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ABSTRACT:Complement activation, an integral armof innate immunity,maybe the critical link to thepathogenesis of
idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins—complement
component3a (C3a) andcomplementcomponent5a (C5a)—in IPF,which interactwithTGF-b andaugmentepithelial
injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the
mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung
fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix
synthesis, and theexpressionof their respective receptors.We investigated the roleofC3aRandC5aR in lung fibrosis
by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their
receptors via pharmacologic andRNA interference interventions. Histopathologic examination revealed an arrest in
disease progression and attenuated lung collagendeposition (Masson’s trichrome, hydroxyproline, collagen type I
a 1 chain, and collagen type I a 2 chain). Pharmacologic or RNA interference–specific interventions suppressed
complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and
activeTGF-b1 systemically. C3aR/C5aRantagonists suppressed localmRNAexpressions of tgfb2, tgfbr1/2, ltbp1/2,
serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn. Clinically, compared with pathologically
normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of
soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the
progressionof fibrosisbyattenuating local complementactivationandTGF-b/bonemorphologicproteinsignaling
aswell as restoringdecorin,which suggests a promising therapeutic strategy for patientswith IPF.—Gu,H., Fisher,
A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M.,
Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of
pulmonary fibrosis. FASEB J. 30, 2336–2350 (2016). www.fasebj.org
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Idiopathic pulmonary fibrosis (IPF) is a fatal, scarring lung
diseasewithmortality rates that are increasingworldwide
(1) and that are comparable to other malignancies, such

as cancer. The complex signaling pathways andmarkedly
unpredictable interpatient heterogeneity of IPF contribute
to the disappointing outcomes of many clinical trials.
Complement activation, a key component of the innate
immune system, is triggered in response tomultiple types
of tissue injury (2–10). Previous studies have reported
immune complexes in IPF that could activate complement
(11), whereas more recent studies have reported the
presence of complement activation products in patients
with IPF and that the alternative pathway, fragment Ba,
was clinically relevant as an indicator of disease severity
(12). The link between innate immunity and lung fibrosis,
however, has been an area of ongoing controversy. The
complement activation pathway has been largely un-
explored and may answer questions posed by the pre-
vailingmodel of IPF that postulates that epithelial injuries
trigger and augment mesenchymal activation.

ABBREVIATIONS: BALF, bronchoalveolar lavage fluid; BMP, bone mor-
phologic protein; C3a, complement component 3a; C3aR, C3a receptor;
C5a, complement component 5a; C5aR, C5a receptor; col1a1, collagen type
I a 1 chain; col1a2, collagen type I a 2 chain; CPI, composite physiologic
index; dcn, decorin; DLCO, carbon monoxide lung diffusing capacity;
FVC, forced vital capacity; IPF, idiopathic pulmonary fibrosis; ltbp, latent
transforming growth factor binding protein; PDGF, platelet-derived
growth factor; RNAi, RNA interference; serpine1, serpin peptidase in-
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The active anaphylatoxins, complement component
3a (C3a) and complement component 5a (C5a), are se-
quentially generated when complement is activated.
The split product, C5b, complexes with components
C6–C9 to form the terminal complement complex,
C5b-9, that leads to cell lysis. Typically, the complement
cascade is controlled by membrane-bound complement
regulators, CD46 and CD55, that are ubiquitously ex-
pressed in human respiratory epithelium. We reported
elevated levels of local and systemic C3a and C5a in
patients with IPFs (13), and this is associated with the
loss of local complement regulators. We demonstrated
the interaction of C3a and C5a with a key fibrotic me-
diator, TGF-b1, and these each cause the loss of CD46
and CD55, which is associated with epithelial injury
(13). Of interest, whereas TGF-b1 induced normal pri-
mary human lung epithelial cells to overexpress C3a
receptor (C3aR) and C5a receptor (C5aR), C3a, in turn,
stimulated these cells to express TGF-b1 (13). Bio-
chemical and pharmacologic studies indicate that both
C3a and C5a bind to and activate GPCRs, which then
transduce signals via heterotrimeric G proteins (14, 15).

C3aR is expressed ubiquitously, including in the lung
(16–21). Although its functions in the lung are unclear,
C3aR stimulates the expression of IL-1b inmonocytes (22)
and in retinal pigmented epithelium (23). C3aR-mediated
effects onnonlungparenchymal cells include: (1) epithelial
mesenchymal transition (24), (2) glomerular and tubu-
lointerstitial injury (25), and (3) induction of genes that are
responsible for novel signalingpathwaysandextracellular
matrix components, cytoskeletal organization, and clear-
ance of apoptotic bodies (26). C5a binds to $2 GPCRs:
C5aR1 (CD88) and C5aR2 (C5L2). C5aR1 is expressed in
many cells, including in lung alveolar and airway epithe-
lium aswell as the endothelium (27, 28). C5aR1-mediated
divergent signaling leads either to apoptosis or cell sur-
vival, viaERK (29),Akt activation (30), PKC-mediated IL-8
release by the airway epithelium (31), or fibrosis in other
organs (32, 33) comparedwithC5aR2,which is implicated
in acute inflammation (34, 35) and balances the biologic
responses to C5a (36, 37). Whereas the pathogenesis of
acute lung injury has been associated with the destructive
effects of C3aR-dependent (38) and C5aR-dependent sig-
naling (5, 38, 39) and with the extracellular histone–
dependent signaling of C5aR1/2 (35), the protective effects
due to the blockade of C3aR and C5aR1 in airway hyper-
responsiveness and inflammation (40) as well as in renal
injury/fibrosis are known (33, 41). In this article, because
C5aR2 or C5L2 are implicated more in inflammation, we
focus on the role of C5aR1, which we hereafter refer to as
C5aR, in lung fibrogenesis. It is not known what role the
binding of C3a or C5a to their respective receptors, C3aR
and C5aR1, plays in driving the pathogenesis of IPF; the
cellular and molecular signaling that underlie this un-
explored pathway is unknown. To address these ques-
tions, we analyzed lung tissues and bronchoalveolar
lavage fluid (BALF) from patients with IPF. We then
performed a series of experiments using a significantly
scarredmurinemodel that had high levels of complement
activation at baseline, employing complementary phar-
macologic and genetic interventions.

