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Connexin 43 gap junctions contribute to brain
endothelial barrier hyperpermeability in familial
cerebral cavernous malformations type Il by
modulating tight junction structure
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ABSTRACT: Familial cerebral cavernous malformations type III (fCCM3) is a disease of the cerebrovascular system
caused by loss-of-function mutations in ccm3 that result in dilated capillary beds that are susceptible to hemorrhage.
Before hemorrhage, fCCM3 lesions are characterized by a hyperpermeable blood-brain barrier (BBB), the key
pathologic feature of fCCM3. We demonstrate that connexin 43 (Cx43), a gap junction (GJ) protein that is in-
corporated into the BBB junction complex, is up-regulated in lesions of a murine model of fCCM3. Small interfering
RNA-mediated ccm3 knockdown (CCM3KD) in brain endothelial cells in vitro increased Cx43 protein expression,
GJ plaque size, GJ intracellular communication (GJIC), and barrier permeability. CCM3KD hyperpermeability was
rescued by GAP27, a peptide gap junction and hemichannel inhibitor of Cx43 GJIC. Tight junction (T]) protein,
zonula occludens 1 (ZO-1), accumulated at Cx43 GJs in CCM3KD cells and displayed fragmented staining at TJs.
The GAP27-mediated inhibition of Cx43 GJs in CCM3KD cells restored ZO-1 to TJ structures and reduced plaque
accumulation at Cx43 GJs. The TJ protein, Claudin-5, was also fragmented at TJs in CCM3KD cells, and GAP27
treatment lengthened TJ-associated fragments and increased Claudin 5-Claudin 5 transinteraction. Overall, we
demonstrate that Cx43 GJs are aberrantly increased in fCCM3 and regulate barrier permeability by a T]-dependent
mechanism.—Johnson, A. M., Roach, J. P., Hu, A., Stamatovic, S. M., Zochowski, M. R., Keep, R. F., Andjelkovic, A. V.
Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous
malformations type III by modulating tight junction structure. FASEB ]. 32, 2615-2629 (2018). www.fasebj.org
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Familial cerebral cavernous malformations type III
(fCCM3) is a disease that affects cerebrovascular capillary
beds. Patients carry a null mutation in one allele of ccm3
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(pdcd10). Lesions—characterized by dilated vessels, blood-
filled caverns, loss of contact between endothelial cells,
and insufficient blood-brain barrier (BBB) integrity—are
initiated upon acquiring a mutation in the second ccm3
allele that causes a loss of functional CCM3 protein. Im-
paired BBB integrity is considered the primary cause of
fCCM3 morbidities, including seizures, focal neurologic
deficits, and cerebral hemorrhage (1). No effective treat-
ment is available to patients with f{CCM3, and therapeutic
development is hindered by a lack of a thorough un-
derstanding of CCM3-dependent pathways. Proteomic
analysis has revealed that 80% of CCM3 is bound to the
striatin-interacting phosphatase and kinase (STRIPAK)
complex (2). This complex contains many phosphatases
and kinases that produce wide-ranging cellular effects,
including Golgi apparatus development, calcium sensing,
and, most recently, a CCM3-dependent effect on actin cy-
toskeleton organization that is mediated by cortactin (3, 4).

BBB integrity is maintained by a unique junction
complex at the endothelial-endothelial border that
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includes adherens junctions, tight junctions (IJs), and
gap junctions (GJs). Under normal physiologic condi-
tions, crosstalk mechanisms allow these complexes to
form a stable barrier that prevents paracellular perme-
ability. The T] complex is composed of the trans-
membrane proteins, claudins and occludin, that form
transinteractions with neighboring cell claudins and
occludin and occlude the paracellular space. Claudins
and occludin are stabilized by intracellular adaptor
proteins, including zonula occludens 1 (ZO-1), that
tether them to the actin cytoskeleton. Analysis of
TJ proteins in lesions of patients with f{CCM3 and in
vitro work has demonstrated a loss of TJ proteins
from the junctional complex of {CCM3 (4, 5). Mean-
while, whether adherens junctions, organized in a
similar manner to TJs with transmembrane cadherins and
adapter proteins, are affected in f{CCM3 is less clear (4, 6).

The final member of the BBB junction complex, the GJ,
has not been ascribed a regulatory role for paracellular
permeability. GJs are channel structures at adjacent cell
borders, are formed by members of the connexin family
(Cx), and allow direct passage of ions and small molecules
that are <1 kDa between the cytosols of adjacent cells.
Channels are formed by the aggregation of homo- or
hetero-hexameric Cx proteins (7). Cx family members
display tissue-specific expression, with Cx37, Cx40, and
Cx43 expressed in brain endothelia (8, 9). Aberrant ele-
vation of Cx43 protein has recently been shown to be
detrimental to barrier integrity, but whether this effect is
dependent on Cx43 GJs or other functions of Cx43, in-
cluding hemichannels (HCs) that do not directly oppose
another Cx43 channel, has not been thoroughly described
(10, 11).

We have identified that ccm3™ p53~/~ mice, a murine
model of f{CCM3, have elevated Cx43 protein expression in
lesions. Analysis of Cx43 in CCM3 knockdown
(CCM3KD) brain endothelial cells in vitro also revealed
increased GJ activity and that reducing Cx43 expression
and GJ activity rescued the permeability defect in
CCMB3KD cells. The focus of the current study is to define
the mechanism by which Cx43 GJs regulate permeability
and establish whether increased Cx43 protein is a primary
defect in the maturation of CCM3 lesions in a mouse
model of f{CCM3.

MATERIALS AND METHODS
Cell culture

A transformed murine brain microvascular endothelial cell line
(mBECs; Angioproteomie, Atlanta, GA, USA) was cultured in
growth media (DMEM, 4.5 g/L glucose, 1X L-glutamine, 1X
antibiotic-antimycotic, 20% fetal bovine serum) at 37°C and 5%
COs,. All experiments were conducted after 24 h of serum dep-
rivation (DMEM, 4.5 g/L glucose, 1X L-glutamine).

