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Dyslipidemia impairs mitochondrial trafficking and
function in sensory neurons
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ABSTRACT: Mitochondrial trafficking plays a central role in dorsal root ganglion (DRG) neuronal cell survival and
neurotransmission by transporting mitochondria from the neuronal cell body throughout the bundles of DRG
axons. In type 2 diabetes (T2DM), dyslipidemia and hyperglycemia damage DRG neurons and induce mitochon-
drial dysfunction; however, the impact of free fatty acids and glucose onmitochondrial trafficking inDRGneurons
remainsunknown.Toevaluate the impactof freefattyacids compared tohyperglycemiaonmitochondrial transport,
primary adult mouse DRG neuron cultures were treated with physiologic concentrations of palmitate and glucose
and assessed for alterations in mitochondrial trafficking, mitochondrial membrane potential, and mitochondrial
bioenergetics. Palmitate treatment significantly reduced the number of motile mitochondria in DRG axons, but
physiologic concentrations of glucose did not impair mitochondrial trafficking dynamics. Palmitate-treated DRG
neurons also exhibited a reduction in mitochondrial velocity, and impaired mitochondrial trafficking correlated
with mitochondrial depolarization in palmitate-treated DRG neurons. Finally, we found differential bioenergetic
effects of palmitate and glucose on resting and energetically challenged mitochondria in DRG neurons. Together,
these results suggest that palmitate induces DRG neuron mitochondrial depolarization, inhibiting axonal mito-
chondrial trafficking and altering mitochondrial bioenergetic capacity.—Rumora, A. E., Lentz, S. I., Hinder, L. M.,
Jackson, S. W., Valesano, A., Levinson, G. E., Feldman, E. L. Dyslipidemia impairs mitochondrial trafficking and
function in sensory neurons. FASEB J. 32, 195–207 (2018). www.fasebj.org
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Diabetes affects;300million individuals worldwide, and
roughly 50% of individuals with type 2 diabetes (T2DM)
develop diabetic neuropathy (DN) (1–3), making DN one
of the most prevalent neurologic complications. In DN,
length-dependent peripheral nerve damage induces a
distal-to-proximal loss of sensation, thereby causing a
significant loss of individual and societal productivity (4,
5), apoorqualityof life for affected individuals (1,6, 7), and
60%of lower limb amputations (2). Glycemic control is the
only current DN treatment, but clinical and experimental
data show that glycemic control alone does not signifi-
cantly affect DN pathogenesis in T2DM (8). More recent
studies, however, have indicated that dyslipidemia

correlates with progressive nerve damage and is a strong
predictor of developing DN (3, 7, 9–11). Hence, un-
derstanding the cellular and molecular pathways altered
by dyslipidemia is necessary to develop novel, effective
therapies to prevent the onset and progression of DN.

DN is primarily a sensory neuropathy that affects
dorsal root ganglion (DRG) sensory neurons that originate
in the spinal cord and extend axon bundles up to 2 m in
length to innervate the periphery (11). DRG neurons de-
pend onmitochondrial glucosemetabolism and fatty acid
oxidation in the cell body and throughout the entire axon
for ATP production (11–19); therefore, altered mitochon-
drialmetabolism is a likely contributor to DNprogression
(17). Hyperglycemia and dyslipidemia both induce mo-
lecular signatures of mitochondrial dysfunction in DRG
neurons, including oxidative stress and apoptosis (9–12),
and, given the length-dependent damage associated
with DN, it is likely that early DRG neuronal dysfunc-
tion originates in the distal DRG axon. This location
potentially implicates critical mitochondrial trafficking
mechanisms that transport mitochondria from the cell
body throughout the DRG axon for neuronal function in
DN pathogenesis; however, the impact of hyperglyce-
mia and dyslipidemia on mitochondrial transport in
DRG neurons is unknown.
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Mitochondrial trafficking along the DRG axon is regu-
lated by specialized mechanisms that are influenced by
post-translational modifications, metabolic requirements,
and intracellular calcium fluctuations (20–23). This com-
plex process requires the motor proteins kinesin-1 and
cytoplasmic dynein. Kinesin-1 facilitates anterograde mi-
tochondrial transport away from the cell body toward the
distal axon tip, whereas cytoplasmic dynein transports
mitochondria retrogradely toward the cell body. These
motor proteins are coupled to mitochondria via mito-
chondrial motor adaptor proteins in the Milton-Trak1/2
family and via the Rho GTPases Miro1 and -2 (20–25).
These motor proteins and adaptors are regulated by the
metabolic state of neurons. A study in rat hippocam-
pal neurons found that elevated glucose levels regulate
O-GlcNAcylation of Milton by O-GlcNAc transferase
(20), thereby affecting mitochondrial transport. Moreover,
metabolic regulation of calcium flux can regulate mito-
chondrial motility by altering the conformational state of
Miro to haltmitochondrialmotility. Alteredmitochondrial
transport is also implicated in other neurologic diseases
(26–28).Therefore, in this study,weevaluated the impactof
hyperglycemia and dyslipidemia on mitochondrial traf-
ficking as a potential pathogenic mechanism for DN. We
assessed specifically the effect of elevated levels of glucose
and the fatty acid palmitate on mitochondrial trafficking,
function, and depolarization in DRG neurons.

