EurlOC
 European Journal of
 Organic Chemistry

Supporting Information

β-Mannosylation through O-Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N-Linked Glycans
Shuai Meng, Bishwa Raj Bhetuwal, Hai Nguyen, Xiaotian Qi, Cheng Fang, Kevin Saybolt, Xiaohua Li,* Peng Liu,* and Jianglong Zhu*

Supporting Information

General information 7
Synthesis of lactol donor 10, 14, 17, 19, 20 and 21 8
Synthesis of lactol donor $\mathbf{1 0}$ 8
Synthesis of lactol donor 14 11
Synthesis of lactol donor 17 12
Synthesis of lactol donor 19. 15
Synthesis of lactol donor 20 19
Synthesis of lactol donor 21. 23
General procedure for $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ mediated O-alkylation 27
Synthesis of compound 25, 27, 29, 32, 33, S19, 37, 39 $\alpha, \mathbf{3 9} \beta$ and 40 27
Comprehensive studies of various conditions for β-mannosylation 40
Table S1. Screening solvents for β-mannosylation via O-alkylation. ${ }^{a}$ 40
Table S2. Screening bases for β-mannosylation via O-alkylation. ${ }^{a}$ 40
Table S3. The effect of reaction time, temperature and the equivalent of acceptor and cesium carbonate in the β-mannosylation via O-alkylation. ${ }^{a}$ 42
Table S4. 18-Crown-6 titration studies 43
NMR study for cesium alkoxide 45
Preparation of cesium alkoxide $\mathbf{4 2}$ from donor 7 and extensive NMR studies (including ${ }^{133} \mathrm{Cs}$ NMR) 45
Synthesis of perdeuteriomethyl protected lactol donor 44 47
Preparation of cesium alkoxide $\mathbf{4 5}$ from donor $\mathbf{4 4}$ and extensive NMR studies. 49
Synthesis of perdeuteriomethyl protected β-mannoside 46. 50
Synthesis of lactol 47 51
Preparation of cesium alkoxide 48 from donor 47 and extensive NMR studies. 52
Competing experiments between different mannose-derived lactols 54
General procedure for competition using different deoxy-mannose donors in the anomeric O-alkylation with allyl bromide 54
General procedure for competition using different deoxy-mannose donors in the anomeric O-alkylation with triflate 6 57
Kinetic studies 59
Computational studies on the O-allylation of D-mannose $\mathbf{7}$ and deoxy-D-mannoses $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ with allyl bromide 64
Computational methods 64
Additional computational results 64
Cartesian coordinates (\AA) and energies of optimized structures 67
Synthesis of the hexasaccharide core of the fucosylated N-linked glycans 121
References 129
NMR spectra of the products 131
${ }^{1} \mathrm{H}$ NMR of compound 7 131
${ }^{13} \mathrm{C}$ NMR of compound 7 132
${ }^{1}$ H NMR of compound $\mathbf{S 3}$ 133
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 3}$ 134
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0}$ 135
${ }^{13} \mathrm{C}$ NMR of compound 10 136
${ }^{1} \mathrm{H}$ NMR of compound 14 137
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4}$ 138
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 7}$ 139
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 7}$ 140
${ }^{1} \mathrm{H}$ NMR of compound 17 141
${ }^{13} \mathrm{C}$ NMR of compound 17 142
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 1 0}$ 143
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 0}$ 144
${ }^{1}$ H NMR of compound S11 145
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 1}$ 146
${ }^{1} \mathrm{H}$ NMR of compound 19 147
${ }^{13} \mathrm{C}$ NMR of compound 19 148
${ }^{1}$ H NMR of compound S14 149
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 4}$ 150
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 1 5}$ 151
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 5}$ 152
${ }^{1} \mathrm{H}$ NMR of compound 20 153
${ }^{13} \mathrm{C}$ NMR of compound 20 154
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 1 7}$ 155
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 7}$ 156
DEPT135 of compound $\mathbf{S 1 7}$ 157
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 1 8}$ 158
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 8}$ 159
${ }^{1} \mathrm{H}$ NMR of compound 21 160
${ }^{1} \mathrm{H}$ NMR of compound 21 (5.50~2.50 ppm expanded) 161
${ }^{13} \mathrm{C}$ NMR of compound 21 162
${ }^{1} \mathrm{H}$ NMR of compound 25 163
${ }^{13}$ C NMR of compound $\mathbf{2 5}$ 164
H-H COSY of compound 25 165
HSQC of compound $\mathbf{2 5}$ 166
${ }^{1} \mathrm{H}$ NMR of compound 27 167
${ }^{13} \mathrm{C}$ NMR of compound 27 168
H-H COSY of compound 27 169
HSQC of compound 27 170
${ }^{1} \mathrm{H}$ NMR of compound 29 171
${ }^{13} \mathrm{C}$ NMR of compound 29 172
H-H COSY of compound 29 173
HSQC of compound 29 174
${ }^{1} \mathrm{H}$ NMR of compound 32 175
${ }^{1} \mathrm{H}$ NMR of compound 32 (5.50~2.50 ppm expanded) 176
${ }^{13} \mathrm{C}$ NMR of compound 32 177
H-H COSY of compound 32 178
HSQC of compound 32 179
${ }^{1} \mathrm{H}$ NMR of compound 33 180
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 3}$ 181
H-H COSY of compound 33 182
HSQC of compound $\mathbf{3 3}$ 183
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 1 9}$ 184
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 9}$ 185
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 9} \boldsymbol{\alpha}$ 186
${ }^{13} \mathrm{C}$ NMR of compound 39α 187
$\mathrm{H}-\mathrm{H}$ COSY of compound $\mathbf{3 9} \boldsymbol{\alpha}$ 188
HSQC of compound $39 \boldsymbol{\alpha}$ 189
${ }^{1}$ H NMR of compound $\mathbf{3 9 \beta}$ 190
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 9 \beta}$ 191
H-H COSY of compound $\mathbf{3 9 \beta}$ 192
HSQC of compound $\mathbf{3 9} \boldsymbol{\beta}$ 193
${ }^{1} \mathrm{H}$ NMR of compound 40 194
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 0}$ 195
H-H COSY of compound 40 196
HSQC of compound 40 197
${ }^{1} \mathrm{H}$ NMR of compound 42 198
${ }^{13} \mathrm{C}$ NMR of compound 42 199
H-H COSY of compound 42 200
HSQC of compound $\mathbf{4 2}$ 201
${ }^{1} \mathrm{H}$ NMR of compound 44 202
${ }^{13} \mathrm{C}$ NMR of compound 44 203
H-H COSY of compound 44 204
HSQC of compound 44 205
${ }^{1} \mathrm{H}$ NMR of compound 45 206
${ }^{13} \mathrm{C}$ NMR of compound 45 207
H-H COSY of compound 45 208
HSQC of compound 45 209
${ }^{1} \mathrm{H}$ NMR of compound 46 210
${ }^{13} \mathrm{C}$ NMR of compound 46 211
${ }^{1} \mathrm{H}$ NMR of compound 47 212
${ }^{13} \mathrm{C}$ NMR of compound 47 213
H-H COSY of compound 47 214
HSQC of compound 47 215
${ }^{1} \mathrm{H}$ NMR of compound 48 216
${ }^{13} \mathrm{C}$ NMR of compound 48 217
H-H COSY of compound 48 218
HSQC of compound 48 219
${ }^{1} \mathrm{H}$ NMR of compound 51 220
${ }^{13} \mathrm{C}$ NMR of compound 51 221
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 0}$ 222
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 0}$ 223
${ }^{1} \mathrm{H}$ NMR of compound 57 224
${ }^{13} \mathrm{C}$ NMR of compound 57 225
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 0}$. 226
${ }^{1} \mathrm{H}$ NMR of compound 60 (6.00~3.00 ppm expanded) 227
${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 0}$ 228
H-H COSY of compound 60 229
HSQC of compound $\mathbf{6 0}$ 230
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 2}$ 231
${ }^{1} \mathrm{H}$ NMR of compound 62 (6.00~3.00 ppm expanded) 232
${ }^{13} \mathrm{C}$ NMR of compound 62 233
H-H COSY of compound 62 234
HSQC of compound 62 235
${ }^{1} \mathrm{H}$ NMR of compound 66 236
${ }^{1} \mathrm{H}$ NMR of compound 66 (6.00~2.00 ppm expanded) 237
${ }^{13} \mathrm{C}$ NMR of compound 66 238
H-H COSY of compound 66 239
HSQC of compound 66 240

General information

All reagents and chemicals were purchased from Acros Organics, Sigma-Aldrich, Fisher Scientific, Alfa Aesar, and Strem Chemicals and used without further purification. THF, methylene chloride, toluene, and diethyl ether were purified by passing through two packed columns of neutral alumina (Innovative Technology). Anhydrous DMF and benzene were purchased from Acros Organics and Sigma-Aldrich and used without further drying. All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise noted. Analytical thin layer chromatography was performed using 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash column chromatography was performed using 200-400 mesh silica gel (Scientific Absorbents, Inc.). Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated.

Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on Bruker Advance-600 (${ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150 MHz) at ambient temperature with CDCl_{3} as the solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to residual protic solvent internal standard CDCl_{3} : ${ }^{1} \mathrm{H}$ NMR at $\delta 7.26,{ }^{13} \mathrm{C}$ NMR at $\delta 77.16$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, integration, multiplicity (app $=$ apparent, par obsc $=$ partially obscure, ovrlp $=$ overlapping, $s=$ singlet,$d=$ doublet, $d d=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad) and coupling constants in Hertz. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. High resolution mass spectra (HRMS)
were acquired on a Waters Acuity Premiere XE TOF LC-MS by electrospray ionization. Optical rotations were measured with Autopol-IV digital polarimeter; concentrations are expressed as $\mathrm{g} / 100 \mathrm{~mL}$. Infrared spectra were recorded on a PerkinElmer FT-IR spectrophotometer.

Synthesis of lactol donor 10, 14, 17, 19, 20 and 21.

Synthesis of lactol donor 10.

Methyl 2-O-(4-methoxybenzyl)-4,6-di-O-benzyl-3-deoxy- α-D-mannopyranoside (S3)

To a solution of known compound $\mathbf{S 1}{ }^{[1]}(772 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added freshly dried $4 \AA$ molecular sieves $(2 \mathrm{~g})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(375 \mathrm{mg}, 6$ $\mathrm{mmol})$. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and 1 N HCl in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added. The mixture was warmed up to room temperature and stirred for 20 min . The resulting
mixture was quenched with saturated NaHCO_{3} solution $(2 \mathrm{~mL})$ and filtered through a pad of celite. THF was removed under reduced pressure and extracted with EtOAc (20 $\mathrm{mL} \times 3$), washed with water $(50 \mathrm{~mL} \times 3)$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The concentrated residue was purified by flash column chromatography $($ Hexanes $/ \mathrm{EtOAc}=5 / 1$ to $3 / 1$ with $1 \% \mathrm{MeOH})$ to afford compound $\mathbf{S 2}(621 \mathrm{mg}, 80 \%)$. $\mathbf{S} 2(970 \mathrm{mg}, 2.5 \mathrm{mmol})$ was dissolved in DMF (5 mL) and cooled to $0^{\circ} \mathrm{C}$ before NaH ($200 \mathrm{mg}, 5 \mathrm{mmol}, 60 \%$ in mineral oil) was added portion wise. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before $\mathrm{BnBr}(0.44 \mathrm{~mL}, 3.75 \mathrm{mmol})$ was added. The resulting mixture was warmed up and stirred at room temperature for 40 minutes and quenched with water $(5 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(20 \mathrm{~mL} \times 3)$, washed with water $(50 \mathrm{~mL} \times 3)$ and brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The concentrated residue was purified by flash column chromatography (Hexanes/EtOAc=5/1 to 3/1) to afford compound $\mathbf{S 3}(1.10 \mathrm{~g}, 80 \%)$ as light yellow syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+64.5\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 2906, 1611, 1512, 1453, 1366, 1301, 1246, 1173, 1059, 821, 736, $697 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.19$ $\left(\mathrm{m}, 12 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.91-6.82\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.70-4.64\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar}, H-1\right), 4.58(\mathrm{~d}, J$ $\left.=12.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.55-4.50\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.46(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.39\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 3.84-3.71\left(\mathrm{~m}, 7 \mathrm{H},-\mathrm{OCH}_{3}, H-4, H-5\right.$, $H-6 \mathrm{a}, H-6 \mathrm{~b}), 3.58(\mathrm{td}, J=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.24(\mathrm{~m}, 1 \mathrm{H}, H-$ 3a), 1.78 (m, 1H, H-3b); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 159.29,138.68,138.53,130.48$, $129.33,128.45,128.38,127.82,127.70,127.52,113.89,98.31,74.41,73.48,71.81$, 71.17, 70.73, 70.04, 69.77, 55.40, 54.74, 29.72; HRMS (ESI) calculated for
$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$501.2248, found 501.2254.

4,6-Di- O-benzyl-3-deoxy- α / β-d-mannopyranose (10)

DDQ (660 mg, 2.91 mmol) was added to a solution of $\mathbf{S 3}(927 \mathrm{mg}$, $1.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.4 \mathrm{~mL})$ and pH 7.0 buffer $(3.2 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature for 4 h and then quenched with saturated NaHCO_{3} solution (5 mL). The resulting mixture was extracted with EtOAc $(25 \mathrm{~mL} \times 3)$. The organic layer was washed with water $(50 \mathrm{~mL} \times 2)$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude residue was purified by flash column chromatography $(\mathrm{Hexanes} / \mathrm{EtOAc}=5 / 1$ to $2 / 1$ with $1 \% \mathrm{MeOH})$ to furnish $\mathbf{S 4}(594 \mathrm{mg}$, 78%). Compound $\mathbf{S 4}(179 \mathrm{mg}, 0.5 \mathrm{mmol})$ was dissolved in THF $(125 \mu \mathrm{~L})$ followed by the addition of $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 36 h before saturated NaHCO_{3} solution (1 mL) was added. THF was removed under reduced pressure and the aqueous mixture was extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with water $(20 \mathrm{~mL} \times 3)$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude residue was purified by silica gel column chromatography (Hexanes/EtOAc $=2 / 1$ to $1 / 2$ with $1 \% \mathrm{MeOH}$) to furnish the title compound $10(\alpha / \beta=1 / 1$ mixture, $105 \mathrm{mg}, 60 \%)$ as colorless syrup. $[\alpha]_{\mathbf{D}}^{29}=+36.7(c$ $0.1, \mathrm{CHCl}_{3}$); FT-IR (thin film) $3384,3257,2919,1731,1454,1360,1310,1253,1134$, 1087, 1020, 946, 902, 836, 731, $695 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.36-7.26$ $\left(\mathrm{m}, 16 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.24-7.19\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.06(\mathrm{~s}, 1 \mathrm{H}, H-1 \alpha), 4.74(\mathrm{~s}, 1 \mathrm{H}, H-1 \beta), 4.63$
$-4.46\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.44-4.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \beta,-\mathrm{OCH} H_{2} \mathrm{Ar} \times 2\right), 4.07(\mathrm{ddd}, J=$ 9.5, 5.4, 2.4 Hz, 1H, H-5 α), $3.82(\mathrm{~m}, 1 \mathrm{H}, H-2 \alpha), 3.79-3.60(\mathrm{~m}, 7 \mathrm{H}, H-6 \alpha, H-6 \beta, H-$ $4 \alpha, H-4 \beta, H-2 \beta), 3.57(\mathrm{ddd}, J=9.4,4.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, H-5 \beta), 3.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \alpha$, $\mathrm{C} 2-\mathrm{OH}), 2.45(\mathrm{ddd}, J=13.6,4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{a} \beta), 2.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH}), 2.20(\mathrm{~m}$, $1 \mathrm{H}, H-3 \mathrm{a} \alpha), 1.91(\mathrm{ddd}, J=13.5,10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{~b} \alpha), 1.56(\mathrm{ddd}, J=13.8,11.0$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{~b} \beta)$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 138.29,138.20,138.03,137.75$, $128.54,128.52,128.51,128.28,128.16,127.98,127.88,127.84,127.81,95.72,93.84$, $78.11,73.74,73.64,71.61,71.45,71.02,69.66,69.62,69.43,69.06,68.46,68.31,34.66$, 31.12. HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 367.1516$, found 367.1533 .

Synthesis of lactol donor 14.

4- O-Benzyl-3,6-dideoxy- α / β-D-mannopyranose (14)

Known compound $\mathbf{S 5}{ }^{[2]}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ was dissolved in THF $(98 \mu \mathrm{~L})$ followed by the addition of $2 \mathrm{M} \mathrm{HCl}(7.8 \mathrm{~mL})$. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h before saturated NaHCO_{3} solution (1 mL) was added. THF was removed under reduced pressure and the aqueous mixture was extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. Combined extracts were washed with water $(20 \mathrm{~mL} \times 3)$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude residue was purified by silica
gel column chromatography (Hexanes/EtOAc $=2 / 1$ to $1 / 1$ with $1 \% \mathrm{MeOH}$) to furnish compound $14(\alpha / \beta=0.8 / 1.0$ mixture, $74 \mathrm{mg}, 79 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+126.3$ (c 0.1, CHCl_{3}); FT-IR (thin film) 3374, 2929, 1717, 1452, 1361, 1270, 1068, 1027, 737, $697 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.38-7.27\left(\mathrm{~m}, 9 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.98(\mathrm{~s}, 0.8 \mathrm{H}, H-1$ $\alpha), 4.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1 \beta), 4.64-4.59\left(\mathrm{~m}, 1.8 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar}\right), 4.50-4.46(\mathrm{~m}$, $\left.1.8 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.07-3.99(\mathrm{~m}, 1.8 \mathrm{H}, H-5 \alpha, \mathrm{C} 1-\mathrm{OH} \beta), 3.92-3.86(\mathrm{~m}, 1.8 \mathrm{H}, H-2 \alpha$, $H-2 \beta), 3.51(\mathrm{dq}, J=9.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, H-5 \beta), 3.44-3.37(\mathrm{~m}, 1.8 \mathrm{H}, H-4 \alpha, H-4 \beta), 3.34$ ($\mathrm{s}, 0.8 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \alpha), 2.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \beta), 2.46(\mathrm{~m}, 1 \mathrm{H}, H-3 \mathrm{a} \beta), 2.27-2.11(\mathrm{~m}, 1.6 \mathrm{H}$, C2-OH $\alpha, H-3 \mathrm{a} \alpha), 1.93(\mathrm{ddd}, J=13.4,10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{~b} \alpha), 1.58(\mathrm{ddd}, J=13.9$, $11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{~b} \beta), 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, H-6 \beta), 1.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2.4 \mathrm{H}, H-$ 6α); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 138.35,138.21,128.57,128.54,127.93,127.89$, $127.88,127.86,94.94,93.82,75.23,75.14,74.56,71.68,71.12,68.74,68.65,68.41$, 34.68, 31.12, 18.37, 18.13; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$261.1097, found 261.1104 .

Synthesis of lactol donor 17.

[^0]

Phenyl 2-O-(para-methoxyphenyl)-3,4-O-[(1'S,2'S)-1',2'-dimethoxy-1', $2^{\prime}-$ dimethyl-1', $\mathbf{2}^{\prime}$-ethylene]-1-thio- α-D-mannopyranoside (S7)

To a solution of $\mathbf{S} \mathbf{6}^{[3]}(2.34 \mathrm{~g}, 6.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added $\mathrm{PMBCl}(1.0 \mathrm{~mL}, 7.4 \mathrm{mmol})$ and TBAI $(447 \mathrm{mg}, 1.21 \mathrm{mmol})$. Then a solution of $\mathrm{NaOH}(726 \mathrm{mg}, 18.15 \mathrm{mmol})$ in water $(30 \mathrm{~mL})$ was added. The mixture was stirred vigorously at $40^{\circ} \mathrm{C}$ for 8 h before being transferred into a separating funnel. The organic layer was washed with brine $(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then filtered. The concentrated residue was purified by flash column chromatography $($ Hexanes $/ E t O A c=$ $3 / 1)$, which gave compound $\mathbf{S} 7(2.87 \mathrm{~g}, 5.66 \mathrm{mmol}, 94 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{29}=$ $+322.2\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 3059, 2930, 1732, 1657, 1445, 1210, 1035, $744,689 \mathrm{~cm}^{-1},{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.43-7.39\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.38-7.35(\mathrm{~m}$, $\left.2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.32-7.25\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.88\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.44(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}, H-1), 4.88\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.62\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OCH}_{2} \mathrm{Ar}\right)$, $4.35-4.18(\mathrm{~m}, 2 \mathrm{H}, H-4, H-5), 4.07(\mathrm{dd}, J=10.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.98(\mathrm{dd}, J=2.9$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.87-3.76\left(\mathrm{~m}, 5 \mathrm{H}, H-6 \mathrm{a} / 6 \mathrm{~b},-\mathrm{OCH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.31(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.88(\mathrm{dd}, J=7.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{OH}), 1.38\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.35(\mathrm{~s}, 3 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 159.32,134.09,131.86,130.54,129.75,129.17$, $127.69,113.79,100.11,99.71,87.74,77.12,72.95,72.04,69.52,64.00,61.62,55.38$, 48.16, 48.03, 17.93; HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$507.2047, found 507.2051.