MATERIALS AND METHODS

Human studies

Frozen lung explants and plasma from patients with IPF were
obtained through the Lung Tissue Research Consortium of the
National Institutes of Health (NIH), National Heart, Lung, and
Blood Institute (Bethesda,MD, USA; http://www.nhlbi.nih.gov/
research/resources/ltrc). Patient demographics of these samples
were previously reported by Gu et al. (13). BALF from control
participants was obtained byH.L.T. Mean age of the 9 control
participants was 36.9 6 3.0 yr (mean 6 SEM), with a range of
35–52 yr. Of the total cohort of control participants, 66.7% were
white, and the remaining participantswereAfricanAmerican;men
comprised 66.7% of the total cohort. BALF from patients with IPF
was kindly donated by the lateGalen S. Toews,M.D. (University of
Michigan). Patient demographics are provided in Table 1. All pro-
tocols were approved by the institutional review boards of Indiana
University School of Medicine and the University of Michigan.

Animal studies

The Animal Care and Use Committee at the Indiana University
School of Medicine and at the University of Michigan approved
the animal protocols used in this study. C57-BL6mice (6–8wk of
age; The Jackson Laboratory, Bar Harbor, ME, USA) were in-
stilled with bleomycin (0.025 U intratracheal) as previously de-
scribed (42, 43) with minor modifications. Antagonists against
C3aR (C3aRA-SB290157) were purchased from EMD Millipore
(Billerica, MA, USA), and C5aR (C5aRA; PMX-205) was gener-
ously donated by T.S.W.

Cell culture conditions and reagents

Normal primary human fetal lung IMR-90 fibroblasts and nor-
mal adult lung fibroblasts were obtained from the Institute of
Medical Research (Camden, NJ, USA), and fibroblasts derived
from the lungs of patients with IPF were provided by D.W. All

TABLE 1. Baseline and pulmonary function characteristics of patients
with IPF

Characteristic Value

Age (yr) 64.2 6 1.7 (48–80)
Male (%) 65.2
Race (%)

White and African American 100
Hispanic —

Asian —

Smoking status
Current smoker (%) 8.7
Former smoker (%) 30.4
Nonsmoker (%) 56.5
Smoking (packs/yr)a 34.2 6 5.2 (5–66)

Pulmonary function test
FEV1% predicted 86.0 6 4.8 (48–138)
FVC% predicted 72.0 6 4.3 (36–108)
DLCO% predicteda 46.0 6 3.5 (14–94)
CPI 51.9 6 2.6 (36–76)

Values are means 6 SEM, n = 23; values in parentheses indicate
range. CPI, composite physiologic index; DLCO%, percentage carbon
monoxide lung diffusing capacity; FEV1%, percentage forced expira-
tory volume in 1 s; FVC%, percentage forced vital capacity. aData
missing, n = 1.
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fibroblasts were grown in 10% fetal bovine serum that contained
DMEM, 100 U/ml penicillin/streptomycin and fungizone
(Invitrogen, Carlsbad, CA, USA). Cells were seeded at 65–70%
confluence and incubated in 5% CO2/95% air. Cells were serum
starved by using 0.01% serum for 36 h before specific treatments.
These studies used recombinant human C3a and C5a (100 nM;
Complement Technology, Tyler, TX, USA) and platelet-derived
TGF-b1 (2 ng/ml; Roche Diagnostics, Jena, Germany). All other
reagents were from Sigma-Aldrich (St. Louis, MO, USA).

Western blotting and immunofluorescence

Cell lysates of IMR-90 cells or fibroblasts derived from control
participants or from patients who were diagnosed with IPF were
lysed, and equal protein concentrations were subjected to immu-
noblotting as previously described (42, 44–46). Densitometric
analyseswere performedwith ImageJ 1.32j (NIH). Formalin-fixed
IMR-90 cells and IPF lung tissues were subjected to immunoflu-
orescent staining for a-smooth muscle actin (a-SMA), C3aR or
C5aR(1:100), or their corresponding IgG, thencounterstainedwith
DAPI, using protocols described previously (42, 44–46).For in
vivo delivery of RNA interference (RNAi), single-duplex small
interference RNA (siRNA) sequences that targeted C3ar and C5ar
(Sigma-Aldrich) or nontargeting control siRNA (Dharmacon
Technologies, Pittsburgh, PA, USA) were used.

Murine fibrosis PCR microarrays

Total RNA was isolated from cells by using RNeasy Mini Kit
(Qiagen, Valencia, CA, USA) and was reverse transcribed by
using qScript cDNA SuperMix (Quanta BioSciences, Foster
City,CA,USA).Murine lungmRNAwasused togenerate cDNA.
The Mouse Fibrosis PCR Array–RT2 Profiler PCR Arrays (v 3.0;
Qiagen) were used according to manufacturer instructions,
and array data were analyzed by using PCR Array Data
Analysis software (Qiagen). The semiquantitative real-time
PCR data for each target gene were expressed as 22DDCt rel-
ative quantitation vs. endogenous control, with error bars
representing the SEM.