Cell transfection

CCM1, CCM2, CCM3, and Cx43 knockdowns were achieved via
transfection with Lipofectin (Thermo Fisher Scientific, Waltham,
MA, USA); 3 ccm3 small interfering RNAs (siRNAs): silencer
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select s80540, s80539, s80538 (Thermo Fisher Scientific); Cem1:
siGENOME, D-056854-02-0002; Ccm?2: siGENOME, D-057315-
02-0002 (Dharmacon, Lafayette, CO, USA); and Cx43: SASI-
Mm01-00135298 (PDSIRNA2D; Sigma-Aldrich, St. Louis, MO,
USA).

Mouse model of fCCM3

C57BL/6] mice that were heterozygous for ccm3 (cem3*'™) were
obtained from Yale University (New Haven, CT, USA) (6).
B6.129S2-Trp53™ ™%/ /] mice that carried a null mutation of
p53 (p537/7) were obtained from The Jackson Laboratory (Bar
Harbor, ME, USA). Cem3"™ and p53~ /~ mice werebred together
for two generations to produce ccm3*” p53~/~ mice, which en-
abled the acquisition of a somatic second hit to ccm3 (12, 13).

All mice were anesthetized with 2% isoflurane/air mixture
throughout MRI examination. Mice lay prone, head firstin a
7.0T or 9.4T Agilent MR scanner (horizontal bore; Agilent
Technologies, Palo Alto, CA, USA), with body temperature
maintained at 37°C using forced heated air. A quadrature
volume radiofrequency coil was used to scan the head region
of mice. Axial T2-weighted images were acquired by using a
fast spin-echo sequence with the following parameters:
repetition time (TR)/effective echo time (TE), 4000/60 ms;
echo spacing, 15 ms; number of echoes, 8; field of view, 20 X
20 mm; matrix, 256 X 128; slice thickness, 0.5 mm; number of
slices, 25; and number of scans, 1 (Tscan time, 4.5 min). In
addition, T1-weighted spin-echo images were acquired pre-
and postgadolinium contrast injection by using the same
slice package as above and with a TR/TE of 600/17 ms and
an acquisition time of ~2.5 min. Finally, T2*-weighted gra-
dient echo images were acquired by using the same slice
package as above and with a TR/TE of 300/6 ms and an
acquisition time of ~2.5 min. Tracer leakage studies were
performed by intraperitoneal injection of 0.1 ml gadolinium-
diethylenetriaminepentacetate (Gd-DTPA; 0.5 mM gadoli-
nium-diethylenetriamine pentaacetic acid/ml; BioPAL,
Worchester, MA, USA). Mice were active for 10 min before
postinjection imaging.

Fusion proteins

Expression constructs used were as follows: Cx43, ZO-1, and
Claudin-5 open reading frames were cloned into pmCherry-C1
vector and pAcGFP-C1 infusion ready vector (Clontech, Moun-
tain View, CA, USA) to create N-terminally fused fluorescent
proteins. Plasmid DNA was isolated from individual trans-
formed Stellar Competent (TakaraBio, Mountain View, CA,
USA) colonies by using Qiagen plasmid midiprep kits (Qiagen,
Wetzlar, Germany). Open reading frame sequences were vali-
dated with Sanger sequencing. mBECs were transfected by using
Torpedo™™* (Ibidi, Fitchburg, WI, USA).

Inhibition studies

Inhibition of Cx43 GJs and HCs was achieved by cell treatment
with 100 uM GAP27 (Cx43 gap junction and hemichannel in-
hibitor) or 100 uM GAP19 (Cx43 hemichannel inhibitor; Tocris
Biosciences, Bristol, United Kingdom), respectively, for 24 h.
Treatment did not affect cell viability as tested by Live Dead assay
(Thermo Fisher Scientific). To inhibit vesicular transport and
trancellular permeability, cells were pretreated with 0.1 mM
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N-ethylmaleimide (Sigma-Aldrich) for 1 h and during the in vitro
permeability assay.

Histology and immunofluorescence

Hematoxylin and eosin and Prussian blue staining was per-
formed with frozen brain sections using standard procedures.
Lesion stage classification was performed according to criteria
described previously (5). In brief, stage 1 lesions are singular,
dilated caverns that exhibit hemorrhage. Stage 2 lesions have
segmented caverns with robust, prolonged hemorrhage. We in-
troduce stage O lesions as dilated vessels with little or no
hemorrhage.

Immunofluorescence staining of brain slices or cells was
performed as described previously (4). Primary Abs used were as
follows: Cx43 (Cell Signaling Technology, Danvers, MA, USA);
Z0O-1-Alexa Fluor 594, Claudin-5 unconjugated or Claudin-5—-
Alexa Fluor 488 (Thermo Fisher Scientific); and CD31/PECAM-1
(Novus Biologicals, Littleton, CO, USA). Secondary Abs used
were as follows: FITC anti-rabbit and Texas Red anti-mouse
(Vector Laboratories, Burlingame, CA, USA). Images were ac-
quired on the Nikon A-1 confocal microscope (Nikon, Tokyo,
Japan).

Quantitation of plaque size and TJ-associated fragments for
Cx43, ZO-1, and Claudin-5 were performed using Image]J soft-
ware (National Institutes of Health, Bethesda, MD, USA). Three
image fields per group with equal cell number were analyzed.

Cx43 expression in the capillaries of control (ccm3™ p53*7")
mice or lesions of f{CCM3 mice was quantified in Image]J software
by measuring fluorescence intensity of the entire endothelial re-
gion that surrounds the control vessel or lesion. Background
fluorescence was subtracted from both control vessel and lesion
fluorescence readings. Individual lesions (10 lesions) for stage
0 and 1, 2 individual stage 2 lesions, and 10 control vessels were
analyzed from 3 control and 3 f{CCM3 mice.