MATERIALS AND METHODS

Primary DRG neuron culture and treatments

PrimaryDRGneurons from16- to 18-wk-oldC57Bl/6Jmice (The
Jackson Laboratory, Bar Harbor, ME, USA) were cultured as
described in several publications (11, 14, 29). In brief, cervical,
lumbar, and thoracic DRGs were collected and incubated with 2
mg/ml collagenase (Millipore-Sigma, Billerica, MA, USA), dis-
sociated in heat-inactivated fetal bovine serum, and pelleted by
centrifugation to remove residual serum. Three different media
were prepared as follows: treatment medium containing 50% F-
12K (Cell Gro; Corning, Manassas, VA, USA), 50% DMEM (Cell
Gro; Corning), 1:100 dilution of Nb+ (13), 1000 U/ml penicillin/
streptomycin/neomycin (Thermo Fisher Scientific, Waltham,
MA, USA), and 7.2 mM aphidicolin (Millipore-Sigma); feed me-
dium, containing treatmentmediumplus13B27 (ThermoFisher
Scientific); and plating medium, containing feed medium plus
2 mM L-glutamine (0.4 mM final concentration; Thermo Fisher
Scientific). DRG neurons were resuspended in plating medium
and transfected with CellLight mitochondria-GFP (mito-GFP;
BacMam 2.0; Thermo Fisher Scientific), by adding 3.75 ml/ml
mito-GFP to the dissociated DRG cells before plating in 4-well
Nuc Lab-Tek chambered coverglass imaging plates (Thermo
Fisher Scientific) coated with 25 mg/ml laminin (Millipore-
Sigma). After 24 h, DRG neurons were switched into feed me-
dium. After another 24 h (48 h total), primary DRG neurons had
established axons and were treated with treatment medium
supplemented with 25–200 mM glucose (final concentration
range,31.1–206.1mMglucose) (Millipore-Sigma)or31.25–250mM
palmitate for 12 or 24 h. Initial mitochondrial motility studies
included a combination treatment containing both 25 mM
glucose and 250 mM palmitate. For palmitate treatments, so-
dium palmitate (Nu-ChekPrep, Elysian, MN, USA) was con-
jugated to fatty acid-free bovine serumalbumin (BSA) (Thermo
Fisher Scientific) and diluted to treatment concentrations.

Treatment medium alone was used as a control for glucose
treatments, whereas 0.25% BSA was used as a control for pal-
mitate treatments.

Mitochondrial motility and kymographing analysis

To evaluate mitochondrial trafficking in DRG neurons, we
tracked the movement of individual mitochondria in live DRG
neurons by time-lapse confocal microscopy (26). An A1 confocal
microscope (Nikon Instruments, Melville, NY, USA) equipped
with an environmental chamber (Tokai Hit, Shizuoka-ken, Ja-
pan) maintained at 5% CO2 and 37°C was used to image DRG
neurons after 12 and 24 h of treatment, using NIS Elements
software (Nikon Instruments). For each live neuron, imageswere
takenwitha340oil objectivewith the confocal aperture set foran
optical thickness of 4.49 mm. The Nikon Perfect Focus system
(Nikon Instruments) was used to retain focus on the sample and
offset thermal drift throughout time-lapse imaging. A time series
was created at 32 zoom by recording an image every 2.5 s for
2.5 min using the NIS Elements ND acquisition to envisage the
time series of confocal images.

The image time series recorded for each mito-GFP-labeled
DRG neuron was quantitated with MetaMorph Software (Mo-
lecular Devices, Sunnyvale, CA, USA) (26, 30). Kymographs
were generated by drawing regions of interest along the axon in
the anterograde direction, from the soma toward the distal axon
tip. Mitochondrial movement within 10 mm of the region of in-
terestwas recorded along the x axis of the kymograph,with each
subsequent image of mitochondrial movement stacked down-
ward along the y axis (26, 31, 32). One kymograph with aver-
age background subtraction was generated to highlight motile
mitochondria, and a second kymograph with no background
subtraction was generated for stationary mitochondria. Kymo-
graphs were then used to evaluate the number of motile and
stationary mitochondria, the directionality of mitochondrial
movement, and the velocity of motile mitochondria under each
treatment or control condition with Excel (Microsoft Corp.,
Redmond,WA,USA).A thresholdvelocity, determined from the
average velocity of mitochondrial movement in control condi-
tions (26), was set at 0.02 mm/s to designate mitochondrial mo-
tility in DRG neurons (representing less than 10% of the average
velocity in control conditions); therefore, mitochondria with ve-
locities ,0.02 mm/s were considered stationary. An average of
15 neurons from 3 to 5 separate experimental replicates were
analyzed for each treatment condition.

