectively

r-ary, 2r-ary, 3r-ary, 3r-ary and 6r-ary. Individual variables in the formula
tt are abbreviations for r-tuples of individual variables. This turns 7t(r,x)
into a statement about V and r. Theorem 1 remains true and implies

Theorem 3. Let $(P,P',x) be an FO+LFP formula where P and P' are r-ary

predicate variables and x is an r-tuple of individual variables. Suppose that

♦(P,P',x) is positive in P and P', and substituting ♦(?,?',x) for T in 7t(r,x) does

not cause a collision of variables. Then the FO+LFP formula ir(*,x) ex¬

presses the inductive fixed point of the operator P ++ {x: P(x) or $(P,~P,x)}.

Theorem 3 implies Main Theorem.
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Appendix. From inflationary to monotone

in S3 the formula of main interest was r(P,~P,x); here we redefine r and

present the formula of main interest in a more direct way. In this section
pseudo first-order formulas are formulas of the extension of first-order

logic by a symbol r of an operator that, given one unary relation and one

element, produces a boolean value. Let P be a unary predicate variable,

<P(P,x)=[P(x) or r(P,x)], and F(P)={x: <p(P,x)}. We express the inductive fixed

point of F as the diagonal of the least fixed point of a monotone operator
definable by a pseudo first-order formula.

Again the proviso of So is in force, and again we choose a nonempty

finite set U as our universe of discourse. Let Pj=F,(0) for every natural

number i, and let m=min{i: Pj=Pj+j}; Pm is the inductive fixed point of F. Let

stage(x)=min{i: xePj) for xePm, and let x<y mean that xePm, yePm, and

stage(x)<stage(y). (Note that the relation < is defined here somewhat

differently than in S3.)

Definition. A unary relation P is downward closed with respect to a

binary relation Q if for all elements x and y, (x,y)€Q and yeP imply xeP.

Recall that a binary relation Q on a nonempty set S is called a linear
(reflexive) quasi-order if it is reflexive, transitive, and for all elements x,y

of S, either xQy or yQx. If Q is a linear quasi-order on S then
the relation E={(x,y): xQy and yQx) is an equivalence relation on S, and
the relation {(A,B): Vx6AVytB(xQy)} on the equivalence classes of E is a

linear order.

Let Q be a binary predicate variable, and Nice(Q,x) be a pseudo first-order
formula saying that
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the restriction of Q to the set {u: uQx} is a linear quasi-order, and

for every ve{u: uQx}, F({u: uQv and ~(vQu)})={u: uQv}.
If Nice(Q,x) holds we say that x is ni££ with respect to Q.

Lemma L If Pj is downward closed with respect to a binary relation Q

and if uQv«u<v for all u,v in Pj then every xcPj is Q-nice.
Proof is clear. Q.E.D.

Lemma 2. If an element x is nice with respect to a binary relation Q

then there is a positive integer k<m such that xePk, and Pk is downward

closed with respect to Q, and uQv+*u<v for all u.vcP^.
Proof. Let 5={u: uQx}, E be the equivalence relation {(u,v): uQv and vQu}

on S, and Aj, A2, .... Ak be the equvalence classes of E ordered with respect

to Q (so that if i<j, ueAj, veAj then uQv but not vQu).
It suffices to prove that for every i and every veAj, (J j<j Aj=Pj. If i=1

then Aj ={u: uQv}=F({u: uQv and ~(vQu)})=F(0)=Pj. Let i>l, vc Aj and we Aj_1.

ThenU j<j Aj=(u; uQv}=F({u: uQv and ~(vQu)})=F({u: uQw})=F(U j<j Aj). By the
induction hypothesis, FflJ j<j Aj)=F(Pj_j )=Pj. Q.E.D.

Corollary 3. For every binary relation Q there is a natural number i<m

such that Pj is exactly the set of Q-nice elements, Pj is downward closed

with respect to Q, and the restriction of Q to Pj coincides with the

restriction of the relation < to Pj.
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Let *KQ,x,y) be a pseudo first-order formula saying the following where
5={x: Nice(Q,x)} and G(Q)={(x,y): ^(Q,x,y)}:

If F(S)=S then G(Q)=Q,

Else, if F(S) is not downward closed with respect to Q then G(Q)=U*U,

Else. G(Q)=QU{F(S)*(F(S)-S)].