3,4-O-[(1'S,2'S)-1',2'-dimethoxy-1',2'-dimethyl-1', 2'-ethylene]-6-O-benzyl- α / β-dmannopyranose (17)

Compound $\mathbf{S} 7$ ($3.51 \mathrm{~g}, 6.93 \mathrm{mmol}$) was dissolved in dry DMF (15 $\mathrm{mL}) . \mathrm{NaH}(333 \mathrm{mg}, 8.32 \mathrm{mmol}, 60 \%$ in mineral oil) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and then $\mathrm{BnBr}(1.0 \mathrm{~mL}, 8.32 \mathrm{mmol})$ was added dropwise. The mixture was stirred for another 30 min at $0^{\circ} \mathrm{C}$ and then warmed to room temperature. After being stirred at room temperature for 4 h , methanol (1.0 mL) was added to quench the reaction and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was used to dilute the solution. The organic layer was washed by water $(50 \mathrm{~mL} \times 2)$ and brine $(50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The concentrated residue was purified by flash column chromatography (Hexanes/EtOAc $=4 / 1)$, which gave compound $\mathbf{S 8}(3.64 \mathrm{~g}, 6.10 \mathrm{mmol}$, $88 \%)$ as colorless syrup. $\mathbf{S 8}(3.64 \mathrm{~g}, 6.10 \mathrm{mmol})$ was dissolved in acetone $(36 \mathrm{~mL})$ and water (4 mL), followed by the addition of NBS $(3.26 \mathrm{~g}, 18.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by $40 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution (5 mL) after 2 h . The acetone was removed under vacuum. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was used to extract the water phase. The organic layer was washed by saturated NaHCO_{3} aqueous solution $(50 \mathrm{~mL} \times 2)$ and brine $(50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. To the filtrate was added DDQ ($2.18 \mathrm{~g}, 9.6 \mathrm{mmol}$). The mixture was stirred for 6 h at room temperature. Then saturated NaHCO_{3} aqueous solution was added until the solids were all dissolved. The organic layer was separated out, washed by brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The concentrated residue was purified by flash column chromatography (Hexanes/EtOAc $=1 / 2$), which gave the
title compound $17(\alpha / \beta=3 / 1$ mixture, $1.33 \mathrm{~g}, 3.46 \mathrm{mmol}, 57 \%)$ as white solids. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{29}=$ $+205.2\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film) $3417,2938,1451,1376,1114,1032,743,697$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.41-7.19(\mathrm{~m}, 6.8 \mathrm{H}), 5.23(\mathrm{dd}, J=3.4,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, H-1 \alpha), 4.74(\mathrm{dd}, J=9.9,1.3 \mathrm{~Hz}, 0.32 \mathrm{H}, H-1 \beta), 4.62-4.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 6-\mathrm{OCH}_{2} \mathrm{Ph}\right.$ $\alpha / \beta, \mathrm{C} 1-\mathrm{O} H \beta), 4.17(\mathrm{ddd}, J=10.2,6.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5 \alpha), 4.07(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}$, $1 \mathrm{H}, H-3 \alpha), 4.02-3.94(\mathrm{~m}, 2.33 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \alpha, H-4 \alpha / \beta), 3.92(\mathrm{~m}, 1 \mathrm{H}, H-2 \alpha), 3.86(\mathrm{~m}$, $0.33 \mathrm{H}, H-2 \beta), 3.79-3.62(\mathrm{~m}, 3 \mathrm{H}, H-6 \mathrm{a} / 6 \mathrm{~b} \alpha / \beta, H-3 \beta), 3.58(\mathrm{ddd}, J=9.9,5.4,2.0 \mathrm{~Hz}$, $0.33 \mathrm{H}, H-5 \beta), 3.29-3.24\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{3} \alpha / \beta\right), 3.19-3.14\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{3} \alpha / \beta\right), 3.11$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 0.33 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \beta), 2.77(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \alpha), 1.34-1.30(\mathrm{~m}$, $\left.4 \mathrm{H},-\mathrm{CH}_{3} \alpha / \beta\right), 1.28-1.25\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{3} \alpha / \beta\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 138.08$, $128.36,127.87,127.64,100.32,100.25,99.89,99.83,94.88,94.56,73.96,73.66,73.49$, $70.49,69.99,69.86,69.78,69.00,68.48,67.94,63.68,62.76,48.17,48.03,47.94,17.84$, 17.77, 17.70; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{8}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$402.2122, found 402.2136.

Synthesis of lactol donor 19.

1) NBS, acetone-water, $0^{\circ} \mathrm{C}$
$\xrightarrow[\begin{array}{l}\text { 3) TFA, DCM } \\ \text { 4) imidazole, } \mathrm{MeOH}, 40^{\circ} \mathrm{C}\end{array}]{\text { 2) } \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM} \text {, r.t. }}$ (40\% over four steps)

Phenyl 2,3-di-O-(para-methoxyphenyl)-4-O-benzyl-1-thio- α-d-mannopyranoside (S10)

Compound $\mathbf{S 9}{ }^{[4]}(2.0 \mathrm{~g}, 3.33 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL). The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then DIBAL-H (1.0 M in hexane) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then slowly warmed to $0^{\circ} \mathrm{C}$. The reaction was quenched by methanol $(10 \mathrm{~mL})$ after being stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . To the mixture was added saturated potassium sodium tartrate solution and it was stirred vigorously at room temperature until all the solids were dissolved. The organic layer was separated out, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the crude product was purified by flash column chromatography (Toluene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=5 / 4 / 1$), which gave $\mathbf{S 1 0}(836 \mathrm{mg}, 1.39 \mathrm{mmol}, 42 \%$) as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{29}=+78.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 3443, 2868, 1610, 1511, 1245, 1085, 820, 742, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.43-7.16(\mathrm{~m}$, $\left.14 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.94-6.79\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.95(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.69-4.60\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.58-4.49\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.10(\mathrm{~m}$, $1 \mathrm{H}, H-5), 3.98(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 3.94(\mathrm{dd}, J=3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.85(\mathrm{dd}, J$ $=9.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.75\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{OCH}_{3} \times 2, H-6 \mathrm{a} / 6 \mathrm{~b}\right), 1.81(\mathrm{dd}, J=7.4,5.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{OH}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 159.47,159.39,138.48,134.12,131.99$, $130.35,129.99,129.76,129.62,129.22,128.57,128.18,127.91,127.75,113.95,86.21$, 79.80, 75.96, 75.40, 74.92, 73.32, 72.07, 71.97, 62.41, 55.43, 55.41; HRMS (ESI) calculated for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$603.2411, found 603.2426.

Phenyl 2-O-(4-methoxyphenyl)-4-O-benzyl-3,6-anhydro-1-thio- α-Dmannopyranoside (S11)

S10 ($640 \mathrm{mg}, 1.06 \mathrm{mmol}$) and 2,6-lutidine $(370 \mu \mathrm{~L}, 3.20 \mathrm{mmol})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was cooled at $-20^{\circ} \mathrm{C}$ for 30 min and then $\mathrm{Tf}_{2} \mathrm{O}(268 \mu \mathrm{~L}, 1.59 \mathrm{mmol})$ was added. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and then warmed to room temperature. The reaction was quenched by saturated NaHCO_{3} solution (5 mL) when the TLC (Hexanes/EtOAc $=2 / 1$) showed the complete consumption of triflate intermediate. The mixture was diluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed by $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL} \times 2)$, saturated NaHCO_{3} aqueous solution $(50 \mathrm{~mL})$ and brine (50 mL), then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by flash column chromatography (Hexanes $/ \mathrm{EtOAc}=3 / 1$), which gave the title compound $\mathbf{S 1 1}$ ($335 \mathrm{mg}, 0.72 \mathrm{mmol}, 68 \%$) as light yellow syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+39.0$ (c 0.1, CHCl_{3}); FT-IR (thin film) 2880, 1610, 1511, 1246, 1100, 1057, 741, $695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.68-7.53\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.43-7.29\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.29$ $-7.05\left(\mathrm{~m}, 7 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.84\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.63-$ $4.56\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.50-4.41\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}, H-5\right), 4.37(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.18(\mathrm{dd}, J=6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.14(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}), 4.00-$ $3.86(\mathrm{~m}, 2 \mathrm{H}, H-4, H-6 \mathrm{~b}),, 3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.71(\mathrm{dd}, J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, H-2) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) $\delta 159.44,137.38,133.70,132.19,130.18,130.06,128.85$, $128.62,128.12,127.96,127.42,113.84,83.72,77.64,75.55,74.38,73.84,72.56,71.91$,
69.30, 55.40; HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$465.1730, found 465.1739.

4-O-Benzyl-3,6-anhydro- α / β-d-mannopyranose (19)

19a
$\mathbf{S 1 1}$ ($378 \mathrm{mg}, 0.814 \mathrm{mmol}$) was dissolved in acetone $(9 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. To the mixture cooled at $0{ }^{\circ} \mathrm{C}$ was added NBS ($434 \mathrm{mg}, 2.44 \mathrm{mmol}$). The reaction was quenched by saturated NaHCO_{3} aqueous solution after 2 h and acetone was removed under reduced pressure. The residue was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in pyridine $(1 \mathrm{~mL})$ and acetic anhydride $(0.5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 h and quenched by methanol (1 mL), which was then diluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed by 1 M HCl solution ($5 \mathrm{~mL} \times$ 2). The organic layer was separated and TFA $(0.1 \mathrm{~mL})$ was added at room temperature. The mixture was stirred at ambient temperature for 4 h before being washed with saturated NaHCO_{3} aqueous solution (20 mL). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in methanol (5 mL) and imidazole ($55.0 \mathrm{mg}, 0.814 \mathrm{mmol}$) was added to the solution. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 5 h , which was then concentrated and purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / 1\right)$ to furnish the title compound 19 (partially converted to aldehyde, $\alpha / \beta /$ aldehyde $=0.5 / 1 / 1.5$ mixture, $82.1 \mathrm{mg}, 40 \%$) as colorless
syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+33.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) $3127,2928,1588,1326,1104$, $745,616 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 9.77(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{H}-1$ aldehyde $\mathbf{1 9 a}$), 7.45 $-7.28\left(\mathrm{~m}, 15 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.44(\mathrm{t}, J=5.4 \mathrm{~Hz}, 0.5 \mathrm{H}, H-1 \alpha), 5.00(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, H-1 \beta)$, $4.79\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 0.5 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \alpha\right), 4.76-4.65(\mathrm{~m}, 4 \mathrm{H}), 4.65-4.54(\mathrm{~m}, 2.5 \mathrm{H})$, $4.43(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 4 \mathrm{H})$, $4.09(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.72(\mathrm{~m}, 5 \mathrm{H}), 3.49$ $-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.46$ $(\mathrm{s}, 0.5 \mathrm{H}), 2.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 201.68,137.25$, $137.21,136.90,128.84,128.77,128.74,128.51,128.35,128.31,128.17,128.04,127.98$, $97.18,92.81,80.32,79.29,78.18,76.80,76.66,76.08,74.00,73.70,73.42,72.24,72.15$, $72.01,71.01,70.08,69.47,66.39,51.06$; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+} 275.0890$, found 275.0893.

Synthesis of lactol donor 20.

Phenyl 3-O-benzyl-2,6-anhydro-1-thio- α-D-mannopyranoside (S14)

$\mathbf{S 1 2}{ }^{[5]}(1.07 \mathrm{~g}, 2.37 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$. To this solution was added p-toluenesulfonic acid monohydrate $(0.1 \mathrm{~g})$. The mixture was stirred at room temperature for 4 h and then neutralized by 0.1 mL $\mathrm{Et}_{3} \mathrm{~N}$. To the concentrated residue was added dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{~mL}, 4.3 \mathrm{mmol})$ and DMAP ($26 \mathrm{mg}, 0.21 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred in ice bath for 30 min and then tosyl chloride ($480 \mathrm{mg}, 2.52 \mathrm{mmol}$) was added. After 5 h , the organic solution was washed by water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by flash column chromatography (Hexanes/EtOAc $=3 / 2$), which gave compound $\mathbf{S 1 3}(835 \mathrm{mg}, 1.62$ $\mathrm{mmol}, 68 \%)$ as colorless syrup. To a solution of $\mathbf{S 1 3}(446 \mathrm{mg}, 0.863 \mathrm{mmol})$ in dry DMF $(17 \mathrm{~mL})$ was added sodium hydride at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and then quenched by methanol $(0.5 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was used to dilute the mixture and the organic layer was washed with water. After general drying procedure, the concentrated crude product was purified by flash column chromatography $($ Hexanes $/ E t O A c=2 / 1)$, which gave the title compound $\mathbf{S 1 4}(270 \mathrm{mg}, 0.784 \mathrm{mmol}, 91 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+129.3\left(c 0.05, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 2878, 1439, 1099, 856, 739, $694 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.53-7.28\left(\mathrm{~m}, 10 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $5.72(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.73\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH} \mathrm{A}_{2} \mathrm{Ar}\right), 4.70(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.21-4.15(\mathrm{~m}, 2 \mathrm{H}, H-2, H-6 \mathrm{a}), 4.01(\mathrm{~m}, 1 \mathrm{H}, H-5), 3.93(\mathrm{dd}, J=10.1$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b}), 3.89-3.83(\mathrm{~m}, 2 \mathrm{H}, H-4, H-3), 2.90(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{O} H)$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0}^{\mathbf{M H z}, \text { CDCl }_{3} \text {) } \delta 137.50,133.22,131.88,129.43,128.67,128.16,128.12, ~}$ 128.10, 86.15, 80.11, 73.67, 71.80, 70.85, 69.20, 65.72; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 345.1155$, found 345.1158 .

Phenyl 3,4-di- O-benzyl-2,6-anhydro-1-thio- α-d-mannopyranoside (S15)

To S14 (270 mg, 0.783 mmol$)$ was added dry DMF (5 mL). $\operatorname{BnBr}(112$ $\mu \mathrm{L}, 0.94 \mathrm{mmol})$ and $\mathrm{NaH}(38 \mathrm{mg}, 0.94 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. The reaction was quenched by methanol (0.1 mL) after 3 h and then diluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic layer was washed by brine $(50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the concentrated residue was purified by flash column chromatography (Hexanes/EtOAc $=$ $4 / 1)$, which gave compound $\mathbf{S 1 5}(312 \mathrm{mg}, 0.718 \mathrm{mmol}, 92 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+56.7\left(c 0.05, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) $2874,1454,1104,855,739,693 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}$ NMR ($\left.600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.52-7.46\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.43-7.27\left(\mathrm{~m}, 13 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $5.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.69-4.65\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH} \mathrm{H}_{2} \mathrm{Ar}\right), 4.60(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.56\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.20-4.15(\mathrm{~m}, 2 \mathrm{H}, H-2, H-6 \mathrm{a}), 4.14-$ 4.10 (m, 2H, H-3, H-5), 3.87 (dd, $J=10.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b}), 3.69(\mathrm{~m}, 1 \mathrm{H}, H-4) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) $\delta 137.85,137.64,134.31,132.07,129.27,128.64,128.55$, $128.26,128.13,128.10,127.93,127.80,87.00,80.57,78.81,71.04,70.46,70.04,69.74$, 66.92; HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 435.1625$, found 435.1649 .

3,4-Di- O-benzyl-2,6-anhydro- α / β-d-mannopyranose (20)

S15 (312 mg, 0.718 mmol) was dissolved in acetone (9 mL) and water (1 mL), followed by the addition of NBS ($383 \mathrm{mg}, 2.15 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was quenched by 40% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution $(10 \mathrm{~mL})$ after 1 h . The acetone was removed under reduced pressure and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was used to extract the water phase. The organic layer was washed by saturated NaHCO_{3} aqueous solution $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=3 / 1\right)$, which gave the title compound 20 (partially converted to aldehyde, $\alpha / \beta /$ aldehyde $=1 / 0.4 / 0.4$ mixture, $142 \mathrm{mg}, 0.415 \mathrm{mmol}$, $58 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=-19.5\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 3404,2872 , 1722, 1453, 1087, 1021, 857, 736, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.74(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 0.4 \mathrm{H}, H-1$ aldehyde 20a), $7.43-7.28\left(\mathrm{~m}, 18 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.42(\mathrm{dd}, J=7.4,3.0 \mathrm{~Hz}$, $0.4 \mathrm{H}, H-1 \beta), 5.09(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, H-1 \alpha), 4.76-4.61\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.60-$ $4.48\left(\mathrm{~m}, 3.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.26(\mathrm{dd}, J=10.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a} \alpha), 4.19(\mathrm{~m}, 0.4 \mathrm{H}), 4.08$ (m, 1H, H-5 α), $4.07-3.97(\mathrm{~m}, 2.2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}, H-2 \alpha), 3.89(\mathrm{~d}, J=6.6,0.4 \mathrm{H}), 3.84$ $-3.78(\mathrm{~m}, 2.2 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 0.8 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 2.4 \mathrm{H}), 3.38(\mathrm{~m}, 0.4 \mathrm{H}), 3.43(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.37(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 198.89$, $137.65,137.50,137.42,137.17,128.79,128.69,128.67,128.62,128.59,128.39,128.22$, $128.18,128.13,128.12,128.09,128.07,128.03,93.68,92.95,80.63,80.53,79.36$, $79.32,78.76,76.12,74.05,74.03,72.13,70.94,70.78,70.65,70.51,70.23,68.19,68.08$,
67.47, 67.00, 66.96, 65.00, 64.40; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 343.1540 , found 343.1545 .

Synthesis of lactol donor 21.

Phenyl 3,6-O-(o-xylylene)-4-O-benzyl-1-thio- β-d-glucopyranoside (S17)

To a solution of compound $\mathbf{S 1 6}{ }^{[6]}(670 \mathrm{mg}, 1.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ $\mathrm{mL})$ were added $\operatorname{BnBr}(234 \mu \mathrm{~L}, 1.97 \mathrm{mmol})$ and TBAI $(115 \mathrm{mg}, 0.358$ $\mathrm{mmol})$. Then a solution of $\mathrm{NaOH}(215 \mathrm{mg}, 5.37 \mathrm{mmol})$ in water $(15 \mathrm{~mL})$ was added. The mixture was stirred vigorously at $40^{\circ} \mathrm{C}$ for 8 h and then transferred into a separating funnel. The organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then filtered. The concentrated residue was purified by flash column chromatography (Hexanes/EtOAc $=4 / 1)$, which gave compound $\mathbf{S 1 7}(277 \mathrm{mg}$,
$0.60 \mathrm{mmol}, 33 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=-42.5\left(c 0.04, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 2886, 1457, 1010, 1025, 744, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.52-7.45(\mathrm{~m}$, $\left.2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.39-7.29\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.28-7.18\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.16-7.12\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right)$, $5.62\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.12\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH} \mathrm{C}_{2} \mathrm{Ar}\right), 4.74(\mathrm{~d}, J=$ 8.1 Hz, $1 \mathrm{H}, H-1), 4.63\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.60(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.52(\mathrm{~m}, 1 \mathrm{H}, H-3), 4.41\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar}\right), 4.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar}\right), 4.18(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 3.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 3.91(\mathrm{dd}, J$ $=13.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}), 3.82(\mathrm{~m}, 1 \mathrm{H}, H-2), 3.75(\mathrm{dd}, J=13.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b})$, $2.62(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl $\mathbf{C l}_{3}$) δ 136.97, 136.96, $136.23,134.99,130.81,129.47,128.94,128.92,128.74,128.54,128.07,127.94,127.86$, 127.22, 87.86, 84.18, 77.15, 75.07, 74.23, 72.79, 71.78, 71.08, 70.89; HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$487.1550, found 487.1541 .

Phenyl 3,6-O-(o-xylylene)-4-O-benzyl-1-thio- β-d-mannopyranoside (S18)

To dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added DMSO $(149 \mu \mathrm{~L}, 2.1 \mathrm{mmol})$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then TFAA $(209 \mu \mathrm{~L}, 1.5$ mmol) was added over a 5 min period. After $15 \mathrm{~min}, \mathbf{S 1 7}(277 \mathrm{mg}, 0.60$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to this solution. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 3 h and then $\mathrm{Et}_{3} \mathrm{~N}(291 \mu \mathrm{~L}, 2.1 \mathrm{mmol})$ was added. The mixture was warmed to $-20^{\circ} \mathrm{C}$ over 2 h and then warmed to room temperature quickly, quenched by water. The organic layer was washed by brine (20 mL), dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL})$ and $\mathrm{MeOH}(5 \mathrm{~mL}) . \mathrm{NaBH}_{4}(39 \mathrm{mg}, 1.03 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature after 1 h and stirred for 30 min . After being quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the mixture was concentrated and then purified by flash column chromatography (Hexanes/EtOAc $=8 / 1)$, which gave compound $\mathbf{S 1 8}(123 \mathrm{mg}$, $0.265 \mathrm{mmol}, 52 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=-13.8\left(c 0.04, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 2920, 2850, 1454, 1114, 1032, 742, $694 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.48-$ $7.43\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.38-7.27\left(\mathrm{~m}, 7 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.25-7.14\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.61(\mathrm{~d}, J=10.2$ $\left.\mathrm{Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.28-5.12\left(\mathrm{~m}, 2 \mathrm{H}, H-1,-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.55\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.44-4.37\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar} \times 2, \mathrm{H}-\right.$ 4), 4.33 (ddd, $J=10.7,6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 4.09-4.05(\mathrm{~m}, 2 \mathrm{H}, H-3, H-5), 3.94(\mathrm{dd}$, $J=13.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}), 3.77(\mathrm{dd}, J=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b}), 3.70(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 137.49,137.14,136.27,135.70,130.15$, $129.62,128.92,128.84,128.79,128.31,128.21,127.89,127.82,126.75,88.26,83.89$, 75.19, 72.64, 72.55, 71.70, 70.99, 70.70, 66.58; HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 487.1550$, found 487.1559.

3,6-O-(o-Xylylene)-4- O-benzyl- α / β-d-mannopyranose (21)

$\mathbf{S} 18(123 \mathrm{mg}, 0.265 \mathrm{mmol})$ was dissolved in acetone $(10 \mathrm{~mL})$ and water $(1 \mathrm{ml})$. To this solution was added NBS $(141 \mathrm{mg}, 0.792 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$.

