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Abstract: Recently, significant progress has been made in III-nitride nanocrystals. They exhibit 

unique structural, electronic, optical, and photocatalytic properties, and have emerged as a 

functional platform to realize high performance optoelectronic, electronic, quantum, and solar 

energy devices. Compared to conventional III-nitride epilayers and quantum wells, dislocation-free 

III-nitride nanocrystals can, in principle, be achieved on lattice mismatched foreign substrates due 

to the efficient surface strain relaxation. In this article, we discuss the epitaxy, characteristics, and 

some emerging device applications of III-nitride nanocrystals grown by plasma-assisted molecular 

beam epitaxy. 
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1. Introduction 

In the past decades, we have witnessed the tremendous success of GaN semiconductors. 

Through the pioneering work of Akasaki, Amano, and Nakamura and many others, GaN is the 

material of choice for today’s massive LED lighting industry.[1-3] It has also emerged as the next 

generation power semiconductor.[4, 5] In spite of the great success, however, there are many critical 

challenges that remain to be addressed. For example, GaN-based LEDs still exhibit low efficiency 

in the green and red wavelengths.[6] In the deep ultraviolet (UV) spectrum, the efficiency of AlGaN-

based LEDs is well below 10%.[7-9] While significant progress has been made in optically pumped 

AlGaN quantum well laser diodes in the mid and deep UV spectra, there have been no 

demonstrations of electrically pumped quantum well laser diodes operating in the UV-B and UV-C 

bands. In addition, there is an urgent need to develop multi-color micro-LEDs to improve the 

efficiency of mobile displays. Such small size LED arrays are also essentially required for the 

emerging virtual/augmented/mixed reality devices and systems. It is further envisioned that III-

nitrides can play a critical role in addressing the critical energy and environmental challenges we 

face in the 21st century. The energy bandgap of InGaN can be tuned across nearly the entire solar 

spectrum. Recent studies further shown that InGaN is the only known semiconductor whose 

conduction and valence band edges can straddle water redox potentials under deep visible and near 

infrared light irradiation, which is essentially required for the efficient generation of solar fuels 

through solar water splitting and CO2 reduction.[10-12]  

One major challenge to realize these promises is the presence of extensive defects and 

dislocations in the epitaxy of III-nitride heterostructures. In this regard, tremendous success has 

been made in the development and commercialization of GaN and AlN substrates/templates. 

Studies by Miyake at Mie University showed that the quality of AlN grown/deposited on sapphire 

wafer can be substantially improved by ultrahigh temperature annealing.[13-15] High quality AlN has 

also been demonstrated by growing on nano-patterned sapphire wafer.[16-19] Due to the efficient 

strain relaxation, dislocation-free III-nitride nanocrystals can, in principle, be achieved on foreign 
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substrates.[20-30] Such nanostructures were first developed in the 1990s by Kishino and Calleja.[31-33]

Since then, III-nitride nanocrystals, also commonly referred to as nanowires, or nanorods, have 

been intensively studied.[21, 34-44] They have emerged as unique platform, not only for materials 

studies but also for many practical device applications, including LEDs, lasers, photodetectors, 

transistors, solar cells, and artificial photosynthesis, to name just a few. 

In this article, we provide an overview on some of the emerging applications of III-nitride 

nanocrystals. In Section 2, we describe the realization of nearly dislocation-free AlGaN templates 

through controlled coalescence of III-nitride nanocrystals. The unique epitaxy of III-nitride 

nanocrystals and the realization of multi-color nano/micro-LEDs is presented in Section 3. In 

Section 4, we present the recent demonstration of surface-emitting green laser diodes with the use 

of III-nitride nanocrystal arrays. The achievement of efficient p-type conduction of AlN 

nanocrystals, and the realization of mid and deep UV LEDs and laser diodes is discussed in Section 

5. In Section 6, the unique advantages of InGaN nanocrystals for solar fuel production and the 

recent developments in GaN-based artificial photosynthesis are described. Finally, conclusions and 

future prospects are discussed in Section 7.  

 

2.  Dislocation-free AlGaN templates through controlled coalescence of nanocrystals  

Given that dislocation-free nanocrystals can be grown directly on foreign substrates due to the 

efficient surface strain relaxation, the coalescence of nanocrystals has been studied for forming high 

quality templates on foreign substrates.[45-47] However, the presence of any mismatch between the 

crystal orientations at the coalescence boundary can lead to dislocations during the coalescence 

process.[48] Figure 1a schematically illustrates the generation of strain, grain boundaries, networks 

of structural defects upon the coalescence of two randomly oriented crystal structures.[47, 49-51] Such 

issues can be potentially addressed if the two crystals have identical orientations at the coalescence 

boundary, depicted in Figure 1b. The formation of dislocations can, in principle, be eliminated due 

to the identical crystalline orientation. A small distortion in the lattice due to variation in bond 
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length or angle can also be accommodated. Moreover, the controlled coalescence allows strain to be 

gradually relaxed to the bulk state, which also minimizes the generation of dislocations at 

coalescence boundaries. It is therefore expected that dislocation-free AlGaN template with arbitrary 

alloy compositions can be realized on foreign substrates.  

