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ABSTRACT Cyclooxygenase (COX), the key en-
zyme required for the conversion of arachidonic acid
to prostaglandins was first identified over 20 years
ago. Drugs, like aspirin, that inhibit cyclooxygenase
activity have been available to the public for about
100 years. In the past decade, however, more pro-
gress has been made in understanding the role of
cyclooxygenase enzymes in biology and disease than
at any other time in history. Two cyclooxygenase iso-
forms have been identified and are referred to as
COX-1 and COX-2. Under many circumstances the
COX-1 enzyme is produced constitutively (i.e., gastric
mucosa) whereas COX-2 is inducible (i.e., sites of in-
flammation). Here, we summarize the current under-
standing of the role of cyclooxygenase-1 and -2 in
different physiological situations and disease pro-
cesses ranging from inflammation to cancer. We have
attempted to include all of the most relevant material
in the field, but due to the rapid progress in this area
of research we apologize that certain recent findings
may have been left out.—DuBois, R. N., Abramson,
S. B., Crofford, L., Gupta, R. A., Simon, L. S., van
de Putte, L. B. A., Lipsky, P. E. Cyclooxygenase in
biology and disease. FASEB J. 12, 1063-1073 (1998)
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In 1893, German chemist Felix Hoffman, motivated
by concern for his father’s severe rheumatoid arthri-
tis, set into motion a commercial process for his em-
ployer, the Bayer Company, to produce a molecule
with analgesic activity called acetylsalicylic acid or as-
pirin. What evolved from this historic event was a
class of drugs, nonsteroidal antiinflammatory drugs
(NSAIDs), that are still among the most widely used
therapeutic agents known to humankind 100 years
later. In one year in the U.S. alone, approximately 50
million people, spending some 5-10 billion dollars,
consume NSAIDs for the treatment of a wide spec-
trum of pathophysiological conditions. These in-
clude prophylaxis against cardiovascular disease, re-
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lief of the discomfort associated with minor injuries
and headaches, and alleviation of the severe pain
caused by a variety of inflammatory and degenerative
joint diseases.

Despite the wide use of NSAIDs over the last cen-
tury, their mechanism of action was not fully appre-
ciated until 1971, when Vane published his seminal
observations proposing that the ability of NSAIDs to
suppress inflammation rests primarily on their ability
to inhibit the cyclooxygenase (COX) enzyme (1).
This would limit the production of proinflammatory
prostaglandins (PGs) at a site of injury. Given this,
NSAIDs have been used by scientists for the last 25
years to dissect the critical role that both the COX
enzyme and the eicosanoids derived from this path-
way have in normal and abnormal physiologic states.

The chemistry of the eicosanoid biosynthetic path-
way is well known. Prostaglandins are formed by the
oxidative cyclization of the central 5 carbons within
20 carbon polyunsaturated fatty acids (2). The key
regulatory enzyme of this pathway is COX (COX)
(PGH synthase), which catalyzes the conversion of
arachidonic acid (or other 20 carbon fatty acids) to
prostaglandin (PG) G and PGH,. PGH, is subse-
quently converted to a variety of eicosanoids that in-
clude PGE,, PGD,, PGF,,, PGI,, and thromboxane
(TX) A, (Fig. 1). The array of PGs produced varies
depending on the downstream enzymatic machinery
present in a particular cell type. For example, endo-
thelial cells primarily produce PG, whereas platelets
mainly produce TXA, (for general review of this
topic, see refs 3, 4). All NSAIDs in clinical use have
been shown to inhibit COX, leading to a marked de-
crease in PG synthesis (5).
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Figure 1. Schematic diagram for the conversion of arachidonic
acid to prostaglandins and other eicosanoids by the cycloox-
ygenase enzymes.
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Prostaglandins are found in animals as primitive as
the coelenterates and are present in a wide variety of
human tissues (2). PGs not only play a central role in
inflammation, but also regulate other critical physi-
ological responses. In humans, prostaglandins are in-
volved in diverse functions, including blood clotting,
ovulation, initiation of labor, bone metabolism, nerve
growth and development, wound healing, kidney
function, blood vessel tone, and immune responses.
In contrast to hormones such as cortisone or thy-
roxin, which have broad systemic effects despite be-
ing released from a single site in the body, PGs are
synthesized in a broad range of tissue types and serve
as autocrine or paracrine mediators to signal changes
within the immediate environment (Fig. 2). Two
classes of prostaglandin receptors exist to transduce
signals upon binding of ligand, the G-coupled cyto-
plasmic receptor class (i.e., EP1-4 for PGE,) and the
nuclear PPAR receptor class (i.e., PPARa, PPARY,
PPARS), which acts directly as a transcription factor
upon ligand binding (7).

