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1 INTRODUCTION

1. Introduction

With advent of treatment options in cancer, gene expression profiles have emerged as

an important tool in predicting therapeutic response (Amin et al., 2014). In a multiple

myeloma study that motivates this work (Mulligan et al., 2007), the prediction of the

binary response status (1=complete response and 0=otherwise) based on massive genetic

biomarkers requires the development of a parsimonious logistic regression model, or

more broadly, a generalized linear model (GLM) (Paul et al., 2008). As the dimension of

predictors defies any existing modeling approaches, feature screening has been commonly

used for dimension reduction. The most popular screening approach is marginal screening

(Fan and Lv, 2008), which selects variables based on their marginal associations with

the response. However, marginal screening may miss signals which are marginally unim-

portant but conditionally important (Barut et al., 2016), resulting in biased predictive

results (Li et al., 2019).

To resolve this issue, a number of authors have proposed conditional screening ap-

proaches under the GLM framework: Fan and Lv (2008) suggested an iterative procedure

by repeatedly using the residuals from the previous iterations; Xu and Chen (2014)

proposed a sparsity restricted maximum likelihood estimation method, which retains

the virtues of the iterative procedure but is conceptually simpler and computation-

ally efficient than the iterative procedures; Barut et al. (2016) proposed a conditional

screening approach, given some important variables known a priori ; Hong et al. (2016)

further introduced a data-driven conditional screening approach in the absence of prior

knowledge about the conditioning set.

These aforementioned methods have various drawbacks. First, most of the conditional

screening approaches need to fix the initial choice of the conditioning set and the selected

variables may depend on the conditioning set. In the absence of reliable information

about the conditioning set, the methods may produce false negatives and positives.

Second, the theoretical properties for the data-driven approaches are still elusive, making

it difficult to evaluate their generalizability. Third, most of these methods require the

selection of tuning parameters, which is often computationally clumsy.

We propose a sequential conditioning (SC) approach, wherein variables sequentially enter

the conditioning set according to the increment of likelihood. The procedure updates the

conditioning set at each iteration based on the extended Bayesian information criterion

(EBIC) (Chen and Chen, 2008), and constructs an offset term based on the variables

in this set. In essence, this offset summarizes the information contained in the updated

conditioning set and we search for a new variable that maximizes the likelihood given the
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2 SEQUENTIALLY CONDITIONAL MODELING

offset term. We emphasize that the proposed sequential conditioning approach deviates

fundamentally from the variable screening or selection approaches as it naturally leads

to a final model when the procedure terminates.

In addition, our approach is innovative in several aspects. First, compared to the other

conditional approaches, it is computationally efficient as it maximizes the likelihood

with respect to only one covariate at each step given the offset. Second, the use of

the EBIC accommodates natural selection of the final model without requiring tuning

parameters or threshold parameters. Third, in contrast with marginal screening, the

proposed method does not require restrictive faithfulness assumptions which stipulate

that marginal models must reflect the original model. Fourth, we have established

rigorous selection consistency results with the EBIC and showed that, if the dimension

of the true model is finite, the proposed approach can discover all relevant predictors

within a finite number of steps. The derived theoretical framework can accommodate

a wide range of data types, such as binary, categorical and count data. Finally, the

proposed approach starts with an empty model or some important variables identified

a priori and then sequentially recruits more variables into the conditioning set, and our

method is valid even in the absence of the prior information about which variables to

condition on.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed

sequential conditioning procedure. In Section 3, we establish the sure screening property.

Section 4 details the assessment of the finite sample performance of the proposed method

and Section 5 illustrates our method by predicting treatment response based on myeloma

patients’ genomic profiles using the aforementioned data example. We conclude the paper

with a brief discussion in Section 6 and relegate all the technical details, including

lemmas, conditions and proofs, to the online Supporting Information.

2. Sequentially Conditional Modeling

Suppose that there are n independent samples (Xi, Yi), i = 1, . . . , n, where Yi is an

outcome, Xi = (Xi0, Xi1, . . . , Xip)
T is a collection of p+ 1 predictors for the ith sample,

and Xi0 = 1 corresponds to the intercept. Assume without loss of generality that all the

covariates have been standardized so that E(Xij) = 0 and E(X2
ij) = 1 for all j > 1.

We focus on a class of GLMs by assuming that the conditional density of Yi given Xi

belongs to the linear exponential family:

π(Yi | Xi) = exp{YiXT
i β − b(XT

i β) + A(Yi)}, (1)

This article is protected by copyright. All rights reserved.



A
u
th

or
M

an
u
sc

ri
p
t

2 SEQUENTIALLY CONDITIONAL MODELING

where A(·) and b(·) are some known functions, β = (β0, β1, . . . , βp)
T represents the

coefficients of predictors, and β0 is the intercept. Compared to the usual exponential

family (McCullagh and Nelder, 1989), (1) adopts a canonical link function and an unit

dispersion parameter for simplicity of presentation. We assume that function b(·) is twice

continuously differentiable with a non-negative second derivative b′′(·), and use µ(·) and

σ(·) to denote b′(·) and b′′(·), respectively. For a non-random function f(·) and a sequence

of independent random variables ξi (i = 1, . . . , n), let En{f(ξ)} = n−1
∑n

i=1 f(ξi) be

the mean of {f(ξi)}ni=1, which are independent replicates of f(ξ). We also denote the

empirical process by Gn{f(ξ)} = n−1/2
∑n

i=1(f(ξi) − E[f(ξi)]). Further assume that

{Xij,Xi, Yi} are independently and identically distributed copies of {Xj,X, Y }. We let

X0 = 1, corresponding to the intercept. When p > n, regularization estimation is often

carried out under a sparsity assumption on the predictors. When p is on the exponential

order of n, a popular approach for reducing the dimensionality is screening.

The log-likelihood function, apart from an additive constant, is

1

n

n∑
i=1

l(XT
i β, Yi) = En{l(XTβ, Y )}, (2)

where l(θ, y) = yθ − b(θ). For example, for logistic regression, b(θ) = log{1 + exp(θ)}
and the log-likelihood is equal to n−1

∑n
i=1[YiX

T
i β − log{1 + exp(XT

i β)}]. Denote by

β∗ = (β0∗, β1∗, . . . , βp∗)
T the true values of β, and denote the true model as M = {j :

βj∗ 6= 0, j > 1} ∪ {0}. We denote its estimate by M̂.

More notation is introduced. For an index set S ⊂ {0, 1, . . . , p} and a p-dimensional

vector A, we use AS = {Aj : j ∈ S} to denote the subvector of A corresponding to S.

For example, XiS denotes the collection of covariates for the ith individual corresponding

to S. We use |S| to denote the cardinality of S and Sc to denote the complement of S.

