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Abstract

Recent work has explored spatio-temporal relationships between excitatory (E) and inhibitory (I) 

signaling within neural networks, and the effect of these relationships on network activity 

patterns. Data from these studies have indicated that excitation and inhibition are maintained at a 

similar level across long time periods, and that excitatory and inhibitory currents may be tightly 

synchronized. Disruption of this balance - leading to an aberrant E/I ratio - is implicated in 

various brain pathologies. However, a thorough characterization of the relationship between E 

and I currents in experimental settings is largely impossible, due to their tight regulation at 

multiple cellular and network levels. Here we use biophysical neural network models to 

investigate the emergence and properties of balanced states by heterogeneous mechanisms. Our 

results show that a network can homeostatically regulate the E/I ratio through interactions among 

multiple cellular and network factors, including average firing rates, synaptic weights and 

average neural depolarization levels in excitatory/inhibitory populations. Complex and 

competing interactions between firing rates and depolarization levels allow these factors to 

alternately dominate network dynamics in different synaptic weight regimes. This leads to the 

emergence of distinct mechanisms responsible for determining a balanced state and its dynamical 

correlate. Our analysis provides a comprehensive picture of how E/I ratio changes when 

manipulating specific network properties, and identifies the mechanisms regulating E/I balance. 

These results provide a framework to explain the diverse, and in some cases, contradictory 

experimental observations on the E/I state in different brain states and conditions.
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Abbreviations: E, excitatory; I, inhibitory; E/I, excitatory/inhibitory; EPSC, excitatory post 

synaptic current; IPSC, inhibitory postsynaptic current; MPC, mean phase coherence.

Introduction

Since it was first proposed that excitatory/inhibitory (E/I) balance emerges within brain networks 

(van Vreeswijk & Sompolinsky, 1996), a large body of theoretical and experimental work has 

focused on clarifying its regulation and possible role in maintaining desired spatio-temporal 

activity states (Deneve & Machens, 2016). Co-occurring E/I responses have been observed for 

many modalities, e.g., in auditory cortex (D'Amour & Froemke 2015; Wehr & Zador, 2003), 

visual cortex (Liu et al., 2009; Tan et al., 2013), and olfactory cortex (Poo & Isaacson, 2009, 

Stettler & Axel, 2009). Besides activity evoked by stimuli, balanced excitation and inhibition 

also appears to be present during spontaneous brain activity (Graupner & Reyes, 2013; Murphy 

& Miller, 2009) and may play a critical role in generating certain brain rhythms (Atallah & 

Scanziani 2009). 

Despite these experimental findings, two questions remain unresolved. First, how does 

E/I balance contribute to the spatio-temporal patterning of neuronal microcircuit activity? 

Second, what are the underlying mechanisms promoting E/I balance across brain networks? E/I 

input to neurons was initially proposed to balance only over long timescales, leading to the 

notion of “loose E/I balance” with specific statistics of the firing patterns (Brunel 2000; Rudolph 

et al., 2007; Salinas & Their, 2000; van Vreeswijk, 1998). This idea was challenged by 

experimental phenomena, such as efficient coding of irregular spiking, and the correlation of 

membrane potentials between neurons responding to similar stimuli (Cohen & Kohn, 2011; 

Gentet et al., 2010; Yu J, Ferster 2010), which cannot be explained by loose interactions of E/I 

cells (Deneve & Machens, 2016). More recent findings have demonstrated that inhibition can 

closely track excitation at a millisecond timescale, leaving only a brief window of disinhibition 

for neurons to fire. This “tight balance” has been observed in brain regions such as 

somatosensory cortex (Okun & Lampl 2008), hippocampus and piriform cortex, as well as in 

vitro (Atallah & Scanziani 2009) and in computational simulations (Renart et al.,2010). Indeed, 

disinhibition is thought to be significant in learning and memory (Letzkus et al., 2015). 

The interaction of recurrent inhibitory and excitatory circuits also regulates the 

occurrence of cortical up- and down- states ( Haider et al., 2006; Shu et al., 2003), and it was 
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shown that different levels of correlation between excitation and inhibition can emerge from the 

same neuronal circuitry, depending on the specific cortical state - with correlations observed to 

be lower during anesthesia than during states exhibiting up- and down-state activity (Tan et al., 

2013). 

One roadblock to understanding the regulation and function of E/I balance is a lack of 

technical ability to experimentally quantify E/I ratios. It is impossible to simultaneously measure 

the excitatory and inhibitory post synaptic currents (EPSCs and IPSCs) at every neuron across a 

network. Several indirect experimental quantifications (for example cell-wise measurement of 

excitatory and inhibitory conductance obtained from whole-cell recording) have also been used ( 

Landau et al. 2016; Monier et al., 2008; Tan et al., 2013; Wehr & Zador, 2003; Xue et al., 2014). 

Although each of these capture characteristics of E/I balance in some way, none of them 

quantifies all of the features that simultaneously contribute to E/I balance. Further, such 

measurements can only infer E/I ratio from a selected subset of neurons, which may not 

accurately represent E/I ratios at the network level.

To investigate E/I balance in a network and its dynamical correlates, we use a 

computational model network composed of biophysical neurons, and quantify E/I ratio as the 

ratio between mean levels of total EPSC and IPSC across the network. By systematically varying 

parameters, we show that a network can homeostatically regulate E/I ratio over a wide range of 

E/I levels and reach asymptotic balance states after evolving for a period of time. These balanced 

states are generated by multiple, heterogeneous cellular and network mechanisms. We 

particularly analyze the multiple E=I balanced states to show that synaptic conductance levels, 

average firing rates and average membrane potential levels contribute to the E/I ratio in a distinct 

manner, thus defining different mechanisms governing E/I balance. These results demonstrate 

that E/I ratio states are not achieved by varying the excitation (or inhibition) in the network 

monotonically, but instead can be achieved by different combinations in a non-monotonic way, 

and result in a diverse range of network dynamics. 
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Materials and Methods

Neuron Model

Modified Hodgkin-Huxley Model

The model networks in these studies consist of biophysical Hodgkin-Huxley-type (Stiefel K et 

al., 2009) single compartment neurons with the following equation defining the overall dynamics 

of neuronal currents for the i-th neuron:������ = ― ����3∞ℎ(��― ���) ― �����4(��― ��) ― ��(��― ��) + ������� ― �����
Each neuron receives an external applied current, , consisting of both a constant sub-�������
threshold current and external noise. To simulate neuronal heterogeneity, each cell receives a 

random subthreshold current chosen from a Gaussian distribution centered around -0.2 A/cm2 

with a deviation of 0.1 A/cm2. External noise is modeled by the delivery of brief (0.05ms), 

square, 30uA/cm2 current pulses, at intervals dictated by a Poisson process (with an average 

frequency of 40 Hz except Figure 6; we additionally tested effects of different noise frequencies 

in Fig. S2 in supplemental material). The kinetics of neuronal Na+ conductance are governed by 

the steady state activation function

,�∞(�) = {1 + exp [
―� ― 30.0

9.5 ]}
―1

and the inactivation gating equation

,
�ℎ�� = (ℎ∞(�) ―ℎ)/�ℎ(�) 

with , and .ℎ∞(�) = {1 + exp [
� + 53.0

7.0 ]}
―1 �ℎ(�) = 0.37 + 2.78{1 + exp [

� + 40.5

6.0 ]}
―1

Neuronal K+ conductance is gated by the variable n, which evolves in time according to the 

equation

,
���� = (�∞(�) ―�)/��(�)

with , and .�∞(�) = {1 + exp [
―� ― 30.0

10.0 ]}
―1 ��(�) = 0.37 + 1.85{1 + exp [

� + 27.0

15.0 ]}
―1

In addition, the leak conductance is given by gL=0.02mS/cm2.  Other parameters are set to 

gNa=24.0 mS/cm2, gKdr=3.0 mS/cm2, VNa=55.0mV, VK=-90.0mV, and VL=-60.0mV. This model 

exhibits Type 1 dynamics in terms of phase response curves and current-frequency relation 

