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Abstract 

 

This dissertation applies a skeptical but hopeful analytical paradigm and the tools of linear 

algebra, numerical methods, and machine learning to a diversity of problems in computational 

chemistry. When the foundation underlying a project is undermined, the primary purpose of the 

project becomes digging into the nature and structure of the problem. A common theme emerges 

in which assumptions in an area are challenged and a deeper understanding of the problem 

structure leads to new insights. 

In chapter 2, this approach is exploited to approximate derivative coupling vectors, which 

together with the difference gradient span the branching planes of conical intersections between 

electronic states. While gradients are commonly available in many electronic structure methods, 

the derivative coupling vectors are not always implemented and ready for use in characterizing 

conical intersections. An approach is introduced which computes the derivative coupling vector 

with high accuracy (direction and magnitude) using energy and gradient information. The new 

method is based on the combination of a linear-coupling two-state Hamiltonian and a finite-

difference Davidson approach for computing the branching plane. Benchmark cases are provided 

showing these vectors can be efficiently computed near conical intersections. 

In chapter 3, this approach yields a countercultural explanation for what machine learning 

algorithms have learned in modeling a chemical reactivity dataset. Data-driven models of chemical 

reactions, a departure from conventional chemical approaches, have recently been shown to be 

statistically successful using machine learning. These models, however, are largely black box in 
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character and have not provided the kind of chemical insights that historically advanced the field 

of chemistry. The chapter examines the knowledgebase of machine learning models—what does 

the machine learn?—by deconstructing black box machine learning models of a diverse chemical 

reaction dataset. Through experimentation with chemical representations and modeling 

techniques, the analysis provides insights into the nature of how statistical accuracy can arise, even 

when the model lacks informative physical principles. By peeling back the layers of these 

complicated models we arrive at a minimal, chemically intuitive model (and no machine learning 

involved). This model is based on systematic reaction type classification and Evans-Polanyi 

relationships within reaction types which are easily visualized and interpreted. Through exploring 

this simple model, we gain deeper understanding of the dataset and uncover a means for expert 

interactions to improve the model’s reliability. 

In chapter 4, human - algorithm interaction is explored as a paradigm for generating 

representative ensembles of conformers for organic compounds, a challenging problem in 

computational chemistry with implications on the ability to understand and predict reactivity. The 

approach utilizes the molecular editor IQmol as an interface between chemists and reinforcement 

learning algorithms with the cheminformatics package RDKit as a backbone. Conformer 

ensembles are evaluated by uniqueness and the approximation they yield of the partition function. 

Prototype results are presented for a standard reinforcement learning algorithm tested on linear 

alkanes and chemist manipulation of a fragment of the biomolecule lignin. Future aims and 

directions for this young project are discussed. 

The concluding chapter reflects on the broader lessons learned from conducting the 

dissertation. It discusses open questions and potential paradigms for pursuing them. 
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Chapter 1. Introduction 

 

The methods developed in this dissertation draw from a breadth of mathematical and 

computational disciplines ranging from linear algebra, numerical methods, and machine 

learning.1–3 The targets for application also span a breadth of chemical disciplines including 

photochemistry,4–7 catalysis,8,9 and biochemistry. However, within this diversity is a unity in the 

attitude and approach taken, and what it suggests about the underlying nature of reality and 

scientific progress. The attitude is one of exploration followed by skepticism coupled with hope 

for an underlying, deeper conceptual foundation.  

Chapter Overviews 

Chapter 2 

Photochemistry is challenging to understand and model experimentally because key 

reactivity often occurs quickly, which makes mechanisms and intermediates difficult to observe 

and identify. Computer simulations can contribute to this understanding, but simulating 

photochemistry also poses interesting challenges. Photochemistry involves transitions between 

electronic states through conical intersections which are difficult to model numerically. A key 

quantity in modeling transitions through conical intersections is the derivative coupling vector 

which numerically describes the nuclear-electronic coupling underlying state transitions. 

Prior to this work, the primary means of obtaining this quantity was through electronic 

structure calculations, and the scientific community spends significant effort keeping 

implementations of the derivative coupling vector up to date with an ever evolving framework of 
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electronic structure theories. What is missing is an accurate general approach to approximating the 

direction and magnitude of the derivative coupling vector that is immediately accessible as new 

electronic structure theory improvements are developed. 

In chapter 2, we develop a general method for approximating the derivative coupling vector 

within the framework of any given electronic structure implementation that has the energy and 

nuclear gradient available. This makes it possible for future theoretical developments in electronic 

structure to more rapidly be accessible for photochemical simulations. 

Chapter 3 

Machine learning has recently gained popularity as an approach for modeling complex data 

relationships in a plethora of domains. This hype has been in part driven by machine learning's 

quantitative success in highly nonlinear problems previously believed to necessitate human-like 

heuristics and intuition. The hype has carried machine learning into growing popularity in 

chemistry, and quantitative results are once again promising. 

However, metrics for success in chemistry are nuanced. In chapter 3, we suggest that the 

machine learning community in chemistry should consider how to evaluate results in a robust and 

chemically meaningful manner. While machine learning can obtain impressive quantitative 

success on seemingly reasonable benchmarks of predicting chemical reactivity, this chapter will 

show that such learning provides little of scientific value. We provide substantial evidence to 

justify what we believe to be an underrepresented perspective in the field. 

Chapter 4 

Generation of conformers, different configurations of molecules accessible without 

breaking of forming chemical bonds, is a challenging chemical problem. An adequate sample of 

low energy conformers is necessary for accurate thermodynamic modeling, but determining which 
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of the combinatorially large configurations are significant in affecting the thermodynamics is 

difficult. Accurate solutions are available in the specific cases of small molecular systems (by 

enumerating over all possibilities) or when the potential energy surface is well-behaved enough 

for molecular dynamics simulations to tractably sample ergodically (though at high cost). Some 

progress has been made in more general cases, but improving accuracy across the breadth of 

chemically interesting systems remains an active area of research. 

In chapter 4, we begin to apply similar paradigms as in chapters 2 and 3 to this problem of 

conformer generation. We take what we learned about the nature of integrating learning from 

humans and algorithms and develop a prototype for utilizing the strengths of each. 

Chapter 5 

Chapter 5 provides a conclusion to the dissertation. It attempts to summarize and tie 

together the projects undertaken while exploring potential future directions. A discussion follows 

on principles which were valuable in the conducting of the dissertation work and should continue 

to prove valuable in future explorations. 

Themes 

From these chapters, a common theme emerges through the projects undertaken in this 

dissertation. First, a method is proposed that leverages algorithmic understanding and insights in 

an attempt to improve the tractability of a recurring challenge encountered in computational studies 

of chemical problems. Initially, the details are shaped through experience, but the method is 

developed essentially as expected. The method performs roughly as anticipated and would be 

considered acceptable within the relevant subdisciplines. However, subsequent adversarial self-

critique of the method questions the underlying assumptions and conceptual foundation upon 
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which the method was built. This leads to further analysis and investigation of the principles and 

concepts underlying the method, which in turn become the main focus of the project. 

In chapter 2, the manifestation of this theme centered around the linear algebra of the 

derivative coupling vector.7 In much of the scientific literature, two orthogonal branching plane 

vectors are defined or determined and referred to as the difference gradient and the derivative 

coupling vector. Thus, our project's initial idea produced the vector in the branching plane 

orthogonal to the difference gradient. Initial testing suggested that our method approximated the 

derivative coupling vector fairly well as calculated directly through an electronic structure 

package. However, while investigating the deviation I noticed that the electronic structure package 

derivative coupling vector was not orthogonal to its own difference gradient. Upon further digging 

into literature we uncovered deeper complexity in the derivative coupling vector and how it is used 

that was obfuscated by inconsistent usage of terminology in the literature and lack of a consensus 

way of thinking about and talking about the branching plane.10 Looking into how different 

scientists understood the structure of the branching plane led to a new, simple method to 

parameterize the branching plane.11 This led to a significant improvement over the original method 

because the parameterized model not only provided a nearly perfect approximation to the 

derivative coupling vector, but also allowed for the method to do more than originally intended. 

The model additionally yielded an approximation for the location of a nearby conical intersection, 

a key feature of the potential energy surface in photochemistry. This approximation is better than 

standard optimizations following the difference gradient and using the derivative coupling vector 

merely to define the branching plane subspace. 

In chapter 3, the overarching theme manifested in a project in which we attempted to 

optimize digital representations of chemical concepts for effectiveness in machine learning of 
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chemical reactivity. The key structure on which the project is built is the interplay between data, 

representation, and optimization strategy. It is well known that each of these concepts is important 

to effective algorithmic learning of chemistry and that they interact in complex and subtle ways, 

but to jointly optimize these factors is a subject of current interest in the research community.12–14 

We took a computational dataset of simulated reaction data generated within our research group 

and began exploring representations and testing them with common machine learning algorithms. 

We quickly obtained quantitatively respectable results given the complexity of our dataset using a 

chemically meaningful representation, suggesting that common machine learning algorithms were 

able to learn something chemically meaningful from the reaction data. However, we determined 

through adversarial self-critique and observation that what we thought would be the most 

chemically important concepts for an algorithm to "learn" were not actually essential to machine 

learning algorithms' predictive power.15,16 We explored this further and demonstrated how 

machine learning algorithms were actually learning in a way that is counterintuitive to chemists 

and unlikely to generalize. We showed this point through generating a minimally chemically 

meaningful representation of reactivity that could still successfully train a quantitative model. This 

finding is significant because what we learned is applicable to many current projects in the 

community attempting to apply machine learning to various chemical problems.16,17 

While the project described in chapter 4 is still in the early stages, we hope that application 

of a similar approach as in the other projects will prove fruitful and uncover deeper understanding. 

We feel that the field of conformer generation is still searching for a coherent framework within 

which to explore solutions and deeper understanding would be valuable towards this effort. 
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Chapter 2. Estimating the Derivative Coupling Vector using Gradients 

 

This chapter is largely based upon published work: 

Kammeraad, J. A.; Zimmerman, P. M. Estimating the Derivative Coupling Vector Using 

Gradients. J. Phys. Chem. Lett. 2016, 7 (24), 5074–5079. 

https://doi.org/10.1021/acs.jpclett.6b02501. 

 

Main Text 

Strong coupling between nuclear and electronic degrees of freedom leads to highly 

interesting chemical phenomena, such as photo-induced reactions.4,18,19 To enable meaningful 

descriptions of these ultrafast processes, atomistic simulations can be insightful, but are 

challenging to perform because accurate electronic structure and dynamics tools must seamlessly 

work together in tandem. Therefore, new methods to make these simulations simpler and broadly 

applicable are in demand. 

The most difficult to describe aspects of ultrafast vibronic processes are the dynamics near 

conical intersections, which are regions of the potential energy surface where the Born-

Oppenheimer approximation breaks down. Conical intersections (CI) describe the nuclear 

configurations where two electronic states intersect and are spanned by two vectors, the difference 

gradient and the derivative coupling. While the difference gradient can be formed from the two 

states’ gradients, making them easily computable, the derivative coupling vector is often less 

readily available. While derivative coupling vectors can be computed in a separate step after the 

gradients, these are not implemented for many levels of electronic structure theory.20 Only in the 

last few years, for instance, did these vectors become available for the widely used time-dependent 

density functional theory,21,22 and novel wave function methods such as Restricted Active Space 
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Spin-Flip23–25 have no derivative coupling algorithm available. Even modern implementations of 

CASCI and CASSCF, for example efficient algorithms for GPUs26–28 require nontrivial effort for 

constructing derivative coupling code. In special cases such as multiconfigurational, multistate 

perturbation theory, the derivative coupling vector can implemented using similar terms as the 

gradient.29,30 Such methods, however, cannot be applied in general to many electronic structure 

theories. 

A number of useful methods have been proposed to approximate the information that 

derivative coupling vectors would otherwise provide, were they available.31 For conical 

intersection geometry optimization, difference gradients along the optimization path can provide 

a sufficient approximation to the branching plane to reach convergence.32 In surface hopping 

trajectories,6,33,34 a molecular system passing through a “trivial crossing” with low coupling can 

be made to remain on the same diabatic state, which is physically correct.35 For nontrivial 

crossings, interpolation of the wave function can be used to quantify the time-derivative 

coupling,36 which is the dot product of the derivative coupling with the nuclear velocity.37–39 While 

these methods are useful to enhance the study of CI’s and nonadiabatic dynamics, none provide a 

means to determine coupling vectors without a standard derivative coupling calculator. Without 

this vector, for instance, the velocity rescaling of surface hopping trajectories33,40 cannot be 

performed, and conical intersection regions remain incompletely characterized. 