ELISA

Acellular BALF derived from normal participants and from pa-
tientswith IPF ormice treatedwith antagonists or siRNA specific
to C3aR/C5aR was used to measure the soluble form of C5b-9
with Terminal Complement Complex C5b-9 Bioassay ELISA kit
(human or mouse; U.S. Biologic Life Sciences, Salem, MA, USA)
per manufacturer protocol. The soluble forms of C3a and C5a
were measured in the BALF by using the mouse complement
fragment 3a and 5a ELISA kits (My Biosource, San Diego, CA,
USA), respectively, per manufacturer protocol. Active TGF-b1
levels were measured in plasma that was collected from mice
treated with antagonists or siRNA specific to C3aR/C5aR by
using Mouse TGF-b1 Platinum ELISA (eBioscience, San Diego,
CA, USA) per manufacturer protocol.

Immunostaining

Normal and IPF lung tissue biopsies were paraffin-embedded
and formalin fixed. Tissue sections were immunostained against
C3aR and C5aR (1:600; Novus Biologicals, Littleton, CO, USA)
and the corresponding rabbit IgG using the protocol published
previously (13).

Statistical analyses

Statistical analysis was performed by using Student’s t test and
1-wayANOVA,withBonferroni post hoc test usingPrism, version
4.03 forWindows (GraphPadSoftware,La Jolla,CA,USA),unless
otherwise stated. Statistical significance was defined at P, 0.05.

RESULTS

C3a and C5a induce mesenchymal activation
and expression of their respective receptors

We have previously reported that patients who are di-
agnosedwith IPFhave elevated levels of local andsystemic
C3a and C5a (13). To determine the functional significance
of C3a and C5a in the lungs of patients with IPF, we used
normal primary human fetal lung IMR-90 fibroblasts to
investigate the role of C3a and C5a in mesenchymal acti-
vation. IMR-90 cells dose-dependently induced myofibro-
blast differentiation as indicated by the expression of
a-SMA (Fig. 1A, B). The extent of myofibroblast induction
wascomparable to thatofTGF-b1 (Fig. 1C,D), andC3aand
C5a also induced the extracellular matrix proteins, cellular
fibronectin and collagen type I (Fig. 1E). We further ob-
served a concomitant induction of the expression of their
respective receptors parallel with mesenchymal activation
(Fig. 1F). These data support a role for C3a and C5a and
their respective receptors in mesenchymal activation.

Pharmacologic blockade of receptors specific
to C3a and C5a during the fibrotic phase of
bleomycin-induced lung injury attenuates
lung fibrosis

To define the role of C3a and C5a in binding to their re-
spective receptors in a significantly scarred murine lung,
we used the bleomycinmodel of lung fibrosis. Several key
fibrogenic responses in mammalian tissues, including
TGF-b up-regulation (47, 48) andmesenchymal activation
(44, 49, 50), are well simulated in this animal model. We
first determined whether C3a and C5a levels are up-
regulated in the fibrotic phase of bleomycin-induced lung
injury. BALFanalyses inFig. 2Ademonstrate thatC3aand
C5a levels in the injured lungs were increased on d 14 and
28. These data support a relative increase in their re-
spective receptor activity ina fibrotic lungond28 (Fig. 2B).
Because patients with IPF present with established fibro-
sis, we simulated this clinical condition and examined the
effects of the targeted blockade of C3aR and C5aR in a
significantly scarred lung. By using the treatment regimen
indicated in Fig. 2C, C3aR and C5aR were blocked at
d 14—a time point at which the lungs were significantly
fibrotic. Histopathologic assessment was used to examine
both lung architecture (hematoxylin and eosin; Fig. 2D)
andconnective tissuedistribution (Masson’sblue trichrome;
Fig. 2D). Bleomycin-injured lungswere severely scarred,
whereas the blockade of C3aR andC5aR resulted in near
normal–appearing lung architecture. We then determined
collagen deposition quantitatively by using the standard
hydroxyproline assay on entire left lung (Fig. 2E). Of
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note, at 28 d postbleomycin injury, with 14 d of C3aR or
C5aR inhibition, the inhibitor-treated groups had sig-
nificantly lower levels of collagen compared with the
diseased control group. mRNA analyses in Fig. 2F show
that bleomycin-induced col1a1 (collagen type I a 1 chain)
and col1a2 (collagen type I a 2 chain) gene expressions
were suppressedby the blockingof bothC3aRandC5aR.
Collectively, these results demonstrate that inhibiting
C3aR or C5aR effectively arrests the progression of sig-
nificant fibrosis.

Blockade of C3aR and C5aR suppresses
complement activation and terminal
complement complex in fibrotic lungs

Wenext investigated the local effects of blockingC3aRand
C5aR on the complement components, C3a and C5a, and
the terminal complement complex,C5b-9. Increased levels
of C3a and C5a in BALF were reported in transfusion-
related acute lung injury (51) and in chronic rejection

post–lung transplantation (52). Bleomycin-induced C3a
(Fig. 3A) and C5a (Fig. 3B) were suppressed by the
blockade of C3aR or C5aR. Elevated tissue deposition of
C5b-9 was reported during the acute rejection phase
post–lung transplantation (53). Bleomycin-induced solu-
ble C5b-9 was suppressed with the blockade of both re-
ceptors. Of interest, C5b-9 levels in the bleomycin-injured
groups that were treated with inhibitors were still higher
than the PBS control group that was treated with inhibi-
tors. These results support a role for complement activa-
tion in the pathogenesis of IPF.

Terminal complement complex, C5b-9, is
up-regulated locally and systemically in
patients with IPF

To investigate the clinical relevance of C5b-9 in the path-
ogenesis of IPF, we examined local and systemic C5b-9 in
patients with IPF. We detected increased soluble C5b-9
levels in BALF and in plasma collected from patients with
IPF compared with that from control subjects (Fig. 4A, E).