(Smeal et al., 2010). Ignoring (important) mathematical details of cell level excitability 
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properties (Ermentrout, 1996), the type of membrane excitability determines the capacity for 

neurons in the network to synchronize, with networks consisting of type 2 neurons exhibiting 

significantly increased capacity to synchronize (Boggard et al., 2009; Smeal et al., 2010). This 

becomes an additional important consideration when dealing with emergence of E/I balance. 

Here we concentrate predominantly on cell (population) activation as the variable driving 

changes in E/I balance, hence the choice of Type 1 excitability. 

Network simulation

Networks contain 2000 neurons, 1000 with excitatory (E) synapses and 1000 with inhibitory (I) 

synapses. While this ratio is not physiological we found that our results do not depend on it as 

the ratio of cells is offset by the number of connections originating from the given cell type.  For 

the main results, neurons were randomly connected with connectivity probability 3% (i.e. 

providing on average ~60 connections per cell). 

In separate simulations, when investigating the role of network topology on the evolution 

of E/I balance, we applied the Watts-Strogatz framework to obtain Small World network 

connectivity (Watts & Strogatz, 1998) to a two-layer network composed of interconnected 1-D 

rings of excitatory (E) neurons and inhibitory (I) neurons. For this network configuration, each 

neuron is initially connected to 3% of their nearest neighbors in each layer. Connectivity 

structure is varied by rewiring each E and I connection to a randomly chosen post-synaptic target 

neuron with probability given by the rewiring parameter rpE and rpI, respectively. In this way we 

can easily control the network topology with more local excitation or inhibition depending on 

specific values of rpE and rpI.

Synaptic current transmitted from neuron j to neuron i at time t is given by ������ = � exp ( ― � ― ��� )(��― ����)

where tj is the timing of the presynaptic spike in neuron j. The parameter w refers to the synaptic 

weight, where excitatory (wE) and inhibitory (wI) weights are changed separately. The reversal 

potential Esyn is 0mV for excitatory synaptic current and -75mV for inhibitory synaptic current. 

Synaptic current decay rate  is set to be 0.5ms for both synapse types, simulating fast AMPA-

like and GABA-A-like synaptic currents. Therefore, the total synaptic current to neuron i at time 

t is  , where  is the set of pre-synaptic neurons to neuron i. ����� = ∑� ∈ Γ������� Γ� 
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The dynamics of the network is numerically integrated by a fourth-order Runge-Kutta 

method with a time step 0.05ms. Total simulation time is 3 seconds, and the results shown are 

averages over 5 simulations.

Mean Phase Coherence (MPC) measurement

The firing pattern and synchronization of neuron spike trains generated in the network are 

quantified by the Mean Phase Coherence (MPC) (Mormann, 2004). For the k-th spike in the 

spike train generated by neuron j denoted as tj,k, its relative phase to the spike train generated by 

neuron i is given by , where ti,k is the timestamp of the nearest spike prior to ���� = 2�(
��,�― ��,���,� + 1 ― ��,�)

tj,k in spike train i and ti+1,k is the nearest spike following tj,k. The phase coherence of spike train j 

to spike train i is defined as , where N is the total number of spikes in train j.  ��,� = |1�∑�� = 1
������|

This pairwise mean phase coherence takes on values between 0 and 1, with 0 indicating 

completely random firing, and 1 indicating stable phase locking.

Quantification of E/I ratio

At each time step, the total E and I synaptic current in the network is recorded. The mean E (or I) 

current is calculated by averaging these values over the whole time of the recording. We quantify 

the E/I ratio of the network as the ratio of mean E to mean I synaptic current, measured during 

time period T:  ’ where k denotes the spike number occurring in 
�� =

∫�
0
∑�∑�∑���exp [

��,� ― �� ](��(�) ― �����)��
∫�

0
∑�∑�∑���exp [

��,� ― �� ](��(�) ― �����)��
the j-th pre-synaptic cell, j sums over all connected E cells in the numerator and over all 

connected I cells in the denominator, and i sums over all cells in the network.

In addition, we quantify the difference of synaptic currents or total current, calculated by 

subtracting the mean inhibitory current from the mean excitatory current, as this quantity is more 

directly connected to neuronal activity. The E=I balanced state is given by E/I ratio equals to 1 

and zero total current. A
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Quantification of tightness of balance

The E/I ratio only quantifies the relative values of the excitatory and inhibitory synaptic currents 

averaged across the simulation. To further investigate the temporal relationship between the two 

currents and the tightness of balance, we calculated the cross correlation of the IE and II currents 

time traces, given by where X=E,I and j sums over  ��(�) = ∑�∑�∑���exp [
��,�― �� ](��(�) ― �����)   

pre-synaptic neurons of type X and k sums over pre-synaptic spikes occurring before time t. By 

definition, loose balance corresponds to equal average amounts of excitatory and inhibitory 

current during a period of time, but without showing significant correlation between the current 

traces. Tight balance, on the other hand, is characterized by significant temporal correlation 

where fluctuations in inhibitory current closely follow the fluctuations in excitatory current 

(Deneve & Machens, 2016; Hennequin et al., 2017).

Results

Here we investigate emergence of global asymptotic balance between excitatory and inhibitory 

currents in mixed excitatory-inhibitory neural networks. We vary the relative level of excitation 

and inhibition by changing the structural network parameters (i.e. synaptic weights) or neuronal 

input levels. 