We use `S(βS) := En{l(XT
SβS, Y )} to denote the average log-likelihood of the regression

model of Y on XS for a given S ⊂ {0, 1, . . . , p}, and use β̂S to denote the maximizer of

`S(βS).

We elaborate on the idea of building model (1) with the proposed sequential condition-

ing approach. The key is to include an offset term which summarizes the information

acquired from the previous selection steps and to search for a new candidate variable

that maximizes the likelihood with such an offset.

Specifically, we denote by Ok the offset evaluated at the kth step and Sk ⊂ {0, 1, . . . , p}
the set of indices of the covariates selected up to the kth step. Initializing S0 = {0}, we

set O0 = β̂S0 , where β̂S0 maximizes `S0(βS0) and is the estimated intercept without any

This article is protected by copyright. All rights reserved.
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2 SEQUENTIALLY CONDITIONAL MODELING

other covariates. That is, we start from the null model with only an intercept term. We

can also start with a set of given variables according to some a priori knowledge, which

is in the same spirit as conditional screening (Barut et al., 2016). However, as opposed

to Barut et al. (2016), our procedure dynamically updates the conditioning set with a

sequential selection process, which is detailed below.

First, with such an O0, for j ∈ {1, . . . , p}, we compute β̂
(1)
j = arg maxβ `O0,j(β), where

`O,j(β) = En{l(O + βXj, Y )}. Then j1 = arg maxj∈{1,...,p} `O0,j(β̂
(1)
j ). Now set S1 =

{0, j1} and regress Y on XS1 to obtain β̂S1
. Set O1 = XT

S1
β̂S1

, which is embedded with

information for the variable selected previously.

An iterative procedure follows naturally. For k > 1, given Ok and Sk, we compute

β̂
(k+1)
j = arg maxβ `Ok,j(β) for j ∈ Sck. Then jk+1 = arg maxj∈Sck `Ok,j(β̂

(k+1)
j ). Now set

Sk+1 = Sk ∪ {jk+1} and regress Y on XSk+1
to obtain β̂Sk+1

and let Ok+1 = XT
Sk+1

β̂Sk+1
.

The procedure sequentially generates a series of covariate index sets: S0 ⊂ S1 ⊂ · · · ⊂
Sk ⊂ Sk+1. To decide whether to end the procedure at the kth step or to recruit another

variable jk+1 and proceed to the next step, we compute the following EBIC on set Sk+1

with a tuning parameter η:

EBIC(Sk+1) = −2`Sk+1
(β̂Sk+1

) + |Sk+1|(log n+ 2η log p)/n

= −2`Sk+1
(β̂Sk+1

) + (k + 1)(log n+ 2η log p)/n. (3)

We terminate the algorithm if EBIC(Sk+1) > EBIC(Sk) and declare M̂ = Sk, the final

model; otherwise, the procedure will proceed to search a new variable. For more clarity,

the following pseudocode captures the main thrust of the algorithm.

A sequential conditioning algorithm

(1): (Initialization) Start with a set of a priori known S0. Otherwise, initialize with

S0 = {0}.
Set O0 = β̂S0 , where β̂S0 maximizes lS0(βS0).

Compute β̂
(1)
j = arg maxβ`O0,j(β), where `O,j(β) = En{l(O + βXj, Y )}.

Let j1 = arg maxj∈{1,...,p} `O0,j(β̂
(1)
j ).

(2): (Repeat) For k > 1, given Ok = XT
Sk
β̂Sk and Sk = Sk ∪ {jk},

compute β̂
(k+1)
j = arg maxβ`Ok,j(β) for j ∈ Sck.

Set jk+1 = arg maxj∈Sck `Ok,j(β̂
(k+1)
j ).

(3): (Stop) If EBIC(Sk+1) > EBIC(Sk) and declare M̂ = Sk,

where EBIC(Sk) = −2`Sk(β̂Sk) + k(log n+ 2η log p)/n.

The proposed SC approach simultaneously performs variable selection and model selec-

This article is protected by copyright. All rights reserved.
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3 THEORETICAL PROPERTIES

tion via EBIC, halting the procedure after including k(< n) variables if the criterion

of EBICk <EBICk+1 is met. In contrast, the typical screening approaches that do not

internally incorporate the model selection procedure need to employ arbitrary cutoffs

for termination, which may inflate the false positives or false negatives. We also treated

the tuning parameter η as a fixed constant which may not vary by datasets. This is

analogous to the constant “a” parameter in the SCAD penalty function (Fan and Li,

2001), and distinguishes our work from the screening approaches, which typically require

data-driven tuning parameters and may incur much computational burden for finding

them. To investigate the idea of fixing η, in Section 4, we numerically examined the

results with different choices of η values.

3. Theoretical Properties

Let →p and →d denote convergence in probability and distribution, respectively. For

a column vector v, let v⊗2 = vvT. For q > 1, denote its lq-norm by ‖v‖q, and,

in particular, denote its l2-norm by ‖v‖. For any symmetric matrix A, let λmin(A)

and λmax(A) represent its smallest and largest eigenvalues. We impose the following

regularity conditions.

(A) For a positive integer ρ satisfying |M| 6 ρ and ρ log p = o(n1/3), there exists a

constant L > 0 such that sup|S|6ρ ‖β∗S‖1 6 L, where β∗S = arg maxβS
E{`S(βS)}

denotes the least false value of model S.

(B) ‖X‖∞ 6 K, where K > 0 is a constant.

(C) Let εi = Yi − µ(βT
∗Xi). There exists a positive constant M such that the Cramer

condition holds for all εi, i.e. E[|εi|m] 6 m!Mm for all i and m > 2.

(D) There exist two positive constants 0 < κmin < κmax < ∞, such that κmin <

λmin

{
E
(
X⊗2S

)}
and λmax

{
E
(
X⊗2S

)}
< κmax, uniformly in S ⊂ {0, 1, . . . , p} satis-

fying |S| 6 ρ.

(E) Let DS := maxj∈Sc∩M
∣∣E [{Y − µ(β∗TS XS)

}
Xj

]∣∣. There exist some constants C >

0 and α > 0 such that minS:|S|6ρ,M6⊆S DS > Cn−α and ρn−1+4α log p→ 0.