Figure 1. C3a and C5a induce mesenchymal activation in normal primary human fetal lung fibroblast cultures. IMR-90 cells were
grown to 65–70% confluence and were serum starved for; 36 h. A) Cells were treated with varying doses of human recombinant
C3a or C5a (10, 50, or 100 nM 3 24 h). Cell lysates were immunoblotted with antibodies recognizing a-SMA and b-actin (loading
control). B) Immunoblots described in panel A were analyzed by densitometry. Values are expressed as means 6 SEM of triplicate
experiments; statistics: 1-way ANOVA, Bonferroni. C ) Mesenchymal activation observed in panel A was confirmed by
immunofluorescence staining with anti–a-SMA and DAPI. D) Triplicate results of the immunofluorescent labeling were
quantitated by assessing the percent positively labeled cells. Values are expressed as means 6 SEM; statistics: 1-way ANOVA,
Bonferroni. E) Cell lysates from panel A were immunoblotted against fibronectin, collagen type I [Col(I)], and b-actin (loading
control). F) Temporal analyses of the respective receptors for C3a and C5a and mesenchymal induction were observed at the
indicated time points. Immunoblotting results indicate concomitant induction of C3aR and C5aR with a-SMA. Results are
representative of 3 independent experiments. Original magnification, 320. Scale bars, 100 mm.
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We then studied the correlation between local and sys-
temic soluble C5b-9 levels at presentation with clinical
markers of disease severity. Whereas local soluble C5b-9
levels at presentation did not correlate with forced vital
capacity (FVC)% (Fig. 4B; r=20.29; 95%CI,20.63 to 0.13;
P = 0.17) or carbon monoxide lung diffusing capacity

(DLCO) % (Fig. 4C; r = 20.36; 95% CI, 20.68 to 0.07;
P = 0.09), C5b-9 levels were significantly correlated with
composite physiologic index (CPI) (54) (Fig. 4D; r = 0.44;
95% CI, 0.02 to 0.72; P = 0.04). However, systemic soluble
C5b-9 levels did not correlate with FVC% (Fig. 4F; r =
20.3149; 95% CI,20.6729 to 0.1627; P = 0.18), DLCO%

Figure 2. Pharmacologic blockade of receptors specific to C3a and C5a (C3aR and C5aR) arrest the progression of bleomycin-
mediated lung fibrosis. C57-BL/6 mice were subjected to an intratracheal instillation of PBS or bleomycin (0.025 U) on d 0. A)
C3a and C5a were analyzed in the BALF collected at the indicated time points after bleomycin injury. Values are given as means 6
SEM (n = 4 mice per group); unpaired Student’s t test. B) Expressions of C3aR and C5aR were assessed in the PBS or bleomycin-
instilled mice at d 28 by using immunostained using 3,39-diaminobenzidine (brown) with corresponding secondary IgG. Nuclei
were counterstained by using hematoxylin. C) In the clinically relevant therapeutic model, wherein at d 14, (period of significant
collagen deposition), antagonists against C3aR (C3aRA, SB290157; 300 mg/20 g mouse) or C5aR (C5aRA, PMX-205; 200 mg/20 g
mouse) were administered intraperitoneally 3 times/wk for 2 wk. Mice were euthanized at d 28. D) Histopathologic exam using
hematoxylin and eosin (H&E) and trichrome staining showed that bleomycin-induced fibrosis and collagen deposition were
attenuated by the inhibitors. E, F) Analysis of hydroxyproline (E) and col1a1 and col1a2 (F) mRNA expression in the lung. Values
are given as means 6 SEM (n = 10–12 mice/group); 1-way ANOVA, Bonferroni. Results are representative of 3 independent
experiments. AW, airway; BLEO, bleomycin; FF, fibroblastic foci. Original magnification, 320 (B), 310 (D). Scale bar, 100 mm.
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(Fig. 4G; r=20.4370; 95%CI,20.7572 to0.05261;P=0.06),
or CPI (Fig. 4H; r = 0.3426; 95% CI,20.1323 to 0.6896; P =
0.15). These results provide a clinical association to our
findings in the preclinical murine model.

Antagonists specific to C3aR and C5aR
may attenuate preexisting fibrosis via

up-regulation of TGF-b family ligands,
receptors, and modulators

We have previously reported that C3a induces TGF-b,
which, in turn, up-regulates C3aR and C5aR in normal
primary human lung epithelial cells (13). To further in-
vestigate mechanisms that underlie the interaction of
C3aR and C5aR and TGF-b in the pathogenesis of lung

fibrosis, we first asked whether blockade of C3aR and
C5aRaffects active TGF-b1 levels.Figure 5A indicates that
the blockade of C3aR and C5aR suppressed bleomycin-
induced active TGF-b1 in the plasma and that no signifi-
cant changes were observed in tgfb1 mRNA expression
locally (Fig. 5B). We employed a TGF-b/bone morpho-
logic protein (BMP)–specific, 80-gene PCR array to further
analyze lungmRNAexpression in the relatedmembers.A
comparison of PBS or bleomycin-instilled lung tissue that
either received or did not receive treatment with C3aR-
and C5aR-specific inhibitors revealed significant changes
that suggested the direct involvement of TGF-b and the
upstream role of C3aR- and C5aR-mediated profibrotic
signaling in lung fibrosis. Figure 6A–E shows that the
bleomycin injury–mediated induction of tgfb2, tgfbr1/2,
and ltbp1/2 transcripts was suppressed by blockade of
C3aR and C5aR. These data suggest that the profibrotic
effects resulting from the activation of C3aR and C5aR
maybemediated, inpart, viaTGF-b ligands and receptors.
Inhibition of C3aR and C5aR suppresses bleomycin-
induced serpine1 expression (Fig. 6F). Figure 6G demon-
strates that tsp1 (thrombospondin-1), an extracellular
protein that is critical to normal lung homeostasis, and
activation of latent TGF-b (55, 56) was suppressed
by C3aR- and C5aR-specific inhibitors in the murine
bleomycin-injured lungs. Decorin, a small secreted
chondroitin/dermatan sulfate proteoglycan within the
family of small leucine-rich proteoglycanswas reported to
affect the formation of collagen fibrils (57). Our analyses in
Fig. 6H shows the restoration of dcn transcripts as a result
of C3aR- and C5aR-specific blockade compared with
suppressed levels in bleomycin-injured mice. BMPs are
secreted signaling molecules that comprise a subfamily of
theTGF-b superfamily.Weshow that both bmp1 and bmp4
were suppressed in inhibitor-treated injured mice com-
pared with bleomycin-injured control mice (Fig. 7A, B).
Collectively, these results indicate that the TGF-b modu-
lators, decorin and thrombospondin-1, and members of
the BMP family, BMP1/4, are regulated byC3a andC5a in
binding to their respective receptors.