Mitochondrial membrane potential analysis

Mitochondrial polarization state was assessed with tetrame-
thylrhodamine methyl ester (TMRM) (Thermo Fisher Scientific)
(18, 29, 33). TMRM is a cationic fluorophore that sequesters to the
matrix of polarized mitochondria but diffuses upon mitochon-
drial depolarization (34). PrimaryDRGneurons transfectedwith
mito-GFP were cultured as described above for 48 h to establish
axons, treatedwithglucoseorpalmitate for24h,and incubated in
the respective treatment plus 50 nM TMRM for 30 min at 37°C.
After TMRM staining, the respective TMRM-containing treat-
ment was removed, DRG neuron cultures were washed twice
with treatment medium, and the respective treatments without
TMRMwere replaced. Live-cell confocalmicroscopywasused to
take single, sequential images of mito-GFP (green channel) and
TMRM costaining (red channel) in DRG neurons with a340 oil
objective. TMRM staining intensity was analyzed by creating a
threshold intensity level with the MetaMorph Image Analy-
sis program (Molecular Devices). All data acquired from
MetaMorph were then analyzed by detecting the fluores-
cence intensity of TMRM signal masked to mito-GFP-labeled
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mitochondria, to differentiate between polarized and depo-
larized mitochondria. TMRM signals below 1000 intensity
units (1.5%max, range 0–65,536)were considered depolarized.
An average of 51 neurons from 3 to 5 separate experimental
replicates were analyzed for each treatment condition.

Mitochondrial bioenergetic profiling

Mitochondrial bioenergetic function in treated and control DRG
cultureswas evaluatedwith anXF24Extracellular FluxAnalyzer
(Agilent Technologies, SantaClara, CA,USA) (35).DRGneurons
harvested from two 16- to 18-wk-old mice were cultured in a
laminin-coated 24-well Seahorse plate (Seahorse Bioscience,
Chicopee, MA, USA) as above. After 48 h, DRG neurons had
established axons, and cultures were treated with 100 mM glu-
cose or 62.5–250 mM palmitate for 24 h. Cultures were changed
into buffer-free DMEM [supplemented with 1 mM sodium py-
ruvate, 6.27 mM D-glucose, and 3 mM Glutamax (pH 7.4);
Thermo Fisher Scientific] 1 h before mitochondrial respiration
measurements. For bioenergetic profiling, stable baseline oxygen
consumption rate (OCR) measurements were established for
resting DRG neurons, followed by measurements of real-time
OCR subsequent to sequential injection of 1.25 mM oligomycin,
300–1000 nM carbonyl cyanide-4-(trifluoromethoxy)phenyl-
hydrazone (FCCP), and 1 mMantimycin A (all fromMillipore-
Sigma). The dose-response of the uncoupling protonophore
FCCP measured changes in mitochondrial respiration metrics
in challenged DRG neurons. These metrics were then used to
evaluate the spare respiratory capacity (SRC), an assessment
of the ability of treated DRG neurons to produce excess
ATP by oxidative phosphorylation under increased energy
demand. Oligomycin and antimycin A inhibited oxidative
phosphorylation for derivation of ATP-linked mitochondrial
respiration and nonmitochondrial respiration parameters. The
number of plates per condition was 7 for treatment medium,
4 for 0.25% BSA, and 2 for all other conditions. Bioenergetic
parameters were derived from response curves, normalized to
total protein concentration, and reported as a mean of all rep-
etitions (36).

Mitochondrial copy number analysis

Primary DRG neurons from four 16- to 18-wk-old mice were
cultured in a 24-well laminin-coated cell culture plate as de-
scribed above for 48 h. DRG neurons were then treated in trip-
licate with treatment medium and 0.25% BSA, 62.5–250 mM
palmitate, or 50–100 mM glucose. After 24 h, DNAwas isolated
from DRG neuron cultures by using the AllPrep DNA/RNA
Mini Kit (Qiagen, Germantown, MD, USA). Mitochondrial copy
number was determined for each treatment condition by com-
paring the expression of mitochondria-encoded cytochrome
b (cyto b) to nuclear-encoded tyrosine 3-monooxygenase/
tryptophan 5-monooxygenase activation protein (Ywhaz): for-
ward primer: 59-AAGACAGCACGACGCTAATAATGC-39 and
reverse primer: 59-TTGGAAGGCCGGTTAATTTTC-39. Gene
expression was calculated by the standard curve method with
sequence-specific primers and Power SYBR Green PCR Master
Mix on a StepOnePlus Real-Time PCR System (both from
Thermo Fisher Scientific).

Statistical analyses

Statistical analysis of mitochondrial trafficking, mitochon-
drial bioenergetic parameters, and mitochondrial de-
polarization data was performed with Prism, v.6 (GraphPad
Software, La Jolla, CA, USA), and results are presented as

means6 SEM. One-wayANOVAwith Tukey’s post hoc test for
multiple comparisons was performed for mitochondrial
trafficking and mitochondrial depolarization data. For mi-
tochondrial bioenergetics, treatment medium/glucose and
BSA/palmitate were considered separate groups; resting
metrics were evaluated with 1-way ANOVA with Tukey’s
post hoc test for multiple comparisons, and challenged met-
rics were analyzed with 2-way ANOVA performed on 2
datasets at a time, with the Bonferroni post hoc test for
multiple comparisons between FCCP concentrations (37).
Mitochondrial trafficking and depolarization data were sta-
tistically significant at P, 0.01 and bioenergetic parameters at
P , 0.05.

