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Abstract 
The rapid pace of growth in additive manufacturing has left significant knowledge gaps in life 

cycle assessment (LCA) literature, limiting inclusion of sustainability considerations in 

manufacturing and supply chain decisions. The recent introduction of HP’s Multi-Jet Fusion 

(MJF) 3D printing technology shows promise as an alternative to other additive and conventional 

manufacturing methods on the market; however, scarce environmental assessments of MJF exist 

in publicly available literature. This study fills the gap in current additive manufacturing LCAs 

to improve decision-making in plastic part manufacturing. This assessment investigated the 

cradle-to-gate life cycle energy consumption and greenhouse gas (GHG) emissions of HP’s MJF 

3D printing technology in comparison to injection molding across production quantities ranging 

from 100 to 100,000 parts for a plastic product. This analysis leveraged secondary data from 

various sources, including MJF technical documents, communications with HP representatives, 

published LCA literature, the ecoinvent 3.5 database, and Argonne National Laboratory’s 

Greenhouse Gases, Regulation Emissions, and Energy Use in Transportation (GREET) 2019 

model. Results of the analysis indicate that MJF 3D printing technology emits less GHG 

emissions than injection molding with aluminum or steel tooling at quantities up to about 450 

and 800 parts, which is 5 to 8 prints jobs for the studied design. 3D printing electricity 

consumption and material yield are the major factors contributing to MJF’s GHG emissions. 

Varying the manufacturing facility electricity generation source, post processing time, raw 

material production life cycle inventory data, and printing speed can substantially alter the GHG 

emissions breakeven point between MJF and injection molding. Optimum conditions of these 

variables for MJF could shift the GHG emissions breakeven with injection molding to a point 

between 5,000 to 10,000 parts. MJF’s lower material yield and requirement for fusing and 

detailing agent ultimately limit the GHG emissions breakeven quantity with injection molding. 

Consequently, MJF’s GHG emissions breakeven quantity with injection molding remains one to 

two orders of magnitude lower than HP’s advertised economic breakeven quantity of 110,000 

parts. This study also shows that MJF is slightly more energy efficient and more resource 

efficient than selective laser sintering, MJF’s peer additive manufacturing process.  
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1. Introduction 
1.1. Background 
Advancing the reduction of greenhouse gas (GHG) emissions from industry is a major challenge 

for both public policymakers and business leaders (Fischedick et al., 2014). In 2018, industry 

was the largest contributor to U.S. GHG emissions, accounting for 29.1% of emissions (U.S. 

Environmental Protection Agency, 2020). This study examines additive manufacturing, one of 

the many promoted approaches to fostering greater environmental sustainability in industry 

(Ford & Despeisse, 2016; Mani, Lyons, & Gupta, 2014).     

 

As defined by ISO/ASTM 52900, additive manufacturing is a “process of joining materials to 

make parts from 3D model data, usually layer upon layer,” as opposed to conventional 

manufacturing methods (ASTM International, 2015). Conventional manufacturing methods 

include subtractive shaping and formative shaping (ASTM International, 2015). Examples of 

subtractive shaping processes include milling, drilling, turning, and electric discharge machining 

(EDM) (ASTM International, 2015). Formative shaping includes forging, casting, bending, and 

injection molding processes, which produce the desired shape by applying pressure to a body of 

material (ASTM International, 2015).    

 

Advocates of additive manufacturing, commonly referred to as “3D printing,” promote the 

process as an alternative to conventional manufacturing based on several known advantages, 

including greater design freedom, rapid production of small batches at relatively low cost, and 

avoidance of tooling (Gutowski et al., 2017; Huang, Leu, Mazumder, & Donmez, 2015; Kellens, 

Baumers, et al., 2017; Mansour & Hague, 2003; Tuck, Hague, Ruffo, Ransley, & Adams, 2008).1 

The design freedom afforded by additive manufacturing enables the production of complex part 

designs that would be more difficult or impossible to produce with conventional manufacturing 

methods (Gutowski et al., 2017; Kellens, Baumers, et al., 2017; Mansour & Hague, 2003). On 

the other hand, recognized disadvantages of additive manufacturing include slow process times, 

poor surface quality, and inferior dimensional tolerances (Gutowski et al., 2017; Kellens, 

Baumers, et al., 2017). 

 

Notwithstanding the economic and engineering characterizations of additive manufacturing, 

studies on this emerging industry posit that additive manufacturing brings substantial 

environmental benefits to supply chains. Chen et al. (2015) suggests that additive manufacturing 

can reduce carbon footprints by reducing raw material consumption, eliminating the need for 

energy intensive processes associated with tooling production, and reducing energy demand for 

transportation of products that could be otherwise manufactured closer to the consumer. Ford and 

Despeisse (2016) identified four major categories of sustainability benefits from additive 

manufacturing: product and process redesign; material input processing; make-to-order 

component and product manufacturing; and closing the loop. Among these categories, examples 

of sustainability benefits arising from additive manufacturing included simplified assemblies, 

reduced material inputs, reduced waste generation, vehicle and aircraft light weighting, and 

reduced energy intensity (Ford & Despeisse, 2016).  

 

 
1 This paper uses additive manufacturing and 3D printing interchangeably. 
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Recognition of the new opportunities afforded by additive manufacturing for value creation have 

spurred rapid growth in the industry. The number of enterprises involved in the manufacturing of 

devices for additive manufacturing, herein referred to as “3D printers,” will have grown at an 

annualized rate of 35.4% from 2014 to 2019 (Heikoff, 2019). Industry research estimates the 

total revenue for manufacturers of 3D printers to be $4.5 billion in 2019 with expected growth to 

$8.5 billion in 2024 (Heikoff, 2019).  

 

The rapid pace of growth in the additive manufacturing industry has left significant knowledge 

gaps in sustainability literature (Rejeski, Zhao, & Huang, 2018). Some additive manufacturing 

technologies have had little or no assessment of their environmental impacts (Kellens, Baumers, 

et al., 2017). Consequently, business leaders are left to consider manufacturing, procurement, 

and capital investment decisions without sufficient knowledge of the sustainability tradeoffs.  

 

Introduced in 2016, HP Inc.’s Multi-Jet Fusion (MJF) 3D printing technology has received 

scarce environmental evaluation. However, industry adoption of MJF is markedly increasing 

(Back, 2019). The technology is 5 to 10 times faster than other 3D printing technologies 

(Stratasys Direct Manufacturing Inc., n.d.; Xu, Wang, Wu, Ananth, & Bai, 2019). In their 

evaluation of the mechanical performance of HP MJF printed parts, O’Connor, Dickson, and 

Dowling (2018) concluded that MJF exhibits “enormous potential to facilitate the wider adoption 

of 3D printing in a production environment” (p. 387). Moreover, MJF technology presents a 

potential alternative to conventional manufacturing for industrial-scale production volumes, 

which have been cost prohibitive for other additive manufacturing processes, such as selective 

laser sintering and fused deposition modeling (Minetola & Eyers, 2018; Ruffo, Tuck, & Hague, 

2006). HP claims the technology enables large-scale 3D production, resulting in an economic 

breakeven point at 110,000 parts with injection molding and 65% lower cost than other additive 

manufacturing methods (Davies, 2017; HP Development Company L.P., 2017a). HP also 

announced the production of 10 million parts with its technology over the course of a year-long 

period (HP Development Company L.P., 2019d). Recognizing the economic and functional 

benefits of MJF, Smile Direct Club, a provider of clear aligner orthodontic therapy, recently 

installed 49 HP Jet Fusion 3D Printers in their facility to produce nearly 20 million mouth molds 

over the course of 12 months (HP Development Company L.P., 2019a).   

 

1.2. Research Objective 
This study seeks to fill the gap in additive manufacturing sustainability literature by investigating 

MJF 3D printing technology. The research objective of this study is to evaluate the life cycle 

primary energy consumption and GHG emissions of the HP MJF 4210 3D Printing system in 

relation to conventional manufacturing methods across different production volume scenarios.   

 

1.3. Multi-Jet Fusion 
MJF is considered a powder bed fusion (PBF) process technology, which ISO/ASTM 52900 

defines as an “additive manufacturing process in which thermal energy selectively fuses regions 

of a powder bed” (ASTM International, 2015). The MJF process builds parts layer-by-layer over 

the working area of a build platform inside an HP Jet Fusion 3D built unit, depositing chemical 

agents onto select areas of each powder layer, and fusing those areas with infrared radiation (HP 

Development Company L.P., 2018c). Figure 1 presents an overview of the MJF 3D printing 

process.  
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Figure 1. Overview of MJF 3D printing process. Adapted from HP MJF technology 

technical white paper (HP Development Company L.P., 2018c). General sequence of the 

MJF 3D printing process: (a) the printer spreads a layer of PA12 (or other material) powder 

over the working area of the build unit or a previous layer of powder; (b) fusing agent and 

detailing agent are deposited onto select areas of the powder layer; (c) infrared radiation 

fuses the areas where fusing agent was deposited; (d) the layer consists of fused and unfused 

powder; (e) steps (a) through (d) are repeated until object build completion; (f) at build 

completion, a fused object remains in a chamber of unfused powder for subsequent cooling, 

unpacking, and post-processing. 

1.4. Literature Review 
Despite the increasing adoption of MJF, only one LCA study exists in publicly available 

literature on the process. Tagliaferri, Trovalusci, Guarino, and Venettacci (2019) compared the 

production costs and environmental impact associated with three additive manufacturing 

technologies: fused deposition modeling (FDM), selective laser sintering (SLS), and MJF. Using 

the Eco-Indicator 99 method in SimaPro v7.1 software, the authors concluded that the MJF 

system had a lower environmental impact than both of the SLS and FDM systems evaluated 

(Tagliaferri et al., 2019). However, the description of methods, sources, and assumptions in this 

study, including the system boundary, process flow, life cycle inventory, and material yield, lack 

sufficient detail to thoroughly probe the results and facilitate their replication. Moreover, this 

study does not evaluate the MJF process’ environmental impact in the context of conventional 

manufacturing methods.   

 

In the absence of published LCA studies on MJF, existing literature on SLS provide a basis for 

the methods used in this paper. SLS serves as an appropriate additive manufacturing technology 

to benchmark MJF 3D printing against because SLS is also a powder-bed fusion technology and 

uses similar input materials (O’Connor et al., 2018). The main differences between the two 

additive manufacturing processes involve: (1) MJF uses fusing agents and detailing agents to 
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facilitate the fusing of selected powder regions while SLS does not use any additional agent; (2) 

MJF uses infrared radiation from a heating lamp while SLS uses directed laser energy (Bain, 

2019; Ligon, Liska, Stampfl, Gurr, & Mülhaupt, 2017).  