Key to this process is control over the nucleation of nanocrystals to achieve identical crystalline 

orientation, crystal dimension, and well-defined position. In this regard, selective area epitaxy was 

used to form a highly regular AlGaN nanocrystal array. Illustrated in Figure 2a, a thin Ti layer was 

firstly deposited on a GaN-on-sapphire substrate to serve as the growth mask. Opening apertures 

were defined on the Ti layer by using electron beam lithography and dry etching. Under optimized 

growth conditions, GaN nanocrystals were only formed in the opening apertures. The resulting GaN 

nanocrystals have a hexagonal morphology. AlGaN nanocrystals were subsequently grown on top. 

Due to the slower surface migration of Al adatoms than Ga adatoms, the lateral growth of 

nanocrystals was enhanced. As the growth proceeded, the nanocrystals gradually coalesced and a 

continuous AlGaN epilayer was formed on top, shown in Figure 2b. The morphology of the AlGaN 

film exhibits semi-polar planes which stem from the semi-polar planes of the pyramid top of Ga-

polar nanocrystals. The resulting semi-polar AlGaN template has several benefits, including 

reduced polarization field and enhanced p-type Mg-dopant incorporation.[52, 53] Detailed studies 

showed that there were no dislocations or stacking faults at the coalescence boundary as depicted in 

Figure 2c. The absence of structural defects is also attributed to the efficient strain relaxation in the 

quasi-3D structures of the well-ordered semi-polar surface.[23, 54, 55] The Al content of the AlGaN 

film was estimated to be ~30%. Further characterization of the p-type conduction in the p-AlGaN 

film formed in this approach indicates a hole mobility of 8.85 cm2 V-1 s-1 and a hole concentration of 

7.4×1018 cm-3 at room-temperature.[48] Compared to previously reported values for p-AlGaN with 

similar Al-content, the hole mobility is enhanced by a factor of two and the hole concentration is 

enhanced by more than one order of magnitude.[56-58] The activation energy for Mg-dopant is 
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estimated to be ~ 47 meV from detailed temperature-dependent Hall effect measurement, which is 

attributed to hopping conduction in the Mg-impurity band.[58, 59] 

 

3. Multi-color micro-LEDs 

InGaN nanocrystals grown by molecular beam epitaxy is well suited for realizing multi-color 

light emitters in a single growth process. Illustrated in Figure 3, the In content of InGaN 

nanocrystals is determined not only by directly impingent In atoms from the top surface but also on 

the supply of In adatoms through lateral surface migration. Consequently, the In content can be 

varied by changing the size of InGaN nanocrystals in a single growth step. Shown in Figure 4a, 

emission colors varying from blue to red can be achieved from nanocrystals of different sizes 

arranged in a triangular lattice.[60] The emission wavelengths redshifted from ~ 480 nm to ~ 630 nm 

with diameters increasing from 143 nm to 270 nm while keeping the period of the nanocrystal array 

constant, which corresponds to In content variation from 23% to 35%. By keeping the period 

constant, the spacing between nanocrystals is reduced with increasing diameter, leading to 

enhanced shadowing effect for adatoms on the sidewalls. Due to the shorter migration length of In 

adatoms compared to that of Ga adatoms at elevated growth temperature, the supply of Ga through 

lateral surface migration was more affected than that of In. As a result, the Ga incorporation became 

less for nanocrystals with smaller spacing, which caused redshifts in emission wavelengths for 

nanocrystals with larger diameters. By using this approach, multi-color micro-LEDs were 

demonstrated. Shown in Figure 4b are the EL spectra for monolithically integrated four micro-

LEDs with different colors from blue to red.[61]   

 Control over emission wavelengths at the single nanocrystal level was also studied.[62] It was 

observed that the formation and properties of InGaN quantum dots (QDs) depend critically on the 

size of nanocrystals. Shown in Figure 5a, for GaN nanocrystals with relatively small size, InGaN 

QDs were incorporated at the center of the crystal. With increasing crystal size, InGaN QDs were 

formed on the semipolar planes near the lateral surfaces, shown in Figures 5b, c and d. This was 
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explained by the enhanced indium incorporation near the center region for nanocrystals with 

smaller sizes, due to relatively large contribution from indium adatom migration on the lateral 

surfaces, compared to nanocrystals with larger sizes. Figure 5e shows the photoluminescence (PL) 

spectra measured for single InGaN nanocrystals with different diameters grown on the same 

substrate. It is seen that the emission wavelengths can be controllably varied from red to blue with 

increasing nanocrystal size. Detailed structural characterization further revealed that, during single 

nanocrystal epitaxy, indium incorporation is significantly enhanced for nanocrystals with smaller 

sizes, due to the enhanced indium incorporation from the lateral surfaces. Multi-color single 

nanocrystal LEDs were also fabricated and characterized,[62] which provide distinct opportunities to 

realize monolithically integrated RGB micro and nano LED arrays.  