First, we manipulated E/I ratio in a randomly connected network by varying synaptic 

weights (Fig. 1a) - for a fixed inhibitory synaptic weight wI, the excitatory synaptic weight wE 

was increased from 0 mS/cm2 up to about 3 times the value of wI. For each value of wE, we 

allow network dynamics to evolve to an asymptotic stable state, and then compute E/I ratio and 

total current (i.e. sum of excitatory – inhibitory currents; E – I) during a 3s time window. The 

curves in Fig. 1b track the relationship between E/I ratio values and total current values as wE 

was increased. Each data point on the curve represents one asymptotic E/I ratio for a specific 

value of wE. As evident in the figure, the E/I ratio does not monotonically increase as wE is 

increased, but can switch between excitation-dominant (E/I ratio > 1 and positive total current) 

or inhibition-dominant (E/I ratio < 1 and negative total current) regimes and cross the E=I 

balanced state (E/I ratio = 1 and zero total current) multiple times. Furthermore, the same value 

of E/I ratio can correspond to different values of total current with different network dynamics 

and firing patterns. The results show that the E/I level of the network cannot be represented 

comprehensively by either E/I ratio or total current alone, but requires both measures in a 2-D 
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phase space. We demonstrate that this behavior is robust under a broad range of network 

parameters such as connectivity density (Fig. 2a), ratio of excitatory cells (Fig. 2b), and various 

connectivity parameters (Fig. 2c and d). We have also tested the behavior of the network against 

different noise frequencies (Fig. S3 in supplemental material) and two different neuronal models 

(Fig. S4 and Fig. S5 in supplemental material) obtaining qualitatively the same results indicating 

that this pattern of E/I regulation is general and applies to different neural systems. In the 

following sections, we give detailed characterizations of how network dynamics are governed by 

firing rates, synaptic weights, and neural membrane potentials, and at the E=I balanced state 

identify the mechanisms accounting for each balanced state regime by exploring the relationship 

between each dynamical characteristic and network E/I level. The turning points on the E/I 

trajectory split the balance states into three different regimes with different governing 

mechanisms. We study the three regimes by taking the three E=I balance states as examples. 

Finally, to test the universality of the results against network connectivity structure, we 

investigate how different network topologies affect the changes in E/I ratio and the occurrence of 

multiple balanced states as synaptic weights are varied. The consistency of the results 

demonstrates that our framework applies to a wide range of networks in a generic way.

Network E/I trajectory crosses the E=I balanced states up to three times in response to varying 

synaptic weights.

We first investigated how the E/I ratio evolves as a function of excitatory coupling for networks 

having different levels of overall coupling strength.  The trajectory curves in Fig. 1b show the 

relationship between E/I ratio and total current values in asymptotic balance states as wE was 

increased for 3 different values of wI; we adjusted wE accordingly to obtain the same E/I ratios.  

For each wI value, initially, when wE = 0 mS/cm2, the E/I ratio was 0 and the total current 

fluctuated near zero. As wE increased, E/I ratios increased but current differences remained small 

as the network passed through an E=I asymptotic balanced state. For each value of wI, the E=I 

balanced state was reached for different values of wE. Fig. 1c shows how total spike numbers in 

the network (during the 3s simulation in the asymptotic balance state) varied with E/I ratio as wE 

was systematically increased. When wE ~ 0 mS/cm2 (and network activity was driven only by 

noise), network activity remained low in all networks as they crossed the E=I balanced state for 

the first time.
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For networks with weak inhibitory connectivity (blue and red curves), as wE increased 

and E/I ratios increased significantly past the E=I balance point, excitatory synaptic current 

rapidly overtook the networks’ dynamics and increased network firing rates. In the network with 

weakest inhibition (blue curve), E/I ratio saturated around 3, and the network remained in an 

excitation-dominant regime (positive E/I ratio). For networks with stronger inhibitory 

connectivity (red and yellow curves), two loops emerge in the trajectory curves: after crossing 

the E=I balanced state for the first time (inset, arrow 1), as wE increased further, the trajectories 

turned around (arrow 2) and the networks crossed the E=I balanced state for a second time. As 

wE continued to increase, the networks entered an inhibition-dominant regime (E/I ratio < 1, 

negative total current). However, upon further increases in wE, E/I ratios increased, leading to a 

third crossing of the E=I balanced state. Network firing rates continued to increase during these 

subsequent crossings of the E=I balanced state. As shown in Fig. 1c, the networks generally 

showed higher spike rates with higher wE, while the E/I ratio oscillated around 1. For the highest 

values of wE, the networks remained in the excitation dominant regime with increasing total 

current and network firing.

The surprising finding that E/I ratio repeatedly returns to 1 as excitatory current 

increases,  suggests, somewhat counterintuitively, that higher excitatory coupling may actually 

result in lower E/I ratio and total current in the network - increasing excitatory current can drive 

increases in inhibition, leading to non-monotonic changes in E/I ratio. A similarly 

counterintuitive effect was documented by (Tsodyks et al., 1997) where increases in inhibitory 

inputs to a neuronal network lead higher overall firing-rates (as observed here, Fig. 1b). For 

networks with strong inhibitory connectivity, we observe the formation of two loops in the 

trajectory curves, one in the excitation-dominant regime (i.e., E/I ratio is greater than one) and 

one in an inhibition-dominant regime (i.e., E/I ratio is below one). This shows that states 

exhibiting a particular E/I balance are not unique, but correspond to a set of network states with 

differential dynamical properties. 

To validate the generality of the non-monotonic E/I trajectories, we also analyzed 

networks with different parameters, to consider various possible biological realisms (Fig. 2). 

Compared to the trajectory in Fig. 1b, the qualitative pattern stays the same for all the new 

parameter combinations, connectivity density, the excitatory to inhibitory cell number ratio, 

asymmetry in various connection strengths, and finally different neuronal formalisms. The only 
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additional modification made in these simulations was to adjust the value of wI accordingly to 

maintain trajectories in the appropriate range.  First, as the sparsity of connectivity of the brain 

networks can vary from region to region, we investigated whether the effect averages out with 

higher network connectivity (Fig. 2a).  

As it has been measured that the percentage of excitatory cells in the mammalian cortex 

is around 80% (Braitenberg & Schuz, 1991), we modified the cell ratio accordingly - this case is 

shown in Fig. 2b. 

In the original simulations (Fig. 1), we set wEE = wEI = wE, wII = wIE = wI.  As there is no 

evidence demonstrating that the excitatory (or inhibitory) synaptic weights are the same for 

synapses targeting excitatory and inhibitory populations, we applied different values for wEE, 

wEI, wIE, wII (Fig. 2c and 2d) and tested cases where wEI>wIE and wEI<wIE. 

In supplemental material we further investigate universality of the observed result as we 

change frequency of the applied noise to every neuron (Fig. S3) and,  finally, to validate that 

results are not due to the cellular properties of a specific neuron model, we simulated networks 

of Wang-Buzaki neurons (Wang & Buzsáki, 1996) in Fig. S4, and integrate-and fire neurons 

(Fig. S5). 

It is evident that all the E/I trajectories under different parameter values display the same 

qualitative shape, indicating that the dynamic properties and the mechanisms in our framework 

are robust and are not constrained by some specific parameters of our models. Therefore, in the 

following discussion, we consider the network/cell parameters described in the yellow curve of 

Fig. 1b to illustrate results and analyze mechanisms.  

Network firing patterns are different in the three E/I balance regimes.

We next investigated the differences in network dynamics at the E = I balanced states. As 

we will show below, the three different balance regimes, separated by the turning points of the 

two loops of the trajectory curves, are governed by qualitatively distinct mechanisms. 