Super-resolution imaging

Super-resolution imaging was conducted in conjunction with the
Single Molecule Analysis in Real-Time Center at the University of
Michigan (Ann Arbor, MI, USA). Cells were plated at confluency
in LabTek I Coverglass slides (0.17 mm thickness; Thermo Fisher
Scientific). The following primary and secondary Abs were used:
Cx43, Claudin-5, ZO-1-Alexa Fluor 647, goat anti-rabbit IgG
Alexa Fluor Plus 647, and goat anti-mouse IgG Alexa Fluor Plus
647 (Thermo Fisher Scientific). Immediately before imaging,
sample buffer was exchanged with STORM imaging buffer
(100 mM Tris-Cl, 25 pM NaCl, 1% v /v 2-ME, pH 9.0) and freshly
added 2.5 mM PCA (3,4-dihydroxybenzoic acid; P5630; Sigma-
Aldrich) and 25 nM PCD (protocatechuate dioxygenase; P8279;
Sigma-Aldrich). Images were collected in highly inclined lami-
nated optical sheet microscopy illumination with 641-nm laser
excitation on an Olympus IX81 microscope with a cell"TIRF
module (Olympus, Tokyo, Japan). Images were collected on an
Andor iXon Ultra EMCCD camera. Images were processed by
using the ThunderSTORM plugin of Image].

Quantitative PCR

Qunatitative PCR was performed after Trizol/chloroform RNA
extraction and reverse transcription (SuperScript Il RT; Thermo
Fisher Scientific). Reactions were performed with SYBR Green
PCR Master Mix and analyzed with 7500 Real-Time PCR Sys-
tem (Applied Biosystems, Foster City, CA, USA). Primers used
were as follows: Cx37: forward: 5'-CTGGACCATGGAGCCGGTIGI-
3, reverse: 5-GGTTGAGCACCAGGGAGATGACTC3'; Cx40:
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forward: 5'-TCCAGGGCACCCTACTCAACACCT-3, reverse: 5'-
GGACTCCTGCGGCAGACATGC; Cx43-3": forward: 5-TAC-
CACGCCACCACCGGCCCA-3, reverse: 5'-GGCATTTTGGCT-
GTCGTCAGGGAA-3'; and B-actin: forward: 5'-GCCCTGAGGC-
TCTTTTCCAG-3', reverse: 5'-TGCCACAGGATTCCATACCC-3'
(n = 3 per group, normalized to B-actin expression). AAC; values
were calculated, and fold-change reported.

Western blotting

Primary Abs used were as follows: Cx37 (Abcam, Cambridge,
MA, USA); Cx40 (GeneTex, Irvine, CA, USA); Cx43 and B--
tubulin;, CCM1 (Boster Bio, Pleasanton, CA, USA); CCM2
(Sigma-Aldrich); CCM3 (ProteinTech, Rosemont, IL, USA); and
Z0O-1 and Claudin-5 (Thermo Fisher Scientific). Reactions were
visualized with the following secondary Abs: goat anti-rabbit
IgG-horseradish peroxidase conjugate or goat anti-mouse IgG-
horseradish peroxidase conjugate (Bio-Rad, Hercules, CA, USA).
Blots were developed with SuperSignal West Femto Maximum
Sensitivity Substrate (Thermo Fisher Scientific) and imaged using
the Molecular Imager ChemiDoc XRS+ Imaging System (Bio-
Rad). Band intensities were analyzed by using Image Lab soft-
ware (Bio-Rad).

GJ activity assays

Scratch assay was performed as follows: cells were grown to
confluency before siRNA treatment. After media removal, the
cell monolayer was disrupted with a single scratch. Lucifer yel-
low (LY; 0.05%; Sigma-Aldrich) was immediately applied to the
scratch for 30 s. Cells were subsequently washed with PBS, fixed
with 4% paraformaldehyde for 10 min, then immediately imaged
by using a 488-nm laser line. Cell confluency that surrounded the
scratch was confirmed under transmitted light. LY transfer dis-
tance was measured perpendicularly from scratch to the furthest
LY" cell using Image]J. Three independent scratches with 10 dis-
tance measurements per scratch were analyzed per group.

Microinjections were performed by using the PicoSpritzer 3
(Parker Hannifin, Richland, MI, USA). Cells were grown on Ibidi
35-mm low, grid 500, ibiTreat plates. Cell-of-origin grid location
was recorded. Eppendorf Femptotips Microinjection capillary
tips (0.5 wm; Thermo Fisher Scientific) were loaded with 0.05%
LY. Healthy, confluent cells were injected at 40 kPa for 500 ms.
LY injection was visualized in real time to ensure LY injection
into the cell of origin. Three injections were performed at dis-
tant spots on each plate. After injection, cells were washed in
PBS, fixed using 4% paraformaldehyde, and imaged immedi-
ately. LY" cells that surrounded the cell of origin were counted
by using Image].

Fluorescence resonance energy transfer
and fluorescence recovery after
photobleaching analysis

Fluorescence resonance energy transfer (FRET) and fluorescence
recovery after photobleaching (FRAP) experiments were per-
formed by using a Leica SP5X inverted 2-photon FLIM confocal
microscope with LAS X software (Leica, Mannheim, Germany) at
the University of Michigan Microscopy Imaging Laboratories.
Laser power and line intensities used were as follows: FRET:
white light laser, 70%; red laser line, 587 nm; 40% intensity; green
laser line, 488 nm; 30% intensity; acceptor photobleaching per-
formed with laser lines at 579, 587, and 595 nm at 100% for 80 s;
FRAP: argon laser, 25%,; green laser line, 488 nm; 30% intensity;
photobleaching performed with 488 nm at 100%. Laser power
and laser line intensities were kept constant across samples.
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Experimental values were calculated as follows: FRET efficiency =
[(donorP®** — donor?*®)/donorP**']; FRAP, % recovery = [(6 min
postbleach fluorescence — 0 min post bleach fluorescence)/
prebleach fluorescence] X 100.