In this chapter, branching planes and derivative coupling vectors are shown to be 

computable using only energy and gradient information. To do this at low cost, the branching 

plane41 is constructed from the squared-energy-gap (ΔE2) Hessian using an iterative 

diagonalization method that avoids building the full Hessian. Subsequently, the difference gradient 

and derivative coupling are determined using a model Hamiltonian, allowing the branching plane 
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to yield accurate estimates of the true derivative coupling vector and its magnitude. Since only 

energies and gradients are required, the proposed method has the potential for wide application in 

enabling derivative coupling vectors to be computed for many electronic structure theories. 

To compute the derivative coupling using potential energy surface (PES) information, two 

components are used: 1. A representation of the branching plane, and 2. A model Hamiltonian 

with a two-state intersection. To construct the first piece, note that the adiabatic PESs involved in 

a conical intersection are not differentiable at a point of conical intersection,20 so they are not 

directly useful for this purpose. The energy gap squared (Δ𝐸2), however, contains valuable 

information about the conical intersection and is more well behaved in its vicinity42 (Figure 2-1). 

Similar to the regular PESs, where two vectors modulate the energy gap between the states, near 

the CI the Δ𝐸2 surface is constant except when moving in the branching plane. This 2-dimensional 

subspace is therefore spanned by 2 eigenvectors of the Δ𝐸2 Hessian corresponding to nonzero 

eigenvalues. Assuming there are only two adiabatic states in the nearby vicinity, these eigenvectors 

will correspond to x⃑  and y⃑ , which we denote as two orthogonal vectors spanning the branching 

plane.10 All other eigenvalues of this Hessian will be approximately 0 because they do not 

modulate the energy gap between states. 

 

 

Figure 2-1. Conical intersection showing close up view (left), wide view (middle), and representation in terms of 𝛥𝐸2 (right). 
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Scheme 2-1. Overall process for constructing derivative coupling vectors. 

 

To compute the eigenvectors corresponding to the upwards-curving directions of the Δ𝐸2 

surface, the finite difference Davidson43–45 method is used. Similar to the strategy of Sharada et al, 

which diagonalizes a single-surface Hessian without ever constructing that Hessian,46 the Δ𝐸2 

Hessian’s lowest eigenvalues and corresponding eigenvectors can be found using only energies 

and difference gradient information. This works because the product of the Hessian with a unit 

vector 𝐻𝑓(𝑞̅)u⃑  is the rate of change of ∇𝑓(q̅) when moving in the direction u⃑ . Therefore, as shown 

in Scheme 2-1, only energy and gradient computations are required because the Davidson 

algorithm requires Hessian-vector products. The full finite-difference Δ𝐸2 Hessian is therefore not 

required in this procedure. As shown below, the Davidson iterative diagonalization procedure 

requires a smaller number of gradients to converge to the true branching plane than would be 

required to construct the full finite difference Hessian. 
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Figure 2-2. Derivative coupling and difference gradient in the region near a conical intersection. Arrow sizes are proportional to 

vector magnitude to the 0.5 power to improve visualization. 

While constructing the branching plane is an important first step in determining the 

derivative coupling vector, the branching plane alone does not uniquely determine the derivative 

coupling direction. In general, the derivative coupling is not orthogonal to the difference gradient 

(see Figure 2-2), as was recently affirmed in Lindh et al.10 To overcome this challenge and provide 

accurate derivative coupling vectors from the branching plane, a model Hamiltonian, 

𝐻𝑒 = (𝑠𝑥(𝑥) + 𝑠𝑦(𝑦) + 𝑠𝑧 (𝑧 )) 𝐼 + (
𝑔𝑥 ℎ𝑦
ℎ𝑦 −𝑔𝑥

) (1) 

can be utilized. This expansion resembles the diabatic models of Köppel,11 which are designed to 

provide a meaningful representation of the electronic wave function in regions near a conical 

intersection. For this 2-state model, the eigenvalues of the Δ𝐸2 Hessian are 8𝑔2 and 8ℎ2. The 

eigenvectors corresponding to the nonzero eigenvalues are the 𝑥  and 𝑦  directions of the branching 

plane. Using this model, the Davidson procedure gives the branching plane vectors and the g and 
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h values, so 𝑥 and 𝑦 can be easily computed. Directly evaluating the model gives the angle between 

the difference gradient and derivative coupling vectors (θ in Figure 2-2) as well as the derivative 

coupling direction and magnitude. See the Methods section for further details. Extensions to the 

model to allow 3-state intersections may be possible by extending the Hamiltonian and considering 

a higher dimensional branching plane.47,48 

The computational cost of this strategy is dominated by the cost of the electronic structure 

gradients required to form the Hessian vector products of the Davidson procedure. It will be shown 

below that only handful of gradients is required to reach convergence. Limitations of this algorithm 

are that it assumes only two close-lying electronic states, and proximity to a conical intersection 

where the model Hamiltonian remains meaningful (i.e. linear coupling). The accuracy, therefore, 

is expected to decrease with distance from the two-state conical intersection. This estimate, 

however, should be accurate in the high coupling regions where most population transfer occurs 

between the states. 

Scheme 2-2. Conical intersections investigated in this work. 

 

Conical intersection geometries from previous studies49,50 were used as test cases for the 

new algorithm (see Scheme 2-2). These therefore represent geometries where the chosen model 

Hamiltonian (Eqn. 1) should be reasonably accurate and the derivative coupling vector has a large 

magnitude. While the derivative coupling vector has infinite magnitude at any point of conical 

intersection, only inside an extremely small radius around the CI seam will this become a problem. 
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For these geometries, gaps between electronic states are between 0.04 and 0.8 mHa, representing 

accurate but not exact conical intersections (Table 2-2). 

The above test cases were used in choosing appropriate convergence criteria for the 

Davidson method. For ethene, convergence was reached after 2 iterations using a total of 14 

gradients, compared to diagonalization of the full finite difference Hessian. Computing the full 

finite difference Hessian would require 72 gradients, demonstrating that the finite difference 

Davidson method is relatively efficient, even for this small molecule with relatively few degrees 

of freedom. The residual magnitude at convergence was 1.85 ⋅ 10−4, and therefore we chose 10−3 

as the residual threshold for subsequent computations. The angle between the CASSCF derivative 

coupling vector and the one computed using the proposed algorithm was 0.075 degrees, 

corresponding to near-perfect overlap. The magnitude of this vector was 1140.9 a.u., compared to 

the exact value of 1162.4 a.u. directly from CASSCF. In sum, using relatively few gradient 

computations, a nearly exact derivative coupling vector was found. 

 

 

Figure 2-3. Convergence of the Davidson method at various conical intersections. Error = 1 −
|⟨Davidson eigenvector|true eigenvector⟩|. 
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Figure 2-4. Approximate derivative coupling vectors from the Davidson procedure. Exact vectors are visually indistinguishable. 

 

Similar convergence was seen in the other 4 test cases, all of which contain significantly 

more degrees of freedom than ethene. To reach the chosen 10-3 residual threshold, 3 matrix 

products (14 gradients) were required in each case. This suggests that the Davidson method 

converges using a small fraction of the dimensionality of the full space (the full finite difference 

Hessian requires 312 gradients for stilbene). The lack of increase in iterations from ethene to 

stilbene despite the significant increase in molecular size is encouraging. The coupling vector 

overlap, angle between difference gradient and derivative coupling vectors, and derivative 

coupling magnitudes are shown in Table 2-1 for the range of conical intersections of Scheme 2-2. 

Across the board, the proposed method estimates derivative coupling vectors to high accuracy, and 

even captures their magnitude to significant precision.  

Table 2-1. Benchmark results compared to exact derivative coupling computations at conical intersections.  

Derivative 

coupling overlap

θ g vs h 

(deg)

Exact θ g vs h 

(deg) Magnitude h

Magnitude h 

(exact)

Energy gap 

(au)

Magnitude of error: 

‖(h calc) - (h exact)‖

Ethene 1.000 63.13 63.14 1140.9 1162.4 8.98E-05 21.50

Butadiene: cis 1.000 98.25 98.25 1993.6 1994.5 6.78E-05 1.65

Butadiene: trans 1.000 74.01 74.03 1848.9 1848.5 4.71E-05 2.10

Butadiene: ring 1.000 112.87 112.89 1120.9 1121.1 6.41E-05 1.00

Stilbene 1.000 110.10 109.94 101.8 101.6 7.17E-04 1.10  
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 To ensure that these results hold in the vicinity of CI’s, not just very close to the 

intersection, a set of 30 geometries near the ethene minimum energy CI were generated and 

examined. These structures are random displacements of magnitude 0.1, 0.2, and 0.3 Å from the 

CI, with ten structures at each distance. The geometries therefore represent the region where 

nonadiabatic trajectory simulations would most likely cross from one electronic surface to the next. 

The residual error, which is the magnitude of the difference between the exact and computed 

derivative coupling vectors, remains small in this region, with an average error of 2.64% (Table 

2-2). Similar results were found for 30 geometries near butadiene’s trans CI, where errors were 

even lower, 0.79% on average. The most serious errors in these two cases occur when the 

derivative coupling is small: in ethene, one geometry with an exact derivative coupling magnitude 

of 2.7 a.u. results in a residual of 0.29 a.u., which is 11%. Similarly, the worst-case butadiene 

geometry has coupling magnitude 1.4 a.u. and an error of 0.35 a.u. As expected, the model holds 

up quite well near CI’s, and becomes less accurate in regions where the derivative coupling is 

small. Those errors are bearable, however, because small derivative couplings have less influence 

on the resulting dynamics than the larger couplings close to the intersection. 

 

Table 2-2. Benchmark results in the vicinity of conical intersections. Units of a.u. 

 

Residual Error 

(avg) 

Residual Error 

(max) Avg. Error (%) 

Ethene 0.16 0.35 2.64 

Butadiene: trans 0.13 0.29 0.79 

 

 In summary, this work presents a novel means to compute derivative coupling vectors 

using only energy and gradient information. The method opens up new avenues for using a wider 

variety of electronic structure methods to analyze conical intersections and perform dynamics 

simulations. Specifically, any multistate method with an available gradient can now be used to 
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form accurate derivative coupling vectors, at least in regions near conical intersections where the 

linear model of Eqn. 1 remains accurate. We anticipate this strategy will be highly useful in 

contexts where the derivative coupling is unavailable through other means. 

 

Methods 

Diagonalizing the model Hamiltonian of Eqn. 1 to find the eigenvalues (adiabatic energies) as a 

function of the coordinates and evaluating their difference squared yields 

Δ𝐸2(𝑥, 𝑦, 𝑧 ) = 4((gx)2 + (ℎy)2) (2) 

Evaluating the Hessian of this surface therefore gives eigenvectors along the 𝑥  and 𝑦  axes, with 

corresponding eigenvalues 8𝑔2 and 8ℎ2. The eigenpairs of this Hamiltonian are then assumed to 

correspond to the Davidson method’s eigenpairs. To make this correspondence, the appropriate 

values of x and y in the real chemical system must be determined. Since determining x and y is 

equivalent to finding the distance to the CI along the 𝑥  and 𝑦  directions, the vector from the current 

geometry to the minimum on the 𝛥𝐸2 surface contains this information. Finding x and y is thus 

analogous to computing a Newton step on the 𝛥𝐸2 surface. 

𝑥 =
u⃑ ⋅ x⃑ 

λ𝑥
  𝑦 =

u⃑ ⋅ 𝑦 

λ𝑦
  u⃑ = 𝛻𝛥𝐸2 (3) 

where λ𝑥 and λ𝑦 are the eigenvalues for the real system. Once x and y are available, the derivative 

coupling can be computed from Eqn. 1. This is done using the coefficients of the normalized 

eigenvectors of the Hamiltonian, 𝑐m
n (𝑥, 𝑦), which are independent of all coordinates except x and 

y, 

𝜙1 = 𝑐1
1(𝑥, 𝑦)⟨ψ1| + 𝑐2

1(𝑥, 𝑦)⟨ψ2| (4) 

ϕ2 = 𝑐1
2(𝑥, 𝑦)⟨ψ1| + 𝑐2

2(𝑥, 𝑦)⟨ψ2| 
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The derivative coupling ⟨𝜙1|
𝜕

𝜕𝑅
𝜙2⟩ can be expressed in terms of derivatives of these coefficients 

with respect to nuclear coordinates 𝑥 , 𝑦 , and 𝑧𝑖. 

