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Magnetic Resonance Fingerprinting Review
Part 2: Technique and Directions
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Magnetic resonance fingerprinting (MRF) is a general framework to quantify multiple MR-sensitive tissue properties with a
single acquisition. There have been numerous advances in MRF in the years since its inception. In this work we highlight
some of the recent technical developments in MRF, focusing on sequence optimization, modifications for reconstruction
and pattern matching, new methods for partial volume analysis, and applications of machine and deep learning.
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MAGNETIC RESONANCE FINGERPRINTING
(MRF)1 was introduced as a novel quantitative magnetic

resonance imaging (MRI) technique, which is used to generate
maps of MR-related tissue properties using a single acquisition.
The inception of MRF has sparked numerous research projects
in the MR community, ranging from repeatability and clinical
applications to sequence design and reconstruction. Indeed, it
was only a few years since the publication1 that review articles
were written2,3 to summarize themany improvements and exten-
sions that had been made to MRF. In this work we focus on the
technical developments made to the MRF framework, specifi-
cally in terms of optimization, reconstruction, partial volume,
and machine learning. Both optimization and machine learning
are active research areas in their own right, and the techniques
themselves are constantly evolving.

To appreciate many of the recent developments inMRF, it
is imperative to understand the proposed framework for MRF
from the initial works,1,4–6 and how this approach is different
from conventional methods. Quantitative mapping in MRI gen-
erally involves a long acquisition in which one tissue property is
mapped at a time. The signal models to quantify T1 or T2 are
typically described using 1) exponential models of signal recovery
or decay (eg, inversion recovery for T1,

7 and Carr–Purcell–

Meiboom–Gill (CPMG) for T2
8,9; 2) steady state signal models

(eg, variable flip angle FLASH,10 and DESPOT1
11 for T1,

DESPOT2,
11 partial spoiling steady-state free precession

(SSFP),12 and double echo at steady state (DESS),13 for T2; or 3)
from driven equilibrium or transient state of the steady state
sequences (eg, Look–Locker).14 There have been many
approaches that propose to quantify multiple tissue properties
simultaneously using a more complex signal model. Such
approaches, which use one acquisition to quantify multiple prop-
erties, include inversion recovery True-FISP15,16 for T1, T2, and
proton density and QRAPMASTER17 to quantify T1, T2, pro-
ton density, and B1 field amplitude. Other quantitative methods
for multiple properties include MRF spin tomography in the
time domain18 to quantify T1, T2, and B1, and the multi-
pathway multiecho imaging method19 for 3D quantification of
T1, T2, T2*, B0, and B1. Quantification of additional properties,
including T1, T2*, and magnetic susceptibility was
demonstrated,20 and magnetization transfer was quantified along
with R1 and R2.21

MRF recognizes that modern computation allows for
much more complex signal models, which can provide higher-
quality mapping than previous methods.1 As such, it typically
relies on a variable acquisition scheme to generate pixelwise signal
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evolutions that are unique and distinct from the exponential
recovery curves typically used in T1 or T2 mapping. In MRF,
multiple tissue properties are quantified using a single scan, elimi-
nating the need for registration between multiple, long acquisi-
tions. Coupled with the variable sequence parameters, the data
are typically highly undersampled in the Fourier domain,
resulting in an accelerated acquisition; however, this acceleration
also leads to signal evolutions which are heavily corrupted by
aliasing artifacts. Instead of fitting these acquired pixel signal evo-
lutions to an exponential model, pattern matching with a
predefined dictionary of simulated signal evolutions is typically
used and has been shown to be an efficient and accurate method
to determine properties such as T1 and T2 relaxation times.1,5

The variable excitation and sampling patterns that are so
important in MRF are also not unique to it. Variable repetition
times were previously used in balanced SSFP (bSSFP) imaging to
improve the frequency response and reduce banding artifacts,22,23

and simulated annealing was used to optimize the repetition time
for this case.24 Randomized sampling was previously used,25,26

and is in the spirit of the idea of compressed sensing for MRI.27

Earlier works,28,29 and later,30 utilized randomized excitation for
nuclear magnetic resonance (NMR) spectroscopy.MRF is unique
in that the sequence parameters and sampling trajectories are var-
ied together to create spatial and temporal incoherence in the sig-
nal evolutions.

Although initially implemented as a 2D acquisition, MRF
was quickly modified for both for simultaneous multislice
acquisitions31–33 and 3D excitations,6,34,35 to obtain volumetric
coverage in the brain. Example T1 and T2 maps from simulta-
neous multislice and 3D MRF acquisitions are shown in Fig. 1.
Additionally, sequences have been modified for areas beyond
neuro, including applications in the abdomen,36 breast,37,38

prostate,39 cardiac,40–42 knee and hip,43,44 among others. Exam-
ples from several of these works are presented in Fig. 2.

This work is the second part of a two-part review on
MRF. Part I45 focuses in detail on the clinical applications to
which MRF has been applied, along with repeatability studies
for MRF and the potential challenges faced for the clinical
implementation of the technique. In this part of the review,
we focus on technical developments made in the field of
MRF, specifically on developments related to sequence opti-
mization, reconstruction, and partial volume quantification,
as well as applications of machine learning and deep learning
to MRF. Each of these new techniques look to improve some
facet of the MRF framework, resulting in faster acquisition
times, reduction in aliasing artifacts, dictionary compression,
faster pattern matching, and better accuracy and precision.