After 1.5 h , the reaction was quenched by $40 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous
solution (1 mL). The acetone was removed under vacuum and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$ was used to extract the water phase. The organic layer was washed by saturated NaHCO_{3} aqueous solution $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by flash column chromatography $($ Hexanes $/ E t O A c=1 / 3)$, which gave the title compound $21(\alpha / \beta=3 / 1$ mixture, 47 mg , $0.126 \mathrm{mmol}, 48 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+37.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 3384, 2920, 2873, 1453, 1071, 1036, 734, $697 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.40-7.15\left(\mathrm{~m}, 36 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.24\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \beta\right), 5.00(\mathrm{dd}, J=7.8,4.8$ $\mathrm{Hz}, 3 \mathrm{H}, H-1 \alpha), 4.99-4.89\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \beta, H-1 \beta,-\mathrm{OCH} H_{2} \mathrm{Ar} \times 2 \alpha\right), 4.77(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \beta), 4.70\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH} \mathrm{C}_{2} \mathrm{Ar} \alpha\right), 4.62-4.50(\mathrm{~m}, 8 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar} \times 2 \alpha,-\mathrm{OCH}_{2} \mathrm{Ar} \times 2 \beta\right), 4.48-4.44\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar} \alpha,-\mathrm{OCH}_{2} \operatorname{Ar} \beta\right), 4.40(\mathrm{~d}$, $\left.J=10.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \beta\right), 4.26(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, H-5 \alpha), 4.15(\mathrm{~s}, 1 \mathrm{H}, H-4 \beta), 4.12$ $-4.07(\mathrm{~m}, 4 \mathrm{H}, H-5 \beta, H-4 \alpha), 4.06-3.98(\mathrm{~m}, 5 \mathrm{H}, H-2 \beta, H-3 \alpha, H-3 \beta), 3.98-3.90(\mathrm{~m}$, 4H, H-6a $\alpha, H-6 \mathrm{a} \beta$), $3.87-3.82(\mathrm{~m}, 6 \mathrm{H}, H-2 \alpha, H-6 \mathrm{~b} \alpha), 3.63(\mathrm{dd}, J=13.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $H-6 \mathrm{~b} \beta), 3.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \alpha), 3.25(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \beta), 2.88$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \alpha) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 137.45,137.42,137.36$, $136.96,136.36,135.71,130.38,130.11,130.08,129.44,128.93,128.77,128.73,128.59$, $128.42,128.30,128.24,127.92,127.84,95.12,92.42,79.23,75.10,74.91,74.60,73.57$, 72.66, 72.43, 71.77, 71.57, 71.40, 71.35, 71.27, 70.24, 69.73, 65.07; HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$395.1465, found 395.1486.

General procedure for $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ mediated O-alkylation.

To a mixture of lactol donor ($\sim 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), sugar derived triflate acceptor $\mathbf{6}$ (2.0 eq.), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.5 eq.) was added 1,2-dichloroethane (1.0 mL). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 hours. The crude reaction mixture was purified by preparative TLC. The β-configuration of the new formed mannosidic linkage was unambiguously assigned by measuring the ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ for the anomeric carbon.

Synthesis of compound $25,27,29,32,33, S 19,37,39 \alpha, 39 \beta$ and 40.

Butyl \boldsymbol{O}-4,6-di- O-benzyl-3-deoxy- $\boldsymbol{\beta}$-d-mannopyranosyl-($1 \rightarrow 4$)-2,3,6-tri- O-benzyl-β-D-glucopyranoside (25)

Disaccharide 25 was prepared from lactol donor 10 $(34.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and triflate acceptor $6(128 \mathrm{mg}, 0.2 \mathrm{mmol})$ following the general procedure. The crude reaction mixture was purified by preparative TLC (Hexanes/EtOAc/MeOH = 2/1/1\%) to afford compound $25(33.2 \mathrm{mg}, 40 \%)$ as colorless syrup. The ${ }^{1} J_{\text {C-H }}$ of mannosidic anomeric carbon was determined to be 158.1 Hz . $[\boldsymbol{\alpha}]_{\mathbf{D}}^{29}$ $=+44.80\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film) $2926,1730,1453,1362,1056,734,696 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta 7.35-7.19\left(\mathrm{~m}, 25 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.95-4.89(\mathrm{~m}, 2 \mathrm{H},-$
$\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.84\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.73\left(\mathrm{~s}, 1 \mathrm{H}, H-1^{\prime}\right), 4.70-4.62(\mathrm{~m}, 2 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.57-4.41\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.40-4.33\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar}, \mathrm{H}-1\right), 3.97-$ $3.90\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, H-4\right), 3.78-3.69$ (m, 4H, H-2', H-6, H-4'), $3.69-$ $3.61\left(\mathrm{~m}, 2 \mathrm{H}, H-3, H-6^{\prime} \mathrm{a}\right), 3.56\left(\mathrm{dd}, J=10.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, H-6^{\prime} \mathrm{b}\right), 3.52(\mathrm{dt}, J=9.5,6.8$ $\left.\mathrm{Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.46(\mathrm{dt}, J=9.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}$, $H-2, H-5 '), 2.66\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{C} 2^{\prime}-\mathrm{OH}\right), 2.35\left(\mathrm{dt}, J=13.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}, H-3^{\prime} \mathrm{a}\right), 1.69-1.58(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50-1.32\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, H-3 \mathrm{~b}\right), 0.93(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 138.92, 138.61, $138.49,138.35,137.97,128.54,128.49,128.48,128.38,128.36,128.34,128.01,127.90$, $127.88,127.84,127.80,127.53,103.80,100.57,83.00,82.28,78.78,75.93,75.14$, $74.97,74.47,73.67,73.44,71.56,69.91,69.66,69.54,69.20,67.22,34.15,31.96,19.45$, 14.02; HRMS (ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{60} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+} 855.4079$, found 855.4120.

Butyl O-4,6-di- O-benzyl-2,3-dideoxy- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri- O -benzyl- β-d-glucopyranoside (27)

Disaccharide 27 was prepared from lactol donor $\mathbf{1 2}^{[7]}$ $(32.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ and triflate acceptor $\mathbf{6}(128 \mathrm{mg}, 0.2 \mathrm{mmol})$ following the general procedure. The crude reaction mixture was purified by preparative TLC
$($ Hexanes/EtOAc $=5 / 1)$ to afford compound $27(21.5 \mathrm{mg}, 26 \%)$ as colorless syrup. The ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ of mannosidic anomeric carbon was determined to be $158.8 \mathrm{~Hz} .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+47.50$ (c 0.1, CHCl_{3}); FT-IR (thin film) 3030, 2926, 1732, 1656, 1605, 1573, 1496, 1445, 1370, 1240, 1153, 1046, $745 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.37-7.19(\mathrm{~m}, 25 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 5.02\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.89\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.79(\mathrm{~d}$, $\left.J=11.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.70-4.60\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \times 2, H-1^{\prime}\right), 4.58-4.50(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.49-4.34\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \times 3, H-1\right), 3.94(\mathrm{dt}, J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.83(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 3.73(\mathrm{dd}, J=10.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a})$, $3.68-3.55\left(\mathrm{~m}, 4 \mathrm{H}, H-6 \mathrm{~b}, H-6^{\prime} \mathrm{a}, H-3, H-6^{\prime} \mathrm{b}\right), 3.52(\mathrm{dt}, J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.47-3.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5, H-4{ }^{\prime}, H-2, H-5^{\prime}\right), 2.13\left(\mathrm{~m}, 1 \mathrm{H}, H-3^{\prime} \mathrm{a}\right)$, $1.75(\mathrm{~m}, 1 \mathrm{H}, H-2 \mathrm{a}), 1.70-1.57\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50-1.29(\mathrm{~m}, 4 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, H-2^{\prime} \mathrm{b}, H-3 ' \mathrm{~b}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 139.43,138.78,138.66,138.47,138.30,128.48,128.41$, $128.34,128.24,127.88,127.83,127.79,127.76,127.73,127.70,127.44,127.29,103.75$, $101.98,83.38,82.09,78.80,76.38,75.24,75.05,74.86,73.62,73.43,72.75,71.36$, 69.86, 69.70, 69.00, 31.98, 30.47, 27.70, 19.45, 14.03; HRMS (ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{60} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+}$839.4130, found 839.4177.

Butyl O-4- O-benzyl-3,6-dideoxy- $\boldsymbol{\beta}$-d-mannopyranosyl-($1 \rightarrow 4$)-2,3,6-tri- O-benzyl-β-d-glucopyranoside (29)

Disaccharide 29 was prepared from lactol donor 14 (23.8 mg, 0.1 mmol) and triflate acceptor $\mathbf{6}(128 \mathrm{mg}, 0.2 \mathrm{mmol})$ following the general procedure. The crude reaction mixture was purified by preparative TLC (Hexanes/EtOAc/MeOH=2/1/1\%) to afford compound $29(2.2 \mathrm{mg}, 3 \%)$ as colorless syrup. The ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ of mannosidic anomeric carbon was determined to be 159.0 Hz . $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}$ $=+45.71\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film) 2918, 1731, 1453, 1364, 1060, 731, 697 $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.44-7.00\left(\mathrm{~m}, 20 \mathrm{H}, H_{\mathrm{Ar}}\right), 4.94-4.82(\mathrm{~m}, 3 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.72-4.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime},-\mathrm{OCH}_{2} \mathrm{Ar} \times 2\right), 4.59-4.53\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.43$ $\left(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 3.97-3.88(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, H-4\right), 3.76-3.70\left(\mathrm{~m}, 3 \mathrm{H}, H-2^{\prime}, H-6\right), 3.64(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3)$, $3.54\left(\mathrm{dt}, J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.47-3.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, H-2), 3.38$ (ddd, $\left.J=10.8,9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, H-4^{\prime}\right), 3.29\left(\mathrm{dq}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, H-5^{\prime}\right), 2.64(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\prime}-\mathrm{OH}\right), 2.36\left(\mathrm{dt}, J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3^{\prime} \mathrm{a}\right), 1.70-1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.49-1.37\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{ddd}, J=13.7,10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{b}\right)$, $1.23\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, H-6^{\prime}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) $\delta 138.81,138.51,138.43,137.90,128.54,128.49,128.37,128.33$, $127.99,127.93,127.89,127.84,127.82,127.62,103.83,100.67,83.39,82.22,75.88$, $75.41,75.00,74.88,74.50,73.71,71.67,69.94,69.19,67.43,34.26,31.95,19.44,18.40$, 14.02; HRMS (ESI) calculated for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+} 749.3660$, found 749.3701 .

Butyl $O-3,4-O-\left[\left(1^{\prime} S, 2^{\prime} S\right)-1^{\prime}, 2^{\prime}\right.$-dimethoxy- $1^{\prime}, 2^{\prime}$-dimethyl-1', 2^{\prime}-ethylene]-6-O-

 benzyl- β-d-mannopyranosyl-(1 \rightarrow 4)-2,3,6-tri- O-benzyl- β-d-glucopyranoside (32)

Disaccharide 32 was prepared from lactol donor 17 $(42.0 \mathrm{mg}, 0.109 \mathrm{mmol})$ and triflate acceptor $6(139 \mathrm{mg}$, 0.218 mmol) following the general procedure. The crude reaction mixture was purified by preparative TLC $($ Hexanes $/ \mathrm{EtOAc}=1 / 1)$ to afford compound $32(23.7 \mathrm{mg}, 0.0271$ mmol, 25%) as colorless syrup. The ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ of mannosidic anomeric carbon was determined to be $160.1 \mathrm{~Hz} .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+111.4\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 2928, 1732, 1453, 1086, 1041, 734, $697 \mathrm{~cm}^{-1},{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.40-7.24(\mathrm{~m}$, $\left.20 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.00\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.97\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right)$, $4.91\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.83\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, H-1^{\prime}\right), 4.74(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.68\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.61\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right)$, $4.54\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.49\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH} \mathrm{H}_{2} \mathrm{Ar}\right), 4.42(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1), 4.07\left(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, H-4^{\prime}\right), 4.02-3.92\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}, H-4\right.$, $\left.H-2^{\prime}\right), 3.84(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}), 3.80(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b}), 3.75$ $(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.69(\mathrm{dd}, J=11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}), 3.62-3.53(\mathrm{~m}, 4 \mathrm{H}, H-$ 3', $H-6$ 'a $\left., H-5,-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}\right), 3.50(\mathrm{ddd}, J=10.0,5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H-5$ '), $3.46(\mathrm{dd}, J=$ 9.1, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.25\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.60(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH}), 1.74-1.62\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right), 1.53-1.42(\mathrm{~m}, 2 \mathrm{H},-$
$\left.\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-$ $\mathrm{OC}_{3} \mathrm{H}_{6} \mathrm{CH}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) $\delta 138.85,138.53,138.40,138.04,128.38$, $128.28,128.22,128.18,127.77,127.74,127.70,127.66,127.52,127.38,127.30,103.71$, $100.38,100.18,99.68,83.08,82.12,76.01,75.20,74.90,74.88,74.25,73.47,73.45$, $70.16,69.81,69.03,68.80,68.59,62.80,48.07,47.94,31.86,19.35,17.81,17.78,13.93$;

HRMS (ESI) calculated for $\mathrm{C}_{50} \mathrm{H}_{65} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+} 873.4420$, found 873.4390.

Butyl O-2,3-O-isopropylidene-4,6-di- O-benzyl- β-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri- O-benzyl- β-D-glucopyranoside (33)

Disaccharide 33 was prepared from lactol donor $\mathbf{1 8}^{[8]}$ $(41.7 \mathrm{mg}, 0.104 \mathrm{mmol})$ and triflate acceptor $6(129 \mathrm{mg}$, 0.202 mmol) following the general procedure. The crude reaction mixture was purified by preparative TLC $($ Toluene $/ \mathrm{EtOAc}=8 / 1)$ to afford compound $33(30.5 \mathrm{mg}, 0.0343$ mmol, 35%) as colorless syrup. The ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ of mannosidic anomeric carbon was determined to be $160.4 \mathrm{~Hz} .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+23.0\left(c 0.1, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 3386, 2930, 1453, 1370, 1217, 1065, 863, 735, $697 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.37$ $-7.18\left(\mathrm{~m}, 25 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.06\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-$ $\left.1^{\prime}\right), 4.88\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.80\left(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH} \mathrm{H}_{2} \mathrm{Ar}\right), 4.72-$ $4.60\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.55-4.42\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.40-4.32(\mathrm{~m}, 2 \mathrm{H}, H-1,-$
$\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.20\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3^{\prime}\right), 4.04\left(\mathrm{dd}, J=6.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-2^{\prime}\right), 3.99-$ $3.90\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}, H-4\right), 3.75(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, H-6), 3.70(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $H-3), 3.62-3.56\left(\mathrm{~m}, 2 \mathrm{H}, H-6^{\prime} \mathrm{a}, H-4 \mathrm{C}^{\prime}\right), 3.55-3.48\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}, H-5^{\prime}, H-5\right)$, $3.44\left(\mathrm{dd}, J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, H-6^{\prime} \mathrm{b}\right), 3.39(\mathrm{dd}, J=9.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 1.69-1.61$ $\left(\mathrm{m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right), 1.50-1.36\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{CH}_{3},-\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.34(\mathrm{~s}, 3 \mathrm{H},-$ $\left.\mathrm{CH}_{3}\right), 0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OC}_{3} \mathrm{H}_{6} \mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 139.48$, $138.76,138.71,138.20,138.11,128.49,128.42,128.39,128.34,128.30,128.12,128.10$, $127.96,127.94,127.80,127.78,127.68,127.63,127.43,127.23,110.47,103.79,98.78$, $82.66,82.07,79.27,77.80,75.83,75.21,75.12,74.71,74.53,74.07,73.59,73.39,72.34$, 69.88, 69.83, 68.64, 31.98, 27.58, 26.03, 19.44, 14.03; HRMS (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+}$889.4521, found 889.4579.

4-O-Benzyl-2,6-anhydro-3-deoxy-D-erythro-hex-2-enose (S19)

Aldohexose derived compound $\mathbf{S 1 9}$ was obtained from lactol donor 20 $(33.6 \mathrm{mg}, 0.098 \mathrm{mmol})$ and galactoside derived triflate $\mathbf{6}(128 \mathrm{mg}, 0.200$ mmol) following the general procedure. The crude reaction mixture was purified by preparative TLC $($ Hexanes $/ E t O A c=1 / 1)$ to afford enal $\mathbf{S 1 9}(12.8 \mathrm{mg}, 0.055 \mathrm{mmol}, 56 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}=+25.0\left(c 0.04, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film) 2919, 1696, 1074, $667 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}, H-1$ aldehyde), $7.46-7.30(\mathrm{~m}$,
$\left.5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.80(\mathrm{dd}, J=3.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.76\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar}\right), 4.70$ $\left(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.26(\mathrm{td}, J=3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 4.14(\mathrm{dd}, J=11.3$, 7.2 Hz, 1H, H-6a), $4.09-4.01(\mathrm{~m}, 2 \mathrm{H}, H-6 \mathrm{a}, H-5), 2.59(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{O} H)$; ${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 186.65,152.83,137.26,128.99,128.66,128.24,115.95$, 71.66, 69.27, 67.07, 63.96; HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$257.0784, found 257.0787.

7

3,4,6-Tri-O-benzyl- $\alpha / \boldsymbol{\beta}$-D-fructofuranose (37)

A small amount of side product was always detected in all of the previous anomeric O-alkylation reactions involving 3,4,6-tri- O-benzyl-D-mannose 7 as the lactol donor. This side product shares the same molecular mass and has similar polarity as $3,4,6$-tri- O-benzyl-D-mannopyranose 7 . In order to determine the structure of this side product, we re-carried out the reaction between 7 and D-galactose-derived C 4 secondary triflate $\mathbf{6}$ under standard conditions. Beside desired β-disaccharide $\mathbf{2 2}$ was
isolated in 67% yield, the side product 37 was also isolated in 8% yield. The structure of $\mathbf{3 7}$ was determined to be 3,4,6-tri- O-benzyl-D-fructose. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.38-7.23(\mathrm{~m}, 22.5 \mathrm{H}), 4.69(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-$ $4.47(\mathrm{~m}, 7 \mathrm{H}), 4.37(\mathrm{~m}, 0.5 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.70(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.66-3.48(\mathrm{~m}, 6 \mathrm{H}), 2.23$ $-1.96(\mathrm{~b}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 137.91,137.73,137.54,137.43,137.36$, $128.65,128.63,128.60,128.57,128.53,128.24,128.12,128.11,128.01,127.99,127.96$, $127.94,127.92,105.66,103.23,86.46,83.62,83.42,82.20,81.19,80.72,73.68,73.45$, $73.00,72.35,72.21,72.18,70.80,69.76,65.29,64.39$. The NMR data agree with the reported ones. ${ }^{[9]}$ Mechanistically, it is believed that dianion $\mathbf{S 2 0}$ was produced via deprotonation of 7 followed by ring opening. Subsequently, S20 underwent an α-keto rearrangement ${ }^{[10]}$ to afford $\mathbf{S 2 1}$ which cyclizes to give rise to 3,4,6-tri-O-benzyl-Dfructose 37.

Disaccharides $\mathbf{3 9} \boldsymbol{\alpha} / \boldsymbol{\beta}$ and 40 were obtained from 2,3,4,6-tetra- O-benzyl-D-mannose
donor $38(54 \mathrm{mg}, 0.1 \mathrm{mmol})$ and galactoside derived triflate acceptor $6(128 \mathrm{mg}, 0.2$ mmol) following the general procedure. The crude reaction mixture was purified by preparative TLC (Hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Toluene $=10 / 1 / 1 / 1$) to furnish $\mathbf{3 9 \alpha}$ (3.1 mg , $3 \%), \mathbf{3 9 \beta}(42.3 \mathrm{mg}, 46 \%)$ and $40(5.1 \mathrm{mg}, 5 \%)$ as colorless syrup.

Butyl O-2,3,4,6-tetra- O-benzyl- α-D-mannopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri- O-benzyl- β -

 D-glucopyranoside (39 α)

The ${ }^{1} J_{\text {C-H }}$ of mannosidic anomeric carbon for $\mathbf{3 9} \boldsymbol{\alpha}$ was determined to be $170.3 \mathrm{~Hz} .[\boldsymbol{\alpha}]_{\mathbf{D}}^{23}=+5.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$;

FT-IR (thin film): $3067,3033,2929,2869,1721,1692,1454,1292,1098,1056,735$, $698 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.34-7.27\left(\mathrm{~m}, 22 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.25-7.23(\mathrm{~m}$, $\left.6 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.21-7.17\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.15-7.12\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H-1^{\prime}\right), 5.05\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.94\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.84$ $\left(\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.65-4.45\left(\mathrm{~m}, 9 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar}\right), 4.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $H-1), 4.27\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.19\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.01-$ $3.95\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}, H-4^{\prime}\right), 3.89-3.82\left(\mathrm{~m}, 2 \mathrm{H}, H-6{ }^{\prime} \mathrm{a}, H-3^{\prime}\right), 3.81\left(\mathrm{~m}, 1 \mathrm{H}, H-5^{\prime}\right)$, $3.72-3.64$ (m, 4H, H-6'b, H-2', H-6a, H-4), $3.61-3.54$ (m, 2H, $\left.-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}, H-6 \mathrm{~b}\right)$, $3.52(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 3.48-3.43(\mathrm{~m}, 2 \mathrm{H}, H-5, H-2), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right), 1.51-1.39\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-$ $\mathrm{OC}_{3} \mathrm{H}_{6} \mathrm{CH}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 138.72, 138.61, 138.56, 138.33, 128.49, $128.45,128.42,128.38,128.17,128.14,127.85,127.83,127.73,127.72,127.66$,
$127.53,127.22,127.82,103.53,100.36,84.52,82.21,79.76,77.64,76.33,75.13,74.93$, 74.75, 74.72, 73.49, 73.46, 73.06, 72.24, 72.17, 70.05, 69.93, 69.36, 31.98, 19.46, 14.02.; HRMS (ESI) calculated for $\mathrm{C}_{65} \mathrm{H}_{73} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+} 1029.5153$, found 1029.5115 .