Background controls used for FRET and FRAP experiments
were as follows: FRET: background efficiency = FRET efficiency
of coexpressed empty AcGFP and mCherry vectors subtracted
from experimental FRET efficiencies during analysis; FRAP: a
background region of interest (ROI) was selected in non-GFP*
region. Background ROI percent recovery was subtracted from
the experimental ROIs analyzed.

Transendothelial electrical resistance assay

Cells were grown to confluency in 12-mm Transwells with
0.4-pm pores (Corning, Corning, NY, USA) before manipu-
lation. Transendothelial electrical resistance (TEER) values
were measured by using the EVOM? Epithelial Voltohmmeter
(World Precision Instruments, Sarasota, FL, USA). Blank
measurements—media only, no cells—were subtracted from
experimental values during analysis.

In vitro permeability assay

mBEC monolayers were established in the 12-mm Transwell
system with 0.4-pm pore size. Permeability experiments were
initiated with the addition of FITC-inulin (Sigma-Aldrich) to the
apical (donor) chamber. The permeability coefficient (centimeters
per minute) of the monolayer during any time interval (T) was
calculated as follows:

[C(B);—C(B)]-V(B)-2

P e r AT

where C(B) and C(B)r are the concentrations (nanograms per
milliliter) of FITC-inulin in the basal (receiving) chamber at the
start and at the end of the time interval, respectively, and V(B) is
the volume of the basal chamber (in milliliters). C(A) and C(A)r
are the concentrations of FITC-inulin in the apical (donor)
chamber at the start and at the end of the time interval, re-
spectively, and [C(A) + C(A)r]/2 is the average concentration
over the time interval. T is the duration of the time interval (in
minutes), whereas A is the area of the filter (square centimeters).
All samples were read on a fluorescent reader (Infinity FL200;
Tecam, Saint Charles, IL, USA). The concentration of FITC-inulin
in samples was calculated from a standard curve that was de-
rived using known concentrations of tracer (4, 14, 15).

For transcellular permeability, the percentage of cellular up-
take of FITC-albumin was evaluated at 37°C by adding FITC-
albumin (1 mg/ml) and in the presence or absence of unlabeled
albumin. Uptake at 37°C was allowed to proceed for time points
0-120 min (15-min interval), then terminated by chilling on ice
and washing 3 times with PBS buffer. Cell-surface binding of
FITC-albumin was removed by 0.5 ml acid buffer (0.5 M NaCl
and 0.2 M acetic acid, pH 2.5). Cells were lysed with 0.5 ml of
50 mM Tris HCl, pH7 4, that contained 1% Triton X-100 and 0.5%
SDS, and the sample was read on a fluorescent reader (15).

Statistical analyses

Statistical analyses were performed by using Prism 6.0 (Graph-
Pad Software, La Jolla, CA, USA). Data in bar graphs represent
means = SEM. In experiments that compared 2 groups, significant
differences were determined by unpaired, 2-tailed Student’s ¢
test. In experiments that compared >2 groups, significant dif-
ferences were determined by a 1-way ANOVA with Tukey’s post
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hoc test. A probability value of P < 0.05 was considered statisti-
cally significant.

RESULTS

GJ protein, Cx43, is elevated in an fCCM3
mouse model

To study the role of Cx43 in f{CCM3, we bred a mouse
model of fCCM3 [ccm3+/ 7p537/ ~ mice, described pre-
viously (6)] on the basis of the 2-hit hypothesis of f{CCM in
which a second somatic mutation is acquired in the func-
tional allele of heterozygous patients (12). {CCM mouse
models on p53~/~ backgrounds develop cerebrovascular
hemorrhagic lesions. Additional organ pathologies were
not detected (6). ccm3* _p53_/ ~ mice were evaluated for
the presence of hemorrhagic cerebrovascular lesions that
were consistent with human disease by using T2*-
weighted MRI imaging. Several hemorrhagic lesions were
present in multiple regions of the brain at age 5 wk (Fig.
1A). Lesion volume varied between 0.005 and 1.0 mm”.
New hemorrhagic lesions appeared at a rate of 3—4.5 le-
sions per week (data not shown).

Given that BBB hyperpermeability is the central path-
ologic feature of f{CCM3, lesion permeability in the
ccm3*~p53~/~ model was evaluated by using Gd-DTPA
injection. Gd-DTPA leakage could frequently be ob-
served in conjunction with hemorrhage on companion
T2*-weighted MRI images. Lesions were categorized
into 2 types: permeable (Gd-DTPA leakage only, non-
hemorrhagic) and hemorrhagic (Fig. 1B). When first
assessed at age 9 wk, ccm3* p53~/~ mice had roughly
equivalent numbers of permeable and hemorrhagic le-
sions. Hemorrhagic lesions were most prevalent by age
13 wk (Fig. 1B). When individual permeable lesions at
age 9 wk were followed to age 13 wk, the probability of
lesion hemorrhage was 100% (data not shown). These
findings demonstrate that developing lesions have
compromised BBB function before hemorrhage. Of im-
portance, lesion permeability predicts hemorrhage.
Histologic examination of lesion maturation in hema-
toxylin and eosin—stained sections revealed stage 0, 1,
and 2 lesions, classified as described in Materials and
Methods (Fig. 1C, D). Evaluation of prolonged hemor-
rhage by iron accumulation using Prussian blue staining
revealed iron accumulation in stage 1 and 2 lesions.
Overall, lesion maturation progresses from a permeable
dilated vessel (stage 0) to reorganized, cystic-like caverns
with a complete loss of barrier properties and hemor-
rhage (stages 1 and 2).