Given the broad role PGs play in normal human
physiology, it is not surprising that systemic suppres-
sion of PG synthesis through inhibition of COX can
lead to unwanted side effects. In particular, individ-
uals taking NSAIDs for even short periods of time can
experience gastrointestinal and renal side effects (8,
9) in addition to effects on other physiological sys-
tems. As many as 25% of individuals using NSAIDs
experience some type of side effect, and as many as
5% develop serious health consequences.

The different effects of PGs can be explained by
considering their varied chemistry, the diversity of PG
receptors, and modulation of PG synthesis by local
upstream and downstream effects. This review will fo-
cus on the role of COX enzymes (COX-1 and COX-
2) on the biology of many different organ systems.
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Since NSAIDs clearly have proven efficacy in treating
human disease, while having well-documented dele-
terious side effects, an intense amount of research
over the last 5—10 years has been devoted to distin-
guishing the role of each type of COX isoform in
these two processes. One major goal of this work is
the design of an antiinflammatory drug with a wider
therapeutic window.

Investigators studying cell growth signaling path-
ways identified a unique, inducible gene product re-
lated to the known COX sequence (see ref 3 for re-
view). Concurrently, investigators looking at PG
production in response to cytokines and other in-
flammatory factors noted increases in COX activity
that could only be accounted for by increased ex-
pression of another cyclooxygenase (10). Both im-
munoprecipitation of this COX variant with an anti-
COX antibody, as well as the production of an
antibody that precipitated only the COX-2 isoform,
allowed for the identification of two different COX
isoforms. It was subsequently determined that the
COX-1 and COX-2 proteins are derived from distinct
genes that diverged well before birds and mam-
mals (11).

Taken together, these early studies revealed that
while both enzymes carry out essentially the same cat-
alytic reaction and have similar primary protein struc-
tures (12), many of the inflammatory, inducible ef-
fects of COX appeared to be mediated by the newly
discovered COX-2, while many of the ‘housekeeping’
effects of COX appear to be mediated by COX-1. This
functional role for each isoform is consistent with
their tissue expression patterns: nearly all normal tis-
sues were found to express COX-1 with low to un-
detectable levels of COX-2. However, COX-2 is con-
stitutively expressed in the brain and kidney of
rodents. Other differences between COX-1 and
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Figure 2. Schematic diagram of potential mechanisms in-
volved in the cyclooxygenase-mediated regulation via para-
crine and autocrine pathways. Arachidonic acid, AA;
prostaglandins, PGs; receptor-mediated pathways are indi-
cated. Prostaglandins can act via G-coupled cytoplasmic
membrane receptors or nuclear peroxisome proliferator ac-
tivated receptors (PPARs). Obviously, to activate PPARs, pros-
taglandins would not necessarily have to exit the cell and then
reenter; they could transit directly from the cytoplasm to the
nucleus.
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COX-2 include differences in utilization of arachi-
donic acid substrate pools as well as in mRNA stability
(13, 14).

The regions regulating gene expression of COX-1
and COX-2 show little similarity. For example, the
promoter and enhancer regions regulating COX-2
contain a variety of response elements that have been
shown to explain, at least in part, its inducibility by
hormones, growth factors, phorbol esters, cAMP, in-
flammatory factors, and cytokines. Much less is
known about the elements involved in regulating
COX-1 gene expression, although studies have re-
ported induction of COX-1 in some circumstances
involving differentiation of macrophages (16-19).

COX-1 and COX-2 also show major differences in
mRNA splicing, stability, and translational efficiency.
Regulation of COX-2 at the mRNA level appears to
be an important mechanism by which some physio-
logical mediators, notably the corticosteroids (consis-
tent with their immunosuppresive properties, down-
regulate COX-2 expression), act to regulate PG
production.