To better understand the differences in dynamics between E/I balanced states, we focused 

on a network with moderate inhibition (wI = 0.2 mS/cm2, yellow curve in Fig. 1b, c) that showed 

three crossings through E/I =1. We chose the three values of wE at which the network resides at 

(or near) the E=I balance point (Fig. 3a-c). Fig. 3 shows network firing raster plots (second row), 
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distributions of pairwise mean phase coherences (MPC, third row), and pairwise relative phases 

(fourth row) between all synaptically connected neurons near the three E=I states. 

For the first crossing of the E=I balanced state (left column), the system displayed 

random, sparse firing (Fig. 3d), driven principally by external noisy stimuli (see calculation 

distributions of coefficient of variation of interspike intervals for every neuron and the 

distributions of mean ISI themselves, Fig. 1S in supplemental data). The MPC distributions 

almost overlapped (Fig. 3g) for the four types of synaptically-connected cells (excitatory to 

excitatory (E-E), excitatory to inhibitory (E-I), inhibitory to excitatory (I-E), inhibitory to 

inhibitory (I-I)), and reflect no significant phase locking between the cell populations. The 

distribution of relative phases (Fig. 3j) for excitatory (E) pre-synaptic cells peaked at low values 

of phase, while it was at its minimum for inhibitory pre-synaptic cells at these phases. This is 

intuitive in that E neurons tend to promote firing in post-synaptic cells, leading to small relative 

phases, while I neurons tend to suppress post-synaptic cell firing, thus inhibiting post-synaptic 

firing at small phases. These probabilities, however decay quickly (exponentially) to base value. 

Network firing activity was greater at the second crossing of the E=I balanced state (Fig. 

3e, also see Fig. S1 in supplemental material), but the firing pattern remained largely random. 

The distributions of pairwise MPCs (Fig. 3h) started to separate for the different types of 

synaptic connections between cells. Separation of the E-E and E-I pair groups (blue and red 

curves) to larger MPC values compared to the I-E and I-I pair groups (yellow and violet curves) 

means that neurons fired somewhat more coherently when pre-synaptic neurons were excitatory. 

The differences in the profiles of the pairwise phase distributions (Fig. 3k) between pairs with E 

pre-synaptic neurons (blue and red curves) and pairs with I pre-synaptic neurons (yellow and 

violet curves) was maintained and solidified compared to the first crossing, reflecting the 

formation of more regular, causal firing patterns. 

At the third crossing, network firing activity was high and some degree of 

synchronization started to emerge (Fig. 3f and Fig. S1 in supplemental material). The significant 

separation in MPC distributions (Fig. 3i) between pair groups with E pre-synaptic cells (blue and 

red curves) compared to I pre-synaptic cells (yellow and violet curves) points to higher 

coherence with E pre-synaptic neurons. Relative phases (Fig. 3l) when pre-synaptic E cells are 

shifted towards 0 and 2, indicating some degree of synchronization in the network. The larger 

peak in the distribution at 0 compared to 2 reflects a causal relationship in firing without 
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synchronization. The phases for I pre-synaptic neurons, on the other hand, show a similar dip for 

low phase values as observed near the other balanced states without any significant change for 

higher phase values. 

In summary, a significant separation in the distributions for both pairwise MPC and 

relative phases for E pre-synaptic cells and I pre-synaptic cells appeared gradually from the first 

crossing (Fig. 3g, j) to the third crossing (Fig. 3i, l), indicating a transition from a sparse and 

random firing pattern to a more organized and causal firing pattern. While the trend appears at 

the second crossing, it is more distinct at the third crossing where relative phases are clustered 

around 0 when pre-synaptic cells are excitatory, indicating causal initiation of post-synaptic 

firing. The rightward shift in MPC values from the first to the third crossing is further evidence 

for an increase in the coherence of the firing pattern. 

Detailed dynamics at the E=I balanced states: first crossing.

Next, to understand the cellular and network mechanisms underlying regulation of network 

dynamics at E=I balanced states, we separately considered the factors that influence the E/I ratio 

on both the cellular and network level. Here, conceptually, we can consider total synaptic current 

as consisting of the product of three factors: 1) the number of synaptic events (which is dictated 

by the overall firing activity of E or I cells), 2) the strength of synaptic events (governed by 

synaptic weight parameters), and 3) the driving force of synaptic current (dictated by the 

difference between the mean membrane voltage of the post-synaptic cells and the current’s 

reversal potential).  Thus, we can represent the E/I ratio by the following expression:

 ,
�� =

����� ���������� ����� ≅���������� ���������� �����������ℎ������� ���������� ��������� ×
���� ×

∑���― �����∑���― �����
where  is mean membrane potential of the i-th cell and i sums over all cells in the network. In ��
our results in Fig. 1 and Fig. 3, we varied synaptic weights wE and wI, which induced changes in 

the other factors, altered the level of firing activity, and changed membrane potential. In an 

attempt to disentangle the interactions among these factors, we implemented a different method 

to manipulate E/I ratio in the network. To do this, wE and wI are fixed at specific values near an 

E=I balanced state, and E/I ratio is varied by changing the frequency of external stimuli (random, 

pulse like events) to E cells in the network. The frequency of these events was varied between 5 

and 75 Hz, while noise event frequency to I cells was maintained at 40Hz (Fig. 4a). Since here 
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the synaptic weights are fixed, crossing through the E=I balanced state is caused by changes in 

the other two factors (i.e. spike frequency and mean voltage difference between cell membrane 

potential and reversal potential in above equation). Therefore, we monitored mean synaptic 

currents, firing rates, and the mean membrane potential of cells in the network to further 

characterize the three balanced states displayed in the network with moderate inhibition (wI = 0.2 

mS/cm2) from Fig. 3. We start with a detailed analysis of the first crossing of the E=I balanced 

state.  

We set wE to a value such that the network sits just below the first E=I balanced state. 

Fig. 4b shows the relationship between the E/I ratio and the mean firing rates of the E and I cells 

as the noise event frequency to the E cells was increased from 5 to 75 Hz. At the lowest noise 

frequency, E/I ratio was low (~ 0.2) and E cells (blue curve) fired less than I cells (red curve). As 

the noise frequency was increased, E/I ratio increased, with the firing rate of E cells (blue curve) 

increasing more than that of I cells (red curve), which were also increased as a result of greater 

excitatory synaptic activity in the network. As the E=I balanced state was approached (i.e. with 

increasing noise frequency), E cell firing rates surpassed I cell firing rates and the difference in 

firing rates (Fig. 4c) between E and I cells moved from negative values to positive values.  

To track the efficacy of the synaptic currents due to increased firing in the network, we 

computed the mean membrane potential of E and I cell populations,  and  respectively �� ��,
during simulations with increasing noise frequency. Fig. 4d shows the difference between mean 

membrane potentials and the reversal potentials (i.e. distance to RP) of E (blue curves, left 

vertical axis) and I (red curves, right vertical axis) synaptic currents,  and , respectively. ����� �����
Due to increasing firing activity in the network, mean membrane potentials of both E and I cell 

populations were depolarized, resulting in their voltage values closer to  and farther from �����
 for both populations. The E cell population depolarized at a higher rate (as a function of �����

increasing noise frequency) than the I cell population with increasing noise frequency (as shown 

in Fig. 4d and e). The difference between mean voltages and , , ����� |��― ����� | ― |��― ����� |

transitioned from positive values to negative values as noise frequency increased (blue curve). 