RESULTS

Palmitate reduces the percentage of
motile mitochondria

To evaluate the impact of extracellular glucose and
palmitate on mitochondrial motility in sensory neu-
rons, we tracked mitochondrial movement in live DRG
neurons expressing mito-GFP with time-lapse confocal
microscopy and developed kymographs (Fig. 1A). In
the treatment medium and 0.25% BSA control condi-
tions containing normal physiologic levels of glucose
(6.1 mM glucose), ;40% of mitochondria were motile.
The physiologic blood glucose and saturated fatty acid
levels of a diabetic patient (33–35) were then modeled
by treating DRG neurons with 50 mM glucose, 250 mM
palmitate, or a combination of both 25 mM glucose and
250 mM palmitate. Although 50 mM glucose alone did
not alter the percentage of motile mitochondria, with
;40% motile mitochondria similar to controls, 250 mM
palmitate reducedmitochondrial transport after 12 h of
treatment and nearly abolished mitochondrial move-
ment by 24 h (Fig. 1B, C). DRG neurons treated with
the 25 mM glucose/250 mM palmitate combination
exhibited a reduction in mitochondrial trafficking sim-
ilar to that of 250mMpalmitate (Fig. 1B, C). These results
suggest that physiologic palmitate levels have an in-
hibitory effect on mitochondrial trafficking.

To gain further insight into the effect of hyperglyce-
mia and dyslipidemia on mitochondrial motility in
DRG neurons, we next evaluated the overall motile
mitochondria percentages at 12 and 24 h after treatment
with a range of glucose and palmitate concentrations.
At both time points, 50–200 mM glucose did not reduce
the percentage of motile mitochondria (Fig. 2A, C, E),
whereas 50mM glucose appeared to trigger a slight but
significant increase in the number of motile mitochon-
dria at 12 h only (Fig. 2C). These data indicate that
physiologic glucose increases alone do not alter the
percentage of motile mitochondria in DRG neurons.
Treatment with physiologic diabetic palmitate con-
centrations ranging from 62.5 to 250 mM, on the other
hand, induced a significant, dose-dependent reduction
in motile mitochondria percentages after 12 h (Fig. 2B,
D), and motile mitochondria were nearly abolished in
the presence of 125 and 250mMpalmitate after 24 h (Fig.
2B, F). The 31.25 mM palmitate treatment did not sig-
nificantly decreasemitochondrialmotility at either time
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point after treatment (Fig. 2B, D, F), suggesting that
DRG neurons metabolize low palmitate levels without
altering mitochondrial trafficking dynamics.

Mitochondrial trafficking directionality is not
altered by glucose or palmitate

Given that neuronal mitochondrial movement is bi-
directional (21),we next determinedwhether glucose or
palmitate alters anterograde or retrograde mitochon-
drial transport. After 24 h of glucose or palmitate
treatment, there were no significant differences in
overall mitochondrial directionality relative to the
treatment media and 0.25% BSA controls in the anter-
ograde direction (Fig. 3A, B). Similarly, treatment with
any glucose or palmitate concentration did not induce
significant alterations in the number of mitochondria
moving in the retrograde direction (Fig. 3C, D). At 12 h
of treatment, DRG neurons exhibited bidirectional mi-
tochondrial movement similar to that seen after 24 h
(Supplemental Fig. 1), indicating that there is no time-
dependent change in mitochondrial directionality.

Together, these results suggest that inhibition of mito-
chondrial trafficking by elevated glucose or palmi-
tate does not alter the directionality of mitochondrial
movement.

Palmitate alters mitochondrial
trafficking velocity

Because the percentage of motile mitochondria is altered
under physiologic palmitate concentrations, we next
assessed the impact of glucose and palmitate on mito-
chondrial velocity. After 24 h of treatment, there were no
significant reductions in anterograde or retrograde veloc-
ity in DRG neurons treated with 50–200mMglucose (Fig.
4A, C).With 62.5–250mMpalmitate, however, therewas a
significant decrease in anterograde velocity (Fig. 4B) as
well as a trending reduction in retrograde velocity (Fig.
4D). Of note, similar effects were apparent after 12 h of
treatment: there was a significant increase in anterograde
velocity at 50 mM glucose, and palmitate induced a de-
crease in retrograde velocity at 62.5 and 250mMpalmitate
(Supplemental Fig. 2).

Figure 1. Diabetic physiologic concentrations of palmitate inhibit mitochondrial transport in mouse DRG neurons. A)
Kymographs of mitochondrial motility in DRG axons expressing mito-GFP treated with treatment medium (TM), 0.25% BSA,
50 mM glucose, 250 mM palmitate, and 25 mM glucose+250 mM palmitate. The top panel of each kymograph is a representative
image of the axon from the 2.5-min time series that was used to develop the corresponding kymograph. B, C) The percentage of
motile mitochondria in each treatment condition after 12 h (B) or 24 h (C) of treatment. Values are expressed as means 6 SEM.
*P , 0.01, ordinary 1-way ANOVA with Tukey’s multiple-comparisons test.
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Palmitate-induced mitochondrial
depolarization is associated with
altered trafficking dynamics

Mitochondrial uncoupling results in depolarization of
the mitochondrial membrane and consequent detachment

of mitochondrial molecular motors from the microtu-
bule, resulting in impaired mitochondrial motility
(38–41). Therefore, we used TMRM staining to examine
the impact of glucose and palmitate on mitochondrial
depolarization in DRG neurons as a potential mecha-
nism for palmitate-induced inhibition of mitochondrial