Other signaling pathways that interact
with TGF-b

Platelet-derived growth factor (PDGF) is a potent medi-
ator of lung fibrosis (58), and PDGF receptor tyrosine
kinase is targeted by a current U.S. Food and Drug
Administration–approved drug for IPF, nintedanib (59).
IGF-1 exacerbates lung fibrosis (60). Figure 7C, D dem-
onstrates that inhibition of C3aR and C5aR suppresses
bleomycin-induced pdgfbb and igf1. These results suggest
that blockade of C3aR and C5aR suppresses two signifi-
cant profibrotic mediators that interact with TGF-b.

RNAi-mediated gene silencing of C3aR and
C5aR mitigates progression of fibrosis by
suppressing complement activation locally
and active TGF-b systemically

We next examined the effects of the targeted suppression
ofC3arandC5ar expressionbyusing anRNAi approach in

Figure 3. Pharmacologic blockade of receptors specific to
C3a and C5a suppresses complement activation in bleomycin-
mediated lung fibrosis. BALF collected from Fig. 2 were
analyzed for C3a (A), C5a (B), and C5b-9 (C) levels in the lung
by ELISA. Values are given as means 6 SEM (n = 5–6 mice per
group); 1-way ANOVA, Newman-Keuls (A) and Bonferroni (B, C).
BLEO, bleomycin.
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a clinically relevant model of lung fibrosis. Bleomycin-
injuredmice with significantly scarred lung tissue were
subjected to intratracheal instillation of siRNA specific
to C3ar or C5ar or of nontargeting control siRNA (Fig.
8A). Figure 8B shows that gene silencing of C3ar or C5ar
suppressed the protein expressions of these receptors
compared with mice that received nontargeting control
siRNA. Figure 8C further supports our hypotheses
that lack of expression of these receptors mediates a

profound antifibrotic effect, with significant suppres-
sion of fibrosis and collagen deposition (Fig. 8C). This
was confirmed bymeasuring hydroxyproline synthesis
(Fig. 8D) and mRNA expression of col1a1 and col1a2
(Fig. 8E) in whole-lung homogenates. We observed the
suppression of local C3a, C5a, and soluble C5b-9 in
bleomycin-injuredmice asmeasured in BALF (Table 2).
Table 2 also presents data that show significant
suppression of TGF-b1 activity systemically with

Figure 4. Local and systemic C5b-9, a soluble TCC, in patients with IPF. A, E) Patients who were diagnosed with IPF or normal
volunteers were analyzed for C5b-9 levels by ELISA in BALF (A) or plasma (E). Values are given as means 6 SEM; unpaired t test.
B–D, F–H) Correlation between BALF (B–D) and plasma (F–H) analyses of C5b-9 and percentage forced vital capacity (FVC%)
(B, F), percentage carbon monoxide lung diffusing capacity (DLCO%) (C, G), and composite physiologic index (CPI) (D, H) in
patients with IPF. Statistics are provided in the text.
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knockdown ofC3ar andC5aR. These results suggest that
the therapeutic blockade of C3aR and C5aR arrests fi-
brotic progression with suppression of associated com-
plement activation and expression of the profibrotic
cytokine TGF-b.

Expression profile of C3aR and C5aR in
patients with IPF

To investigate the clinical relevance of C3aRandC5aR in a
human fibrotic lung disease, we compared normal lung
tissue with lung tissue from patients with IPF. Whereas
C3aRandC5aRareknown tobeubiquitously expressed in
the respiratory epithelium, these receptors were over-
expressed in the fibroblastic foci of the remodeled IPF lung
tissue, as determined by immunostaining (Fig. 9A). In
addition, the architecture of the tissues was confirmed by
usingMasson’s trichromestaining for collagendeposition.
Figure 9B shows that fibroblastic foci in the IPF lung tissue
sections were identified by using a-SMA, a mesenchymal
marker, which was coimmunostained for C3aR or C5aR;
there is some costaining observed in both cases. Lung fi-
broblasts derived from lungs of pathologically normal
participants and from patients who were diagnosed with
IPF were immunoblotted for C3aR and C5aR (Fig. 9C).
Although some of the fibroblasts that were derived from
the IPF lung tissue expressed increased levels of C3aR
and C5aR, no overall significant difference was observed

(Fig. 9C). Thesedata support a key role forC3aR andC5aR
in the pathogenesis of IPF.