We sought to identify proteins that are aberrantly
expressed in stage O lesions that promote BBB hyper-
permeability and enable lesion maturation. Aberrant ele-
vation of Cx43 protein has recently been linked to
increased barrier permeability 510, 11). Immunofluores-
cence staining of Cx43 in ccm3* p53™/" lesions revealed
dramatically increased Cx43 expression in all lesion stages,
particularly at stage 0, which correlates with lesion pro-
gression (Pearson coefficient r = 0.7074; P < 0.01; Fig. 1C,
D). The increased expression of Cx43 was observed in
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Figure 1. Developing lesions expressing Cx43 are susceptible to hemorrhage. A) T2* MRI images of a cem3”~ p53~/~ mouse and
cem3” 7[753”/ ~ control mouse. Multiple hemorrhages of variable size are visible in the cem3” 71)537/ ~ mouse (black arrows).
Compiled lesion volumes of 3 cem3”~ p53~/~ mice assessed at age 5, 8,9, 11, and 13 wk. B) Representative image of ccm3” ™ p53 7/~
mouse lesions with Gd-DTPA leakage only (top) and Gd-DTPA + hemorrhage (bottom) as assessed by T1-weighted (Gd-DTPA)
or T2#-weighted (hemorrhage) imaging. The number of Gd-DTPA" lesions with or without hemorrhage was counted at age 9, 11,
and 13 wk and presented as a percent of the total number lesions identified in T1 or T2* images. C) Hematoxylin and eosin
(panel 1), Prussian blue (panel 2, black arrows indicate spots of iron accumulation), and immunofluorescence staining of CD31
(panel 3), Cx43 (panel 4), merge images (/panel 5), PDGFRp (panel 6), Cx43 (panel 7) and merge images (panel 8) of stage 0, 1,
and 2 lesions and control vessels in cem3” p53~/" mice. Scale bar, 100 wm. D) Quantitation of Cx43 expression in control and
lesion stages (n = 10; n = 10 individual lesions for stage 0 and 1; » = 2 individual lesions for stage 2). Cx43 was quantified using
Image] by selecting the entire endothelial layer surrounding each lesion and measuring the fluorescent signal. Cx43 expression is
quantified relative to control vessel fluorescence. E) Comparison of Cx43 expression and lesion volume (Pearson coefficient r=
0.7074, P < 0.01). ***P < 0.0001 compared to control, **P < 0.01 compared with stage 0, ***P < 0.001 compared with stage 1.
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brain endothelial cells (CD31") and surrounding pericytes
(platelet-derived growth factor receptor B cells; Fig. 1C).
Given our observation that Cx43 is significantly elevated
in permeable stage 0 lesions, Cx43 was pursued for addi-
tional study to identify its pathogenic functions in fCCMS3.

Cx43 protein and GJ activity is increased by
CCM3KD in vitro

We established an in vitro f{CCM3 model by using
CCM3KD in a mBEC line, achieving 85% efficiency of
CCMBKD (Supplemental Fig. 1). Cx43 protein, but not
transcript, is elevated in CCM3KD cells (Fig. 24, B). No
difference in protein expression was observed for Cx37
and Cx40, additional Cx family members that are
expressed by brain endothelial cells, although a compen-
satory up-regulation of Cx40 transcript was apparent (Fig.
2A, B). To determine whether Cx43 is elevated in other
fCCM subtypes, Cx43 protein expression was analyzed in
CCMIKD and CCM2KD cells, which revealed significant,
but not robust, elevation compared with control cells
(Supplemental Fig. 1).

Cx43 has many functions that are dependent on its
cellular localization (16, 17). Cell fractionation analysis of
Cx43 revealed that Cx43 is localized exclusively to the in-
soluble fraction in control cells, and CCM3KD does not
change its cellular localization (Fig. 2C). Immunofluores-
cence staining of Cx43 confirmed that, in both control and
CCMB3KD cells, Cx43 was localized to the membrane and
formed plaque-like structures that were consistent with GJ
plaques (Fig. 2E). Quantitation of Cx43 GJ plaque size
revealed significantly increased Cx43 GJ plaque size in
CCMB3KD cells compared with controls (Fig. 2F). FRAP
analysis suggested that no difference in Cx43 mobility
within GJ plaques exists between control and CCM3KD
cells (Fig. 2D).

We evaluated whether enlarged Cx43 GJ plaques in
CCMB3KD cells have a functional effect on GJ intracellular
communication (GJIC). Single-cell microinjection of LY, a
noncell permeable dye, into control or CCM3KD cell
monolayers demonstrated a significantly higher capacity
for CCM3KD cells to transfer dye to adjacent cells than
control cells (Fig. 3A). Scratch assay analysis of LY transfer
in control or CCM3KD cell monolayers also demonstrated
significantly elevated GJIC in CCM3KD cells compared
with controls. To validate that LY transfer occurred spe-
cifically via Cx43 GJs, and not Cx37 or Cx40 GJs, we per-
formed scratch assays in the presence of a Cx43 GJ-specific
peptide inhibitor, GAP27 (18). GAP27 completely inhibi-
ted CCM3KD GJIC, which indicated that Cx37 and Cx40
were not directly contributing to GJIC in CCM3KD cells.
Morphologic analysis suggested that prolonged GAP27
treatment inhibited GJIC by decreasing GJ plaque size in
CCMB3KD cells (Fig. 3B). Super-resolution imaging high-
lighted the reduction in GJ plaque size (Fig. 3C).

Cx43 expression in ccm3*~p53~/~ lesions suggests that
elevated Cx43 is associated with permeability. To evaluate
whether elevated Cx43 protein expression in CCM3KD
cells contributes to hyperpermeability that is characteris-
tic of fCCM3, we measured TEER and permeability
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(clearance) for tracer inulin in CCM3KD cells in which
Cx43 protein expression was reduced via siRNA-mediated
knockdown (Fig. 4A, B and Supplemental Fig. 2A). As
expected, CCM3KD cells exhibited highly permeable
monolayers, as did wild-type cells that overexpressed
Cx43 (Cx43°V"). Of importance, reducing Cx43 expression
in CCM3KD cells partially, but significantly, restored the
integrity of CCM3KD monolayers (Fig. 4B).