Figure 2. Elevated palmitate induces a dose-dependent decrease in mitochondrial trafficking in mouse DRG neurons. A, B)
Changes in the number of motile mitochondria visible in kymographs of mitochondrial motility in DRG axons treated for 24 h
with 50–200 mM glucose (A) or 31.25–250 mM palmitate (B). Each panel depicts a representative kymograph from the 2.5-min
time series. C–F) The average percentage of motile mitochondria after treatment with 50–200 mM glucose (C, E) or 31.25–250 mM
palmitate (D, F), as quantitated using the kymograph analysis. The percentage of motile mitochondria was assessed after 12 h
(C, D) and 24 h (E, F). Values are expressed as means 6 SEM. *P , 0.01, ordinary 1-way ANOVA with Tukey’s multiple-
comparisons test.
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trafficking (19, 29). Punctate TMRM staining in DRG
neurons treated with control medium and 0.25% BSA
confirmed that mitochondria in control culture con-
ditions retained mitochondrial membrane polariza-
tion (Fig. 5A–C, G). Glucose (100 mM) did not affect
the mitochondrial membrane potential, showing no
change in the percentage of depolarized mitochondria

(Fig. 5G). DRG neurons treated with 62.5–250 mM
palmitate, however, exhibited a significant dose-
dependent increase in mitochondrial depolarization
(Fig. 5G) which was discernible in the diffusely
stained axonal mitochondria (Fig. 5D–F) and reflec-
ted in the dose-dependent decrease in mitochondrial
trafficking.

Figure 3. Effect of glucose and palmitate
treatments on directionality of mitochondrial
transport. No significant alteration in direction-
ality of trafficking was observed after 24 h of
50–200 mM glucose treatments (A, C ) or
31.25–250 mM palmitate treatments (B, D) in
the anterograde (A, B) or retrograde (C, D)
direction. Values are expressed as means6 SEM.
*P , 0.01, ordinary 1-way ANOVA with Tukey’s
multiple comparisons test.

Figure 4. Dose-dependent reduction in mito-
chondrial trafficking velocity in glucose- and
palmitate-treated mouse DRG neurons. A sig-
nificant reduction in anterograde mitochondri-
al trafficking velocity was visible after 24 h of
treatment with palmitate (B) concentrations
that inhibit mitochondrial trafficking. Similarly,
a trending reduction in retrograde mitochon-
drial trafficking velocity was visible after 24 h
of treatment with elevated concentrations of
palmitate (D). No significant differences in
anterograde (A) or retrograde (C) mitochon-
drial trafficking velocity were evident after 24 h
of 50–200 mM glucose treatment. Values are
expressed as means 6 SEM. *P , 0.01, ordi-
nary 1-way ANOVA with Tukey’s multiple-
comparisons test.
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Palmitate induces a dose-dependent
reduction in DRG neuron
bioenergetic capacity

To assess the impact of hyperglycemia and dyslipidemia
on mitochondrial function, we evaluated the bioenergetic

parameters of DRGneurons treatedwith elevated glucose
and palmitate at rest or after energetically challenging
them with the mitochondrial uncoupler, FCCP. In the
resting state, DRG neurons displayed a decrease in mito-
chondrial respiration and ATP production at 100 mM
glucose, as well as a decrease in proton leak compared to

Figure 5. Elevated palmitate treatments induce mitochondrial depolarization. A–C) DRG neurons expressing mito-GFP (A)
treated with control treatment medium (TM) retained mitochondrial polarization, as depicted by punctate TMRM staining (B).
Polarized mitochondria appear yellow in an overlay of mito-GFP (green) and TMRM (red) signal (C). D–F) Mitochondria in
DRG neurons labeled with mito-GFP (D) and treated with 250 mM palmitate exhibited decreases in TMRM staining (E) because
of mitochondrial depolarization. When the mito-GFP (green) and TMRM (red) channels are merged, depolarized mitochondria
appear green because of diffuse TMRM staining (F). G) DRG neurons treated with 62.5–250 mM palmitate exhibited a
significant, dose-dependent increase in the number of depolarized mitochondria relative to the 0.25% BSA, TM, and 100 mM
glucose-treated cells. Values are expressed as means 6 SEM. *P , 0.01, ordinary 1-way ANOVA with Tukey’s multiple-comparisons
test.
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the treatment medium control (Fig. 6A–D). The coupling
efficiency was maintained in 100 mM glucose-treated
DRGneurons, with;80% of the oxygen consumed by the
mitochondria coupled to ATP production (Fig. 6C). A
significant reduction in both absolute and relative SRC
was observed for 100 mM glucose-treated neurons (Fig.
6E, F). These treatments also induced a lower OCR, di-
minished the dose-dependent effect of FCCP, and nearly
abolished aerobic respiration. These data suggest that el-
evated glucose concentrations induce a reduction in mi-
tochondrial respiration in resting and challenged DRG
neurons.