Sequence Optimization
Besides clinical applications, much of the recent work on MRF
focuses on improving the framework in some way, from optimiz-
ing the sequence structure, to improving the reconstruction

performance, or simply finding ways to collect data more quickly.
All of these types of improvements fall under the broad umbrella
of optimization. To design an optimization problem, first it must
be determined which aspect of MRF we want to improve, such
as T1, T2 accuracy or precision, minimizing acquisition time, or
sensitizing the sequence to additional properties. To understand
which directions to take in this process, however, it is necessary
to establish the goal of optimization and analyze the sources of
error in the method, and which are most significant. To this end,
appropriate metrics that will best predict and quantify the overall
performance of a newMRF sequence should be used. These met-
rics should be highly correlated with the cost function used to
find these optimal sequences, if not used directly as part of the
cost function themselves. Since the MRF framework extends
beyond sequence design, metrics and methods of analysis for
each step in the process must be implemented, including those
that account for sampling trajectories and undersampling factors,
range and step size of dictionary tissue properties, and aspects of
the reconstruction.

Direct Sequence Optimization and Metrics
There are many degrees of freedom available when optimizing
MRF sequences, and thus many variables that can be optimized,
including flip angle (FA) and repetition time (TR), echo time
(TE), RF phase, sampling patterns, and so on. While flexibility
in sequence design is a main tenant of the MRF framework, it
can lead to a prohibitively large optimization problem. Designing
a cost function for such a problem may not be simple, and can
include factors such as variance of quantitative results, signal
magnitude, or value of the inner product. However, the com-
plexity of the cost function will affect both the optimization land-
scape of the problem and the computational techniques that are
able to provide a solution.

Quantification of tissue properties was initially achieved in
MRF using the inner product between the acquired signal evolu-
tions and the precomputed dictionary.1 For this type of pattern
matching in particular, the ideal set of dictionary entries would
be orthogonal in the tissue dimension, although the idea of dic-
tionary entries being different from each other is important in
other reconstruction techniques. For easier separation between
signals with different relaxation properties, the inner product
between different signals should be very small or zero, even in the
presence of noise or artifacts from undersampling. However, sig-
nal evolutions generated from similar relaxation properties are
highly correlated, resulting in a difficult partial volume problem
for tissues such as white matter and graymatter.46,47 Orthogonal-
ity would aid in separating a mixed signal in the case of a voxel
containing multiple and different tissues, as we will discuss more
in Section Partial Volume.

Three different metrics were tested as predictors of
MRF performance in Sommer et al.48 Two metrics were
related to the inner product between dictionary entries. The
first of these was a local inner product measure, comparing
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FIGURE 1: Neuro applications of MRF. Shown in (a) are 2D multislice T1, T2 maps from a normal volunteer, scanned with MRF-
FISP.5,32 In (b) are T1, T2, and proton density maps shown in axial, coronal, and sagittal views from three slices in a 3D MRF-FISP
acquisition.6 All units for T1 and T2 maps are in msec. The multislice figure is reprinted with permission.32

FIGURE 2: Examples of applications of MRF to different parts of the body, including (a) abdomen maps from a patient with lung
adenocarcinoma metastatic to the liver using a 2D MRF scan,36 (b) cardiac multislice maps from a normal volunteer using a
simultaneous multislice scan,41 and (c) breast maps from a patient with invasive ductal carcinoma in left breast using a 3D MRF
scan.37 Units for all T1, T2 maps are shown in msec. Figures of abdomen and breast T1, T2 maps are reprinted with permission, with
new color maps applied, from Chen et al.36,37
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the inner product value between adjacent dictionary entries.
The other was a global metric, using a wide range of dictio-
nary entries for inner product comparison. A third metric
used Monte Carlo simulations to add simulated complex
Gaussian noise to dictionary signal evolutions. The inner
product was then calculated to obtain the error between the
ground truth T1 and T2 values and the computed ones. All
three metrics were tested against a set of randomly generated
MRF sequences. The error metric using Monte Carlo noise
simulation was most successful in predicting which sequences
had the best performance, as opposed to the local and global
dot product metrics, and this was shown in both phantom
and in vivo studies.

The inner product metric was also used in Cohen and
Rosen,49 where the cost function was designed to maximize
the orthogonality of the dictionary, by comparing the matrix
DHD to the identity matrix, where D is the matrix

representation of the dictionary. Four different optimization
techniques were examined; including 1) simulated annealing,
2) branch-and-bound, 3) interior-point, and 4) brute force,
in their performance to produce an optimal sequence using
this particular cost function. The interior-point algorithm
produced the best sequences, in terms of scan time and T2

accuracy. The optimal flip angle and TR patterns produced
from the interior-point optimization are shown in Fig. 3,
with the initialization for the interior-point algorithm shown
in blue and the optimized patterns shown in red. For both
the FA and TR, piecewise linear patterns were calculated
from the optimization, unlike the randomized patterns used
for initialization.