 

1.4.1. Raw Materials 

MJF and SLS use similar raw material powders for part manufacturing, such as polyamide 11 

(PA11) and polyamide 12 (PA12) (Ligon et al., 2017; Xu et al., 2019). PA12 is the most 

commonly used material for both MJF and SLS (Goodridge, Tuck, & Hague, 2012; Xu et al., 

2019). However, previous LCAs on additive manufacturing with SLS used life cycle inventory 

(LCI) data for polyamide 6 (PA6) as modeling inputs for raw materials (Karel Kellens, Renaldi, 

Dewulf, Kruth, & Duflou, 2014; Telenko & Seepersad, 2010, 2012). The two polyamides have a 

similar molecular structure, but PA6 is less suitable for powder bed fusion than PA12 due to its 

higher melting point and higher viscosity (Kruth, Levy, Klocke, & Childs, 2007; Ligon et al., 

2017). PA6 and PA12 also use different monomers for commercial manufacturing: caprolactam 

for PA6 and laurolactam for PA12 (Weber, 2011). Although crude oil and natural gas serve as 

the raw materials for both monomers, the production routes for the monomers differ. The 

common use of hydrolytic ring-opening polymerization to produce both monomers served as the 

primary justification for approximating the PA12 LCI with PA6 LCI data in prior LCA studies 

(Telenko & Seepersad, 2010). 

 

1.4.2. Process Energy Consumption 

Most environmental studies of SLS investigated specific energy consumption (SEC), which is 

the site energy consumed by the machine for production of 1 kilogram of product. In this 

context, SEC studies evaluated the energy efficiency of the SLS machine during the additive 

manufacturing process and did not include upstream energy generation, transmission, and 

distribution in their assessment of energy consumption. SEC values ranged from 51 MJ/kg to 

237.68 MJ/kg (Baumers, Tuck, Bourell, Sreenivasan, & Hague, 2011; Kellens et al., 2011; Luo, 

Ji, Leu, & Caudill, 1999; Sreenivasan & Bourell, 2009). The methods for obtaining these SEC 

values varied significantly among the studies. Luo, Ji, Leu, and Caudill (1999) determined the 

SEC of two SLS machines based on the specifications from the machine equipment 

manufacturer and the specific gravity for polymer. The low end of the SEC range – 51 MJ/kg – 

was determined by measuring the average power consumption of an SLS system over the course 

of two builds and applying the observed value to a parametric model based on the specifications 

of the machine (Sreenivasan & Bourell, 2009). Kellens et al. (2011) measured power 

consumption for three SLS machines and conducted time studies across 86 batches of products 

with different polyamide materials to determine SEC values ranging from 94.7 MJ/kg to 143.3 

MJ/kg. Kellens et al. (2011) concluded with an SLS LCA case study for a sample batch resulting 

in an SEC of 130.1 MJ/kg. Baumers et al. (2011) determined SEC values ranging from 204.31 

MJ/kg to 237.68 MJ/kg by monitoring the power consumption of two machines during separate 

builds of two large prosthetic parts. In comparison to the lower SEC values from Kellens et al. 

(2011), Baumers et al. (2011) suggested that the higher SEC values observed in their 

experiments could be potentially attributed to a lower capacity utilization and longer process 

time, which may result from a smaller layer thickness and taller build height. Energy 

consumption values also vary as a result of part orientation and nesting efficiency (Baumers, 

Tuck, Wildman, Ashcroft, & Hague, 2011; Kellens et al., 2011; Kellens et al., 2014). Kellens et 

al. (2014) defines weight-based nesting efficiency as the weight of the parts being built divided 
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by the total weight of powder in the 3D printer chamber. A volume-based nesting efficiency, also 

referred to as packing density or build utilization factor, is the total volume of the parts divided 

by the total volume in the chamber (Dotchev & Yusoff, 2009). Kellens et al. (2014) developed a 

parametric model depicting significant potential for environmental impact reduction as a result of 

increased nesting efficiency. In their study, Baumers, Tuck, Wildman, et al., (2011) refer to 

packing density as capacity utilization and show that higher capacity utilizations for SLS 

machines result in a reduction of SEC. 

 

Prior literature on the energy consumption of SLS provides a foundation for investigating MJF, 

but leaves out important steps of the production process for precise comparison. Existing studies 

of SLS do not assess the energy consumption associated with powder handling before the build 

or unpacking, powder recycling, cooling, and post-processing after the build (Gutowski et al., 

2017;  Kellens, Baumers, et al., 2017). However, these are non-trivial time and energy 

consuming steps of the manufacturing workflow for evaluation of an industrial-scale production 

process (Dotchev & Yusoff, 2009; Kellens, Baumers, et al., 2017). Current SLS and MJF 

systems include machines that provide powder mixing, loading, and unpacking functions 

(Dotchev & Yusoff, 2009; EOS GmbH Electro Optical Systems, n.d.; HP Development 

Company L.P., n.d.; Sintratec AG, n.d.). Moreover, most post-processing methods utilize 

compressed air systems, which consume substantial amounts of energy due to their low 

efficiency (Butler, 2011; Marshall et al., 2016). 

 

1.4.3. Process Emissions 

No publicly available studies have evaluated the direct air, soil, or water emissions of SLS 

additive manufacturing, signifying an important research need for the scientific community 

(Bours, Adzima, Gladwin, Cabral, & Mau, 2017; Kellens, Baumers, et al., 2017; Short, 

Sirinterlikci, Badger, & Artieri, 2015). Instead, several sustainability-related studies of SLS 

modeled indirect emissions using LCA software and different calculation methods, such as the 

Eco-Indicator 99 method to determine life cycle impacts of the process (Kellens et al., 2014; Luo 

et al., 1999; Sreenivasan & Bourell, 2009; Tagliaferri et al., 2019).  

 

1.4.4. Resource Consumption 

Most sustainability-related studies of SLS did not evaluate resource consumption using a LCA 

framework (Kellens, Mertens, Paraskevas, Dewulf, & Duflou, 2017). The studies that have 

examined resource consumption indicate a significant amount of waste generated by the SLS 

process, contradicting the often claimed benefit that additive manufacturing reduces material 

waste (Dotchev & Yusoff, 2009; Hopkinson, Hague, & Dickens, 2006; Kellens et al., 2014; 

Telenko & Seepersad, 2010). Telenko and Seepersad (2010) estimated that yields for SLS were 

likely to range from 56-80% while Kellens et al. (2014) observed a SLS powder waste material 

rate of 45%. The high waste rates have been attributed to powder manufacturers’ refresh rate 

recommendations and powder degradation over successive uses (Dotchev & Yusoff, 2009;  

Kellens et al., 2014; Telenko & Seepersad, 2010). Refresh rates are the ratios between virgin and 

recycled powder, as determined by powder manufacturers, to ensure acceptable part quality 

(Dotchev & Yusoff, 2009). 
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1.4.5. Comparisons with Other Additive Manufacturing Technologies 

In their review of additive manufacturing environmental studies, Kellens, Baumers, et al. (2017) 

presented a schematic of SEC findings that indicates substantial variance among and within 

additive manufacturing processes. Of the plastic technologies, this review portrays 

stereolithography (SLA) and SLS as the most energy efficient with similar minimum and 

maximum values found in existing literature, while FDM reflected the highest reported SEC 

value. Considering the findings from Baumers et al. (2011), which were not included in the 

review by Kellens, Baumers, et al. (2017), SLS has a higher maximum SEC (237.68 MJ/kg) than 

SLA, but lower than FDM.  

 

1.4.6. Comparisons with Conventional Manufacturing  

Current life cycle assessment (LCA) literature indicates that conventional manufacturing 

generally has a lower environmental impact than additive manufacturing for industrial-scale 

production volumes, considering parts that could be produced with either process and achieve the 

requisite quality and functionality (Kellens, Mertens, et al., 2017). Specific energy consumption 

values for additive manufacturing unit processes have been reported as 1 to 2 orders of 

magnitude higher than conventional machining and injection molding processes (Gutowski et al., 

2017; Kellens, Mertens, et al., 2017).  

 

Few studies directly compare the energy consumption or environmental impact of SLS with 

injection molding. Telenko and Seepersad (2012) compared the cradle-to-gate energy 

consumption of SLS and injection molding for a plastic part, including the embodied energy of 

mold plate production and machining. Telenko and Seepersad (2012) found SLS was more 

energy efficient at lower volumes due to the significant energy consumption associated with 

mold production and machining, but that injection molding became the more energy efficient 

technology at higher volumes. The authors identified a breakeven production volume for SLS 

and injection molding between 50 to 300 parts for one design, and between 1,500 to 3,200 parts 

for another design, when injection molding became the more energy efficient process. The 

variance in crossover volumes depended on whether the mold was made of 100 percent virgin 

steel, steel with 80 percent recycled content, or aluminum with 20 percent recycled content. 

Telenko and Seepersad (2012) also highlighted the potential for a higher SLS and injection 

breakeven point if the part manufacturer used renewable electricity sources to power its 

machines instead of the grid, causing carbon emissions for SLS to become negligible.  

 

Chen et al. (2015) arrived at a similar conclusion to Telenko and Seepersad (2012) in a case 

study comparing the embodied energy of SLS and injection molding across different batch sizes, 

finding that SLS had lower embodied energy for a batch size of 100 parts, but significantly 

higher embodied energy for batch sizes of 1,000 and 10,000 parts. Chen et al. (2015) highlighted 

that no economies of scale exist for SLS because the SEC of the process is constant, whereas the 

SEC for injection molding decreases as the production quantity increases. 
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2. Methods 
This LCA utilizes process-based methods in accordance with the ISO 14040 standard to evaluate 

the cradle-to-gate life cycle primary energy consumption and GHG emissions of HP MJF 

additive manufacturing in relation to injection molding (International Organization for 

Standardization, 2006). Life cycle inventories are calculated for the raw materials, transportation, 

and manufacturing phases based on reference flows of 1 kilogram of mass using secondary data 

from several sources. Data for raw materials production and parameters for the MJF part 

manufacturing process originate from MJF technical documents and communications with HP 

representatives. Other sources for the LCIs in this report include: previous process LCAs and 

LCIs; ecoinvent 3.5; and Argonne National Laboratory’s Greenhouse Gases, Regulation 

Emissions, and Energy Use in Transportation (GREET) 2019 model (Argonne National 

Laboratory, 2019a, 2019b; ATHENA Sustainable Materials Institute, 2002; Franklin Associates, 

2011; Gutowski, Dahmus, & Thiriez, 2006; Wernet et al., 2016). Process parameters, inputs, and 

outputs are modeled using SimaPro 9.0.0.48 LCA software and Microsoft Excel spreadsheets.  

 

2.1. Goals 
The primary goal of this study is to improve decision-making in plastic part manufacturing by 

evaluating the primary energy consumption and GHG emissions of HP MJF 3D printing 

technology. Secondarily, this study seeks to understand the energy and environmental 

performance of MJF 3D printing as an alternative manufacturing process to injection molding 

across different volumes of production. 

 

2.2. Scope 

2.2.1. Life Cycle Phases 

The scope of this life cycle assessment is cradle-to-gate, from raw materials extraction to 

completed manufacturing of the product. This study involves three cradle-to-gate LCAs of the 

product system with different manufacturing processes: (1) manufacturing with the HP MJF 

4210 3D Printer and Processing station; (2) injection molding with aluminum tooling; and (3) 

injection molding with steel tooling.  

