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Women of African ancestry have lower incidence of epithelial ovarian cancer (EOC) yet worse survival compared to women of
European ancestry. We conducted a genome-wide association study in African ancestry women with 755 EOC cases, including
537 high-grade serous ovarian carcinomas (HGSOC) and 1,235 controls. We identified four novel loci with suggestive evidence
of association with EOC (p < 1 x 10~°), including rs4525119 (intronic to AKR1C3), rs7643459 (intronic to LOC101927394),
rs4286604 (12 kb 3’ of UGT2A2) and rs142091544 (5 kb 5’ of WWC1). For HGSOC, we identified six loci with suggestive
evidence of association including rs37792 (132 kb 5’ of follistatin [FST]), rs57403204 (81 kb 3’ of MAGEC1), rs79079890
(LOC105376360 intronic), rs66459581 (5 kb 5’ of PRPSAP1), rs116046250 (GABRG3 intronic) and rs192876988 (32 kb 3’ of
GK2). Among the identified variants, two are near genes known to regulate hormones and diseases of the ovary (AKR1C3 and
FST), and two are linked to cancer (AKR1C3 and MAGEC1). In follow-up studies of the 10 identified variants, the GK2 region
SNP, rs192876988, showed an inverse association with EOC in European ancestry women (p = 0.002), increased risk of ER
positive breast cancer in African ancestry women (p = 0.027) and decreased expression of GK2 in HGSOC tissue from African
ancestry women (p = 0.004). A European ancestry-derived polygenic risk score showed positive associations with EOC and
HGSOC in women of African ancestry suggesting shared genetic architecture. Our investigation presents evidence of variants
for EOC shared among European and African ancestry women and identifies novel EOC risk loci in women of African ancestry.
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What’s new?

Women of African ancestry have lower incidence of epithelial ovarian cancer (EOC) yet worse survival compared to women of
European ancestry. To date, genome-wide association studies (GWAS) have identified 30 common, low-penetrant EOC
susceptibility alleles. However, most studies were restricted to European ancestry women, and it remains to be determined
whether there is any concordance among women of African descent. In this first GWAS conducted in women of African ancestry,
the authors report ten novel associated SNPs. The results also suggest there may be some shared genetic architecture
between women of European and African ancestry for susceptibility to ovarian cancer.

Introduction

Epithelial ovarian cancer (EOC) is a rare but deadly disease
that has a slightly higher incidence in women of European
ancestry compared to the women of African ancestry.' How-
ever, in the United States, the 5-year relative survival is much
worse for African American women at 35% compared to 47%
for European ancestry women.! To date, genome-wide associ-
ation studies (GWAS) have identified 30 common, low pene-
trant EOC susceptibility alleles,” but due to small sample sizes
of other ethnic groups, most published GWAS studies of EOC

have been restricted to European ancestry women. There have
been no GWAS in women of African ancestry. Although there
are 30 confirmed GWAS single nucleotide polymorphisms
(SNPs) that have been reported in European ancestry women,
it is unknown whether there is any concordance among
women of African descent.

The Genetic Associations and Mechanisms in Oncology
(GAME-ON) network designed a custom Illumina array, the
OncoArray, in order to replicate previous GWAS findings
and identify new cancer susceptibility loci.> The OncoArray
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includes ~533,000 variants (of which 260,660 formed a GWAS
backbone) and was used for coordinated genotyping of over
400,000 cancer cases and controls, including EOC case-
control studies of the Ovarian Cancer Association Consortium
(OCAC) and the multicenter African American Cancer Epide-
miology Study (AACES).* The present study conducted a
GWAS in 755 EOC cases and 1,235 controls of African ances-
try from the OCAC and AACES. To increase the sample size,
additional genotype data were combined from the OCAC Col-
laborative Oncological Gene-Environment Study (COGS) and
three EOC GWAS’ to evaluate the concordance of confirmed
GWAS SNPs found in women of European ancestry. We pre-
sent the results of these association analyses together with
expression quantitative trait locus (eQTL) analyses for SNPs
reaching a suggestive threshold of p <1 x 107°. The func-
tional annotation of the EOC susceptibility loci in women of
African Ancestry is described.