The difference between mean voltages and  showed opposite behavior (red curve).   �����
Based on these data, we conclude that the first balanced state is achieved in the network 

by increased firing rates of the excitatory cell population relative to the inhibitory cell 

population. However, this difference in firing rates is partially compensated by a decrease in the 
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efficacy of excitatory synaptic currents in the network, due to decreased voltage difference 

between membrane potential and reversal potential. The results shown in Fig. 4d suggest that 

EPSCs and IPSCs are differentially distributed to E and I cell populations. We next took a closer 

look at this.

In the E=I balanced state, mean total EPSC and mean total IPSC are equal in the network. 

However, excitatory and inhibitory synaptic currents are not necessarily uniformly distributed 

among E and I cell populations. Here we analyze the relative magnitudes of the four types of 

post-synaptic currents: excitatory current to E cells (EPSC at E cells), excitatory current to I cells 

(EPSC at I cells), inhibitory currents to E cells (IPSC at E cells), inhibitory currents to I cells 

(IPSC at I cells), where “EPSC” and “IPSC” refer to mean total synaptic current arriving at the 

post-synaptic population (Fig 5a). As the noise frequency in E cells was increased and the E/I 

ratio passed through the E=I balanced state, all four types of synaptic current increased. At the 

E=I balanced state, the difference between total EPSC and total IPSC (values of blue curves – 

values of red curves when E/I ratio is 1) is zero. To identify the relative distribution of synaptic 

currents in the network, we next considered what we call the “net current difference” which we 

defined in two different ways, as follows. 

First, we computed the net synaptic current received by E cells and I cells separately (Fig. 

5b, c). To do this we separately calculated the net synaptic current received by E-cells as (EPSC 

at E cells) – (IPSC at E cells) (Fig. 5b), and the net synaptic current received by I-cells as (EPSC 

at I cells) – (IPSC at I cells) (Fig. 5c). As the noise frequency in excitatory cells increased and 

E/I ratio crossed through the E=I balanced state, net synaptic current to both cell populations 

increased from negative values to positive values reflecting a greater increase in the excitatory 

synaptic current received by both populations compared to inhibitory synaptic current. We then 

compute a “net current difference” by subtracting the net synaptic current curves in Fig. 5b and 

5c (Fig. 5f). This net current difference shows that the synaptic currents to the inhibitory cell 

population dominate at this crossing of the E=I balanced state: below the E=I balanced state, 

IPSC at I cells is greater than IPSC at E cells. As the E=I balanced state is crossed, EPSC at I 

cells is greater than EPSC at E cells.  

Second, we compared the relative magnitudes of EPSCs and IPSCs received by the two 

cell populations (Fig. 5d, e). This alternate way takes the point of view of the synaptic current in 

the network.  We computed the difference between EPSC received by E cells and I cells: (EPSC 
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at E cells) – (EPSC at I cells) (Fig. 5d), and the difference between the amount of inhibitory 

synaptic current received by E and I cells (IPSC at E cells) – (IPSC at I cells) (Fig. 5e). Below 

the E=I balanced state, the I cells receive more inhibitory current while the excitatory current is 

roughly evenly distributed, but as the noise frequency to E cells increases, EPSC at I cells 

exceeds that at E cells. The difference of the curves in these two panels yields the “net current 

difference” in Fig. 5f.

Thus, a characteristic of this E=I balanced state is that increased activity of E cells drives 

the network into an excitation-dominant regime, in which E cells increase their firing rates 

relative to I cells. While the efficacy of EPSC in the network decreases due to reductions in 

driving force (i.e., due to overall depolarized membrane potentials), as the E=I balanced state is 

crossed, EPSC dominates over IPSC (Fig. 5b and c). At the E=I balanced state, I cells receive 

more EPSC than E cells (Fig. 5d) and beyond the E=I balanced state, in the excitation-dominant 

regime, E cells receive more IPSC than I cells (Fig. 5e).

Detailed dynamics at the E=I balanced states: comparison of dynamics at the three balanced 

states

We next extended this analysis to compare network dynamics at all three crossings of the E=I 

balanced states (Fig. 6). Near each, we chose a value of wE  and increased E cells’ noise 

frequency to vary the E/I ratio. For each wE value, we examined the trajectory of the E/I ratio 

and the difference in firing rates between E and I cells (first column, similar to Fig. 4c), and the 

difference between the absolute value of the mean membrane potentials of E and I cells (second 

column, similar to Fig. 4e). This latter value directly affects the relative voltage distance of the 

two cell populations to EPSC and IPSC reversal potentials. We also assessed the trajectory of the 

E/I ratio vs. net current difference (as in Fig. 5f; third column; arrows indicate the direction of 

change as noise frequency increases) and vs. total current (E-I) in the network (as in Fig. 1a; 

fourth column). 

Additionally, in Fig. S3 of supplemental data we show that changes due to increasing noise 

frequency follow the same path as those due to increasing wE  (blue, black and yellow).  At the 

first crossing (top row), trajectories for different wE values almost overlap, suggesting that the 

state of the network is determined by the relative frequency of cell population firing. At the 2nd 

crossing (middle row), trajectories for different synaptic weights occupy different intervals of E/I 
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ratio values, but all show the same trends as noise frequency increases.  This suggests that noise 

and internal synaptic interactions together control network dynamics. Finally, at the 3rd crossing 

(bottom row), synaptic weight has a much greater effect on E/I ratio as trajectories remain 

essentially at fixed E/I values as noise frequency increases.  In this case, external drive does not 

strongly affect network dynamics due to strong synaptic interactions (caused by high wE values) 

in this regime. 

As, at each of the three crossings of the E=I balanced state, the trajectories for different 

wE values (Fig. S3) are similar with increasing noise frequency, indicating a qualitative 

consistency of effects, we focused on properties of one trajectory (black) for each crossing (Fig 

6). The trajectory through the first crossing of the E=I balanced state (Fig. 6, top row) replicates 

the results shown in Fig. 4c, 4e (blue curve), and 5f, respectively. Near the second crossing 

(middle row), initially the frequency of I cells is higher than that of E cells. As E cells’ noise 

frequency increases, their firing frequency increases relative to that of I cells, resulting in smaller 

firing rate differences (Fig. 6e). This results in depolarization of both cell types in the network, 

evidenced by smaller differences in mean voltage between E and I populations (Fig. 6f). 

Depolarization causes the EPSC driving force to decrease and consequently, the IPSC driving 

force to increase, overall decreasing EPSCs and increasing IPSCs. This change is not uniform, 

however, as E cells depolarize more than I cells (i.e.  becomes negative). These two |��| ― |��|
effects result in overall decrease of net current difference (Fig. 6g), due to a) increased 

depolarization of E cells vs. I cells, and b) the increase in inhibitory current in the network 

resulting from depolarization of both cell types (Fig. 6h). Hence, at the second crossing of the 

E=I balanced state, either increased spiking of E cells or increases in excitatory synaptic weight 

act to push total network inhibition to be dominant.  As we show below, membrane potential 

depolarization means that decreased EPSC driving force and increased IPSC driving force may 

be responsible for an overall decrease in EPSC efficacy in the network at the crossing of this 

balanced state.  