We next evaluated the bioenergetic parameters of DRG
neurons treated with 62.5–250 mM palmitate. Because
there were no differences in bioenergetics between the
treatmentmediumand the 0.25%BSAvehicle controls,we
compared all palmitate-induced bioenergetic changes to
the 0.25% BSA control. Although DRG neurons treated
with 62.5 mM palmitate exhibited normal resting and
challenged mitochondrial bioenergetics comparable to
0.25% BSA (Fig. 6A–D, G, H), DRG neurons treated with
125mMpalmitate revealed increasedbasal respiration and
ATP turnover while maintaining coupling efficiency. This
increase in resting bioenergetic parameters resulted in a
proportional increase in proton leak, with 70% of oxygen
expenditure coupled toATPproduction (Fig. 6A–D). DRG
neurons treated with 250 mM palmitate maintained in-
creased resting mitochondrial respiration and ATP pro-
duction and also revealed reduced coupling efficiency and
increased proton leak, reducing the coupling efficiency
to ;65% (Fig. 6A–D). Moreover, palmitate-treated DRG
neurons challenged with FCCP exhibited increased abso-
lute SRC at lower palmitate concentrations, but decreased
absolute SRC at 250 mMpalmitate (Fig. 6G). Relative SRC
measurements, which account for basal respiration
changes, revealed that 125 and 250 mM palmitate di-
minished the FCCP dose-response, resulting in a 25 and
69% decrease in SRC, respectively, whereas 62.5 mM pal-
mitate increasedSRCsimilar to the0.25%BSAcontrol (Fig.
6H). Overall, these results suggest thatmild uncoupling is
a compensatory mechanism for adapting to slight in-
creases in palmitate substrate availability; however, DRG
neuronal mitochondria fail to maintain efficient energy
production to match further increases in palmitate con-
centration. Thus, these data indicate that glucose and
fatty acids have differential effects on mitochondrial
bioenergetics.

Finally, because mitochondrial biogenesis varies with
metabolic flux to maintain energetic homeostasis, we ex-
amined how the glucose and palmitate treatment effects
on mitochondrial bioenergetics correlate with mitochon-
drial copy number. DRG neurons exhibited a significant
increase in mitochondrial copy number in the presence of
50–100mMglucose,whereasmitochondrial copy number
was maintained after treatment with 62.5–125 mM pal-
mitate and increased only at 250 mM palmitate (Fig. 6I).
These results suggest that DRG neurons exhibiting re-
duced SRC under high glucose and palmitate treatments
may undergo biogenesis in an attempt to compensate for
excess substrate availability and enhance SRC by in-
creasing the mitochondrial copy number (42).

DISCUSSION

Neurons depend on mitochondrial trafficking mecha-
nisms to distribute mitochondria throughout axons
(43–48); however, the impact of altered diabetic concen-
trations of glucose or fatty acids on mitochondrial traf-
ficking in DRG neurons is unknown. We assessed the
effect of extracellular glucose and palmitate on mito-
chondrial trafficking and mitochondrial function in pri-
mary DRG neurons and found that physiologic glucose
levels did not alter mitochondrial movement or mito-
chondrial membrane potential, but significantly dimin-
ishedmitochondrial respiration and increased biogenesis.
Physiologic concentrationsofpalmitate, on theotherhand,
significantly impaired axonal mitochondrial motility and
velocity in DRG neurons in a dose-dependent manner
that correlated with impaired mitochondrial energy pro-
duction, increased mitochondrial copy number, and a
higher percentage of depolarized mitochondria. These
data suggest that excess palmitate, but not glucose, im-
pairs mitochondrial transport throughout the axon in
DRG neurons in vitro and could provide a rationale for
clinical studies elucidating a central role for dyslipide-
mia in sensory neuron cell damage and DN develop-
ment (3, 7–11).

Diabetes is diagnosed when circulating blood glucose
levels are.11mM,whereas levels in a healthy individual
typically fall between 4 and 6.1 mM (49). Likewise, the
level of serum glucose in diabetic rats (40.1 6 1.9 mM) is
2.5–3 times higher than the level of glucose in the sciatic
nerve (16.2 6 0.7 mM/kg wet weight) (50). Therefore, to
mimic normoglycemic conditions, our DRG neuron cul-
ture medium contains 6.1 mM glucose. To model physio-
logic hyperglycemic concentrations, we initially used
25–50 mM added glucose (Fig. 1) and then increased
treatment concentrations up to 200 mM added glucose to
evaluate the impact of increased glucose levels on mito-
chondrial trafficking (Fig. 2). To assess how dyslipidemia
affects mitochondrial motility, we used palmitate, a 16-
carbon saturated fatty acid that serves as a biomarker for
T2DM and constitutes 30% of nonesterified fatty acids in
human plasma (51). Although fatty acid concentration
fluctuates based on diet, a recent study measuring the
human serum metabolome observed 66–125 mM palmi-
tate (52), whereas another study measuring serum pal-
mitate in healthy mice found levels up to 250 mM (53).
Hence, diabeticmicewouldbe likely to exhibit physiologic
concentrations of palmitate up to 250mMor higher. Thus,
to evaluate the impact of dyslipidemia on mitochondrial
transport in DRG axons, we used physiologically relevant
palmitate concentrations between 31.25–250 mM (54–56).
We found that 50–200 mM extracellular glucose had no
impact on mitochondrial motility, whereas 62.5–250 mM
palmitate arrested mitochondrial movement in DRG
neurons.