To test which function of Cx43 is pathologic to perme-
ability, we examined whether the inhibition of Cx43 GJIC
could rescue CCM3KD monolayer permeability (Fig. 4C).
TEER analysis of control and CCM3KD cells in the pres-
ence of GAP27 or GAP19, a Cx43 HC-specific inhibitor
(19), revealed that GAP27 completely rescued CCM3KD
monolayer permeability, with no adverse effect on control
cells, whereas GAP19 had no effect on CCM3KD TEER.
This Cx43 effect on brain endothelial monolayer perme-
ability was accomplished mostly by opening a paracellular
route, whereas transcellular permeability, measured by
transcellular transport of FITC-albumin, was affected to a
modest degree (Fig. 4D).

Analysis of key occlusion (Claudin-5) and scaffolding
(ZO-1) proteins indicated that CCM3KD and Cx43°"*" cells
exhibited reduced expression of both Claudin-5 and ZO-1
(Fig. 5A), which suggested that elevated Cx43 protein ex-
pression may be pathologic to CCM3KD cells by regulat-
ing permeability with a TJ protein expression—dependent
mechanism. As in CCM3KD and Cx43°V¢" cells, CCM3
lesions unveiled the same pattern of Claudin-5 and ZO-1
expression. Both TJ proteins demonstrated decreased ex-
pression in CCM3 lesions and negatively correlated
with increased lesions (Claudin-5: r= —0.8621; ZO-1;r =
—0.8331) and increased Cx43 expression (Claudin-5: r =
—0.726; ZO-1: r = —0.6201; Fig. 5B, C).

Cx43 GJs disrupt TJ formation in CCM3KD cells

Having determined that Cx43 GJIC is pathologic to
CCMB3KD permeability, we next examined how Cx43 GJs
regulate permeability in CCM3KD cells. ZO-1 emerged as
a candidate protein that links Cx43 to permeability be-
cause of a well-described Cx43-ZO-1 interaction (20). The
Cx43-Z0O-1 interaction restricts Cx43 GJ size (21-23);
however, whether Cx43 GJs can regulate ZO-1, particu-
larly its function in TJs, is unknown. We tested the hy-
pothesis that Cx43 GJs affect the organization of TJs via
regulating ZO-1 localization. Immunofluorescence analy-
sis of Cx43 and ZO-1 colocalization in control, CCM3KD,
and GAP27-treated CCM3KD cells revealed significant
differences in the TJ association (continuous cell border
staining) and GJ association (Cx43—-ZO-1 colocalization) of
Z0O-1 (Fig. 6A). ZO-1 in control cells exhibits preferential
localization to TJs and low accumulation at GJs. In con-
trast, ZO-1 in CCM3KD cells exhibited fragmented local-
ization to TJs and aberrant accumulation at GJs (Fig. 6B, C).
Comb-like ZO-1 structures that extend into the cytosol
from the cell border, characteristic of disorganized ZO-1,
were observed in super-resolution imaging of ZO-1 in
CCMB3KD cells (Fig. 6D). Of interest, inhibition of Cx43
GJIC in CCM3KD cells with GAP27 partially restored the
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localization of ZO-1 to TJs and prevented the accumula-  protein, ZO-1 is a relatively immobile protein in healthy
tion at GJs. cells. We determined that ZO-1 is significantly more mo-

We analyzed the mobility of TJ-associated ZO-1 with bile in CCM3KD cells compared with controls, which
FRAP (Fig. 6E). Given its size and function as a scaffolding  supports our finding that ZO-1 is not sufficiently anchored
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interact to the same extent as in control cells. This is con-
sistent with our data that indicate higher GJ activity and
the literature that shows that Cx43-ZO-1 interaction in-
hibits GJIC. Finally, GAP27 treatment of CCM3KD cells

in TJ structures. GAP27 treatment restores ZO-1 mobility
to control levels, which is also consistent with the re-
distribution of ZO-1 to TJ structures in GAP27-treated
CCMB3KD cells.

To further delineate the nature of Cx43-Z0O-1 colocali-
zation that was observed in CCM3KD cells, we used
acceptor-photobleaching FRET analysis in cells that coex-
pressed Cx43-mCherry and ZO-1-AcGFP. FRET effi-
ciency between Cx43 and ZO-1 in CCM3KD cells was
significantly lower compared with controls (Fig. 6F),
which indicated that whereas Cx43 and ZO-1 strongly
colocalize in CCMB3KD cells, they do not physically
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restores the Cx43-ZO-1 interaction, which is consistent
with the inhibition of GJIC and further supports the notion
that the Cx43-ZO-1 interaction is important for Cx43-
mediated effects on permeability.

We extended our analysis of Cx43 G]-mediated regu-
lation of TJs to include the TJ transmembrane protein,
Claudin-5. Similar to ZO-1, we observed that Claudin-5 is
more mobile in CCM3KD cells compared with controls.
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This trend was rescued by GAP27 treatment (Fig. 7A).
Super-resolution imaging of Claudin-5 demonstrated
continuous staining of Claudin-5 along the cell border in
control cells, which was indicative of T] incorporation (Fig.
7B). As with ZO-1, T]-incorporated Claudin-5 seems to be
fragmented in CCM3KD cells, but GAP27-mediated in-
hibition of Cx43 GJIC restored the localization of Claudin-
5 to TJs. Examination of ZO-1-Claudin-5 colocalization, a
necessary step for the formation of functional TJs (23), in-
dicated expected colocalization at TJ structures along the
cell border in control cells, but fragmented TJ-associated
Claudin-5 in CCM3KD cells (Fig. 6C). Quantitation of TJ-
associated Claudin-5 fragment length revealed highly
fragmented TJ-associated Claudin-5in CCM3KD cells, but
rescued TJ-associated fragment length by inhibition of
Cx43 GJIC with GAP27. Finally, we analyzed the fre-
quency of Claudin-5-ZO-1 and Claudin-5-Claudin-5
transinteractions with FRET (Fig. 7D, E). TJ-associated
Claudin-5 and ZO-1 interacted less frequently in
CCMBKD cells, but this interaction was restored by
Cx43 GJIC inhibition. Similarly, Claudin-5-Claudin-5

Cx43 GJs REGULATE PERMEABILITY IN fCCM3

transinteraction was compromised in CCM3KD cells, but
restored by the GAP27-mediated inhibition of Cx43 GJIC.