Another major difference between COX-1 and
COX-2 appears to be in their ability to use different
substrate pools. For example, in both fibroblasts and
immune cells, COX-2 was able to utilize endogenous
arachidonic acid whereas COX-1 was not. In these
systems, COX-1 requires exogenous substrate. Solu-
ble PLA; can produce an alternative source of sub-
strate for COX-1, and Herschman (3) has suggested
that in some tissues the release of sPLA, from neigh-
boring cells might provide the primary regulation of
COX-1 activity. If this is the case, then the regulatory
elements responsible for increasing PG production
would not involve the COX-1 gene, but rather the
sPLA, gene.

In summary, the COX-1 and COX-2 genes are reg-
ulated by two independent and quite different sys-
tems even though the enzymatic reaction they cata-
lyze is identical. How these systems function in health
and disease, how they are regulated, and how they
interact will be addressed in the remainder of this
review.

COX-1

As noted above, COX-1 has been localized in nearly
all tissues under basal conditions (20). From this type
of tissue expression pattern, one would expect that
COX-1I’s major function is to provide PG precursors
for homeostatic regulation. One important site of
COX-1 function is the blood platelet, where the en-
zyme is responsible for providing precursors for
thromboxane synthesis (21). Teleologically this
makes sense, since platelets, which do not have nu-
clei, cannot produce an inducible enzyme in re-
sponse to activating conditions. Rather, platelets
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carry a supply of COX-1. In the presence of an NSAID
like aspirin, platelets are prevented from generating
thromboxane during activation and fail to complete
successful aggregation, inhibiting their thrombo-
genic potential. In the adjacent vascular endothe-
lium, PGs play a different role. The release of eicos-
anoids by activated platelets is thought to provide
both a substrate and stimulus for the generation of
prostacyclin (PGl,) by the endothelium. This com-
pound stimulates vasodilatation, counteracting the
vasoconstrictor, thromboxane.

COX-1 appears to function in two other physiolog-
ical systems leading to vasodilatation in the presence
of contractile conditions. In both the kidney and the
stomach, normal physiological stimuli are associated
with dramatic changes in blood flow. During times of
lowered blood volume, the kidney releases angioten-
sin and other factors to maintain blood pressure by
systemic vasoconstriction (22). At the same time, an-
giotensin provokes PG synthesis in the kidney. COX-1
is expressed in the vasculature, glomeruli, and col-
lecting ducts of the kidney, and it appears to be im-
portant in producing the vasodilating PGs, which
maintain renal plasma flow and glomerular filtration
rate during conditions of systemic vasoconstriction.
In the presence of NSAIDs, this protective response
fails, leading to renal ischemia and damage in sus-
ceptible individuals (23). Similarly, in the gastric an-
trum, NSAID use leads to ischemia followed by mu-
cosal damage and ulceration (24). The enzyme
blocked by NSAIDs is thought to be COX-1 (25) that
produces PGs, which alter blood flow in the micro-
circulation of the gastric mucosa.

So COX-1 acts in a variety of settings to produce
homeostatic or maintenance levels of PGs. In some
cases, induction of PLA, is responsible for increased
PG synthesis. In others, COX-1 levels are modulated
(i.e., macrophages stimulated to differentiate). It is
not yet clear whether all cells and tissues with COX-
1 rely on exogenous supplies of substrate, but this
situation would allow for a variety of cooperative
mechanisms tying COX-1 activity to neighboring
physiological requirements.

COX-2

One of the first studies conducted after the discovery
of two isoforms of COX was a screen of existing
NSAIDs for those that had differential effects on in-
hibition of COX-1 vs. COX-2, and some were found
to have a 20- to 70-fold selective preference (26, 27).
As a result, studies were done using differential in-
hibition of COX-1 or COX-2 activities to sort out the
relative contributions of these isoforms under a va-
riety of experimental conditions. While initial studies
upheld the concept that COX-2 is mainly an inflam-
matory, inducible enzyme, more recent studies are
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beginning to reveal additional functions (15). We will
now turn our attention to the various organ systems
and disease states where COX-2 appears to have func-
tional significance.