By using selective area epitaxy, InGaN nanocrystals can be arranged to form a photonic crystal 

structure to enhance the radiative recombination rate by Purcell effect and to enhance the light 

extraction efficiency by Bragg scattering. Shown in Figure 6a is the SEM image of a nanocrystal 

array designed to match the band edge Γ point with the emission wavelength.[63] At the band edge, 

the group velocity is drastically reduced, leading to a stable large area mode in the entire array and 

longtime interaction between the mode and the active region. Therefore, the Purcell effect can 

significantly enhance the radiative recombination rate and improve the internal quantum efficiency 

(IQE).[64] The resultant PL spectrum is shown in Figure 6b where a pronounced peak with a narrow 

linewidth of ~12 nm is observed from the photonic crystal structure. The structure without photonic 

crystal resonance effect only exhibits a broad emission peak depicted by the blue curve in Figure 6b. 

Owing to the emission property of photonic crystal, the emission spectrum remains extremely stable 

under a wide range of excitation powers from 29 W/cm2 to 17.5 kW/cm2, shown in Figure 6c. In 

contrast, the emission from conventional InGaN quantum wells usually blueshifts due to quantum 

Stark effect as the excitation power increases.[65, 66] The analysis in Figure 6d shows negligible peak 

shift or broadening as the excitation power is varied by nearly three orders of magnitudes. Such 
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nanocrystal arrays arranged in a photonic crystal structure is promising for micro-LEDs with 

extremely stable emission, good directionality, and narrow spectral linewidth. 

 

4. Surface emitting laser diodes 

The performance of GaN-based surface emitting laser diodes has been severely limited by the 

poor quality of GaN-based distributed Bragg reflectors, which often exhibit relatively low 

reflectivity, large densities of dislocations, and high electrical resistivity.[67-69] Significant progress 

has been made in GaN-based blue VCSELs by utilizing AlInN/GaN DBRs[70] or dual-dielectric 

DBRs[71], and by growing on m-plane GaN substrate[72]. Recently, surface emitting green laser 

diodes have been demonstrated with the use of dual dielectric distributed Bragg reflectors and wafer 

bonding to a copper plate for low thermal resistance.[73] Surface emitting laser diodes can also be 

readily achieved by using photonic crystal structure designed to operate at Γ point.[74] Shown in 

Figure 7a is the schematic of light scattering in the reciprocal space of a photonic crystal structure. 

Six Γ’ points are coupled by the Bragg grating vectors K1 and K2, which leads to standing wave 

resonant in the photonic crystal structure and eliminates the need for extra mirrors for optical 

feedback in the x-y plane. Furthermore, Γ point is also coupled with the six Γ’ points by the Bragg 

grating vectors K1 and K2, which constitutes a path for optical output. Due to the zero in-plane 

wavevector kxy at Γ point, the output is essentially along the vertical direction, giving the desired 

surface emission. The optical confinement along the vertical direction is provided by the GaN 

cladding layers with sufficient thicknesses below and above the active region. The active region 

consists of InGaN QDs and AlGaN barriers in order to form Al-rich shell which can suppress non-

radiative surface recombination.[75-77] Our designed photonic band structure is shown in Figure 7b, 

which has a lattice constant of a=250 nm. The normalized frequency of the Γ point of the 4th band is 

~0.48a/λ, which corresponds to emission wavelength λ at ~520 nm. 

The fabricated surface emitting laser diode exhibits excellent current-voltage (I-V) 

characteristics as shown in Figure 7c. A sharp turn-on voltage of ~3.3 V is measured at room-
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temperature and the leakage current under reverse bias is negligible. The emission spectra are 

displayed in Figure 7d. Only a broad spontaneous emission spectrum with a linewidth of ~ 30 nm 

centered at ~ 524 nm was observed when the injection current is low. A sharp lasing peak with a 

linewidth of 0.8 nm at ~523 nm emerged as the injection current increases. The variation of output 

power with injection current is shown in Figure 7e, which exhibits a threshold with a non-linear 

increase around an injection current of 400 A/cm2. The threshold is significantly lower than 

previously reported GaN VCSELs, which is related to the efficient in-plane optical feedback in the 

photonic crystal structure and dislocation-free InGaN nanocrystals.[70, 73, 78-80] The variations of the 

emission linewidth and peak position are shown in Figures 7f and 7g, respectively. The lasing peak 

remains stable above the threshold, which is attributed to the band edge mode at Γ point and the 

reduced polarization field in nanocrystals exhibiting semi-polar facets.  

 

5. Deep UV optoelectronics 

The development of deep UV optoelectronic devices has been largely hindered by the lack of 

efficient p-type conduction due to the high activation energy of p-type dopant (Mg).[81-83] Recently, 

breakthroughs have been made by using MBE to grow high quality Mg-doped AlN nanocrystals 

that can exhibit efficient p-type conduction.[23, 84] This has opened up new opportunities for 

achieving high efficiency deep UV LEDs and electrically pumped UV laser diodes. 