At the third crossing of the E=I balanced state (third row), increasing noise frequency to 

E cells has smaller effects on E/I ratio than changes in wE (see also blue to black to yellow data 

points in Fig. S3).  At this balanced state, E cells and I cells have similar firing rates (Fig. 6i) 

with I cells only slightly more depolarized than E cells (Fig. 6j). However, the wE/wI ratio skews 

the current significantly towards EPSC domination within the network. Moreover, as shown 
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below (Fig. 8), greater synchrony of firing patterns emerges in this state, driving the network 

toward balanced firing rates. Thus, similar to the first crossing of the E=I balanced state, 

increases in excitatory synaptic activity (due to weight increases) act to push the network from 

the inhibition dominant regime into the excitation dominant regime.  

Detailed dynamics at the E=I balanced states: Competition between the firing rate ratio and the 

depolarization ratio.

The primary distinction between the first and second crossings of the E=I balanced state is 

illustrated by relating the changes in total current (E-I, Fig. 6, last column) with changes in firing 

rate differences (first column) and membrane potential differences (second column) between E 

and I populations. At both crossings, increases in firing rate difference occur with decreases of 

voltage difference. However, at the first crossing total current increases mirroring the change in 

firing rate difference; in contrast, at the second crossing total current decreases in response to the 

change in voltage difference. This suggests that E/I ratio actually depends on competition 

between two opposing constraints: the ratio of firing rates of E and I cells (which we refer to as 

Nratio), and the ratio of driving forces for EPSCs and IPSCs (which we refer to as Vratio). Fig. 7 

displays the trajectories of Nratio (x-axis) and Vratio (y-axis) for the three crossings, with E/I 

ratio values indicated by color. Here, as in Fig. 6, wE is constant and trajectories show changes in 

response to systematically increasing the frequency of noise events to E cells.

At the first crossing (Fig. 7a), E/I ratio increases mirror Nratio increases. At the same 

time, Vratio decreases, meaning that the change in E/I ratio is driven by Nratio in this regime. 

However, this relationship is reversed at the second crossing (Fig. 7b), with increasing E/I ratio 

mirroring increasing Vratio (while Nratio decreases).  On the other hand, at the third crossing 

(Fig. 7c) there is no clear relationship between E/I ratio and either Nratio or Vratio. In this case 

E/I ratio is minimally affected by external noise frequency, and oscillates near 1 (note the change 

in color scale). Taken together, these findings show that the change of E/I ratio in the network 

can result from different mechanisms, depending on the relative change of firing rates and 

depolarization levels of E and I populations. A
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Detailed dynamics at the E=I balanced states: Quantification of tightness of E/I balance.

The E/I ratio measures the relative amounts of total EPSC and IPSC in the network across a 

period of time, but it does not indicate the temporal relationship between variations in these 

currents. To analyze differences in the temporal occurrence of EPSC and IPSC at the three 

balanced states, we calculated the cross-correlation of the time traces of total EPSC and total 

IPSC for a range of wE values in a network with moderate inhibition (wI = 0.2 mS/cm2) (Fig. 8). 

As wE increased driving the network across all three balanced states (Fig. 8a), stronger 

correlations and multiple peaks emerged, and the temporal delay between EPSC and subsequent 

IPSC decreased.

Cross-correlations at the three balanced states are shown in Fig. 8b. The first balanced 

state (red curve) displays a loose temporal relationship (corresponding to “loose E/I balance”) 

(Deneve & Machens, 2016), with no significant correlations between the two currents over time. 

In contrast, the second balanced state (green curve) shows “tight E/I balance” with a single peak 

in the correlation offset at a negative value indicating EPSC leading IPSC on a millisecond 

timescale. The third balanced state (violet curve) shows even tighter correlation, with a shorter 

delay and stronger correlation between the currents. Additionally, the appearance of multiple 

peaks in the correlation indicate that global oscillatory dynamics have emerged in the network.

Network topology affects the E/I ratio trajectory when changing synaptic weights.

Finally, to test the robustness of these different E/I balanced states, we varied the connectivity 

structure of the network (Fig. 9).  We constructed a two-layer network (one E cell layer and one I 

cell layer), with synaptic connections both between and within layers. We started with nearest 

neighbor connections (2.5% connectivity density), then systematically varied inter-layer and 

intra-layer connectivity structure by defining synapse rewiring probabilities (rpE and rpI) which 

dictate the degree in randomness in re-wiring of E and I synapses, respectively. In Fig. 9 we 

consider nine different connectivity combinations: local excitation (rpE=0, first column), small-

world excitation (rpE=0.2, middle column) and random excitation (rpE=1, last column) with local 

inhibition (rpI=0, blue curves), small-world inhibition (rpI=0.2, red curves) and random 

inhibition (rpI=1, yellow curves). 

As in Fig. 1, as wE increases (with moderate inhibition wI = 0.2 mS/cm2), the trajectories 

of E/I ratio values (x-axis) and total current (E-I) values (top row, y-axis) cross through the E=I 
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balanced state up to three times as network firing rates (bottom row, y-axis) show non-

monotonic changes. When E connections are local (first column), the connectivity pattern of I 

synapses can have a large effect. For local or small-world inhibitory synaptic connectivity (blue 

and red curves), the E/I ratio trajectories are similar as with completely random connectivity - 

with three crossings of the E=I balanced state as wE is increased. However, with random 

inhibitory synaptic connectivity (yellow curves), resulting in global inhibition in the network, 

only two crossings of the E=I balanced state occurred. Furthermore, the network remained in the 

inhibition-dominant regime for high wE. This is due to the fact that EPSCs excite the I cell 

population only locally, while the global IPSCs can suppress firing effectively, evidenced by the 

flat portion of the firing rate trajectory (Fig. 9d, yellow curve). When E synapses have small-

world (middle column) and random (right column) connectivity structure, three crossings of the 

E=I balanced state occur regardless of the inhibitory synaptic structure. Here the global 

component of excitation, generated by random excitatory connections, offsets the effects of 

inhibitory synaptic connectivity. For random excitatory connectivity (c), the trajectory curves 

almost overlap for all inhibitory connectivity structures, while with small-world excitatory 

connectivity (b), the trajectory curves are modulated by inhibitory connectivity structure. 