DISCUSSION

Complement activation is an understudied, yet phyloge-
netically ancient, innate immune response and is critical to
the fighting of infections (61). The current understanding
of complement activation on the pathogenesis of IPF is
unknown, but exploiting it therapeutically may be the
missing link in the development of effective treatments for
patients with IPF. C3a and C5amediate both tissue injury
(33, 62) and immune activation (8, 52). Our previous
studydemonstrated evidence of complement activation
in patients with IPF and its role in lung epithelial injury
in vitro (13). In the current study, we addressed the
profibrotic mechanistic role of C3a and C5a in binding
to their receptors in IPF pathogenesis. Whereas our in
vitro studies demonstrate that C3a and C5a induced
mesenchymal activation and up-regulation of their
respective receptor expressions, our in vivo proof-of-
concept studies demonstrate that the blockade of their
receptors, C3aR and C5aR, arrests the progression of
bleomycin-induced lung fibrosis and suppresses local
complement activation and systemic TGF-b1 activity. To
the best of our knowledge, this is the first study that
shows soluble levels of C5b-9 in BALF of patients with
IPF. Despite the modest number of samples, it is signif-
icantly associated with at least 1 of 3 parameters of dis-
ease progression, defined as a relative decline of
10% in FVC, a relative decline of 15% in DLCO, or an
increase of 5% in CPI. Finally, pharmacologic or RNAi-
mediated blockade of C3aR and C5aR led to attenua-
tion the local transcript expressions of TGF-b–related
ligands, receptors, and modulators.

Previous studies have reportedC3a- andC5a-mediated
mesenchymal transition of glomerular endothelial (63)
and tubular epithelial cells (25) as well as the subsequent
expression of a-SMA, TGF-b, and fibronectin in vitro.
Consistent with findings in the literature, we have re-
ported that C3a and C5a, known to be potent in-
flammatory mediators, induced a-SMA expression and
matrix synthesis. Of interest, a robust network of con-
tractile actin fibers at 72 hwas comparable to the effects of
TGF-b1. Our findings also indicate a concomitant in-
duction of the respective receptors with mesenchymal
activation. Cumulatively, our data suggest that C3a and
C5a, in binding to their receptors, induce fibroblast dif-
ferentiation and matrix synthesis.

Whereas complement proteins C3a, C5, or C5a have
been implicated in chronic pancreatitis (64), chronic re-
jection post–lung transplantation (8, 52), tubulointerstitial
injury (41), and tubulointerstitial fibrosis (33), there has
beenonlyone reporton the role ofC5 inbleomycin-injured
pulmonary fibrosis (62). Addis-Leiser et al. (62) showed
that inhibition of C5, a convertase that can release C5a,
before bleomycin-induced lung injury prevented lung fi-
brosis; however, the results in their report are not clinically
relevant due to the early preventive treatment regi-
men. Moreover, Bao et al. (41) showed that, although

Figure 5. Suppression of TGF-b1 activity in the plasma as a
result of pharmacologic blockade of C3aR and C5aR in
bleomycin-induced lung fibrosis. A) Plasma collected from
Fig. 2 was analyzed for active TGF-b1 by ELISA. B) mRNA
expression for tgfb1 was analyzed in the lung by quantitative
RT-PCR. Values are given as means 6 SEM (n = 5–6 mice per
group); 1-way ANOVA, Newman-Keuls (A). BLEO, bleomycin;
RQ, relative quantitation.
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lack of C5aR was inconsequential in the context of
complement-induced tubulointerstitial injury during
renal transplantation, C3aR deficiency conferred a
protective effect. In the current report, to compare the
relative contribution of C3aR and C5aR, we use a
clinically relevant therapeutic model (42, 45) wherein
the mice were significantly scarred at the time of in-
tervention. We observed a significant increase in both
the ligands (C3a and C5a) and the respective receptors
(C3aR and C5aR) in the scarred lung. Increased re-
ceptor expression is consistent with localization of
C3aR transcripts by in situ hybridization during the
development of murine lupus nephritis (41) and by
immunostaining in renal tubulointerstitial injury (25).
The transcriptional factors that regulate C3aR ex-
pressionwere defined asAP-1 and Ets by Schaefer et al.
(65) and are critical to understanding their function.
Reports link C3aR and C5aR signaling to p-AKT,
p-Foxo1, and other contributing effects, including those
that involve the cAMP-PKA-CREB pathway and/or

cross-talkwithNF-kB, JAK/STAT5, andERKpathways, all
of which have been implicated in the pathogenesis of lung
fibrosis (66). Collagen expression and secretion by lung fi-
broblasts are known to be up-regulated in both clinical IPF
(45) and in the bleomycin model of lung fibrosis (42, 44–46,
50). Specifically, increased mRNA expressions of a 1 and 2
chains of collagen type I, the major lung collagen, has been
widely reported (45). In the current study, both the antag-
onists of C3aR and C5aR and the targeted RNAi sequences
markedly reduced collagen deposition aswell as col1a1 and
col1a2 mRNA expression in the lung. Because collagen de-
position dictates lung architecture and lung function, our
findings clearly suggest a role for both the ligands (C3a and
C5a) and their respective receptors in the regulation of col-
lagen synthesis and deposition in IPF pathogenesis.

Because complement activation is an innate immune
response, complement split products, C3a, C4a, and C5a,
are generated during the early phase of inflammation. It is
possible that the generation of these split products may
be a result of impaired clearance of tissue debris (67).