Condition (A) differs from the Lipschitz assumption in van de Geer (2008), Fan and Song

(2010), and Barut et al. (2016). A similar condition is assumed in Bühlmann (2006). The

condition ρ log p = o(n1/3) is needed to ensure the consistency of EBIC, as required in

Chen and Chen (2012). The parameter ρ is an upper bound of the model size, which is

often required in joint-model-based selection or screening methods with various notation,

such as “M” in Cheng et al. (2016), and “K” in Zhang and Huang (2008), Chen and

This article is protected by copyright. All rights reserved.
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3 THEORETICAL PROPERTIES

Chen (2008), and Fan and Tang (2013). This condition is weaker than Assumption D

in Cheng et al. (2016), which requires ρ log p = O(n1/5 log n). Condition (B) has been

commonly assumed in the literature for variable selection and screening (Zhao and Li,

2012; Li et al., 2016; Kwemou, 2016). The uniform boundedness of X is adopted to

simplify our theoretical development and can be relaxed to Conditions B and D in Fan

and Song (2010). In practice, data are often standardized at the pre-processing stage,

which may warrant the reasonableness of this condition. Condition (C) is justified by

Jiang and Zhang (2013) and Jiang et al. (2016) and is similar to Condition 3 in Bradic

et al. (2011). The condition ensures the light tail of the response variable Y and is

satisfied by a wide range of outcome data, including Gaussian and discrete data (such as

binary and count data). Condition (D) has been commonly assumed in literature (Wang,

2009; Zheng et al., 2015; Cheng et al., 2016) and represents the Sparse Riesz Condition

(Zhang and Huang, 2008). Compared to those required by joint-model-based sequential

screening methods in the literature, the signal condition (E) is not directly imposed on

the regression coefficient. Instead, it is imposed on the conditional covariance between a

covariate and the response, as in Barut et al. (2016). The condition can also be reviewed

as an “strong irrepresentable” condition (Zhao and Yu, 2006) for model identifiability,

stipulating that the true model M cannot be represented by a different set of variables

that do not include the true model. It implies that the Kullback-Leibler divergence from

a mis-specified model to the true model is large enough for mis-specified models to be

detected; see Leroux (1992). The signal rate is comparable to those conditions required

by other sequential methods in the literature, such as the rate n−1/12 in Wang (2009)

and the rate n−1/5 in Cheng et al. (2016). Conditions (A) and (E) together indicate

that the range of ρ depends on the true model size |M|, the minimum signal strength,

n−α, and the total number of covariates, p. The lower bound of ρ is |M|, and the upper

bound of ρ is o((n1−4α/ log p) ∧ (n1/3/ log p)). For example, if α = 0 and |M| is finite, ρ

can be chosen as O(n1/4/ log p). If α = 1/6 and |M| = o(n1/4/ log p), ρ can be chosen as

O(n1/4+δ/ log p), for any 0 < δ < 1/12.

For any model S with cardinality |S| 6 ρ, Condition (A) implies that the parameter

space under consideration can be restricted to B := {β ∈ Rp+1 : ‖β‖1 6 τL} for

some large constant τ . As b(·) is twice continuously differentiable, with a nonnega-

tive second derivative b′′(·), bmax := max|t|6τKL |b(t)|, µmax := max|t|6τKL |b′(t)|, and

σmax := sup|t|6τKL |b′′(t)| are assumed to be bounded above, where L and K are defined

in Conditions (A) and (B), respectively. In addition, σmin := inf |t|6τKL |b′′(t)| is bounded

below.

This article is protected by copyright. All rights reserved.
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3 THEORETICAL PROPERTIES

Given any βS, when a variable Xr, r ∈ Sc is added into the model S, we define the

augmented log-likelihood as

`S∪{r}(βr|βS) := En
{
l
(
βT
SXS + βrXr, Y

)}
. (1)

In other words, `S∪{r}(βr|βS) = `S∪{r}((β
T
S , βr)

T) = `O,r(β) with O = XT
SβS, where

`O,r(β) is defined as in Section 2.2. We use β̂r|S(βS) to denote the maximizer of `S∪{r}(βr|βS),

which solves En
[
{Yi − µ(βT

SXiS + βrXir)}Xir

]
= 0. In addition, denote the maximizer

of E
{
`S∪{r}(βr|β∗S)

}
by β∗r|S. Due to the concavity of the log-likelihood in GLMs with

the canonical link, β∗
rS

is unique and is an interior point over [−L,L] (Fan and Song,

2010).

The following theorem establishes the lower bound of the increment of the log-likelihood

provided by SC when the true model M is included in the selected model. Thus, it

provides the feasibility foundation of the proposed SC.

Theorem 3.1: Under Conditions (A)–(E), there exists some constant C1, which does

not depend on n, such that with probability at least 1− 24 exp(−6ρ log p),

max
j∈Sc

[
`S∪{j}{β̂j|S(β̂S)|β̂S} − `S(β̂S)

]
> C1n

−2α,

uniformly in S satisfying |S| < ρ and M 6⊆ S.

Given a model S such thatM 6⊆ S and |S| < ρ, let r be the index of the variable selected

by SC. As (β̂
T

S , β̂r|S(β̂S))T is suboptimal to β̂S∪{r} in terms of maximizing `S∪{r}(βS∪{r}),

we obtain `S∪{r}(β̂S∪{r}) > `S∪{r}{(β̂
T

S , β̂r|S(β̂S))T} = `S∪{r}{β̂r|S(β̂S)|β̂S}. Thus, Theo-

rem 3.1 implies that that the increment of the log-likelihood provided by SC is at least

C1n
−2α with probability tending to 1, if M 6⊆ S.

In fact, the lower bound of increment from Theorem 3.1 also guarantees that the proposed

SC will stop in steps of polynomial size and thus provides the validity of SC. Since the

maximum increment is bounded by (
√

2M +2µmax)τKL+ bmax with probability tending

to 1 (Lemma 3), we naturally obtain an upper bound on the number of steps for SC,

which is stated in the next corollary.

Corollary 3.1: Under Conditions (A)–(E), if N := 2C−11 {(
√

2M + 2µmax)τKL +

bmax}n2α < ρ and 0 6 α < 1/6, then M⊂ Sk, for some Sk selected by SC with k 6 N ,

with probability at least 1− 26 exp(−6ρ log p).

Corollary 3.1 establishes the screening consistency of SC. It follows a similar idea in Fan

and Song (2010) and Cheng et al. (2016). The condition N < ρ is sufficient but not

necessary, as the upper bound N is obtained based on the lower bound on the increment

This article is protected by copyright. All rights reserved.
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4 NUMERICAL STUDIES

of the log-likelihood and is not tight. With certain additional conditions, the bound

can be improved significantly. The following theorem establishes an upper bound of the

number of steps by assessing how likely a signal variable will be selected at each step.

Theorem 3.2: Under Conditions (A) – (E), if maxj∈Sc∩Mc

∣∣E [{Y − µ(β∗TS XS)
}
Xj

]∣∣ =

o(n−α) uniformly over S with |S| 6 ρ, then there exists some constant C2 > 2 such

that M ⊂ Sk, for some Sk selected by SC and k 6 C2|M|, with probability at least

1− 36 exp(−3ρ log p).