Discussion

Here we provide a schematic picture of the cellular and network mechanisms that determine 

changes of E/I ratio in a biophysical neural network model. Our results show that neurons and 

networks have a homeostatic capability to regulate the balance for excitation and inhibition via 

competitive contributions between firing rates and the voltage difference between membrane 

potential and the respective reversal potentials across a relatively wide range of network 

excitation levels. This homeostatic effect is particularly evident at the second E=I balanced state, 

where increased activity of E cells invokes increased IPSC in the network. On the other hand, we 

show that the dynamical mechanisms regulating a network toward balanced excitation and 

inhibition can change depending on the relative amount of excitation in the network, placing the 

system in diverse dynamical regimes. Specifically, at the first crossing of the E=I balanced state 

(when excitation in the network is low), firing rates of E cells drive changes in the E/I ratio, 

while at the second crossing (with higher excitation), E/I ratio is influenced by the efficacy of 
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postsynaptic currents, which is determined by the voltage difference between membrane 

potential and the respective reversal potentials. Thus, our present data suggest that there is no 

universal E=I balanced state as defined by a single mechanism. Rather, our results show that the 

dynamics towards a balanced state is driven by the interaction of both network activity and 

cellular depolarization levels. Further, our results show that experimental measurement of single 

specific cellular or network properties, such as ratios of conductances (Monier et al., 2008)  or 

PSC conductances alone (Wehr & Zador, 2003; Xue et al., 2014), may provide inadequate 

information about the true E/I ratio of the system. This is because the true E/I ratio results from 

combined (and interdependent) effects of firing rates, membrane depolarization, and synaptic 

weights.

Tightness of temporal correlation between excitation and inhibition (Fig. 8) is another 

important and experimentally measurable dynamical property providing information about the 

system’s activity regime. In our model, only the first crossing of the E=I balance point has low 

correlation between excitation and inhibition (i.e. “loose balance”) while the other two are tightly 

correlated (i.e. “tight balance”). This observation may provide an explanation for the emergence 

of the two types of balance. Loose balance emerges in a relatively low coupling regime and the 

variation in the relative strength of excitation and inhibition is driven predominantly by external 

input. This, in turn, results in a similar average level of E and I currents but no correlation.  On 

the other hand, tight balance is due to recurrent interaction between excitatory and inhibitory 

synapses, which results in significant temporal correlation between the two currents. As depicted 

in Fig. 8, as excitatory synaptic weight wE increased, the correlation between the two currents 

developed and the temporal delay between them decreased. Here the specific dynamical regime 

in which the network resides may be especially important, as it has been postulated that balanced 

excitatory transients may play an important role in amplification of neural activity patterns 

(Hennequin et al., 2014; Kremkow et al., 2010; Murphy & Miller, 2009)  . 

In our model, the first balance state provides conditions for temporally long balanced 

states during which such excitatory transients can occur whereas the two other balance states 

limit this temporal window to a couple of milliseconds. We, however, except for correlation 

analysis of E-I currents, did not study the emergence of such transients in our networks, as all 

our results are averaged over relatively long simulation runs. We speculate that the first balance 

state would be characterized by relatively long and spatially extended transients, while the 
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duration and spatial extent at the other two balance states would be limited. However, in the 

second and third balance stat, the emergence of synchrony and temporal codes (in contrast to rate 

coding) could play an important role in pattern transmission (Kumar et al., 2010). Because here 

we specifically concentrated on networks composed of neurons with Type I membrane 

excitability (which impedes formation of synchronous clusters), the role of synchrony is 

necessarily limited.  Future experiments will assess the emergence of synchrony in E/I balanced 

states in networks composed of neurons having Type 2 membrane excitability.      

Finally, network connection topology may also affect the dynamics of E/I ratio and the 

pattern of E/I regulation. This is most clearly observed when excitation is kept local in the 

network. As shown in Fig. 9a, increasing randomness (i.e. scope) of inhibitory connections 

significantly alters how E/I ratio changes when increasing excitatory synaptic weight. In this case 

for high excitatory weight network remains in the inhibition dominant regime. However, the 

general mechanism of regulation stays the same as our framework, i.e. E/I ratio depends on the 

relative contribution between firing rates and depolarization level. While these studies provide 

insight on how the dynamics of excitatory and inhibitory currents change as a function of spatial 

distribution and extent of excitation and inhibition, we don’t directly study effects of structural or 

input heterogeneities on the local emergence of E/I balance. Such heterogeneities and clustering 

by themselves were shown to prevent emergence of detailed E/I balance and emergence of both 

fast spiking variability and slow firing rate fluctuations (Landau et al., 2016; Litwin-Kumar & 

Doiron, 2012). However, because E/I balance is critical for invariant computation in neural 

networks (Marino et al., 2005), it may be preserved in the face of network heterogeneity via 

homeostatic plasticity in inhibitory synapses and spike-frequency adaptation (Landau et al., 

2016). 

A critical question is how the brain regulates the balance between excitation and 

inhibition on local and/or global levels. This question has been addressed by other studies 

showing that inhibitory homeostatic plasticity can play a critical role in regulating and 

controlling E/I balance on diverse spatio-temporal scales (Hennequin et al., 2017; Landau et al., 

2016; Litwin-Kumar & Doiron, 2014; Sprekeler, 2017). However, our results potentially 

reconcile a number of other discrepant experimental observations. For example, one recent study 

suggested that E/I ratios are pushed towards an inhibition dominant regime during wakefulness, 

when compared with the same brain network under anesthesia (Haider & Hausser, 2013). 
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However, other experiments have found that excitation and inhibition are at similar levels when 

comparing sleep states and wakefulness (Chellappa et al., 2016; Ly et al., 2016; Niell & Stryker, 

2010). These discrepancies may have profound implications for how the brain processes 

information. For example, the reported features of tuning curves for excitation and inhibition 

(i.e., in response to variations in external sensory stimuli) vary across studies. Similar tuning 

curves are observed in some experiments (Runyan et al., 2010; Wehr & Zador, 2003; Zhou et al., 

2014) while others have found either wider tuning (Niell & Stryker, 2010; Kerlin, et al.,2010) or 

narrower tuning (Sun et al., 2013) for inhibition, as compared to excitation. We speculate that 

these discrepancies in experimental findings may result from differing contributions of firing rate 

and membrane depolarization between experiments, which push the networks under study into 

different balanced state realizations.

Together, our results point to complex interactions between excitatory and inhibitory 

currents in the balanced network regime. Our characterization of the repertoire of diverse 

balanced states provides a theoretical framework for experimental studies quantifying E/I 

balance and characterizing network interactions in various brain states and modalities.
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Figure captions

Figure 1. (a) Schematic of network structure illustrating synaptic interactions from inhibitory 

cells (red) with fixed synaptic weight wI and from excitatory cells (blue) with varied synaptic 

weight wE. Lightning bolts represent the external noisy stimuli with average frequency 40 Hz 

applied to each neuron in the network. (b) Relationship between E/I ratio values and E-I current 

difference (total current) values in asymptotic balance states as excitatory synaptic weight wE 

was monotonically increased (arrows show direction of relative change with increasing wE). Four 

trajectory curves correspond to 4 values of inhibitory synaptic weight wI (given in legend in 

mS/cm2).  Inset in panel b shows a close-up of the asymptotic E=I balanced state (i.e. when E/I 

ratio  is near  1 and total current is near 0) with two trajectories (violet and yellow) that crossed 

this balanced state 3 times. (c) Trajectory curves of E/I ratio values and network spiking activity 
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values (in Hz computed during the 1.5s simulation in the asymptotic balance state), as excitatory 

synaptic weight wE was systematically increased for the 4 values of wI (arrows show direction of 

change with increasing wE). For two trajectories (violet and yellow) although the E/I ratio 

oscillated above and below 1, spiking rates continued to increase as wE was increased.