⟨𝜙1|
𝜕
𝜕𝑥

𝜙2⟩ = 𝑐1
1(𝑥, 𝑦)

𝜕

𝜕𝑥
𝑐1
2(𝑥, 𝑦) + 𝑐2

1(𝑥, 𝑦)
𝜕

𝜕𝑥
𝑐2
2(𝑥, 𝑦) =  

−𝑔ℎ𝑦

2𝑔2𝑥2 + 2ℎ2𝑦2
(5) 

⟨𝜙1|
𝜕
𝜕𝑦

𝜙2⟩ =
𝑔ℎ𝑥

2𝑔2𝑥2 + 2ℎ2𝑦2
(6) 

and for all non-branching coordinates, 

⟨𝜙1|
𝜕

𝜕𝑧𝑖
𝜙2⟩ = 0 (7) 

Finally, a change of basis creates the derivative coupling vector in the Cartesian coordinate 

system of the real system.  

The computational complexity of computing energies and gradients needed to find Hessian 

products varies by electronic structure method but is often Θ(N
p
),  4 ≤ p ≤ 8. Diagonalization of 

the Davidson subspace matrix formally scales with 𝑛3 where n is the dimension of the matrix. The 

total computational cost associated with diagonalizing the subspace matrix at all Davidson 

iterations is thus ∑ 𝑚3𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑚=0 = Θ((𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)4). Overall, the cost of the Davidson 

procedure is dominated by the electronic structure computations. In our tests, the time spent in a 

single Davidson iteration is less than 2 seconds for 1000-dimension random matrices. 

All energies, gradients, and benchmark derivative coupling vectors were computed using 

the Molpro51 implementation of Complete Active Space Self-Consistent Field (CASSCF)52 with 

an active space of 2 electrons in 2 orbitals for ethene and stilbene and an active space of 4 electrons 

in 4 orbitals for butadiene. The S0 and S1 intersections were specifically studied. Geometries for 

the conical intersections were computed in Molpro (ethene) or found from Sicilia et. al. 
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(butadiene)50 or Quenneville et. al. (stilbene)49. The 6-31G* basis set was used for butadiene and 

the 6-31G** basis set was used for ethene and stilbene.  

A finite difference step size of 10−3 Å was used for the Hessian vector products. Initial 

Davidson vectors consist of the exact difference gradient and a random orthogonal vector. 

Davidson iterations proceed until the residuals have a magnitude less than 10−3. Correction 

vectors are not added if the component of the normalized expansion vector orthogonal to the 

current Davidson subspace has a weight below 0.05.  
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Chapter 3. What Does the Machine Learn? 

Knowledge Representations of Chemical Reactivity 

 

This chapter is largely based upon work currently under peer review. 

Authors: Joshua A. Kammeraad, Jack Goetz, Eric Walker, Ambuj Tewari, Paul M. Zimmerman 

Introduction 

A great deal of excitement has been growing among physical scientists and engineers about 

machine learning. This excitement stems from a host of interesting examples from the data science 

field, including widely reported advances in image recognition, artificial intelligence in games, 

and natural language processing that have demonstrated extremely high levels of performance and 

even abilities beyond expert human capabilities. Substantial efforts have therefore been made to 

bring the tools of machine learning to bear upon the physical sciences,53–57 with some of the most 

interesting chemical applications being in the areas of reactions and synthesis.17,58–61 Chemistry, 

however, is traditionally driven by a combination of concepts and data, with its own heuristics, 

models, and hypothesis-making approach to research. It is our view that the contrast in approach 

between purely data-driven research and concept-driven research begs questions such as: What is 

the machine’s representation of knowledge? What does the machine learn? It is these questions 

that will lead to more effective synergies between machine learning and the chemical sciences, as 

useful answers will involve explainable and interpretable concepts, not merely machine abstraction 

and black-box decision making. The intent of this chapter is to provide some preliminary 

indications of how current generation machine learning tools operate on chemical data, in partial 
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answer to these two questions. Our emphasis will be on application to computer prediction of 

chemical reactions, a key target for recent generations of machine learning methods. 

The potential for computers to assist in synthesis has a long history, dating back to original 

proposals by E. J. Corey in the 60s.62–64 These ideas were focused on the possibility for expert 

systems to encode known chemical principles into a systematic framework for predicting synthetic 

routes. Expert systems, however, fell out of favor due to the tedious encoding of rules and the rule 

exceptions required to maintain usability and accuracy across a diversity of reaction types. While 

recent efforts have challenged this conclusion,65 the manual efforts needed to construct quality 

expert systems have by no means decreased. Alternatively, machine learning methodologies give 

the appearance of being particularly fit for encoding chemical reaction data without substantial 

human intervention and tinkering. To date, millions of reactions have been reported and are 

available in online databases, motivating recent efforts to use methods such as neural networks to 

build predictive tools for synthesis planning.66–73  

Nonlinear regressions—which include deep neural networks74–78—form the basis for 

machine learning to represent complex relationships between input and output variables.79 These 

methods can represent arbitrarily complex maps between any number of input variables and output 

results,80 and can simply be applied to data, often with excellent statistical results. Since expert 

understanding of the meaning behind the data is not needed, the application of nonlinear 

regressions to encode chemical reaction is vastly different than applying expert systems (i.e. where 

specific rules are manually encoded and easily understood). In the specific case of neural networks, 

“hidden layers” constitute the intermediate representations that are used to make predictions. 

While these layers may well encode concepts and heuristics, they are indeed hidden, and do not 

provide transparent or interpretable reasons for decisions made by the network. In other popular 
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nonlinear techniques, “kernel” functions are used, where similarity between pairs of data points 

determines the structure of the predictions. Kernels are relatively interpretable compared to the 

hidden layers of neural networks, as similarity in the feature space is the core concept that can be 

understood.  

To improve interpretability, data scientists might make use of input features that are 

comprehensible to chemists. Typical machine learning features involve graph-based features81–84 

(e.g. based on covalent attachments in molecules), strings (e.g. SMILES85), hashing, or 

substructure analysis, and these techniques have been widely used in drug design applications. 

Metrics such as Tanimoto distances,81 which are measures of similarity between molecules, 

provide some grounding to chemical concepts, but are otherwise not trivial to interpret. In contrast, 

atomic charges or orbital energies derived from quantum chemistry, for instance, might be used 

alongside conventional physical organic descriptors86,87 to capture chemical principles in 

quantitative form.88,89 Progress in this area is useful and ongoing, but more insight is needed into 

the relationship between the physical content of these features and how machine learning models 

make use of the features. 

Whereas machines have no prior expectations of the meaning of input features, chemists 

are clearly the opposite.90 Chemists use explainable, physical features to make predictions, and 

they have strong expectations about how their models should behave based on these features.91 In 

the case of a polar reaction, an atom with a high positive charge might be expected to react with 

an atom of large negative charge, due to Coulomb interactions. This fundamental physical 

interaction is described by chemists in terms of electronegativity and bond polarity, which are 

chemically specific descriptors that are highly useful for predicting reaction outcome. Due to these 
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relationships, invoking atomic charge as a descriptor brings in a wealth of expectations for an 

expert chemist, due to their knowledge of firmly established physical laws. 

Machine learning models thus face a significant challenge in providing advances in 

chemical reactions (Figure 3-1), as it is not obvious how they are rooted in physical reality, or 

whether they use chemical features in a way that in any way resembles chemical thought. In the 

machine learning world, it is known that neural networks focus on distinctly different regions of 

images compared to humans when recognizing objects,92 and yet still reach high accuracy. In the 

text that follows, this issue is investigated in detail by examining a dataset of chemical reactions 

with two qualitatively distinct, powerful machine learning methods. In short, we will show deep 

neural network and support machine (SVM) models to be quantitatively accurate, but missing a 

basic, qualitative representation of physical principles. Using this knowledge, it will be shown that 

a well-known, interpretable chemical principle better describes this dataset—and even provides 

higher quantitative accuracy than machine learning. Based on these results, Figure 3-1 outlines our 

viewpoint of the relationship between current-generation machine learning methods and chemical 

methods. This figure will be discussed in more detail in the discussion section after the main results 

of this study. 
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Figure 3-1. Overview of status of machine learning for chemical reactions. The popular deep neural networks are shown in the 

middle row, where the internal “hidden” representations are hoped to be equivalent to the third row, where the principles behind 

the predictions are chemically intuitive concepts. 

 

A First Challenge: Representing Chemical Data 

 For algorithmic techniques to learn relationships between chemical properties and reaction 

outcomes,88,89,93–98 the representation of those features is vitally important. A basic principle used 

here and elsewhere66,67 is to consider reactions as being composed of bond breaking and bond 

forming events. This places the features squarely into the chemical domain, and automatically 

injects accepted chemical principles into the choice of representation: chemical bonding is an a 

priori accepted concept that does not need to be “learned” by the machine. This assumption in turn 

allows each reaction to be expressed in terms of atom-centered properties (possibly including 
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neighboring atoms, next neighbors, etc.), such that characteristics of the features are dominated by 

properties of the reactive atoms. The choice of reactive-atom-centered properties therefore gives a 

list (a vector) of real numbers that specify a particular reaction. Many choices are conceivable for 

this feature list. 

 To represent an atom, one approach is to consider features of the molecular graph centered 

on the (reactive) atom (Scheme 3-1). Prior efforts in this area have used graphs in a similar way, 

where in some contexts the assignment of this graph is a key step to classify reactions,70 and in 

others, graphs are key frameworks for the ranking of reactions.66,67,72,73 To form such graphs in the 

present context, the atomic number, number of covalent bonds, and formal hybridization can be 

used, where hybridization can usually be inferred from the former two properties. To build a more 

detailed picture of the atomic environment, these three features can also be added for the atom's 

neighbors, or next neighbors, as appropriate. While the features themselves are easy to determine, 

a number of atoms are involved in any particular reaction. The order of these atoms in a feature 

vector may influence a machine learning algorithm’s results, so in this work the ordering of the 

atoms is standardized according to a prescription given in the computational details section.  

 

Scheme 3-1. Atomic representations based on atomic connectivity and first principles computation. Similar features are available 

through the neighbors to the central atom, allowing more contextual information to inform the model. 

 Atomistic simulations can also be used to derive properties of atoms and molecules using 

procedures that are now considered routine. These techniques can provide a wealth of chemically 

relevant information, for instance energies and shapes of molecular and atomic orbitals, atomic 

charges, molecular multipole moments, and excitation energies. While more expensive to calculate 
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than graphical features, these features are expected to provide more precise, physically meaningful 

information compared to purely graphical features. In this work, charges and effective 

hybridization (i.e. a measure of s/p character for an atom) from natural bond order99 (NBO) 

calculations are specifically considered as chemically informative atomic features.  

 In addition to graphical and quantum-chemical features, the energy of reaction is a 

particularly informative feature for predicting reaction outcome. The energy of reaction (Δ𝐸) is 

simple to compute with quantum chemistry and provides a basic thermodynamic principle that 

directly relates to reaction outcome: increasingly positive energies of reaction correspond to 

reduction in reactivity. Δ𝐸 for a single reaction can be found in seconds to minutes on modern 

computers, and the activation energy—which will be the focus of the predictions herein—costs at 

least an order of magnitude more computational time, even with advanced algorithms for its 

evaluation.100,101  

 

Relationships Between Representations 

 To understand how choices of feature representations affect ability for machine learning to 

predict reaction outcomes, a machine learning model was set up based on two databases of 

chemical reactions (723 elementary steps, and 3,862 elementary steps). These reactions—

described further in the computational details—come from first principles atomistic simulations 

of reaction pathways.102,103 The simulations cover two reaction classes: one of interest to 

atmospheric chemistry,104–107 and the other to CO2 reduction chemistry.108–110 The choice of this 

dataset allows two significant advantages over other datasets: 1. Activation energies are available 

for feasible as well as infeasible reactions, and 2. Noise and uncertainties are decreased, as all 

datapoints were generated with the same simulation method. In sum, the two datasets include a 
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host of polar and radical reactions, involving unimolecular and bimolecular elementary steps. 

While we report primarily on the first dataset in this chapter, the Appendix will show that the 

second dataset behaves similarly to the first, with little differences in statistical errors and 

interpretation compared to the first dataset. 

Two types of regression techniques were chosen as nonlinear machine learning models for 

further study: neural networks (NNs) and SVM. Both are considered powerful tools with strong 

theoretical foundations80,111 in the machine learning community, but the SVM provides simpler, 

less ambiguous choices of model setup compared to NNs. Vitally, the NN approach is believed to 

be able to form internal features that represent the core quantities for accurate predictions. To test 

this hypothesis, a number of network topologies were constructed and tested, with the most 

generalizable model being presented in the main text (see Appendix for full details). These 

methods are therefore expected to predict activation energies for chemical reactions to high 

accuracy, assuming that the input feature representation is meaningful. In addition, the least-

squares (LS) variant of SVM—LS-SVM112—can provide error bars on all predictions, giving it an 

internal validation metric to gauge generalizability. 
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Figure 3-2. Comparison of graphical and quantum chemical feature sets in deep neural network modeling. 