 

2.2.2. MJF 3D Printing Process Flow and System Boundary 

Figure 2 depicts the process flow and system boundary associated with the MJF 3D printing 

process. The product material inputs to the MJF process under investigation in this LCA are 

polyamide 12 (PA12, also referred to as Nylon-12), fusing agent, and detailing agent. Other 

ancillary material inputs that amortize over the production of multiple print jobs, such as the 3D 

printer’s cleaning roll, maintenance kits, packaging, and part cleaning materials, are excluded 

from this study with the expectation that these inputs contribute less than 1% of the cradle-to-

gate life cycle impact. Other product system components that amortize over their respective 

lifespans, such as the 3D printer, the processing station, and manufacturing facility infrastructure, 

are also excluded from this LCA. A screening analysis in Section 2.6 supports the exclusion of 

MJF equipment. Maintenance of equipment, storage, and disposal of process waste also fall 

outside the scope of this LCA. 
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Figure 2. MJF Cradle-to-Gate Process Flow and System Boundary 

Figure 3 shows the process flow within the MJF part manufacturing process. The part 

manufacturing process involves six primary steps: build platform file preparation, powder 

mixing and loading, MJF 3D printing, cooling, unpacking, and post-processing. This study 

evaluates LCI data across each of the steps except for the build file preparation step. The build 

file preparation step occurs primarily on desktop computers likely used for several other tasks 

and the contribution of the build file preparation step to the overall cradle-to-gate life cycle 

impact is assumed to be negligible.  

 

Build file preparation. In this step, the user prepares the build platform computer-aided design 

(CAD) file, packing and orienting the parts appropriately within the build to optimize print speed 

and accuracy (HP Development Company L.P., 2019c).  

 

Powder mixing and loading. After the user confirms the height of the build required for the print 

job, the user proceeds to the HP Jet Fusion 3D Processing Station, loads the built unit into the 

processing station, and inputs the required build height and the mix ratio of virgin powder and 

reclaimed powder (HP Development Company L.P., 2019c). The typical ratio recommend by HP 

is 80% reclaimed powder and 20% virgin powder (HP Development Company L.P., 2019c). The 
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processing station then loads the build unit with the required amount of powder according to the 

mix ratio.   

 

MJF 3D Printing. Printing begins after loading of the build unit into the HP MJF 4210 3D 

printer and completion of printer set-up. Set-up takes approximately 1 hour and 30 minutes (D. 

Woodlock, personal communication, Jan. 3, 2020). The printing process proceeds as depicted in 

Figure 1, consuming fusing agent, detailing agent, and energy to fuse the powder into a solid 

object. The printing process takes approximately 10 hours with fast print mode or 16 hours and 

20 minutes with the default/strength mode for a 100% full build chamber (HP Development 

Company L.P., 2019c). After completion of printing, the build unit remains in the printer for at 

least 30 minutes for safety cooling (HP Development Company L.P., 2019c). 

 

Cooling. After the build finishes safety cooling in the printer, the user removes the build unit and 

chooses the cooling method: natural cooling or fast cooling. In the natural cooling method, the 

user sets the build unit aside until the temperature of the build chamber reaches 80C (HP 

Development Company L.P., 2019c). For fast cooling, the user waits 3 to 4 hours, then inserts 

the build unit into the processing station, where the build chamber is chilled for approximately 

10 hours in the case of a 100% full build (HP Development Company L.P., 2019c).  

 

Unpacking. Once the build has cooled sufficiently, the parts are unpacked from the build unit 

using the vacuum in the processing station (HP Development Company L.P., 2019c). The 

vacuum collects the reusable powder material surrounding each part until the powder remaining 

on the part requires separate post-processing for removal (HP Development Company L.P., 

2019c).    

 

Post-processing. Post-processing for HP MJF parts after the unpacking step typically involves 

the use of abrasive blasting, such as sandblasting or glass bead blasting, in addition to air blasting 

(HP Development Company L.P., 2019c). Post-processing can be fulfilled by manual labor or 

use of automated equipment. This step is not supported by any HP 3D printing equipment. Post-

processing techniques and equipment use are subject to the decisions of the part manufacturer, 

and this study evaluated the use of bead blasting. 
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Figure 3. HP MJF Part Manufacturing Process Flow. 

2.2.3. Injection Molding Process Flow and System Boundary 

The injection molding process flow and system boundary are shown in Figure 4. The primary 

material inputs to the injection molding process are PA12 and the mold. The mold is included 

within the system boundary because it is created specifically for the functional unit. Two mold 

materials are assessed based on their prominence in injection molding: aluminum and steel. As 

with the MJF system boundary, ancillary materials and product systems that serve a general-

purpose role for the injection molding process are excluded from the scope of the injection 

molding LCA.  
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Figure 4. Injection Molding Process Flow and System Boundary. 

2.2.4. Geography 

This study models a manufacturing facility – Linear AMS – in Livonia, MI, as the destination for 

all input materials to the part manufacturing process. This manufacturing facility location is 

representative and appropriate for two reasons: (1) Michigan has the most establishments and 

highest employment in the industrial mold manufacturing industry; and (2) this company 

uniquely provides injection molding, mold machining, and MJF printing services under one roof 

(“Linear AMS,” n.d.; U.S. Bureau of Labor Statistics, 2019). The production location of PA12 

raw materials is Marl, Germany, which is the location of Evonik’s PA12 production plants. 

Evonik is the dominant supplier of PA12 powder for additive manufacturing, including SLS and 

MJF, and also produces PA12 for injection molding (Evonik Resource Efficiency GmbH, n.d.-a, 

n.d.-b; Schmid, Kleijnen, Vetterli, & Wegener, 2017). Fusing agent and detailing agents were 

modeled with HP’s 3D Open Platform Materials and Applications Lab in Corvallis, OR as the 

origin due to the lack of U.S. manufacturer location data (HP Development Company L.P., 

2018b; HP Development Company L.P., 2020a). Rolling plants for steel and aluminum plates 

nearest to the Livonia manufacturing facility serve as the location for steel and aluminum plate 

production. ArcelorMittal’s facility in Coatsville, PA – a P20 tool steel plate production plant – 

is the location for steel plate production (ArcelorMittal USA, 2015; American Metal Market, 

2018). The Constellium Rolled Products Ravenswood aluminum plant in Ravenswood, WV 

serves as the location for aluminum plate production.  
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2.3. Functional Unit 
The functional unit of the product system is the manufacturing of 100 LCD controller front 

covers made with PA12 (Figure 5). This part serves as an appropriate functional unit because it 

is a typical plastic enclosure, and many industries require manufacturing of similar plastic 

enclosures, from automobiles to consumer electronics and medical devices (Sastri, 2010; Süli, 

2019). Plastic enclosures can be manufactured across a variety of volumes depending on the 

particular application, and this part could be realistically considered for either 3D printing or 

injection molding depending on the application and quantity required. This study assumes the 

LCD controller front cover can be both injection-molded and additively manufactured with MJF 

technology based on the features of the part. The 3D computer-aided design (CAD) file for the 

LCD controller front cover originates from Thingiverse, a website that hosts user-submitted 3D 

models (Christou, 2013). Table 1 lists key properties of the LCD controller front cover.  

 

Figure 5. LCD Controller Front Cover 
 

 

Table 1. LCD Controller Front Cover 

Properties 

Property Value 

Surface Area 0.02693 m2 

Volume 30.02 cm3 

Product Mass 30.32 g 

Bounding Box Length 108.6 mm 

Bounding Box Width 95.4 mm 

Bounding Box Height 16.1 mm 

2.4. Life Cycle Assessment Metrics 
This study measures cradle-to-gate life cycle energy consumption in units of megajoules [MJ] 

based on the primary energy of input material feedstocks, process fuels, process electricity 

consumption, and electricity grid generation mix. Cradle-to-gate life cycle GHG emissions are 

measured in units of kilograms of carbon dioxide equivalent [kg CO2-eq] on a 100-year global 

warming potential time horizon using the values recommended by the Intergovernmental Panel 

on Climate Change Fifth Assessment Report (Myhre et al., 2013). The life cycle impact 

assessment considers these measures across production volumes ranging from 100 to 100,000 

parts.  

 

2.5. Fuel, Electricity Grid, and Emissions Data 
This study uses 2020 time-series fuel, electricity grid, and emissions data from the GREET 2019 

model to determine primary energy consumption and GHG emissions for the LCIs in this study, 

with the exception of PA12 production, and fusing and detailing agent production (Argonne 

National Laboratory, 2019a, 2019b). The PA12 production LCI uses data from EarthShift 
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Global, a consulting firm contracted by HP to conduct LCAs. LCIs for the fusing agent 

production and detailing agent production use ecoinvent 3.5 data with SimaPro 9.0.0.48 LCA 

software. Further detail on PA12 production and fusing and detailing agent production are 

provided in Section 2.7.1 and Section 2.7.2, respectively. 

 

The GREET 2019 model uses a 2015 North American Electric Reliability Corporation (NERC) 

region map to distinguish grid regions (Argonne National Laboratory, 2019a; North American 

Electric Reliability Corporation, 2015). Based on this region map, the RFC electricity grid 

generation mix applies to the part manufacturing facility, steel production facility, and aluminum 

production facility locations identified in Section 2.2.4.  

 

2.6. Screening Analysis 
A screening analysis on the potential cradle-to-gate life cycle impact of the MJF 3D printer, 

using data shown in Table 2, was conducted to determine whether to include production of MJF 

equipment in this study. Data for SLS 3D printing from Telenko and Seepersad (2012) were used 

to approximate the cradle-to-gate energy consumption of MJF for the additive manufacturing of 

one kilogram of PA12 product. The cradle-to-gate energy consumption data from Telenko and 

Seepersad (2012) account for the PA12 material embodied energy and the additive 

manufacturing site energy, excluding all other processes and materials. The results from Telenko 

and Seepersad  (2012) for a full build chamber of parts indicate a cradle-to-gate energy 

consumption ratio of 327 MJ per kilogram of PA12 product.    

 

Embodied energy data associated with the production of a selective laser melting (SLM) printer 

from Faludi, Baumers, Maskery, and Hague (2017) were used to approximate the embodied 

energy of an MJF 3D printer and scaled by weight. The same assumptions from Faludi et al. 

(2017) for service life, operating hours per day, operating days per week, and machine utilization 

were applied to determine the total operating hours of the MJF 3D printer over its 8 year service 

life. Two weeks out of the year were allocated for holidays and a maintenance period. The 

approximate time for an MJF 3D printing job was sourced from the HP Jet Fusion 4200 3D 

Printing Solution User Guide, assuming a 100% full build chamber on fast printing mode at 10% 

packing density with an additional 1.5 hours for setup time. The resulting ratio of machine 

embodied energy per kilogram of product was 3.67 MJ/kg.  