Figure 6. Regulation of genes belonging to the TGF-b superfamily (ligands, receptors, and modulators) resulting from
pharmacologic blockade of C3aR and C5aR in bleomycin-induced lung fibrosis. RNA was isolated from the right lungs, and cDNA
was subjected to real-time PCR reactions by using the Mouse TGF-b BMP Signaling PCR array (Qiagen). Specific genes analyzed
were isoform tgfb2 (A), receptors tgbr1 (B) and tgbr2 (C), binding proteins ltbp1 (D) and ltbp2 (E), and modulators serpine1 (F),
tsp1 (G), and dcn (H). Values are given as means 6 SEM (n = 5–6 per group); 1-way ANOVA, Bonferroni (A, C, E, F), Newman-
Keuls (B, D, G, H). BLEO, bleomycin; RQ, relative quantitation.
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Previous reports show that protease-activated receptor 2
deficiency in allergic lung inflammation (51) and systemic
neutralizationofC5pretransplantation in chronic rejection
post–lung transplantation (52) lowered local and systemic
C3a and C5a. In our study, we show that whereas block-
ade of bothC3aR andC5aR suppresses local C3a andC5a,
blocking the specific C5aR antagonist is relatively more
effective; however, this was not recapitulated by the
RNAi approach.Onepossibility for thismaybe because of
the potential nonspecific nature of C3aRA (68). Whereas
complementdeposition in the tissuewas reported in lupus
nephritis (69) and in acute rejection phase post–lung
transplantation (53), to our knowledge, this is the first
study to demonstrate elevated local soluble C5b-9—the
terminal complement complex (TCC)—in a murine lung
fibrosis model, and that blockade of C3aR and C5aR has
protective effects. To our knowledge, this is also the first
report to demonstrate the presence of significant levels of
TCC in the lungs of patients with IPF.

Our previous in vitro studies demonstrated interaction
between complement activation and TGF-b1, which to-
gether augment epithelial injury. Specifically, we reported
that C3a stimulates normal human primary lung epithe-
lial cells to express TGF-b1, which, in turn, induces C3aR
and C5aR expression (13). Li et al. (70) demonstrated that
blockade of C3aR ameliorates inflammatory and fibrotic
signals in type 2 diabetic nephropathy by suppressing the
activation of TGF-b/smad3 and IKBa pathway. Boor et al.
(33) reported that complement C5 mediates experimental
tubulointerstitial fibrosis and that the corticalmRNAof all
PDGF isoforms and of TGF-b1 (i.e., central mediators of
renal disease) were significantly reduced in C52/2 mice.
Addis-Leiser et al. (62) have shown that local mRNA
and active TGF-b1 were significantly suppressed in
C52/2 mice in experimental lung fibrosis.Whereas these

experimental studieswerepreventive innature, our study
shows that the therapeutic blockade of both C3aR and
C5aR in significantly scarred lungs effectively suppresses
active TGF-b1 levels systemically. The therapeutic utility
of this finding is that the efficacy of C3aR and C5aR block-
ade can be tested in an easily accessible clinical tissue, that
is, in the plasma. Subsequent analyses of local transcript
expressions of TGF-b receptors, ligands, and modula-
tors confirmed our direct observations of the suppres-
sion of active TGF-b1 in the plasma and are discussed
here. Polosukhin et al. (71) demonstrated increased ex-
pression of TGF-b1 and TGF-b2 in bleomycin-mediated
airway remodeling. Our previous report showed that
collagen type I–induced tolerancedown-regulated tgfbr1/2
and ltbp1 in bleomycin-mediated pulmonary fibrosis (45).
Latent complexes of TGF-b1 bind with the latent TGF-b1
binding proteins 1 and 2 (LTBP1/2; ltbp1/2), which expose
them to thematrix for activation (72). Serpine-1, a member
of the serine proteinase inhibitor superfamily and the
principal inhibitor of tissue plasminogen activator and
urokinase, is associated with collagen accumulation and
myofibroblast survival (73), which protects fibroblasts
from apoptosis (74) and alveolar injury (75). Dysregulated
angiogenic responses in patients with IPFwere associated
with increases in systemic tsp1 (76), and thrombospondin-1
is implicated in the activation of latent TGF-b1 (77).
Consistent with previous findings, the current study
shows suppression of the genes discussed here. Decorin
plays a critical role in ECMmodification (57) and reduces
the fibrotic response to bleomycin by inhibiting the profi-
broticmolecule TGF-b (78–80). The decorin core protein is
known to bind with TGF-b and sequester it to the ECM
where it is unavailable for substrate binding (81). Ac-
cordingly, our findings suggest that blockade of C3aRA
and C5aRA restores the transcript levels of decorin and

Figure 7. Suppression of genes
belonging to the BMP super-
family and profibrotic media-
tors that interact with TGF-b
as a result of pharmacologic
blockade of C3aR and C5aR in
bleomycin-induced lung fibro-
sis. RNA was isolated from the
right lungs, and cDNA was sub-
jected to real-time PCR reactions
by using the Mouse TGF-b BMP
Signaling PCR array (Qiagen).
Specific genes analyzed were
bmp1 (A), bmp4 (B), pdgfbb (C),
and igf1 (E). Values are given
as means 6 SEM (n = 5–6 per
group); 1-way ANOVA, Newman-
Keuls (A, B), Bonferroni (C, D).
BLEO, bleomycin; RQ, relative
quantitation.
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Figure 8. RNAi-mediated gene silencing of C3aR and C5aR arrests the progression of bleomycin-induced lung fibrosis. A) C57-
BL/6 mice were subjected to an intratracheal instillation of PBS or bleomycin (0.025 U) on d 0, followed by intratracheal
instillation of 50 mg RNAi at d 14. Tissues were harvested on d 28. B) Protein expressions of C3aR and C5aR were assessed by
immunostaining in bleomycin-injured mice instilled with siRNA specific to C3ar or C5ar or nontargeting controls at d 28 to
confirm efficacy by 3,39-diaminobenzidine (brown) with corresponding secondary IgG. Nuclei were counterstained by using
hematoxylin. Abbreviations: AW: Airway, FF: Fibroblastic foci. C) Histopathologic exam using hematoxylin and eosin (H&E) and
trichrome staining showed that bleomycin-induced fibrotic lung and collagen deposition was attenuated by silencing C3ar and
C5ar. D, E) Analysis of hydroxyproline (D) and col1a1 and col1a2 (E) mRNA expression in the lung. Values are given as means 6
SEM (n = 5–7 per group); 1-way ANOVA, Bonferroni. AW, airway; BLEO, bleomycin; FF, fibroblastic foci. Compared with
bleomycin: ***P , 0.001; **P , 0.01; *P , 0.05. Results are representative of 2 independent experiments. Original
magnification, 320 (B), 310 (C). Scale bar, 100 mm.
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protects against bleomycin-induced fibrotic responses.
BMP1 is a profibrotic enzyme that is responsible for the
cleavage and maturation of growth factors and ECM
proteins, such as lysyl oxidase (43, 82), and BMP4 is a
potent inducer of epithelial-to-mesenchymal transition
(83–85). Profibrotic TGF-b responses require the cooper-
ation of PDGF receptor tyrosine kinases (86), and the se-
quential expression of IGF-1 and TGF-b1 synergistically
aggravate fibrosis (87). Our findings suggest comple-
mentary roles for BMP1/4, PDGF, and IGF-1, in addition