Butyl \boldsymbol{O}-2,3,4,6-tetra- O-benzyl- $\boldsymbol{\beta}$-d-mannopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri- O-benzyl- β -

 D-glucopyranoside (39 $\boldsymbol{\beta}$)

The ${ }^{1} J_{\text {C-H }}$ of mannosidic anomeric carbon for $\mathbf{3 9 \beta}$ was determined to be $154.5 \mathrm{~Hz} .[\boldsymbol{\alpha}]_{\mathbf{D}}^{23}=+2.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film): 3065 , 3030, 2925, 2865, 1730, 1496, 1453, 1362, 1093, 1060, 734, $696 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.49-7.11\left(\mathrm{~m}, 35 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.15\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OC} H_{2} \mathrm{Ar}\right), 4.93$ (d, $\left.J=10.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.90-4.85\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.79(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.73\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.61(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.58-4.53\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}, H-1^{\prime}\right), 4.53-4.39\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{OCH} H_{2} \mathrm{Ar} \times 5, H-\right.$ 1), $4.00-3.88\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}, H-4, H-4^{\prime}\right), 3.80\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-2^{\prime}\right), 3.75-$ 3.62 (m, 4H, $H-6 \mathrm{a}, H-6$ 'a, $H-3, H-6 \mathrm{~b}$), 3.60 (dd, $J=11.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}, H-6$ 'b), 3.55 (dt, $J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}$), $3.50(\mathrm{ddd}, J=9.9,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 3.44(\mathrm{dd}, J$ $\left.=9.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.36(\mathrm{dd}, J=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3)^{\prime}\right), 3.32(\mathrm{ddd}, J=9.7,5.3,1.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, H-5^{\prime}\right), 1.76-1.60\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OC}_{3} \mathrm{H}_{6} \mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $139.52,139.03,138.82,138.61,138.58,138.41,138.20,128.54,128.48,128.40$, 128.29, 128.20, 128.14, 128.08, 127.98, 127.79, 127.73, 127.69, 127.68, 127.60,
$127.40,127.28,127.14,103.75,100.95,82.74,82.01,77.49,76.10,75.14,75.02,74.97$, $74.95,74.87,74.69,74.11,73.55,73.47,71.74,69.84,69.62,69.18,31.95,19.42,14.01 ;$ HRMS (ESI) calculated for $\mathrm{C}_{65} \mathrm{H}_{73} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+}$1029.5153, found 1029.5112 .

Butyl O-2,3,4,6-tetra- O-benzyl- β-d-glucopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri- O-benzyl- β-dglucopyranoside (40)

$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 4}}=+47.0\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film) 2917, 2867, 1453, 1093, 1067, 733, $695 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.34(\mathrm{~m}$, $\left.2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.32-7.20\left(\mathrm{~m}, 28 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.20-7.15\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.06(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.88\left(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \times 2\right), 4.83-4.77\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right)$, 4.76 - 4.71 ($\mathrm{m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}$), $4.68\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.56(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.59-4.53\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1^{\prime}\right), 4.45\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right)$, 4.39 (s, 2H, $-\mathrm{OCH}_{2} \mathrm{Ar}$), 4.36 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, H-1$), $3.99(\mathrm{dd}, J=9.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}, H-$ 4), 3.93 (dt, $J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}$), 3.81 (dd, $J=10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}$), 3.71 (dd, $J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b}), 3.68(\mathrm{dd}, J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-6$ 'a), 3.63 (t, J $\left.=9.4 \mathrm{~Hz}, 1 \mathrm{H}, H-4^{\prime}\right), 3.60-3.48\left(\mathrm{~m}, 4 \mathrm{H}, H-3, H-6^{\prime} \mathrm{b}, H-3^{\prime},-\mathrm{OCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}\right), 3.43-3.33(\mathrm{~m}$, 3H, H-2, H-2', $H-5$), 3.30 (ddd, $J=9.9,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H-5$ '), 1.68 - 1.58 (m, 2H, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right), 1.49-1.36\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H},-$ $\mathrm{OC}_{3} \mathrm{H}_{6} \mathrm{CH}_{3}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 139.51,138.75,138.73,138.59,138.41$, 138.37, 128.51, 128.50, 128.48, 128.45, 128.38, 128.28, 128.15, 127.99, 127.95, 127.91, 127.90, 127.84, 127.80, 127.73, 127.68, 127.66, 127.47, 127.21, 103.75, 102.60, 85.05,
$83.00,82.85,81.84,78.13,75.77,75.18,75.14,75.12,75.07,75.03,74.96,73.40,73.35$, 69.80, 69.00, 68.32, 31.96, 19.44, 14.03; HRMS (ESI) calculated for $\mathrm{C}_{65} \mathrm{H}_{72} \mathrm{NaO}_{11}$ $[\mathrm{M}+\mathrm{Na}]^{+} 1051.4967$, found 1051.4961.

Comprehensive studies of various conditions for $\boldsymbol{\beta}$-mannosylation.

Table S1. Screening solvents for $\boldsymbol{\beta}$-mannosylation via \boldsymbol{O}-alkylation. ${ }^{a}$

Table S2. Screening bases for $\boldsymbol{\beta}$-mannosylation via \boldsymbol{O}-alkylation. ${ }^{a}$

Entry	Bases	Yield ${ }^{b}, \alpha / \beta$ ratio
1	MgO	No reaction
2	$\mathrm{Ba}(\mathrm{OH})_{2}$	trace
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	trace
4	NaOH	$5 \%, \beta$ only
5	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$10 \%, \beta$ only
6	KOH	5.7\%, β only
7	$\mathrm{Rb}_{2} \mathrm{CO}_{3}$	$50 \%, \beta$ only
8	$\mathrm{RbOH} \cdot \mathrm{H}_{2} \mathrm{O}$	$13 \%, \beta$ only
9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	67\% (73\% BRSM), β only
10	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	$52 \%, \beta$ only
11	CsHCO_{3}	trace
12	CsF	$3 \%, \beta$ only
13	CsOAc	trace
14	$\mathrm{Cs}_{3} \mathrm{PO}_{4}$	59\% (63\% BRSM), β only
15^{c}	NaH (2.5 or 3 eq.), 15-C-5 (1.5 eq.)	trace
16^{d}	NaH (2.5 or 3 eq.), 15-C-5 (1.5 eq.)	trace
17^{e}	2-Aminoethyl diphenylborinate (0.1 eq .), $\mathrm{K}_{2} \mathrm{CO}_{3}$ or DIPEA	no desired product

${ }^{a}$ All reactions were performed using 0.1 mmol of 3,4,6-tri- O-benzyl-D-mannopyranose 7, 2.0 eq. of triflate acceptor $\mathbf{6}$ and 2.5 eq. of base in $1 \mathrm{~mL} 1,2$-dichloroethane at $40^{\circ} \mathrm{C}$ for 24 hours except for entry 15~17.
${ }^{b}$ Isolated yield based on the lactol donor 7. Yield calculated based on recovered lactol donor 7 is reported in the parenthesis. BRSM $=$ based on recovered starting material (donor 7).
${ }^{c}$ This reaction was performed using 0.1 mmol of donor 7 and 2.0 eq. of triflate acceptor 6 in 1 mL 1,4-
dioxane at room temperature for 24 hours.
${ }^{d}$ This reaction was carried out under the same condition with entry 15 except for using dichloromethane as the solvent.
${ }^{e}$ This reaction was carried out using 0.1 mmol of donor 7 and 2.0 eq. of triflate acceptor $\mathbf{6}$ in 1 mL acetonitrile in the presence of base and borinate catalyst at $40^{\circ} \mathrm{C}$ for 24 hours.

Table S3. The effect of reaction time, temperature and the equivalent of acceptor and cesium carbonate in the $\boldsymbol{\beta}$-mannosylation via \boldsymbol{O}-alkylation. ${ }^{a}$

[^1]Table S4. 18-Crown-6 titration studies.

Entry ${ }^{a}$	Eq. of $18-\mathrm{C}-6$ added

${ }^{a}$ General conditions: lactol 7 ($0.1 \mathrm{mmol}, 1.0$ eq.), triflate 6 (2.0 eq.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.5 eq.), $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, $40^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

In order to study possible chelation effect of cesium ion with sugar oxygen atoms, we explored the effect of 18 -crown-6 to this anomeric O-alkylation reaction. As shown in the table, addition of crown ether 18-C-6 to the reaction mixture dramatically disturbed the reaction and caused the formation of desired β-mannoside 22 in much lower yields. The more crown ether was added, the worse the reaction outcome. In addition, a significant amount of starting lactol 7 was always recovered from the reaction mixtures
in the presence of 18-C-6. These results were found to be complete contrast to our previously reported synthesis of 2-deoxy- β-glycosides involving the use of sodium hydride as base which requires the addition of 15 -crown- 5 to increase the nucleophilicity of the anomeric alkoxides. ${ }^{[1]]}$ We reason that, in the absence of 18-C-6, cesium ion may chelate with oxygen atoms at C 1 and other carbons in mannose substrates, increase the acidity of the anomeric hydroxyl group, and facilitate the deprotonation. Once added, 18-C-6 may compete with the oxygen atoms of the sugar substrates in chelating with cesium ion and then slow down the deprotonation, which may account for the recovery of significant amounts of the starting lactol 7 .

NMR study for cesium alkoxide.

Preparation of cesium alkoxide 42 from donor 7 and extensive NMR studies (including ${ }^{133} \mathrm{Cs}$ NMR).

To a 0.1 M solution of 3,4,6-tri-O-benzyl-d-mannopyranose 7 in CDCl_{3} was added 3.0 eq. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was allowed to stand for 0.5 h at room temperature and the supernatant, presumably containing cesium alkoxide $\mathbf{4 2}$ was taken out and subjected to NMR study. The comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{7}$ and $\mathbf{4 2}$ is shown below.

Previously, Popov and co-workers demonstrated that ${ }^{133} \mathrm{Cs}$ NMR was an effective tool to study ion pairing involving cesium ion. ${ }^{[12]}$ Therefore, we carried out extensive ${ }^{133} \mathrm{Cs}$ NMR experiments in order to examine the interaction of cesium ion with the sugar substrate. In the event, to a 0.1 M solution of 3,4,6-tri- O-benzyl-D-mannose $(7, \alpha / \beta=$ $3.0 / 1)$ in $\mathrm{CDCl}_{3}{ }^{[13]}$ was added 3 eq. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 hour. The resulting mixture was allowed to stand for 0.5 hour and the supernatant, presumably containing cesium alkoxide 42 in CDCl_{3}, was taken out. Various amounts of 18-C-6 was added to the supernatant and the mixture was stirred for another 0.5 before being subjected to ${ }^{133} \mathrm{Cs}$ NMR studies (use of a 1 M solution of CsCl in $\mathrm{D}_{2} \mathrm{O}$ as the reference). Before $18-\mathrm{C}-6$ was added, the chemical shift of ${ }^{133} \mathrm{Cs}$ in cesium alkoxide $42(\alpha / \beta=1 / 3.0)$ in CDCl_{3} was 23.40 ppm . Addition of 0.5 eq. of $18-\mathrm{C}-6$ increased the ${ }^{133} \mathrm{Cs}$ chemical shift to a maximum (27.83 ppm) which dropped to 26.04 ppm when a total amount of 1.0 eq. of $18-\mathrm{C}-6$ was added. The ${ }^{133} \mathrm{Cs}$ chemical shift kept decreasing as more $18-\mathrm{C}-6$ was added. Not surprisingly, this observed trend of ${ }^{133} \mathrm{Cs}$ chemical shift change with the addition of various amounts of 18-C-6 suggests that cesium alkoxide $\mathbf{4 2}$ is not dissociated in free ions or solvent separated ion pairs in chloroform. In addition, according to those observations reported by Popov, the ${ }^{133} \mathrm{Cs}$ chemical shift reaches a maximum or minimum at a $1: 1$ ratio of crown ether to the cesium ion. However, in this experiment the chemical shift of ${ }^{133} \mathrm{Cs}$ reached a maximum when 0.5 eq. of 18-C-6 was added, which may suggest that the cesium ion may also interact with other oxygen atoms on the sugar, besides the anomeric oxygen. The ${ }^{133} \mathrm{Cs}$ NMR spectra are shown here.

Synthesis of perdeuteriomethyl protected lactol donor 44.

3,4,6-Tri- O-perdeuteriomethyl- α / β-d-mannopyranose (44)

To a solution of triol $(0.93 \mathrm{~g}, 4.0 \mathrm{mmol})$ obtained from global deacetylation of known compound $\mathbf{S 2 2}{ }^{[14]}$ in DMF (13.3 mL) cooled at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(0.96 \mathrm{~g}, 24 \mathrm{mmol}, 60 \%$ in mineral oil $)$ portion wise. The resulting
mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min before deuterated methyl iodide ($1.52 \mathrm{~mL}, 24$ mmol) was added. The reaction mixture was warmed up and stirred at ambient temperature for 3 h . The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), washed with water $(50 \mathrm{~mL} \times 4)$, brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography $($ Hexanes/EtOAc $=3 / 1$ to $1 / 2)$ to give desired product $\mathbf{S 2 3}$. Orthoester $\mathbf{S 2 3}(820 \mathrm{mg}$, $2.85 \mathrm{mmol})$ was suspended in 60% acetic acid aqueous solution $(28.5 \mathrm{~mL})$ and stirred at room temperature for 1 h . The resulting mixture was concentrated and the residue azeotroped with toluene. The crude product was dissolved in $\mathrm{MeOH}(29 \mathrm{~mL}$) and 5.4 M sodium methoxide solution in methanol ($0.5 \mathrm{~mL}, 2.85 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 2 h before being neutralized with Amberlyst IR-120 $\left(\mathrm{H}^{+}\right)$. After filtration and concentration, the residue was recrystallized with hexanes and EtOAc to give the title compound $44(461 \mathrm{mg}, 70 \%, \alpha / \beta=5 / 1)$ as a white solid. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{29}$ $=+25.00\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film) 3333, 2950, 2227, 2059, 1732, 1658, 1264, 1107, 1049, 979, 781, 695, $563 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 5.27(\mathrm{~s}, 1 \mathrm{H}, H-1$ $\alpha), 4.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 0.2 \mathrm{H}, H-1 \beta), 4.21(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{C} 1-\mathrm{OH} \beta), 4.07-4.0$ (m, 1.2H,H-2 $\alpha, H-2 \beta), 3.92(\mathrm{ddd}, J=10.2,6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, H-5 \alpha), 3.67-3.51(\mathrm{~m}$, $4.4 \mathrm{H}, H-6 \beta, H-6 \alpha, \mathrm{C} 1-\mathrm{OH} \alpha, H-3 \alpha), 3.41(\mathrm{t}, J=9.5 \mathrm{~Hz}, 0.2 \mathrm{H}, H-4 \beta), 3.33(\mathrm{t}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}, H-4 \alpha), 3.29(\mathrm{ddd}, J=9.8,4.5,2.1 \mathrm{~Hz}, 0.2 \mathrm{H}, H-5 \beta), 3.24(\mathrm{dd}, J=9.2,3.3 \mathrm{~Hz}$, $0.2 \mathrm{H}, \mathrm{H}-3 \beta), 2.86(\mathrm{~s}, 0.2 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \beta), 2.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \alpha) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 94.29,94.08,83.64,81.00,76.33,75.37,74.57,72.03,71.29,70.57,68.39$, 68.00, $59.88(\mathrm{~m}), 58.38(\mathrm{~m}), 56.66(\mathrm{~m})$; HRMS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{D}_{9} \mathrm{NaO}_{6}$
$[\mathrm{M}+\mathrm{Na}]^{+} 254.1561$, found 254.1577.

Preparation of cesium alkoxide 45 from donor 44 and extensive NMR studies.

To a 0.1 M solution of 3,4,6-tri-O-perdeuteriomethyl-d-mannopyranose 44 in CDCl_{3} was added 3.0 eq. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was allowed to stand for 0.5 h at room temperature and the supernatant, presumably containing cesium alkoxide $\mathbf{4 5}$ was taken out and subjected to NMR study. The comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 4}$ and $\mathbf{4 5}$ is shown below.

Synthesis of perdeuteriomethyl protected $\boldsymbol{\beta}$-mannoside 46.

Allyl 3,4,6-tri- O-perdeuteriomethyl- β-d-mannopyranoside (46)

To a 0.1 M solution of lactol $44(23.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in CDCl_{3} $(1.0 \mathrm{~mL})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(97.7 \mathrm{mg}, 0.3 \mathrm{mmol})$. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 h and then cooled to ambient temperature. The mixture was allowed to stand at ambient temperature for 0.5 h and the supernatant $(0.5 \mathrm{~mL}$, presumably containing 0.0455 mmol corresponding alkoxide) was taken out. Allyl bromide ($6 \mu \mathrm{~L}$) was added to this supernatant and the resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h . The crude mixture was purified by silica gel column chromatography $($ Hexanes $/ \mathrm{EtOAc}=2 / 1)$ to give compound $\mathbf{4 6}(2.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 22 \%)$ as colorless syrup. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 4}}=-31.0(c 0.1$, CHCl_{3}) ; FT-IR (thin film) 3471, 2865, 2206, 2061, 1380, 1317, 1118, 1054, 992, 781 $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 5.90\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.28(\mathrm{~m}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.19\left(\mathrm{dd}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.45(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}, H-1), 4.40\left(\mathrm{dd}, J=12.8,5.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H}, H-2,-$ $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.66(\mathrm{dd}, J=10.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a}), 3.59(\mathrm{dd}, J=10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $H-6 \mathrm{~b}), 3.46(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 3.27$ (ddd, $J=9.7,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 3.21(\mathrm{dd}$, $J=9.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 2.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 133.78$, $118.01,98.59,83.61,75.75,75.24,71.59,69.89,67.77,59.96(\mathrm{~m}), 58.60(\mathrm{~m}), 56.34(\mathrm{~m}) ;$ HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{D}_{9} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$294.1874, found 294.1891.

Synthesis of lactol 47.

3,4,6-Tri- O-(2-naphthalenyl)methyl- α / β-d-mannopyranose (47)

To a solution of compound $\mathbf{S} 22(1.32 \mathrm{~g}, 3.65 \mathrm{mmol})$ in dry THF (50 mL) were added (2-naphthalenyl)methyl bromide ($2.66 \mathrm{~g}, 12.0 \mathrm{mmol}$) and $\mathrm{KOH}(2.44$ $\mathrm{g}, 43.64 \mathrm{mmol}$). The mixture was stirred at room temperature for 30 min and then warmed to $70^{\circ} \mathrm{C}$. After being stirred at $70^{\circ} \mathrm{C}$ for 6 h , the mixture was cooled to ambient temperature and diluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, which was then washed by water (100 $\mathrm{mL} \times 2)$ and brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography (Hexanes/EtOAc $=$ $5 / 1)$ on silica gel to afford $\mathbf{S} 24(1.29 \mathrm{~g}, 54 \%)$ as light yellow solids. $\mathbf{S} 24$ was suspended in 80% acetic acid aqueous solution (20 mL) and stirred vigorously at room temperature overnight. The mixture was diluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and the organic layer was washed by saturated NaHCO_{3} aqueous solution $(100 \mathrm{~mL} \times 3)$ and brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and $\mathrm{MeOH}(20 \mathrm{~mL})$. To this solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.20 \mathrm{mmol})$. The mixture was stirred at room temperature for 6 h and neutralized by Amberlyst IR$120\left(\mathrm{H}^{+}\right)$. The filtrate was concentrated and purified by flash column chromatography
$($ Hexanes $/ \mathrm{EtOAc}=3 / 2)$ on silica gel to furnish the title compound $47(\alpha / \beta=2 / 1$ mixture, $756 \mathrm{mg}, 64 \%)$ as white solids. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 4}}=+5.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ FT-IR (thin film) 3404, 3050, 2855, 1094, 1051, 809, 746, $473 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.83-7.69$ $\left(\mathrm{m}, 14 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.60-7.40\left(\mathrm{~m}, 16 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.17-7.13\left(\mathrm{~m}, 1.5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.35(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}, H-1 \alpha), 5.04-4.97\left(\mathrm{~m}, 1.5 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.88-4.58\left(\mathrm{~m}, 8.5 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar} \times 7.5\right.$, $H-1 \beta, \mathrm{C} 1-\mathrm{O} H \beta), 4.14(\mathrm{ddd}, J=10.0,5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}, H-5 \alpha), 4.09(\mathrm{~m}, 1 \mathrm{H}, H-2 \alpha), 4.03$ (dd, $J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \alpha), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}, H-2 \beta, H-4 \beta), 3.86(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}, H-4 \alpha), 3.83-3.70(\mathrm{~m}, 4 \mathrm{H}, H-6 \beta, H-6 \alpha, \mathrm{C} 1-\mathrm{OH} \alpha), 3.59(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $H-3 \beta), 3.45(\mathrm{ddd}, J=9.9,4.0,2.5 \mathrm{~Hz}, 0.5 \mathrm{H}, H-5 \beta), 3.24(\mathrm{br}, 0.5 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \beta), 2.76$ (br, $0.5 \mathrm{H}, \mathrm{C} 2-\mathrm{OH} \alpha) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\mathbf{C D C l}_{3}$) $\delta 135.74,135.68,135.44,135.37$, $135.24,133.34,133.30,133.26,133.14,133.00,132.98,128.47,128.44,128.39,128.36$, $128.11,128.06,128.02,127.83,127.81,127.71,127.13,127.02,126.81,126.79,126.57$, $126.55,126.32,126.29,126.26,126.23,126.19,126.17,126.13,126.08,126.04,125.95$, $125.93,125.91,94.52,94.10,81.66,79.84,75.21,75.19,74.73,74.64,73.79,73.77$, 73.62, 72.08, 71.59, 70.92, 69.39, 69.03, 68.83, 68.68; HRMS (ESI) calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$623.2410, found 623.2397.

Preparation of cesium alkoxide 48 from donor 47 and extensive NMR studies.

To a 0.1 M solution of 3,4,6-tri- O-(2-naphthalenyl)methyl-D-mannopyranose 47 in CDCl_{3} was added 3.0 eq. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and the reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was allowed to stand for 0.5 h at room temperature and the
supernatant, presumably containing cesium alkoxide 48 was taken out and then subjected to NMR study. The comparison of ${ }^{1} \mathrm{H}$ NMR spectra of 47 and 48 is shown below.

Competing experiments between different mannose-derived lactols.

General procedure for competition using different deoxy-mannose donors in the anomeric \boldsymbol{O}-alkylation with allyl bromide.

Two kinds of mannose derived donors ($\mathbf{7}, \mathbf{9}, \mathbf{1 0}$, or $\mathbf{1 1}, 0.1 \mathrm{mmol}+0.1 \mathrm{mmol})$ were treated with allyl bromide $(0.1 \mathrm{mmol})$ and cesium carbonate $(0.25 \mathrm{mmol})$ in DCE (1.0 mL) at $40^{\circ} \mathrm{C}$ for 6 h . After filtration, the corresponding allyl mannosides were isolated by preparative TLC.

Mannoside $43(28.1 \mathrm{mg})$ and 2-deoxy mannoside $49(7.6 \mathrm{mg})$ were produced by donor $7(45 \mathrm{mg})$ and $9(43 \mathrm{mg})$ following the general procedure in the yield of 57% and 16%, respectively.