The Cramér–Rao bound is a statistical tool that places a
lower bound on the variance of an unbiased estimator, and
has recently been applied to derive optimal sequence parame-
ters for T1 mapping,50 and separately to increase the precision

FIGURE 3: Flip angle (FA) and repetition times (TR) produced from the optimization techniques discussed in Section Sequence
Optimization. The FA and TR patterns in (a) are from Cohen et al49 using the interior-point optimization, applied to a cost function
that emphasizes the orthogonality of the dictionary matrix. In (b) are FA and TR patterns,52 which are based on the Cramér–Rao
lower bound for unbiased estimators. "Optimized I" and "Optimized II" refer to the constraints put on the FA pattern. In
Optimized I, upper and lower bounds are placed on FA and TR, whereas in in Optimized II, changes in neighboring FA values are
additionally constrained. In (c) is the FA pattern from Kara et al,53 which is calculated using the genetic algorithm to optimize T1 and
T2 quality factors. The FA and TR patterns used in MRF-FISP5 are shown in (d). Figures reprinted with permission.49,52,53
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for the relaxation values estimated with DESPOT.11,51 A rig-
orous derivation of a cost function to characterize the signal
to noise ratio (SNR) efficiency of the MRF sequence is pres-
ented in Zhao et al,52 using the Cramér–Rao lower bound.
SNR efficiency is defined in terms of the variance in the esti-
mated tissue properties from the MRF sequence. White
Gaussian noise is assumed in the derivation and the Cramér–
Rao bound is used to define a lower bound for the variance
of the calculated T1 and T2 values using MRF. The cost
function, which is the trace of the Cramér–Rao matrix, is
optimized to determine FA and TR patterns that will produce
optimal SNR efficiency. Two patterns are calculated, using
different numbers of timepoints to vary the sequence length.
In the first pattern, the constraints for the optimization
include only upper and lower bounds for the FA and TR
values. In the second, however, a constraint is placed on the
maximum change allowed in consecutive flip angles, to force the
FA pattern to be piecewise smooth. Without this additional con-
straint, the FA pattern produced from the optimization has rapid
changes over the first hundred or so TRs, but with a constraint
on the maximum flip angle change, both FA and TR patterns
are structured, smoothly varying, and flat (ie, staying at either
the maximum or minimum constraints) for large portions of the
sequence. The FA and TR patterns from this optimization are
shown in Fig. 3. The calculated FA patterns are considerably dif-
ferent from the sinusoidal FA pattern.5

In Kara et al,53 a cost function and optimization metric are
derived in terms of a quality factor for each tissue property in
MRF-FISP. The quality factors relate the variance from noise
and aliasing artifacts to the variance of the computed tissue prop-
erties. By optimizing the quality factors for T1 and T2 simulta-
neously, the effects of noise and undersampling on the resulting
quantitative maps can be minimized. A genetic algorithm54 is
applied to produce optimal FA patterns with fixed TR, TE, and
RF phase for fewer TRs than are typically used in MRF-FISP,
with the resulting FA pattern shown in Fig. 3. In contrast to the
FA patterns found in,52 there are no constraints placed on con-
secutive flip angle changes, resulting in an FA pattern with large
variations and rapid changes. However, in both cases,52,53 the
point is made that by rigorously optimizing the sequence struc-
ture for MRF-FISP, shorter sequences with improved efficiency
may be possible than have been previously demonstrated.

Each of these approaches to MRF sequence optimization
attempt to modify the current MRF framework for a measurable
gain, whether it be in accuracy, precision, or efficiency, although
each also focus specifically on the problem of sequence design.
More recently,55 the spiral sampling patterns and spatial biases
which result from the undersampling patterns commonly used in
MRF were examined. Both variable and constant-density spirals
were studied, each with 48 sequentially rotated spiral interleaves,
and the order of the single-shot sampling was varied to determine an
optimal spacing and ordering of the spirals. As opposed to a sequen-
tial ordering, {1, 2,… 48, 1, 2,…}, the authors found that by using

an increment of 11 for spiral ordering, that is, {1, 12, 23,…}, shad-
ing artifacts were reduced in both T1 and T2maps.

Other sampling trajectories for MRF have also been
implemented and studied, including echo planar imaging,49

Cartesian,56 and radial k-space acquisitions,43,57 although optimiza-
tion of the trajectory is still an open problem. Another recent work58

proposed an analytical model that includes both effects from
sequence design and k-space sampling as an error analysis tool for
MRF. This tool may be useful in assessing and predicting the per-
formance of MRF sequences going forward. Other recent assess-
ment and error analysis methods include error propagation analysis
from nuisance parameters in quantitative MR59 and an automatic
image-quality assessment.60 While neither were originally designed
forMRF, theymay prove to be beneficial for theMRF community.

Other Improvements/Modification to the MRF
sequence
Beyond implementation of optimization algorithms to determine
optimal sequence patterns, there have been numerous methods
that modify existing MRF sequence structures to increase sensitiv-
ity to additional tissue properties, many of which were outlined in
Part I of this review.45 However, adding tissue or system properties
can complicate the quantification process; for example, this may
result in extra dimensions in the dictionary. Some examples
include sequences that are sensitive to T2*,

61–64 perfusion,65,66

and water-fat quantification.43,67 A more complicated model is
needed in the case of MRF for chemical exchange, or MRF-X,68

in which six properties are quantified, including two relaxation
properties to characterize two exchanging components within a
voxel, volume fraction, and exchange rate.