to the effects of TGF-b1 and associated receptors, ligands,
and modulators in conferring the profibrotic effects dem-
onstrated by C3a and C5a on binding to their receptors
C3aR and C5aR.

Our observations in clinical samples frompatientswith
IPF indicate that whereas local C3a (13), C5a (13), and
C5b-9 (Fig. 4) levels are elevated, receptors specific to C3a
and C5a were localized to fibroblastic foci. However,
analyses of fibroblastsgrown ex vivo fromthe lungsof these
patients presented some heterogeneity, which masked the

TABLE 2. Local complement activation and systemic TGF-b1 activity in mice subjected to
RNAi-mediated gene silencing of C3ara and C5ara

Analyte (ng/ml) NT-PBS NT-BLEO siC3ara+BLEO siC5ara+BLEO

C3a, l 0.4 6 0.4* 16.1 6 4.9 3.9 6 1.4* 6.9 6 3.1*
C5a, l 0.7 6 0.2** 2.1 6 0.4 1.0 6 0.2* 0.9 6 0.2*
C5b-9, l 105.7 6 25.7* 337.3 6 91.8 89.9 6 15.3** 91.0 6 31.9**
Active TGF-b1, p 10.2 6 0.7* 15.9 6 0.9 10.6 6 2.0* 8.6 6 0.6**

Analytes were measured either in the BALF (l) or in the plasma (p). Data are given as means 6 SEM

in each group (n = 5–7). BLEO, bleomycin; NT, nontargeting siRNA. Statistics: 1-way ANOVA; post hoc
Bonferroni; compared with NT-BLEO group: *P , 0.05; **P , 0.01.

Figure 9. C3aR and C5aR expression profiles in the lungs of patients with IPF. A) Comparative immunohistochemical staining
was performed on paraffin-embedded human IPF lung biopsy explants obtained during lung transplantation and tissue resected
from normal (non-IPF) lung tissue using C3aR or C5aR. Trichrome staining shows areas of fibrotic foci with rabbit IgG
antibodies. (3,39-diaminobenzidine, brown; hematoxylin, blue). Representative lesions are presented subsequent to examining
lung biopsies from 5 different normal subjects and patients with IPF. B) Double immunofluorescent staining of IPF lung tissue
sections with C3aR or C5aR with a-SMA shows costaining in the inset. C) Fibroblasts cultured ex vivo from normal and IPF lungs
were immunoblotted for C3aR, C5aR, and b-actin. Densitometric analyses of C3aR and C5aR compared with b-actin are
expressed as means 6 SEM; unpaired t test. AW, airway; FF, fibroblastic foci. Original magnification, 340. Scale bar, 600 mm.
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significance of our observations. To our knowledge, this is
the first report to address the expression pattern of these
proteins in the lungs of patients with IPF.

Our study has some potential limitations. First, al-
though we have shown elevated levels of TCC C5b-9 in
IPF tissues, we have not shown correlations with each of
the lung function parameters. This may be alleviated by
increasing the number of samples used. Of note, this is the
first report to demonstrate soluble C5b-9 levels in patients
with IPF. Second, althoughwe have reported the effects of
blocking the anaphylatoxin receptors C3aR and C5aR in
the progression of fibrosis, we have not demonstrated any
functional effect on immune responses, that is, T-cell acti-
vationwhichmight lead to higher IL-17A levels, andB-cell
activation which might lead to greater antibody pro-
duction. Although this was not within the scope of the
current study, we had previously reported that C3a and
IL-17 are part of a feed-forward loop thatmay enhance the
loss of CD46 and CD55 because exogenous C3a enhanced
IL-17 production from alloantigen- or autoantigen (type
V collagen)-reactive lymphocytes (52). Furthermore, the
potential roles of the signaling molecules identified in this
study and their effects on C3a- or C5a-mediated dysre-
gulated tissue repair is unknown.

CONCLUSIONS

Our results suggest that blocking C3a and C5a from
binding to their respective receptors, C3aR and C5aR, ar-
rests the progression of fibrosis by attenuating comple-
ment activation and complement deposition. In addition,
key fibrotic mediators that were induced in this experi-
mental model, primarily the TGF-b1 superfamily along
with PDGF, IGF-1, and BMP1/4, are efficiently sup-
pressed with concomitant restoration of decorin. Finally,
we present evidence that complement activation repre-
sents an important unexplored pathway and a critical link
to immune responses and fibrogenesis in the pathogenesis
of IPF.
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