Renal function

Prostaglandins are known to serve as important phys-
iologic modulators of vascular tone and sodium and
water homeostasis in the mammalian kidney, includ-
ing modulation of glomerular hemodynamics, tubular
reabsorption of sodium and water, and regulation of
renin secretion. While COX-1 has long been recog-
nized to be involved in normal kidney function, COX-
2 is now seen to have a distinct role. Localization stud-
ies have found COX-2 in both the macula densa of the
rat kidney (28) and the interstitial cells of the medulla
(29). The macula densa plays an important role in
mediating the interaction among glomerular filtra-
tion, proximal reabsorption, and regulation of renin
release (30), which in turn is responsible for sodium
balance and fluid volume. Although, PGE; has been
reported to inhibit chloride reabsorption in the as-
cending limb of Henle (31), chronic sodium depri-
vation was found to increase COX-2 levels in the re-
gion of the macula densa, and COX-2-generated
prostanoids may be important mediators of renin pro-
duction and tubuloglomerular feedback. The details
of interactions between the COX-1 and COX-2 medi-
ated systems in the kidney are not clear. Mapping of
PG receptors in the kidney (6) does show differential
locations of receptors specific for different PGs, indi-
cating that differential synthesis of specific types of
prostaglandins may be responsible for separating the
effects of COX-1 and COX-2.

In addition to the multiple roles played by PGs in
the adult kidney, COX-2 null mice show severe dis-
ruption of kidney development (32, 33). The local-
ization and level of COX-2 expression in the human
kidney is currently unknown, but this information
will be essential in evaluating the role of COX-2 in
human kidney function. NSAIDs are known to have
multiple effects on kidney function, and specific
COX-2 inhibitors should be useful in dissecting the
role of PGs generated from the COX-2 pathway in
normal renal physiology.

Nerve and brain function

COX-2 seems to have some role in regulating brain
function. PGs have long been known as mediators of
fever, of inflammatory reactions in neural tissue, and,
more recently, of brain function. The recognition
that each of these processes involves induction of PG
synthesis has led to an appreciation of the role COX-
2 plays in the PG-mediated functions. While NSAIDs
are commonly used to control fever, the actual mech-
anism of fever induction has only recently been de-
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scribed. Intraperitoneal injection with lipopolysac-
charide (LPS) causes a marked fever response in rats.
In an elegant dissection of molecular and tissue in-
teractions, Cao and colleagues have shown how COX-
2 induction in brain endothelial cells temporally par-
allels the fever response (34, 35). This leads to the
synthesis of PGs, which then act on temperature-sens-
ing neurons in the preoptic area. In turn, COX-2 in-
hibition by an isoform-specific NSAID can effectively
block fever (36). Communication between local in-
flammatory sites and the brain endothelium is me-
diated by cytokines such as IL-1, which can directly
induce COX-2 expression in these cells (37). These
investigators have also shown induction of COX-2 ex-
pression in other parts of the brain, but these areas
are not directly associated with the fever pathway.

A separate inflammatory pathway is one mediated by
microglial cells, a type of tissue-specific macrophage
that lies dormant until needed for defense or tissue
remodeling (38). While known as a source of PGs dur-
ing inflammatory states, the microglial cell does not
show induction of COX-2 in response to cytokines, in
strong contrast with other inflammatory cells. Instead,
the microglial COX-2 response is limited to direct LPS
exposure, an event that would only occur by direct bac-
terial infection of the brain. Thus, the microglial defen-
sive response is segregated from systemic inflammation
by its limited repertoire of inducers.

This segregation of the brain from systemic inflam-
matory inducers is important because COX-2 also plays
a central role in neural development and adaptation.
During earlier stages of brain development, neural
genes and proteins are developmentally induced and
play a major role in the maturation process. During
later stages of maturation, however, environmental in-
fluences, as represented by neural responses and syn-
aptic activity, play an increasingly important role in de-
termining brain structure. It is in these final stages of
development and brain modeling that COX-2 becomes
active in a manner that coincides with the imprinting
of environmental influences (39).

COX-2 remains an important modulator of neural
response throughout adult life. COX-2 levels increase
dramatically after seizures and N-methyl-D aspartate-
mediated activity (40). The sites of induction are the
postsynaptic dendritic arborizations (41) of specific
excitatory neurons located in the major processing
centers of the brain. The actual role of COX-2 and
PGs in these sites is not yet understood, but associa-
tions between COX-2 induction and neural degen-
eration after glutamate stimulation (42), seizures,
and spreading depression waves (43) suggest that
COX-2 may play more of a role in the selective loss
of neural connections than in their formation.