5.1  Efficient p-Type conduction of Mg-doped AlN nanocrystals 

The unique advantage of nanocrystal lies in the efficient incorporation of p-type Mg dopant. 

Theoretical studies have shown that the Ga (Al) substitutional Mg-dopant formation energy is much 

reduced in nanocrystals than in the bulk material, which allows for the incorporation of a high 

concentration of Mg dopant without extensive defect formation.[23] As the concentration of Mg 

dopant increases, the Mg energy levels start to interact with each other and broaden as illustrated in 

Figure 8a, forming an impurity band where hole conduction can occur by hopping. Moreover, some 

Mg-acceptor levels shift closer towards the valence band due to dispersion of their energy levels, 
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which essentially reduces the Mg-dopant activation energy and contributes to free holes in the 

valance band. Shown in Figure 8b are the PL spectra for AlN nanocrystals with Mg doping and 

without any intentional doping. The Mg-doped sample exhibits a pronounced peak at ~230 nm 

which is from Mg-acceptor related transition. The energy separation between this peak and the 

excitonic emission of AlN is around 0.5-0.6 eV, matching the previously reported value for the 

activation energy of Mg-acceptor level in bulk AlN.[81, 85] It is important to note that the tail of the 

peak at 230 nm from Mg-acceptor related transition has an appreciable overlap with the excitonic 

emission peak of AlN at 210 nm, which confirms the reduced energy separation between the 

valence band and some Mg-acceptor levels due to the significant broadening of Mg-acceptor levels 

at high concentrations.  

Shown in Figure 8c, the measured electrical resistivity of Mg-doped AlN nanocrystals shows a 

very small activation energy of 20-30 meV around room-temperature, which is explained by the 

dominant hole hopping conduction in the Mg impurity band.[86] When the temperature is increased, 

the activation energy increases to values close to commonly reported values for Mg activation 

energy in bulk AlN.[81, 85] To further confirm the mechanism for hole current conduction, the 

dependence of hole concentration on temperature is studied for two Mg-doped AlN nanocrystal 

samples with different doping levels. The sample with relatively low Mg concentration exhibits a 

monotonically increasing trend for hole concentration as the temperature increases, shown in Figure 

8d.[84] The hole concentration in the sample with relatively high Mg concentration (red circles), 

however, exhibits a decreasing trend initially until the temperature reaches 550 K and then an 

increasing trend for higher temperatures. The reason for the initial decreasing trend with 

temperature is that the number of holes in the Mg impurity band, which dominates the overall 

current conduction, is reduced at elevated temperature due to ionization. When the temperature is 

sufficiently high (> 550 K), the holes in the valence band dominate the overall current conduction, 

exhibiting an increasing trend with temperature as expected. 
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5.2   AlN and AlGaN UV LEDs and laser diodes 

Compared to the planar LED structures, nanocrystals can enhance the light extraction efficiency 

for transverse magnetic polarized emission. Detailed finite-difference time-domain (FDTD) 

simulations show that the light extraction efficiency can reach more than 80% for AlGaN photonic 

nanocrystal LEDs.[87, 88] It has also been demonstrated experimentally that nanostructures used as a 

highly reflective photonic crystal in backside emitting LEDs can nearly double the external 

quantum efficiency.[89] AlN nanocrystal LEDs have recently been demonstrated, which can exhibit 

a turn-on voltage ~5.5 V at room temperature as shown in Figure 9a, compared to >20 V for 

previously reported planar c-plane AlN LEDs.[82, 87] The EL spectra with a stable and pronounced 

peak at ~ 207 nm under varying injection currents are shown in Figure 9b. By controlling the 

composition of AlGaN nanocrystals, AlGaN nanocrystal LEDs with emission wavelengths from 

~210 nm to ~280 nm have also been demonstrated, shown in Figure 9c.[23, 30, 76, 87, 90-94] To date, 

there has been only one demonstration of electrically pumped AlGaN quantum well lasers operating 

in the UV-B and UV-C bands,[26, 95-100] With the use of AlGaN nanocrystals electrically pumped 

mid and deep UV laser diodes has been successfully demonstrated, shown in Figure 9d.[26, 95-97] 

 

6. Artificial photosynthesis 

Artificial photosynthesis, i.e., the chemical transformation of sunlight, water and carbon dioxide 

into energy-rich fuels, provides an effective means for harvesting the abundant solar energy to use 

on demand for stationary and mobile applications.[101, 102] This approach can be an ideal long-term 

solution to the energy related problems and environmental remediation on a global scale.[103, 104] 

GaN-based alloys and nanostructures possess near-ideal thermodynamic and kinetic attributes and 

advantages [105] over other known photocatalysts, including extreme chemical stability, high 

absorption coefficients and tunable bandgap to encompass nearly entire solar spectrum (shown in 

Figure 10) while straddling water redox potential for up to ~50% indium incorporation [10, 106]. 
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Moreover, the non-polar surfaces of GaN are highly reactive for spontaneous dissociation of water 

molecules[107, 108], and possess low energy barrier for proton diffusion[109, 110]. GaN-based 

nanocrystals provide additional advantages, including significantly reduced defects and dislocations 

when grown on foreign substrates, efficient light absorption and charge carrier separation, and 

enhanced stability due to the N-rich surfaces that can protect against photo-corrosion and 

oxidation.[111-116]   