Figure 2. Trajectories of E/I ratio and total current values for networks with additional parameter 

changes addressing aspects of biological realism display the same qualitative behavior. 

Comparing with Figure 1b, the value of one parameter is changed in each panel while other 

parameters stay the same as original simulation. Inhibitory weight wI is adjusted accordingly to 

show the appropriate E/I ratio range.  a) random network with increased connectivity density 

(20% vs 3%, wI=0.2mS/cm2); b) 80% excitatory cells and 20% inhibitory cells (wI=2.8mS/cm2); 

c) different values for the four types of synapses, wEE is varied, wEI = 0.35mS/cm2, wIE = 0.5mS/ 

cm2, wII = 0.7 mS/ cm2; d) same as panel e) but the values for wEI and wIE are reversed:  wEI = 

0.5mS/ cm2, wIE = 0.35mS/ cm2, wII = 0.7 mS/cm2.

Figure 3. Firing patterns near three E=I balanced states for a network with wI = 0.2 mS/cm2. 

The excitatory weight, wE is chosen near the balanced state as marked on panels (a-c). (d-f) spike 

raster plot; (g-i) distribution of pairwise Mean Phase Coherences (MPCs) and (j-l) distribution of 

pairwise relative phases of neuronal firing computed near each balanced state. Mean Phase 

Coherences (MPC) (g-i) and relative phases (j-l) are computed only for pairs of synaptically 

connected neurons. The pairs are separated into four groups depending on the synaptic 

connections between them: excitatory to excitatory (E-E), excitatory to inhibitory (E-I), 

inhibitory to excitatory (I-E), inhibitory to inhibitory (I-I).

Figure 4. Analysis of network factors contributing to E/I balance at the first crossing of the E=I 

balanced state. (a) Schematic of alternate method to change E/I ratio. Synaptic weights are fixed 

near the E=I balanced state and frequency of noisy external stimuli to the excitatory (E) cells is 

varied (see text for details). (b) Relationship between E/I ratio values and mean firing rates of the 

excitatory (E, blue curve) and inhibitory (I, red curve) cell populations as noise event frequency 
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to the E cells is increased. (c) Difference between blue and red curves in (b). (d) Relationship 

between E/I ratio values and the difference between the mean membrane potentials of the 

excitatory ( ) and inhibitory ( ) cell populations, and the reversal potentials of the excitatory (�� ��
) and inhibitory ( ) synaptic currents as noisy event frequency to the E cells is increased. ����� �����

Blue (red) curves show distances from  ( ).  (e) Difference of distance curves shown in ����� �����
(d). 

Figure 5. Distribution of synaptic current in the network at the first crossing of the balanced 

state. (a) Trajectories of the four different types of mean total synaptic currents, Excitatory Post 

Synaptic Current (EPSC) at excitatory cells (blue solid), EPSC at inhibitory cells (blue dash), 

Inhibitory Post Synaptic Current (IPSC) at excitatory cells (red solid) and IPSC at inhibitory 

cells (red dash) as E/I ratio is varied by increasing the frequency of noise events to the excitatory 

cell population. The relative distribution of excitatory and inhibitory currents to the excitatory 

and inhibitory cell populations is displayed in two different ways (b and c, or d and e). The color 

and pattern of the arrows in the diagrams are consistent with the curves in panel a. (b) Net 

synaptic current received by E cells, which is the difference of EPSC and IPSC at E cells 

(difference between blue and red solid curves in panel a). (c) Net synaptic current received by I 

cells, which is difference between EPSC and IPSC at I cells (difference between blue and red 

dashed curves in panel a).  (d) Difference of EPSC received by the E cells and the I cells 

(difference between blue solid and blue dashed curves in panel a). (e) Difference of IPSC 

received by E cells and I cells (difference between red solid and red dashed curves in panel a). (f) 

Difference of the net currents shown in (b) and (c) indicating which population received more 

net current, or equivalently difference of currents shown in (d) and (e) indicating which type of 

current is more distributed in E cells compared to I cells. 

Figure 6. Comparison of network dynamics at the first (top row), second (middle row) and third 

(bottom row) crossings of the E=I balanced state. Three different values of wE are chosen to 

place the network at the respective E=I balanced. For each value of wE, the frequency of noise 

events to the E cells is varied between 5 and 75Hz while the noise event frequency to the I cells 
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is kept at 40Hz (dashed arrows indicate direction of change of the variables indicated with 

increasing noise frequency). Trajectories of E/I ratio values and: (a, e, i) firing frequency 

difference between the E and I cells; (b, f, j) absolute value of mean voltage difference between 

the E and I cells; (c, g, k) “net current difference” (see text for description) between the E and I 

cells; and (d, h, l) total current (E-I).

Figure 7. The contribution of changes in E and I firing rates (Nratio) and excitatory and 

inhibitory synaptic current driving forces (Vratio) to changes in E/I ratio. Values for wE are fixed 

near each balanced state (a: first crossing, b: second crossing, c: third crossing) and frequency of 

noise events to E cells is increased to vary E/I ratio (color of curves). Curves show relationships 

between values of the ratio of E to I cell average firing rates (Nratio, x-axis) and values of the 

ratio of differences between average membrane potentials and reversal potentials of the 

excitatory and inhibitory synaptic currents (Vratio, y-axis) at each value of E/I ratio. At the first 

crossing (a), increasing E/I ratio mirrors increasing Nratio while at the 2nd crossing it mirrors 

increasing Vratio.

Figure 8. Temporal relationship of total excitatory and inhibitory synaptic currents. Cross-

correlation (a, color) of the time traces of the total excitatory and inhibitory synaptic currents as 

wE is varied (direction of arrow) driving the network across the three balanced states indicated by  

 (red curve),  (green curves) and  (violet curves). b) Cross correlation traces between the �1� �2� �3�
E and I currents at the three crossings of the balanced state. Negative delay indicates excitation 

leads inhibition. 
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Figure 9. Trajectory curves of E/I ratio values and total current (E-I) values (top row), and 

network firing rate values (bottom row) as excitatory synaptic strength increases for networks 

with different connectivity structures. Networks are composed of one layer of excitatory cells 

and one layer of inhibitory cells, which are connected within and between layers with 2.5% 

connectivity probability. The synapse rewiring parameter for excitatory (rpE) and inhibitory (rpI) 

synapses are changed separately, resulting in different network topologies. Excitatory synaptic 

strength, wE , increases from 0 while inhibitory synaptic strength wI =0.7mS/cm2 stays constant. 

In all panels, different curves show results for different inhibitory connectivity structures (blue: 

local inhibition, rpI=0; red: small world inhibition, rpI=0.2; yellow: global inhibition, rpI=1). 

Columns show results for different excitatory connectivity structures: (a, d) local excitation 

(rpE=0); (b, e) small world excitation (rpE=0.2); (c, f) global excitation (rpE=1).  
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