Maintenance of gastrointestinal integrity

The intestinal epithelium is a tissue that undergoes
constant regeneration in response to both insult and
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normal use. The use of NSAIDs causes a variety of
problems in the gastrointestinal tract (44) including
irritation and ulceration of the stomach lining (45).
Radiation exposure leads to intestinal epithelial cell
death, leaving crypt cells to regenerate the popula-
tion. In animal studies, COX-2 is not induced after
exposure to radiation, and its presence is not essen-
tial for crypt cell survival (46). Under these circum-
stances, COX-1 appears to play a major role, as it does
in the stomach, in maintaining proper glandular ar-
chitecture. For example, indomethacin, which effec-
tively inhibits COX-1, suppressed crypt survival and
PGE; production in intestine after radiation damage.
Gastrointestinal epithelium is also the target of nu-
merous infectious and parasitic organisms. In re-
sponse to infection or invasion, COX-2 expression is
induced in epithelial cells (47), which leads to in-
creased PG production. The PGs then stimulate chlo-
ride and fluid secretion from the mucosa, which
flushes bacteria from the intestine. In addition, COX-
2 is expressed during inflammation and wound heal-
ing, and in animal models, treatment with COX-2 in-
hibitors can exacerbate inflammation and inhibit
healing. Nevertheless, COX-2 selective inhibitors ap-
pear to be associated with less gastrointestinal dam-
age than conventional NSAIDs (48). Clinical trials
evaluating compounds that are highly selective for
COX-2 are under way, and preliminary results indi-
cate a paucity of gastrointestinal side effects.

Many of the diverse roles of PGs in the intestine
have been revealed by studying the effects of indo-
methacin or other NSAIDs. For example, Giannella
et al. (49) found that indomethacin could effectively
suppress the rapid intestinal fluid secretion accom-
panying Salmonella infection of rhesus monkeys.
More recently, Eckmann et al. (47) have dissected
this effect and shown that Salmonella infection of cul-
tured intestinal epithelial cells gives rise to a rapid
induction of COX-2, an associated rise in PGs, and
an acceleration in chloride secretion that can be
blocked by an anti-PGE antibody. With the response
of infected cells, uninfected cells also acquired a state
of increased fluid secretion, demonstrating the par-
acrine nature of the PG response. This model shows
the essential features of the PG response: upregula-
tion of COX and PG synthesis, physiological adapta-
tion to infection, and coordination of a protective
response.

Ovarian and uterine function

One of the earliest noted sites of PG accumulation
was amniotic fluid (50), and one of the first known
biological responses to a prostaglandin was the rhyth-
mic contraction of the uterine myometrium. These
associations with pregnancy and labor led to the rec-
ognition of PGs as a major effector in induction of
labor. Indeed, Zuckerman et al. (51) administered
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indomethacin as a treatment for premature labor
with dramatic results. Out of 50 women, 80% expe-
rienced cessation of uterine contractions. However,
five infants from the treated mothers died because of
premature closure of the ductus arteriosus, a circu-
latory shunt in the fetus that allows the output of the
left ventricle to bypass the fetal lungs, which is main-
tained by PGs (52). Prenatal indomethacin is suffi-
cient to block PG production leading to premature
duct closure and disruption of fetal circulation (52).

Ovulation, the process by which oocytes are re-
leased from the preovulatory follicle in the ovary is
accompanied by induction of prostaglandin synthesis
as a consequence of the LH surge. This marked re-
sponse led to the first observation of COX-2 induc-
tion during a normal physiological event (53). One
of many molecular events associated with ovulation
(54), the induction of COX-2 is necessary for the suc-
cessful rupture of the follicle, probably mediating di-
rectly the generation or activation of proteolytic en-
zymes necessary for this process (55). Induction of
COX-2 can be modulated by the gonadotropins LH
and FSH, and by TGF-«, IL-1, or other cellular sig-
naling pathways (58).