6.1 Photocatalytic and photoelectrochemical solar water splitting 

Our early demonstration on wafer-level water splitting confirmed, for the first time, that GaN 

nanowires meet the essential thermodynamic and kinetic requirements and are capable of 

spontaneously splitting neutral pH pure water into constituent parts, with stoichiometric H2 and O2 

ratio of 2:1, without any external bias or conductive electrolytes.[117] By optimizing the surface 

charge properties through controlled dopant incorporation, the H2 evolution rate in overall solar 

water splitting on p-GaN nanowire device was enhanced by nearly two orders of magnitude, and the 

IQE can reach over ~51%, shown in Figure 11a. Dual-band p-GaN/InGaN nanowire photocatalysts 

can exhibit further enhanced energy conversion efficiency (ECE) of ~7.5% and solar to hydrogen 

(STH) conversion efficiency of ~1.8%.[106, 118] To spontaneously induce charge carrier separation 

and to steer charge carriers toward the distinct redox sites, p-type dopant (Mg) concentrations were 

rationally tailored in the lateral direction of Ga(In)N photochemical diodes [119], which induces large 

built-in electric field between the two parallel surfaces (~ 300 meV). STH efficiency values of ~3.3% 

and 5.2% had been measured on such Ga(In)N photochemical diodes and quadruple-band devices, 

respectively, which are significantly higher than previously reported efficiency values for neutral 

pH one-step overall water splitting.[120-125] Recent studies demonstrated that simultaneous loading of 

water oxidation and proton reduction cocatalysts (Co3O4 and Rh/Cr2O3) on p-GaN/InGaN 

nanowires can efficiently drive the unassisted overall water splitting for more than ~580 hours 

under concentrated sunlight (equivalent to 27 Suns), as shown in Figure 11b.[126] Such device 

longevity is unique for any inorganic semiconductor photocatalysts or photoelectrodes without any 
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protection layer for unbiased overall photocatalytic pure water splitting with STH >1%. Systematic 

investigation, both theoretical and experimental, on the atomic-scale origin of such long-term 

stability and high efficiency revealed that the Ga(In)N nanowires grown by MBE can spontaneously 

form atomically thin N-terminated layers, on both their polar top surfaces and lateral non-polar 

sidewalls as shown in Figure 12.[116] Such a unique surface configuration passivates the nanowires 

against attack by air/aqueous electrolytes.[127] 

Recently, Vanka et al. demonstrated GaN nanowire protected Si photocathodes exhibit excellent 

performance, including a saturated photocurrent density of ~38 mA/cm2 a large applied bias 

photon-to-current efficiency (ABPE) of 10.5%.[128, 129] Chronoamperometry analysis for the 

photocathode shows a stable photocurrent density of ~38 mA/cm2 for ~3,000 hrs without 

degradation, which is the best reported stability for a semiconductor photocathode at a photocurrent 

density of 35 mA/cm2, or higher under one-sun illumination. Wang et al. reported a 

GaInP/GaAs/Ge triple-junction (3J) photocathode protected by multifunctional GaN nanostructures 

can enable both efficient and relatively stable solar water splitting. [130]  A 12.6% solar-to-hydrogen 

(STH) efficiency is measured without any external bias and relatively stable solar water splitting for 

80 h in three-electrode configuration and 57 h in two-electrode measurement at zero bias. 

Recent investigations further revealed that the industry-ready GaN-based artificial 

photosynthetic system can be realized with enhanced efficiency and stability by employing highly 

crystalline, low-bandgap (~1.5 eV) nanostructures for extended visible light absorption (e.g., In-rich 

InGaN, dilute-antimonide GaInSbN etc.) [131-133] that can reduce the gas evolution overpotentials for 

both half reactions via bandgap and band-edge tuning, by controllably introducing donor/acceptor 

states into the bandgap[134] and by using dye-sensitization approach for efficient and stable solar 

water splitting under deep-visible and near-infrared irradiation[135]. 
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The photo(electro)chemical reduction of CO2 into value-added chemicals and fuels (e.g., CO, 

HCOOH, CH3OH, and CH4) using solar energy has received considerable attention. Compared to 

most metal oxides, the conduction band minimum of GaN is more negative and hence sufficient to 

meet the thermodynamic requirements for CO2 reduction. Kinetically, it is important to couple with 

suitable cocatalyst to enhance the charge separation and activate the stable CO2 molecule into 

desired products with high selectivity. By employing Rh/Cr2O3 or Pt as cocatalysts, GaN nanowire 

arrays has been demonstrated for photochemical CO2 reduction with H2O into CH4 with a 

production rate of 3.5 and 14.8 μmol gcat
−1 h−1, respectively.[136] With the use of Pt-modified p-

InGaN/GaN nanowire arrays, visible-light-driven CO2 conversion with H2 into CH3OH, CO and 