Mannoside $43(24.9 \mathrm{mg})$ and 6-deoxy mannoside $51(6.1 \mathrm{mg})$ were produced by donor $7(45 \mathrm{mg})$ and $11(34 \mathrm{mg})$ following the general procedure in the yield of 51% and 16%, respectively.

Mannoside $43(26.2 \mathrm{mg})$ and 3-deoxy mannoside $50(6.2 \mathrm{mg})$ were produced by donor $7(45 \mathrm{mg})$ and $10(43 \mathrm{mg})$ following the general procedure in the yield of 53% and 16%, respectively.

2-deoxy mannoside $49(12.0 \mathrm{mg})$ and 3-deoxy mannoside $50(13.1 \mathrm{mg})$ were produced by donor $\mathbf{9}(43 \mathrm{mg})$ and $\mathbf{1 0}(34 \mathrm{mg})$ following the general procedure in the yield of 25% and 34%, respectively.

2-deoxy mannoside $49(12.1 \mathrm{mg})$ and 6-deoxy mannoside $51(11.6 \mathrm{mg})$ were produced by donor $\mathbf{9}(43 \mathrm{mg})$ and $\mathbf{1 1}(34 \mathrm{mg})$ following the general procedure in the yield of 25% and 30%, respectively.

3-deoxy mannoside $50(14.3 \mathrm{mg})$ and 6-deoxy mannoside $51(10.2 \mathrm{mg})$ were produced by donor $\mathbf{1 0}(34 \mathrm{mg})$ and $\mathbf{1 1}(34 \mathrm{mg})$ following the general procedure in the yield of 37% and 27%, respectively.

Allyl 3,4-di- \boldsymbol{O}-benzyl-6-deoxy- $\boldsymbol{\beta}$-d-mannopyranoside (51)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.28\left(\mathrm{~m}, 10 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.93$ (dddd, $\left.J=17.2,10.6,6.5,5.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.29(\mathrm{dd}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.21\left(\mathrm{dd}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.95(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.77\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.70-4.64\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $4.46-4.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1,-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.16-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2,-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $3.60-3.48(\mathrm{~m}, 2 \mathrm{H}, H-3, H-4), 3.32(\mathrm{dq}, J=8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $H-6) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.41,137.92,133.83,128.59,128.50,128.23$, $128.01,127.97,127.88,118.01,98.46,81.46,79.73,75.60,71.54,71.48,69.95,68.61$, 17.98; The ${ }^{1} J_{\text {C-H }}$ of mannosidic anomeric carbon was determined to be 156.3 Hz ; LRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 407.2$, found 407.6.

Allyl 4,6-di- \boldsymbol{O}-benzyl-3-deoxy- $\boldsymbol{\beta}$-d-mannopyranoside (50)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.19\left(\mathrm{~m}, 10 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.92$
(dddd, $\left.J=16.9,10.4,6.3,5.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.35-5.25(\mathrm{~m}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.21\left(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.67-4.53(\mathrm{~m}, 4 \mathrm{H}$,
$\left.-\mathrm{OCH}_{2} \mathrm{Ph} \times 3, H-1\right), 4.46-4.36\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.13(\mathrm{ddt}, J=12.8$, $\left.6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.95(\mathrm{ddd}, J=4.7,3.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}, H-2), 3.81-3.77$ (m, 2H, H-6a, $H-4$), $3.68(\mathrm{dd}, J=10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{~b}), 3.61$ (ddd, $J=8.5,5.6,2.9$ $\mathrm{Hz}, 1 \mathrm{H}, H-5), 2.43(\mathrm{dt}, J=13.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{a}), 2.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{OH}), 1.62(\mathrm{ddd}, J$ $=13.4,10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, H-3 \mathrm{~b})$; The ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ of mannosidic anomeric carbon was determined to be 159.0 Hz ; LRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 407.2$, found 407.6.

General procedure for competition using different deoxy-mannose donors in the anomeric \boldsymbol{O}-alkylation with triflate 6.

Two kinds of mannose derived donors $(\mathbf{7}, \mathbf{9}, \mathbf{1 0}$, or $\mathbf{1 1}, 0.1 \mathrm{mmol}+0.1 \mathrm{mmol})$ were treated with triflate acceptor $6(0.1 \mathrm{mmol})$ and cesium carbonate $(0.25 \mathrm{mmol})$ in DCE $(1.0 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ for 24 h . After filtration, the corresponding disaccharides were isolated by preparative TLC.

Mannose derived disaccharide $22(45.2 \mathrm{mg})$ and 2-deoxy mannose derived disaccharide $24(12.1 \mathrm{mg})$ were produced by mannose donor $7(45 \mathrm{mg})$ and 2-deoxy mannose donor
$9(43 \mathrm{mg})$ following the general procedure in the yield of 48% and 12%, respectively.

Mannose derived disaccharide $22(28.5 \mathrm{mg})$ and 6-deoxy mannose derived disaccharide $\mathbf{2 6}(6.8 \mathrm{mg})$ were produced by mannose donor $7(45 \mathrm{mg})$ and 6-deoxy mannose donor $11(34 \mathrm{mg})$ following the general procedure in the yield of 31% and 8%, respectively.

Mannose derived disaccharide $22(28.3 \mathrm{mg})$ and 3-deoxy mannose derived disaccharide $\mathbf{2 5}(12.6 \mathrm{mg})$ were produced by mannose donor $7(45 \mathrm{mg})$ and 3-deoxy mannose donor $10(34 \mathrm{mg})$ following the general procedure in the yield of 30% and 15%, respectively.

Kinetic studies

The kinetic study was performed with a HPLC instrument equipped with a CHIRALPAK ${ }^{\circledR}$ AD-H column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \phi \times 250 \mathrm{mmL}$) and a UV-vis detector. A representative procedure (using 0.201 mmol of $3,4,6$-tri- O-benzyl-D-mannose, 0.603 mmol of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, and 0.402 mmol of allyl bromide) was conducted as follows. To a solution of mannose lactol in 1,2-dichloroethane (2.0 mL) was added allyl bromide, followed by the addition of 1,4,6,7-tetramethylnaphthalene ($19.9 \mathrm{mg}, 0.108 \mathrm{mmol}$) as the internal standard. The resulting solution was stirred at $40^{\circ} \mathrm{C}$ for 30 min . The reaction was initiated by the addition of cesium carbonate. The reaction was followed by monitoring the concentration of mannose lactol and the corresponding allyl mannoside. $10 \mu \mathrm{~L}$ of reaction solution was taken out by micro syringe every 15 min within 1 hour after the reaction began and every 20 min after 1 hour. The solvent was evaporated under vacuum and dissolved in 2-propanol (1 mL). The resulting solution was subjected to HPLC analysis (n-hexane $/ 2$-propanol $90 / 10,0.1 \mathrm{~mL} / \mathrm{min}$). The concentration was calculated based on the area. The graph of the negative natural logarithm of [mannose] versus time was found to linear.

Table S5. Data of the reaction with the initial concentration of mannose as 0.1005 M .

time			
(hours)	[mannose] (M)	[allyl mannoside] (M)	$-\ln ([$ mannose]/M)
0	0.1005	0	2.297597551

0.25	0.096247392	0.007441148	2.340833406
0.5	0.08649566	0.012243623	2.447661042
0.75	0.08129823	0.016286536	2.509631032
1	0.075439833	0.020969195	2.58441986
$1 \frac{1}{3}$	0.067355466	0.027163303	2.69777122
$1 \frac{2}{3}$	0.06003926	0.034161479	2.812756594
2	0.052698657	0.041845293	2.943165298
$2 \frac{1}{3}$	0.044305967	0.049163232	3.116635925
$2 \frac{2}{3}$	0.035567293	0.054879129	3.336328813
3	0.030381289	0.06095279	3.493928342
$3 \frac{1}{3}$	0.026675363	0.064536711	3.789971983
$2 \frac{2}{3}$	0.02596235		

Figure S1. [mannose] and [allyl mannoside]

Figure S2. The linear relationship of negative natural logarithm of [mannose] versus time.

Table S6. Data of the reaction with the initial concentration of mannose as 0.2015 M .

Figure S3. [mannose] and [allyl mannoside]

Figure S4. The linear relationship of negative natural logarithm of [mannose] versus time.

Computational studies on the \boldsymbol{O}-allylation of \mathbf{D}-mannose 7 and deoxy-Dmannoses 9, 10, and 11 with allyl bromide

Computational methods

All density functional theory (DFT) calculations were performed using the Gaussian 09 software package. ${ }^{[15]}$ Geometries were optimized in the gas phase using the M06$2 \mathrm{X}^{[16]}$ functional and a mixed basis set of $\mathrm{SDD}^{[17]}$ for Cs and $6-31 \mathrm{G}(\mathrm{d})^{[18]}$ for other atoms. Vibrational frequency calculations were performed for all the stationary points to confirm if each optimized structure is a local minimum or a transition state structure. Single point energies were calculated using M06-2X and the def2-QZVP ${ }^{[19]}$ basis set in dichloroethane using the SMD solvation model. ${ }^{[20]}$ Reported Gibbs free energies and enthalpies in solution include thermal corrections computed at 298 K .

Additional computational results

Different conformers of the anomeric cesium alkoxides were considered to identify the most stable conformer. The lowest-energy conformers of anomeric cesium alkoxides derived from D-mannose 7 and deoxy-D-mannose 9 are shown in Figure S1. Besides the ${ }^{4} \boldsymbol{C}_{1}$ conformer as in $\mathbf{7 - C s}$, a ${ }^{1} \boldsymbol{C}_{4}$ (flipped chair) conformer of 7-Cs is also located. In this conformer (7b-Cs, Figure S1a), the C3-OH is coordinated with cesium instead of $\mathrm{C} 2-\mathrm{OH}$. The relative free energy of 7b-Cs is $6.4 \mathrm{kcal} / \mathrm{mol}$ higher than that of 7-Cs. Moreover, the corresponding activation free energy of the O-allylation transition state

7b-TS from this ${ }^{1} \boldsymbol{C}_{4}$ conformer is higher than that of $\mathbf{7 - T S}$ by $6.3 \mathrm{kcal} / \mathrm{mol}$.
A higher energy boat conformation ($\boldsymbol{B}^{1,4}$) was also located for the cesium alkoxide derived from deoxy-D-mannose 9 (Figure S1b). Compared to the ${ }^{4} \boldsymbol{C}_{1}$ conformer 9 -Cs, this conformer (9b-Cs) has an additional chelating Cs-O interaction with O4. However, the free energy of $\mathbf{9 b} \mathbf{- C s}$ is $3.2 \mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathbf{9 - C s}$, and the activation free energy of the O-allylation transition state $\mathbf{9 b - T S}$ is higher than that of $\mathbf{9 - T S}$ by 1.4 $\mathrm{kcal} / \mathrm{mol}$. Therefore, conformers that adopt $\boldsymbol{B}^{1,4}$ and ${ }^{1} \boldsymbol{C}_{4}$ conformations are less stable than the ${ }^{4} \boldsymbol{C}_{1}$ conformer and are less likely to contribute to the subsequent anomeric O allylation reaction.

Figure S1. Optimized low-energy conformers of anomeric cesium alkoxides derived from D-mannose 7 and deoxy-D-mannose 9 and the corresponding O-allylation transition states.

Cartesian coordinates (\AA) and energies of optimized structures

7
M06-2X SCF energy: -1497.59980715 a.u.
M06-2X enthalpy: $\quad-1497.035779$ a.u.
M06-2X free energy: -1497.126152 a.u.
M06-2X SCF energy in solution: -1498.37279823 a.u.
M06-2X enthalpy in solution: -1497.808770 a.u.
M06-2X free energy in solution: $\quad-1497.899143$ a.u.

Cartesian coordinates
$\begin{array}{llll}\text { ATOM } & \text { X }\end{array}$
$\begin{array}{llll}\text { C } & -1.842475 & -3.844619 & -0.337282\end{array}$
$\begin{array}{llll}\text { C } & -2.597767 & -2.537599 & -0.055894\end{array}$
$\begin{array}{llll}\text { C } & -1.972016 & -1.331683 & -0.767173\end{array}$
$\begin{array}{llll}\text { C } & -0.467639 & -1.324329 & -0.566956\end{array}$
$\begin{array}{llll}\text { C } & 0.099499 & -2.686436 & -0.969834\end{array}$
$\mathrm{H} \quad-3.640789 \quad-2.679144 \quad-0.380942$
$\begin{array}{llll}\mathrm{H} & -2.025032 & -4.168334 & -1.374041\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.183410 & -1.364916 & -1.847307\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.252658 & -1.187152 & 0.498602\end{array}$
$\mathrm{H} \quad-0.165090 \quad-2.896842 \quad-2.022426$
$\begin{array}{llll}\text { O } & -0.452526 & -3.681580 & -0.135351\end{array}$

O	-2.294942	-4.843971	0.496300
O	0.143698	-0.322577	-1.343184
C	1.616995	-2.694428	-0.856409
H	1.964504	-3.730977	-0.736580
H	2.042254	-2.288831	-1.785465
O	2.005217	-1.891015	0.230551
O	-2.541364	-2.343901	1.340512
H	-2.706830	-1.399519	1.496685
C	0.602738	0.797010	-0.614892
H	-0.215516	1.517240	-0.470280
H	0.953375	0.471939	0.376022
C	3.380325	-1.569260	0.223233
H	3.974067	-2.467166	0.459475
H	3.683406	-1.219392	-0.775666
C	3.618148	-0.481949	1.236709
C	3.178017	-0.649118	2.552963
C	4.247798	0.705803	0.871539
C	3.376788	0.356422	3.491918
H	2.666978	-1.567717	2.827718
C	4.452026	1.712939	1.813702
H	4.560152	0.855568	-0.160219
C	4.019174	1.539320	3.124195

H	3.030573	0.220179	4.511993
H	4.936712	2.637323	1.513526
H	4.174294	2.323597	3.858874
C	1.761127	1.450413	-1.326621
C	2.418941	0.821957	-2.382143
C	2.229974	2.685586	-0.872904
C	3.541496	1.411296	-2.963708
H	2.036616	-0.124212	-2.749788
C	3.348997	3.274389	-1.450464
H	1.724778	3.178871	-0.045472
C	4.012994	2.635366	-2.497684
H	4.045326	0.913149	-3.786782
H	3.705434	4.232420	-1.083769
H	4.886464	3.093609	-2.951071
O	-2.490701	-0.134878	-0.207462
C	-3.699347	0.295567	-0.798352
H	-4.462190	-0.496461	-0.743737
H	-3.524609	0.506387	-1.864708
C	-4.208111	1.533714	-0.103380
C	-5.489721	1.997297	-0.407090
C	-3.427064	2.235048	0.812459
C	-5.983679	3.150695	0.190386

H	-6.104928	1.448502	-1.117053
C	-3.924955	3.389297	1.415517
H	-2.433978	1.871085	1.053076
C	-5.199974	3.851072	1.105964
H	-6.981671	3.500956	-0.054272
H	-3.310881	3.929127	2.129959
H	-5.584459	4.750903	1.575729
H	-2.301682	-4.459455	1.390191

9

M06-2X SCF energy:
-1422.40820896 a.u.
M06-2X enthalpy: -1421.849170 a.u.
M06-2X free energy: $\quad-1421.941154$ a.u.
M06-2X SCF energy in solution: -1423.13572553 a.u.

M06-2X enthalpy in solution:
-1422.576687 a.u.
M06-2X free energy in solution: $\quad-1422.668671$ a.u.

Cartesian coordinates
ATOM
X
Y
Z
C $\quad-1.715623 \quad-4.045691 \quad-0.181204$

C	-2.492956	-2.805530	0.231294
C	-2.004305	-1.580279	-0.546195
C	-0.490626	-1.487202	-0.442838
C	0.147918	-2.810758	-0.870729
H	-3.561802	-2.985900	0.080079
H	-1.907297	-4.276796	-1.248402
H	-2.269497	-1.670402	-1.614340
H	-0.223493	-1.318522	0.607704
H	-0.137788	-3.027838	-1.915851
O	-0.321495	-3.849210	-0.031964
O	-2.096158	-5.094857	0.639000
O	-2.528652	-0.373098	-0.036858
O	0.026651	-0.466089	-1.260444
C	1.666229	-2.727549	-0.808968
H	2.083262	-3.741814	-0.721504
H	2.026158	-2.284359	-1.747962
O	2.050049	-1.917560	0.274107
H	-2.319082	-2.644063	1.300748
C	3.372403	-1.431071	0.169283
H	4.087505	-2.252703	0.338048
H	3.549719	-1.033227	-0.841514
C	3.559221	-0.334620	1.183594

C	3.236375	-0.561846	2.524399
C	4.028219	0.919005	0.796002
C	3.391010	0.450472	3.464496
H	2.851379	-1.534001	2.819614
C	4.185780	1.934026	1.738532
H	4.252502	1.111452	-0.251400
C	3.869631	1.701246	3.073128
H	3.137624	0.266252	4.504154
H	4.543240	2.908887	1.420509
H	3.989828	2.491076	3.808344
C	-3.859337	-0.120460	-0.417664
H	-4.529474	-0.898635	-0.018440
H	-3.949568	-0.148029	-1.515509
C	0.391774	0.714195	-0.574773
H	0.809787	0.450591	0.409201
H	-0.490888	1.347703	-0.411652
C	-4.296627	1.227827	0.097293
C	-5.415102	1.843098	-0.466768
C	-3.629865	1.855114	1.148605
C	-5.868087	3.066307	0.015246
H	-5.933094	1.361104	-1.293018
C	-4.080782	3.083437	1.628326

H	-2.757871	1.376668	1.581611
C	-5.200187	3.690652	1.066730
H	-6.738181	3.535397	-0.433752
H	-3.554655	3.566800	2.446022
H	-5.549759	4.646979	1.442978
C	1.455254	1.455804	-1.345823
C	1.827716	2.739155	-0.938805
C	2.126392	0.862970	-2.413467
C	2.867881	3.409698	-1.573223
H	1.310129	3.207948	-0.104853
C	3.169649	1.533755	-3.051787
H	1.816390	-0.122517	-2.743665
C	3.547780	2.805403	-2.630791
H	3.149892	4.405135	-1.243054
H	3.684292	1.060968	-3.883162
H	4.359861	3.327127	-3.127642
H		-5.841709	0.442631

10

M06-2X SCF energy
-1152.16906153 a.u.

M06-2X enthalpy: $\quad-1151.727285$ a.u.
M06-2X free energy: $\quad-1151.803545$ a.u.

M06-2X SCF energy in solution:
M06-2X enthalpy in solution:
M06-2X free energy in solution:
-1152.77306755 a.u. -1152.331291 a.u. -1152.407551 a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-4.512394	0.127461	-0.377824
C	-4.209485	0.430566	1.097304
C	-2.974626	1.317382	1.245164
C	-1.824990	0.728901	0.435398
C	-2.284337	0.541737	-1.011354
H	-5.097808	0.919030	1.522241
H	-4.850127	1.046698	-0.881658
H	-3.194143	2.326781	0.873284
H	-1.582099	-0.268250	0.818137
H	-2.619731	1.515606	-1.413106
O	-3.363151	-0.372423	-1.032985
O	-5.521961	-0.804329	-0.484291
O	-0.687695	1.565959	0.454248
C	-1.159344	0.032119	-1.898343

H	-1.590428	-0.477183	-2.772884
H	-0.572396	0.892117	-2.251634
O	-0.329497	-0.829540	-1.157641
O	-4.013621	-0.844660	1.695173
H	-4.029606	-0.741872	2.655949
H	-2.697155	1.414494	2.302310
C	0.405988	1.064875	1.191160
H	0.304217	1.323948	2.256831
H	0.439557	-0.031119	1.110615
C	0.897180	-1.102720	-1.800988
H	0.723669	-1.758510	-2.669846
H	1.347267	-0.168383	-2.171457
C	1.826515	-1.752130	-0.810622
C	1.406381	-2.869582	-0.082976
C	3.101411	-1.234559	-0.592426
C	2.257935	-3.465053	0.840744
H	0.403611	-3.257492	-0.239567
C	3.957963	-1.834067	0.329196
H	3.418530	-0.342263	-1.128689
C	3.538866	-2.950414	1.045278
H	1.925577	-4.332434	1.403194
H	4.945515	-1.413827	0.495106

H	4.203551	-3.416627	1.766354
C	1.704133	1.611908	0.650856
C	1.770879	2.224522	-0.598722
C	2.878083	1.438890	1.386739
C	2.997729	2.644138	-1.112619
H	0.852250	2.382294	-1.153707
C	4.102286	1.855469	0.876175
H	2.833017	0.954916	2.360055
C	4.166655	2.457858	-0.380028
H	3.038330	3.123995	-2.086189
H	5.008013	1.710649	1.457848
H	5.120841	2.787554	-0.779367
H	-5.284011	-1.513981	0.137473

11

M06-2X SCF energy: -1152.17461546 a.u.
M06-2X enthalpy: $\quad-1151.733167$ a.u.
M06-2X free energy: $\quad-1151.811756$ a.u.
M06-2X SCF energy in solution:
-1152.77852863 a.u.

M06-2X enthalpy in solution: $\quad-1152.337080$ a.u.

M06-2X free energy in solution: $\quad-1152.415669$ a.u.