The “max” condition in the theorem is similar to a condition in Section 5.3 of Fan and

Song (2010). It is a generalization of the partial orthogonality assumption that XMc are

independent of XM. This condition ensures that a signal variable brings more increment

in log-likelihood than a noise variable, with probability tending to 1 uniformly over all

model S : |S| < ρ,M 6⊆ S. Therefore, the proposed procedures have a large probability

to select a signal variable at each step.

Since EBIC is a consistent model selection criterion (Luo and Chen, 2014; Luo et al.,

2015), we expect the proposed SC to stop early withM⊂ Sk for some finite k as shown

in the following theorem. Thus, the final model M̂ provided by SC may not include too

many noise variables.

Theorem 3.3: Suppose the conditions in Corollary 3.1 or Theorem 3.2 hold. If M 6⊂
Sk−1 and M⊂ Sk, then the procedure stops at the kth step with probability going to 1.

4. Numerical Studies

We conducted simulation studies to compare the proposed sequential conditioning (SC)

approach with some competing methods, including sure independence screening (SIS) of

Fan and Lv (2008), and conditional sure independence screening (CSIS) of Barut et al.

(2016).

The competing screening approaches typically rely on some arbitrary cutoffs when deter-

mining the number of selected variables, which may inflate the false positives. Therefore,

to make fair comparisons, we first applied these methods to select the top [n/ log n]

variables as suggested by Fan and Lv (2008) and then applied Lasso (Tibshirani, 1996),

SCAD (Fan and Li, 2001), and MCP (Zhang, 2010) penalties to arrive at the final

models. In the tables, we used method+penalty to denote the corresponding procedure.

Example 1: We set β = c× (1,−1, 1,−1, 1,−ι+ ι2− ι3 + ι4− ι5,0p−6)T, where ι = 0.5.

X were generated under a multivariate normal distribution with mean 0, variance 1, and

This article is protected by copyright. All rights reserved.
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4 NUMERICAL STUDIES

cor(Xj, Xj′) = 0.5|j−j
′|, for 1 6 j 6= j′ 6 p. Here c (and hereafter) is a positive constant,

which will be chosen to maintain a pre-specified signal-to-noise ratio.

Example 2: We set β = c × (1, 1, 1, 1, 1,−2.5,0p−6)
T. X were generated under a

multivariate normal distribution with mean 0, variance 1, and cor(Xj, Xj′) = 0.5, for

1 6 j 6= j′ 6 p.

Example 3: We set β = c × (115,0p−15)
T and generated X from the independent

standard normal distribution.

Example 4: We set β = c×(115,0p−15)
T. A total of 15 active variables were generated by

a zero-mean multivariate normal distribution, where the covariance matrix had a block-

diagonal structure with 3 equal-sized blocks. The inverses of this covariance matrix

corresponds to 3 independent star-shaped graphs. Within each graph, 4 nodes are

connected to a hub node with no other connections. Specifically, the covariance matrix S

for each block can be formulated as: Σii = 1, Σij = 0.3 if (i, j) is an edge and Σij = 0.32

otherwise. The other p − 15 variables were independently generated from the standard

normal distribution.

For each example, we considered linear regression, logistic regression, and Poisson re-

gression models. For linear regression model, we generated Y = XTβ + ε, where the

random error ε follows N(0, σ2); for binary outcomes, Y were generated as independent

Bernoulli variables with probability of success exp(XTβ)/{1 + exp(XTβ)}, and for

Poisson regression model, we generated Y as independent Poisson variables with mean

exp(XTβ).

We set the magnitude of the coefficients in various GLMs according to a pre-specified

signal-to-noise ratio (SNR), the ratio of the variance of a signal to the variance of the

noise (Czanner et al., 2008). Specifically, we set c to produce an SNR of 2.

We considered p=1000 and varied sample sizes n=200 and 400. For each parameter

configuration, we simulated 200 independent datasets. We evaluated the performance of

the methods by the criteria of true positives (TP) and false positives (FP). Tables 1 –

3, which report the results for the logistic and Poisson regression models respectively,

present several interesting observations.

First, Examples 1 and 2 were designed in such a way that X6, though active, has a

0 marginal correlation with the outcome and, therefore, is not detectable by marginal

screening methods, such as unconditional SIS. Indeed, SIS was found to produce fewer

true positives, whereas by conditioning on an active variable X1, CSIS increased true

positives but at the price of increasing false positives. In contrast, because SC selects
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5 ANALYSIS OF A MULTIPLE MYELOMA TRIAL

variables sequentially and is able to detect such a “hidden” variable, the proposed SC

recruited almost all the active variables with the average TP close to the true model

size.

Second, even with Lasso, SCAD and MCP to further reduce false positives, the compet-

ing screening methods still resulted in many false positives. In contrast, the proposed

SC with the EBIC-based stopping rule had fewer false positives.

Third, although the covariates generated from multivariate normal distributions which

were unbounded, our proposed methods worked well, hinting at robustness of the meth-

ods toward the boundness assumption on covariates.

Fourth, as shown in the results of Examples 1–2, the performance of CSIS tends to

depend on the conditioning set. Even compared to the case in which CSIS used the

known prior information, SC works competently well without any prior information.

Fifth, when the number of active variables was relatively large as in Examples 3–4,

the performance of the proposed method deteriorated especially for a smaller n. This

might be due to poor fitting of models with larger model sizes and smaller sample sizes.

However, as the sample size increased, the performance improved and was fairly robust

toward the choice of η values.

Lastly, we observed that EBIC with larger values of η tended to select fewer vari-

ables, especially for the binary and count data. We also noted that the choice of η =

1 − {log n/(3 log p)} well balanced the true positives and false positives among all the

scenarios examined.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

5. Analysis of a Multiple Myeloma Trial

We demonstrate the utility of the proposed method by predicting the responses to treat-

ment among a group of multiple myeloma patients. Multiple myeloma is an incurable

malignancy that originates in the antibody-secreting bone marrow plasma cells, and

genomics has important prognostic values for this disease. The practicality and utility

of using genomic research to predict the outcome for a specific therapy remain unclear.

We apply the proposed approach to identify genes that are relevant to clinical response

in a trial conducted by Mulligan et al. (2007). In the study, patients were classified as

achieving complete response (CR), partial response (PR), minimal response (MR), no
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change (NC), or progressive disease (PD), using the European Group for Bone Marrow

Transplantation criteria. In brief, CR, PR, and MR require at least 100%, 50%, and

25% decreases in paraprotein respectively, whereas PD requires at least 25% increases.

We applied the proposed methods to the binary response [CR vs. PR/MR/NC/PD].