 

The machine embodied energy ratio divided by the cradle-to-gate energy consumption ratio for 

one kilogram of PA12 product is 1.12%. This result suggests that the 3D printer accounts for 

approximately 1.12% of the cradle-to-gate life cycle impact for an additively manufactured 

PA12 product. However, this proportion reflects site energy consumption for the additive 

manufacturing process rather than primary energy consumption. The contribution of the 3D 

printer to the cradle-to-gate life cycle impact of a PA12 product is likely lower than 1.12% due to 

upstream energy generation, transmission, and distribution inefficiencies. The MJF processing 

station is expected to have less impact per kilogram of PA12 product than the MJF 3D printer 

due to the processing station’s smaller mass and reduced complexity associated with internal 

components (sieve, powder mixer, vacuum). Consequently, both the MJF 3D printer and 

processing station were excluded from the system boundary.  
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Table 2. MJF 3D Printer Embodied Energy Estimation 

Parameter Value Unit 

Renishaw AM250 SLM printer massa 1,215  kg 

Renishaw AM250 embodied energy 124,000  MJ 

Renishaw AM250 energy:mass ratio 102 MJ/kg 

MJF 3D 4210 Printer massb 750 kg 

Estimated MJF 3D 4210 embodied energy 76,543  MJ 

MJF 3D 4210 printer estimated service lifec 8 years 

Operating hours per dayc 24 hr 

Operating days per weekc 7 days 

Operating weeks per yeard 50 weeks 

Machine utilizationc 90 % 

Operating hours over service life 60,480  hr 

Approximate printing time per jobe 12.00 hr 

Number of print jobs over service life 5040 print jobs 

Material mass produced per print job at 10% packing densityf 4.14 kg 

Total material mass printed over service life 20,876  kg 

MJF 3D 4210 embodied energy per kg material produced  3.67 MJ/kg 

SLS cradle-to-gate primary energy consumption benchmarkg 327 MJ/kg 

Estimated MJF 3D 4210 printer cradle-to-gate LCA contribution 1.12 % 
Note. Screening analysis data to estimate the contribution of the MJF 3D printer and processing station to the overall 

cradle-to-gate life cycle impact for an additively manufactured PA12 part. 
a Sourced from Faludi, Baumers, Maskery, and Hague (2017) 
b Sourced from HP Jet Fusion 3D 4210 data sheet 
c Service life, operating hours and days, and utilization assumptions based on Faludi, Baumers, Maskery, and Hague 

(2017) 
d Assumed two weeks off for holidays and maintenance period. 
e Sourced from HP Jet Fusion 4200 3D Printing Solution User Guide, assuming a 100% full build chamber on fast 

printing mode at 10% packing density. Applied additional 1.5 hours applied for setup time based on communication 

with HP (D. Woodlock, personal communication, Jan. 3, 2020). 
f Calculated based on PA12 density of 1.01 g/cm3. 
g Adapted from Telenko and Seepersad (2012) 

 

  



 21 

2.7. Multi-Jet Fusion Life Cycle Inventory  

2.7.1. Raw Materials – PA12 

The MJF and injection molding processes use different forms of the same PA12 material as 

manufacturing inputs. MJF uses PA12 powder while injection molding uses PA12 pellets. In 

both cases, peer-reviewed life cycle inventory data for PA12 are not publicly available. For this 

reason, previous LCAs on additive manufacturing with SLS used LCI data for polyamide 6 

(PA6) as modeling inputs for raw materials (Telenko & Seepersad, 2010, 2012; Kellens et al., 

2014). In this case, the polymer’s associated PlasticsEurope Eco-profile states that the cradle-to-

gate primary energy and GHG emissions for production of 1 kg of PA6 are 129.1 MJ and 6.7 kg 

CO2-eq, respectively (PlasticsEurope, 2014).  

 

Despite the use of PA6 LCI data as a substitute for PA12 in prior literature, two sources of 

unpublished data provide a different basis for this study’s raw material modeling assumptions. 

An eco-profile report by Arkema, one of the main manufacturers of PA12, compares polyamide 

11 (PA11) to other polymers, including PA12. In this report, Arkema notes that the gross energy 

requirement for PA12 is 207 MJ/kg and the GHG emissions are 6.9 kg CO2-eq (Devaux, Lê, & 

Pees, n.d.). Separately, communications with EarthShift Global provided cradle-to-gate 

cumulative energy demand and emissions data for production of 1 kg of PA12 resin: 345 MJ and 

15.39 kg CO2-eq (L. Laurin, personal communication, Jan. 24, 2020, Feb. 7, 2020). HP and 

EarthShift Global could not release additional information on the production of PA12 due to 

non-disclosure agreements. Neither source of PA12 LCI data provide information regarding the 

difference, if any, in energy consumption required for transformation into powder or pellet 

forms. As a conservative approach, this study uses the EarthShift Global data for modeling. This 

study assumes the cumulative energy demand is the same for production of PA12 powder and 

pellet forms due to the lack of available data. Sensitivity analyses in Section 3.4.3 explore the 

potential variance in LCA results when using PA6 data. 

 

2.7.2. Raw Materials – Fusing and Detailing Agents 

Material Safety Data Sheets (MSDS) for HP’s MJF fusing and detailing Agents provide 

information on their chemical composition that can be used to support LCI data calculations. The 

main ingredients for the fusing agent are water, 2-pyrrolidone, and a black pigment with an 

unspecified amount of carbon black (HP Development Company L.P., 2020b). For the detailing 

agent, the main ingredients are water, 2-pyrrolidone, and triethylene glycol (HP Development 

Company L.P., 2020c). The associated patent refers to these agents as ink-type formulations 

(Patent No. 10,392,512 B2, 2019); therefore, this study modeled the manufacturing of the agents 

based on printing ink production LCI data from the ecoinvent 3.5 database in SimaPro. 

According to Krystofik, Babbitt, & Gaustad (2014), comparable ink formulations to an HP 60 

inkjet cartridge primarily use deionized water. This study made assumptions shown in Table 3 

regarding the percentage for each ingredient, which were conservatively chosen near the upper 

bounds of the percentages identified in the respective MSDS. 
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Table 3. Fusing and Detailing Agent Production LCI (for 1kg of product) 

Inputs 

Qty 

Unit 

Fusing 

Agent 

Detailing 

Agent 

Materials    

2-pyrrolidonea 0.19 0.04 kg 

Carbon blackb 0.07 - kg 

Triethylene glycolc - 0.14 kg 

Deionized waterc 0.74 0.82 kg 

Energy    

2-pyrrolidone productiona 30.97 6.52 MJ 

Carbon black productionb 5.37 - MJ 

Triethylene glycol productionc - 6.02 MJ 

Deionized water productiond 0.01 0.01 MJ 

Electricity, agent manufacturinge 4.21 4.21 MJ 

Natural gas, agent manufacturinge 3.68 3.68 MJ 

Total primary energy 44.24 20.44 MJ 

    

Emissions    

GHG emissions 2.22 1.06 kg CO2-eq 
Note. Assumptions are based on HP fusing agent and detailing agent MSDS. Energy values are calculated using 

SimaPro software with ecoinvent 3.5 database and Cumulative Energy Demand V1.00/Cumulative energy 

demand/Single Score impact method (Wernet et al., 2016). Emissions values are calculated using IPCC 2013 GWP 

100a V1.03/Characterization method for 2-pyrrolidone, carbon black, triethylene glycol, and deionized water, and 

GREET2 2019 model for calculation of GHG emissions for electricity and natural gas (Argonne National 

Laboratory, 2019b).  
a 2-pyrrolidone {GLO}|market for | APOS, U; percent composition of fusing agent - 19%; percent composition of 

detailing agent: 4%.   
b Carbon black {GLO}|market for|APOS,U; percent composition of fusing agent - 7%  
c Triethylene glycol {RER} | market for triethylene glycol|APOS, U; percent composition of detailing agent - 14%. 
d Water, deionised, from tap water, at user {Europe without Switzerland}|market for water, deionised, from tap 

water, at user|APOS,U; percent composition of fusing agent - 74%; percent composition of detailing agent: 82%.  
e Based on ecoinvent 3.5 data for: 1 kg printing ink, offset without solvent, in 47.5% solution state {RER}| printing 

ink production, offset, product in 47.5% solution state |APOS, U (Wernet et al., 2016). Assumed all on-site heat 

energy derived from natural gas combustion.  

 

2.7.3. Transportation – PA12 

This study used the Distance & Time Tool on Searates.com to calculate the trucking and ocean 

freight distance required to transport PA12 from the raw materials processing facility in Marl, 

Germany to the part manufacturing facility in Livonia, MI : 44 miles by truck and 3,801miles by 

ocean freight (“Distances & Time,” n.d.). Searates.com identified Duisburg as the departure port 

in Germany and Detroit City as the arrival port in Michigan.  

 

LCI data for trucking and ocean freight transportation shown in Table 4 originate from the 

GREET1 2019 Heavy-Duty Vehicles (HDV) Well-to-Wheel (WTW) and Marine Well-to-Hull 

(WTH) modules. This study assumed light heavy-duty vocational vehicles powered by 

compression-ignition, direct-injection (CIDI) diesel engines from the HDV WTW module as the 
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vehicle type for PA12 transportation. In the Marine WTH module, bulk, foreign vessels 

transported the PA12 materials across the Atlantic Ocean.  

 

Table 4. Trucking & Ocean Freight Transportation Mode LCI (for 

1 tonne-mi) 

Inputs Qty Unit 

Trucking energy1 6.41 MJ 

Ocean freight energy2 0.147 MJ    

Emissions   

Trucking emissions1 0.492 kg CO2-eq 

Ocean freight emissions2 0.011 kg CO2-eq 
Note. Data are calculated with GREET1 2019 model (Argonne National 

Laboratory, 2019a). 
a HDV WTW for Light Heavy-Duty Vocational Vehicle and CIDI Vehicle: 

Diesel - 2020 simulation  
b Marine WTH for Bulk, Foreign, Atlantic (Cruise distance: 3801.43 nm) - 

2020 simulation 

 

2.7.4. Transportation – Fusing and Detailing Agents 

According to Google Maps, the trucking distance required to transport the fusing and detailing 

agents 12 from the facility in Corvallis, Oregon to the part manufacturing facility in Livonia, 

Michigan is 2,382 miles.  

 

2.7.5. Part Manufacturing – HP Multi-Jet Fusion 3D Printing 

This LCA evaluates electricity consumption of the part manufacturing phase for the MJF process 

and the associated GHG emissions; data for direct emissions from MJF equipment are not 

available, but are assumed negligible for modeling purposes.  

 

Build Platform File Preparation. This study used Autodesk Netfabb 2019 to design the build 

platform file, packing parts into the platform with the software’s automated 3D Packing – Monte 

Carlo tool. This tool is useful for packing a large number of parts and minimizing the packed 

platform height (Autodesk Inc., 2020a, 2020b). Assuming a scrap rate of 5% for the MJF 

process, 106 parts are required to produce the 100-part functional unit. Although communication 

with HP suggested a scrap rate of 1.5%, this study uses 5% to be more conservative (D. 

Woodlock, personal communication, Apr. 13, 2020).  

 

Table 5 depicts the build platform setting results from the 3D Packing – Monte Carlo tool for the 

106 LCD Controller Front Cover and Figure 6 shows an image of the associated packed build 

platform. The maximum number of parts that could be packed on the build platform with the 3D 

Packing – Monte Carlo tool is 108 (see Table 5 for the associated build platform settings). This 

study modeled part production quantities greater than 100 by first determining the number of 

maximum builds necessary that could be completed and allocating the remaining parts to a 

partial build.  
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Figure 6. Packed Build Platform for 100 Final Parts. 