Materials and Methods

Study samples

All subjects included in this analysis were of African descent

and provided written informed consent as well as data and

blood samples under ethics committee-approved protocols.
The GAME-ON OncoArray data set comprised 63 OCAC

studies and the AACES.* The analyses for our study were

restricted to 32 studies that contributed samples from individ-

uals of African descent (Supplementary Table S1).

Genotype data and quality control (QC)

Genotyping was performed at five genotyping centers: Univer-
sity of Cambridge, Center for Inherited Disease Research,
National Cancer Institute (NCI), Genome Quebec and Mayo
Clinic. OncoArray sample QC for the genotypes received from
Cambridge was similar to that carried out for the other pro-
jects that used the OncoArray as described in Pharoah et al.’
Samples were excluded if the genotyping call rate was <95%,
for high or low heterozygosity, if the individual was not
female or had ambiguous sex, or were duplicates. SNP QC
was carried out according to the OncoArray QC guidelines.’
Sample level QC included restriction to female samples, as
well as check for call rate >95%, heterozygosity (either too big
or too small), removal of ineligible samples and relationship
inference to check for unexpected first-degree relatives. SNP
level QC included filter on call rate >95% and Hardy-
Weinberg Equilibrium p-value >1 X 107°. After applying these
filters for QC, there were 466,142 SNPs remaining for 2,088
samples (832 EOC cases and 1,255 controls).

Genetic ancestry analysis

Intercontinental ancestry was calculated for the OCAC and
AACES samples using the software package FastPop® (http://
sourceforge.net/projects/fastpop/) that was developed specifi-
cally for the OncoArray Consortium. Only the African ances-
try samples, defined as having >50% African ancestry, were
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used for the GWAS reported here (755 EOC cases and 1,235
controls). Among the cases, 537 were high-grade serous ovar-
ian carcinoma (HGSOC), 21 low-grade serous, 31 endo-
metrioid, 24 clear cell, 51 mucinous 12 mixed cell, 65 other
EOC and 14 with missing histotype. Principal components
computed using FastPop® were further used to adjust for pop-
ulation structure in our GWAS.

Genome-wide imputation of genotypes

Using the genotyped SNPs that passed QC, haplotypes were
phased with SHAPEIT v2’ followed by imputation to the
1,000 Genomes Phase 3 v5 reference set® using Minimac3.’

Association analyses in ovarian cancer cases and controls
of African descent

Genome-wide association analysis was performed by logistic
regression with adjustment for two principal components of
ancestry using a score test to account for genotype uncertainty
as implemented in SNPTESTv2.5.2."° For genotyped SNPs, we
included results only for those SNPs with Hardy-Weinberg
Equilibrium p-value >1x 107> and heterozygosity count
(HC) >30, where HC is defined as N X MAF X (1-MAF) for
each SNP, N represents the sample size (either the number of
cases or the number of controls), and MAF represents the
SNP minor allele frequency. For imputed SNPs, we included
those SNPs with imputation R-squared >0.5, and effective het-
erozygosity count (effHC) >30, where effHC is defined as the
imputation R-squared X HC. Note that we applied QC filters
separately for cases and controls to select SNPs carried for-
ward for genetic association analysis, such that a minimum
HC (or effective HC) of 30 was observed among each of the
case and control groups. After applying these filters, there
were 12,486,624 and 11,083,029 SNPs remaining in the
GWAS of EOC and HGSOC, respectively. We examined
quantile-quantile plots for the SNPs remaining after applying
filters (Supplementary Fig. S1), and obtained lambdas of 1.01
in both the EOC and HGSOC analyses, indicating that our
analyses were free from obvious inflation in the distribution
of observed p-values. We calculated Bayesian false-discovery
probabilities (BFDPs) for associated SNPs assuming prior
probabilities of association 1:1,000 and1:10,000 to facilitate
interpretation of the reported SNP associations.""

