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Abstract 

To minimize soil disturbance, there has been an increased adoption of reduced or zero tillage 

(ZT) technologies among farmers in different regions across the globe. Yet, to date, the scale of 

adoption remains unclear because it is difficult to collect adoption data on-the-ground at large 

spatial and temporal scales. Remote sensing can offer a way to map such technology adoption at 

large scales and at low cost. This study uses Sentinel-2, Landsat 7 & 8, and Sentinel-1 satellites 

to map tillage practices in Guanajuato, Mexico, a region where the use of zero-tillage has been 

promoted by national and international agencies over the last decade. We specifically compared 

accuracy scores of different sensors and sensor combinations, and different timing of imagery in 

a random forest classification. The results indicate that when considering the accuracy of a single 

sensor, Sentinel-2 has the highest classification accuracy. However, using a combination of all 

three sensors dramatically outperformed all single sensor analyses, with an overall classification 

accuracy of 85.96%. Considering image timing, we find that using imagery from only the sowing 

season performs almost as well as using imagery throughout the growing season. We conclude 

that using freely-available satellite images is effective in classifying tillage practices in Mexico 

at large spatio-temporal scales.  
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1. Introduction 

Over the last several decades, the use of reduced or zero tillage (ZT), a technique where 

seeds are sown and fertilizer is applied in fields that have limited or no disturbance and have crop 

residues, is becoming more prevalent [1,2]. ZT offers the advantage of reducing soil erosion, soil 

water loss, and greenhouse gas emissions compared to conventional tillage (CT) [1,2,3]. ZT can 

also improve soil condition, improving water use efficiency, decreasing water evaporation, and 

increasing the infiltration of precipitation [2,4]. While ZT is increasingly adopted globally, there 

is limited understanding of how widely adopted ZT practices are and how consistently farmers use 

these techniques through time. This is because traditional methods of recording and tracking the 

use of ZT, such as social surveys, are usually resource-consuming [5]. Remote sensing can offer 

an alternative way to efficiently and accurately detect ZT adoption at large spatio-temporal scales.  

Although numerous studies have examined how satellite remote sensing can be used to 

classify ZT practices, few studies have examined how combining information from multiple 

sensors can improve classification accuracy. Yet, doing so is important given that different sensors 

can offer different benefits to classification. Specifically, Sentinel-2, which has a 10 m spatial 

resolution and a 5-day temporal resolution, can provide fine spatial resolution and time series data 

to classify ZT on smaller agricultural fields. Previous studies have found that Sentinel-2 can 

improve classification of forest and crop types, yet to date no studies have used Sentinel-2 to 

classify ZT versus CT fields [6,7]. Sentinel-1, which has a 10 m spatial resolution and a 12-day 

revisit time, is a radar satellite where microwave signals can penetrate clouds and are less affected 

by weather conditions [8,9,10]. This sensor can, therefore, be beneficial during periods of high 

cloud cover and haze. Previous studies have used Sentinel-1 to measure surface roughness with 

the aim of monitoring land cover and mapping vegetation. Finally, Landsat satellite data, which 

has a 30 m resolution and a 16 day revisit time, is beneficial because it can produce data over long 

time periods, since Landsat data are available from the 1970s onwards; Sentinel data, on the other 

hand, are only available starting in 2014. Previous studies have used Landsat satellite data to 

quantify the crop residue cover of fields in order to identify tillage intensity [11].  

The previous studies that do exist that have used multiple sensors to map agricultural 

characteristics, including ZT, have found that using multiple sensors can lead to higher accuracies. 

Beeson et al. [13] suggests that using combined data from Landsat-like multispectral sensors (e.g. 

Landsat-8 and Sentinel-2) improves the temporal resolution of data, improving accuracies; 

however, no studies to our knowledge have combined Landsat and Sentinel-2 to map ZT. In 

addition, few studies combine optical and SAR sensors for agricultural land use classification, 

including ZT [5, 12, 14]. Azzari et al. [5] used image composites from a combination of optical 

(Landsat 5, 7, & 8) and synthetic-aperture radar (SAR) Sentinel-1 sensors to map ZT across the 

United States; the authors found that the combination of the two sensors led to higher accuracies, 

with an average accuracy of around 75% across models.    