 

Table 5. Build Platform Settings for Functional Unit Build and 

Maximum Part Build  

Setting 

Value 

Functional 

Unit Build 

Maximum 

Part Build 

Number of parts packed in build platform 106  108 

Build height (mm) 365.14 365.14 

Packing density 8.075% 8.227% 

Note. Packed with Autodesk Netfabb 3D Packing - Monte Carlo function; min. 

distance between parts - 2.0 mm; all other settings – default. Assumed 5% scrap rate; 

106 printed parts required to obtain 100 final parts. 

Table 6 shows the number of maximum parts builds, partial builds, and associated partial build 

platform settings for selected part production quantities from 250 to 100,000 parts. The build 

platform settings from Table 5 and Table 6 feed directly into the model for calculating the 

energy consumption associated with the next four steps.  
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Table 6. Build Data for Production Volumes from 250 to 100,000 

Desired number of parts 250 500 1,000 2,500 5,000 

Required number of printed parts 264 527 1,053 2,632 5,264 

Number of maximum parts builds 2 4 9 24 48 

Remaining number of parts for 

partial builds 48 95 81 40 80 

Partial build - build height 159.8 324 283 139.3 283 

Partial build - packing density 8.35% 8.15% 7.96% 7.99% 7.86% 

      

Desired number of parts 10,000 25,000 50,000 100,000  

Required number of printed parts 10,527 26,316 52,632 105,264  

Number of maximum parts builds 97 243 487 974  

Remaining number of parts for 

partial builds 51 72 36 72 

 

Partial build - build height 180.4 242 118.8 242  

Partial build - packing density 7.87% 8.28% 8.43% 8.28%  

 

Powder Mixing and Loading. In this step, the HP MJF 4210 Processing Station consumes 

electricity to mix and load PA12 powder in the build unit.  

 

Table 7 shows the characteristics of the HP MJF 4210 Processing Station associated with the 

powder and mixing step, sourced from HP MJF technical documents and communications with 

HP employees (HP Development Company L.P., 2019b, 2019c; H.T. Etheridge, personal 

communication, Jan. 28, 2020).  

 

Table 7 also identifies modeling assumptions made regarding power consumption during idle 

state, setup, powder mixing, and powder loading due to the lack of available data for these 

characteristics. This study further assumed a linear increase in time for powder mixing and 

loading between the times listed in the HP Jet Fusion 4200 User Guide to facilitate the 

calculation of process time for all build heights in the absence of additional data from HP.  

 

Table 7. HP MJF 4210 Processing Station Characteristics – Powder Loading & Mixing 

Characteristic Data Unit 

Setup timea 0.167 hr 

Idle/setup/natural cooling power consumptionb 0.3 kW 

Powder mixing & loading power consumptionc 2.6 kW 

Powder mixing & loading time, 80% recycled & 20% fresh materiald 

100% full chamber 1.250 hr 

75% full 0.958 hr 

50% full 0.625 hr 

25% full 0.333 hr 

Note. Data are adapted from HP MJF 4210 datasheet and HP Jet Fusion 4200 User Guide (HP Development 

Company L.P., 2019b, 2019c). 
a Assumed 10 minutes based on setup procedures in HP Jet Fusion 4200 User Guide for powder loading/mixing. 
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b Assumed to be same as idle power for HP MJF 4210 3D printer 
c Sourced from HP MJF 3D 4210 Solution data sheet; assumed constant throughout powder mixing and loading. 
d Applied median mixing and loading times from HP Jet Fusion 4200 User Guide, p. 73 

 

MJF 3D Printing. Although energy intensity is expected to vary over the duration of a print job 

based on packing density, printing speed, and other factors, the energy profile of the MJF 3D 

printer was not available from public sources or HP. This study models the power consumption 

for the MJF 3D printer using a constant 0.3 kW for idle status and constant 8.525 kW for printing 

based on communications with the HP LCA Program Manager (H.T. Etheridge, personal 

communication, Jan. 28, 2020). This contrasts slightly with the HP MJF 4210 datasheet, which 

indicates a typical power consumption for the 3D printer of 9-11 kW; however, the data from the 

HP LCA Program Manager are assumed to be more accurate (HP Development Company L.P., 

2019b). Printer setup and safety cooling are assumed to require the same amount of power as 

printer idling. Table 8 list the characteristics of the MJF 3D printer used for energy consumption 

modeling. 

 

Energy consumption for the print job is calculated based on idle time, idle power, build volume, 

printing speed, and printing power using Equation 1: 

 

(1) 𝑬𝑴𝑱𝑭_𝑷𝑹𝑰𝑵𝑻 = (𝒕𝑰𝑫𝑳𝑬 × 𝑷𝑰𝑫𝑳𝑬) ((
𝑽𝑩𝑼𝑰𝑳𝑫

𝑺𝑷𝑹𝑰𝑵𝑻
) × 𝑷𝑷𝑹𝑰𝑵𝑻) 

where 𝐸𝑀𝐽𝐹_𝑃𝑅𝐼𝑁𝑇is the energy consumption of the print job; 𝑡𝐼𝐷𝐿𝐸 is the time the printer spends 

in idle status, setup, and safety cooling; 𝑃𝐼𝐷𝐿𝐸 is the idle power consumption during idle status, 

setup, and safety cooling; 𝑉𝐵𝑈𝐼𝐿𝐷 is the volume of the build; 𝑆𝑃𝑅𝐼𝑁𝑇 is the printing speed; and 

𝑃𝑃𝑅𝐼𝑁𝑇 is the 3D printer’s power consumption during printing. Considering energy consumption 

increases based on the duration of printing time, this model applied the fast printing speed to 

understand the minimum amount of energy required for the MJF process. This model assumes 

the power consumption is the same for both printing speeds in the absence of additional data 

from HP. 

 

Table 8. HP MJF 4210 3D Printer Characteristics 

Characteristic Data Unit 

Build chamber (L x W x H) 380 x 284 x 380 mm 

Build chamber volumea 41,010 cm3 

Default/strength printing speedb 2,519 cm3/hr 

Fast printing speed 4,115 cm3/hr 

Idle power consumptionc (including setup & safety cooling) 0.3 kW 

Printing power consumptiond 8.525 kW 

Setup timee 1.5 hr 

Safety cooling time .5 hr 
Note. Data are adapted from HP MJF 4210 datasheet and HP Jet Fusion 4200 User Guide (HP Development 

Company L.P., 2019b, 2019c).  
a
 Calculated based on build chamber dimensions. 

b Calculated based on HP Jet Fusion 4200 User Guide default/strength mode printing time for full chamber build. 
c Provided by HP LCA Program Manager. 
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d HP MJF 4210 datasheet states 9-11 kW for average power consumption. However, the HP LCA Program 

Manager identified actual print power as 8.525 kW. 
e
 Provided by HP MJF Market Development Manager. 

  

Cooling and Unpacking. Table 9 shows the electricity consumption data used for modeling of 

cooling and unpacking. Due to the lack of power profile data for the processing station, 

electricity consumption data for cooling and unpacking were assumed to be the same as powder 

loading and mixing. Power consumption is also assumed to be constant throughout fast cooling 

and unpacking. Similarly, setup time for both cooling and unpacking were assumed to be 10 

minutes based on the procedures in the HP Jet Fusion 4200 User Guide. 

 

Table 9. HP MJF 4210 Processing Station Characteristics – Cooling and Unpacking 

Characteristic Data Unit 

Setup time 0.167 hr 

Idle/setup/natural cooling power consumption2 0.3 kW 

Fast cooling power consumption/Unpacking power consumption3 2.6 kW 

Note. Data are adapted from HP Jet Fusion 4200 User Guide and HP MJF 4210 datasheet.  

Post-processing. Although most additively manufactured parts require some form of post-

processing, no LCI data exist on these processes. The impacts of post-processing have mostly 

been neglected or underestimated in previous environmental studies of additive manufacturing 

(Kellens, Baumers, et al., 2017; Kellens, Mertens, et al., 2017). Despite this research need, 

development of empirically supported LCI data for post-processing of MJF parts requires 

substantial research outside the scope of this study due to the wide variance of potential surface 

finishing requirements and post-processing methods. Consequently, this study performed 

screening-level research to provide an approximate understanding of the relative contribution 

from this step to the overall cradle-to-gate energy and environmental impacts of the HP MJF 

process.   

 

A case study by PostProcess Technologies Inc. indicates that a small part with a similar 

bounding box dimensions to the LCD Controller Front Cover requires 1 minute of manual 

air/bead blasting time per part (PostProcess Technologies Inc., n.d.). Suggestions for air pressure 

range from 2-5 bar for bead blasting and 4 bar for air blasting non-fragile parts (HP Development 

Company L.P., 2017b, 2018a). This study assumed 4 bar (58 psi) and 1 minute to complete bead 

blasting for each part due to the LCD controller front cover’s relatively small size and low 

complexity. According to Clemco Industries Corp., a 1/4" nozzle orifice with 60 psi at the nozzle 

requires 54 cubic feet per minute and a compressor rated at a minimum of 12 hp (Clemco 

Industries Corp, 2007). This study assumed a 90% motor efficiency based on the average 

threshold efficiency values for 15 hp general purpose motors manufactured for sale in the U.S. 

(U.S. Department of Energy, 2014). This study used a formula from U.S. Department of Energy 

(2003) for calculating the cost of compressed air to determine bead blasting electricity 

consumption, shown in Equation 2, as 0.166 kWh per LCD controller front cover. 

 

(2) 𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 (𝒌𝑾𝒉) =
(𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒐𝒓 𝒉𝒑)×(𝟎.𝟕𝟒𝟔

𝒌𝑾

𝒉𝒑
)×(𝑨𝒊𝒓/𝑩𝒆𝒂𝒅 𝑩𝒍𝒂𝒔𝒕𝒊𝒏𝒈 𝒉𝒓)

𝑴𝒐𝒕𝒐𝒓 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚
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The powder removed from each part during post-processing is typically unusable and amounts to 

approximately 10% of the part mass (HP MJF 3D Printing Market Development Manager, 

personal communication, Jan. 3, 2020). Telenko and Seepersad (2010) also report a 10% excess 

powder loss in the equivalent step of the SLS process. 

 

2.8. Injection Molding Life Cycle Inventory  

2.8.1. Raw Materials – Plastic Injection Molds 

This study uses the two-plate mold structure for modeling of mold raw materials and machining 

because it is the most commonly used mold design for plastic injection molding (Campo, 2006). 

Boothroyd, Dewhurst, and Knight (2010) provide design rules to estimate the combined cavity 

and core plate thickness based on a part’s dimensions, the number of cavities, and the cavity 

layout. Assuming a single-cavity mold, Table 10 depicts the minimum plate dimensions for the 

LCD controller cover. 