Cartesian coordinates

ATOM	X	Y	Z
C	-4.046898	-0.433075	-0.460010
C	-3.026591	0.691053	-0.265402
C	-1.593737	0.219987	-0.516412
C	-1.296622	-1.097637	0.192097
C	-2.416120	-2.105552	-0.098220
H	-3.281224	1.511013	-0.956025
H	-4.125806	-0.696018	-1.526220
H	-1.422224	0.064513	-1.593136
H	-1.250604	-0.915513	1.278002
H	-2.410154	-2.303565	-1.185558
O	-3.664737	-1.567723	0.285184
O	-5.295302	-0.026819	-0.038581
O	-0.703759	1.210867	-0.016806
O	-0.099939	-1.681237	-0.269406
C	-2.227850	-3.403032	0.662239
H	-3.033049	-4.098620	0.415626
H	-1.266614	-3.855835	0.412232
H	-2.259344	-3.204101	1.737794

O	-3.159550	1.113626	1.074111
H	-2.349374	1.603035	1.290893
C	-0.327738	2.187657	-0.965729
H	0.083018	1.684503	-1.856020
H	-1.201144	2.770456	-1.295428
C	1.093800	-1.056720	0.148533
H	0.996038	-0.740792	1.200216
H	1.288131	-0.146013	-0.435265
C	2.259666	-2.003643	0.001761
C	3.552557	-1.499762	0.162328
C	2.085846	-3.357424	-0.273972
C	4.656302	-2.337972	0.059271
H	3.692279	-0.439663	0.366537
C	3.192905	-4.197500	-0.383241
H	1.082583	-3.744776	-0.412544
C	4.478560	-3.693307	-0.214896
H	5.655718	-1.933446	0.186974
H	3.047170	-5.251189	-0.601592
H	5.338762	-4.350147	-0.298948
C	0.712645	3.105730	-0.374882
C	0.976231	4.324837	-1.001558
C	1.446021	2.745795	0.755222

C	1.966145	5.170308	-0.513725
H	0.400816	4.613758	-1.878195
C	2.433878	3.596678	1.247782
H	1.231770	1.804852	1.251564
C	2.698837	4.807230	0.614768
H	2.160961	6.116252	-1.009288
H	2.996694	3.311583	2.131395
H	3.467987	5.468634	1.000755
H	-5.163106	0.359465	0.844499

7-Cs

M06-2X SCF energy: -1517.13322054 a.u.
M06-2X enthalpy: $\quad-1516.580667$ a.u.
M06-2X free energy: $\quad-1516.683258$ a.u.
M06-2X SCF energy in solution: $\quad-1517.93365013$ a.u.
M06-2X enthalpy in solution: $\quad-1517.381097$ a.u.
M06-2X free energy in solution: $\quad-1517.483688$ a.u.

Cartesian coordinates
ATOM
X
Y
Z

C	1.003560	-1.868513	-2.401907
C	-0.122402	-2.172081	-1.374659
C	-1.218990	-1.115409	-1.353324
C	-0.648614	0.261918	-1.055134
C	0.508745	0.572243	-2.016642
H	-0.548389	-3.146711	-1.660298
H	0.491756	-1.720894	-3.394731
H	-1.735708	-1.070494	-2.324529
H	-0.275206	0.273246	-0.019530
H	0.055458	0.763047	-3.008722
O	1.458823	-0.437868	-2.057164
O	2.010625	-2.658921	-2.352216
O	-1.600760	1.291459	-1.241977
C	1.239455	1.835537	-1.577132
H	1.956088	2.135475	-2.355653
H	0.530649	2.656794	-1.398963
O	1.944017	1.517976	-0.387214
Cs	3.293417	-1.412519	-0.100192
O	0.427647	-2.258440	-0.060992
H	-0.342426	-2.287006	0.529722
C	-2.578288	1.433956	-0.240472
H	-3.408882	0.731404	-0.398742

H	-2.146771	1.187820	0.743751
C	2.729935	2.570518	0.120708
H	3.313464	3.043645	-0.684048
H	2.093607	3.345322	0.575697
C	3.651984	1.945897	1.137853
C	5.009794	1.769100	0.871755
C	3.113238	1.407096	2.310501
C	5.821175	1.063641	1.760989
H	5.433220	2.179245	-0.041787
C	3.917543	0.698536	3.198032
H	2.052989	1.535940	2.513232
C	5.274584	0.521907	2.922024
H	6.878298	0.938315	1.546906
H	3.490373	0.287396	4.107679
H	5.904307	-0.026572	3.615807
C	-3.103918	2.850529	-0.224349
C	-2.600167	3.832124	-1.074512
C	-4.123967	3.183345	0.670195
C	-3.105157	5.130733	-1.025294
H	-1.820941	3.566442	-1.780331
C	-4.626281	4.478352	0.721822
H	-4.527950	2.417441	1.329872

C	-4.115514	5.459206	-0.127687
H	-2.707412	5.886846	-1.695798
H	-5.419047	4.723219	1.422420
H	-4.507555	6.470876	-0.090341
O	-2.159741	-1.423495	-0.318865
C	-3.224615	-2.241358	-0.745610
H	-2.854062	-3.209641	-1.114408
H	-3.742269	-1.752737	-1.587470
C	-4.198879	-2.459179	0.385004
C	-5.137736	-3.487847	0.287212
C	-4.213154	-1.629357	1.505580
C	-6.084919	-3.679424	1.286995
H	-5.126085	-4.143085	-0.580874
C	-5.159082	-1.824413	2.510544
H	-3.473836	-0.839339	1.588275
C	-6.098384	-2.845545	2.403528
H	-6.810233	-4.482229	1.197198
H	-5.160399	-1.175465	3.381254
H	-6.835517	-2.994535	3.186265

7b-Cs

M06-2X SCF energy:	-1517.14092625 a.u.
M06-2X enthalpy:	-1516.586854 a.u.
M06-2X free energy:	-1516.682649 a.u.
M06-2X SCF energy in solution:	-1517.93171174 a.u.
M06-2X enthalpy in solution:	-1517.377639 a.u.
M06-2X free energy in solution:	-1517.473434 a.u.

Cartesian coordinates

ATOM	X	Y	
C	-2.131935	-0.331845	0.574452
C	-1.369076	-1.086266	-0.520179
C	-1.347532	-0.232409	-1.799328
C	-0.901693	1.251584	-1.575103
C	-1.542698	1.072803	0.777067
H	-1.891766	-2.032642	-0.732097
H	-2.185326	1.618394	1.481939
H	-2.103448	-0.874396	1.536905
H	-1.367331	1.850879	-2.384342
H	-2.369007	-0.253763	-2.194364
O	0.428410	1.328397	-1.544774
O	-1.600056	1.806051	-0.416961

O	-0.447719	-0.770019	-2.745406
O	-0.041310	-1.393214	-0.105728
O	-3.462901	-0.309998	0.098428
C	-0.165606	1.043005	1.455299
H	-0.223376	0.391933	2.339831
H	0.587627	0.652787	0.772141
O	0.209907	2.320515	1.934840
Cs	2.623095	-0.339543	-1.140437
C	-4.360552	0.499066	0.815539
H	-4.181069	1.559738	0.591545
H	-4.212253	0.358738	1.900699
C	0.047330	-2.474143	0.801475
H	-0.467247	-2.247131	1.745978
H	-0.418853	-3.371279	0.367920
H	0.231050	-0.055626	-2.729976
C	0.836644	3.118147	0.949369
H	0.280580	3.094441	0.008367
H	0.835105	4.138094	1.350979
C	-5.779953	0.132123	0.453260
C	-6.076905	-1.037644	-0.242833
C	-6.821905	0.974668	0.845978
C	-7.399792	-1.360570	-0.539317

H	-5.263577	-1.682145	-0.556473
C	-8.142359	0.650292	0.555454
H	-6.594597	1.894661	1.380320
C	-8.435393	-0.521376	-0.140183
H	-7.620609	-2.271830	-1.087232
H	-8.943171	1.314786	0.865683
H	-9.465258	-0.774085	-0.373187
C	1.515366	-2.699783	1.055829
C	2.242086	-3.597543	0.271129
C	2.193538	-1.902844	1.982143
C	3.626356	-3.695842	0.404757
H	1.717707	-4.214207	-0.454891
C	3.576685	-1.997530	2.119076
H	1.632534	-1.193674	2.586498
C	4.296405	-2.891231	1.325604
H	4.181278	-4.403419	-0.203993
H	4.091609	-1.378775	2.847555
H	5.373593	-2.971037	1.435728
C	2.266716	2.699758	0.679148
C	2.885746	3.086643	-0.514183
C	2.995836	1.954745	1.607323
C	4.220271	2.769816	-0.755429

H	2.301286	3.615853	-1.261233
C	4.328960	1.620253	1.361083
H	2.503887	1.650346	2.527587
C	4.948825	2.033227	0.182449
H	4.694114	3.093389	-1.678374
H	4.890824	1.053869	2.098792
H	5.992662	1.794468	-0.000721

9-Cs

M06-2X SCF energy: -1441.93592889 a.u.

M06-2X enthalpy: $\quad-1441.389701$ a.u.
M06-2X free energy: -1441.490811 a.u.

M06-2X SCF energy in solution: -1442.69325802 a.u.
M06-2X enthalpy in solution: $\quad-1442.147030$ a.u.
M06-2X free energy in solution: $\quad-1442.248140$ a.u.

Cartesian coordinates
ATOM
X
Y
Z
$\begin{array}{llll}\text { C } & 0.900824 & -2.271997 & -2.089789 \\ \text { C } & -0.275866 & -2.422864 & -1.093246\end{array}$

C	-1.332606	-1.335772	-1.197062
C	-0.707688	0.032100	-0.981401
C	0.463467	0.225997	-1.956503
H	-0.714210	-3.414386	-1.251319
H	0.483153	-2.229675	-3.130669
H	-1.787835	-1.334533	-2.203195
H	-0.330803	0.091096	0.054383
H	0.020487	0.335481	-2.965274
O	1.384890	-0.809355	-1.892692
O	1.890563	-3.066587	-1.878179
O	-2.364038	-1.475908	-0.226733
O	-1.611136	1.089877	-1.229245
C	1.221127	1.510452	-1.637595
H	1.916374	1.746946	-2.456823
H	0.522690	2.347692	-1.500285
O	1.964303	1.281729	-0.448756
Cs	3.497112	-1.499642	-0.133250
H	0.149378	-2.414872	-0.079189
C	2.692869	2.401435	-0.000438
H	3.242239	2.868187	-0.832713
H	2.015556	3.159055	0.422349
C	3.656216	1.879309	1.036199

C	5.026291	1.807314	0.785080
C	3.151729	1.326551	2.218036
C	5.883729	1.191217	1.697803
H	5.424626	2.230158	-0.134047
C	4.002443	0.707382	3.128944
H	2.082665	1.373967	2.409511
C	5.372081	0.634890	2.867661
H	6.949632	1.148787	1.495194
H	3.601064	0.286987	4.046091
H	6.038240	0.159037	3.580700
C	-3.340862	-2.427327	-0.556900
H	-2.905936	-3.438696	-0.594469
H	-3.751665	-2.218124	-1.558624
C	-2.521102	1.397530	-0.199112
H	-2.055204	1.209317	0.781588
H	-3.404378	0.748586	-0.250985
C	-4.454527	-2.394505	0.461514
C	-5.644218	-3.075990	0.196385
C	-4.315785	-1.715177	1.670810
C	-6.678971	-3.082800	1.124561
H	-5.760246	-3.602182	-0.748780
C	-5.354197	-1.719193	2.600618

H	-3.390000	-1.187129	1.872448
C	-6.536489	-2.402018	2.332562
H	-7.599269	-3.615109	0.904014
H	-5.236826	-1.187132	3.540234
H	-7.344270	-2.403523	3.057977
C	-2.935051	2.847983	-0.290145
C	-3.825316	3.358118	0.658617
C	-2.461825	3.688404	-1.295324
C	-4.228796	4.687207	0.609850
H	-4.206148	2.702893	1.439699
C	-2.867753	5.021409	-1.346515
H	-1.784455	3.285648	-2.040254
C	-3.748478	5.525813	-0.395327
H	-4.920958	5.070188	1.353791
H	-2.495355	5.666909	-2.136663
H	-4.063816	6.563879	-0.436807

9b-Cs

M06-2X SCF energy

M06-2X enthalpy:
-1441.94823977 a.u.
-1441.401010 a.u.

M06-2X free energy: -1441.499549 a.u.
M06-2X SCF energy in solution: -1442.69180321 a.u.

M06-2X enthalpy in solution: $\quad-1442.144573$ a.u.
M06-2X free energy in solution:
-1442.243112 a.u.

Cartesian coordinates

ATOM X
$\begin{array}{llll}\text { C } & -1.743101 & -0.233745 & -0.510560\end{array}$
$\begin{array}{llll}\text { C } & -1.376659 & -1.714470 & -0.312557\end{array}$
C $\quad-1.249694 \quad-2.385440 \quad-1.677794$

C $\quad-0.025002 \quad-1.848135 \quad-2.468895$
$\begin{array}{llll}\mathrm{C} & -1.296402 & 0.271597 & -1.894152\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.175838 & -2.199170 & 0.275007\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.121357 & 0.059373 & -2.599138\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.232232 & 0.345369 & 0.274881\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.244060 & -1.934799 & -3.559293\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.194386 & -2.195663 & -2.206032\end{array}$
$\begin{array}{llll}\mathrm{O} & 1.132188 & -2.277648 & -2.079775\end{array}$

O $\quad-0.091631 \quad-0.295861 \quad-2.289531$
$\begin{array}{llll}\mathrm{O} & -0.176824 & -1.713877 & 0.454315\end{array}$
$\begin{array}{llll}\mathrm{O} & -3.141114 & -0.017074 & -0.434503\end{array}$
$\begin{array}{llll}\mathrm{C} & -1.109288 & 1.781822 & -1.860841\end{array}$

H	-0.892067	2.157444	-2.870858
H	-2.020139	2.270148	-1.480193
O	-0.012041	2.051850	-1.004877
Cs	2.249244	-0.028893	-0.630581
H	-1.152833	-3.472154	-1.603669
C	0.373413	-3.002507	0.671747
H	-0.241827	-3.546251	1.407376
H	0.417760	-3.558074	-0.266314
C	-3.617076	0.107719	0.881579
H	-3.291431	-0.749834	1.493082
H	-3.192348	1.011037	1.351409
C	0.290183	3.418132	-0.850342
H	0.468731	3.892530	-1.827517
H	-0.550599	3.943743	-0.370103
C	1.529908	3.476971	0.006396
C	2.755787	3.896787	-0.506977
C	1.472191	2.985060	1.314562
C	3.910381	3.831504	0.274243
H	2.809647	4.272163	-1.525850
C	2.621811	2.912471	2.094549
H	0.518197	2.644052	1.709574
C	3.845958	3.334734	1.573007

H	4.858499	4.168597	-0.133392
H	2.565010	2.530261	3.109248
H	4.743397	3.284885	2.181693
C	1.780113	-2.814294	1.175477
C	2.859409	-3.213205	0.383005
C	2.023710	-2.149231	2.379708
C	4.166128	-2.958267	0.797816
H	2.654469	-3.663275	-0.584744
C	3.328147	-1.881645	2.788934
H	1.180754	-1.831370	2.988612
C	4.403136	-2.287543	1.996989
H	5.000831	-3.273856	0.178446
H	3.508674	-1.366369	3.727977
H	5.421218	-2.088241	2.318629
C	-5.123868	0.184742	0.886378
C	-5.870750	-0.209739	-0.222215
C	-5.785532	0.631387	2.031637
C	-7.262594	-0.158189	-0.182498
H	-5.351145	-0.548200	-1.111756
C	-7.174664	0.678018	2.073399
H	-5.206722	0.945940	2.897640
C	-7.918422	0.282967	0.962956

$\begin{array}{llll}\mathrm{H} & -7.836268 & -0.463456 & -1.052492\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.677363 & 1.027658 & 2.970184\end{array}$
$\begin{array}{llll}\mathrm{H} & -9.002954 & 0.322482 & 0.991198\end{array}$

10-Cs

M06-2X SCF energy:
-1171.69974392 a.u.
M06-2X enthalpy: -1171.269823 a.u.
M06-2X free energy: $\quad-1171.354306$ a.u.
M06-2X SCF energy in solution:
M06-2X enthalpy in solution:
-1171.903222 a.u.
M06-2X free energy in solution: $\quad-1171.987705$ a.u.

Cartesian coordinates
$\begin{array}{llll}\text { ATOM } & X & Y & \text { Z }\end{array}$
$\begin{array}{llll}\text { C } & -0.855295 & -3.066543 & 0.700944\end{array}$
C $\quad-0.083619 \quad-3.112172 \quad-0.648940$
$\begin{array}{llll}\text { C } & 1.367708 & -2.658164 & -0.512728\end{array}$
$\begin{array}{llll}\text { C } & 1.423242 & -1.228483 & 0.014381\end{array}$
$\begin{array}{llll}\text { C } & 0.661091 & -1.138754 & 1.340513\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.128003 & -4.155828 & -0.990269\end{array}$

H	-0.246965	-3.676706	1.425114
H	1.893139	-3.313272	0.195032
H	0.947604	-0.548861	-0.709975
H	1.258290	-1.693541	2.091028
O	-0.633312	-1.630404	1.228560
O	-2.113392	-3.295485	0.621439
O	2.744747	-0.785650	0.278008
C	0.537835	0.305553	1.810936
H	0.115320	0.323882	2.826395
H	1.518709	0.801845	1.815228
O	-0.351178	0.967040	0.922963
Cs	-2.896825	-0.673613	-0.220788
O	-0.770378	-2.276098	-1.590900
H	-0.354446	-2.419794	-2.451739
H	1.891059	-2.739071	-1.476668
C	3.515354	-0.533240	-0.864885
H	3.809592	-1.473210	-1.358573
H	2.925460	0.041805	-1.599740
C	-0.657699	2.290024	1.292824
H	-0.893374	2.349019	2.366686
H	0.198086	2.955760	1.099890
C	-1.859952	2.688980	0.473606

C	-3.114447	2.855206	1.060470
C	-1.744984	2.769431	-0.917808
C	-4.240318	3.098444	0.272836
H	-3.212546	2.786601	2.141141
C	-2.865679	3.007374	-1.707709
H	-0.769383	2.629735	-1.376313
C	-4.118392	3.169519	-1.112655
H	-5.210256	3.233080	0.741875
H	-2.764247	3.073049	-2.786923
H	-4.992306	3.363093	-1.727110
C	4.755017	0.247204	-0.495179
C	5.060231	0.545105	0.831076
C	5.618328	0.675049	-1.506140
C	6.214159	1.264072	1.139873
H	4.390014	0.205806	1.612917
C	6.768889	1.392193	-1.198749
H	5.385284	0.444476	-2.543884
C	7.070300	1.689911	0.129540
H	6.443802	1.490492	2.176926
H	7.430581	1.720462	-1.994684
H	7.967476	2.250404	0.373171

11-Cs

M06-2X SCF energy:
-1171.70134882 a.u.
M06-2X enthalpy: -1171.271526 a.u.
M06-2X free energy: -1171.355932 a.u.

M06-2X SCF energy in solution:
M06-2X enthalpy in solution:
M06-2X free energy in solution:

Cartesian coordinates
ATOM
X
Y
Z

C
$2.589040-0.109675$
1.712238
$\begin{array}{llll}\text { C } & 1.547415 & 0.905796 & 1.169653\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.134450 & 0.334871 & 1.100551\end{array}$
$\begin{array}{llll}C & 0.080795 & -0.989239 & 0.345685\end{array}$
$\begin{array}{llll}\text { C } & 1.196103 & -1.929329 & 0.829070\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.563902 & 1.776608 & 1.843412\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.169524 & -0.525973 & 2.668888\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.260047 & 0.161168 & 2.113473\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.225069 & -0.782518 & -0.729197\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.960791 & -2.188199 & 1.878116\end{array}$

O	2.441193	-1.300349	0.751863
O	3.801371	0.320537	1.741352
O	-0.708560	1.261406	0.405305
O	-1.141243	-1.670096	0.550272
C	1.237600	-3.203886	0.000593
H	2.021357	-3.865584	0.378564
H	0.278293	-3.725457	0.033277
Cs	4.483479	0.009559	-0.898900
H	1.464062	-2.958785	-1.044114
O	1.922167	1.315588	-0.146318
H	1.132281	1.754660	-0.502094
C	-1.332319	2.218051	1.230731
H	-1.869013	1.702120	2.043865
H	-0.589510	2.878617	1.703335
C	-2.280488	-1.099097	-0.044129
H	-2.027306	-0.721083	-1.048836
H	-2.639844	-0.233661	0.531456
C	-3.385477	-2.122718	-0.147979
C	-4.652955	-1.703406	-0.559563
C	-3.175712	-3.468050	0.144233
C	-5.693520	-2.615979	-0.687370
H	-4.822805	-0.650283	-0.777358

C	-4.220220	-4.383026	0.021101
H	-2.194560	-3.787187	0.477490
C	-5.478950	-3.962720	-0.396522
H	-6.673713	-2.276884	-1.008733
H	-4.047341	-5.429421	0.254868
H	-6.290315	-4.677678	-0.491902
C	-2.308603	3.032857	0.417894
C	-2.794436	4.238370	0.927947
C	-2.768207	2.584067	-0.820028
C	-3.733263	4.979455	0.218306
H	-2.433383	4.599299	1.888405
C	-3.705186	3.328708	-1.533421
H	-2.378028	1.655506	-1.222885
C	-4.192593	4.525321	-1.016667
H	-4.103116	5.915104	0.626316
H	-4.054594	2.971106	-2.497385
H	-4.923300	5.103864	-1.573191

7-TS

M06-2X SCF energy: -4205.84340442 a.u.

M06-2X enthalpy: -4205.210424 a.u.
M06-2X free energy: -4205.327523 a.u.