In this study, we use single and combined datasets from Sentinel-2, Landsat 7 ETM+, 

Landsat 8 OLI, and Sentinel-1 to examine which sensor and sensor combinations lead to the 

highest classification accuracies. We use ground data on zero tillage adoption from 2585 fields in 

the year 2017 in Guanajuato, Mexico. We specifically focus this study in Mexico because zero 

tillage adoption has increased since the 1990s due to the promotion of such technologies by the 

International Maize and Wheat Improvement Center (CIMMYT), which is headquartered in 

Mexico [15]. In addition, a sharp increase in population in the subtropical highlands in Mexico has 

also resulted in many sustainability issues, which accelerated the process of ZT adoption in this 
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region [16]. Several previous studies exist that have used satellite data to map ZT in Guanajuato, 

Mexico, however, these studies were conducted prior to 2015 and thus did not consider Sentinel 

data [17,18]. The specific objectives of this study are to 1) examine which sensor or sensor 

combinations lead to the greatest accuracy in mapping ZT, 2) assess which time periods in the 

growing season are most critical for mapping ZT, and 3) identify which bands and indices are the 

most important for mapping ZT accurately. 

 

2. Study Area 

This study is focused on the state of Guanajuato, Mexico. In the high peaks of Guanajuato, 

there are sub-humid and semi-cold climates, while warm sub humid conditions occur in the eastern 

and western ends of the sub-province. The  warmest month is in May and the coldest is in January, 

and the  rainy season spans from June to September [2,15]. Crops are planted during two seasons 

in Guanajuato (Figure 1) [17], the autumn/winter and the spring/summer. For the autumn-winter 

season, crops are planted between October and February, with the majority of crops being sown in 

December. The main crops grown during this season are wheat, barley, and vegetables. For the 

spring-summer season, crops are planted between March and September, with the majority of 

crops being sown in May. The main crops grown during this season are corn and sorghum. In this 

study, we focused on maize crops planted during the spring-summer season.  

 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Corn  

(North-west) 

             

Corn  

(excl. North-west) 

            

Sorghum  

(Summer) 

             

Wheat  

(winter) 

            

             

     Sowing   Mid-

season 
  Harvest  

Figure 1. Crop calendar of the major crops in Mexico. Green indicates sowing/planting 

seasons; grey indicates growing/peak seasons; orange indicates harvest seasons.  

Source: USDA FAS/IPAD. 

 

3. Data and Image Processing 

3.1. Field data 

Ground truth data were collected as field shapefiles by CIMMYT in 2017 [19]. Each field 

was labeled as either zero tillage (ZT) or conventional tillage (CT). Given that the data collection 

by CIMMYT was focused on ZT, there were more ZT fields than CT fields. Therefore, in order to 

generate an unbiased model for classification, we randomly selected an equal number of ZT and 

CT polygons from the full dataset. We also checked each polygon and deleted those that did not 

include apparent agricultural features by using visual inspection in Google Earth. This resulted in 

818 field polygons selected for each tillage class for a total of 1636 field polygons. 
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Table 1. Field polygon count before and after processing. 

Field Label Original Count Processed Count 

Zero Tillage (ZT) 1734 818 

Conventional Tillage (CT) 851 818 

Total 2585 1636 

 

 

Figure 2. Map of the selected ground truth polygons in the area of interest – the state of 

Guanajuato, Mexico. 

 

3.2. Sentinel-2 

We accessed the European Space Agency (ESA) Copernicus Sentinel-2 satellite data 

through the Google Earth Engine (GEE) platform [20]. Since no surface reflectance (SR) corrected 

Level-2A data were available for the area of interest in 2017, we instead used the top-of-

atmosphere (TOA) orthoimage products, specifically the Multi-Spectral Instrument (MSI) Level-

1C image collection. We corrected the TOA product to SR using the radiative transfer emulator 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S) with Py6S interface. The 

emulator uses built-in interpolated look-up tables to quantify the atmospheric variables, such as 

solar zenith, ozone, and surface altitude, which are then used to calculate atmospheric correction 

coefficients. SR was calculated from at-sensor radiance using the correction coefficients (credit to 

Sam W. Murphy).  
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Since our study focused on the rainy season in Mexico, there was a significant amount of 

cloud cover during certain time periods considered in our study. We thus used a cloud mask to 

mask out cloudy pixels. The cloud mask works by considering two factors. First, it considers the 

quality assessment band (QA60), which indicates whether there is strong confidence that a 

cloud/cirrus is present in each pixel. The second considers the reflectance features of clouds and 

cirrus and uses different spectral bands, such as band 1 (aerosols), band 10 (cirrus), and bands in 

the visible part (band 2, 3, and 4) to quantify a “cloud score”, which indicates the cloudiness of 

each pixel. Users can manually define the most applicable threshold of the cloud score depending 

on the study area under consideration. We set the threshold to 25 for this study, which we identified 

using visual inspection of the cloud mask overlaid over the original Sentinel-2 true color composite 

image on GEE. Every pixel that has a cloud score larger than 25 was masked out (credit to Ian W. 