 

Table 10. Cavity and Core Plate Dimensions 

Dimension Value (cm) 

Plate Length 25.86 

Plate Width 24.54 

Combined Cavity & Core Plate Thickness 16.61 

 

To determine the material mass of the mold, a computer-aided design (CAD) file for a standard 

two-plate mold was downloaded from the mold base catalog of the DME Company, a major 

mold component supplier (DME Company, 2020). Using the dimensions in Table 10, the most 

suitable mold base design in the DME catalog is XPress™ A-Series Mold Base Model 1012 

shown in  

Figure 7. Table 11 lists the material volume of the major components in this mold base. 

Figure 7. Mold base structure for two-plate mold. CAD file for DME XPress™ A-Series Mold 

Base Model 1012 from DME Company Configurator site (DME Company, 2020). Rendered 

image using Autodesk Inventor 2019.  

Top Clamp Plate 

“A” Plate 

“B” Plate 

Support Plate 

Rails 

Ejector 

Retaining Plate 

Ejector Plate Bottom 

Clamp Plate 
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Table 11. Mold Base Component Volumes 

Component Volume (cm3) 

Top clamp plate 2,418.58  

“A” plate 6,227.38  

“B” plate 6,124.70  

Support plate 3,423.22  

Rails (both) 1,132.61  

Ejector retaining plate 615.12  

Ejector plate 1,249.24  

Bottom clamp plate 1,607.52  

Total 22,798.37  

 

In Injection Mold Design Engineering, Kazmer (2016) provides equations to estimate the 

dimensions of the core and cavity inserts. Using Kazmer's (2016) equations 3.16 and 3.17, Table 

12 below depicts the estimated dimensions of the cavity set. 
 

Table 12. Cavity Set Dimensions 

Component Value Unit 

Length  24.54 cm 

Width 25.86 cm 

Height 16.61 cm 

Volume 10,540.78 cm3 

 

Plastic injection molds can be fabricated and assembled from various materials, including both 

ferrous and non-ferrous metals (Geng, 2016; Kazmer, 2016). A common injection molding 

strategy for production volumes between 500 and 200,000 parts involves the use of aluminum 

tooling (Kazmer, 2016). Mold bases made from aluminum commonly use 7075-T6 grade 

aluminum (Kazmer, 2016b). For higher production volumes, the majority of plastic injection 

molds are made of AISI P20 grade tool steel (Kazmer, 2016; Mesquita, 2016). Given the volume 

for each mold base component and the cavity set, Table 13 lists the mass values for the 

aluminum mold based on a density of 2.81 g/cm3 for 7075-T6 aluminum and the steel mold 

based on a density 7.850 g/cm3 for AISI P20 tool steel. 

 
Table 13. Mold Component Mass 

Component Mass (kg) 

Aluminum Steel 

Top clamp plate 6.80 18.99 

“A” plate 17.50 48.88 

“B” plate 17.21 47.08 

Support plate 9.62 26.87 

Rails (both) 3.18 8.89 

Ejector retaining plate 1.73 4.83 

Ejector plate 3.51 9.81 

Bottom clamp plate 4.52 12.62 

Cavity set 29.62 82.75 

Total 93.68 261.71 
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2.8.1.1. Aluminum Molds 

LCI data are not publicly available for 7075 grade aluminum. For this reason, this study uses LCI 

data from GREET2 2019 for flat-rolled virgin wrought aluminum and recycled wrought 

aluminum, assuming a metal composition of 67.5% recycled aluminum (The Aluminum 

Association, 2013). Table 14 depicts the LCI data for the aluminum tooling used in this study.  

 

Table 14. Aluminum Plate LCI (for 1 kg of Al plate) 

Inputs Qty Unit 

Total energy for flat-rolled virgin aluminum share 43.8 MJ 

Total energy for flat-rolled recycled aluminum share 16.0 MJ 

 Total primary energy  59.8 MJ 

   

Emissions Qty Unit 

GHG emissions for flat-rolled virgin aluminum share 2.7 kg CO2-eq 

GHG emissions for flat-rolled recycled aluminum share 1.0 kg CO2-eq 

 Total GHG emissions 3.7 kg CO2-eq 
Note. Wrought aluminum data are from GREET2 2019; calculated with GREET2 2019 RFC 

electric grid mix - 2020 simulation (Argonne National Laboratory, 2019b). 
a
 Assumes aluminum plate metal composition as 32.5% flat-rolled virgin aluminum and 67.5% 

recycled aluminum. 

2.8.1.2. Steel Molds 

Energy consumption and GHG emissions life cycle inventory data is not publicly available for 

the specific grades of steel plates used in the DME XPress™ A-Series Mold Base. A potential 

source of data for P20 tool steel is a paper by Minetola and Eyers (2018). In their comparison of 

injection molded and 3D printed mobile case covers, Minetola and Eyers (2018) cite life cycle 

energy consumption data for P20 tool steel from Cambridge Engineering Selector (CES) 

EduPack Software by Granta Design Limited (2016): 25.65 MJ for P20 steel production 

embodied energy and 11.50 MJ for P20 steel casting energy. However, the authors do not 

provide greenhouse gas emissions data associated with P20 steel production and casting.  

 

Considering the lack of publicly available LCI data, this study calculated LCI data for steel 

plates assuming the use of the electric arc furnace (EAF) steel production. The EAF route is the 

primary process for manufacturing tool steels (Mesquita, 2016). Moreover, 67.3% of crude steel 

production in the U.S. uses the EAF process (World Steel Association, 2019). The EAF route 

typically consists of melting, ladle furnace refining, vacuum degassing, and casting (Mandal, 

2015; Mesquita, 2016). After casting, the steel slabs proceed to hot rolling at a plate mill 

(Mandal, 2015). This study used the ATHENA Sustainable Materials Institute's (2002) Cradle-

To-Gate Life Cycle Inventory: Canadian and U.S. Steel Production by Mill Type to calculate LCI 

data for the steel plates shown in Table 15. 
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Table 15. Steel Plate LCI (for 1kg of steel plate) 

Inputs Qty Unit 

Materials   

Scrap metal 0.79 kg 

Direct reduced iron 0.70 kg 

Lime/refractories/electrodes 0.09 kg 

Energy   

Electricity     

Mining & Pelletizing Ore 3.34 MJ 

MIDREX 1.65 MJ 

EAF - Flat Rolled Products 13.77 MJ 

LMF 0.38 MJ 

Slab caster 0.53 MJ 

Plate Mill 2.18 MJ 

Natural Gas 
 

  

Mining & Pelletizing Ore 0.05 MJ 

MIDREX 9.25 MJ 

EAF - Flat Rolled Products 0.33 MJ 

Slab caster 1.40 MJ 

Plate Mill 3.63 MJ 

Fuel oil 
 

  

Mining & Pelletizing Ore 0.40 MJ 

Diesel  
 

  

Mining & Pelletizing Ore 0.07 MJ 

Rail Transportation - Pellets 0.19 MJ 

Total primary energy 37.18 MJ 

   

Emissions   

GHG emissions 2.49 kg CO2-eq 
Note. LCI data are adapted from ATHENA Sustainable Materials Institute (2002). 

Primary energy and emissions are calculated with GREET2 2019 RFC electric grid mix - 

2020 simulation. 
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2.8.2. Transportation – Mold Plates 

Distribution centers and warehouses between the plate production sites and part manufacturing 

facility were omitted to represent the minimum distance requirement for transportation of the 

mold plates. Trucking distances were calculated using Google Maps: 545 miles for steel plates 

transportation and 324 miles for aluminum plates.   

 

2.8.3. Part Manufacturing – Mold Machining 

LCI data for mold machining vary significantly across publicly available literature. This variance 

occurs because the time and energy consumed during mold machining depends on several 

variables, including the machining tools and processes used, volume and geometric complexity 

of the part to be molded, mold material properties, and the surface quality requirements of the 

mold (Kazmer, 2016a). For example, Ribeiro, Peças, and Henriques (2008) used three different 

processes for mold machining in their life cycle assessment of plastic injection mold production: 

milling, drilling, and electric discharge machining (EDM). Within the milling process alone, 

Yoon et al. (2014) reported specific energy consumption values ranging from 6.8 to 188 J/mm3 

from prior studies for cutting with different types of steel. Moreover, the milling process is often 

separated into rough and finish milling – also referred to as coarse and fine machining – that 

involve different processes to remove large amounts of material and more detailed operations to 

ensure dimensions and surface quality fall within required tolerances (Morrow et al., 2007; 

Minetola & Eyers, 2018). Morrow et al. (2007) reported 24 MJ/kg for rough machining and 600 

MJ/kg for fine machining of an H13 tool steel mold, while Minetola and Eyers (2018) cited 1.78 

MJ/kg for coarse machining, 13.35 MJ/kg for fine machining, and 26.20 MJ/kg for grinding of 

P20 steel mold based on LCI data from Granta Design Limited Cambridge Engineering Selector 

(CES) EduPack software. Finally, the total energy consumption of machine tool use depends on 

the time and power requirements across three stages of operation: start-up, run-time, and cutting 

(Dahmus & Gutowski, 2004).  

 

Considering the wide variance of machining LCI data and the primary focus of this study on the 

MJF process, a simplified approached to estimate energy consumption and GHG emissions is 

used here. Based on the mold cost estimation framework in Injection Mold Design Engineering, 

this study assumes the approximate volume of the mold material to be removed by machining is 

equal to the entire volume of the cavity set (Kazmer, 2016a). This volume is applied to material 

removal electricity consumption data from Dahmus and Gutowski (2004) and to the U.S. RFC 

grid to ascertain the total primary energy and greenhouse gas emissions shown in Table 16. 

 

Table 16. Mold Machining LCI (for 1 cm3 material removed) 

 

Inputs 

Quantity  

Unit Aluminum Steel 

Primary energy 0.0316 0.1343 MJ 

    

Emissions    

GHG emissions 0.0022 0.0093 kg CO2-eq 
Note. LCI data are based on production machining center electrical energy consumption for 

aluminum and steel from Dahmus and Gutowski (2004). Determined primary energy and GHG 

emissions with GREET1 2019 data for RFC grid, 2020 time series. 
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2.8.4. Part Manufacturing – Injection Molding 

LCI data for injection molding of PA12 is not publicly available. Therefore, this study used 

general LCI unit process energy data for injection molding from Franklin Associates (2011), 

shown in Table 17.  

 

Table 17. Injection Molding Process LCI (for 1kg part) 

Inputs Qty Unit 

Materials   

Virgin resin 1.034 kg 

Energy   

Electricity 14.3 MJ 

Natural gas 0.143 MJ 

LPG 0.00381 MJ 

Gasoline 0.00067 MJ 

Diesel 0.00005 MJ 

Total primary energy 14.47 MJ 

   

Emissions   

GHG emissionsa 1.00 kg CO2-eq 
Note. Material and energy input data are sourced from Franklin Associates (2011), 

Table 1. LCI Unit Process Data for Injection Molding (p. 19). 
a Determined primary energy and GHG emissions with GREET1 2019 data for RFC 

grid, 2020 time series. 