After fertilization, COX-2 again plays a role, this
time during implantation of the embryo in the uter-
ine endometrium. During the pre-implantation pe-
riod, uterine COX-1 (59) and the PGE, receptors,
EP1, EP3, and EP4 (60), may modulate preparation
of the uterus for interaction with the embryo, and
COX-2 (59) and the EP2 receptor (61) appear to me-
diate the embryo-uterine interactions during implan-
tation. COX-2 null mice show multiple failures in
reproductive function, including ovulation, fertiliza-
tion, implantation, and decidualization, underscor-
ing the multiple roles of PGs during these processes
(62). Finally, at the completion of pregnancy, PGs
again act in the ovary and uterus to help mediate the
delivery process. As mentioned above, PGs have long
been known to stimulate uterine contraction. In
mice, the production of PGF,, by the fetal and/or
uterine tissues signals the ovary to induce luteolysis
(63), leading to a decline in maternal progesterone
and the induction of oxytocin receptors in the my-
ometrium. This induction in turn increases the my-
ometrial response to oxytocin and brings on partu-
rition.

Bone

The role of PGs in bone metabolism is not only com-
plex, but also is apparently contradictory. For exam-
ple, while PGs were initially characterized by stimu-
lating bone resorption in culture, human and animal
responses to PGs often include stimulation of bone
formation (64). Collagen synthesis by osteoblasts can
be both stimulated (65) or inhibited by PGs. Me-
chanical stress on bone cells leads to an increase in
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PG synthesis, suggesting that immobilization would
be characterized by low PG levels (66). Nevertheless,
immobilization is associated with PG-mediated bone
loss, an effect that is slowed by NSAIDs.

PGs act on the modeling of bone in several ways.
They stimulate the differentiation of precursors of
both the bone resorbing cells (osteoclasts) and the
bone-forming cells (osteoblasts), they stimulate bone
resorption in vitro, and they stimulate bone growth
when given exogenously in vivo (67). While little is
known of how PG synthesis effects the balance be-
tween bone loss and formation, COX-2 induction in
osteoblasts is reported to be essential to the acute
stress response in a bone remodeling system (68).
Bone loss is associated with inflammation in perio-
dontal disease (69) and NSAIDs can slow this process
(70). Cytokines associated with inflammation, includ-
ing IL-1f and IL-6 (72), have been found to induce
both COX-2 and increase PG production when
added to bone marrow cells in culture. In response,
osteoclasts are induced to differentiate from their
stem cell precursors. Osteoblasts and marrow stromal
cells are the site of COX-2 induction and are further
activated by the increased production of PGs. Other
cytokines, for example IL-4 and IL-13, appear to sup-
press this response (73). Other inducers of COX-2
include parathyroid hormone (74), an important
regulator of calcium metabolism, vibrational forces
(75) and pulsating fluid flow (66), both of which are
thought to model physical forces associated with me-
chanical stress on bone. Thus, it appears that stimuli
that lead to both breakdown and building of bone
use the same basic pathways to activate the bone re-
modeling system and that in bone PGs are responsi-
ble for ensuring that this resorption and formation
occur coordinately, preventing an imbalance be-
tween these two processes.

Inflammation and arthritis

Although the importance of COX activity in the pro-
duction of PGs has been known since 1967 (76), the
inducibility of this activity and the central role of this
induction in the amplification of inflammation have
been fully appreciated only recently (77). Evidence
provided by animal models of inflammatory arthritis
strongly suggests that increased expression of COX-
2 is responsible for increased PG production seen in
inflamed joint tissues (78). COX-2 induction has
been observed in both human osteoarthritis-affected
cartilage (79) as well as in synovial tissue taken from
patients afflicted with rheumatoid arthritis (80). Cell
culture experiments utilizing primary cells derived
from human synovial tissue or cell types (e.g., mono-
cytes) important in inflammatory processes have
been critical to an understanding of factors involved
in modulating this induction. The pro-inflammatory
agents IL-1, TNF-«, and LPS, as well as the growth
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factors TGF-G, EGF, PDGF, and FGF, have all been
shown to induce COX-2 expression in this system. On
the other hand, the antiinflammatory cytokines IL-4
and IL-13, as well as the immunosuppresive gluco-
corticoids, were shown to decrease COX-2 levels (20).

Although the synovial tissues of patients with os-
teoarthritis express lesser amounts of COX-2, pri-
mary explant cultures of human osteoarthritis-af-
fected cartilage spontaneously express large amounts
of COX-2 and PGs (79). Nitric oxide, another im-
portant inflammatory modulator, has been shown to
regulate PG production in osteoarthritic cartilage,
though not in synovial cells. Whether this modula-
tion attenuates or enhances COX activity remains
controversial (79, 81).