A total of 76 patients achieved CR among a total of 264 patients. Amin et al. (2014)

gave clinical justifications on and importance of identifying relevant genomic profiles to

predict complete response, among many other possible choices of endpoints. Our analysis

was to identify a set of important genes that could predict CR among a total of 44,928

gene probes.

Equipped with the EBIC stopping rule, our method sequentially selected probe sets,

which formed the final model for predicting treatment response. To evaluate the impact

of the different choices of η on variable selection, we applied sequential conditioning (SC)

approach with various values of η1 = 0.5, η2 = 1, η3 = 1− {log n/(3 log p)}. The results

were fairly robust, though as expected SC with smaller η tends to impose less penalty

and include more variables. Specifically, genes, such as TNFRSF11A (TNF receptor

superfamily member 11a), FAM127A (Family with sequence similarity 127, member

A), and STRBP (spermatid perinuclear RNA binding protein), were selected for all η

values, while additionally Crabp1 (cellular retinoic acid binding protein I) and PPFIBP1

(PPFIA binding protein 1) were selected only for η = 0.5. Our findings have biological

interpretations. For example, Gene TNFRSF11A was one of the oncogenes selected by

the recursive feature addition and gradient based Leave-one-out gene selection based on

the MAQC-II breast cancer data (Liu et al., 2009). Gene FAM127A was identified as

one of the genes significantly different among HCV cirrhotic tissue compared to normal

liver tissue (Fassnacht, 2010). Gene STRBP was found to be a transcriptional signature

for mutations in chromatin modifying genes (Green et al., 2015).

For comparisons, we also applied the different methods introduced in Section 4 to screen

out irrelevant genes and reached the final predictive models through various penalties.

Table 4 presents the selected genes by different methods. For brevity, among a total of

31 unique genes were chosen from various methods, we elected to display the genes that

were selected by more than five methods. Our SC algorithm did identify genes that were

not identified by the multiple myeloma literature, though external validation is needed

to further confirm the findings.

Finally, we reported the leave-one-out prediction error for different η in Table 5 for each

subject, which is the average of the squared difference between the response and the pre-

dicted probability. For a fair comparison, we assumed the prior of CSIS is unknown and
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6 CONCLUDING REMARKS

used 10 different randomly selected conditioning sets. Table 5 indicates that, although

our proposed method yielded the smallest model size, the associated prediction error

was very comparable to that with a larger model size. The average prediction error of

CSIS from 10 such random prior was 0.19 with a range between 0.17 to 0.20, indicating

the choice of conditioning set did influence the performance of the conditional screening.

[Table 4 about here.]

[Table 5 about here.]

6. Concluding Remarks

Marginal screening approaches, though widely used, have often been challenged for

restrictive faithfulness assumptions and lack of clear rules for the final model selection.

This article fills the gap by investigating a sequential conditioning approach, which

utilizes an offset term to aggregate information obtained from the previous steps. The

approach is promising with computationally and theoretically useful results. We have

demonstrated that, if the dimension of the true model is finite, our approach can discover

the true model within a finite number of steps. As our method is likelihood based, we

envision the theoretical framework will facilitate a wide range of outcome data.

There are several directions for future research. We employed an EBIC (with an added

penalty term, quantified by η, to the usual BIC) to select the final models. Although

it worked well under our simulations, it tends to be conservative in real data analysis

and recruits too few variables. It would be interesting to investigate the optimal η in the

EBIC penalty term to strike a balance between false positives and negatives.

In addition, drawing inferences on top of a variable selection procedure remains chal-

lenging, though our asymptotic results could be a very first step. There are some other

approaches, such as debiased Lasso estimators (van de Geer, 2008), for drawing inferences

for high-dimensional linear regression models and GLMs. Extensions of these approaches

to accommodate the proposed sequential conditioning approach are of substantial inter-

est and, perhaps, require the development of new theory and algorithms.
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Table 1
Comparisons of competing methods with linear regression models

(n, p) = (200, 1000) (n, p) = (400, 1000)
Example Method TP FP TP FP

1A SCη1 5.61 (0.49) 1.25 (0.64) 5.96 (0.19) 1.10 (0.37)

SCη2
5.55 (0.50) 0.89 (0.52) 5.95 (0.21) 0.95 (0.33)

SCη3
5.53 (0.50) 0.67 (0.55) 5.93 (0.26) 0.60 (0.49)

SIS 3.46 (0.64) 33.54 (0.64) 4.15 (0.77) 61.85 (0.77)
SIS+Lasso 3.10 (1.02) 13.49 (13.85) 4.08 (0.86) 6.48 (9.08)
SIS+MCP 3.13 (0.95) 11.00 (9.27) 4.00 (1.00) 0.66 (2.26)
SIS+SCAD 3.20 (0.92) 12.27 (11.43) 4.06 (0.89) 0.77 (2.52)
CSISA 4.42 (0.58) 32.58 (0.58) 5.00 (0.36) 61.00 (0.36)
CSISA+Lasso 4.38 (0.67) 27.76 (6.90) 5.00 (0.35) 14.80 (14.60)
CSISA+MCP 4.41 (0.58) 7.83 (8.39) 5.00 (0.36) 0.63 (1.77)
CSISA+SCAD 4.41 (0.58) 10.38 (10.84) 5.00 (0.35) 0.25 (0.76)
CSISI 3.47 (0.62) 33.53 (0.62) 4.16 (0.76) 61.84 (0.76)
CSISI+Lasso 3.12 (0.99) 13.52 (14.09) 4.08 (0.86) 6.68 (9.35)
CSISI+MCP 3.15 (0.94) 11.08 (9.40) 4.01 (0.99) 0.68 (2.53)
CSISI+SCAD 3.21 (0.91) 12.54 (11.54) 4.07 (0.88) 0.75 (2.40)

2A SCη1 6.00 (0.00) 1.14 (0.41) 6.00 (0.00) 1.12 (0.37)

SCη2
6.00 (0.00) 1.01 (0.08) 6.00 (0.00) 1.01 (0.13)

SCη3
6.00 (0.00) 1.00 (0.06) 6.00 (0.00) 1.00 (0.00)