There are still many other sequence modifications that
have been made in MRF. Cardiac MRF involves modifying the
sequence to an individual patient’s cardiac cycle with ECG
triggering,40 which necessitates a patient-specific MRF dictio-
nary. The MRF framework was additionally modified57 to
achieve a pseudo-steady-state precession of the spins, reducing
the impact from intravoxel dephasing on tissue property quantifi-
cation. More recent work combines the MRF framework of
chemical exchange saturation transfer (CEST) for quantification
of volume fraction and exchange rate.69,70 Beyond sensitizing the
sequence to in vivo tissue properties, it is possible to also quantify
system properties,71 where a combination of sequence types are
used to quantify T1, T2, B0, and the external B1+ field. B1 field
estimation is also included in theMRF sequence.56 Adding tissue
or system properties as in any of these cases can complicate the
quantification process simply due to the exponential increase in
dictionary size required for matching. Solutions to the problem
of dictionary size are addressed in the next section.

Reconstruction and Quantification
Dictionary Size and Matching Time
Besides sequence optimization, another challenge in MRF is
the size of the dictionary. When the dictionary is large, this
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can cause problems with storage and memory. Another issue
is the exhaustive matching process, and when coupled with a
large dictionary, can take too much time to compute. The
MRF dictionary can be represented as a 2D matrix. The col-
umns of this matrix represent simulated signal evolutions gen-
erated by the Bloch equations using different combinations of
tissue properties, such as T1 and T2. The rows of the dictio-
nary matrix are the number of timepoints, or TRs, used in
the MRF sequence. Depending on the sequence type used
and the granularity of the tissue property values desired, the
tissue property dimension of the dictionary can easily grow
from tens of thousands to millions. For example, in the case
of MRF-FISP5 the sequence is used to quantify two proper-
ties: T1 and T2 relaxation times. However, in the case of
MRF-bSSFP, off-resonance is another property that is quanti-
fied, increasing the size of the required dictionary. In a breast
MRF study using MRF-FISP,37 a dictionary with 20,059 col-
umns representing possible T1, T2 combinations was used,
whereas in a brain tumor study using MRF-bSSFP,72 the
additional dimension of off-resonance increases the dictionary
size to 287,709 columns. In the case where the sequence is
also sensitized to quantify T1, T2, off-resonance, and T2*, the
number of columns in the dictionary was reported to be over
30 million in Wang et al,61 and 64 million in Hong et al.63

Inner product pattern matching has been shown to be
accurate and robust to the high degree of aliasing artifacts due to
undersampling in several of the initial MRF studies, including
Ma et al1 and Jiang et al.5 Also shown in both,1,5 the number of
timepoints used in the sequence will have a direct impact on the
quality and accuracy of the T1 and T2 maps. Therefore, for the
sequences in these initial studies, the number of timepoints was
generally between 1000 to 3000. Strategies to handle the time
and tissue property dimensions in the dictionary can lead to both
reduced storage requirements and faster matching times.

To mitigate the size of the dictionary, the singular value
decomposition (SVD) was used as a compression tool to
reduce the time dimension in the dictionary,73 enabling a
compression in the time dimension of 80–99% by projecting
the dictionary onto a subspace spanned by the first few singu-
lar vectors. In this way, after projecting the dictionary onto a
low-rank subspace, the size of the dictionary is reduced in the
time dimension, resulting in fewer points to compare, and
the inner product matching is between 3–5 times faster.73

This idea of projecting the dictionary onto a low-rank sub-
space has spread into many reconstruction algorithms that use the
low-rank property of the dictionary to speed up reconstruction or
mitigate effects from undersampling in the reconstruction.74–76

Additionally, the SVD can be applied prior to image reconstruc-
tion, significantly reducing the size of the reconstruction problem,
and has been used, for example, in the 3D MRF reconstruction6

in which the raw k-space data are projected onto the SVD space.
By projecting the data in this way, the reconstruction problem is
reduced from 1440 3D volumes to only 25. Computing the SVD

of a large matrix can be memory-intensive, and in the case where
the dictionary may be too large to efficiently store and retrieve, a
randomized SVD77 approach can be applied to approximate the
singular vectors of the dictionary, without needing to store the full
dictionary in memory.78 Multichannel transmit MRF, also called
"Plug-and-Play MRF,"43 requires a different compression scheme
for the dictionary due to the multiple transmit channels used.
Phase unwinding is proposed to aid in dictionary compression in
this particular case,79 by reconstructing themultichannel data sep-
arately, and combining after phase correction. SVD compression
can then be applied to the data.

Dictionary size is the most problematic in the tissue prop-
erty domain, and this dimension will grow exponentially as the
number of tissue properties that the sequence is sensitized to
increases, as previously described. Since the pattern matching
that is used to find the best dictionary match is exhaustive, a
group matching strategy was proposed80 and was able to signifi-
cantly reduce the time it takes to match acquired signal evolu-
tions to the dictionary with minimal impact on accuracy.
Reported matching times were up to 70 times faster compared
with exhaustive direct matching, reducing the time from 178 sec-
onds to 2.5 seconds for MRF-bSSFP. This work on fast group
matching accelerated the procedure by using correlations
between entries with similar relaxation properties to create sub-
groups within the dictionary, reducing the search space used in
the matching. Acquired pixel signal evolutions were first matched
to the mean signal of each group, and subgroups were eliminated
when this initial inner product value was below a fixed threshold.
Grouping the dictionary does not reduce the overall number of tis-
sue property combinations, but by performing an initial match
with representative signals, the matching time was reduced. Other
works have incorporated the idea of a fast search for the dictionary
pattern matching,81 in which the dictionary is structured as a k-
dimensional tree on which an approximate nearest neighbor search
can be performed. In MRF-ZOOM,82 the separability of tissue
properties based on the inner product model is used to develop a
fast dictionary searching algorithm to reduce the matching time.