CH4 has been achieved with an evolution rate of ∼0.5, 0.1 and 0.25 mmol gcat
−1 h−1, respectively.[137] 

In addition to the photochemical system, GaN nanowire arrays integrated with Si substrate has 

emerged as a powerful platform for photoelectrochemical CO2 reduction, taking advantages of 

strong light absorption capability of Si (bandgap of 1.1 eV) and effective electron extraction as well 

as high surface area of GaN nanowires. Such a GaN/Si platform has emerged as a fundamental 

framework to understand the effect of various cocatalysts on the selectivity of photoelectrochemical 

CO2 reduction. With the incorporation of Cu as the cocatalyst, the device exhibited a Faradaic 

efficiency of 19% for CH4 generation.[138] When using a synergetic cocatalytic effect between Cu 

and ZnO, the device demonstrated a tunable syngas generation with CO/H2 ratio ranging from 2:1 

to 1:4.[139] Furthermore, by employing Pt/TiO2 as a model cocatalyst for constructing metal/oxide 

interface, the resulting photoelectrode yielded a solar-to-syngas efficiency of 0.87% with an 

adjustable CO/H2 ratio between 4:1 and 1:6.[140] Very recently, using Sn and binary Cu-Ir as the 

cocatalysts, high Faradaic efficiency values of 77% for HCOOH formation and 51% for methane 

production have been reported, respectively.[141, 142] Nanoscale III-nitrides have also been employed 

for the synthesis of “green”  ammonia[143]and ethanol[144]through light-driven chemical reactions.     
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III-nitride nanocrystals have emerged as a unique platform, which complements the great 

success of conventional planar structures, and provides distinct opportunities to address many 

critical challenges we face today, including the realization of low defect density templates with 

arbitrary In (or Al) compositions, efficient multi-color micro LEDs, high performance deep UV 

optoelectronic devices, and high efficiency solar energy and artificial photosynthesis devices and 

systems. In addition, they have been studied for applications in low power logic and memory 

devices, as well as the emerging quantum devices through heterogeneous integration and quantum 

engineering.[145-166] Evidently, there is much to study and to learn about III-nitride nanocrystals to 

realize their full potential.   
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Figures 

 

Figure 1. Schematics for the coalescence of nanocrystals with (a) different orientations and (b) 

identical orientation.[48] Dislocations are expected at the boundary of coalescence in (a) but not in 

(b). The lattice is represented by simple cubic structure. 
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Figure 2. (a) Schematic for the patterning preparation and selective area epitaxy of Ga(Al)N 

nanocrystals.[48] (b) Scanning transmission electron microscopy high-angle annular dark-field 

(STEM-HAADF) image of the cross section of a few nanocrystals. The red arrows indicate the 

boundary of coalescence.[48] (c) A high-magnification view of the boundary of coalescence showing 

the absence of structural defects.[48] 
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Figure 3. Schematic for the surface dynamics of In and Ga adatoms during the growth of InGaN 

nanocrystals.[62] 
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Figure 4. (a) SEM images and photos for nanocrystal arrays with different diameters.[60] (b) EL 

spectra for LEDs with different colors.[61] 
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Figure 5. (a)-(d) SETM-HAADF images for single nanocrystals with different diameters.[62] (e) 

Normalized PL spectra for single nanocrystals with different diameters grown on the same 

substrate.[62]  
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Figure 6. (a) SEM image for a nanocrystal array arranged in a photonic crystal structure.[63] (b) PL 

spectra for nanocrystal arrays with controlled spacing (red curve) and without controlled spacing 

(blue curve).[63] (c) Normalized room-temperature PL spectra of a photonic crystal structure under a 

wide range of excitation powers from 29 W/cm2 to 17.5 kW/cm2.[63] (d) Variations of the peak 

position and full-width-at-half-maximum with excitation power.[63] 
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Figure 7. (a) Schematic of light scattering at Γ point in a photonic crystal structure.[74] (b) Photonic 

bandstructure of the photonic crystal structure designed for green emission.[74] (c) I-V 

characteristics of a green laser diode. The inset displays the data on a semi-log scale.[74] (d) 

Emission spectra under various injection currents.[74] (e) The variation of output power with 

injection current.[74] (f) The variation of spectral linewidth with injection current.[74] (g) The 

variation of emission peak position with injection current.[74]  
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Figure 8. (a) Schematic for the formation of Mg impurity band and the resultant reduced activation 

energy. (b) PL spectra of AlN nanocrystals with and without intentional Mg-doping. (c) Variation 

of the resistivity of heavily Mg-doped AlN nanocrystals with temperature.[86] (d) Variation of hole 

concentration in heavily Mg-doped (red circles) and moderately Mg-doped (blue diamonds) AlN 

nanocrystals.[84] 
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Figure 9. (a) I-V characteristics of an AlN nanocrystal LED at different temperatures.[87] (b) EL 

spectra of an AlN nanocrystal LED under various injection currents.[87] (c) Normalized EL spectra 

of AlGaN nanocrystal LEDs with emission from ~210 nm to ~280 nm.[90] (d) Emission spectra of 