Housman, GEE; relevant code can be found on the website of the GEE help forum: 

https://groups.google.com/d/msg/google-earth-engine-developers/).  

The full band and index information is shown in Table 2. Among all available bands of 

Sentinel-2 images, we removed bands B1, B9, and B10 from our models. This is because these 

bands represent aerosols, water vapor, and cirrus, and are developed mainly for the purposes of 

tracking or estimating atmospheric features and do not measure the actual surface reflectance of 

land features. We used the built-in function ee.Image.sampleRegions() to sample the original 

pixels and output them with a new projection of 10 m scale for each band. Apart from the selected 

original bands, two spectral indices were calculated as supplementary measurements for 

identifying ZT fields according to previous studies, which are the normalized difference tillage 

index (NDTI) [21] and the crop residue cover index (CRC) [22]. The normalized difference 

vegetation index (NDVI) was also added for identifying phenology features [5,11,23]. 

Table 2. Bands and indices information of Sentinel-2 (S2).  

 S2 Description (Wavelength: µm) 

Band 

B1 Aerosols 

B2 Blue (0.490) 

B3 Green (0.560) 

B4 Red (0.665) 

B5 Red Edge 1 (0.705) 

B6 Red Edge 2 (0.740) 

B7 Red Edge 3 (0.783) 

B8 NIR (0.842) 

B8A Red Edge 4 (0.865) 

B9 Water vapor 

B10 cirrus 

B11 SWIR 1 (1.610) 

B12 SWIR 2 (2.190) 

Index 

NDVI (NIR – Red) / (NIR + Red) 

(SWIR1 – SWIR2) / (SWIR1 + SWIR2) 

(SWIR1 − Green) / (SWIR1 + Green) 

NDTI 

CRC 

 

3.3. Landsat  

The United States Geological Survey (USGS) Landsat SR Tier 1 product was acquired on 

the GEE platform in the form of an image collection. We used both the 30m Landsat 8 Operational 

Land Imager (OLI) and the Landsat 7 ETM. Roy et al. [24] states that, apart from the improvements 

https://groups.google.com/d/msg/google-earth-engine-developers/
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of Landsat 8 OLI on the signal-to-noise characteristics and slightly narrower wavelengths of bands 

compared to its predecessors, the data of all Landsat products are expected to be consistent. Thus, 

we merged the image collections of Landsat 8 OLI and Landsat 7 ETM+ into one collection in 

GEE using the built-in function ee.ImageCollection.merge().  

To remove cloud cover, we applied a cloud mask that uses the quality assessment band 

(pixel_qa) in Landsat products. This quality band stores information about the probability that a 

given pixel is cloud or a cloud shadow and can be used to remove contaminated pixels [7]. Relevant 

model code can be found on the website of the GEE developer’s guide 

(https://developers.google.com/earth-engine/). 

Band and index information is shown in Table 3. We did not include in our final model 

bands that represent Brightness Temperature (B6 of Landsat 7; B10 & B12 of Landsat 8) and Ultra 

blue (Landsat 8 B1), as these bands store atmospheric features. We used the built-in function 

ee.Image.sampleRegions() to convert the image to a projection of 10 m for each band in order to 

use this data along with Sentinel-2 bands in our final combined model. We also calculated the 

same three spectral indices that were calculated for Sentinel-2 – NDTI, CRC, and NDVI.  

Table 3. Bands and indices information of Landsat 7 (L7) and Landsat 8 (L8).  

 L7 Description (Wavelength: µm) L8 Description (Wavelength: µm) 

Band 

  B1 ultra blue 

B1 Blue (0.45 - 0.52) B2 Blue (0.45 - 0.51) 

B2 Green (0.52 - 0.60) B3 Green (0.53 - 0.59) 

B3 Red (0.63 - 0.69) B4 Red (0.64 - 0.67) 

B4 NIR (0.77 - 0.90) B5 NIR (0.85 - 0.88) 

B5 SWIR 1 (1.55 - 1.75) B6 SWIR 1 (1.57 - 1.65) 

B7 SWIR 2 (2.08 - 2.35) B7 SWIR 2 (2.11 - 2.29) 

B6 Brightness Temperature B10 Brightness Temperature 

  B11 Brightness Temperature 

Index 

NDVI (NIR – Red) / (NIR + Red) 

(SWIR1 – SWIR2) / (SWIR1 + SWIR2) 

(SWIR1 − Green) / (SWIR1 + Green) 
NDTI 

CRC 

 

3.4. Sentinel-1 

We also used dual-polarization C-band (operating at 5.4 cm wavelength) SAR Sentinel-1 

images, which are available and pre-processed by GEE using these steps: 1) thermal noise removal; 