Beyond fast matching strategies, other works have
focused on reducing the number of dictionary entries
required for accurate quantification of tissue properties. In
Yang et al,78 a coarse version of the dictionary in the tissue
property dimension was used, meaning that the step size in
properties such as T1 and T2 is relatively large. Pattern
matching is first done using the coarse dictionary. The dictio-
nary is projected to a low-rank subspace where polynomial
interpolation is applied to determine more accurate T1 and
T2 values. By applying interpolation to the coarse dictionary,
the discretized nature of the tissue properties can be circum-
vented. A similar idea was proposed,76 using linear interpola-
tion between dictionary to overcome the dictionary step size
in the quantification problem. When combining this method
with compression in the time domain, the storage require-
ments for the dictionary are greatly reduced.
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Reconstruction Techniques
A great deal of work on MRF in recent years has focused on
improving the reconstruction process, specifically on how to
best transform the highly undersampled k-space data into the
image domain or directly into quantitative tissue property
maps. A direct method that is commonly used for reconstruc-
tion is the nonuniform fast Fourier transform,83 in which the
non-Cartesian data are first resampled to a Cartesian grid and
then the fast Fourier transform is applied. Once the data are
reconstructed, pattern matching is applied, although artifacts
from undersampling will still impact the matching. Most itera-
tive algorithms for MRF attempt to reduce the effect of aliasing
artifacts in the image domain, and can also have the effect of
reducing the number of TRs needed for the sequence, shorten-
ing the overall time for the scan, for example.84,85

Iterative approaches for MRF solve the problem by iterat-
ing between k-space to enforce data consistency, and the image
domain, where the reconstructed signals are projected onto the
MRF dictionary. Due to the application of multiple gridding and
nonuniform Fourier transform iterations, the reconstruction
time for such iterative algorithms can be much greater as com-
pared with a direct gridding and reconstruction. The iterative
methods aim to solve a problem of the general form:

min
x

y−Fxk k + λT xð Þ

where x is the reconstructed image series corresponding to the
acquired k-space data y. The operator F represents the encoding
function used to transform the image series to k-space, the opera-
tor T can represent any number of penalty functionals that act on
the image series, to emphasize a desired feature in the solution, for
example, a wavelet transform, or total variation, and λ is a regulari-
zation parameter. Additionally, constraints are sometimes placed
on the above problem by which the signal evolutions are projected
onto the dictionary subspace for matching. This matching step
can be included in the iterative process, for example to ensure data
consistency,84 or completed upon convergence of the algorithm.

Low-Rank Reconstructions
Many reconstruction algorithms41,74–76,86 leverage the fact
that the MRF dictionary can be compressed without signifi-
cant loss of information.73 While iterative reconstruction
algorithms may have advantages, they may require more
sophisticated computational techniques. In Assländer et al,75 the
reconstruction alternates between data consistency in k-space,
and then dictionary matching in the image domain. The SVD
of the dictionary is applied in the Fourier domain to solve the
problem in a low-rank subspace and improve the conditioning
of the problem. Variable splitting and the alternating direction
method of multipliers87,88 are applied to solve the linear prob-
lem for data consistency. These computational techniques (vari-
able splitting and alternating direction method of multipliers)
are also applied in the maximum likelihood approach.85

The low-rank subspace of the dictionary was also used
by Zhao et al,74 but an additional low-rank constraint is also
placed on the reconstructed time series. The reconstruction
problem is approximated using linear least squares, which is
then solved using the conjugate gradient algorithm. Pattern
matching with the dictionary is used after convergence of the
algorithm to generate the quantitative tissue property maps,
with examples of in vivo results from this work shown in
Fig. 4. Aliasing artifacts are significantly reduced in this
reconstruction, which in turn shortened the number of
timepoints required for the acquisition to as few as 700.

Similar to the previously described approaches, a low-
rank approach is proposed in Hamilton et al.41 In that work,
the reconstruction is performed in the SVD space to signifi-
cantly reduce the time dimension of the problem. A wavelet
transform is also applied, which can have the effect of
smoothing the tissue property maps. Although designed for
the application of simultaneous multislice cardiac MRF, this
method could be applied to a single-slice acquisition as well.
Example T1 and T2 maps from the multislice cardiac acquisi-
tion and low-rank reconstruction are in Fig. 2.

In Mazor et al,76 a low-rank constraint is placed on the
reconstructed time series. A data consistency step is applied,
similar to the iterative approach89; however, instead of forcing
each pixel signal evolution to match to one dictionary entry,
this constraint is relaxed, allowing a linear combination of
multiple entries to fit each signal evolution.

In Lima da Cruz et al, a slightly different approach was
taken.86 Similar to previous methods, SVD compression for
the time domain using the dictionary is applied; however,
there is a spatial low-rank assumption additionally made in
the image domain. Small patches of 7 × 7 pixels in the
reconstructed singular images are assumed to have low rank.
Sparse regularization is also used by applying a wavelet trans-
form to the singular images. Example T1 and T2 maps from
this reconstruction technique are shown in Fig. 4.