3. Results 
3.1. HP MJF PA12 Material Yield 
Based on the part scrap rate and PA12 powder loss assumptions used in this study, the PA12 

material yield of the HP MJF process was 85.8%. In contrast, LCI data from Franklin Associates 

(2011) indicate a resin-to-product material yield of 96.7% for injection molding. Consequently, 

injection molding requires 11.3% less PA12 material to produce the same part mass. Considering 

the modeled PA12 primary energy consumption and GHG emissions LCI data from EarthShift 

Global, injection molding saves 39 MJ and avoids 1.74 kg CO2-eq per kg of PA12 parts in 

comparison to MJF as a direct result of injection molding’s superior material yield.  

Figure 8 depicts the PA12 material flow and yield across each step of the MJF process.  
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Figure 8. HP MJF PA12 Material Yield Analysis. 

 

The following equations are used to estimate the PA12 material yield of the HP MJF system 

based on powder loss and scrapped part projections: 

 

(1) 𝑦𝑀𝐽𝐹_𝑃𝐴12 =
𝑀𝐹𝐼𝑁𝐴𝐿

𝑀𝐹𝐼𝑁𝐴𝐿+𝑀𝑆𝐶𝑅𝐴𝑃+𝑀𝑃𝑊𝐷𝑅𝐿𝑂𝑆𝑆
=

𝑀𝐹𝐼𝑁𝐴𝐿

𝑀𝑃𝑅𝐼𝑁𝑇𝐸𝐷
  

 
(2) 𝑀𝐹𝐼𝑁𝐴𝐿 = 𝑀𝑃𝐴𝑅𝑇 × 𝑄𝐹𝐼𝑁𝐴𝐿_𝑃𝐴𝑅𝑇 

 

(3) 𝑀𝑆𝐶𝑅𝐴𝑃 = 𝑀𝑃𝑅𝐼𝑁𝑇𝐸𝐷 × 𝑟𝑆𝐶𝑅𝐴𝑃 

 

(4) 𝑀𝑃𝑅𝐼𝑁𝑇𝐸𝐷 = 𝑀𝑃𝐴𝑅𝑇 × 𝑄𝑃𝑅𝐼𝑁𝑇𝐸𝐷 

 

(5) 𝑄𝑃𝑅𝐼𝑁𝑇𝐸𝐷 =
𝑄𝐹𝐼𝑁𝐴𝐿_𝑃𝐴𝑅𝑇

(1−𝑟𝑆𝐶𝑅𝐴𝑃)
;  𝑟𝑆𝐶𝑅𝐴𝑃 =

𝑄𝑃𝑅𝐼𝑁𝑇𝐸𝐷−𝑄𝐹𝐼𝑁𝐴𝐿_𝑃𝐴𝑅𝑇

𝑄𝑃𝑅𝐼𝑁𝑇𝐸𝐷
;  

 

(6) 𝑀𝑃𝑊𝐷𝑅𝐿𝑂𝑆𝑆 = 𝑟𝑈𝑁𝑈𝑆𝐴𝐵𝐿𝐸 × (𝑀𝑃𝑅𝐼𝑁𝑇𝐸𝐷) 
 

(7) 𝑟𝑈𝑁𝑈𝑆𝐴𝐵𝐿𝐸 =
𝑀𝑈𝑁𝑈𝑆𝐴𝐵𝐿𝐸

𝑀𝑃𝐴𝑅𝑇
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where 𝑦𝑀𝐽𝐹_𝑃𝐴12 is the MJF system’s PA12 material yield; 𝑀𝐹𝐼𝑁𝐴𝐿 is the PA12 mass for the 

desired quantity of final parts; 𝑀𝑃𝐴𝑅𝑇 is the PA12 mass of a single part; 𝑄𝐹𝐼𝑁𝐴𝐿_𝑃𝐴𝑅𝑇 is the 

desired quantity of final parts; 𝑀𝑆𝐶𝑅𝐴𝑃 is the PA12 mass of scrapped parts; 𝑄𝑃𝑅𝐼𝑁𝑇𝐸𝐷 is the 

quantity of printed parts; 𝑟𝑆𝐶𝑅𝐴𝑃 is the percentage of parts scrapped due to defects; 𝑀𝑃𝑊𝐷𝑅𝐿𝑂𝑆𝑆 is 

the mass of powder loss from post-processing; 𝑀𝑈𝑁𝑈𝑆𝐴𝐵𝐿𝐸 is the amount of unusable powder 

caked onto parts after unpacking; and 𝑟𝑈𝑁𝑈𝑆𝐴𝐵𝐿𝐸 is the percentage of unusable powder caked 

onto parts after unpacking, relative to the PA12 mass of an individual part.  

 

The resulting 85.8% PA12 material yield for the MJF process contrasts significantly with yields 

modeled by studies on SLS discussed in Section 1.4.4, which reflect powder waste rates between 

20% and 45%.  

  

3.2. Cradle-to-Gate Life Cycle Impact 
Production of 100 LCD Controller Front Covers with the HP MJF 3D 4210 Printer results in 

2,269 MJ of primary energy consumption and 127 kg CO2-eq emissions, whereas injection 

molding with steel tooling results in 8,766 MJ and 569 kg CO2-eq, and injection molding with 

aluminum tooling results in 5,258 MJ and 308 kg CO2-eq. The site energy consumption of the 

full MJF part manufacturing process, including post-processing, was 152.54 MJ/kg.  

 

Figure 9 shows a comparison of the cradle-to-gate GHG emissions for the three manufacturing 

processes and the relative contribution of each life cycle phase. The dominant impact for the 

MJF system is the part manufacturing process. Powder loading and mixing, MJF 3D printing, 

fast cooling, unpacking, and post-processing account for 56.2% of the cradle-to-gate GHG 

emissions for the system. In particular, electricity consumption from MJF 3D printing is 

responsible for 36% of the total system’s GHG emissions. The second highest contribution to 

GHG emissions for the MJF system results from PA12 production with 42.8% of the overall 

impact. Together, the fusing agent production, detailing agent production, agent transportation, 

and PA12 transportation accounted for less than 1% of the overall product system GHG 

emissions.  

 

As expected, the major driver of GHG emissions for injection molding resulted from steel and 

aluminum plate production, accounting for over 77% of cradle-to-gate GHG emissions. 

Similarly, PA12 production followed as the second highest contributor to GHG emissions. The 

injection molding process only accounted for 0.68% of emissions for the manufacturing process 

with steel tooling and 1.0% of emissions with aluminum tooling. Mold machining accounted for 

1.7% of emissions for injection molding with steel tooling, but only accounted for 0.58% with 

aluminum tooling. PA12 transportation is essentially negligible, accounting for less than 0.1% of 

cradle-to-gate GHG emissions for injection molding with either type of tooling.  
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Figure 9. Cradle-to-gate GHG emissions comparison of MJF and injection molding for the 

functional unit.  

The relative contributions of each life cycle phase to the overall cradle-to-gate GHG emissions 

follow the relative contributions for cradle-to-gate primary energy consumption, but differ 

slightly for the PA12 production phase. For the MJF LCA, PA12 production accounts for 53.8% 

of cradle-to-gate primary energy consumption and MJF part manufacturing accounts for 45.3%. 

Although PA12 production results in fewer GHG emissions than the MJF part manufacturing 

process, PA12 production is the dominant contributor to cradle-to-gate life cycle primary energy 

consumption because the ratio of energy consumption to GHG emissions differs for the two 

phases: 22.4 MJ/kg CO2-eq for the PA12 production process and 14.4 MJ/kg CO2-eq for the MJF 

part manufacturing process. The difference is likely a result of the PA12 material feedstock 

energy. For example, feedstock energy contributes approximately 30% to the cradle-to-gate 

primary energy consumption for PA6 production (PlasticsEurope, 2014). The change in relative 

contribution to cradle-to-gate primary energy consumption is less notable for the injection 

molding processes due to the much larger impacts of mold plate production. Additional data 

depicting the cradle-to-gate primary energy consumption for MJF and injection molding are 

shown in the Appendix A.1.  

 

The results for the MJF cradle-to-gate primary energy consumption contribution analysis and 

MJF part manufacturing process specific energy consumption (SEC) show similarities to 

previous studies on SLS. The 53.8% contribution of PA12 production to the cradle-to-gate 

primary energy consumption for the MJF system compares closely to the finding from Telenko 

and Seepersad (2012) that nylon production accounted for 60.2% of SLS energy consumption. 

The higher proportion of impact stemming from SLS nylon production can be attributed to the 

fact that Telenko and Seepersad's (2012) modeled material yield was significantly lower than the 

material yield in this study. Moreover, Telenko and Seepersad (2012) did not account for the 

energy consumption associated with cooling, unpacking, and post-processing, as previous studies 

0

100

200

300

400

500

600

MJF Injection Molding - Steel
Mold

Injection Molding -
Aluminum Mold

G
re

e
n
h
o
u
s
e
 G

a
s
e
 E

m
is

s
io

n
s
 (

k
g
 C

O
2
-e

q
)

Processes <1%

Mold Machining

Plate Transportation

Plate Production

Post-processing

Fast Cooling

MJF 3D Printing

PA12 Production



 37 

on SLS energy consumption also excluded these steps. For an appropriate comparison with SLS, 

the MJF part manufacturing process SEC, considering only the powder mixing and loading and 

3D printing energy consumption, was 98.69 MJ/kg. Consequently, the MJF SEC falls slightly 

lower than the range of SLS SECs noted in Section 1.4.2. Table A1 in Appendix A provides 

additional data on the SEC value for each step of the MJF part manufacturing process.  

  

3.3. Greenhouse Gas Emissions by Production Volume 
Despite the lower GHG emissions for production of the functional unit, the MJF system’s GHG 

emissions quickly rises as production volume increases. In contrast, GHG emissions for injection 

molding with either type of tooling rises at a much slower rate because the one-time impact from 

plate production and plate transportation amortizes over larger quantities of LCD controller front 

cover parts. Figure 10 shows the GHG emissions per part of each manufacturing process for 

quantities ranging from 100 to 1,000 parts. The MJF system maintains a lower emissions per part 

ratio relative to injection molding with steel tooling up to a quantity of approximately 800 parts. 

The breakeven emissions per part ratio between the MJF system and injection molding with 

aluminum tooling occurs at approximately 450 parts. Figure A5 in Appendix A provides 

additional GHG emissions results data for production volumes up to 5,000 parts. At a production 

volume of 3,000 parts, the MJF system produces double the GHG emissions of injection molding 

with aluminum tooling.  

 

 
Figure 10. Comparison of GHG emissions per LCD controller front cover part by production 

volume for MJF 3D printing and injection molding. Part manufacturing electricity sourced from 

U.S. RFC grid. 
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3.4. Sensitivity Analysis 

3.4.1. Solar-Powered Manufacturing Facility 

Based on the high electricity consumption of the HP MJF process, this study analyzed how a 

difference in the source of electricity generation for the manufacturing facility would alter the 

GHG emissions breakeven point with injection molding. 

 

Figure 11 shows the GHG emissions per part produced by each manufacturing process for 

quantities ranging from 2,000 to 10,000 parts in a scenario with the part manufacturing facility 

powered by a photovoltaic (PV) system instead of the U.S. RFC electric grid. In this scenario, 

the MJF system maintains a lower emissions per part ratio relative to injection molding with 

steel tooling up to a quantity of approximately 7,500 parts. The breakeven emissions per part 

ratio between the MJF system and injection molding with aluminum tooling occurs at 

approximately 3,750 parts.  