Expression quantitative trait locus (eQTL) analysis for
selected GWAS SNPs

We pursued eQTL analysis using gene expression measurements
from formalin-fixed paraffin-embedded (FFPE) tissue specimens
collected from the facility where the cytoreductive surgery was
performed for 260 African ancestry HGSOC cases in the
AACES and a case—control study in OCAC, the North Carolina
Ovarian Cancer Study (NCOCS). RNA was extracted using the
Qiagen AllPrep DNA/RNA FFPE isolation reagents in conjunc-
tion with the Qiagen GeneRead kit, and RNA was assayed
on Affymetrix Human Transcriptome 2.0 ST GeneChips.
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R (version 3.5.2) Bioconductor (version 3.8) was used to
quantitate expression levels for targeted genes. We used robust
multi-array average from the oligo package (target = “core”) to
normalize the expression intensities'> and ComBat
(Bioconductor-sva) to remove batch effects.'> We then mapped
probe intensity measurements to gene identifiers'* before gener-
ating box plots of expression distributions by genotype. For each
of the 10 SNPs identified in the GWAS of EOC and HGSOC
(Table 1), we examined genes and transcripts within the region
of identified GWAS SNPs for eQTL evidence using an additive
model with adjustment for age and the first two principal com-
ponents of ancestry. For the selected transcripts, we report all
eQTL associations demonstrating nominal statistical significance
at p < 0.05 for available transcripts falling within the region of
identified GWAS SNPs.

Examination of pleiotropy of GWAS SNPs associated with
EOC in women of African ancestry with breast and prostate
cancer in African ancestry individuals

Because we were unable to identify other GWAS of EOC in
women of African ancestry, independent validation of GWAS
results was not possible. Therefore, we examined the association
of the 10 SNPs identified in the present African ancestry GWAS
of EOC or HGSOC at p <1 X 107° (Table 1) with previously
completed studies of breast cancer (overall, ER positive and ER
negative) and prostate cancer in populations of African descent.
Genetic associations in breast cancer were determined from 3,007
cases, of which 987 are ER negative and 1,518 are ER positive,
and 2,720 African ancestry controls from the African American
Breast Cancer Consortium (AABC), using the Illumina Human
1M-Duo BeadChip."” The genotype associations for prostate can-
cer were from 4,853 cases and 4,678 controls in the African
American Prostate Cancer Consortium (AAPC), using the
Ilumina Infinium 1M-Duo."® For the selected SNPs, evidence of
association from the studies of breast and prostate cancer is
reported at a nominal level (p < 0.05) without adjustment for
multiple comparisons.

Concordance of associated SNPs across women of African
and European ancestry
We examined whether susceptibility genes for EOC previously
identified in European ancestry women® were associated with
EOC among women of African ancestry as well as whether the
loci identified among women of African ancestry in this analysis
were associated with EOC among European ancestry women.
Fine mapping of gene regions was performed for (i) the
loci previously identified as significantly associated with EOC
in European ancestry women among African ancestry women
and (ii) the loci identified as significantly associated with EOC
in those of African ancestry in the present analysis among
European ancestry women. Plots were generated for each
region defined by the position of the most strongly associated
SNP +/— 400 kb using the LocusZoom software with the
hg19/1000 Genomes Nov 2014 AFR (or EUR depending on

Table 1. SNPs demonstrating genome-wide suggestive evidence of association in the African Ancestry OncoArray Analysis and comparison with results of OCAC studies of women of

European ancestry
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the ethnic population) as the reference panel for linkage dis-
equilibrium information. Significance for each region of inter-
est was defined by both a Bonferroni threshold (alpha-level of
0.05/number of SNPs tested in that region) and a more con-
servative, suggestive threshold (alpha-level of 0.05/[number of
SNPs tested in that region/3]). To further examine the global
genetic architecture in the two populations, we calculated a
polygenic risk score using 24 SNPs from published GWAS of
ovarian cancer in European ancestry women, excluding SNPs
associated only with mucinous tumors.>"”

Data availability

The majority of the GWAS data set used during the current
study are available at the database of Genotypes and Pheno-
types (dbGaP) under accession number phs001882.v1.pl
(OncoArray - FOCI data). Other portions are not publicly
available due to privacy or ethical restrictions, but will be
made available upon reasonable request.

Results

Genome-wide association of EOC and HGSOC in African
ancestry women

Genetic association analyses were performed using genotype
data from 755 invasive EOC cases (537 HGSOC) and 1,235
controls of African ancestry from OCAC and AACES. The
numbers of participants by study for OCAC are shown in
Supplementary Table S1. The Manhattan plots from the
GWAS in African ancestry women for both overall EOC and
HGSOC are shown in Supplementary Figure S2. We did not
observe any genetic markers that were statistically significantly
associated with EOC or HGSOC risk at the standard genome-
wide significance level of p < 5 x 107%.