SIS 4.87 (0.38) 32.13 (0.38) 5.00 (0.00) 61.00 (0.00)
SIS+Lasso 4.78 (0.46) 3.63 (2.80) 5.00 (0.00) 0.76 (1.10)
SIS+MCP 4.07 (0.77) 0.25 (0.57) 4.79 (0.43) 0.46 (1.60)
SIS+SCAD 4.49 (0.65) 0.96 (1.42) 4.89 (0.34) 0.10 (0.49)
CSISA 5.87 (0.36) 31.13 (0.36) 6.00 (0.04) 60.00 (0.04)
CSISA+Lasso 5.86 (0.42) 10.89 (3.46) 6.00 (0.04) 12.63 (3.82)
CSISA+MCP 5.81 (0.57) 0.97 (1.33) 6.00 (0.04) 0.70 (1.08)
CSISA+SCAD 5.83 (0.51) 0.42 (1.22) 6.00 (0.04) 0.14 (0.59)
CSISI 4.99 (0.51) 32.01 (0.51) 5.17 (0.38) 60.83 (0.38)
CSISI +Lasso 4.91 (0.58) 4.85 (3.93) 5.17 (0.38) 2.87 (4.60)
CSISI+MCP 4.35 (0.94) 0.65 (0.96) 5.03 (0.57) 0.96 (3.09)
CSISI+SCAD 4.67 (0.76) 1.26 (1.62) 5.09 (0.52) 0.46 (0.78)

3A SCη1 14.97 (0.21) 0.91 (1.01) 15.00 (0.00) 0.68 (0.66)

SCη2
14.90 (0.48) 0.36 (0.71) 15.00 (0.00) 0.20 (0.42)

SCη3
14.79 (0.65) 0.25 (0.61) 15.00 (0.00) 0.02 (0.13)

SIS 12.73 (1.16) 24.27 (1.16) 14.96 (0.20) 51.04 (0.20)
SIS+Lasso 12.73 (1.16) 20.77 (2.54) 14.96 (0.20) 21.00 (9.91)
SIS+MCP 12.73 (1.17) 6.72 (4.30) 14.96 (0.20) 0.79 (1.64)
SIS+SCAD 12.73 (1.16) 10.78 (4.80) 14.96 (0.20) 1.91 (1.86)
CSISA 13.14 (1.07) 23.86 (1.07) 14.98 (0.13) 51.02 (0.13)
CSISA+Lasso 13.14 (1.07) 20.44 (2.42) 14.98 (0.13) 21.75 (10.39)
CSISA+MCP 13.14 (1.07) 6.38 (4.39) 14.98 (0.13) 0.83 (1.72)
CSISA+SCAD 13.14 (1.07) 10.52 (4.94) 14.98 (0.13) 1.82 (1.73)
CSISI 12.65 (1.21) 24.35 (1.21) 14.96 (0.20) 51.04 (0.20)
CSISI+Lasso 12.65 (1.21) 20.40 (2.72) 14.96 (0.20) 20.63 (9.66)
CSISI+MCP 12.65 (1.22) 6.63 (4.37) 14.96 (0.20) 0.76 (1.58)
CSISI+SCAD 12.65 (1.21) 10.65 (4.84) 14.96 (0.20) 1.85 (1.85)

4A SCη1 12.87 (1.93) 2.16 (1.75) 14.99 (0.09) 0.93 (0.43)

SCη2
11.94 (2.06) 1.25 (1.31) 14.99 (0.13) 0.47 (0.50)

SCη3
10.83 (2.22) 0.71 (0.94) 14.97 (0.19) 0.10 (0.30)

SIS 14.49 (0.69) 22.51 (0.69) 15.00 (0.04) 51.00 (0.04)
SIS+Lasso 14.49 (0.69) 16.11 (3.66) 15.00 (0.04) 9.24 (6.37)
SIS+MCP 14.36 (0.80) 5.26 (3.27) 14.99 (0.08) 1.99 (2.37)
SIS+SCAD 14.43 (0.75) 8.56 (3.78) 15.00 (0.06) 4.48 (2.81)
CSISA 13.54 (0.99) 23.46 (0.99) 14.87 (0.34) 51.13 (0.34)
CSISA+Lasso 13.53 (1.01) 17.23 (4.34) 14.87 (0.34) 9.61 (7.24)
CSISA+MCP 13.36 (1.15) 6.96 (3.91) 14.87 (0.36) 2.32 (2.59)
CSISA+SCAD 13.49 (1.04) 11.17 (4.41) 14.87 (0.35) 5.21 (3.23)
CSISI 14.45 (0.70) 22.55 (0.70) 15.00 (0.04) 51.00 (0.04)
CSISI+Lasso 14.45 (0.70) 15.70 (3.74) 15.00 (0.04) 9.63 (6.48)
CSISI+MCP 14.32 (0.82) 5.05 (3.16) 14.99 (0.09) 1.96 (2.37)
CSISI+SCAD 14.40 (0.75) 8.36 (3.76) 15.00 (0.06) 4.56 (2.93)
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Table 2
Comparisons of competing methods with logistic regression models

(n, p) = (200, 1000) (n, p) = (400, 1000)
Example Method TP FP TP FP

1B SCη1 5.52 (0.62) 5.81 (2.44) 5.96 (0.19) 2.58 (3.53)

SCη2
5.47 (0.71) 3.31 (2.63) 5.96 (0.21) 1.15 (1.09)

SCη3
5.42 (0.74) 1.56 (1.81) 5.94 (0.24) 0.76 (0.44)

SIS 3.35 (0.63) 33.65 (0.63) 4.18 (0.82) 61.82 (0.82)
SIS+Lasso 2.85 (1.12) 14.87 (14.85) 4.07 (0.91) 12.62 (20.18)
SIS+MCP 2.96 (0.97) 16.51 (7.31) 4.01 (1.05) 4.50 (8.98)
SIS+SCAD 3.03 (0.95) 19.00 (8.38) 4.09 (0.90) 5.07 (9.05)
CSISA 4.27 (0.60) 32.73 (0.60) 4.99 (0.39) 61.01 (0.39)
CSISA+Lasso 4.17 (0.82) 28.05 (7.91) 4.99 (0.38) 35.37 (24.07)
CSISA+MCP 4.23 (0.66) 14.95 (5.73) 4.99 (0.38) 10.04 (11.79)
CSISA+SCAD 4.24 (0.63) 16.98 (6.23) 4.98 (0.39) 12.15 (12.78)
CSISI 3.35 (0.62) 33.65 (0.62) 4.16 (0.81) 61.84 (0.81)
CSISI+Lasso 2.80 (1.13) 14.24 (15.26) 4.05 (0.90) 11.43 (19.28)
CSISI+MCP 2.97 (0.94) 16.94 (7.45) 4.00 (1.03) 4.47 (9.17)
CSISI+SCAD 3.03 (0.94) 19.21 (8.76) 4.08 (0.90) 5.13 (9.44)

2B SCη1 4.92 (1.12) 7.45 (4.12) 5.99 (0.10) 2.17 (3.43)

SCη2
4.54 (1.24) 2.90 (3.32) 5.99 (0.12) 0.88 (0.62)

SCη3
4.14 (1.19) 1.17 (1.62) 5.98 (0.13) 0.42 (0.51)