 For the first round of machine learning modeling, graphical features of reactive atoms, 

augmented by the energy of reaction, were utilized as features for the NN and the SVM. Upon 

cross-validation and testing on data points outside of the training set, a good correlation (NN: 

R2=0.88 SVM: R2=0.87) is found between quantum chemical activation energies (Ea) and machine 

learning estimates of the same quantities (Figure 3-2, left). While higher R2 values have been found 

for larger datasets with millions of data points (e.g. potential energies from quantum 

chemistry),113,114 these R2 values are more typical of machine learning studies of chemical 

reactions.115 The Appendix shows the error distribution for SVM matches the expected error 

distribution over the entire dataset (Figure 3-10), indicating that these error estimates are reliable. 

Similar models without graphical features or energy of reaction showed much lower R2 values 

(Figure 3-10). In short, NN and LS-SVM using the chemically relevant graphical and reaction 

energy features provided quantitative estimates for activation energies that it was not trained on, 

and reasonable estimates of uncertainties in the LS-SVM case. By these statistical metrics, NN 

and SVM are each successful at learning activation barriers from first principles simulations. 

 Next, the quantum chemically derived atomic charges were used as features in place of the 

graphical features (Figure 3-2, right). Being sensitive to electronic structure of the reactive 
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molecules and atoms, these charges should in principle be more detailed descriptors than graphical 

features. The quantum chemical features performed similarly to purely graphical features in terms 

of test set R2 (SVM: 0.84 vs. 0.87 NN: 0.84 vs. 0.88). Correlations between predicted and actual 

error (Figure 3-10) further show that LS-SVM can predict activation energies just as well using 

either graphical or quantum chemical features, with consistent uncertainties. While the NN 

provided a slight advantage using graphical features compared to the atomic charges, the 

difference was not dramatic.  

The similar utility of graphical and electronic features suggests that the two sets contain 

similar information. We hypothesized that one feature set implies the other: the atomic 

connectivity around each reactive atom dictates the physical charge. To test this hypothesis, all 

molecules in the benchmark set were collected, and specific atom types extracted based on the 

graphical features. For example, a trivalent, sp2 carbon would be one atom type, distinct from a 

tetravalent, sp3 carbon. Atomic charges across this set were averaged on an atom-type by atom-

type basis, yielding a lookup table that maps atom type to a characteristic charge. The mean change 

in charge associated with this averaging is small (0.05 a.u. vs. the original charges), suggesting 

that the charge assignments are reasonable. 
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Figure 3-3. Method for generating the average charge features. First, the reactant molecules are collected and charges are 

computed for all atoms. For each atom in all of these reactants, atoms with equivalent connectivity are aggregated, and their 

partial charges averaged. The mean charges are used for all atoms of each respective type in machine learning. 

 The NN and SVM models trained on the graphically derived electronic properties of atoms 

(Figure 3-4, top left)  show similar prediction accuracy for SVM (R2=0.83) and slightly worse for 

NN (R2=0.80). This similarity suggests that the graph implicitly contains sufficient information to 

reproduce meaningful electronic features, which in turn work well in building effective NN and 

SVM models. For the purposes of predicting activation energy in the benchmark set of reactions, 

these qualitatively different feature sets appear to be equally successful. Up until this point, the 

NN and SVM modeling of elementary chemical reactions of main group elements is performing 

well, and has no obvious deficiencies. 
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Figure 3-4. Top left: NN results using electronic features derived from graphical features. Top right: NN results based on 

random values of atomic charges. There is no physical meaning to these charges in the sense that they have no value in 

representing Coulomb interactions. Bottom: One-hot encoding of reaction types using graphical atomic features. 

 

Deconstruction of Machine Model-Making 

At this point in our study, an important insight has been gained with respect to representing 

chemical information. When expert chemists look at a 2D chemical structure (e.g. a ChemDraw), 

deep properties are inferred based on their knowledge, intuition, and experiences. Chemists can 

identify reactive centers, hypothesize the most likely transformations to occur, and propose 

experiments to reduce uncertainty in challenging cases.116,117 This expert skill is the concept-
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centered approach mentioned in the introduction, which relies on physical properties inferred from 

the 2D structure (for example, atomic charge).  

Since a 2D chemical structure is equivalent to its graph, one might suppose that the machine 

is inferring principles and properties in a way similar to the expert. The graph implies electronic 

features, which are the same physical properties that dictate chemical reactivity. While this is easy 

to imagine and is the hoped-for goal of machine learning, such principles are by no means 

necessary for nonlinear machine learning tools to provide quantitative accuracy. Not only could 

the machine develop an entirely alternative viewpoint not held by chemists, it could also be making 

predictions using properties an expert would consider physically incorrect.  

The second possibility appears to be closer to the truth. As the next numerical experiment, 

the machine learning models were built using random values of atomic charge. Instead of using 

(physically meaningful) average values of charge from graphically derived atom types, each atom 

type was assigned to a random number from a standard Gaussian distribution. Using the 

randomized “charges”, the two machine learning models performed similarly to the previous 

models, with R2=0.86 for SVM and R2=0.80 for NN, showing approximately equal quantitative 

accuracy (Figure 3-4). The atomic charge used by SVM therefore must be a label, not a physical 

measure; increasing or decreasing this number does not reflect a varying chemical environment, 

but simply a renaming of the label. Adjacency or proximity between two of these charges holds 

no particular meaning, as the random charges have no particular relationship with physical charge. 

 

Reestablishing Chemical Concepts 

 If electronic or graphical features of atoms are simply labels, it is likely that using “good” 

labels would yield a somewhat better procedure. An improvement in accuracy should result 
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because the charges might be mistakenly seen by the NN or SVM to be “ordered” (…-0.2 < -0.1 

< 0.0 < 0.1…), which is unrealistic given that the actual ordering is random. A good labeling 

procedure would not entail any artificial ordering, and this can be done with one-hot encoding. 

This encoding entails constructing a set of features with values of 0 or 1, where each feature is 

treated independently of the others. A single one-hot feature corresponds to a particular assignment 

of atom type based on the graph, just like in the feature averaging strategy discussed above (but 

with no charge assignment).   

A small increase in machine learning predictive performance is observed when using one-

hot encoded atom types, giving a test set R2 of 0.87 (NN) and 0.89 (SVM) (Figure 3-4). This R2 is 

slightly higher than that of the random features, and close to or better than the best-case models 

with the other feature types (0.88 NN and 0.87 SVM). This result suggests that the machine 

learning models using labels of atomic type appear fully sufficient to reach quantitative accuracy. 

The implications of this simplified feature representation are important to understanding nonlinear 

regressions in machine learning, and will thus be further discussed. 

The high accuracy achieved using one-hot labels challenges whether machine learning 

requires quantitative physical principles as underlying features for making accurate predictions. 

Recall that the reaction feature vector is simply a composite of the atomic features of reactive 

atoms, augmented by the energy of reaction. Where graphical features and properties derived from 

quantum chemistry remain close to basic principles such as periodic trends, covalency, and 

electronic structure, atom labels contain no such properties. A one-hot encoding of a 3-valent 

carbon is equally different from a 2-valent carbon or a hydrogen in an O-H bond. In other words, 

all one-hots are unique labels with no special relationships to each other, much less physical 

relationships. This uniqueness means that (in the feature set) a pair of atom types of the same 
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element are just as different from each other as a pair of atom types with different elements! 

Periodic trends, bonding patterns, and electronic properties are lost to such atom labels that do not 

contain this information. 

To push this hypothesis even further, a k-nearest neighbors model was applied to the dataset 

using the base graphical features. With 𝑘 = 2, predictions are made by assuming that the average 

of the two most closely related data points gives the unknown data point. In this case, an R2 of 

0.86 on the test sets was achieved with the one-hot encoding feature set (Figure 3-11). This 

surprising result suggests that machine learning is doing little more than memorizing,118 as 

predictions are made to reasonably high accuracy by mere similarity with training data points. No 

believable trends in physical properties are possible using only pairs of data points. 

 

Figure 3-5. Comparison of three machine learning approaches using various representations of the underlying features. Each 

filled circle line is an R2 on a cross-validated test set, so there are 5 R2 values per method/feature combination. 

 The analysis so far (Figure 3-5, and statistically summarized in Table 3-3) suggests that 

the nonlinear regressions of this work are largely agnostic to the underlying feature 

representations (with the exception of the energy of reaction, which is important and we will 

focus upon shortly). The Appendix shows analysis of a larger dataset, with one order of 
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magnitude additional data points (3862); no qualitative change in outcome was observed, and 

only minor differences in quantitative accuracy were found. We therefore ask whether a highly 

simplified representation of chemical information may be just as effective as the machine 

learning. When atomic features are represented by simple labels, reaction types therefore are just 

composites of these labels. Incidentally, chemists have worked with labeled reaction types for 

centuries: they are called named reactions. For each reaction type, simple relationships have 

been developed to relate molecular properties to reaction rate. This approach will provide a much 

more transparent picture of reactions than nonlinear regression. 

Evans-Polanyi Relationships 

At this point, it is clear that the machine learning views reactions categorically, rather than 

by any deeper physical relationship. The well-known Evans-Polanyi relationship can also do the 

same, where a linear trend between activation energy and energy of reaction is constructed. The 

statistical errors on the top-10 most prevalent reaction types are shown in Table 3-1. Comparison 

of statistical accuracy of Evans Polanyi compared to SVM and NN for common reaction types 

(RMSE, kcal/mol). Evans Polanyi errors are based on leave-one-out cross validation with RMSE 

reported for the hold-out points.. In this data set certain reaction types appear repeatedly, and the 

trends in reactivity fit well to the linear relationship (first row). The SVM model is able to perform 

almost as well as Evans-Polanyi for the same reactions, with an overall RMSE about 6% higher. 

The NN model is similar, at 5% higher overall error than Evans Polanyi. This trend remains when 

analyzing the full data set, shown in Figure 3-6, which affirms that the Evans Polanyi is slightly 

numerically improved over the SVM and NN models. See the Appendix, Figure 3-16, showing 

that the same picture holds when analyzing the second data set, which was generated using Density 

Functional Theory. 



 34 

 

Table 3-1. Comparison of statistical accuracy of Evans Polanyi compared to SVM and NN for common reaction types (RMSE, 

kcal/mol). Evans Polanyi errors are based on leave-one-out cross validation with RMSE reported for the hold-out points. 

 

1 2 3 4 5 6 7 8 9 10 

 Tota

l 

Evans 

Polany

i 5.00 4.98 4.69 4.86 5.12 4.13 6.63 9.09 6.12 1.99 

 

5.35 

One-

Hot 

SVM 5.69 6.41 4.45 5.70 4.64 4.67 6.12 7.34 7.24 2.56 

 

5.68 

One-

hot 

DNN 5.71 5.93 5.84 4.73 4.13 5.01 5.54 8.42 5.90 3.07 

 

5.62 

# Data 

Points 44 39 26 21 18 15 15 15 15 15 

 

223 

 

 

Figure 3-6. Error distributions for all Data Set 1 reaction types with at least 3 data points. 

Figure 3-7 shows a hydrolysis reaction as an interesting example (reaction type 1 of Table 

3-1). The Evans-Polanyi relationship on these 44 data points gives an R2 of 0.74, and provides a 

simple interpretation: water-assisted elimination of ROH at an sp3 carbon has barriers that trend 

with energy of reaction. While this statement is not particularly profound, it is easily constructed 

and can be performed for any reaction type represented by at least two points in the dataset. Further 

analysis of the data in Figure 3-7 (top), however, shows this reaction is somewhat more nuanced. 

While in the original feature set rings were not identified, these were found to be important. The 
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data points of Figure 3-7 therefore divide themselves into two sets: A. reactions without 4-

membered rings, and B. reactions involving 4-membered ring breakup. The B reactions break the 

4-membered ring and release significant strain, and sit to the left of the other data points in Figure 

3-7 (lower Δ𝐸). In region B, the Evans-Polanyi relationship has a nearly flat slope. Removing 

these data points increases the R2 of the A region to 0.81, indicating an improved linear fit. 

Predicting A and B data regions separately gives an overall RMSE of 3.37 kcal/mol compared to 

4.40 kcal/mol for the original, single Evans-Polanyi relationship.  