UV laser diodes based on AlGaN nanocrystals from UV-A band to UV-C bands.[99] 
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Figure 10. Bandgaps (eV) and band edge positions of commonly used photocatalysts with respect to 

oxidation and reduction potential of water (green dotted line).[106] The red dotted line represents the 

band edge position of InxGa1-xN as a function of indium incorporation (0-1 from left to right). 
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Figure 11. (a) IQE and corresponding hydrogen evolution from GaN samples, doped at different 

Mg effusion cell temperature.[118] The inset shows the relative size of sample substrate. The area 

exposed to irradiation for redox reaction was ~ 2.8 cm2. (b) Schematic illustration of unassisted 

overall pure water splitting on a dual-cocatalyst loaded double-band nanowire heterostructure 

(herein, Eg1 ~ 3.4 eV and Eg2 ~ 2.46 eV).[126] Water oxidation (O2 evolution) is promoted on Co3O4, 

whereas Rh/Cr2O3 promotes the proton reduction reaction (H2 evolution). 
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Figure 12. Model for single crystal wurtzite GaN nanowire with a polar (a) Ga-terminated (0001) 

top surface and (10ī0) surface, and (b) N-terminated (000ī) top surface and N-terminated (10ī0) and 

C6v-symmetric side faces, obtained by removal of the surface Ga atoms which causes NGa bonds 

to be broken and to the re-orientation of the N bond orbitals.[116] P represents the direction of 

spontaneous polarization of the wurtzite crystal. 

 

 

Dr. Xianhe Liu: 

 
Xianhe Liu is a Postdoctoral Research Associate in Prof. Zetian Mi’s lab in the Department of 
Electrical Engineering and Computer Science. He obtained his Ph.D. degree from McGill 
University, Canada in 2019. His research interests are focused on the molecular beam epitaxial 
growth of III-nitride nanostructures with unique optical and electrical properties and the application 
of such nanostructures for enhancing the efficiency of optoelectronic devices including UV LEDs 
and lasers, and micro-LEDs.  He is also interested in the simulation of optoelectronic devices based 
on these nanostructures,  
 
Dr. Faqrul A. Chowdhury: A

ut
ho

r 

nitride nanostructures with un

Au
th

or
 

nitride nanostructures with un
of such nanostructures 

Au
th

or
 

of such nanostructures 
and lasers, and micro Au

th
or

 

and lasers, and micro- Au
th

or
 

-LEDs.  He is also interested in the simulation of optoelectronic devices based Au
th

or
 

LEDs.  He is also interested in the simulation of optoelectronic devices based 
on these nanostructures, Au

th
or

 

on these nanostructures, 

Dr. Faqrul A. Chowdhury:A
ut

ho
r 

Dr. Faqrul A. Chowdhury:A
ut

ho
r 

Xianhe Liu is a Postdoctoral Research Associate in Prof. Zetian

Au
th

or
 

Xianhe Liu is a Postdoctoral Research Associate in Prof. Zetian
Electrical Engineering and Computer Science. He obtained his Ph.D. degree from McGill 

Au
th

or
 

Electrical Engineering and Computer Science. He obtained his Ph.D. degree from McGill 
University, Canada in 2019. His research interests are focused on the molecular beam epitaxial 

Au
th

or
 

University, Canada in 2019. His research interests are focused on the molecular beam epitaxial 
growth of III

Au
th

or
 

growth of III-

Au
th

or
 

-

Au
th

or
 M

an
us

cr
ip

t
Model

M
an

us
cr

ip
t

Model for single crystal wurtzite GaN 

M
an

us
cr

ip
t

for single crystal wurtzite GaN 

and 

M
an

us
cr

ip
t

and (10ī0)

M
an

us
cr

ip
t

(10ī0) surface, and (b) 

M
an

us
cr

ip
t

surface, and (b) 

symmetric side faces, obtained by removal of the surface Ga atoms which causes N

M
an

us
cr

ip
t

symmetric side faces, obtained by removal of the surface Ga atoms which causes N

to be broken an

M
an

us
cr

ip
t

to be broken and to the re

M
an

us
cr

ip
t

d to the re

spontaneous polarization of the wurtzite crystal.

M
an

us
cr

ip
t

spontaneous polarization of the wurtzite crystal.

Dr. Xianhe Liu: M
an

us
cr

ip
t

Dr. Xianhe Liu: M
an

us
cr

ip
t

M
an

us
cr

ip
t



 This article is protected by copyright. All rights reserved 

 
Faqrul A. Chowdhury is a postdoctoral researcher at the department of Physics, McGill University, 
Canada, who completed his PhD in Electrical and Computer Engineering from the same institution 
as a Vanier Canada Graduate Scholar. Dr. Chowdhury examines to understand and overcome the 
complexities and bottlenecks associated with artificial photosynthesis processes and systems. In the 
recent years he has extensively worked on the systematic development of GaN-based efficient and 
stable artificial photosynthesis devices and their large-scale deployment. In broader perspective, his 
research interests centre around novel III-nitride alloys and nanostructures for optoelectronics and 
solar fuels, molecular beam epitaxy and heterogenous catalysis.  
 