SIS 4.20 (0.80) 32.80 (0.80) 4.96 (0.19) 61.04 (0.19)
SIS+Lasso 3.12 (1.27) 5.22 (3.93) 4.79 (0.46) 3.83 (2.91)
SIS+MCP 2.82 (1.02) 2.88 (2.24) 4.40 (0.69) 0.69 (1.11)
SIS+SCAD 3.36 (1.12) 6.65 (3.61) 4.79 (0.44) 3.15 (2.87)
CSISA 5.22 (0.80) 31.78 (0.80) 5.92 (0.27) 60.08 (0.27)
CSISA+Lasso 4.89 (1.28) 13.81 (5.89) 5.90 (0.39) 17.29 (5.19)
CSISA+MCP 4.63 (1.34) 4.39 (2.96) 5.87 (0.47) 1.44 (1.77)
CSISA+SCAD 4.80 (1.22) 8.19 (3.93) 5.90 (0.38) 4.35 (3.73)
CSISI 4.34 (0.89) 32.66 (0.89) 5.14 (0.43) 60.86 (0.43)
CSISI+Lasso 3.50 (1.41) 7.10 (5.71) 5.01 (0.61) 6.46 (6.31)
CSISI+MCP 3.23 (1.28) 3.37 (2.59) 4.70 (0.85) 1.07 (1.43)
CSISI+SCAD 3.64 (1.29) 7.44 (4.05) 5.01 (0.60) 3.76 (3.00)

3B SCη1 9.62 (3.23) 6.01 (3.55) 15.00 (0.00) 6.53 (2.64)

SCη2
4.78 (3.33) 0.84 (1.76) 15.00 (0.00) 4.08 (3.02)

SCη3
1.86 (1.47) 0.07 (0.27) 15.00 (0.04) 2.07 (2.51)

SIS 11.22 (1.29) 25.78 (1.29) 14.73 (0.51) 51.27 (0.51)
SIS+Lasso 11.15 (1.38) 23.62 (2.61) 14.73 (0.51) 43.84 (5.01)
SIS+MCP 10.54 (1.53) 12.05 (3.64) 14.73 (0.51) 12.57 (5.54)
SIS+SCAD 10.59 (1.48) 12.99 (4.08) 14.73 (0.51) 13.61 (5.99)
CSISA 11.70 (1.27) 25.30 (1.27) 14.78 (0.46) 51.22 (0.46)
CSISA+Lasso 11.62 (1.34) 23.14 (2.42) 14.78 (0.46) 43.83 (4.58)
CSISA+MCP 11.05 (1.48) 11.17 (3.80) 14.78 (0.47) 11.98 (5.10)
CSISA+SCAD 11.01 (1.49) 11.79 (4.09) 14.78 (0.47) 12.75 (5.69)
CSISI 11.11 (1.30) 25.89 (1.30) 14.72 (0.51) 51.28 (0.51)
CSISI+Lasso 11.04 (1.38) 23.87 (2.34) 14.72 (0.51) 44.07 (5.04)
CSISI+MCP 10.44 (1.50) 12.32 (3.78) 14.72 (0.52) 12.56 (5.62)
CSISI+SCAD 10.47 (1.46) 13.31 (4.18) 14.72 (0.51) 13.61 (5.95)

4B SCη1 7.25 (2.02) 6.03 (3.72) 14.60 (0.88) 6.77 (3.70)

SCη2
5.01 (1.73) 0.81 (1.92) 14.10 (1.57) 2.74 (3.32)

SCη3
3.59 (1.11) 0.04 (0.33) 11.09 (3.63) 0.48 (1.38)

SIS 13.72 (0.97) 23.28 (0.97) 14.98 (0.13) 51.02 (0.13)
SIS+Lasso 13.56 (1.01) 19.94 (2.12) 14.95 (0.25) 35.87 (14.65)
SIS+MCP 11.35 (1.58) 7.04 (2.84) 14.85 (0.44) 12.89 (4.14)
SIS+SCAD 11.23 (1.61) 7.28 (3.06) 14.84 (0.42) 13.41 (4.50)
CSISA 12.64 (1.10) 24.36 (1.10) 14.56 (0.63) 51.44 (0.63)
CSISA+Lasso 12.42 (1.20) 21.26 (2.21) 14.53 (0.70) 35.97 (15.63)
CSISA+MCP 10.29 (1.63) 8.76 (3.11) 14.38 (0.86) 14.13 (4.65)
CSISA+SCAD 10.22 (1.67) 8.87 (3.22) 14.36 (0.90) 14.44 (4.96)
CSISI 13.71 (0.97) 23.29 (0.97) 14.98 (0.13) 51.02 (0.13)
CSISI+Lasso 13.54 (1.04) 20.07 (2.16) 14.96 (0.22) 36.22 (14.14)
CSISI+MCP 11.35 (1.59) 7.04 (2.73) 14.85 (0.42) 12.89 (4.12)
CSISI+SCAD 11.27 (1.62) 7.27 (3.06) 14.84 (0.44) 13.21 (4.33)
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Table 3
Comparisons of competing methods with Poisson regression models

(n, p) = (200, 1000) (n, p) = (400, 1000)
Example Method TP FP TP FP

1C SCη1 5.12 (0.89) 2.14 (1.86) 5.90 (0.30) 1.12 (0.51)

SCη2
5.06 (0.93) 1.77 (1.57) 5.87 (0.34) 0.88 (0.42)

SCη3
5.02 (0.99) 1.52 (1.32) 5.85 (0.36) 0.51 (0.52)

SIS 3.13 (0.58) 33.87 (0.58) 3.95 (0.76) 62.05 (0.76)
SIS+Lasso 3.00 (0.70) 26.19 (4.90) 3.90 (0.80) 35.26 (15.54)
SIS+MCP 2.69 (0.83) 14.76 (4.37) 3.84 (0.90) 17.25 (12.80)
SIS+SCAD 2.80 (0.80) 18.99 (5.14) 3.87 (0.85) 18.86 (17.25)
CSISA 3.97 (0.62) 33.03 (0.62) 4.82 (0.51) 61.18 (0.51)
CSISA+Lasso 3.95 (0.63) 25.91 (3.51) 4.80 (0.50) 31.11 (12.39)
CSISA+MCP 3.89 (0.69) 10.79 (5.83) 4.81 (0.50) 4.48 (8.29)
CSISA+SCAD 3.91 (0.68) 14.74 (7.35) 4.80 (0.50) 3.74 (8.83)
CSISI 3.14 (0.59) 33.86 (0.59) 3.93 (0.77) 62.07 (0.77)
CSISI+Lasso 3.01 (0.69) 26.39 (5.07) 3.89 (0.81) 35.24 (15.93)
CSISI+MCP 2.70 (0.84) 14.71 (4.54) 3.82 (0.91) 17.51 (12.71)
CSISI+SCAD 2.84 (0.79) 19.02 (5.36) 3.85 (0.86) 19.19 (17.39)