 

 

Figure 3-7. Top: An example Evans / Polanyi from a reaction type with many examples in the dataset. Bottom: Bimodal Evans / 

Polanyi for a second reaction type. The dashed green lines represent the (poor) linear fits when including all data points. 
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The Evans-Polanyi relationship can break down within specific sets of reactions, giving an 

indication that the chemistry is more complex than originally envisioned.119 For example, an 

Evans-Polanyi plot with a multimodal structure suggests that there are significant mechanistic 

differences within the reaction type.120 One such “bad” Evans-Polanyi relationship was easily 

identified within the dataset.  

The reaction type of Figure 3-7, bottom illustrates this point well (reaction type 9 of Table 

3-1). The single-line relationship is poor (R2=0.39), and 3 points on the left appear to be well-

separated from the points on the right. While this is insufficient data for statistical significance, 

mechanistic differences are responsible for the bimodal structure in this example. Examining the 

individual reactions revealed that the 3 data points differed qualitatively from the others, and 

involved release of strain from a 4-membered ring. This shifted the reaction energies (Δ𝐸) 

significantly downward for elementary steps that otherwise had the same reaction classification. 

Dividing the two cases based on the ring-release criterion provides two Evans-Polanyi 

relationships with R2 of 0.98 and 0.73, indicating good fits to the linear relationships. 

 

Discussion 

The above results and analysis of a chemical reaction data set highlights a certain tension 

between machine learning and chemical approaches. Whereas chemistry usually seeks 

explanations based on physical properties—and inherently cares whether those physical properties 

are real—machine learning approaches can reach their criteria for success (test-set statistical 

accuracy) without achieving a convincing relationship to chemical principles.16,118 While the 

machine approach could in theory provide physical relationships, there is no reason to believe this 

will come automatically with currently available algorithms, which are agnostic to expert 
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knowledge. In the cases examined above, it is reasonable to conclude the machine learning models 

do slightly more than memorizing values from clusters of data points, where those clusters 

happened to be similar reaction types.  

 This limitation applies just as well to similarity-based SVM models as to deep NN machine 

learning tools. In the latter case, NNs provide no obvious correspondence between their hidden 

representations and chemical concepts, though in principle these hidden representations could be 

valuable. Such a valuable hidden representation, however, is clearly not present when formed in 

the two datasets of this study, as the NN was unable to generalize its predictions beyond the 

specific reaction types that appeared in the input vector.  

The two questions posed in the introduction (What is the machine’s representation of 

knowledge? What does the machine learn?) can be succinctly answered, at least in the case of the 

NN and SVM models used herein. Since NN and SVM recognize similarity between data points, 

it does not appear to greatly matter what form the input data comes in. Since the features can take 

many forms and still discriminate between reaction classes, these features need not be physically 

grounded. SVM therefore learns to recognize reaction types based on similarity within an abstract 

feature space. The NN performs similarly, does not provide any additional generalizability, and 

does so in a less transparent manner.  While it is possible that machine learning through NNs can 

provide improved representations of chemistry with larger datasets, no improvement in statistical 

accuracy was found on a second dataset with 3,862 reactions (see Appendix, especially Figure 

3-16).  
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Figure 3-8. Summary of feature experimentation steps. All feature types produce similar results in deep neural network or SVM 

regression, including random atomic charge assignments and one-hot labels. The machine learning algorithms treat all atom 

types as completely unique, and essentially unrelated to one another. 

Despite these concerns, however, machine learning still has strong abilities. It can operate 

directly on data and quickly give quantitative accuracy, in contrast to the chemical approach which 

relies on existing knowledge and highly developed insight. Certain questions of value therefore 

deserve further consideration: 

1. Does the method solve an unsolved chemical problem? Or does it simply reproduce what is known? 

2. Does the method offer clear advantages in time to solution compared to existing approaches? 

3. Does the method provide transferable chemical insight, where transferable refers to ability to work 

well outside of the current dataset? 

In our opinion, contemporary approaches used by expert chemists address points (1) and 

(3). New approaches for handling chemical problems are being developed by domain scientists for 

(2). In the area of chemical reactions, some progress has been made using machine learning to 

achieve (2) as well, but not necessarily (1), and a few examples of (3) within specific domains.14,55 
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While there remains a lot of room for new machine learning approaches for chemical problems 

that may perform at a much higher level, one fundamental difficulty remains. 

 Figure 3-1 compared three types of models for relating data to predicted outcomes. The 

first most closely resembles expert procedures, where knowledge is represented in precise, 

explainable concepts developed over years of experience. These concepts are clearly understood, 

and chemists know the contexts in which each concept may be applied. In many cases, simple 

mathematical expressions can be written down that show the relationship between the physical 

properties and the outcome of interest (i.e. Table 3-1 and Figure 3-6). In the second case (in the 

middle of Figure 3-1), machine learning performs a complicated transformation of raw features 

into a hidden representation, which in turns leads to quantitative predictions. The second case 

provides no clear interpretation of how it obtains its high accuracy, and this is essentially what is 

expected of current-generation machine learning methods. In the third case shown at the bottom 

of Figure 3-1, an idealized machine learning setup takes raw chemical features (e.g. graphs), and 

relates them to concepts that are recognizable to chemists. This represents an automatic reduction 

in dimensionality of the feature set into more concise features that are primarily predictive of 

outcome. While this is a beautiful procedure, more work will be needed to achieve such a goal.  

While these three procedures may seem like three equivalent means to the same end, in 

practice this is far from the truth. The two procedures using interpretable features employ a low-

dimensionality, transferable representation of the chemical information, which is an incredibly 

important advantage (Figure 3-7). With a low-dimensionality representation, predictive accuracy 

can be obtained with exponentially fewer data points compared to a high-dimensionality 

representation.121 Consider for instance the (linear) Evans-Polanyi relationship: given perhaps 3 

data points, the data can be fit and predictions made. An SVM or neural network with an input 
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feature vector of dimension 10 can do little to nothing with 3 data points. In addition, chemical 

principles are backed up by physical considerations, making them much more likely to be 

transferable outside of the current training/test set. For example, in polar reactions the Coulomb 

relationship states that positive and negative charges attract, leading to faster reactions (and 

physical charges are required to capture this relationship in full). Physical models built directly 

from physical features will therefore be the most generalizable predictive tools. 

The low dimensionality representation of knowledge expressly used by expert chemists 

allows them to operate in uncertain domains and make considerable progress in developing new 

chemical reactions. Machine learning in high dimensional spaces is, on the other hand, unlikely to 

provide any value for new chemistries where the number of data points is low. The concern raised 

in question (3) seems to require low dimensionality and an underlying physicality in models and 

feature space, which deviates substantially from contemporary machine learning methods.  

Conclusions 

 The present investigation started with an analysis of feature representations for machine 

learning of chemical reaction barrier heights. Atomic labels that lacked physical trends were found 

to be the basis for which the model made its predictions, and recognition of reaction types was the 

full basis for this model. This analysis showed that the machine learning method was simply 

recalling reaction types, and we therefore give a tentative, weak answer to “What does the machine 

learn?” The machine learns to recognize the reaction types that were already encoded directly in 

the input features. 

The machine learning model was subsequently replaced by a simple, well-known chemical 

principle called the Evans-Polanyi relationship. Statistically, the linear Evans-Polanyi model 

slightly outperformed the nonlinear machine learning models (by about 5% RMSE), and provided 
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a simple interpretation of the results. This low-dimensionality model (2 parameters per reaction 

type) is algorithmically and conceptually easier to apply, and can be evaluated using chemical 

principles, making it transferable to new reactions within the same class. While Evans-Polanyi 

relationships are not expected to be universal,119,120 they provide a metric for reactivity that can be 

easily applied and tested, and give a starting point for more complex models to be proposed. 

The interpretable superiority—alongside reasonable statistical accuracy—of a simple chemical 

relationship compared to nonlinear machine regression suggests that deeper analysis is needed of 

machine learning methods for chemical sciences.16 The approaches should not be used as black 

boxes, and careful investigations are required to reveal whether simpler, more easily interpreted 

methods could replace the complex workings of these machines. It should be recalled that machine 

learning tools have seen their greatest benefits when working with giant datasets that are not well-

understood. Chemical research is not necessarily in this limit: chemists understand their data and 

do not necessarily have available millions of poorly understood data points that are ripe for 

machine learning models. 

Computational Details 

Reaction Representations 

 To represent a reaction, which involves bond forming and/or breaking events, the 

representations of the two atoms involved in the bond were concatenated. Consistency in ordering 

is important to ensuring that driving coordinates involving the same atoms are treated appropriately 

when algorithmically learning. Therefore the atoms' representations were sorted in descending 

order, which provides a unique representation. Due to this ordering, however, if two driving 

coordinates share an atom in common, it is possible that the two driving coordinates will appear 

to have no atoms in common.  
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 Representing a reaction using a collection of bond changes is somewhat complex, however, 

due to the two types of driving coordinates (formed and broken bonds) and a variable number of 

driving coordinates of each type. Therefore separate representations for the sets of formed and 

broken bonds were created and concatenated. For each type's representation we utilized pooling to 

generate a fixed length representation from a variable number of driving coordinates (Scheme 3-2). 

Min, mean, and max pooling were tested as each of these seems plausibly important in conveying 

chemical meaning, with mean pooling not utilized in the final feature representation. Our 

representation also tested a few reaction level features in addition to the aggregate atomic 

representations. These were the number of bonds formed, number of bonds broken, and Δ𝐸 of the 

reaction (the former two were not used in the final machine learning strategy). While obtaining Δ𝐸 

requires geometry optimizations, this step is much lower in computational cost than optimizing a 

reaction path including its associated transition state.101 The various atomic feature sets examined 

in the main text are denoted in Table 3-2. 

Scheme 3-2. Graphical feature vector for machine learning applications. While more complicated feature vectors were examined 

(e.g. including nearest neighbor atom descriptors), none showed substantial improvement over this simple choice. See the 

Appendix for additional test cases. 

Feature vector (graphical feature sets, for results reported in main text) 

ΔE Max(add) Min(add) Max(break) Min(break) 

 

Representation of additions or breaks to covalent connections graph, second line is an example 

Higher 

atomic # 

Coordination 

# 

Lower 

atomic # 

Coordination 

# 

8 1 6 3 
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Table 3-2. Feature sets for atomic representations. 

Feature set Description Size of atom 

representation 

Overall feature set 

size (8n+1) 

One-hot One-hot encoded atom 

type (atom type 

determined by base 

graphical 

representation) 

5 (# of atom types in 

PM6 dataset)  

41 

Base graphical Atomic # and 

coordination # 

2 17 

Partial charge Effective atomic 

charge 

1 9 

Graphical → partial 

charge 

Average partial charge 

of all atoms of an 

atom’s type 

1 9 

Graphical → random A random real number 

is drawn from a normal 

distribution for each 

atom type. This 

number is used to 

represent all atoms of 

this type. 

1 9 

 

Dataset 

 The Z-Struct reaction discovery method122–124 was used to combinatorically propose 

intramolecular and intermolecular reactions between small-molecule reactants which include 

carbon, hydrogen, and oxygen (Scheme 3-3, Dataset 1). Even with these relatively simple 

reactants, the full extent of elementary reactions that may appear when the species are combined 

is unknown, due to the significant number of plausible changes in chemical bonding. Based on 

their relevance to atmospheric chemistries104–107 and the difficulty in studying the host of 

possibilities using experiment, details of these reactions are best provided via first principles 

simulation. For this study, a systematic simulation approach was used to generate this set of 

possibilities. Specifically, the Z-Struct technique used the Growing String Method (GSM)101 to 

search for reaction paths with optimized transition states for each proposed reaction (thousands of 
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possibilities). Postprocessing scripts then attempted to include only reactions that were unique and 

well converged single elementary steps. Machine learning tests exposed a few (<10) outliers that 

passed the automated filters but were clearly incorrect and were manually removed. The PM6 

method as implemented in MOPAC125–127 was used as the underlying potential energy surface. 

The resulting dataset contained 723 unique reactions from 6 original reactants.  

To confirm scalability of the methodology to a larger, higher quality dataset, a second set 

of reactant molecules was examined (Scheme 3-3, Dataset 2). This larger, more chemically 

complicated set of reactants was examined at the density functional theory (B3LYP/6-31G**) 

level, using the same ZStruct/GSM strategy to generate a second dataset of reactions. Dataset 2 

includes nitrogen and boron in addition to carbon, oxygen, and hydrogen, so many types of 

reactions were possible and nearly half of the reactions were the only reaction of their type. These 

single-instance reactions were removed, leaving 3,862 reactions in the Dataset 2. For analysis on 

this dataset, see the Appendix. No qualitatively significant changes were observed compared to 

Dataset 1. 