DISCUSSION

Hyperpermeability is the primary defect of f{CCM3 lesions;
however, the underlying mechanism that contributes to
hyperpermeability is not well defined. The present study
observed that 1) Cx43 forms large GJ plaques and displays
increased GJIC in CCM3KD cells; 2) the inhibition of Cx43
GJIC completely rescued CCM3KD hyperpermeability; 3)
Cx43 GJsregulated permeability via modulating TJ protein
localization; and 4) Cx43 protein expression in lesions of
ccm3"~p537/" mice was elevated.

Permeability of the brain microvascular system is reg-
ulated, in part, by the T] complex. The formation of TJ
structures on the membrane is a highly regulated, multi-
step process. ZO-1 is recruited and distributed along the
cell border, which signals the recruitment and insertion of
claudins and occludin into the membrane, which in turn,
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Figure 5. A) Representative Western blot and quantification of Cx43, Claudin-5, and ZO-1 in whole-cell lysates of control,
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expression. Correlation between Claudin-5/Z0-1 expression and lesion volume (Pearson coefficient: Claudin-5: r = —0.8621;
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allows transinteractions between claudins and occludin on
neighboring cells (23). Claudin-5 is a particularly crucial
claudin for BBB occlusion. Claudin-5 knockout mice die
hours after birth from brain edema as a result of inhibited
BBB occlusion (24). Other claudin KO mice suggest that
Claudin-5 is uniquely important for barrier occlusion (25).
Previous works have demonstrated that f{CCM3 lesions
have highly disorganized TJ structures, including absent
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or incomplete incorporation of ZO-1 and Claudin-5 into
TJs, and suggest that this is a principal mechanism by
which fCCM3 lesions are hyperpermeable (4); however,
the underlying mechanism that contributes to TJ organi-
zation has not been defined.

Elevated Cx43 has recently been suggested to be detri-
mental to barrier permeability in GJ- and HC-dependent
mechanisms. Multiple studies in lung endothelia have
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border was measured for 3 image fields with 8 cells/field in Image]. ***P < 0.0001, **P < 0.01 compared to control, ***P <
0.0001 compared with CCM3KD. D) Super-resolution images of TJ-associated ZO-1 fragments on the cell border (arrows) and
comb-like organization in CCM3KD cells (star). E) FRAP analysis of TJ-associated ZO-1 in control, CCM3KD, and
CCM3KD+GAP27 cells expressing ZO-1-AcGFP. *P < 0.05 compared with control. F) Acceptor photobleaching FRET of Cx43
GJ-associated ZO-1 in cells coexpressing Cx43-mCherry and ZO-1-AcGFP in control, CCM3KD, or CCM3KD + GAP27 cells (n= 30
ROIs/group). *P < 0.05 compared with control.

demonstrated the rescue of barrier properties after sup-
pression of inflammation-induced Cx43 expression (11,
26). In brain endothelia, elevated GJIC is suggested to be
pathogentic to barrier function because of the effects of Ca**
propagation on cytoskeletal integrity or localized endo-
thelial cell death (27, 28). Cx43 has not previously been

Cx43 GJs REGULATE PERMEABILITY IN fCCM3

evaluated in fCCM. We observed robust expression of
Cx43 in all stages of lesions in ccm3* p53~/~ mice, with
particularly high expression in developing stage 0 lesions.
Brain endothelial cells that were subjected to CCM3KD
also demonstrated high protein expression of Cx43 and
formed abnormally large GJ plaques that resulted in
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Figure 7. Claudin-5 incorporation into TJs is rescued by Cx43 GJ inhibition. A) FRAP analysis of Claudin-5 (Cldn5) in control,
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independent experiments]. F) FRET analysis of Claudin-5 transinteraction. Cells were separately transfected with either Claudin-
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incorporation of Claudin-5-AcGFP and Claudin-5-mCherry into a shared T] were selected for FRET analysis. FRET was
performed and analyzed as described in Fig. 6 for 15 ROIs (3 ROIs/cell) and 2 independent experiments.

elevated GJIC. We found that reducing Cx43 expression
and specific blockage of GJIC, but not HC function, res-
cued their hyperpermeability.

Understanding how elevated GJIC in f{CCM3 causes
hyperpermeability is of great importance. Here, we
propose a mechanism that is separate from the afore-
mentioned studies that examined Cx43-dependent
hyperpermeability by which increased Cx43 GJs inhibit
the distribution of ZO-1 and, consequently, Claudin-5 to
the TJ. A large body of literature has described the in-
teraction between Cx43 and ZO-1 in the context of GJ size
and activity, in which the direct interaction of Cx43 and
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Z0O-1 at the GJ] plaque perimeter decreases GJ plaque size
and activity (29, 30). We observed a phenomenon not yet
described by which ZO-1 accumulates at the GJ plaque
perimeter in CCM3KD cells, but does not physically in-
teract, as determined by FRET analysis. It is unclear what
mechanism in CCM3KD cells signals the preferential
localization and accumulation of ZO-1 at Cx43 GJs over
TJ localization. Changes in the accessibility of regulatory
sites on Cx43 in its active state in CCM3KD cells may
prevent ZO-1 trafficking within the membrane and the
subsequent Claudin-5 recruitment (31). When GJ pla-
ques are disbanded by GAP27 treatment, the preferential
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conditions switch such that ZO-1 localizes to TJs and
does not accumulate at Cx43 GJs. Consequently,
Claudin-5 is also relocalized at the T] and forms trans-
interactions with neighboring cell Claudin-5, which seals
the barrier.