M06-2X SCF energy in solution:
M06-2X enthalpy in solution:
M06-2X free energy in solution:
Imaginary frequency:
$-455.3980 \mathrm{~cm}-1$

Cartesian coordinates

| ATOM | X |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { C } & -1.101295 & -1.778609 & 0.544633\end{array}$
$\begin{array}{llll}\text { C } & 0.210281 & -2.078534 & -0.200804\end{array}$
$\begin{array}{llll}\text { C } & 1.428701 & -1.559997 & 0.562472\end{array}$
$\begin{array}{llll}C & 1.280555 & -0.078759 & 0.881715\end{array}$
$\begin{array}{llll}\text { C } & -0.059735 & 0.178538 & 1.580854\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.272282 & -3.170344 & -0.321974\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.026875 & -2.285875 & 1.540531\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.564544 & -2.105202 & 1.508728\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.305995 & 0.490136 & -0.060036\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.002811 & -0.268372 & 2.589514\end{array}$
$\begin{array}{llll}\mathrm{O} & -1.132290 & -0.342462 & 0.847585\end{array}$
$\begin{array}{llll}\mathrm{O} & -2.176751 & -2.083625 & -0.159238\end{array}$
$\begin{array}{llll}\mathrm{O} & 2.282718 & 0.378449 & 1.761296\end{array}$

C	-0.326702	1.668375	1.724100
H	-1.223431	1.821182	2.342020
H	0.531028	2.165722	2.197657
O	-0.554995	2.179333	0.422899
Cs	-2.142261	0.396101	-1.805678
O	0.199100	-1.449245	-1.476338
H	1.126361	-1.471398	-1.768910
C	-5.029178	-0.508606	-0.272378
H	-5.376921	-1.269585	-0.966953
H	-5.410590	0.500292	-0.407149
C	-4.257451	-0.826621	0.771006
H	-3.951381	-0.063906	1.483539
C	-3.763626	-2.187376	1.054499
H	-3.063318	-2.364190	1.853708
H	-4.099920	-3.020386	0.458267
Br	-5.464178	-2.598806	2.689426
C	-0.912823	3.545538	0.395770
H	-0.028765	4.177848	0.566495
H	-1.645844	3.765246	1.185997
C	3.544277	0.641418	1.188042
H	3.418859	1.037370	0.168717
H	4.125910	-0.285875	1.089951

C	-1.519852	3.793300	-0.961213
C	-2.902118	3.904042	-1.116701
C	-0.706388	3.772049	-2.098046
C	-3.468037	3.992112	-2.388637
H	-3.540507	3.913458	-0.236706
C	-1.266852	3.857126	-3.369931
H	0.370444	3.680275	-1.978312
C	-2.650855	3.963495	-3.517170
H	-4.544323	4.085826	-2.497005
H	-0.626377	3.849162	-4.246637
H	-3.088382	4.039481	-4.507831
C	4.300519	1.636494	2.035612
C	5.533979	2.108083	1.579215
C	3.813116	2.084945	3.261223
C	6.267328	3.017383	2.332067
H	5.920396	1.758837	0.623690
C	4.548724	2.996980	4.017078
H	2.860858	1.710746	3.620709
C	5.774744	3.466163	3.556756
H	7.222980	3.378050	1.963994
H	4.160677	3.339850	4.971560
H	6.345487	4.176122	4.147138

O	2.580811	-1.706664	-0.263887
C	3.290216	-2.919394	-0.052606
H	2.598552	-3.773001	-0.100686
H	3.744843	-2.907434	0.948773
C	4.345149	-3.036738	-1.117329
C	3.980710	-3.401354	-2.415103
C	5.679146	-2.742960	-0.841037
C	4.937129	-3.475350	-3.421545
H	2.939827	-3.634475	-2.630764
C	6.641306	-2.819085	-1.845709
H	5.965775	-2.456764	0.168088
C	6.270891	-3.185354	-3.136310
H	4.646420	-3.765644	-4.426339
H	7.679001	-2.594438	-1.619660
H	7.019883	-3.250188	-3.919432

7b-TS

M06-2X SCF energy: $\quad-4205.84654015$ a.u.
M06-2X enthalpy: $\quad-4205.213113$ a.u.
M06-2X free energy: $\quad-4205.324861$ a.u.

M06-2X SCF energy in solution:
M06-2X enthalpy in solution:
M06-2X free energy in solution:
Imaginary frequency:
$-467.2594 \mathrm{~cm}-1$

Cartesian coordinates
$\begin{array}{llll}\text { ATOM } & \text { X }\end{array}$
$\begin{array}{llll}\text { C } & -2.775808 & -0.538060 & 0.344220\end{array}$
$\begin{array}{llll}\text { C } & -2.087910 & -0.741968 & -1.009379\end{array}$
$\begin{array}{llll}\mathrm{C} & -1.731330 & 0.624439 & -1.599462\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.918540 & 1.497740 & -0.615600\end{array}$
$\begin{array}{llll}\text { C } & -1.917708 & 0.334117 & 1.273670\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.786298 & -1.244033 & -1.695114\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.530533 & 0.619033 & 2.138242\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.960084 & -1.508211 & 0.841412\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.000649 & 2.546889 & -0.958410\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.681108 & 1.122794 & -1.818613\end{array}$
$\begin{array}{llll}\mathrm{O} & 0.365188 \quad 1.071215 & -0.582918\end{array}$
$\begin{array}{llll}\mathrm{O} & -1.570684 & 1.558679 & 0.664830\end{array}$
$\begin{array}{llll}\text { O } & -0.996973 & 0.489198 & -2.790476\end{array}$
$\begin{array}{llll}\mathrm{O} & -0.920220 & -1.545927 & -0.867834\end{array}$
$\begin{array}{llll}\text { O } & -4.011487 & 0.060355 & 0.016386\end{array}$

C	-0.734421	-0.434423	1.873491
H	-1.094753	-1.413393	2.219005
H	0.041025	-0.590692	1.122062
O	-0.215786	0.217889	3.016154
Cs	2.287524	-0.969327	-0.772193
C	-4.856172	0.358449	1.103461
H	-4.537982	1.285500	1.599967
H	-4.798468	-0.452490	1.850302
C	-1.188607	-2.933523	-0.940989
H	-1.934241	-3.228106	-0.187763
H	-1.589088	-3.189543	-1.932180
H	-0.076148	0.630379	-2.499204
C	0.813932	1.139835	2.729444
H	0.553521	1.753069	1.858406
H	0.887492	1.795880	3.603201
C	-6.278386	0.504501	0.619072
C	-6.712179	-0.124753	-0.546657
C	-7.187172	1.251451	1.369489
C	-8.039090	-0.010045	-0.952932
H	-5.998588	-0.689168	-1.137056
C	-8.514831	1.360589	0.968366
H	-6.850755	1.756778	2.272065

C	-8.944587	0.728883	-0.196239
H	-8.366024	-0.497753	-1.866479
H	-9.210839	1.947340	1.560020
H	-9.978237	0.818045	-0.515781
C	0.114162	-3.645852	-0.690293
C	0.900815	-4.095834	-1.752360
C	0.604457	-3.758072	0.614120
C	2.161345	-4.646108	-1.517335
H	0.522959	-4.010343	-2.768326
C	1.860507	-4.309211	0.853999
H	-0.002862	-3.404944	1.443965
C	2.644731	-4.749507	-0.213532
H	2.760531	-5.001975	-2.350117
H	2.223555	-4.405048	1.872499
H	3.620987	-5.187019	-0.028671
C	2.153016	0.466713	2.491992
C	3.233667	1.221244	2.019851
C	2.338550	-0.895202	2.740933
C	4.461518	0.618404	1.755524
H	3.125133	2.290001	1.835780
C	3.574323	-1.497771	2.495406
H	1.507530	-1.471210	3.139057

C	4.635433	-0.747642	1.988715
H	5.275129	1.227817	1.372626
H	3.713688	-2.553605	2.710276
H	5.597407	-1.216940	1.803377
C	1.295461	2.601546	-3.191805
H	0.322899	3.055862	-3.025492
H	1.586506	2.426034	-4.222181
C	2.100452	2.284068	-2.176767
H	3.085535	1.862412	-2.374209
C	1.769782	2.510376	-0.755697
H	2.249353	1.947832	0.021526
H	1.020232	3.238081	-0.475019
Br	3.561045	4.057032	-0.373827

9-TS

M06-2X SCF energy: $\quad-4130.64632756$ a.u.
M06-2X enthalpy: $\quad-4130.019844$ a.u.
M06-2X free energy: $\quad-4130.136277$ a.u.
M06-2X SCF energy in solution:
-4134.24220735 a.u.
M06-2X enthalpy in solution: -4133.615724 a.u.

M06-2X free energy in solution: $\quad-4133.732157$ a.u.
Imaginary frequency: $\quad-460.8448 \mathrm{~cm}-1$

Cartesian coordinates

| ATOM | X |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { C } & -0.918134 & -1.956871 & 0.342283\end{array}$
$\begin{array}{llll}\text { C } & 0.394753 & -2.182551 & -0.417508\end{array}$
$\begin{array}{llll}C & 1.614488 & -1.622139 & 0.305684\end{array}$
$\begin{array}{llll}\text { C } & 1.404444 & -0.153751 & 0.651083\end{array}$
$\begin{array}{llll}\text { C } & 0.083286 & 0.015574 & 1.409891\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.501721 & -3.255658 & -0.605239\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.876349 & -2.485150 & 1.324856\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.785205 & -2.161564 & 1.253833\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.360235 & 0.427610 & -0.285680\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.200200 & -0.474586 & 2.392447\end{array}$
$\begin{array}{llll}\mathrm{O} & -0.989107 & -0.524653 & 0.691214\end{array}$
$\begin{array}{llll}\text { O } & -1.986251 & -2.243254 & -0.392122\end{array}$
$\begin{array}{llll}\text { O } & 2.785307 & -1.694459 & -0.488298\end{array}$
$\begin{array}{llll}\mathrm{O} & 2.409810 & 0.354881 & 1.496741\end{array}$
$\begin{array}{llll}\text { C } & -0.249880 & 1.480805 & 1.647204\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.079662 & 1.559583 & 2.364732\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.627543 & 2.005656 & 2.048168\end{array}$

O	-0.648548	2.039874	0.405906
Cs	-2.708974	0.388493	-1.465914
H	0.305663	-1.685078	-1.392541
C	-4.666832	-2.792724	-1.296527
H	-3.931623	-3.558981	-1.521715
H	-5.470934	-2.631826	-2.009009
C	-4.594756	-2.095527	-0.162093
H	-5.336355	-1.332803	0.067917
C	-3.555806	-2.318426	0.875934
H	-3.200916	-3.313783	1.089144
H	-3.117598	-1.488299	1.408649
Br	-5.135036	-2.468584	2.656969
C	-0.972366	3.413668	0.481876
H	-1.564557	3.620530	1.385569
H	-0.056066	4.020009	0.530644
C	3.371528	-2.970409	-0.558092
H	3.459607	-3.400528	0.452960
H	2.744398	-3.657083	-1.147454
C	3.646851	0.663776	0.890726
H	3.486071	0.956769	-0.158349
H	4.295923	-0.220987	0.869439
C	-1.780906	3.723535	-0.752167

C	-1.171304	3.662880	-2.009262
C	-3.158766	3.930180	-0.675314
C	-1.928605	3.800070	-3.169470
H	-0.098504	3.497288	-2.070658
C	-3.921164	4.072175	-1.835328
H	-3.639911	3.976992	0.298733
C	-3.307779	4.000470	-3.084180
H	-1.444647	3.758621	-4.140722
H	-4.991024	4.242013	-1.762042
H	-3.897485	4.115132	-3.988508
C	4.741177	-2.870286	-1.186075
C	5.211923	-1.674977	-1.726045
C	5.552910	-4.005986	-1.233894
C	6.480064	-1.616956	-2.301917
H	4.577681	-0.795807	-1.694192
C	6.816572	-3.948849	-1.809930
H	5.191322	-4.941918	-0.813122
C	7.285442	-2.750319	-2.345942
H	6.838868	-0.680281	-2.718359
H	7.438062	-4.838586	-1.837030
H	8.273213	-2.701861	-2.793515
C	4.323192	1.792144	1.632943

C	5.514770	2.313553	1.122596
C	3.800610	2.321135	2.810888
C	6.168589	3.353783	1.772486
H	5.931407	1.898045	0.206908
C	4.456466	3.364077	3.464154
H	2.884726	1.904932	3.216015
C	5.638002	3.885266	2.947341
H	7.092785	3.750900	1.363752
H	4.041823	3.767395	4.383231
H	6.146675	4.697584	3.456929

9b-TS

M06-2X SCF energy: $\quad-4130.65511132$ a.u.
M06-2X enthalpy: $\quad-4130.027964$ a.u.
M06-2X free energy: $\quad-4130.139089$ a.u.
M06-2X SCF energy in solution:
M06-2X enthalpy in solution:
M06-2X free energy in solution:
Imaginary frequency:
$-455.5810 \mathrm{~cm}-1$

Cartesian coordinates

ATOM	X	Y	Z
C	-2.399194	-0.349243	-0.285522
C	-1.964188	-1.293340	0.858045
C	-1.228639	-2.490521	0.261528
C	0.060537	-2.058482	-0.470093
C	-1.587959	-0.610589	-1.560986
H	-2.865607	-1.637235	1.391525
H	-2.038306	-1.485780	-2.057882
H	-2.233794	0.689956	0.048056
H	0.286371	-2.816704	-1.251860
H	-1.928534	-2.981195	-0.426265
O	1.088296	-1.819880	0.343296
O	-0.239130	-0.824274	-1.239240
O	-1.168565	-0.512608	1.740509
O	-3.752443	-0.534229	-0.638758
C	-1.677200	0.561350	-2.536708
H	-1.434560	0.225379	-3.552438
H	-2.703523	0.944278	-2.537026
O	-0.811100	1.623165	-2.163796
Cs	1.033973	1.214025	0.574283

H	-0.958993	-3.240900	1.007673
C	3.916903	-0.240757	-0.123250
H	4.186491	-0.482281	0.902883
H	4.261376	0.712391	-0.515720
C	3.267043	-1.122518	-0.887636
H	3.042840	-0.893692	-1.928652
C	2.811980	-2.444596	-0.421369
H	2.229409	-3.089291	-1.057852
H	3.083386	-2.787075	0.564870
Br	4.722700	-3.558781	-1.358065
C	0.407498	1.598566	-2.889304
H	0.889100	0.617977	-2.781097
H	0.197432	1.758401	-3.958736
C	-0.619071	-1.226543	2.840224
H	-0.151210	-2.152729	2.500911
H	-1.418982	-1.461955	3.559053
C	-4.655327	0.140954	0.207374
H	-4.437495	-0.095607	1.261642
H	-4.531171	1.229895	0.091994
C	1.319555	2.683434	-2.374278
C	2.702517	2.487839	-2.364669
C	0.795190	3.876081	-1.869335

C	3.552102	3.467965	-1.855088
H	3.116544	1.557157	-2.747173
C	1.643652	4.851967	-1.350584
H	-0.280702	4.021991	-1.873072
C	3.023265	4.649962	-1.340108
H	4.625342	3.302948	-1.854074
H	1.227747	5.775656	-0.959331
H	3.683618	5.411923	-0.938261
C	-6.071312	-0.259419	-0.122514
C	-6.346373	-1.453086	-0.787687
C	-7.127977	0.561639	0.273881
C	-7.664093	-1.819257	-1.052058
H	-5.522172	-2.083344	-1.103230
C	-8.443978	0.192796	0.016117
H	-6.918725	1.498861	0.785002
C	-8.715410	-1.000384	-0.649956
H	-7.868799	-2.748384	-1.575176
H	-9.257891	0.840180	0.327713
H	-9.741516	-1.286916	-0.858167
C	0.438037	-0.351352	3.459914
C	1.788197	-0.676818	3.311633
C	0.086700	0.847589	4.085559

C	2.775709	0.185063	3.787430
H	2.053636	-1.584001	2.775108
C	1.071599	1.715084	4.551710
H	-0.965036	1.100814	4.196842
C	2.419058	1.384314	4.402141
H	3.823308	-0.077071	3.672313
H	0.790837	2.642845	5.041344
H	3.187190	2.055908	4.773254

10-TS

M06-2X SCF energy: $\quad-3860.41115218$ a.u.
M06-2X enthalpy: -3859.901245 a.u.

M06-2X free energy: $\quad-3860.001590$ a.u.
M06-2X SCF energy in solution: -3863.88476731 a.u.

M06-2X enthalpy in solution: $\quad-3863.374860$ a.u.
M06-2X free energy in solution: -3863.475205 a.u.
Imaginary frequency: $\quad-457.5178 \mathrm{~cm}-1$

Cartesian coordinates
$\begin{array}{llll}\text { ATOM } & \text { X }\end{array}$

C	0.938664	-1.694287	1.226056
C	-0.064578	-1.503604	2.378975
C	-1.483363	-1.855269	1.933766
C	-1.874813	-1.008952	0.724194
C	-0.841585	-1.194101	-0.390173
H	0.263978	-2.158625	3.196170
H	0.858888	-2.766906	0.916469
H	-1.534378	-2.914821	1.651605
H	-1.891864	0.055580	1.004731
H	-0.932456	-2.230978	-0.761182
O	0.454577	-0.925118	0.070711
O	2.159539	-1.283784	1.518217
O	-3.122856	-1.382179	0.175871
C	-1.083402	-0.241514	-1.549864
H	-0.393296	-0.484042	-2.371130
H	-2.118734	-0.328751	-1.906992
O	-0.820207	1.069842	-1.080919
Cs	1.640370	1.592585	0.963983
O	-0.008741	-0.138123	2.799524
H	-0.544262	-0.062909	3.601168
H	-2.189675	-1.707071	2.761566
C	4.359868	0.121912	-0.437639

H	5.040230	0.139410	0.410431
H	4.429940	0.939791	-1.150027
C	3.553297	-0.921739	-0.652738
H	2.907465	-0.948522	-1.527404
C	3.465475	-2.097420	0.233526
H	2.725440	-2.861859	0.066718
H	4.142941	-2.195495	1.066624
Br	4.891531	-3.418002	-1.160567
C	-0.906587	2.063955	-2.078981
H	-1.956956	2.233825	-2.361024
H	-0.360406	1.752668	-2.982020
C	-4.237340	-0.951037	0.913804
H	-4.142061	0.124162	1.142762
H	-4.297626	-1.480457	1.877755
C	-0.284532	3.306801	-1.495122
C	0.938802	3.789862	-1.960045
C	-0.880595	3.916728	-0.386632
C	1.561286	4.868166	-1.329820
H	1.410792	3.316860	-2.817651
C	-0.260724	4.989217	0.247839
H	-1.830508	3.536285	-0.019591
C	0.965220	5.465133	-0.221614

H	2.508957	5.240792	-1.706101
H	-0.735282	5.461670	1.102601
H	1.445857	6.306420	0.267833
C	-5.504766	-1.192494	0.129376
C	-6.722505	-0.752345	0.652665
C	-5.487983	-1.847850	-1.099493
C	-7.907724	-0.961793	-0.042603
H	-6.741523	-0.239644	1.612429
C	-6.676711	-2.057981	-1.796717
H	-4.542195	-2.193750	-1.500905
C	-7.887462	-1.616912	-1.272937
H	-8.847758	-0.613070	0.373969
H	-6.653652	-2.571920	-2.752989
H	-8.811903	-1.782688	-1.817196

11-TS

M06-2X SCF energy: $\quad-3860.40999131$ a.u.
M06-2X enthalpy: $\quad-3859.900347$ a.u.
M06-2X free energy: $\quad-3860.000092$ a.u.
M06-2X SCF energy in solution: -3863.88541842 a.u.

M06-2X enthalpy in solution:
M06-2X free energy in solution: -3863.475519 a.u.

Imaginary frequency:
$-451.1589 \mathrm{~cm}-1$

Cartesian coordinates

ATOM	X	Y	
C	1.544040	-0.303163	-0.681381
C	0.282624	-1.179506	-0.667203
C	-0.983861	-0.331812	-0.799637
C	-1.010317	0.811445	0.212200
C	0.328645	1.562958	0.219312
H	0.358164	-1.887806	-1.505107
H	1.507388	0.305309	-1.618696
H	-1.051750	0.106549	-1.806828
H	-1.189333	0.383215	1.213516
H	0.429655	2.058585	-0.761623
O	1.397316	0.663664	0.409995
O	2.663264	-0.996922	-0.528980
O	-2.115183	-1.162543	-0.547401
O	-1.997520	1.767533	-0.096370
H	0.382169	2.604601	1.321158
H	1.335282	3.138004	1.284482

H	-0.435832	3.319863	1.214092
Cs	2.595044	-1.376965	2.284260
H	0.290860	2.117258	2.298943
O	0.210718	-1.889414	0.564544
H	-0.709139	-2.200000	0.617599
C	5.461314	-0.198363	0.941655
H	5.859917	-1.160837	0.628272
H	5.823880	0.208246	1.881864
C	4.668747	0.513397	0.133346
H	4.320015	1.499648	0.431363
C	4.205979	0.051731	-1.188960
H	3.505146	0.634368	-1.763334
H	4.599195	-0.860216	-1.609002
Br	5.888137	1.341602	-2.333277
C	-3.334488	1.388712	0.136123
H	-3.398587	0.799585	1.065610
H	-3.705185	0.741412	-0.672122
C	-2.649073	-1.783269	-1.700838
H	-1.898602	-2.426712	-2.183561
H	-2.928117	-1.004795	-2.429169
C	-3.862481	-2.594568	-1.322550
C	-4.613010	-2.276813	-0.190164

C	-4.269999	-3.652180	-2.136421
C	-5.758381	-3.006137	0.119227
H	-4.287534	-1.464537	0.451851
C	-5.417905	-4.376795	-1.830998
H	-3.683978	-3.911889	-3.014916
C	-6.165557	-4.054986	-0.700492
H	-6.334161	-2.753502	1.004368
H	-5.723925	-5.198165	-2.471316
H	-7.058371	-4.622395	-0.457809
C	-4.207756	2.615883	0.244703
C	-5.577865	2.450141	0.460543
C	-3.686617	3.902504	0.133909
C	-6.414639	3.554226	0.571969
H	-5.990558	1.445919	0.540281
C	-4.526225	5.010083	0.242162
H	-2.624980	4.029906	-0.045219
C	-5.888933	4.841164	0.463156
H	-7.477704	3.411827	0.740802
H	-4.110363	6.008937	0.150580
H	-6.540841	5.705169	0.546249

Synthesis of the hexasaccharide core of the fucosylated \boldsymbol{N}-linked glycans.