The rapid expansion of knowledge about the role
of COX-2 in inflammation led to drug screens at-
tempting to identify antiinflammatory agents selec-
tive for COX-2 as well as to the rational design of
highly selective COX-2 inhibitors (82). The availabil-
ity of these COX-2 inhibitors has now allowed for the
design of studies that could directly determine the
importance of COX-2 in inflammatory disease. COX-
2 is reported to be central to the inflammatory pro-
cess and COX-2 inhibition is sufficient to achieve the
same therapeutic endpoints found with less specific
inhibitors that also target COX-1(83).

Pain

Local tissue injury and inflammatory diseases like os-
teoarthritis are associated with increased PGs, and
pain receptors are known to be sensitized to lower
levels of stimulus by PGs (84). Thus, the action of
COX at the site of injury or inflammation is hyper-
algesic, and the pain-relieving action of NSAIDs at
the local site is easily explained by this mechanism.
In addition, PGs are thought to act in the spinal cord
to facilitate the transmission of pain responses,
though there is little known about how they might
do this (85). NSAIDs can also act at these central sites
(86-88).

COX-2 is induced in both local and central sites
(89), and the question of whether COX-2 mediates
pain reception or transmission is being investigated,
primarily through the use of COX-2 specific NSAIDs.
Intrathecal injection of both the COX-2 specific in-
hibitor NS-398 and the nonspecific NSAID indo-
methacin suppressed a formalin-mediated pain re-
sponse (which measures a central response), but
neither suppressed a high temperature-induced pain
response (i.e., a local response) (85). In contrast, sys-
tematically administered meloxicam, an NSAID more
specific for COX-2 than COX-1, suppressed the in-
flammatory pain response locally (90) without affect-
ing central pain transmission. In neither of these
studies was the drug introduced into both sites to al-
low an internal comparison, but together they show
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that COX-2 can act both locally and centrally to me-
diate pain. In fact, the COX-2 specific inhibitor Ce-
lecoxib was shown in short-term human studies to
effectively suppress the pain associated with dental
work, osteoarthritis, or rheumatoid arthritis without
causing any significant gastroduodenal lesions
(91, 92).

Alzheimer’s Disease

NSAID use reduces risk for Alzheimer’s Disease
(AD), with users of these agents having as little as one
half the risk of acquiring AD as those not taking
NSAIDs (93-95). A few studies that attempt to iden-
tify a role for COX in the etiology of AD have fol-
lowed up this observation. Evidence of inflammatory
mediators and activated microglia at the sites of AD
lesions offer the possibility that chronic inflamma-
tion could directly cause neural damage, but other
evidence contradicts this as the central mechanism
(96-97). Tocco et al. (42) have described the ap-
pearance during rat brain development of COX-2 in-
duction in response to kainic acid-induced seizures.
Notably, the neurons that express COX-2 also show
evidence of apoptosis. These links between high
NMDA-mediated neural activity, COX-2 induction,
and cell death, may prove to be causal in AD. Breitner
(97) has pointed out that the A fragment of the am-
yloid precursor protein found in plaques associated
with AD increases the excitotoxicity associated with
this pathway.

On the other hand, the anti-thrombotic activity of
PGs may be important for protection against AD. For
example, de la Torre (98) has hypothesized that AD
is caused by the development of tortuous and flow-
impeded capillaries in the brain. This would presum-
ably promote intravascular coagulation, leading to is-
chemic damage in the brain that could promote the
development of AD. It seems likely that clinical trials
of COX-2 specific NSAIDs will be started before arole
of COX-2 in AD is proved, but the mechanistic stud-
ies already under way will provide insight and direc-
tion for further developments.