Consequences in addition to GJIC-induced hyper-
permeability should be considered in the pathology of
fCCM3. In particular, elevated GJIC may represent a
mechanism by which injury can be propagated to
otherwise healthy cells, including other cell types of
the neurovascular unit, pericytes and astrocytes. Sev-
eral f{CCM studies have demonstrated disrupted neu-
rovascular unit architecture in which pericytes and
astrocytes lose contact with endothelial cells or are
completely absent (29, 30, 32-34). It is also important to
highlight that {CCM3 lesions are believed to be initi-
ated by a second hit to the functional ccm3 allele (12,
13); however, it is not clear when in development this
second hit is acquired or how many ccm3™'~ cells are
required to initiate a lesion. Whereas endothelial
cell-specific ccm3KO mice develop fCCM3, and as-
trocyte- and neuron-specific ccm3KO mice show low
or no fCCM disease penetrance, respectively, it is not
yet understood whether multiple cell types are in-
volved in the initiation and maturation of lesions (6,
35). Elevated GJIC in ccm3™/~ cells may represent a
mechanism by which ccm3*/~ cells become damaged,
despite being genetically healthy.

Of note, Cx43 is the only Cx family member that is
expressed in brain endothelial cells that is affected at the
protein level by CCM3KD. Several subtle, but functionally
significant, differences exist between Cx family members,
particularly with the existence of phosphorylation sites at
the C-terminal tail that direct the Cx cycle, interactome,
and downstream signaling events in response to stimuli
(36). Given the accumulation of Cx43 protein without up-
regulation of Cx43 transcript, it is possible that sites at the
C-terminal tail that direct Cx43 degradation or endocytosis
are affected by CCM3KD and result in accumulation at
the membrane. ZO-1 accumulation at Cx43 GJ plaques
occurs directly before the invagination of GJ plaques
from the plasma membrane, representing a possible
link between our observations of reduced ZO-1 in-
teraction with Cx43 and Cx43 GJ plaque accumulation
(29). Future work should focus on delineating the
mechanism by which CCM3 regulates Cx43 specifi-
cally and, in addition, whether Cx43 is unique among
the Cxs in its ability to regulate the establishment
of TJs.

We have demonstrated that Cx43 is most robustly af-
fected by CCM3KD and less so by CCM1 or CCM2KD.
Proteomic analysis of the CCM3 interactome has revealed
that 80% of total CCM3 protein is bound to the STRIPAK
complex and 20% is bound to a CCM1-CCM2-CCM3
complex; thus, the STRIPAK complex is likely responsible
for downstream events that are unique to CCM3 (2, 37).
Given that the most robust effect of CCMKD on Cx43
protein occurs via the loss of CCMS3, it is possible that the
CCM1 and CCM2 effects on Cx43 are propagated through
CCMS3 via the CCM1-CCM2-CCM3 complex. The STRI-
PAK complex has many functions in the cell, regulating
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several phosphatases and kinases, and CCM3 is capable
of regulating the activation of GCKIII kinases within
the STRIPAK complex (3, 4). Elucidation of a CCM3-
STRIPAK-Cx43 regulatory axis is needed. Several resi-
dent STRIPAK proteins are likely candidates, including
calmodulin and PP2A. The former acts as a calcium sensor
and regulates Cx43 channel opening, whereas the latter
directly dephosphorylates residues Ser279/Ser282 of
Cx43, which inhibits Cx43 GJ plaque formation (38—40).
Elevated ERK1/2 activation is a consequence of
CCMS3 loss from the STRIPAK complex and causes
the dysregulation of TJ structure via modulation cor-
tactin protein expression, a cytoskeletal and ZO-1-
interacting protein (4). Cortactin and Cx43 can be
coimmunoprecipitated, but whether this occurs via a
Z0O-1 linker or a direct interaction between cortactin
and ZO-1 is not clear, and how cortactin expression or
organization may affect Cx43 is not known (41). In
addition to the potential modulation of Cx43 via a
STRIPAK-ERK1/2-cortactin signaling axis, Ser279/
282 of Cx43 are also direct targets of ERK1/2; however,
phosphorylation at these sites is typically inhibitory
and, thus, may not represent the primary mechanism
by which CCM3 regulates Cx43 via the STRIPAK
complex (42, 43).

The current study has also demonstrated that lesions of
ccm3*~p537/~ mice exhibit a progression from permeable
vessels to hemorrhagic vessels, a finding that is consistent
with previous murine fCCM studies (44). Gd-DTPA
leakage occurs before hemorrhage, and permeable ves-
sels have a 100% probability of hemorrhaging in the fu-
ture. Histologic analysis confirmed that lesions are present
in ccm3*~p53™/~ mice in multiple stages of maturation:
permeable, nonhemorrhagic stage 0 and hemorrhagic
stage 1 and 2 lesions. Identifying a mechanism by which
the permeability and maturation of stage 0 lesions can be
blocked represents an opportunity to prevent additional
pathologies.

CONCLUSIONS

Our study demonstrates that Cx43 protein is aberrantly
up-regulated in developing CCM3 lesions before hemor-
rhage. In vitro data suggest that Cx43 GJs are instigators of
BBB breakdown by regulating ZO-1 localization and,
subsequently, limiting T] formation and TJ transinter-
actions. The Cx43 GJ inhibitor, GAP27, blocked these
changes. How the loss of CCM3 regulates Cx43 GJ plaque
formation and signaling events that regulate Cx43-Z0O-1
plaque formation should be the focus of future studies. In
addition, whether in vivo treatment of f{CCM3 mice with
GAP27 can ameliorate Gd-DTPA leakage and subsequent
hemorrhage is of paramount importance to determine if
GAP27 or similar peptides may be candidate pharma-
ceutical options for patients with {CCM3. Of importance,
this is the first study to our knowledge to definitively show
that GJs can regulate BBB permeability in a TJ-dependent
manner. Whether other mechanisms exist by which GJs
can regulate permeability (i.e., via GJIC itself) should be
further investigated.
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