Lemma A. The operator G is inflationary and monotone.
Proof. The first statement is clear. Let QCO'. By Corollary 3, there are

natural numbers i,j<m such that {x: x is Q-nice}=Pj and {x: x is Q'-nice}= Pj.
First suppose i<j. Then F(Pj)=Pj+1 *Pj. Since Pj+j CPj, Pj+j is

downward closed with respect to Q', hence it is downward closed with

respect to Q. Thus, G(Q)=Qu[Pj+1 x(Pj+j -Pj)] and therefore G(Q) is included

into the restriction of < to Pj which is the restriction of Q' to Pj. Hence
G(Q)£Q'CG(Q').

Second suppose ]<i. The restriction of Q' to Pj+j coincides with the
restriction of Q to Pj+j ; for, otherwise xQ'y for some xePj+j -Pj and yePj,
which contradicts the fact that Pj is downward closed with respect to Q'. If

Pj+1 is downward closed with respect to Q' then x is Q'-nice which is not the
case. ButPj+, =F(Pj)*Pj. Hence G(Q')=UxU and G(Q)cG(Q').

Third suppose i=j. If F(Pj)=Pj then G(Q)=Q£Q'cG(Q'). Suppose that F(Pj)

properly includes Pj. If F(Pj) is not downward closed with respect to Q' then

G(Q)cU*U=G(Q'). Suppose that F(Pj) is downward closed with respect to Q\
Then it is downward closed with respect to Q, and

G(Q)=Qu[F(Pj) *(F(Pj)-Pj)]CQ'u[F(Pj) *(F(Pj)-Pj)l=G(Q'). QE.D.
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Lemma 5. The relation < is a least fixed point of 6.

Proof. Obviously, the set of elements nice with respect to <, equals

Pm. Since F(Pm)=Pm, G(<) coincide with < i.e. < is a fixed point of G.

For every natural number i, let Qj=G,(0). By induction on i we prove that

Qj is the restriction of < to Pj. As a result, the relation < coincide with Qm
and therefore is a least fixed point of G.

The case i=0 is trivial. Suppose that i<m and Qj is the restriction of <

to Pj. Obviously, the set of Qj-nice elements equals Pj. Since F(Pj)=Pj+1 *Pj

and Pj+l is downward closed with respect to Qj, G(Qj)=QjU[p j+1 x(Pj+l -Pj)]
which is the restriction of < to Pj+l. Q.E.D.

Let Tr(I\x)=[LFPQ;x y <KQ,x,y)](x,x).

Theorem 1. X£LFP(F)++tt(I\x)}.

Proof. This is a consequence of Lemma 5 and the equivalence

x£LFP(F)+»x<x. Q.E.D.

Theorem 2. Let $(P,x) be an arbitrary FO+LFP formula (such that

substituting $(P,x) for r in Tt(r,x) does not cause a collision of variables).
Then the FO+LFP formula tt(*,x) expresses the inductive fixed point of the

operator P +♦ {x: P(x) or $(P,x)}.

Theorem 2 is an obvious consequence on Theorem 1. It can be

generalized in the same way that Theorem 2 of S3 was generalized in S3.
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AIIM SCANNER TEST CHART#2
Spectra

4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmriopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'t,./?$0123456789

Times Roman
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:", ./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789

Century Schoolbook Bold
4 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghgklmnopqrstuvwxyz;:",./?$0123456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$012&56789

News Gothic Bold Reversed

ABCDEFGHI J KLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:",./? $012 34 567 89
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz;:'\./?$012 34567 89
ABCDEFGHIJKLMN0PQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./?$0123456789
Bodoni Italic
A HCDHh'CHIJKl.MNOI'QRSTUyWXY/MbcdefghijklmnoiHintuvwxyz:: ",./?S0123456789

ABCDEFGHIJKLMNOPQRSTUVWX YZabcdefghijklrnnopqrstuvwxyz;: ",./?$0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz;:. /?$0123456789
ABCDEFGHIJKLMNOPQR STUVWX YZabcdefghijklmnopqrstuvwxyz;:'r,.
Greek and Math Symbols
ABTAEH0HIKAMNOII<l)P2TYnX>l'Za/378€^Si7iKA^voir((>pcrTVo)X<|»{=:F' '>•/== + = ?t°> <><>< =

ABrAE=6HIKAMNOn4>PZTYnX1'Za/3T8£5e7)iKXti.TOir<|)po-ruo)Xi);{Sq:",./^± = ^-> <><>< =

ABrAE=eHIKAMNOn<I>P2;TYnX4'Za/3y8€|9T)iKAjuvo7r<f)p<Trvo)X>l'^T". /^± = =A°> <><><=

ABrAES0HIKAMNOn<l>P2TYfiXvPZa/3y8e£0i7iKA.fAvo7r<j>pcrTy2 =

t rr

6 PT

8 PT

10 PT

6 PT

8 PT

10 PT
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