61, NIS, TfOH,

$$
\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}
$$

```
DDQ, \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\), pH 7 buffer, r.t.
```


Phenyl 3,6-di-O-benzyl-4-O-trifluoromethylsulfonyl-2-deoxy-2-phthalimido-1-thio- β-D-galactopyranoside (57)

To a solution of known compound $\mathbf{5 6}{ }^{[21]}(2.67 \mathrm{~g}, 4.6 \mathrm{mmol})$ in MeOH (25 mL) and THF (25 mL) was added 0.5 M NaOMe solution in $\mathrm{MeOH}(6.4 \mathrm{~mL}, 3.22 \mathrm{mmol})$. The mixture was stirred at room temperature for 7 h . The
reaction mixture was neutralized by the addition of Amberlyst IR-120 $\left(\mathrm{H}^{+}\right)$, stirred for 30 min , filtered and concentrated. This residue was purified by silica gel column chromatography (Hexanes/EtOAc $=5 / 1$ to $3 / 1$) to give the corresponding alcohol (2.52 $\mathrm{g}, 94 \%)$. To a solution of the obtained alcohol ($0.67 \mathrm{~g}, 1.2 \mathrm{mmol}$) and pyridine $(1.0 \mathrm{~mL}$, $12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{O}(0.35 \mathrm{~mL}, 2.0 \mathrm{mmol})$ dropwise. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then quenched with ice water. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL} \times 3)$. The combined organic layer was washed sequentially with saturated CuSO_{4} $(50 \mathrm{~mL} \times 3)$ and water $(50 \mathrm{~mL} \times 3)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the sugar derived triflate $57(725 \mathrm{mg}, 85 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.85\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.74\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.70\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.58(\mathrm{dd}, J=7.3,1.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.42-7.32\left(\mathrm{~m}, 7 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.25-7.18\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.98-6.93(\mathrm{~m}, 3 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 6.90-6.83\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.54(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 5.52(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, $H-1), 4.70\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.65\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.52-$ $4.45\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}, H-2\right), 4.38(\mathrm{dd}, J=10.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, H-3), 4.21(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{OCH} \mathrm{A}_{2} \mathrm{Ar}\right), 4.01(\mathrm{dd}, J=8.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}, H-5), 3.79(\mathrm{dd}, J=9.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, H-6 \mathrm{a})$, $3.69(\mathrm{dd}, J=9.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.05,166.87$, 137.36, 136.51, 134.26, 133.98, 132.81, 131.67, 131.62, 131.61, 129.01, 128.69, 128.44, 128.36, 128.34, 128.28, 128.24, 128.01, 123.80, 123.45, $118.68\left(\mathrm{q},{ }^{1} J_{\text {C-F }}=319.7 \mathrm{~Hz}\right)$, 84.21, 80.57, 75.14, 73.91, 72.97, 71.89, 67.20, 50.99.

Phenyl \boldsymbol{O}-2,4-di- O-benzyl-3,6-di- \boldsymbol{O}-(para-methoxybenzyl)- $\boldsymbol{\beta}$-d-mannopyranosyl$(1 \rightarrow 4)-3,6-d i-O$-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-gluopyranoside (60)

To a mixture of mannopyranosyl donor $\mathbf{5 8}^{[22]}(1.02 \mathrm{~g}, 2.0$ $\mathrm{mmol})$, sugar-derived triflate acceptor $57(3.7 \mathrm{~g}, 5.0 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~g}, 6.0$ $\mathrm{mmol})$ was added 1,2-dichloroethane (20 mL). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The crude reaction mixture was purified by silica gel column chromatography $($ Hexanes $/ E t O A c=5 / 1$ to $1 / 1)$ to give disaccharide $59(1.73 \mathrm{~g}, 80 \%)$. To a solution of $59(1.0 \mathrm{~g}, 0.93 \mathrm{mmol})$ in DMF $(4.0 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(75 \mathrm{mg}, 1.86$ $\mathrm{mmol}, 60 \%$ in mineral oil) portion wise. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h before $\mathrm{BnBr}(0.17 \mathrm{~mL}, 1.4 \mathrm{mmol})$ was added. The reaction mixture was warmed up and stirred at ambient temperature for 3 h before being quenched with water. The resulting mixture was extracted with EtOAc three times, and combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by silica gel column chromatography $($ Hexanes $/ E t O A c=5 / 1$ to $3 / 1)$ to give the title compound $60(1.01 \mathrm{~g}, 94 \%)$. The ${ }^{1} J_{\mathrm{C}-\mathrm{H}}$ of mannosidic anomeric carbon for $\mathbf{6 0}$ was determined to be $159.0 \mathrm{~Hz} .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=+5.9(c$ $1.0, \mathrm{CHCl}_{3}$); FT-IR (thin film): 3064, 3032, 2938, 2863, 1777, 1714, 1678, 1512, 1455, 1388, 1250, 1174, 1102, 1070, $917,807,701 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.80$ $\left(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.70\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.65\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 7.50-7.44\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.42-7.38\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.37-7.27\left(\mathrm{~m}, 11 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.24$ $-7.13\left(\mathrm{~m}, 9 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.89-6.81\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.78-6.69\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.52(\mathrm{~d}, J=9.9$
$\mathrm{Hz}, 1 \mathrm{H}, H-1), 4.96\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH} \mathrm{H}_{2} \mathrm{Ar}\right), 4.86(\mathrm{~d}, J=$ $\left.10.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.60\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.55-$ $4.49\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.49-4.41\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.38(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.32-4.23(\mathrm{~m}, 2 \mathrm{H}, H-3, H-2), 4.02(\mathrm{dd}, J=9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, H-4), 3.90(\mathrm{t}, J$ $\left.=9.6 \mathrm{~Hz}, 1 \mathrm{H}, H-4^{\prime}\right), 3.81-3.78\left(\mathrm{~m}, 4 \mathrm{H}, H-2^{\prime},-\mathrm{OCH}_{3}\right), 3.77-3.70\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{OCH}_{3}, H-\right.$ 6a, H-6'a), $3.66-3.59\left(\mathrm{~m}, 3 \mathrm{H}, H-6 \mathrm{~b}, H-6^{\prime} \mathrm{b}, H-5\right), 3.42-3.34\left(\mathrm{~m}, 2 \mathrm{H}, H-3^{\prime}, H-5^{\prime}\right) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 168.08,167.31,159.25,158.98,139.03,138.91,138.63$, $138.06,133.86,133.69,132.82,132.06,131.80,131.69,130.74,130.48,129.33,129.28$, $128.87,128.58,128.38,128.25,128.06,128.00,127.94,127.85,127.78,127.72,127.66$, $127.45,126.82,123.44,123.33,113.86,113.73,101.79,83.37,82.50,79.26,78.57$, $76.04,75.21,75.11,74.99,74.81,74.18,73.59,73.07,71.61,69.22,68.91,55.36,55.31$, 54.86; LRMS (ESI) calculated for $\mathrm{C}_{70} \mathrm{H}_{69} \mathrm{NNaO}_{13} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$1187.44, found 1187.30.

Benzyl O-2,4-di-O-benzyl-3,6-di-O-(para-methoxybenzyl)- β-d-mannopyranosyl-

 $(1 \rightarrow 4)-O-3,6-d i-O$-benzyl-2-deoxy-2-phthalimido-1-thio- $\boldsymbol{\beta}$-d-gluopyranosyl$(1 \rightarrow 4)$ - O-[2,3,4-tri- O-benzyl- α-L-fucopyranosyl-($1 \rightarrow 6$)]-3- O-benzyl-2-deoxy-2-
phthalimido- β-d-gluopyranoside

To a mixture of donor $60(87 \mathrm{mg}$, 0.075 mmol), acceptor $61{ }^{[23]}(45 \mathrm{mg}$, 0.05 mmol), activated $4 \AA$ molecular sieves $(300 \mathrm{mg})$, and NIS $(84 \mathrm{mg})$ was added
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. The solution was cooled to $-40^{\circ} \mathrm{C}$ and $\mathrm{TfOH}(2.0 \mu \mathrm{~L})$ was added. The resulting mixture was stirred at this temperature overnight and then filtered through celite. The filtrate was quenched and washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude reaction mixture was purified by preparative $\mathrm{TLC}\left(\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Toluene $\left.=1 / 5 / 5\right)$ to furnish the title tetra-saccharide $\mathbf{6 2}(57 \mathrm{mg}, 58 \%) .[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 3}}=-3.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$; FT-IR (thin film): $3065,3033,2934,2867,1777,1716,1614,1514,1454,1388,1249,1091,1038$, $749,724,700 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.88\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.82$ $\left(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.76-7.56\left(\mathrm{~m}, 7 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.50\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.46-$ $7.11\left(\mathrm{~m}, 32 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.07\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.04-6.91\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.87-6.69(\mathrm{~m}, 12 \mathrm{H}$, $\left.H_{\mathrm{Ar}}\right), 5.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.01-4.91(\mathrm{~m}, 5 \mathrm{H}), 4.91-4.81(\mathrm{~m}, 4 \mathrm{H}), 4.80-$ $4.72(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.47(\mathrm{~m}, 9 \mathrm{H}), 4.45-4.26(\mathrm{~m}, 8 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}$, $J=10.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{dd}, J=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85$ $(\mathrm{m}, 2 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 3 \mathrm{H})$, $3.41(\mathrm{dd}, J=10.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=9.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{ddd}, J=9.8,5.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{ddd}, J=9.9,3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 168.27,167.89,167.78,167.67,159.19,158.91,139.21,139.17$, $139.05,138.96,138.86,138.73,138.07,137.16,133.91,133.73,133.67,133.58,132.01$, $131.79,131.66,130.87,130.59,129.28,129.19,128.62,128.60,128.51,128.42,128.34$, $128.23,128.19,128.10,128.07,128.05,127.91,127.89,127.74,127.72,127.62,127.60$, $127.57,127.55,127.47,127.44,127.37,127.08,126.95,126.72,123.55,123.31,123.20$, $113.81,113.68,101.45,96.90,96.86,96.70,82.46,79.57,79.24,77.71,77.33,76.09$,
$76.05,75.82,75.30,75.09,75.06,74.84,74.82,74.69,74.63,74.43,74.36,73.79,73.39$, $73.20,73.09,72.52,71.30,69.96,69.27,68.51,66.07,63.94,56.68,55.95,55.35,55.25$, 16.51; LRMS (ESI) calculated for $\mathrm{C}_{119} \mathrm{H}_{118} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{24}[\mathrm{M}+2 \mathrm{Na}]^{2+} 1002.89$, found 1002.80.

Benzyl O-2-O-benzoyl-3,4,6-tri-O-benzyl- α-d-mannopyranosyl-(1 $\rightarrow 3$)-O-[2-O-

 benzoyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 6$)]- \boldsymbol{O}-2,4-di- O-benzyl- β-d-mannopyranosyl-($1 \rightarrow 4$)- \boldsymbol{O}-3,6-di- O-benzyl-2-deoxy-2-phthalimido-1-thio- β-d-gluopyranosyl-($1 \rightarrow 4$)-O-[2,3,4-tri- O-benzyl- α-L-fucopyranosyl-($1 \rightarrow 6$)]-3-O-benzyl-2-deoxy-2-phthalimido- β-d-gluopyranoside (66)

To a solution of tetra-saccharide 62 $(57 \mathrm{mg}, 0.029 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0$ mL) was added a solution of pH 7 (1.0
mL) buffer and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (18 mg, 0.079 $\mathrm{mmol})$. The resulting mixture was stirred at room temperature for 3 h before additional amount of DDQ ($13 \mathrm{mg}, 0.057 \mathrm{mmol}$) was added. The mixture was stirred for another 2 hours and another portion of $\mathrm{DDQ}(13 \mathrm{mg}, 0.057 \mathrm{mmol})$ was added. After 2 hours, the mixture was quenched with saturated NaHCO_{3} solution and extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude reaction mixture was purified by preparative $\mathrm{TLC}\left(\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 10\right)$ to furnish the corresponding diol $63(37 \mathrm{mg}, 74 \%)$. The spectroscopic data was consistent
with the data reported in the literature. ${ }^{[23]}$ To a mixture of diol acceptor $\mathbf{6 3}(74 \mathrm{mg}, 0.043$ $\mathrm{mmol})$, donor $\mathbf{6 4}{ }^{[24]}(95 \mathrm{mg}, 0.13 \mathrm{mmol})$, activated $4 \AA$ molecular sieves (100 mg) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. The solution was cooled to $-20^{\circ} \mathrm{C}$ and $\operatorname{TMSOTf}(1.0 \mu \mathrm{~L})$ was added. The resulting mixture was slowly warmed up to room temperature over 2 hours. The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L})$ and filtered through celite. The filtrate was washed with saturated NaHCO_{3} aqueous solution and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by preparative $\mathrm{TLC}(\mathrm{EtOAc} /$ Toluene $=1 / 10)$ to afford hexasaccharide $\mathbf{6 6}(115 \mathrm{mg}, 95 \%) .[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 3}}=-$ 7.0 (c 1.0, CHCl_{3}); FT-IR (thin film): 3091, 3061, 3030, 2933, 2872, 1777, 1717, 1496, 1455, 1390, 1266, 1099, 1077, 737, $696 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.07(\mathrm{dd}$, $J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.08$ $(\mathrm{m}, 60 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.87$ $(\mathrm{m}, 2 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.63-6.55(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95-4.78(\mathrm{~m}, 12 \mathrm{H}), 4.74-4.56(\mathrm{~m}, 8 \mathrm{H}), 4.55-4.37(\mathrm{~m}, 11 \mathrm{H}), 4.34(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.04$ $(\mathrm{m}, 2 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 7 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 5 \mathrm{H})$, $3.64(\mathrm{dd}, J=10.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 5 \mathrm{H}), 3.29(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24-3.19(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 168.05$, $167.87,167.64,165.56,165.07,139.01,138.91,138.89,138.78,138.76,138.70,138.41$, $138.20,138.04,138.01,137.94,137.18,133.75,133.55,133.24,132.76,131.95,131.80$,
$131.63,130.10,130.00,129.97,129.95,128.74,128.58,128.57,128.54,128.52,128.49$, $128.46,128.37,128.33,128.30,128.24,128.21,128.18,128.02,128.01,127.98,127.89$, $127.87,127.85,127.77,127.67,127.63,127.61,127.59,127.57,127.53,127.46,127.43$, $127.38,127.15,126.91,126.84,126.78,123.52,123.25,102.06,99.60,98.34,96.91$, $96.69,82.21,79.77,79.46,78.35,78.23,77.80,76.51,76.31,75.54,75.24,75.20,75.17$, $75.06,74.81,74.78,74.58,74.54,74.47,74.43,74.16,74.13,73.85,73.55,73.41,73.36$, $72.66,72.48,72.10,71.60,71.03,69.94,69.08,69.04,69.00,68.48,67.99,66.55,66.04$, 63.93, 56.64, 55.92, 16.51. LRMS (ESI) calculated for $\mathrm{C}_{171} \mathrm{H}_{166} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{34}[\mathrm{M}+2 \mathrm{Na}]^{2+}$ 1419.56, found 1419.80 .

References

[1] S. Amano, N. Takemura, M. Ohtsuka, S. Ogawa, N. Chida, Tetrahedron 1999, 55, 3855-3870.
[2] O. Kjolberg, K. Neumann, Acta Chem. Scand. 1993, 47, 721-727.
[3] D. Crich, W. Cai, Z. Dai, J. Org. Chem. 2000, 65, 1291-1297.
[4] A. G. Volbeda, H. A. Kistemaker, H. S. Overkleeft, G. A. van der Marel, D. V. Filippov, J. D. Codee, J. Org. Chem. 2015, 80, 8796-8806.
[5] V. Y. Dudkin, J. S. Miller, A. S. Dudkina, C. Antczak, D. A. Scheinberg, S. J. Danishefsky, J. Am. Chem. Soc. 2008, 130, 13598-13607.
[6] T. Uchino, Y. Tomabechi, A. Fukumoto, H. Yamada, Carbohydr. Res. 2015, 402, 118-123.
[7] M. T. Yang, K. A. Woerpel, J. Org. Chem. 2009, 74, 545-553.
[8] V. S. Borodkin, M. A. J. Ferguson, A. V. Nikolaev, Tetrahedron Lett. 2001, 42, 5305-5308.
[9] T. Yamanoi, N. Misawa, S. Matsuda, M. Watanabe, Carbohydr. Res. 2008, 343, 1366-1372.
[10] L. A. Paquette, J. E. Hofferberth, Org. React. 2003, 62, 477-567.
[11] D. Zhu, K. N. Baryal, S. Adhikari, J. Zhu, J. Am. Chem. Soc. 2014, 136, 3172-3175.
[12] (a) W. J. De Witte, L. Liu, E. Mei, J. L. Dye, A. I. Popov, J. Solution Chem. 1977, 6, 337-348.
(b) M. Shamsipur, A. I. Popov, J. Am. Chem. Soc. 1979, 101, 4051-4055. (c) E. Kauffmann, J.
L. Dye, J. M. Lehn, A. I. Popov, J. Am. Chem. Soc. 1980, 102, 2274-2278. (d) M. Shamsipur, A. I. Popov, Inorg. Chim. Acta 1980, 43, 243-247. (e) E. Schmidt, A. Hourdakis, A. I. Popov, Inorg. Chim. Acta 1981, 52, 91-95. (f) S. Khazaeli, A. I. Popov, S. L. Dye, J. Phys. Chem. 1982, 86, 5018-5023. (g) S. Khazaeli, J. L. Dye, A. I. Popov, J. Phys. Chem. 1983, 87, 1830-1833. (h) G. Dijkstra, W. H. Kruizinga, R. M. Kellogg, J. Org. Chem. 1987, 52, 4230-4234. For a review of the NMR spectroscopy of alkali ions, see: A. I. Popov, Pure Appl. Chem. 1979, 51, 101-110.
[13] This cesium carbonate-mediated β-mannosylation via anomeric O-alkylation gives comparable results in 1,2-dichloroethane (DCE) and chloroform $\left(\mathrm{CHCl}_{3}\right)$.
[14] L. Q. Chen, Z. P. Tan, Tetrahedron Lett. 2013, 54, 2190-2193.
[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery J.., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
[16] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2007, 120, 215-241.
[17] P. Fuentealba, H. Preuss, H. Stoll, L. Von Szentpály, Chem. Phys. Lett. 1982, 89, 418-422.
[18] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, J. Comput. Chem. 2001, 22, 976-984.
[19] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys 2005, 7, 3297-3305.
[20] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
[21] T. Sawada, S. Fujii, H. Nakano, S. Ohtake, K. Kimata, O. Habuchi, Carbohydr. Res. 2005, 340, 1983-1996.
[22] H. Nguyen, D. Zhu, X. Li, J. Zhu, Angew. Chem., Int. Ed. 2016, 55, 4767-4771; Angew. Chem. 2016, 128, 4845-4849..
[23] B. Sun, B. Srinivasan, X. Huang, Chem. Eur. J. 2008, 14, 7072-7081.
[24] P. Schüler, S. N. Fischer, M. Marsch, M. Oberthür, Synthesis 2013, 45, 27-39.

NMR spectra of the products
${ }^{1} \mathrm{H}$ NMR of compound 7

${ }^{13} \mathrm{C}$ NMR of compound 7

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 3}$

${ }^{13} \mathrm{C}$ NMR of compound S3

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR of compound 14

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 7}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} 7$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 7}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 0}$

${ }^{1}$ H NMR of compound S11


```
L_L_L_L_L_L_L_L
```


 CO

$\underbrace{\mathrm{O}}_{\mathrm{OBn}} \mathrm{O}$

${ }^{13} \mathrm{C}$ NMR of compound S11

${ }^{13} \mathrm{C}$ NMR of compound 19

${ }^{1}$ H NMR of compound S14

${ }^{13} \mathrm{C}$ NMR of compound S14

${ }^{1}$ H NMR of compound S15

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 5}$

${ }^{1} \mathrm{H}$ NMR of compound 20

${ }^{13} \mathrm{C}$ NMR of compound 20

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 7}$

DEPT135 of compound S17

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S 1 8}$

${ }^{1} \mathrm{H}$ NMR of compound 21

${ }^{1} \mathrm{H}$ NMR of compound 21 (5.50~2.50 ppm expanded)

${ }^{13} \mathrm{C}$ NMR of compound 21

${ }^{13} \mathrm{C}$ NMR of compound 25

H-H COSY of compound $\mathbf{2 5}$

HSQC of compound $\mathbf{2 5}$

${ }^{1} \mathrm{H}$ NMR of compound 27

${ }^{13} \mathrm{C}$ NMR of compound 27

H-H COSY of compound 27

HSQC of compound 27

${ }^{13} \mathrm{C}$ NMR of compound 29

H-H COSY of compound 29

HSQC of compound 29

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 2}$

H-H COSY of compound 32

HSQC of compound 32

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 3}$

H-H COSY of compound $\mathbf{3 3}$

HSQC of compound $\mathbf{3 3}$

${ }^{13} \mathrm{C}$ NMR of compound S19

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 9} \boldsymbol{\alpha}$

H-H COSY of compound $\mathbf{3 9} \boldsymbol{\alpha}$

HSQC of compound $\mathbf{3 9} \boldsymbol{\alpha}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 9 \beta}$

H-H COSY of compound $\mathbf{3 9 \beta}$

${ }^{13} \mathrm{C}$ NMR of compound 40

H-H COSY of compound 40

${ }^{1} \mathrm{H}$ NMR of compound 42

${ }^{13} \mathrm{C}$ NMR of compound 42

H-H COSY of compound 42

HSQC of compound 42

${ }^{13} \mathrm{C}$ NMR of compound 44

H-H COSY of compound 44

HSQC of compound 44

${ }^{1} \mathrm{H}$ NMR of compound 45

${ }^{13} \mathrm{C}$ NMR of compound 45

H-H COSY of compound 45

HSQC of compound 45

${ }^{13} \mathrm{C}$ NMR of compound 46

${ }^{1} \mathrm{H}$ NMR of compound 47

${ }^{13} \mathrm{C}$ NMR of compound 47

H-H COSY of compound 47

HSQC of compound 47

${ }^{1} \mathrm{H}$ NMR of compound 48

${ }^{13} \mathrm{C}$ NMR of compound 48

H-H COSY of compound 48

HSQC of compound 48

${ }^{13} \mathrm{C}$ NMR of compound 51

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 0}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 7}$

${ }^{13} \mathrm{C}$ NMR of compound 57

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 0}$ (6.00~3.00 ppm expanded)

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 0}$

H-H COSY of compound $\mathbf{6 0}$

HSQC of compound $\mathbf{6 0}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 2}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 2}$

200
150

H-H COSY of compound 62

HSQC of compound 62

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 6}$

H-H COSY of compound 66

HSQC of compound 66

[^0]: 1) NBS, acetone:water $9: 1,0^{\circ} \mathrm{C}$
 2) DDQ, pH 7 buffer, DCM, r.t. (57\% over two steps)
[^1]: ${ }^{a}$ All reactions were performed using 0.1 mmol of 3,4,6-tri- O-benzyl-d-mannopyranose 7 in 1 mL 1,2dichloroethane.
 ${ }^{b}$ Isolated yield based on the lactol donor 7 .