Using a suggestive threshold of p < 1 x 107%, we identified
four distinct loci for association with EOC and six distinct loci
for HGSOC (Table 1). The four loci associated with EOC
included 10p15.1 (lead SNP rs4525119, intronic to AKRIC3,
p =49 x 1077, effect allele frequency [EAF] = 0.33), 3p25.3

()
44-

g a0-
0]

—

3.6-

T T/IC  Clc
rs192876988

2991

(lead SNP rs7643459, intronic to LOCI1019273%4, p = 8.4 X 1077,
EAF = 0.36), 4q13.3 (lead SNP rs4286604, 12 kb 3’ of UGT2A2,
p=85X 1077, EAF = 0.27) and 5q34 (lead SNP rs142091544, 5 kb
5 of WWCI, p= 94 x 1077, EAF = 0.03). Of these four loci,
none reached the threshold of p < 1 x 107° for HGSOG, although
a p-value of 1.4 X 107°, just below this threshold, was found for
rs764359 (odds ratio [OR] = 1.45; 95% confidence interval
[CI] = 1.25-1.68). The six loci associated with HGSOC included
5q11.2 (lead SNP rs37792, 132kb 5 of FST [follistatin],
p =60Xx 1078, EAF = 0.34), Xq27.2 (lead SNP rs57403204,
81kb 3’ of MAGECI, p =17 X 1077, EAF = 0.06), 10p15.1
(lead SNP rs79079890, LOCI05376360 intronic, p = 3.0 X 1077,
EAF = 0.03), 17p25.1 (lead SNP rs66459581, 5 kb 5 of
PRPSAPI, p =51x1077, EAF = 023), 15p12 (lead SNP
rs116046250, GABRG3 intronic, p = 8.7 X 1077, EAF = 0.05) and
4q21.21 (lead SNP rs192876988, 32 kb 3’ of GK2, p = 9.2 X 1077,
EAF = 0.05). The regional association plots for these 10 SNPs are
shown in Supplementary Figures S3 (EOC) and $4 (HGSOC).
For the four loci associated with EOC overall, the BEDP ranged
from 5% to 8% assuming a prior of 1:1,000 (Table 1) For the six
loci associated with HGSOC, the BFDP ranged from <1% to 8%
assuming a prior of 1:1,000 (Table 1). Assuming a prior probabil-
ity of 1:10,000, we identified one locus for HGSOC with a
BEDP < 5% (FST rs37792, BFDP = 4%; Supplementary Table S2).

Expression quantitative trait locus (eQTL) analysis for

GWAS SNPs

Results of eQTL analyses on 260 HGSOC tissue samples from
women of African ancestry for each of the 10 EOC- and
HGSOC-associated regions of interest are in Figure 1. We iden-
tified the set of genes lying within a 100 kb region of the most
strongly associated SNP for each locus to pursue for the eQTL
analysis. For one SNP, rs37792, there were no genes or tran-
scripts identified within a +100 kb region, so we expanded con-
sideration to a %500 kb region that included FST and three
other genes (Supplementary Table S3). Among the gene and
transcript targets selected for follow-up, expression data were

3.3 =
°
(%3.0- *
= 2.7 =

N — o

2-4'# % #

GIG GIA  AA
rs37792

Figure 1. Leading eQTL analysis results in 260 ovarian tissues from AACES and NCOCS participants for SNPs in GK2 and ITGA2. These
boxplots represent the distribution of measured expression vs. genotype (rounded to the nearest whole number for imputed dosage
variables). p-Values are reported from additive models with covariate adjustment for age and two principal components of ancestry.
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available for 21 genes and transcripts falling within the regions
of seven GWAS SNPs. We note that we did not have expression
data available for the noncoding transcripts identified within the
regions of two SNPs (rs7643459 and rs79079890), so these SNPs
and transcripts could not be carried forward for eQTL analysis.
Among the SNPs and transcripts examined in eQTL analyses,
we identified a significant association for rs192876988, where
carriers of allele C showed decreased expression of GK2
(p = 0.004, Fig. 1 and Supplementary Fig. S5). We also identified
a nominally significant association for rs37792 (p = 0.03).