2) radiometric calibration; 3) and terrain correction [25]. The backscatter values ( 𝜎0 ) were 

converted to decibels (dB) with logarithmic transformation: 

𝜎0
𝑑𝐵 = 10 ×  log10 (𝜎0) 

We filtered the Interferometric Wide (IW) swath mode, which provides polarizations VV 

(vertical transmit/vertical receive) and VH (vertical transmit/horizontal receive) from both the 

ascending and descending orbits. The ascending or descending orbit images have different local 

incidence angles, which leads to differences in backscatter intensity. Considering the topography 

of the central Mexico highland, we extracted images from both orbits and used them in separate 

image collections [26]. A filter for Sentinel-1 tile edge was performed for the removal of the “gap” 

between images [27]. In addition, we used the incident angle correction filter [28]. We finally 

applied a simple speckle filter with a 3 × 3 pixel kernel [29]. All above filters were applied after 

https://developers.google.com/earth-engine/datasets/catalog/
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logarithmic transformation from 𝜎0
𝑑𝐵 to the original 𝜎0, and were then transformed back to 𝜎0

𝑑𝐵 

(credit to Guido Lemoine, GEE; relevant code can be found on the website of the GEE help forum: 

https://groups.google.com/d/msg/google-earth-engine-developers/). 

Sentinel-1 bands and the index are shown in Table 4. The intensity cross-ratio (CR) VV/VH 

was added to improve classification accuracies, since Vreugdenhil  et al. [30] found that CR is 

helpful for differentiating vegetation types and other ground features. We processed the data at 10 

m resolution so that it could be used in the combined sensor model.  

Table 4. Bands and indices information of Sentinel-1 (S1). 

 S1 Description 

Band 
VV Single co-polarization, vertical transmit/vertical receive 

VH Dual-band cross-polarization, vertical transmit/horizontal receive 

CR VV/VH Log ratio of (VV/VH)  

 

4. Methodology 

4.1. Image Compositing 

The study area has limited image availability due to high cloud cover during the rainy 

season in central Mexico. Thus, even if we create monthly (30-day) image composites, there are 

many gaps in data availability due to cloud cover, mostly from February 1st to March 1st and from 

May 1st to Sep 1st. Thus, setting reasonable time ranges for image compositing is critical for the 

study to ensure that there are limited missing pixels due to cloud cover. Since it is likely that CT 

and ZT are most distinguishable during the sowing period, we created one mosaic during the 

sowing period. To identify the ideal sowing date range, a phenology curve was made using 

averaged values from 400 ZT pixels and 400 CT pixels that were randomly selected from our full 

polygon dataset (Figure 3). This image composite spanned the dates April 1st to July 31st 2017, 

and captures the widest possible trough periods on the phenology curve, including the intensive 

sowing period in Guanajuato around May. In addition, given that previous studies have shown that 

full season composites can classify ZT versus CT fields, we also included an image composite for 

the second half of the season, which we call the “Peak” season (Figure 3). This second 3-month 

composite spanned from August 1st to October 31st 2017 and captured the peak and the end of the 

growing season.  

 

https://groups.google.com/d/msg/google-earth-engine-developers/
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Figure 3. Phenology curves generated from averaged NDVI values of 400 random points 

in 2017. Timing of the sow image composite is highlighted in green and of the peak image 

composite is highlighted in orange. 

 

4.1.1. Metric compositing 

In order to create the image composites, we must define how pixels for each band will be 

selected throughout the time period. Following methods from Azzari et al. [5], we chose to apply 

a percentile compositing method and selected 5 metrics [0, 25, 50, 75, 100] % using the percentile 

reducer function in GEE for all bands and indices from every sensor. For example, consider the 

sowing season image composite for Sentinel-2. For each band and index, we took the exact 0%, 

25%, 50%, 75%, and 100% values from a histogram of all values across all images throughout the 

image compositing time period (April 1 to July 31). The percentile metric can be generally applied 

to any set of images through time, regardless of whether or not there are data gaps due to cloud 

cover on certain dates as occurred in this study. As shown in Table 5, the use of the percentile 

compositing method expands the number of features considered in our model [5].  

Table 5. Statistics of bands and indices. Showing double composites only (model-1 & 4).  