Prof. Zetian Mi: 

 
Zetian Mi is a Professor in the Department of Electrical Engineering and Computer Science at the 
University of Michigan, Ann Arbor. His teaching and research interests are in the areas of III-
nitride semiconductors, LEDs, lasers, quantum photonics, solar fuels, and artificial photosynthesis. 
He has published 2 books, 12 book chapters, and more than 600 journal and conference papers / 
presentations on these topics. Prof. Mi has received the Young Investigator Award from the 
27th North American Molecular Beam Epitaxy Conference in 2010 and the Young Scientist Award 
from the International Symposium on Compound Semiconductors in 2015. Prof. Mi is a fellow of 
SPIE and OSA.   
 

 

 

Significant progress has been made in III-nitride nanocrystals with unique structural, electronic, 

optical, and photocatalytic properties. Compared to conventional III-nitride epilayers and quantum 

wells, dislocation-free III-nitride nanocrystals can be achieved on lattice-mismatched foreign 

substrates due to the efficient surface strain relaxation. Such nanocrystals have emerged as a 

functional platform for various applications including optoelectronic, electronic, quantum, and solar 

energy devices. 

 

Au
th

or
 SPIE and OSA.  

Au
th

or
 SPIE and OSA.  

Significant progress has been made in III

Au
th

or
 

Significant progress has been made in III

cal, and photocatalytic properties. Compared to conventional III

Au
th

or
 

cal, and photocatalytic properties. Compared to conventional III

wells, dislocation

Au
th

or
 

wells, dislocation-

Au
th

or
 

-free III

Au
th

or
 

free III

Au
th

or
 

substrates due to the efficient surface strain relaxation. Such naAu
th

or
 

substrates due to the efficient surface strain relaxation. Such na

functional platform for various applications including optoelectronic, electronic, quantum, and solar Au
th

or
 

functional platform for various applications including optoelectronic, electronic, quantum, and solar 

M
an

us
cr

ip
t

Faqrul A. Chowdhury
M

an
us

cr
ip

t
Faqrul A. Chowdhury is a postdoctoral researcher at the department of Physics, McGill University, 

M
an

us
cr

ip
t

is a postdoctoral researcher at the department of Physics, McGill University, 
Canada, who completed his PhD in Electrical and Computer Engineering from the same institution 

M
an

us
cr

ip
t

Canada, who completed his PhD in Electrical and Computer Engineering from the same institution 
as a Vanier Canada Graduate Scholar. Dr. Chowdhury examines

M
an

us
cr

ip
t

as a Vanier Canada Graduate Scholar. Dr. Chowdhury examines
complexities and bottlenecks associated with artificial photosynthesis processes and systems. In the 

M
an

us
cr

ip
t

complexities and bottlenecks associated with artificial photosynthesis processes and systems. In the 
recent years he has extensively worked on the systematic development of GaN

M
an

us
cr

ip
t

recent years he has extensively worked on the systematic development of GaN
stable artificial photosynthesis devices and their

M
an

us
cr

ip
t

stable artificial photosynthesis devices and their
research interests centre around novel III

M
an

us
cr

ip
t

research interests centre around novel III
solar fuels, molecular beam epitaxy and heterogenous catalysis. 

M
an

us
cr

ip
t

solar fuels, molecular beam epitaxy and heterogenous catalysis. 

Prof. Zetian Mi:

M
an

us
cr

ip
t

Prof. Zetian Mi:

Zetian Mi is a Pr

M
an

us
cr

ip
t

Zetian Mi is a Professor in the Department of Electrical Engineering and Computer Science at the 

M
an

us
cr

ip
t

ofessor in the Department of Electrical Engineering and Computer Science at the 
University of Michigan, Ann Arbor. His teaching and research interests are in the areas of III

M
an

us
cr

ip
t

University of Michigan, Ann Arbor. His teaching and research interests are in the areas of III
nitride semiconductors, LEDs, lasers, quantum photonics, solar fuels, and artific

M
an

us
cr

ip
t

nitride semiconductors, LEDs, lasers, quantum photonics, solar fuels, and artific
He has published 2 books, 12 book chapters, and more than 600 journal and conference papers / M

an
us

cr
ip

t

He has published 2 books, 12 book chapters, and more than 600 journal and conference papers / M
an

us
cr

ip
t

presentations on these topics. Prof. Mi has received the Young Investigator Award from the M
an

us
cr

ip
t

presentations on these topics. Prof. Mi has received the Young Investigator Award from the 
North American Molecular Beam Epitaxy ConferenM

an
us

cr
ip

t

North American Molecular Beam Epitaxy ConferenM
an

us
cr

ip
t

M
an

us
cr

ip
t



 This article is protected by copyright. All rights reserved 

 

Au
th

or
 M

an
us

cr
ip

t
M

an
us

cr
ip

t