Scheme 3-3. Reactants involved in Dataset 1 and Dataset 2. Results in this chapter from Dataset 1, with Dataset 2 analyzed in 

the Appendix. 

Dataset 1: 

 

Dataset 2: 
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Machine Learning Pipeline 

 For the machine learning pipeline, each feature set was extracted from the dataset to give 

the aggregate reaction representation including the relevant atomic representation of reactive 

atoms and reaction level features. The features were standardized to zero mean and unitary 

standard deviation except in the case of one-hot encoding, in which the atomic representation was 

one-hot encoded and the energy of reaction was scaled to standard deviation of 3 to balance its 

influence. This reaction representation was provided as input into an LS-SVM112 with radial basis 

function kernel that can compute confidence intervals. Since the dataset size is relatively small by 

machine learning standards, cross-validation was used to tune hyperparameters and generate 

generalization predictions on all data points. For final predictions, 5-fold cross validation was used 

for all models. For nearest neighbors, no hyperparameters were trained by cross validation. For 

SVM, within each split of outer cross validation, hyperparameters for the test set were chosen 

using 3-fold cross validation within the training folds. Deep NN training was more resource 

intensive so hyperparameters were chosen globally by 3-fold cross validation on the entire dataset. 

In the final 5-fold cross validation weights and biases were trained only on training folds but the 

globally chosen hyperparameters were used for all folds. Data was leaked into the models through 

comparisons between classes of algorithms and feature sets. Examining extreme outliers in early 

predictions uncovered a few clearly invalid data points (e.g. reaction profile lacking a single, 

defined transition state) that evaded automated filters for validating the data generation process, 

so these data points were removed manually. Additionally, since R2 is sensitive to outliers and can 

be dominated by a single extreme outlier, when generating the plots and metrics above all 

predictions were clipped into the interval [0, 200] kcal / mol. 
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 For the charge averaging in Figure 3-3, the charges for all reactive atoms in all driving 

coordinates in all reactions in the dataset were grouped into atom types by element and 

coordination number. Within each atom type, the mean of all charges of all atoms of each type was 

computed and the charge of each atom within the type was set to this mean charge. This counting 

strategy implies that, for example, if there are more methanediol reactions involving the hydroxyl 

hydrogen than the alkyl hydrogen, then the charge on the hydroxyl hydrogen will be effectively 

weighted heavier in the charge averaging. 

 

Acknowledgements 

The authors thank the NSF (1551994) and the NIH (R35GM128830) for support of this work. 

  



 47 

Appendix to Chapter 3 

Note About Neural Network Topologies 

A hyperparameter grid search was conducted using cross validation to determine the neural 

network architecture for each feature set. Available parameters to the search were: {'depth': [1, 2], 

'width': [50, 100, 150, 200], 'epochs': [1000, 5000, 10000], 'beta': [   1.,   10.,  100., 1000.]} where 

epochs is the number of training cycles and beta is the L2 regularization weight. Dropout with a 

rate of 0.5 was used throughout. The chosen parameters were then applied to train and predict 

neural networks with a separate cross validation shuffling to generate the cross validation 

predictions reported in the main text. 

 

 

Figure 3-9. Top: reactants used in PM6 dataset (Data Set 1). Bottom: distribution of activation barriers for PM6 dataset 

(energies via MOPAC). 
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Figure 3-10. Comparison of additional feature sets for the PM6 dataset (Data Set 1). “No 𝛥𝐸” is the original graphical 

representation without energy of reaction. “Reactive Atom + Neighbors” is the original graphical extended to include atomic 

numbers of neighbors. “Reactive Atom + Neighbor Properties” is the same feature set as the previous but including coordination 

number of neighbors. 
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Note About Representing Atoms 

A challenge for representing atoms is aligning atoms' neighbors' representations such that 

an algorithmic learning technique can appropriately determine similarity between atoms with 

different numbers and permutations of neighbors. We ordered adjacent atoms in descending order 

using their representation as a key so that highest atomic number neighbors are first. Zeroes were 

padded up to 4 neighbors since only our data is restricted to main group elements. This creates 

invariance to permutations of neighbors when scanning a molecular structure but does not 

guarantee alignment of similar neighbors across atoms with different neighborhoods. 
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Figure 3-11. 2-nearest neighbor using L1 norm on the PM6 dataset (Data Set 1). 
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Figure 3-12. Top: reactants used in DFT dataset (Data Set 2). Bottom: distribution of activation barriers for DFT dataset. 
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Figure 3-13. Cross validation SVM and NN predictions using graphical feature sets for a larger, DFT generated dataset (Data 

Set 2). Left: without reactive atom neighbor information. Right: with reactive atom neighbor information. Due to longer NN 

training time a narrower hyperparameter grid search was used for this larger dataset. 

 

 

Figure 3-14. Cross validation nearest neighbor predictions using graphical feature sets for a larger, DFT generated dataset 

(Data Set 2). Left: without reactive atom neighbor information. Right: with reactive atom neighbor information. 
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Figure 3-15. Cross validation neural network predictions for the PM6 dataset (Data Set 1). 
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Table 3-3. Cross validation accuracy metrics for various feature sets for the PM6 dataset (Data Set 1), using cross-validated 

SVM, prior to clipping of predictions (see computational details). All features sets include 𝛥𝐸 unless mentioned otherwise. 

 

Feature Set 
Deep NN 

RMSE 

Deep 

NN R^2 

SVM 

RMSE 

SVM 

R^2 

Nearest 

neighbo

r RMSE 

Nearest 

neighbo

r R^2 

One-Hot Encoding 10.05 0.87 9.42 0.89 10.46 0.86 

Δ𝐸 Only 16.58 0.65 16.48 0.65 19.97 0.49 

No Δ𝐸 19.73 0.50 19.04 0.54 21.31 0.42 

Base Graphical 

Representation 
9.85 0.88 10.16 0.87 11.02 0.84 

With Mean Aggregation 9.88 0.88 9.88 0.88 10.69 0.85 

With # Driving Coords 

Feature 
10.30 0.86 9.81 0.88 10.82 0.85 

Reactive Atom + Neighbors 9.65 0.88 11.20 0.84 10.82 0.85 

Reactive Atom + Neighbor 

Properties 
9.45 0.89 12.16 0.81 10.95 0.85 

Partial Charges 11.30 0.84 11.10 0.84 15.24 0.70 

Partial Charge and 

Hybridization 
9.59 0.88 10.17 0.87 14.27 0.74 

Graphical → Partial Charge 12.39 0.80 11.60 0.83 16.09 0.67 

Graphical → Random 12.72 0.79 10.30 0.86 14.22 0.74 

 

Table 3-4. Cross validation individual fold 𝑅2scores for various feature sets and machine learning methods for the PM6 dataset, 

prior to clipping of predictions (see computational details). All features sets include 𝛥𝐸 unless mentioned otherwise. 

SVM 

One-Hot Encoding 0.843577 0.888484 0.896051 0.88267 0.90372 

Δ𝐸 Only 0.551851 0.621795 0.734003 0.640476 0.665406 

No Δ𝐸 0.581949 0.525919 0.566465 0.442783 0.542775 

Base Graphical Representation 0.847456 0.904343 0.791368 0.884489 0.910004 

With Mean Aggregation 0.860574 0.908262 0.795156 0.889134 0.921684 

With # Driving Coords Feature 0.865336 0.89489 0.815525 0.881316 0.923949 

Reactive Atom + Neighbors 0.847665 0.887473 0.707273 0.857064 0.906946 

Reactive Atom + Neighbor 
Properties 0.839273 0.864569 0.649155 0.863037 0.863271 

Partial Charges 0.839876 0.837863 0.805523 0.853894 0.872897 

Partial Charge and Hybridization 0.852133 0.887105 0.833266 0.868516 0.89117 

Graphical → Partial Charge 0.81507 0.816751 0.785411 0.850913 0.868538 

Graphical → Random 0.799479 0.8808 0.86601 0.865813 0.886464 
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Neural Network 

One-Hot Encoding 0.812949 0.89067 0.866857 0.873036 0.890363 

Δ𝐸 Only 0.552556 0.604397 0.734359 0.637334 0.66509 

No Δ𝐸 0.554199 0.493017 0.50853 0.407946 0.525863 

Base Graphical Representation 0.849437 0.896672 0.836042 0.887387 0.90343 

With Mean Aggregation 0.860651 0.894645 0.83429 0.867791 0.910598 

With # Driving Coords Feature 0.867318 0.878123 0.790274 0.870174 0.917089 

Reactive Atom + Neighbors 0.851819 0.877388 0.893912 0.883857 0.884794 

Reactive Atom + Neighbor 
Properties 0.870189 0.880546 0.901302 0.892616 0.876934 

Partial Charges 0.838143 0.824697 0.8478 0.812297 0.849779 

Partial Charge and Hybridization 0.854699 0.886603 0.901381 0.867473 0.885452 

Graphical → Partial Charge 0.782832 0.798538 0.834385 0.770037 0.81138 

Graphical → Random 0.736377 0.799496 0.83369 0.731495 0.823997 

 

Nearest Neighbor 

One-Hot Encoding 0.822227 0.848206 0.85855 0.886844 0.874478 

Δ𝐸 Only 0.305229 0.446834 0.603531 0.484038 0.528397 

No Δ𝐸 0.264301 0.446632 0.578325 0.291091 0.416233 

Base Graphical Representation 0.80037 0.800987 0.875568 0.844182 0.87999 

With Mean Aggregation 0.82549 0.807954 0.888901 0.840618 0.886454 

With # Driving Coords Feature 0.820709 0.783299 0.893746 0.849815 0.885022 

Reactive Atom + Neighbors 0.840162 0.783615 0.871371 0.884616 0.868071 

Reactive Atom + Neighbor 
Properties 0.829246 0.789065 0.87171 0.870896 0.8647 

Partial Charges 0.624606 0.694794 0.76103 0.674093 0.716838 

Partial Charge and Hybridization 0.59516 0.689128 0.815201 0.751419 0.790728 

Graphical → Partial Charge 0.612087 0.675633 0.723065 0.593043 0.694023 

Graphical → Random 0.69051 0.725975 0.804281 0.735925 0.722267 
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Figure 3-16. DFT dataset (Data Set 2), box and whisker plot of the RMSEs on each of the reaction types with at least 3 data 

points. 

 

Figure 3-17. This mean for the Evans / Polanyi RMSE in Figure 3-16 is noticeably higher relative to the median because the data 

point to the far right in this Evans / Polanyi relationship performs especially poorly under leave one out cross validation even 

under regularization.  
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Note on Data Postprocessing 

 

Figure 3-18. Figure 3-7 from the main text showing 2 outliers (Data Set 1). 

Figure 3-7 originally contained 2 orange data points labeled as red 'x's in Figure 3-18. Upon 

further investigation, the lower left red 'x' was found to be a 2 elementary step reaction that was 

not identified as such by the automatic reaction profile filtering, which otherwise eliminated most 

of such data points from the dataset. The upper right red 'x' was found to have a product geometry 

with a C-O ring bond slightly above the bond distance cutoff such that data processing scripts 

counted the ring as broken but physically, ring strain was still clearly present. Thus both of these 

data points represent breakdowns in the automated general rules built into the data processing 

pipeline. Such points weaken the physicality of the data representation and thus should hinder a 

model's ability to learn on the data. These data points were removed due to being physically 

incorrect, but since only outlier data points were manually examined this could create a statistical 

bias, particularly if there are other data points that do not correspond to well defined single 

elementary steps but coincidentally fit the reaction trends. 

It should be noted that both of these data points represent edge cases that are likely not the 

norm but still prevalent enough to affect many other reaction types in the dataset. The simplicity 

and interpretability of the reaction categorization and Evans / Polanyi approach facilitates a 
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human-in-the-loop strategy for examining individual reaction types, gaining chemical insights, and 

applying what was learned generally. For example, the data points above could motivate 

improvements in the automated approach to identifying reaction paths that do not correspond to a 

single elementary step. This would improve data processing for all reaction types, not just the one 

highlighted in this example. This therefore represents a transfer of knowledge in that the machine 

facilitates a human's learning on a single reaction type and the human then facilitates the machine's 

application of what was learned to a multitude of reaction types. In the process, the human gains a 

deeper understanding of the dataset and the machine's ability to model the dataset improves. 

Reactions Appearing in Data Set 1 

Due to the numerous variations of molecules involved in these reaction types, a simplified 

synopsis of the major reaction types is given below. Since each reaction type corresponds to 

multiple individual reaction steps, the following abbreviations are used: R = CH2, CHCH2 and so 

forth, and RH = CHR, etc, when the RH bond is reacting. R• appears after H abstraction from 

RH. Reacting molecules are delineated in Figure 3-9.  