Sensor 
Original No. of  

bands & indices 

Feature No.  

after compositing   
Feature Components 

Sentinel 2 13 130 (10 bands + 3 indices) × 2 seasonal 

composites × 5 percentiles 

Landsat 7 & 8 9  90 (6 bands + 3 indices) × 2 seasonal 

composites × 5 percentiles 

Sentinel 1 3 60 (2 bands + 1 index) × 2 orbits × 2 

seasonal composites× 5 percentiles 

 

4.2. Pixel-Based Random Forest Classification 

For the classification done in this study, we used the machine learning algorithm random 

forest (RF), which is an ensemble supervised classifier based on the classification and regression 

Sow Previous peak Peak 
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tree (CART). With this method, different decision trees come from bootstrap samples, and each 

tree node is assigned a limited subset of variables. The final class is then selected by majority 

voting [31]. For classification models, 70% of the field polygons were randomly selected for 

training, and the remaining 30% of polygons were kept for validation, with balanced ZT and CT 

labels in both the datasets [5,31]. We found that only 11 polygons contain less than 20 10 x 10 m 

pixels; thus, for each single polygon, we randomly selected no more than 20 pixels at random. 

Such an approach both reduces the computational time needed to run our models and also leads to 

a more balanced number of ZT and CT pixels being used for classification and training. Note that 

the final total pixel numbers in the models could be slightly different after the data fusion of multi-

source sensors/sensor combinations.   

Processing, tuning, and accuracy assessments of the models were performed in R statistical 

software v 3.6.1 [33]. We used the default values for RF parameters: 𝑛𝑡𝑟𝑒𝑒 = 500, since the 

increasing of trees has negligible effect on the classification; 𝑚𝑡𝑟𝑦 = √𝑝, where 𝑝 equals the 

number of features in the target dataset. All RF classifier operations were done using the package 

“randomForest” [34]. Although the RF classifier is insensitive to multicollinearity, we still tested 

and performed a feature selection process [31,32]. We created a correlation matrix, and a cut-off 

correlation coefficient of higher than 0.9 was used to remove highly correlated features resulting 

in better performance and a reduction of feature dimensionality. This process was done using the 

package “caret” [35]. RF also produces measures of feature importance.  The importance of a 

feature is recorded in the RF classifier through the measurement of mean decrease in the model 

accuracy with the removal of that feature. 

 

4.3. Models 

We created 14 different random forest models to identify which sensor and/or sensor 

combinations and which composite timing resulted in the highest accuracies. Specifically, we 

created models for each individual sensor, Sentinel 1, Sentinel 2, and Landsat, and we also 

created models that included all sensor combinations. In addition, for each individual sensor and 

sensor combination, we created models that only used data from the sowing season image 

composite (model 1), and one that used data from both the sowing and peak season composites 

(model 2). We did this to better understand how effective using only early season imagery could 

be in detecting zero tillage compared to using the full growing season. 

 

5. Results 

5.1. Accuracy Assessments 

As shown in Table 6, model 2 had the highest classification accuracies when using single 

sensors (72.95% for Sentinel 2, 69.27% for Landsat, and 68.25% for Sentinel 1). Accuracies were 

3% higher for Sentinel-2, 5% higher for Sentinel-1, and 0.5% higher for Landsat for model-2 than 

model-1, suggesting that the model that considered both the sowing and peak seasons performed 

better than only considering the sowing season. Although the classification model using Sentinel-

2 data performed similarly to the model using Landsat data for model 1, the accuracy of the 

Sentinel-2 model is 3% higher than the models using Landsat or Sentinel-1 for model-2.  
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Table 6. Accuracies from single sensors and two composite models. 

Model No. Composite 
Single 

Sensor 

Overall 

Accuracy (%) 

1 Sow (4-month single composite) 

S2 69.36 

S1 63.50 

L8_7 68.71 

2 Sow + Peak (4- + 3-month double composites) 

S2 72.95 

S1 68.25 

L8_7 69.27 
Note: S2 = Sentinel-2; S1 = Sentinel-1; L8_7 = Merged data of Landsat 8 & Landsat 7 

 
Table 7. Accuracies from sensor combination scenarios with two composite models. 

Model No. Composite 
Sensor 

Combination 

Overall 

Accuracy (%) 

1 Sow (4-month single composite) 

S2 + S1 77.04 

S1 + L8_7 76.15 

S2 + L8_7 77.52 

S2 + S1 + L8_7 81.36 

2 Sow + Peak (4- + 3-month double composites) 

S2 + S1 79.34 

S1 + L8_7 81.19 

S2 + L8_7 82.82 

S2 + S1 + L8_7 85.96 
Note: S2 = Sentinel-2; S1 = Sentinel-1; L8_7 = Merged data of Landsat 8 & Landsat 7 

 

Table 7 indicates that the use of sensor combinations is generally more accurate than the 

use of a single sensor among models. The overall accuracies of model-2 are still higher than model-

1 across sensor combinations, similar as what we showed in Table 6. Improvement among models, 

compared to the best performing single sensor model (Sentinel 2) can be found in Table 8.  

The improved accuracies when combining Sentinel-2 with Sentinel-1, Landsat 8 & 7, and 

Sentinel-1 + Landsat 8 & 7 are similar, with an increase of around 7%, 9%, and 13%, respectively. 