Although physiologic glucose levels did not affect mi-
tochondrial movement in DRG neurons, physiologic pal-
mitate concentrations nearly abolished mitochondrial
trafficking. These findings contrast with those in a re-
cent study that identified a connection between glucose
metabolism and post-translational modification of the
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Figure 6. Glucose and palmitate induce differential mitochondrial respiratory phenotypes in DRG neurons. After stable
baseline OCR measurements, mitochondrial bioenergetic profiles were determined by sequential addition of oligomycin
(ATP-synthase inhibitor), FCCP [carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, uncoupler], and antimycin A
(complex III inhibitor) for final concentrations of 1.25 mM, 300–1000 nM, and 1 mM, respectively. A–D) Resting

(continued on next page)
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mitochondrial motor protein Milton that resulted in im-
paired mitochondrial trafficking in primary rat hippo-
campal neurons (20). Specifically, the metabolic sensor
O-GlcNAc transferase prompted GlcNAcylation of
Milton under elevated glucose concentrations (57). This
glucose-mediated regulation of mitochondrial trafficking
inhippocampalneuronshighlights the impact ofmetabolic
flux on mitochondrial trafficking (58); however, the
divergence between this glucose-mediated reduction in
mitochondrial trafficking and our data examining fatty
acid-mediated impairment of mitochondrial transport
suggest that regulatory factors controlling mitochon-
drial trafficking dynamics in peripheral DRG neurons
are unique from those in central nervous system hip-
pocampal neurons. Therefore, palmitate may impair
mitochondrial movement in DRG neurons by a unique
regulatory mechanism.

Bidirectional mitochondrial movement is fundamental
to neuronal health; however, exogenous or endogenous
factors can alter the directionality of mitochondrial
movement, resulting in a bias toward anterograde or ret-
rograde movement. Across all glucose and palmitate
treatment conditions, the motile mitochondria in DRG
neurons maintained bidirectional movement, despite a
dose-dependent decrease in velocity (Figs. 3 and 4). These
results suggest that elevatedglucose concentrationsdonot
impair neuronal mitochondrial directionality, and may
target dysfunctional mitochondria to the cell body for
degradation (39, 59, 60). In addition, the maintained bi-
directional mitochondrial movement across glucose and
palmitate concentrations suggests that a preference for
retrograde movement is not necessary to transport dam-
agedmitochondria to the cell body for degradation (44, 59,
61, 62). Instead, a steady decrease in mitochondrial ve-
locity paralleling an overall reduction in the percentage of
motilemitochondria is suggestive of globalmitochondrial
dysfunction (42, 63). The reduction in mitochondrial traf-
ficking with no bias toward retrograde or anterograde
directionality points to molecular changes in mitochon-
drial adaptor proteins that attach mitochondria to
anterograde-directed kinesin-1 or retrograde moving dy-
nein.TheGTPase family ofmitochondrial adaptors,Miro1
and -2, has been identifiedasneuronal calciumsensors (64,
65). Miro mitochondrial adaptors undergo structural
changes upon binding calcium in response to elevated
levels of intracellular calcium flux. This conformational
change facilitates detachment of the mitochondria from
molecular motors, thereby halting mitochondrial traffick-
ing. Calcium dysregulation associated with palmitate (66)
may therefore be responsible for impaired mitochondrial
trafficking in hyperlipidemic DRG neurons, and this
palmitate-induced calcium dyshomeostasis could occur
by direct or indirect mechanisms (67). Palmitate has been

shown to formdirect interactionswith calciumchannels to
trigger elevation in intracellular calcium levels (65, 68, 69).
Alternatively, palmitate can also induce increases in in-
tracellular calcium indirectly by activating G-protein-
coupled receptor 40 (70, 71). Other potential mechanisms
that could impair mitochondrial motility include changes
affecting anchoring proteins or post-translational modifi-
cations that inhibit mitochondrial movement (46). Irre-
spective of the molecular mechanism underlying
metabolically dysregulated mitochondrial trafficking, the
resulting energetic dysregulation and mitochondrial dys-
function may contribute to neuronal dysfunction.

Given that mitochondrial membrane depolarization
has been implicated in arrested mitochondrial trafficking
in neurons and ultimately results in reduced bioenergetic
capacity, which may play a significant role in neuronal
dysfunction (39, 41), we next evaluated the impact of
glucose and palmitate on mitochondrial depolarization.
Although glucose did not significantly affect mitochon-
drial membrane polarization in adult DRG neurons, pal-
mitate treatment induced mitochondrial depolarization
(Fig. 5). There is a clear role for palmitate inmitochondrial
depolarization inmany cell lineages (72–74); however, the
contribution of glucose inmitochondrial depolarization of
DRG neurons remains disputable (75). Studies in embry-
onic DRG neurons indicate that 45 mM glucose induces
oxidative stress and mitochondrial dysfunction (15, 16,
18), whereas adult rat DRG neurons treated with up to
60 mM glucose exhibited no significant increase in neu-
ronal oxidative stress or cell death (76, 77). This discrep-
ancy could be due to differing nutrient requirements and
physiologic states of embryonic compared to adult DRG
neurons (78). Our results, however, show that glucose con-
centrations exceeding physiologic levels do not significantly
altermitochondrial depolarization, suggesting that primary
DRG neurons from adult mice are resistant to glucose-
induced mitochondrial depolarization. Palmitate, on the
other hand, induced significant mitochondrial membrane
depolarization. Therefore, we contend that dyslipidemia
and hyperglycemia in adult DRG neurons is the most ac-
curate model of sensory neuronal changes in vivo (75).