Cancer

Several population-based studies have detected a 40—
50% decrease in relative risk for colorectal cancer in
persons who regularly use aspirin and other NSAIDs
(99-103). Clinical trials with NSAIDs in patients with
Familial Adenomatous Polyposis have clearly demon-
strated that NSAID treatment caused regression of pre-
existing adenomas (104). Studies in a variety of animal
models (both genetic and carcinogen-induced) of co-
lon cancer have also indicated a significant reduction
in tumor multiplicity by NSAID treatment (105). In
fact, some of these studies have shown as much as a 80—
90% reduction in tumor burden (106).
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Initial attempts to determine the molecular basis
for these observations found that both human and
animal colorectal tumors express high levels of COX-
2, whereas the normal intestinal mucosa has low to
undetectable COX-2 expression (13, 107-109).
These findings led to the hypothesis that COX-2 may
be playing a role in colon cancer growth and pro-
gression. Subsequent experiments appear to support
this view. For example, the effects of a highly selective
COX-2 inhibitor (SC-58125) was tested on two differ-
ent cell lines, only one of which has a high level of
COX-2 expression and activity. It was observed that
the inhibitor decreased cell growth in both in vitro
and in vivo assays only in the COX-2-expressing cell
line (110-111). Other work in cell culture models
has shown that COX-2 expression contributes signif-
icantly to the tumorigenic potential of epithelial cells
by increasing adhesion to extracellular matrix and
making them resistant to apoptosis (112). These phe-
notypic changes were shown to be reversible by treat-
ment with a highly selective COX-2 inhibitor (106).
Very recent work indicates that cyclooxygenase may
play a vital role in the regulation of angiogenesis as-
sociated with neoplastic tumor cells (113). Hence,
COX inhibitors may block the growth of blood vessels
into developing tumors.

Genetic evidence supporting a role for COX-2 in
the development of intestinal neoplasia has also been
reported. Oshima et al. (114) assessed the develop-
ment of intestinal adenomas in Apc®”'® mice (a
model in which a targeted truncation deletion in the
tumor suppresser gene APC causes intestinal poly-
posis) in a wild-type and homozygous null COX-2 ge-
netic background. The number and size of polyps
were reduced dramatically (six- to eightfold) in the
COX-2 null mice compared with COX-2 wild-type
mice. In addition, treatment of the Apc*”'® mice with
a novel COX-2 inhibitor, Merck Frosst tricyclic, re-
duced polyp number more significantly than the
non-selective NSAID, sulindac (114).

Whether NSAIDs block tumor progression solely
by blocking PG synthesis is a matter still being de-
bated. Several studies have shown that NSAIDs can
act through mechanisms that are independent of
their ability to inhibit COX (115-117). Most of this
work has been done in cell culture models where
effects are only seen at fairly high concentrations
of drug (200-1000 pM). Recently, animal studies
have been reported that demonstrate the ability of
sulindac sulfone to have protective effects against
mammary tumors (116). Sulindac sulfone is a me-
tabolite of the NSAID sulindac, which lacks the abil-
ity to inhibit COX directly. Therefore, some evi-
dence indicates that COX-independent pathways
also play an important role in the cancer chemo-
preventive properties of NSAIDs, and it is likely that
both COX-dependent and -independent pathways
are involved.
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CONCLUSION

This discussion highlights the many physiological sys-
tems in which the COX enzymes play functional
roles. The precise mechanisms by which this biosyn-
thetic pathway can mediate such diverse functions is
largely unknown and will likely remain so until re-
searchers can more fully characterize the biology of
the various PG synthases and receptors downstream
of COX. Nevertheless, identifying an inducible COX
was a major breakthrough in this area. What evolved
from this discovery was a paradigm in which one is-
oform, COX-1, was mainly responsible for the biosyn-
thesis of PGs involved in homeostatic regulation,
while the second isoform, COX-2, was primarily in-
volved in producing PGs in response to a wide spec-
trum of environmental insults and internal stimuli.
Such a mechanism appears to explain, at least in part,
both the therapeutic and toxic effects of NSAIDs in
humans. The major side effects of NSAIDs, gastro-
duodenal erosion and disruption of normal renal
function, appear to caused by the inhibition of COX-
1, while the antiinflammatory and analgesic activity
of these drugs rests largely on their ability to inhibit
COX-2.

Investigations into the role of COX-2 in disease
have suggested that chronic activation of this enzyme
may be pathological in the colon, where there is
strong evidence to suggest that inhibition of COX-2
can limit the progression of colorectal cancer. Thus,
a little more than a century after the discovery of as-
pirin, the potential clinical indications for NSAID use
appear to be widening from their original purpose as
analgesic agents. Ongoing studies to more clearly de-
lineate the role of each COX isoform in both health
and disease will be crucial in defining the use of these
drugs in the next century.
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