From these figures we can also see that the improvements from combining different sensors are 

different – the combination of Sentinel-2 with Landsat seems to enhance the model performance 

more than adding Sentinel-1 data.  

The highest classification accuracy came from the model that used all three sensors and 

model-2 (multi-month double composites), with an overall accuracy of 85.96%. More detailed 

pixel-wise confusion matrices and producer/user accuracies can be found in Table 9. The 

producer/user accuracies of Sentinel-2 and its combinations ranged from 77.58% to 84.72%, and 

70.81% to 86.90% respectively. The sensor combination of Sentinel-2 and Sentinel-1 had the 

lowest producer accuracy of 77.58%, which indicates the highest omission error. 

Table 8. Accuracy improvements among models compared to the single sensor Sentinel-2 model 

Basis Sensor vs. Sensor combination Improved accuracy (%) among models 

   Model-1 Model-2 

S2 vs. S2 + S1 + 7.68 + 6.39 

S2 vs. S2 + L8_7 + 8.16 + 9.87 

S2 vs. S2 + S1 + L8_7 + 12.00 + 13.51 
Note: S2 = Sentinel-2; S1 = Sentinel-1; L8_7 = Merged data of Landsat 8 & Landsat  
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Table 9. Confusion matrices with producer/user accuracies using model-2 with Sentinel-

2, Sentinel-1, and Landsat 7 & 8 sensor combinations.  

Sensors/Sensor 

Combinations 

Classification 

(RF) 

Reference 

(Ground Truth Tillage Types) 

  CT ZT Row User Accuracy (%) 

 CT 3204 1423 4627 69.25 

S1 ZT 1675 3454 5129 67.34 

 Column 4879 4877 9756   

 Producer Accuracy (%) 65.67 70.82   68.25 

  CT ZT Row User Accuracy (%) 

 CT 3231 1044 4275 75.58 

S2 ZT 1540 3736 5276 70.81 

 Column 4771 4780 9551   

 Producer Accuracy (%) 67.72 78.16   72.95 

  CT ZT Row User Accuracy (%) 

 CT 3200 1320 4520 70.80 

L8_7 ZT 1687 3577 5264 67.95 

 Column 4887 4897 9784  

 Producer Accuracy (%) 65.48 73.04   69.27 

  CT ZT Row User Accuracy (%) 

 CT 3650 1009 4659 78.34 

S2 + S1 ZT 850 3491 4341 80.42 

 Column 4500 4500 9000   

 Producer Accuracy (%) 81.11 77.58   79.34 

  CT ZT Row User Accuracy (%) 

 CT 3764 879 4643 81.07 

S1 + L8_7 ZT 864 3761 4625 81.32 

 Column 4628 4640 9268   

 Producer Accuracy (%) 81.33 81.06   81.19 

  CT ZT Row User Accuracy (%) 

 CT 3681 717 4398 83.70 

S2 + L8_7 ZT 835 3800 4635 81.98 

 Column 4516 4517 9033   

 Producer Accuracy (%) 81.51 84.13   82.82 

  CT ZT Row User Accuracy (%) 

 CT 3793 666 4459 85.06 

S2 + S1 + L8_7 ZT 557 3694 4251 86.90 

 Column 4350 4360 8710   

 Producer Accuracy (%) 87.20 84.72   85.96 
Note: S2 = Sentinel-2; S1 = Sentinel-1; L8_7 = Merged data of Landsat 8 & Landsat 7 

 

5.2. Feature Importance 

Table 10 shows the features that ranked in the top five of all features considered for each 

sensor and sensor combination with model-1. Interestingly, considering which features were most 

important in the sensor combination groups, we see that instead of Sentinel-2 features, features 

from Landsat data ranked higher, with CRC ranked as the most important variable in the full sensor 

model. Table 11 shows the features that ranked in the top five of all features considered for each 

sensor and sensor combination with model-2. Sentinel-1 features were the most important when 
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looking at the full sensor model, with VV polarization at the 100th percentile ranking as the most 

important variable. In addition, the NDTI from Sentinel-2 and the CRC from both Landsat and 

Sentinel-2 are also important features in the full sensor combination model.  

Table 10. Top five important features of different sensors and sensor combinations with 

model-1 (sowing composite). 