 

 
Figure 11. Comparison of GHG emissions per part by production volume for MJF 3D printing 

and injection molding. Part manufacturing electricity sourced from photovoltaic power plant.  

Despite zero emissions associated with powering the part manufacturing facility, the MJF system 

ultimately results in greater GHG emissions than injection molding because of the system’s 

lower PA12 material yield. Together, the relatively high emissions from the PA12 production 

phase and the lower PA12 material yield limit the breakeven production volume of the MJF 

system.  

 

3.4.2. Material Yield 

Given the uncertainty associated with the MJF process scrap rate and powder recovery rate, this 

study used a sensitivity analysis to explore the variance in GHG emissions resulting from 

different material yields. Figure 12 shows the cradle-to-gate GHG emissions from the MJF 

process across different material yields using the reported PA12 LCI data and electricity sourced 

from a PV power plant. Under the solar-powered manufacturing facility condition and a 10% 

decrease in material yield to 77.2%, the MJF process emits fewer GHGs than injection molding 
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with aluminum tooling until a production volume of approximately 1,000 parts. In contrast, an 

improvement in material yield by 10% to 94.3% results in a breakeven point between the MJF 

process and injection molding near a quantity of 10,000 parts. This material yield is insufficient 

for the MJF process to achieve lower GHG emissions than injection molding much farther 

beyond 10,000 parts because injection molding maintains a higher material yield. Moreover, as 

production quantity increases, the marginal increase in GHG emissions from fusing agent and 

detailing agent production and transportation outweighs the marginal increase in GHG emissions 

from injection molding.   

 

 
Figure 12. PA12 material yield sensitivity analysis, electricity sourced from photovoltaic power 

plant.  

3.4.3. PA12 Production LCI 

Considering the uncertainty of the LCI data for PA12 production and the use of PA6 as a 

substitute in other additive manufacturing LCAs, this study assessed how the variance in raw 

material modeling assumptions would affect the GHG emissions results of MJF and injection 

molding with aluminum tooling. Figure 13 shows the GHG emissions of the HP MJF process 

and injection molding with aluminum tooling using the PlasticsEurope PA6 LCI data under the 

condition where electricity is sourced from a PV power plant. In this scenario, the MJF 

breakeven GHG emissions shifts to a point between 5,000 and 10,000 parts for injection molding 

with aluminum tooling and a point between 10,000 and 15,000 parts for injection molding with 

steel tooling. The lower energy demand associated with the PA6 noticeably lessens the negative 

impact of the HP MJF’s material yield.  
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Figure 13. PA12 production LCI sensitivity analysis, electricity sourced from photovoltaic 

power plant. 

3.4.4. Post-Processing Time.  

A sensitivity analysis of post-processing time variance was conducted to evaluate the 

corresponding effects on cradle-to-gate GHG emissions for the MJF process. Figure 14 shows 

the cradle-to-gate GHG emissions for the MJF process with three scenarios for post-processing: 

1 minute of blasting, 3 minutes of blasting, and 5 minutes of blasting. The results show that a 

relatively minor increase in the amount of blasting time for each part significantly increases the 

cradle-to-gate GHG emissions for the MJF process. With 5 minutes of blasting per part, the MJF 

process would no longer breakeven with injection molding at a quantity of 250 parts.   

 

 
Figure 14. Post-processing time sensitivity analysis, electricity sourced from RFC grid. 
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by 56%. Post-processing time, PA12 production LCI, and printing speed can cause the MJF 

GHG emissions to change by over 20%.  

 

 
Figure 15. Variable sensitivity analysis. 

4. Discussion 
The results from this study show that the process energy consumption of MJF is slightly lower 

than the range of SLS values in the literature when excluding steps that were not examined in 

previous studies. Including all process steps in the MJF SEC still places MJF in the SLS SEC 

range. This finding indicates MJF is marginally more energy efficient than SLS, more energy 

efficient than FDM, and less energy efficient than some forms of SLA (Kellens, Mertens, et al., 

2017). However, the powder loss and scrap rates modeled in this study result in a higher resource 

efficiency for MJF in comparison to SLS, signifying a potentially lower overall environmental 

impact for the MJF process. Considering the 45% powder waste material rate from Kellens et al. 

(2014) and a conservative estimate for PA12 embodied energy of 129.1 MJ/kg, SLS would 

consume 84 MJ more than MJF per kilogram of final product as a result of SLS’s lower resource 

efficiency. Although MJF requires fusing agent and detailing agent not used in SLS, these 

consumables only amount to 5.8 MJ per kilogram of final product.     

 

Despite MJF’s resource efficiency advantage over SLS, MJF consumes more primary energy and 

causes more indirect GHG emissions than injection molding for large production volumes. For 

the part design and conditions modeled in this study, MJF results in lower primary energy 

consumption and GHG emissions than injection molding across low production volumes (450 to 

800 parts). Beyond 450 to 800 parts, the environmental impact of MJF substantially exceeds 

injection molding with either type of tooling. This finding is consistent with previous studies that 

compared SLS to injection molding (Telenko & Seepersad, 2012; Chen et al., 2015).  
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Results from the sensitivity analyses show that changes to several variables can significantly 

influence the GHG emissions breakeven point between MJF and injection molding. Varying the 

source of electricity for the manufacturing facility, the amount of time spent air/bead blasting, 

the LCI data used for PA12 production, and the printing speed can alter the GHG emissions 

breakeven point between MJF and injection molding by over 20%. A scenario with each of these 

variables set to the optimum condition for MJF could shift the GHG emissions breakeven point 

between MJF and injection molding to 5,000 to 10,000 parts.  

 

Smaller parts could result in higher breakeven production volumes (Telenko & Seepersad, 2012). 

Despite a potentially higher quantity of parts in a full build chamber with a smaller part size and 

higher packing, the cradle-to-gate GHG emissions of the MJF process would surpass injection 

molding between 5 and 8 print jobs. Furthermore, modifications to the mold design, such as 

increasing the number of cavities, could counter the optimal conditions for MJF and further 

reduce the GHG emissions breakeven point for higher volumes.  

 

Although the part simulated in this study resulted in a relatively low GHG emissions breakeven 

point between MJF and injection molding, the design capabilities of MJF and other additive 

manufacturing technologies permit the production of parts that could not otherwise be 

manufactured with injection molding. In such cases, there is no GHG emissions breakeven point 

unless an alternate injection molding-capable design (perhaps comprising several injection-

moldable components) could be aptly substituted for the original part design.  

 

4.1. Limitations 
The part design, packing method, MJF LCI data, and quality assumptions limit the generalization 

of this study’s findings across other applications. Only one part design was considered in this 

study, but different part designs could change the environmental impact associated with injection 

molding and the resulting breakeven point with MJF. Moreover, this study applied an automated 

packing method from Autodesk Netfabb that does not incorporate the ability to nest parts within 

the build, resulting in a relatively low packing density of 8.1%. Nesting parts appropriately could 

increase the packing density and result in a lower ratio of energy consumption to parts produced 

(Telenko & Seepersad, 2012). Finally, the electricity and material consumption data and 

assumptions used in this study for the MJF process were not experimentally validated. Similarly, 

direct process emissions for the MJF process were not investigated. 

  

4.2. Recommendations for Future Research 

4.2.1. PA12 Production LCI 

As shown in this study, the selected LCI data for PA12 production can result in significantly 

different breakeven points between MJF and injection molding. Considering the prominent use 

of PA12 as an additive manufacturing material and rapid growth of the industry, future research 

should publish LCI data for PA12 production.  

 

4.2.2. MJF Electricity Consumption Profile, Direct Emissions, and Material Yield  

This study modeled the energy consumption and material yield of the MJF process based on data 

and assumptions drawn from MJF technical documents and communications with HP employees. 

However, subsequent research should develop an accurate electricity consumption profile of the 

MJF process for both the printer and the processing station to understand how energy use 
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fluctuates over the course of powder loading and mixing, printing, fast cooling, and unpacking. 

Similarly, the material yield of the MJF process should be validated across different part designs 

and volumes. Finally, the direct emissions of the MJF process should be examined in future 

research.  

 

4.2.3. Post-Processing Methods 

Post-processing is a non-trivial step in the MJF process. Considering the high energy 

consumption associated with compressed air systems, this step can significantly alter the 

environmental impact of parts production with MJF. Future research should investigate the time 

and environmental impact of different post-processing methods applied to a variety of part 

designs.  

5. Conclusion 
This study provided a cradle-to-gate life cycle assessment of primary energy consumption and 

GHG emissions for MJF. As applied to this study’s representative part, the LCA showed that the 

SEC of MJF is marginally lower than SLS. Moreover, the modeled powder loss and scrap rate 

resulted in a material yield much higher than SLS, indicating an overall lower environmental 

impact for MJF. Consequently, MJF presents both cost and sustainability advantages over SLS in 

cases where both processes could be used to produce the same part.  

 

This LCA also demonstrated that MJF consumes less energy and results in fewer GHG emissions 

than injection molding with steel or aluminum tooling for low production volumes, though the 

breakeven production volume for GHG emissions is much smaller than the economic breakeven 

production volumes asserted by HP. After approximately 5 to 8 print jobs, the MJF 

environmental impact begins to exceed that of injection molding. This breakeven point fluctuates 

significantly based on the electricity generation source, post-processing time, PA12 production 

emissions intensity, and printing speed. Powering the part manufacturing facility from renewable 

electricity sources can increase the GHG emissions breakeven quantity of MJF with injection 

molding by an order of magnitude, but ultimately crosses over due to MJF’s lower material 

yield. On the basis of sustainability, this study shows that MJF 3D printing causes less 

environmental harm than injection molding for low production volumes, but cannot yet displace 

large-scale production of plastics parts that are capable of being injection molded without 

environmental tradeoffs.  
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Appendix A 

A.1. Cradle-to-Gate Primary Energy Consumption Results 

 
Figure A1. Cradle-to-gate primary energy consumption comparison of MJF and injection 

molding for the production of 100 LCD controller front cover parts. 

 
Figure A2. MJF cradle-to-gate primary energy consumption contribution analysis.  
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Figure A3. Injection molding with steel tooling cradle-to-gate primary energy 

consumption contribution analysis 

 
Figure A4. Injection molding with aluminum tooling cradle-to-gate primary energy consumption 

contribution analysis 
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Table A1. MJF Part Manufacturing Specific Energy 

Consumption per kg PA12 

MJF Part Manufacturing Process Step SEC (MJ/kg) 

Powder mixing & loading 1.05 

MJF 3D printing 97.64 

Fast Cooling 29.96 

Unpacking 3.09 

Post-processing 20.86 

Total SEC 152.54 

Total SEC  

(including powder mixing, loading and 

MJF 3D printing only) 

98.69 

A.2. Greenhouse Gas Emissions by Production Volume Results 

Figure A5. GHG emissions by production volume comparison for MJF and injection molding.  
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