Breast and prostate cancer associations for selected SNPs
identified in the GWAS of EOC and HGSOC

As evidence for pleiotropy has been observed in Europeans,” we
evaluated pleiotropy with ovarian cancer-associated SNPs among
African Americans diagnosed with breast and prostate cancer in
the AABC and AAPC, respectively. For selected SNPs from the
GWAS of EOC and HGSOC in African ancestry women
(Table 1), we examined evidence of association with breast and
prostate cancer in individuals of African ancestry. The EOC-
associated LOC101927394 region SNP rs7643459 allele T demon-
strated nominal evidence of association with increased risk of ER
negative breast cancer (p =0.029) with an OR of 1.13 (95%
CI = 1.01, 1.26) (Supplementary Table S4) showing consistent
direction with that reported for EOC. The same SNP rs7643459
allele T also showed nominal association with prostate cancer in
African Americans (p = 0.034; Supplementary Table S5). Within
the region of UGT2A2, SNP rs4286604 allele A was associated
with increased risk of prostate cancer (p = 0.025). We note that
the A allele for this SNP was identified as having a protective
association for EOC (Table 1), indicating a discordant direction
of association comparing the relationship with EOC vs. prostate
cancer. SNP 15142091544 allele T within the WWCI region, asso-
ciated with EOC, demonstrated evidence of association with ER
negative breast cancer (OR = 1.55, 95% CI = 1.19, 2.02; p = 0.001)
indicating a consistent direction compared to the association with
EOC. The LOC105377300/GK2 region SNP rs192876988 allele C
demonstrated nominal association with increased risk of ER posi-
tive breast cancer (OR = 1.32, 95% CI = 1.03, 1.69; p = 0.027; Sup-
plementary Table S4), showing a consistent direction of effect
with that reported for HGSOC (Table 1).

Concordance of associated SNPs across women of African
and European ancestry

One of the 10 SNPs (LOCI05377300/GK2 region SNP
rs192876988) identified to be associated in women of African
ancestry was found to be significantly associated (p = 0.002) with
HGSOC at the Bonferroni threshold among European ancestry
women, although the direction of the association was discordant
with that among African ancestry women (Table 1). Of the 30 pre-
viously identified GWAS SNPs detected in European ancestry
women, four SNPs were significantly associated with EOC
among African ancestry women (p < 0.05): 19p13.11 (rs4808075,
p =0.013), 5p15.33 (rs7705526, p = 0.014), 17q21.32 (rs1879586,

Ovarian cancer GWAS among women of African ancestry

p =0.018) and 17q12 (rs7405776, p = 0.026) (Table 2). Combin-
ing the 24 published European ancestry GWAS SNP associa-
tions (omitting mucinous associated SNPs due to the small
number of cases in the data set), the association of the resulting
polygenic risk score with EOC was 1.20 per standard deviation
in polygenic risk score (95% CI = 1.09, 1.31; p = 4.46 x 107°)
and 1.26 per standard deviation in polygenic risk score (95% CI:
1.13, 1.39; p = 3.02 X 10~"") for HGSOC, demonstrating a posi-
tive association of this European ancestry-derived risk score with
EOC risk in women of African ancestry. These are weaker in
comparison to the recently reported polygenic risk score for East
Asian women of 1.76 per standard deviation for HGSOC
(p=86x10"7°."

The results from fine mapping of the gene regions of the
30 previously identified SNPs® associated with EOC and HGSOC
in European ancestry women among the sample of African ances-
try women identified one risk region in African ancestry women
that was significantly associated with EOC after Bonferroni cor-
rection, 18q11.2 (p = 1.84 x 107°) (Table 3 and Supplementary
Table S6). The lead SNP in that region (chr18:21555816,
rs1258109, 8 kb 5" of LOC105372023) is located ~150 kb from the
LAMA3 region variant previously reported in European ancestry
(chr18:21405553, rs8098244). Notably, rs8098244 demonstrates
differences in MAF across ethnic groups with MAFs of 0.28 and
0.03 in the 1,000 Genomes European vs. African ancestry
populations (source: HaploReg v4.1), respectively, corresponding
to markedly reduced power to detect associations with this
variant in African ancestry women. Four loci were associated
with EOC at a suggestive threshold: 9p22.2 (chr9:16978052,
rs373094273, p =2.67 X 107°, 36 kb 5 of LOCI105375983),
8q21.13 (chr8:82866267, rs1839897, p = 1.44 X 107°,104 kb 3’ of
LOC105375928), 10q24.33 (chr10:105375295, rs138417137, P =
3.40 x 107>, SH3PXD2A intronic) and 3q22.3 (chr3:138839642,
1575623154, p = 3.34 X 10>, BPESCI intronic). In examination
of association with HGSOC, we identified one Bonferroni-
significant association at 8q21.13 (chr8:82866267, rs1839897,
p=398X% 107°, 104 kb 3’ of LOC105375928) located ~200 kb
from the previously reported CHMP4C region variant
(chr8:82668818, rs76837345). Additionally, a locus in region
12q24.31 reached the suggestive threshold (chr12:121113096,
rs111546208, CABPI intronic, p = 2.51 X 107°) for associa-
tion with HGSOC among African ancestry women.