Important 

features 

rank 

S2 S1 L8_7 S2 + S1 S2 + L8_7 S1 + L8_7 S2 + S1 + L8_7 

1 
B2_p100 

_S2 

LogVVVH_p0 

_asc_S1 

CRC_p100 

_L 

VV_p100 

_desc_S1 

SWIR2_p100 

_L 

VV_p100 

_desc_S1 

CRC_p0 

_L 

2 
B8A_p0 

_S2 

VV_p25 

_desc_S1 

R_p100 

_L 

B2_p100 

_S2 

CRC_p0 

_L 

R_p100 

_L 

VH_p100 

_desc_S1 

3 
B5_p75 

_S2 

VV_p100 

_asc_S1 

NIR_p0 

_L 

VH_p100 

_desc_S1 

B2_p100 

_S2 

VH_p100 

_desc_S1 

NIR_p100 

_L 

4 
B2_p75 

_S2 

VH_p100 

_asc_S1 

CRC_p0 

_L 

B2_p75 

_S2 

NDVI_p25 

_L 

CRC_p100 

_L 

SWIR2_p100 

_L 

5 
B11_p100 

_S2 

VH_p0 

_asc_S1 

G_p75 

_L 

VH_p75 

_desc_S1 

B7_p0 

_S2 

B_p100 

_L 

VV_p100 

_desc_S1 

 

Table 11. Top five important features of different sensors and sensor combinations with 

model-2 (sowing + peak composites). 

Important 

features 

rank 

S2 S1 L8_7 S2 + S1 S2 + L8_7 S1 + L8_7 S2 + S1 + L8_7 

1 
B12_p0 

_peak_S2 

VV_p100 

_asc_sow_S1 

NIR_p0 

_peak_L 

VH_p100 

_asc_peak_S1  

CRC_p50 

_ peak_L 

VV_p100 

_desc_sow_S1 

VV_p100 

_asc_sow_S1 

2 
NDVI_p75 

_peak_S2 

VV_p100 

_asc_peak_S1  

CRC_p75 

_peak_L 

VV_p100 

_asc_sow_S1 

CRC_p25 

_ peak_L 

VV_p100 

_asc_sow_S1 

VV_p100 

_asc_peak_S1 

3 
B7_p50 

_peak_S2 

VH_p100 

_asc_peak_S1 

NIR_p25 

_peak_L 

VV_p100 

_desc_ sow_S1 

B2_p25 

_ peak_S2 

VV_p75 

_desc_sow_S1 

NDTI_p75 

_sow_S2 

4 
B6_p100 

_peak_S2 

LogVVVH_p100 

_desc_sow_S1 

NDVI_p100

_peak_L 

VV_p100 

_asc_ peak_S1 

G_p0 

_sow_L 

VV_p50 

_desc_sow_S1 

B2_p50 

_ peak_S2 

5 
B12_p25 

_peak_S2 

VV_p50 

_desc_sow_S1 

B_p100 

_sow_L 

LogVVVH_p100 

_asc_ peak_S1 

B8A_p100 

_peak_S2 

NIR_p0 

_peak_L 

G_p100 

_sow_L 

Note: Codes can be interpreted as the band number, percentile, composite, and sensor separated by underscores. For example,  

“VV_p100_asc_peak” means the specific pixel value for VV band was obtained at the 100th percentile in the peak season from the 

ascending orbit of Sentinel 1. The same format is used with other sensors.  

 

6. Discussion 

This study examined which satellite sensors and sensor combinations along with image 

composite timing led to the greatest classification accuracies for mapping ZT fields in Central 

Mexico in 2017. We created two different seasonal compositing models, one that focused on only 

the sowing period and one that focused on the sowing period and the peak growing period, with a 

percentile metric compositing method. Considering sensors, we used data from two optical satellite 

sensors, Sentinel-2 and Landsat, and from one SAR sensor, Sentinel-1. Our results illustrate that 

Sentinel-2 results in the highest classification accuracies if only one sensor is used, however, the 

highest accuracies are achieved when all three sensors are combined. Considering image timing, 

we find that using images from only the sowing period have relatively similar accuracies to using 

images from the entire growing season. Overall, our results show that multi-source remote sensing 

images can classify ZT and CT agriculture reliably at a large spatial scale.  
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Considering which sensor and sensor combinations resulted in the highest accuracies, we 

found that single sensor models have an accuracy of around 70%, with the model that used 

Sentinel-2 data having the highest classification accuracy (Table 6). There are several reasons why 

Sentinel-2 may perform better than Landsat. First, the relatively coarse spatial resolution of 

Landsat data (30 m) compared to that of Sentinel-2 data (10 m) may lead to spectral mixture of 

classes, which can reduce classification accuracy [37]. Second, Sentinel 2 includes several more 

bands than Landsat, including bands 5, 6, 7 and 8A in the red-edge, which have been shown to 

lead to increased classification accuracy of vegetation in other studies [37]. 