Finally, in a unique approach to the iterative reconstruction
problem, Doneva et al90 used the low-rank property of the
acquired data in the k-t domain, unlike the previous methods,
which all use the low-rank property of the dictionary or
reconstructed image series. The SVD is applied to a small, fully
sampled calibration dataset in k-space, and this is used as a pro-
jection matrix to recover missing k-space data. An advantage of
this method is that the iterations are performed only in k-space,
eliminating the repeated gridding and Fourier transform opera-
tions, which make the algorithm computationally more efficient,
with reconstruction times as low as 10 seconds.

Other Reconstruction Techniques and
Improvements
Apart from the aforementioned low-rank iterative approaches,
other aspects of the reconstruction have been varied to
improve upon the MRF framework in various ways. One
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correction directly deals with blurring artifacts from B0 inho-
mogeneity that are a result of the accelerated spiral
undersampling used in MRF. By applying a multifrequency
interpolation approach to correct the MRF reconstruction,
blurring is significantly reduced in MRF-FISP.91 As
undersampling artifacts from a highly accelerated MRF scan
can be severe, it is advantageous to develop methods that can
mitigate these artifacts without sacrificing speed in the acqui-
sition. View sharing is a technique that is used to further
accelerate the acquisition by requiring fewer timepoints in the
MRF sequence.56 Using a high undersampling factor, data
points that are not acquired in the edges of k-space are filled
in with those from adjacent time frames, as in key-hole acqui-
sition.92 A similar concept is used in soft-weighted key-hole
MRF, or MRF SOHO,93 in which parallel imaging, soft-gat-
ing, and the key-hole technique are combined to accelerate
the scan. The sliding window reconstruction for MRF94 com-
bines the highly undersampled frames in k-space to instead
reconstruct fully sampled images free from aliasing artifacts.
As fewer timepoints are used in the reconstruction, the MRF
dictionary is modified prior to matching. Data acquisition
time is reduced by up to one-third, by reducing the number
of acquired timepoints from 1000 to as few as 300.

Parameters from the reconstruction methods discussed
in this section are outlined in Table 1, including reconstruc-
tion time, number of timepoints used in the acquisition,
image resolution, and MRF sequence used. It is interesting to
note the variation in many of these parameters; for example,
reconstruction methods were performed on sequences using
as few as 400 timepoints to as many as 3000. Many works
report testing on only one variant of the MRF sequence as
well. Reproducibility and assessment of reconstruction tech-
niques will be an important consideration going forward, and
is discussed more in Part 1.45

Partial Volume
Partial volume can be problematic in any MR technique
where the voxel size is larger than the tissue structures being
imaged, which can cause blurring and degraded boundaries in
the image. Many techniques have been proposed to solve the
partial volume problem in MRI95; we will focus on the pro-
posed solutions to partial volume with MRF in this section.
For MRF, the unique signal evolution structure may be an
advantage for partial volume; however, the problem is still ill-
posed and difficult to solve in this context. Although partial
volume is, in some sense, similar to the problem of fat/water
separation, it does not necessitate a new sequence design or
reconstruction processes to obtain an accurate solution. While
a benefit from a direct sequence optimization may be that
voxels with multiple components are more easily identified
and separated, the few works on partial volume in MRF have
focused finding an optimal solution to a linear inverse prob-
lem, using the MRF sequence structures that are already in
place.

In Ma et al,1 a linear model was proposed to decompose
the MRF pixel signal into weights corresponding to a few,
predefined dictionary signal evolutions. For example, in the
brain these predefined signal evolutions could correspond to
white matter, gray matter, and cerebrospinal fluid (CSF).
Using three representative dictionary signal evolutions, each
pixel signal could be decomposed into a sum of the three,
with corresponding weights, using linear least squares. An
improvement on this method was made in a recent work,46

which deals specifically with how to solve this predefined lin-
ear model. As MRF signal evolutions are complex-valued, and
the weights from a linear least squares model will be complex,
a more realistic tissue model was proposed in the form of a
partial volume dictionary, which is formed with linear combi-
nations using only positive, real-valued weights for each

FIGURE 4: T1 and T2 maps obtained from reconstruction techniques outlined in Section Reconstruction and Quantification. Units for
all maps are in msec. In (a) the maps are reconstructions using 700 TRs from the low-rank method from Zhao et al,74 compared also
with direct reconstruction and matching, as well as the maximum likelihood approach.85 Error maps are computed by comparing to
a full-sampled reconstruction as the gold standard. In (b) are maps using the sparsity and locally low rank method from Lima da Cruz
et al,86 shown from two different volunteers. Figures reprinted with permission, and new color maps applied.74,86
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predefined tissue type. Quantification of weights is done by
pattern matching with this partial volume dictionary using
the inner product. Another modification included in this
work is a subject-specific partial volume dictionary, which
reflects the fact that there is some natural variation in the
relaxation properties in the brain between subjects.96 To this
end, k-means is applied to single-component MRF rel-
axometry maps for each subject, to determine the appropriate
tissue properties to include in the partial volume dictionary.
Shown in Fig. 5a,b is a comparison of the two aforemen-
tioned methods, applied to a normal volunteer, showing rela-
tive fractions of white matter, gray matter, and CSF. The
method has also been applied to brain tumor patients, in
which case more tissue components are used in the model to
create tissue fraction maps, for example, white matter, gray
matter, CSF, tumor, and peritumoral white matter.