A few comments on the overall quality of this data are needed. First, Data Set 1 contains 

activation barriers that will appear too low compared to more accurate levels of theory. This is an 

inherent limitation in semiempirical methods (i.e. PM6 in MOPAC) in general, but the results from 

said method are considered “correct” by the machine learning tools. Data Set 1 quality is thus 

limited from the perspective of chemical accuracy. To address this issue, Data Set 2 was created 

using a higher level of theory—density functional theory—to ensure the analysis does not depend 

strongly on level of theory. The specific density functional level of theory was B3LYP/6-31G**, 

and the Data Set 2 reaction classes include (and largely resemble) those reported in Li et al, J. 

Phys. Chem. A 2016, 120, 1135-1144. All conclusions in the main text (discussing Data Set 1) 
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were affirmed by analysis of the second data set (vide supra). In addition to this discussion of 

accuracy, both data sets are unique in that they contain high as well as low barrier reactions, which 

is a missing feature of most reaction data sets available in the literature. The inclusion of “negative” 

results allows a more careful examination of the quality of machine learning predictions of 

reactivity, by forcing the machine to rate reactions on an activation energy scale, rather than simply 

ranking the most likely reactions.  

 

 

Top reaction types: 

 

Example reaction ID-2253: 

H shuttle through H2O for H transfer to O 

RHOR + H2O → R• + HOR + H2O 

Ea > 34 kcal/mol 

 

Example reaction ID-4328: 

H transfer to O 

RH + ROR → R• + HOR + R 

Ea > 45 kcal/mol 

 

Example reaction ID-4971: 

H shuttle through H2O for R-H addition to O 

ROR + RH + H2O → R2OHR + H2O 

Ea > 43 kcal/mol 

 

Example reaction ID-2680: 

Insertion of R-H into ROR 

RH + R2O → ROHR + R 

Ea > 50 kcal/mol 

 

Example reaction ID-6498: 

Dihydrogen elimination 

RH + RH → R• + R• + H2 
Ea > 46 kcal/mol 
 

Example reaction ID-4983: 

H transfer to O 

RH + H2O → R• + H3O* 
*this species 3 H are stabilized by bridges across O atoms 
Ea > 37 kcal/mol 
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Example reaction ID-1178: 

Insertion of water into cyclic dimer of formaldehyde 

c(RO)2 + H2O → HOROROH 

Ea > 31 kcal/mol 

 

Example reaction ID-1640: 

Ring-opening H transfer 

c(RO)2 + c(RO)2 → c(R•O)(RO) + CH3OCH2O• 

Ea > 66 kcal/mol 

 

Example reaction ID-2203: 

Ring-opening H shuttle to form C-O bond 

c(RO)2 + c(RO)2 + H2O → c(RO)2CHOCH2OH + H2O 

Ea > 49 kcal/mol 

 

Example reaction ID-11178: 

ROH shuttle of H from C to O 

HOROR + ROH→ H2OR•OR + ROH 

Ea > 42 kcal/mol 

 

 

Two additional reaction types  

(selected due to appearance early in data set): 

 

Reaction ID-27: 

2+2 dimerization of aldehyde 

R=O + R=O → c(RO)2 

Ea = 30 kcal/mol 

 

Reaction ID-521:  

Insertion of aldehyde into ring with R-H activation 

c(RO)2 + R=O → HORORORH 

Ea = 32 kcal/mol
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Chapter 4. Human – Algorithm Interactive Approach to Conformer Generation 

 

This chapter is based on a highly collaborative project with the research group of Ambuj Tewari. 

Student contributors: Tarun Gogineni, Exequiel Punzalan, and Ziping Xu. 

Introduction 

The dynamic between humans and computers has been a focus of significant research.13 

Computers can perform many types of quantitative calculations orders of magnitude faster than 

the most skilled human and can even outcompete humans in complex abstract games such as chess 

and go. Likewise, certain tasks that require minimal effort for a human are extremely difficult for 

artificial intelligence as illustrated by the concept of Captcha. Since humans and computers have 

different strengths, much study has been devoted to combining or integrating the strengths of 

humans and computers to perform tasks more proficiently than either individually.128 While this 

shows much promise, effectively combining these strengths and facilitating effective and exchange 

of meaning between humans and computers is challenging and currently must be understood in a 

domain specific context. 

In chemistry, human driven experiments and computational modeling129 are both active 

areas of research. Recently, machine learning approaches130–132 have become popular as tools to 

model and approximate other computational methods, effectively allowing them to be employed 

at higher volume. In conformer generation, machine learning has been used to for various purposes 

including predicting molecular geometry from the chemical graph133 and sampling from the 

Boltzmann distribution of equilibrium states.12 Combined human-computer approaches have been 

employed such as in protein folding and design.134  
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Figure 4-1. Left: even molecules as simple as alkanes can adopt vastly many conformations. Right: rotatable bonds of a small 

lignin fragment we used to test our methodology (see results). 

We sought to engage with this challenge in an actively studied area of computational 

chemistry called conformer generation. Conformer generation135 involves determining the relevant 

conformers of a chemical system for a particular purpose, such as calculating the relative 

likelihood of structures via free energy or investigating the feasibility of a particular chemical 

reaction. Conformers are different organizations and arrangements of atoms in a molecule that can 

interconvert without breaking or forming any chemical bonds. Conformational change involves 

restructuring of a molecule by rotating parts of the molecule about rotatable single bonds. 

Conformers are important for numerous reasons.136–138 Thermodynamic properties of 

molecules depend on the probability distribution over the entire ensemble of conformers accessible 

at the relevant temperature. Thus, a representative ensemble of conformers with accurate energies 

is necessary to accurately predict thermodynamic quantities.139 

While some torsions are functionally codependent in order for the molecule to avoid self-

collision (see Figure 4-1), they are sufficiently independent to yield an effective exponential 

scaling of plausible conformers in the range of molecular size generally applicable in biological 

chemistry and other areas of chemical interest where conformers are important. This means that 
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exhaustive evaluation of possible conformers quickly becomes computationally prohibitive as 

molecule size increases. Millions of conformers are already possible with 15 rotatable bonds, 

which is often exceeded by chemically relevant molecules and polymers. 

Only some of the plausible conformers exist in solution and noticeably contribute to 

macroscopic thermodynamic properties. In common cases this number is hundreds or thousands 

of conformers but still a microscopic fraction of the number of plausible conformers. A 

combination of physical and statistical principles elucidates that at equilibrium, conformer 

populations follow a Boltzmann distribution in which the relative populations of conformers decay 

exponentially as a function of the conformer energy. 

Methods of conformer generation are generally grouped into two primary categories. 

Systematic methods140–142 deterministically enumerate conformers by combinatorially exploring 

the torsional landscape. For molecules with few rotatable bonds these methods can effectively 

capture all possible conformers. However, for molecules with many rotatable bonds the number 

of possible conformers grows exponentially, and quickly the challenge becomes choosing which 

conformers to generate without a priori knowledge of which will be low in energy. Stochastic 

methods143–145 of conformer generation make no attempt to capture all conformers but use a 

random sampling approach to attempt to capture an ensemble of conformers that is statistically 

representative of the overall set. Molecular dynamics is commonly employed for this purpose 

because it samples conformations with realistic bias towards low energy conformations. However, 

accurate molecular dynamics simulations cannot currently be performed for the time scales 

necessary to sample all relevant degrees of freedom, particularly for hindered conformational 

change that requires an energetic barrier to be crossed. 
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Successful conformer generation strategies must maximize accuracy of the geometries and 

energies of conformers generated as well as the number of conformers while minimizing costs of 

resources. There is still much room for growth in achieving this balance because there are many 

chemical systems of industrial interest for which the conformers cannot be accurately modeled 

with the current best practices and state of the art methods in the field. 

Reinforcement learning3,146,147 is the interaction of an algorithmic agent with an 

environment. The reinforcement learning paradigm is an iterative process consisting of a 

representation of the state of the environment at each iteration. The algorithmic agent chooses from 

a set of possible actions from each state which results in a change of state for the next iteration and 

a numerical reward is given. The goal of the agent is to optimize the total numerical reward over 

the long run. Having different approaches for approximating the function of interest has been 

shown to be valuable, even for just a less accurate but cheaper approximation function.148 
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Materials and Methods 

 

Figure 4-2. Flowchart of our framework built to encourage human – algorithm interaction. 

Effective interaction between an expert chemists and algorithmic tools developed by data 

scientists includes the technical challenge of developing an interface that facilitates meaningful 

interaction. Towards this end we augmented the IQmol molecular editor to record chemist 

interaction with a molecule. IQmol provides functionality for selecting specific atoms and bonds, 

even within rings, and rotating or translating them relative to the rest of the molecule while 

preserving bonds. This means that a chemist can observe a structure and instantly perform 

geometric manipulations that affect the conformation but not the graphical bonding connectivity 

of a molecule. Local force field geometry optimization can also be performed instantly. Our 
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augmented IQmol saves the current geometry to a file each time the chemist signals the completion 

of a molecular modification by locally optimizing a new conformer. 

We employ the suite of cheminformatics tools available in python in the central algorithmic 

management of facilitating interaction with humans, interaction with algorithmic tools, and 

analysis and evaluation tools. We used RDKit and DeepChem to manage ensembles of conformers 

and convert between the differing representations needed by various aspects of the workflow. The 

human interaction and evaluation methods both employ a 3D cartesian coordinate representation. 

For algorithmic learning, we employed a representation which encodes only the rotatable torsions. 

Since our methodology is focused on torsion angles rather than overall translation and rotation or 

bond lengths and angles, representing a conformer by its torsional angles reduces the effective 

dimensionality explored by algorithmic tools. This reduces the difficulty of the task imposed on 

an algorithmic learner by embedding basic human understanding of the problem into the 

representation. In some sense this is a basic instance of human-computer interaction. 

A comprehensive method of evaluating an ensemble of conformers and individual 

conformers within an ensemble is important in training, validating, and comparing conformer 

generation processes. The partition function is the key quantity which needs to be approximated 

effectively. A method can do this by generating a sufficiently large and representative ensemble 

of unique conformers and accurately approximating their energies. 

The partition function quantifies the relationship between the energy of an individual 

conformation and its frequency of existence at thermal equilibrium which is central to the various 

applications of conformer generation. With an accurate partition function, entropies and relative 

free energies can be accurately approximated. The partition function has the form 𝑍 = ∑ 𝑒−𝛽𝐸𝑖
𝑖  

where the sum index is over all possible conformations. The lower the energy of a conformer, the 
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more it contributes to the partition function. To estimate this function effectively, we need an 

ensemble of conformers that represents the entirety of the low energy regions of conformational 

space. Symmetries and degeneracies need to be accounted for such that the multiplicity of 

conformers matches that of the underlying statistics and physics. The energies of the conformers 

also need to be computed accurately in order for the partition function to model reality. 

Conformers exist in the continuous space of cartesian geometry, but for the purposes of 

thermodynamics each local energetic minimum on the conformational potential energy surface 

should be counted exactly once. Handling this appropriately when generating conformers is 

nontrivial because geometric optimization is numerical, and the potential energy surface is 

complex so generated conformers may be nearly but not exactly identical. We experimented with 

multiple methods for evaluating conformer uniqueness. 

The root mean squared distance (RMSD) method of conformer uniqueness computes a 

distance metric on conformer space by rotating and translating the conformers so as to minimize 

the RMSD of the atomic coordinates in 3D space and setting a threshold on this minimal RMSD 

which defines unique conformers. This method is simple and straightforward to implement but it 

scales nonlinearly with molecule size, so a single threshold is inadequate to determine unique 

conformers across a range of molecule sizes. 

Torsion fingerprints149 is a method designed to mediate challenges of using RMSD as a 

distance metric. It constructs a weighting of torsions based on their centrality in a molecule in a 

way that more closely matches with a chemist's intuition about molecular similarity. It also 

normalizes differences to 1 which makes the metric able to handle molecules of different sizes 

without having to determine an appropriate nonlinear scaling for the metric. 
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Even with a good ensemble of conformers, accurate energies for each conformer are 

necessary to accurately approximate the partition function. There is a plethora of methods for 

computing energies of molecules all along the computational cost vs accuracy tradeoff. Accuracy 

is also dependent on the type of molecular system so in principle different functions from 

conformer to energy could be employed in different applications. For initial testing, the forcefield 

MMFF94150 was used due to its low cost and availability which allows for rapid prototyping and 

experimentation with workflow and other variables. 