For multiple sensor models, both optical + SAR satellite combinations (S2 + S1; L8_7 + 

S1) performed similarly. Though Sentinel-1 performed poorly in single sensor analyses, it 

improved accuracies in multiple sensor analyses, consistent with the result from Denize et al. [14]. 

Denize et al. [14] finds that SAR images can distinguish between bare soil and crop residues well, 

which likely explains one reason why Sentinel-1 adds important information to our classification 

models. In addition, given that the maize crops in this study are planted during the rainy season 

when there is a significant amount of cloud cover, it is possible that Sentinel-1 improves accuracies 

by providing information during periods of the growing season covered by clouds, when optical 

sensors do not provide valuable information.  

Considering image timing, the highest accuracies occurred when using the composite of 

the whole growing season (model-2). Previous work has shown that considering whole-season 

composites can lead to high classification accuracy of tillage practices [5]. Specifically, Azzari et 

al. [5] used four-season composites with Landsat and Sentinel-1 data. They found an overall 

accuracy of 79% for their best model for the classification of low-intensity tillage, which is similar 

to the accuracy found in our study (81.19%) using a similar full season model with Sentinel-1 and 

Landsat. Interestingly, although model-1 considered images only during the sowing window, the 

overall accuracies were only slightly lower than the full growing season model. Despite dropping 

50% of the available features, the accuracy only decreased by less than 5.3% across sensors. 

Although not using image composites, studies from Zheng et al. [36] and Robles et al. [17] focused 

on only using images during the tillage and sowing time window of their study area, and this 

approach resulted in high accuracies. Though the models using only data from the sowing season 

have lower accuracy than those that use data from the whole season, doing so may be desirable in 

cases where images are only available during the sowing season, or one wants to classify ZT and 

CT during the middle of the growing season. Also, using data from only one season is more 

computationally friendly which could be helpful if doing an analysis across large study areas and 

time-spans (Table 5).  

Interestingly, when examining feature importance of model-1, features from Landsat data 

are generally more important, even though Sentinel-2 is the sensor with the highest single sensor 

classification accuracy (Table 10). One possible reason for the greater importance of Landsat 

variables could be there is more Landsat data available during the sowing time window compared 

to Sentinel-2. Due to the variability in cloud cover across days, different revisit dates and times for 

Landsat and Sentinel-2 sensors result in possible coverage availability differences [37]. The feature 

importance table of model-2 suggests that Sentinel-1 bands and indices are helpful in increasing 

classification accuracies – Sentinel-1 features represent the top five most important features in 

models with sensor combinations when looking at the multi-sensor combinations of Sentinel-2 and 

Sentinel-1 and Landsat and Sentinel-1; in particular, the maximum VV polarization variable is 

most important (Table 11). This is consistent with current studies that use backscattering 

polarization VV or VH, and also the cross ratio to separate crop residue from other land features 
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[14]. However, Azzari et al. [5] shows that none of the Sentinel-1 features were considered 

important by the RF classifier, and concluded Sentinel-1 was not helpful for classification. This 

may be because of incident angle differences and speckle noise issues that were difficult to control 

for since the study was conducted across extremely large spatio-temporal scales.  

Considering limitations of our study, first, tillage practices were labeled only as ZT and 

CT and not tillage intensity; other studies which focus on tillage classification usually quantify the 

intensity of tillage according to the CRC [5,13]. Future work should examine whether our methods 

could similarly detect tillage intensity in our study region. Second, our study only was conducted 

in the state of Guanajuato; future work should examine whether we would achieve similar results 

and accuracies in different states across Mexico. Additionally, our study only focused on a single 

year, 2017. Future work would benefit from developing multi-year models. Finally, in 

consideration of the improved accuracies from adding Sentinel-1 data, future work should consider 

the use of other SAR sensors, such as Cosmo-SkyMed, to further test the effectiveness of SAR 

data [38].  

 

7. Conclusion 

This study used data from multi-source optical satellites, Sentinel-2 and Landsat 8 & 7, 

and a SAR satellite, Sentinel-1, to identify tillage practices in the state of Guanajuato, Mexico in 

2017. Considering individual sensors, Sentinel-2 had the highest classification accuracies (72.95%) 

across composites. When considering multiple sensor combinations, SAR sensor Sentinel-1 

improved classification accuracy when used as a complement to optical sensors. Overall, the full 

sensor combination, considering Sentinel-2, Landsat, and Sentinel-1 data, across the full growing 

season performed the best, with an overall accuracy of 85.96%. For image timing, we found that 

the whole-season composite (model-2) led to the highest accuracies, though the model that used 

only data from the sowing season (model-1) has relatively high accuracies. These results illustrate 

that easily and freely-accessible global remote sensing images can be used to classify tillage 

practices at large spatio-temporal scales.  
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