A limitation of using a fixed tissue model, for example,
assuming that brain tissue is only composed of white matter, gray
matter, and CSF, may be evident in the case of pathology, where
a diseased or unhealthy tissue may not be composed of these
three tissues. If the diseased tissue has relaxation properties differ-
ent from those represented in the model, then forcing a fixed

model on the voxel signals will result in erroneous tissue fraction
calculations and diseased tissue will not be properly characterized.
There have been works on partial volume for MRF that remove
the fixed tissue model and apply the full dictionary to mixed
voxel signals. In McGivney et al,47 the Bayesian paradigm for
inverse problems was used to solve the problem in terms of the
maximum a posterior estimator, assuming a probabilistic model
for the tissue weights, and with additional postprocessing the
resulting values can be combined into relative tissue fraction
maps, shown in Fig. 5c for a glioblastoma brain tumor patient.
The work by Tang et al97 also does not require a fixed tissue
model, but instead encourages sparsity of the weight vector by
using reweighted ℓ1 regularization. Although these methods are
computationally more complex than the dictionary-based
approach,46 they allow a more flexible tissue model when relaxa-
tion values are not known a priori, which may be the case in dis-
eased or abnormal tissues.

Applications of Machine and Deep Learning
to MRF
In recent years, machine learning and deep learning have become
increasingly popular topics for research, and applications in MRI

FIGURE 5: Partial volume fraction calculation from three of the discussed methods. In (a,b) are fraction maps representing white
matter, gray matter, and CSF in a normal volunteer, using a 3D MRF-FISP6 acquisition. The method used in part (a) is from the
pseudoinverse calculation with a fixed three component dictionary, whereas in (b), linear combinations of this three component
dictionary are used to generate a larger partial volume dictionary, to which pattern matching is applied.46 In (c) the method from
McGivney et al47 is applied to a glioblastoma brain tumor patient. Tissues shown in this decomposition include white matter, two
gray matter components, CSF, tumor, and regions surrounding the tumor. Shown on the right are the T1 and T2 maps obtained from
3D MRF-FISP6 in this patient.
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are frequent.98 Machine and deep learning may be a natural fit to
solve some of the challenges in MRF, such as image reconstruc-
tion and pattern matching. Indeed, several of the deep-learning
applications to MRF aim to either speed up the Bloch simulation
calculation of a large dictionary or remove the need for a dictio-
nary altogether by directly learning the tissue property mappings
from the signal evolutions. In Yang et al,99 unsupervised learning
methods were used to rapidly generate the MRF dictionary
within several seconds, which could be valuable when performing
sequence optimization or modification. Rapid dictionary genera-
tion was also the goal,100 where neural networks were used to
generate a dictionary that is based on a patient-specific cardiac
rhythm, 100 times faster than using Bloch simulation. In Boux
et al,101 the relationship between the tissue property values and
the dictionary is learned through regression, eliminating the
exhaustive search from pattern matching. Neural networks are
applied to learn tissue properties and also to directly generate syn-
thetic qualitative images,102 bypassing the dictionary matching
step. It is likely that the number of works published in this area
applied to MRF will continue to grow dramatically, rapidly
increasing over the comingmonths and years.

In the work entitled MRF-DRONE by Cohen et al,103

deep learning was applied to MRF signal evolutions, after image
reconstruction, to learn the T1 and T2 values without direct dic-
tionary matching. The TensorFlow framework104 was used to
construct a fully connected neural network with four layers and

two hidden layers, and the method was tested on both MRF-
EPI49 and MRF-FISP5 sequences. Compared with direct dictio-
nary matching, the application of the neural network to the
MRF data was between 300 to 5000 times faster. Although net-
work training can take a considerable amount of time in these
types of methods (10–74minutes in this work), this is considered
a preprocessing step that only needs to be computed once. A sim-
ilar method105 trains a convolutional neural network with three
layers to learn the tissue properties from a dictionary, resulting in
faster quantification of T1 and T2 and eliminating the need to
store the dictionary after training.

Another deep-learning method, named spatially-
constrained quantification, was applied106 to learn the T1 and
T2 values directly from the MRF signal evolutions. A two-
step process was used. First, the time dimension of the signal
evolutions was reduced using two fully connected neural net-
works to learn a nonlinear mapping for feature extraction, as
opposed to using SVD compression. The next step used a
convolutional neural network to quantify T1 and T2 values at
each pixel, using the spatial features of neighboring pixels cal-
culated in the first step. T1 and T2 maps generated using this
framework are shown in Fig. 6, using both 576 and
288 timepoints for the quantification. This framework allows
a significant reduction in the MRF acquisition time, by
requiring as few as one-fourth the number of acquired
timepoints compared with MRF-FISP.5

FIGURE 6: T1 and T2 maps generated from the deep-learning method of Fang et al.106 DM represents the results from applying
direct reconstruction and pattern matching, SCQ represents the deep learning method, spatially-constrained quantification. A
different number of timepoints were used, as noted in the figure. Maps are compared with an MRF with 2304 timepoints used for
the ground truth, with relative error maps shown and total percent error shown in each figure. Figure reprinted with permission,
and new color maps applied.106
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One aspect to point out in the above works is the problem
of the inherent complex-valued property of the MRF data. In
Cohen et al,103 the absolute value of signal evolutions is taken for
the input into the neural network, where as in Fang et al106 the
signal evolution is split into its real and imaginary parts, resulting
in a vector that is twice as long as the original. A neural network
is designed, using the full complex-valued data in Virtue et al,107

specifically with the application toMRF inmind.
Although not MRF, recent works108,109 demonstrate

the power of machine learning to directly quantify tissue
properties from MRI data. In the case of one,108 tissue prop-
erties are learned using the MR signal model with nonlinear
regression and application of a nonlinear kernel function.
Application of the method allows for quantification of T1 and
T2 relaxation times using both spoiled gradient-recalled echo
and dual-echo steady-state sequences. The AUTOMAP
method109 is a comprehensive deep-learning technique to
replace the image reconstruction step and can be applied to
various imaging methodologies to directly learn the encoding
method. These works highlight the impact that machine
learning can have on MRI, in particular, applying these ideas
to MRF may open the door for more comprehensive optimi-
zation of the framework.