2C SCη1 4.30 (1.29) 2.40 (1.57) 5.97 (0.19) 1.20 (0.60)

SCη2
4.06 (1.33) 1.84 (1.34) 5.96 (0.21) 0.97 (0.48)

SCη3
3.82 (1.32) 1.55 (1.25) 5.93 (0.28) 0.63 (0.57)

SIS 3.47 (1.12) 33.53 (1.12) 4.80 (0.45) 61.20 (0.45)
SIS+Lasso 2.92 (1.10) 8.57 (3.51) 4.58 (0.63) 7.00 (3.51)
SIS+MCP 2.08 (1.02) 2.49 (1.60) 3.92 (0.83) 1.57 (1.67)
SIS+SCAD 2.24 (1.07) 3.42 (2.42) 3.99 (0.84) 1.82 (2.26)
CSISA 4.84 (0.95) 32.16 (0.95) 5.84 (0.40) 60.16 (0.40)
CSISA+Lasso 4.51 (1.34) 12.88 (3.93) 5.79 (0.54) 15.14 (4.38)
CSISA+MCP 3.99 (1.63) 2.38 (1.53) 5.72 (0.74) 1.16 (1.08)
CSISA+SCAD 4.08 (1.58) 3.32 (2.45) 5.73 (0.68) 1.05 (1.73)
CSISI 3.88 (1.03) 33.12 (1.03) 5.03 (0.51) 60.97 (0.51)
CSISI+Lasso 3.40 (1.18) 10.42 (4.13) 4.82 (0.71) 9.28 (4.73)
CSISI+MCP 2.59 (1.35) 3.09 (1.76) 4.34 (0.99) 1.85 (1.56)
CSISI+SCAD 2.71 (1.32) 4.07 (2.71) 4.39 (0.98) 2.29 (2.32)

3C SCη1 8.47 (2.90) 5.38 (2.63) 15.00 (0.04) 0.83 (0.63)

SCη2
7.59 (2.74) 3.85 (2.21) 14.99 (0.08) 0.42 (0.56)

SCη3
6.75 (2.54) 2.90 (1.90) 14.98 (0.15) 0.16 (0.42)

SIS 9.05 (1.69) 27.95 (1.69) 14.02 (1.08) 51.98 (1.08)
SIS+Lasso 9.00 (1.71) 20.70 (3.22) 14.02 (1.08) 29.76 (5.88)
SIS+MCP 8.61 (1.84) 9.33 (3.44) 14.02 (1.08) 3.25 (3.52)
SIS+SCAD 8.81 (1.79) 12.96 (3.70) 14.02 (1.08) 6.50 (4.95)
CSISA 9.63 (1.60) 27.37 (1.60) 14.10 (1.07) 51.90 (1.07)
CSISA+Lasso 9.58 (1.61) 20.21 (3.20) 14.10 (1.07) 29.38 (6.10)
CSISA+MCP 9.19 (1.73) 8.95 (3.31) 14.10 (1.07) 3.09 (3.32)
CSISA+SCAD 9.39 (1.69) 12.51 (3.67) 14.10 (1.07) 6.36 (4.99)
CSISI 8.94 (1.68) 28.06 (1.68) 13.97 (1.09) 52.03 (1.09)
CSISI+Lasso 8.91 (1.70) 20.60 (3.33) 13.97 (1.09) 29.61 (6.00)
CSISI+MCP 8.49 (1.84) 9.47 (3.35) 13.97 (1.09) 3.43 (3.60)
CSISI+SCAD 8.72 (1.74) 13.11 (3.70) 13.97 (1.09) 6.47 (4.75)

4C SCη1 8.68 (2.56) 6.62 (2.98) 15.00 (0.00) 1.53 (0.89)

SCη2
8.16 (2.43) 5.06 (2.51) 15.00 (0.09) 1.42 (0.89)

SCη3
7.70 (2.33) 4.02 (2.14) 15.00 (0.09) 1.25 (0.96)

SIS 10.94 (2.02) 26.06 (2.02) 14.46 (0.88) 51.54 (0.88)
SIS+Lasso 10.90 (2.05) 14.89 (3.47) 14.46 (0.88) 18.63 (4.66)
SIS+MCP 10.40 (2.16) 5.22 (2.70) 14.46 (0.88) 1.48 (2.60)
SIS+SCAD 10.51 (2.19) 7.21 (3.36) 14.46 (0.88) 2.01 (3.18)
CSISA 10.27 (1.74) 26.73 (1.74) 13.46 (1.14) 52.54 (1.14)
CSISA+Lasso 10.24 (1.76) 15.67 (3.51) 13.46 (1.14) 20.57 (5.29)
CSISA+MCP 9.72 (1.91) 6.02 (2.77) 13.45 (1.15) 4.28 (4.18)
CSISA+SCAD 9.86 (1.89) 7.97 (3.34) 13.45 (1.15) 5.35 (5.17)
CSISI 11.10 (1.89) 25.90 (1.89) 14.43 (0.92) 51.57 (0.92)
CSISI+Lasso 11.07 (1.92) 14.61 (3.38) 14.43 (0.92) 18.65 (4.67)
CSISI+MCP 10.51 (2.07) 5.11 (2.73) 14.43 (0.92) 1.56 (2.58)
CSISI+SCAD 10.68 (2.07) 6.87 (3.25) 14.43 (0.92) 1.97 (3.07)
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Table 4
Selected genes by different methods

SCη1 SCη2 SCη3 SIS SIS+ SIS+ SIS+ CSIS CSIS+ CSIS+ CSIS+ Frequency
Lasso MCP SCAD Lasso MCP SCAD

FAM127A X X X X X X X X X X X 11
TNFRSF11A X X X X X X X X X X 10
PPFIBP1 X X X X X X X X X 9
BLVRA X X X X X X X X 8
C11orf82 X X X X X X X X 8
STRBP X X X X X X X 7
IDS X X X X X X X 7
RHPN1-AS1 X X X X X X X 7
SYN1 X X X X X X 6
NCAN X X X X X 5
EIF2S1 X X X X X 5
KHDRBS1 X X X X X 5
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Table 5
Final model size and leave-one-out prediction errors

SCη1 SCη2 SCη3 SIS SIS+ SIS+ SIS+ CSIS CSIS+ CSIS+ CSIS+
Lasso MCP SCAD Lasso MCP SCAD

Prediction error 0.17 0.18 0.18 0.19 0.17 0.17 0.17 0.19 0.18 0.17 0.17
Model size 5 3 3 23 14 9 13 23 17 13 14
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