Of the 10 SNPs newly identified in GWAS of African ancestry
women, one, the GK2 region SNP rs192876988, showed evidence
a protective association (p = 0.002) in the OCAC European ances-
try GWAS that included up to 23,543 EOC cases and 29,444 con-
trols (Table 1). Fine mapping of these gene regions in European
ancestry women provided no evidence of another SNP within the
region associated with EOC or HGSOC at the Bonferroni signifi-
cance threshold; however, a SNP in the 4p13 region reached sta-
tistical significance at the suggestive threshold, p = 1.14 X 10~
(Supplementary Table S7). The lead SNP in this region was
rs2292092 (chr4:70592790), a variant in the 3’ UTR of the
SULTIBI gene.
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HGSC!

EOC

Table 3. Summary of statistically significant or suggestive results for fine mapping in African ancestry women of loci previously identified in GWAS of European ancestry women

Number

Minimum SNP Minimum

Number of
SNP p value SNPs plotted position in region

Minimum

Minimum SNP

of SNPs
Plotted

SNP p value

position in region

Nearest gene Phenotype

Build 37 Chr:Pos

Confirmed SNPs in European ancestry OncoArray meta-analysis

SNP ID

Locus

3.98E-06
5.57E—05

chr8:82866267
chr9:16986321

chr8:82866267 1.44E-05> 3,523

chr9:16978052

4,045

HGSC

CHMP4C
BNC2

8:82668818
9:16915874
Newly identified SNPs in European ancestry OncoArray meta-analysis

1s76837345

rs10962692

8g21.13

4,746

2.67E-05>

5,248

HGSC

9p22.2

chr3:138839642  3.34E—05°
chr10:105375295

2,922

Mucinous
Serous

BPESC1

rs112071820 3:138849110

1s7902587

3g22.3

1.03E-03

chr10:105300054

2,852

3.40E-05>

3,192

LOC102724351

10:105694301

10q24.33

borderline, LGSC

HGSC

chr12:121113096 2.51E-05>

chr12:121113096 6.90E-05 3,272
chr18:21555816

3,680

HNF1A-AS1
LAMA3

12:121403724
18:21405553

157953249

12q24.31
18q11.2

6.19E-05

2,431

1.84E—05°

chr18:21555816

2,685

Serous

rs8098244

borderline, LGSC

Fine mapping among HGSC was completed only for those SNPs associated with serous ovarian cancer.

%Significant at the Bonferroni threshold (0.05/number of SNPs plotted).

3Significant at the suggestive threshold (0.05/[number of SNPs plotted/3]).
Abbreviations: Chr, chromosome; EOC, epithelial ovarian cancer; HGSC, high-grade serous ovarian cancer; LGSC, low-grade serous ovarian cancer; Pos, position; SNP, single nucleotide polymorphism.
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Discussion

Here, we report on the first GWAS of EOC and HGSOC in
women of African ancestry. Due to the limited number of EOC
cases of African ancestry available for our study, we applied a
suggestive threshold of p < 1 X 107° for the current investiga-
tion. At this suggestive level of statistical significance, we identi-
fied four loci associated with EOC in women of African descent
and six distinct and novel loci associated with HGSOC in
women of African descent. Although one SNP was observed to
be associated with HGSOC among European ancestry women,
the direction of the association was not concordant with that of
African ancestry women. Below, we review the functional rele-
vance of these genes to ovarian cancer and other cancers.