We next evaluated the impact of glucose and palmitate
on mitochondrial bioenergetics as a marker of mitochon-
drial function. These bioenergetic studies indicated that
elevated glucose concentrations significantly altered the
resting bioenergetic state of DRG neurons, as indicated by
a reduction in mitochondrial respiration, compromised
ATP turnover, proton leak, andmitochondrialuncoupling
(Fig. 6A–D). Furthermore, challenged DRG neurons
exhibited an even greater reduction in glucose-induced
mitochondrial respiration (Fig. 6E, F). The decrease in
mitochondrial oxygen consumption suggests that ele-
vated levels of glucose compromise the mitochondrial

mitochondrial bioenergetic phenotype. E–H) Absolute SRC (E, G), and SRC expressed as a percentage of resting basal
respiration determined in A, F, and H. I) Mitochondrial copy number was assessed by normalizing mitochondrial gene
expression (cyto b) to nuclear gene expression [tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein
(Ywhaz)]. Data are expressed as fold-change (FC) in copy number relative to respective control. *P, 0.05, **P, 0.01, ***P, 0.001
vs. respective control, 1-way ANOVA with Tukey’s multiple-comparisons test (A–D, I) or Bonferroni multiple-comparisons post hoc
text (E–H); #P , 0.05, ##P , 0.01, ###P , 0.001, 2-way ANOVA whole-curve effect of treatment vs. control. Values are expressed as
means 6 SEM.
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respiratory chain in DRG neurons but have no effect on
mitochondrialmembranepolarization.These resultsdiffer
from those of previous studies showing that hyperglyce-
mia leads to programmed cell death, decreased uncou-
pling protein expression, and induction of mitochondrial
depolarization in embryonic DRG neurons (79); however,
the current data support previous studies showing
diminished mitochondrial respiratory activity in STZ-
treated rats and reduced mitochondrial glucose oxidation
in the peripheral nerves of db/dbmice (35, 80). Overall, the
current data show that hyperglycemia reduces mito-
chondrial respiration in concert with increases in mito-
chondrial copy number in DRG neurons from adult mice,
suggesting that mitochondrial biogenesis is a compensa-
tory mechanism to adapt to increased glucose (81).

The current study further revealed that excess glucose
and palmitate induced differential effects on mitochon-
drial bioenergetics. DRG neurons treated with 62.5 mM
palmitate exhibited normal mitochondrial respiration
under both resting and challenged conditions, and mito-
chondrial copy number was also maintained, even when
palmitate induced mitochondrial membrane depolariza-
tion. Concentrations of 125 and 250 mM palmitate in-
creased restingATP production and basal respiration, but
correspondedwithmitochondrialproton leak (Fig. 6A–D).
ATP production was unaffected by the mild uncoupling
effect observed under the highest palmitate treatment,
suggesting that slight mitochondrial uncoupling repre-
sents a compensatory mechanism to limit generation of
reactive oxygen species (82). Although energy production
is maintained under palmitate treatment, increasing pal-
mitate concentrations impaired oxidative phosphoryla-
tion during high energy demand, limiting the ability of
neuronal mitochondria to achieve the energy production
necessary to maintain mitochondrial trafficking and re-
spiratory chain capacity. Overall, the mitochondrial de-
polarization and impaired trafficking at 62.5–250 mM
palmitate suggests that, although mitochondria maintain
normal function, elevated palmitate impairs mitochon-
drial trafficking which may prevent distribution of mito-
chondria throughout the axon where ATP is required for
neuronal function.

Together, the results presented herein draw a correla-
tion between palmitate-induced mitochondrial depo-
larization, altered bioenergetic function, and impaired
mitochondrial trafficking in DRG neurons. To our
knowledge, this is the first study linking fattyacid-induced
mitochondrial depolarization to a reduction in mitochon-
drial motility. This observation is supported by studies
identifying chemical mitochondrial uncouplers that in-
ducemitochondrialdepolarizationandhaltmitochondrial
trafficking (38–41), indicating that ATP production and
mitochondrial polarization are closely linked. Our studies
also depict differential effects of glucose and palmitate on
mitochondrial bioenergetic parameters. Although glucose
severely diminishes mitochondrial respiration, palmitate
reduces mitochondrial trafficking and mitochondrial
membrane polarization without impacting mitochondrial
biogenesis or bioenergetics. These differential effects of
glucose and palmitate on mitochondrial trafficking dy-
namics and bioenergetics may provide a rationale for the

correlation between dyslipidemia and progressive nerve
damage, as glycemic control remains an ineffective treat-
ment for DN in T2DM (83). The collective results of our
study delineate distinctive effects of glucose and fatty
acids on mitochondrial dynamics, providing novel evi-
dence of palmitate-induced alterations of mitochondrial
bioenergetics, mitochondrial membrane polarization, and
mitochondrial axonal trafficking mechanisms.
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