Discussion
MRF is a flexible framework that allows fast and simulta-
neous quantification of multiple tissue and system properties.
Because the reconstruction and pattern matching do not
require a particular signal shape, the framework is able to
reduce the constraints on MR acquisition design and signal
modeling. This flexibility can provide more rapid, robust,
repeatable, and specific tissue properties for tissue characteri-
zation and clinical use. A thorough discussion of the repeat-
ability and reproducibility of MRF, clinical applications, and
potential barriers for clinical adaptation was presented in Part
1 of this review,45 which highlights the advantages and poten-
tial problems with using the MRF framework in a clinical set-
ting. We focus our discussion here on the topics highlighted
in this portion of the review, namely, the technical develop-
ments that have been made to MRF and the challenges that
still remain.

The increased flexibility and degrees of freedom of MRF
can pose challenges for optimization. Current studies typically
optimize MRF acquisition and reconstruction separately, as
evidenced in our sections on sequence optimization and recon-
struction. Sequence optimization mainly focuses on improving
signal separability and precision of the results, assuming perfect
sampling with Gaussian white noise. Although some initial opti-
mization methods have been studied, the global optimum for an
MRF sequence design has yet to be proven. The number of
degrees of freedom available in designing an MRF sequence are
numerous, including sequence parameters such as FA, TR, TE,

and RF phase.While sequences have been designed that optimize
several of these, a comprehensive design that optimizes all of
these variables simultaneously does not yet exist. MRF recon-
struction methods are typically developed based on existing
sequences and sampling strategies and the main goal has been to
reduce image artifacts and noise. The MRF sequence design, k-
space sampling, and reconstruction may be incorporated in a
comprehensive framework for optimization in the future, and
this would be a significant step in optimizing the full MRF
method. However, the optimization landscape for MRF is not
well understood and has not been well studied, and it is likely
that the landscape is not convex and is high dimensional, and this
will add additional modeling and computational complexity, as
finding a global optimum is difficult with even state-of-the-art
optimization techniques. Having an accurate model that can be
solved using current computational methods in real time is a clear
barrier for MRF to being optimized thoroughly and rapidly, for
application in the clinic.

By decreasing the correlations of the signal evolutions
from different tissue types, MRF may provide a unique
opportunity to effectively separate multiple tissue properties
from a single voxel, leading to better multiparametric map-
ping, partial volume separation, and microstructure character-
ization. For example, reducing the similarity between white
matter and gray matter signal evolutions in the dictionary
could result in more accurate volume fraction estimations for
this common partial volume occurrence in the brain. The
challenges associated with such a partial volume separation
problem include multidimensional data modeling and solving
inverse problems, and both of these fields are being studied
and constantly evolving. An additional challenge with partial
volume is that validation and establishment of a ground truth
is difficult; however, the resulting multidimensional and mul-
tiscale tissue properties has the potential to make the
tissue/disease characterization more specific.

There may be different metrics to assess the overall per-
formance of the various MRF designs, including accuracy and
precision of tissue property maps or total scan time, and it is
likely a combination of factors such as these will need to be
used. While metrics such as SNR and image quality of each
individual timepoint may be applicable, their relationship to
the final image quality, accuracy, and precision of the tissue
property maps are nonlinear due to the pattern matching.
Therefore, metrics regarding the tissue property maps are bet-
ter choices for both optimization and results validation. Both
phantom and in vivo validation are required for these types of
metrics, and these studies have been outlined in detail in Part
1 of this review.45 Scan time is another applicable metric for
clinical translation of MRF. For example, reducing the total
scan time is a desirable goal for MRF, as it will reduce scan-
ner time for patients. Current 3D MRF scan times for whole-
brain coverage with 1 mm isotropic resolution are reported to
be 7.5 minutes,35 and 5 minutes.34 Metrics that have been
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used in sequence optimization, such as accuracy or image
quality, can also be used to evaluate the applications of
machine and deep learning to MRF.

In addition to explicitly solving optimization problems
of the MRF framework, deep learning has been implemented
in reconstruction, dictionary generation, and matching steps,
and has shown promising results for solving nonlinear, non-
convex, and high-dimensional problems. With the significant
interest in deep learning from both engineering and clinical
fields, the techniques will likely be further developed for
MRF quantification, image analysis, and clinical validations.

Conclusion
MRF is a unique framework for quantitative MRI and pro-
vides multiple registered tissue property maps from a single
acquisition. Recent technical developments for MRF, includ-
ing sequence optimization, improved reconstruction algo-
rithms, partial volume separation, and deep learning have
been summarized in this review as important techniques to
move the field of MRF forward. By developing a comprehen-
sive optimization framework for MRF, including optimiza-
tion across sequence design, reconstruction, and pattern
matching, MRF will be even more widely applicable and
impactful for clinical practice.
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