The variant with the smallest p-value associated with EOC in
women of African descent (rs4525119) is in an intron of AKRIC3,
a gene which encodes an enzyme of the aldo-keto reductase
superfamily.'” AKRIC3 plays a role in androgen biosynthesis*
and has been linked to benign gynecologic conditions, endometri-
osis and polycystic ovary syndrome (PCOS),*'** which are risk
factors for ovarian cancer. Consistent with a possible relationship
with a predisposition to endometriosis, an OR of 1.78 (95%
CI = 1.09-2.90) for the association between a history of endome-
triosis and invasive EOC risk among African Americans was
recently reported in the AACES.*> Another locus associated with
EOC is near the WWCI gene, which encodes the WW domain-
containing protein 1 (WWCI), also known as KIBRA, and is
likely a regulator of the tumor suppressive Hippo signaling path-
way.”® While WWCI has been primarily linked to episodic mem-
ory and Alzheimer’s disease,”” " a recent candidate gene study”"
observed an association between WWCI variants and risk of
estrogen-receptor positive breast cancer in women of African
ancestry. Likewise, WWCI1/KIBRA has been linked to breast can-
cer outcomes, including recurrence-free survival and metasta-
sis.’>* In the current study, we found an association with ER
negative breast cancer for the SNP nearest to the WWCI gene.
To our knowledge, the other two loci associated with EOC
in women of African descent at the suggestive threshold,
LOC101927394 and UGT2A2, have not been reported in associa-
tion with cancer or other diseases. However, when we assessed
whether the rs7643459 allele T in LOCI101927394 was associated
with cancer in individuals of African descent using data from the
AABC and AAPC consortium, we demonstrated a nominal asso-
ciation with risk of ER negative breast cancer and prostate cancer
in African ancestry individuals.

The variant with the smallest p-value for HGSOC was
observed for a SNP upstream of FST (rs37792). The FST gene
encodes a gonadal protein that inhibits the release of follicle-
stimulating hormone, and is consistent with the suspected
hormonal etiology of ovarian cancer.”® Polymorphisms of
EST have been linked to PCOS® or markers for PCOS,”” a
risk factor for ovarian cancer.®® With potential importance
to cancer risk, progression and survival, the second most signifi-
cant HGSOC-associated gene, MAGECI, is a member of the
melanoma-associated antigen (MAGEs) gene family and encodes
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tumor-specific antigens that can be recognized by autologous
cytolytic T lymphocytes.”” Due to these properties, the MAGE
gene family has garnered attention as possible target for cancer
immunotherapy.*® MAGECI expression has been linked to an
improved ovarian cancer progression-free survival.*' Recently, a
missense variant in MAGEC3 was reported to have an X-linked
pattern of inheritance in ovarian cancer families.**

Several of the SNPs associated with EOC and HGSOC
were long noncoding RNA (ncRNA) genes, LOC101927394,
LOCI105376360 and LOCI105377300 (GK2). Little is known
about these specific ncRNAs, but ncRNAs are increasingly
reported by GWAS studies and are thought to play important
roles in gene regulation.” SNPs in long ncRNAs have been
shown to contribute to the development of ovarian cancer,
where a variant within the exonic region of a long ncRNA gene
(rs17427875, HOXAI11-AS) was marginally associated with
reduced risk of serous ovarian cancer.** We also demonstrated
that LOC105377300/GK2 region SNP rs192876988 allele C was
associated with an increased risk of ER positive breast cancer in
African ancestry women from AABC, and inversely associated
with HGSOC in European ancestry women from OCAC. The
rs192876988 allele C also showed association with reduced
expression of GK2 in HGSOC tissue samples from women of
African ancestry. GK2 encodes glycerol kinase 2, a key enzyme
in the regulation of glycerol uptake and metabolism, and has
been associated with glycerol kinase deficiency.*” It remains
unclear whether the association between rs192876988 and GK2
expression is mediated by the nearby ncRNA.

A few SNPs were identified through fine mapping of loci pre-
viously reported in European ancestry-based GWAS of ovarian
cancer’ that may be of importance to ovarian cancer risk among
African ancestry women. Four of these SNPs were near or in long
ncRNA genes (LOCI105372023, LOC105375983, LOC105375928
and BPESCI), while two SNPs lie in protein coding sequences for
SH3PXD2A and CABPI. The SH3PXD2A gene encodes an adap-
tor protein involved in formation of invadopodia and degradation
of the extracellular matrix, which both contribute to tumor inva-
sion.** The CABPI gene encodes a calcium binding protein that
is highly expressed in the brain and retina, and is important in
calcium mediated cellular signal transduction.*” Through the fine
mapping of gene regions among European ancestry women, we
identified one SNP in the 3’ UTR region of the SULTIBI gene.
The SULTIBI gene encodes a sulfotranferase enzyme that cata-
lyzes the sulfate conjugation of estradiol, thyroid hormones and
drugs.*® Overall, although we identified limited statistical signifi-
cance in examining the specific genetic variants previously
reported in GWAS of European ancestry individuals, our fine
mapping effort underscores the possibility of shared genes, path-
ways and biological mechanisms underlying risk of ovarian can-
cer in European and African ancestry women.

The OCAC and AACES provided a unique opportunity to
evaluate genetic associations in African ancestry women with
EOC as no individual study alone has enrolled enough subjects.
That said, even with data pooled from 32 individual studies, the
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sample size was underpowered for detection of genome-wide
significant associations. As shown in Table 2, the power to
detect associations of SNPs confirmed among European ances-
try in those of African ancestry was limited for most SNPs and
ranged from 0.015/0.16 to 0.819/0.982 (based on power calcula-
tions with/without consideration for multiple comparisons).

There are very few existing studies that were not included in
our analysis that have enrolled women of African descent with
ovarian cancer. However, the Black Women’s Health Study
(BWHS), the Women’s Health Initiative (WHI) and the South-
ern Community Cohort Study (SCCS) have EOC cases diag-
nosed in women of African descent that were not included in
our analyses. Since none of these three studies has participated
in OCAC or GAME-ON, genotype data generated from the
OncoArray project were not available. Thus far, neither the
SCCS nor the BWHS have genotyped ovarian cancers in their
cohorts. Although the WHI has conducted genome-wide
genotyping, a different genetic platform (Affymetrix 6.0 array)
was used. When we attempted to add a small number of cases
and many African ancestry controls from WHI, there were sys-
tematic differences in allele frequencies observed across the two
platforms that precluded merging WHI samples with our
OCAC and AACES samples without introducing false posi-
tives.*” Due to lack of available GWAS efforts for ovarian cancer
in African ancestry women, we were unable to pursue formal
replication of our selected GWAS SNPs. Although we success-
fully identified some signals of association for our identified
SNPs in examination of independent samples of African ances-
try from case-control studies of breast and prostate cancers, we
emphasize that these efforts only allowed us to identify SNPs
with shared effects across cancer types, without the ability to
confirm any SNPs that have mechanisms specific to ovarian
cancer. These observations underscore the need for new
genotyping initiatives and new data collection that target minor-
ity populations with ovarian cancer. Our study included a
GWAS backbone in the OncoArray that was designed for
women of European ancestry, and therefore has reduced power
for GWAS analysis in women of African ancestry.

This GWAS is the first to report genome-wide associations
for ovarian cancer in African ancestry women. Our findings
provide suggestions of genetic association for ovarian cancer
in African ancestry women. Only 1 of the 10 SNPs associated
with ovarian cancer in African ancestry women was found to
be associated in European ancestry women, although the
direction of the association was not consistent across ethnic
groups, perhaps reflecting differences in linkage disequilib-
rium across groups. Our data show that the suggestive SNP
associations for ovarian cancer among women of African
ancestry are not generally replicated among women of
European ancestry, which have been similarly observed for
other cancers and disease states, such as breast cancer.”
Our results demonstrate that some ovarian cancer GWAS var-
iants identified in women of European ancestry may be associ-
ated with ovarian cancer in women of African ancestry.
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This finding is further underscored by our report of statisti-
cally significant association of the polygenic risk score derived
from published European GWAS hits with risk of EOC in
women of African ancestry. These findings suggest there may
be some shared genetic architecture of EOC between women
of European and African ancestry in susceptibility to ovarian
cancer. Additional genetic studies leveraging larger sample
sizes will be needed to refine genetic risk prediction and eluci-
date the underlying biology of EOC in African ancestry
women.
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