The Gym interface, a standard in reinforcement learning, was used to express conformer 

generation as a reinforcement learning problem. Use of the Gym interface facilitates facile 

application of the array of reinforcement learning tools expressed in the interface to the conformer 

generation problem. To express conformer generation as a reinforcement learning problem the 

notions of state and action need to be contextualized to conformers. We defined a state as a 

discretized set of torsion angles for all rotatable bonds in a chemical system. For linear alkanes, 

this was reduced to a sequence of the torsions along the bond and discretized into trans ('t'), and 

both gauche ('g+', 'g-') configurations. Actions were defined to be any possible rotation of any 

combination of rotatable bonds. These actions can either be expressed as rotations relative to the 

current state or as absolute actions synonymous with the states they lead to. Rewards are given 

based on the contribution of the generated conformer that results from taking a given action to the 

partition function. Conformers within a single trajectory that have already been generated receive 

a reward of 0 because duplicate conformers do not improve the estimated partition function. 
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Figure 4-3. Illustration of reinforcement learning state and action representations for linear alkanes. 

There are multiple important characteristics of this embedding from the perspective of 

reinforcement learning. First, allowing any combination of rotations of torsions means that any 

state is accessible via a single action from any other state. Second, all actions of rotating bonds 

lead to a predetermined end state so all actions are deterministic. Third, since there is a 

deterministic action from any state to any other state, there is theoretically no incentive to explore 

a temporarily undesirable state for the purpose of optimizing for delayed reward. 

For modeling a function from conformer to next conformer, neural networks were used. In 

initial tests with linear alkanes, this was a long short-term memory (LSTM) network. LSTM is 

effective for linear alkanes because the data is naturally sequential. Information about the 

molecular environment can be passed in through the memory. The LSTM receives a sequence of 

discretized torsions of a linear alkane and outputs a sequence of discretized rotations to perform 

on the alkane which results in a new conformation. The actions can either be coded as an absolute 

position (e.g. trans) for the current torsion or as a discretized rotation relative to the current torsion 

angle (e.g. +120 degrees). 
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Results and Discussion 

 

Figure 4-4. Conformers of decane fall into energy bands based on the number of torsions that are not in a trans orientation. 

Figure courtesy of Exequiel Punzalan. 

Initial testing of reinforcement learning algorithms was performed on linear alkanes. For 

small linear alkanes, the lowest energy conformer is a straight chain in which all torsions are in a 

trans configuration. Other low energy conformers generally have mostly trans torsions but one or 

more gauche torsions at various places along the chain (see Figure 4-4). 

We used the A2C reinforcement learning approach to train an LSTM on alkanes of lengths 

4-8 and predict using the LSTM on nonane. We started in a random configuration which will likely 
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contain significant steric clashes resulting in a high energy and low initial score. The A2C method 

reaches a ceiling of training accuracy within 30,000 conformations. However, the test accuracy 

has not leveled off after the model has been training on 50,000 conformations. This suggests that 

the model is continuing to be driven towards a more generalizable representation of the 

relationship between conformation and energy even within the space of representations that 

perform essentially optimally on the training molecules. 

 

Figure 4-5. Training performance throughout training of advantage actor critic reinforcement learning algorithm training an 

LSTM to generate ensembles of n-alkane conformers. A short alkane (length 4-8) was repeatedly randomly selected followed by 

generation and evaluation of 200 conformers. “Memory” refers to allowing the LSTM that takes the last torsion of a conformer 

as input to transfer its memory to the first torsion of the next conformer within the ensemble. “Few actions” refers to defining the 

action space as relative rotations from the previous conformer. “All actions” refers to providing direct, absolute actions to all 

torsion angles independent of the current conformer. Training iteration is the total number of conformers generated. Dark lines 

are smoothed for visual clarity. Courtesy of Tarun Gogineni. 



 77 

 

Figure 4-6. Test performance of LSTM throughout training of advantage actor critic reinforcement learning algorithm. 

Performance tested by generating ensembles of nonane conformers which is larger than the alkanes used in training. Training 

iteration is the total number of conformers generated in training before the test. Dark lines are smoothed for visual clarity. 

Courtesy of Tarun Gogineni. 

The reward depends on whether a conformer is unique, so treating the most recent 

conformer as the current state is non-markovian. This is because whether or not a conformer has 

been generated previously impacts the reward but would not be a part of the state. Representing 

the state as the ensemble of all conformers generated could overwhelm an algorithm with too much 

diffuse information. A middle approach is to allow the LSTM memory to carry forward from the 

last torsion of one conformer to the first torsion of the next conformer. This at least allows for the 

possibility of maintaining some representation of the conformer space that has already been 

explored. Whether this has actually occurred is unclear but when applying this memory technique 

training does progress noticeably faster. 
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For alkanes, the conformers which will have the largest contribution to the partition 

function are those with the most trans torsions. However, how to arrive at a trans torsion is 

dependent on the starting configuration. This means that for alkanes there is an effective additional 

layer of obscurity in simply learning what actions to take to arrive at a trans configuration from all 

possible starting configurations. As a benchmark, we substituted the action space of specifying 

rotations with an action space in which the absolute discretized angles are specified. This should 

lead to a simpler rule for generating low energy conformers for alkanes, and this is reflected in 

significantly faster learning. For more complicated molecules, this could be a useful benchmark 

for evaluating the difficulty of conformational problems and the generalizability of models. For a 

sufficiently challenging conformational problem, intuitively having a reasonable starting 

conformation and making minimal rotations from it should be more efficient than learning absolute 

angles over the entire conformational space. The distinction between thinking about generating 

conformers "from scratch" or by rotating other conformers has paradigmatic implications as well 

as implications on how such models could be expected to generalize. 

Chemists have already learned the basic principles underlying conformers and their 

energetics, so after using alkanes to learn the IQmol interface we needed a system with more 

complexity to gather interesting data. A small lignin fragment was used as an initial benchmark 

(see Figure 4-1, right). Lignin151 is chemically interesting because it is highly abundant naturally 

and could have potential to be converted into biofuels but its relative stability, polymeric 

irregularity, and conformational complexity render utilizing it as a challenging exercise. and 

Figure 4-7 shows the author's results from generating conformers in IQmol. Most of the effort 

went into attempting to line up hydrogen bonds in the most favorable configurations paired with 

rotating other bonds not expected to significantly impact the energy. In addition to potentially 
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generating useful conformers, humans think creatively and immersing them in a problem can 

create opportunities for ideas that would otherwise be unlikely to occur. For example, after running 

out of ideas the author determined that taking a section of the molecule and translating it to the 

opposite side of the molecule would encourage the force field optimization to minimize other 

rotations in the long path back to stability. Since force fields maintain bonding information 

regardless of atomic locations large, stochastic changes may be beneficial algorithmically as well. 

 

Figure 4-7. Partition function progress from recording the author’s manipulation of a small lignin fragment in IQmol. Figure 

courtesy of Exequiel Punzalan. 

Future Directions 

This collaborative project towards the goal of generating conformers is young and efforts 

thus far have focused on building a platform and framework for human-computer interaction. 

Combining algorithmic and human strengths has been a valuable concept in the previous projects 

so it is likely that such a framework has the potential to continue to be fruitful. A few additional 

steps are necessary to enable effective conformer generation on chemically interesting molecules 

presently unreachable with current methods. Four of the main steps are graphical instead of 

sequence input, ring actions, machine to human interface, and improved energy function. 
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The reinforcement learning state space can be effectively encoded as a sequence of torsions 

for linear molecules such as those used in initial testing. This simplification allows for simpler 

neural network architectures to be applied in the reinforcement learning. While torsions could be 

serialized for arbitrary molecules with branching and rings, neural networks that take sequence 

data rely on a meaningful connection between location in the sequence and meaning relative to 

other elements of the sequence. However, serialization of torsions is highly arbitrary and forces an 

algorithm to effectively relearn valuable information that is inherent in the bonding structure of a 

molecule. Thus, a graphical representation of the state space and neural network methods that 

operate on graph data will be preferable. Some methods already exist in this area, and investigation 

is currently underway into how to appropriately apply them. 

The action space thus far has been a set of torsion modifications which makes sense for 

linear and branched structures. However, for rings the space is more subtle because most 

combinations of ring torsions will result in inconsistency with the ring constraint. A few strategies 

are possible. First, actions that break the ring constraint could be technically allowed but penalized 

so heavily in the reward function that a reinforcement learning algorithm must learn to avoid them. 

Second, a palate of multi-torsion actions within rings that span the torsional space could be 

developed and used instead of an arbitrary combination of single torsional changes. 

The current interface allows for passing of information from a chemist to an algorithm. 

However, valuable information could also be passed from an algorithm to a chemist such as a 

current set of the most diverse low energy conformers as starting points for chemist exploration. 

This will require an interface to be developed which will likely involve using IQmol to generate 

editable visualizations of structures produced algorithmically. 
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Finally, the MMFF94 force field currently used in testing is sufficient for method 

development but will likely lack the quantitative accuracy necessary to generate an accurate 

partition function for molecules of chemical interest. A plethora of methods exist for generating 

approximate electronic energies for conformers and the best choice is molecule dependent. 
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Chapter 5. Final Thoughts 

 

While the conclusions to the individual projects are found within those chapters, this 

conclusion will take a broader perspective and examine the principles learned while carrying out 

these projects and the outlook going forward. First, a highlight of the key takeaways from previous 

chapters. 

In chapter 2, an approximation scheme for computing derivative coupling vectors was 

developed that allows for derivative coupling vectors to be approximated via any electronic 

structure method which has an implementation for the energy and force (i.e. nuclear gradient).152 

This creates potential for modelers of light induced chemistry5,18,48 to more quickly adopt state of 

the art electronic structure theories as improved methods continue to be developed. This was made 

possible by a deeper understanding of conical intersections and employing a simple, intuitive 

model. 

In chapter 3, inadequacies in current metrics for evaluating machine learning performance 

for chemical reactivity were exposed, and potential methodological solutions were explored to 

circumvent the lack of generalizability in many machine learning models. This opens the door for 

other scientists to avoid common pitfalls and devote effort towards more productive modeling 

paradigms. This was made possible by a deeper understanding of the interaction between how 

chemistry is represented for machine learning and how machine learning models "learn" from data. 

A simple, intuitive model was again critical to gaining understanding. 
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The project described in chapter 4 is in too preliminary of a stage to have definitive 

conclusions, but the paradigms gleaned from the previous projects have begun to be applied to 

another intriguing challenge in computational chemistry, that of conformer generation.135 A similar 

approach will hopefully once again prove fruitful in deepening understanding and reframing the 

problem in a way that promotes efficient progress by other scientists. 

Additionally, much was learned about the process of research in the midst of conducting 

the research in this dissertation. The most interesting insights came through skepticism and digging 

deeper beyond the original goals of a project. Uncovering the underlying structure in an area 

requires stubborn care and confidence that uncovering the true structure of the methodology will 

drive the field forward. Assumptions were frequently invalid, and things are not always as they 

seem. It was often easy to be convinced that results happen for the seemingly natural explanation 

when this is not the case.15 

Open Questions and Research Opportunities 

Looking forward, many questions and open pathways for research remain. From chapter 2, 

the diabatic model Hamiltonian used to calculate the derivative coupling vector has potential to 

provide much more information, such as an estimate for the location of a nearby minimum energy 

conical intersection. An approximation for the derivative coupling vector at nearby points in 

atomic coordinates could also be extracted, or information from a previous nearby geometry could 

be used to improve accuracy and convergence at another geometry. The ability to utilize a model 

as a starting point for a model at a nearby geometry is appealing because many methods that utilize 

derivative coupling vectors require large numbers of them at points within a localized region of 

the potential energy surface.34,153 For example, molecular dynamics simulations involve 

trajectories in which adjacent time steps will be very close. Near a conical intersection, the 
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adiabatic potential energy surfaces are highly non-smooth, making utilizing information from a 

nearby geometry difficult within standard Taylor Series based frameworks. Within a diabatic 

model, however, utilizing information from nearby geometries is much more plausible. 

In chapter 3, the potential of human-computer interaction over the simple linear Evans / 

Polanyi modeling procedure was only mildly exploited. Even basic interactions led to deeper 

human understanding of the dataset, but the intuition learned could have been applied to all types 

of reactions in the dataset and further exploited to improve the modeling procedure. Iteratively 

implementing model improvements based on human intuition learned from observing breakdowns 

of an evolving representation and intuitive model seems promising. Could such an iteratively 

grown model prove generalizable under extrapolation rather than merely interpolation? Could the 

model effectively generalize to new types of reactions with less new data?1,154 

In chapter 4 the potential of human-computer interaction in chemistry has much more to 

be explored. What other types of chemical problems could benefit from human-computer 

interaction? How can we generalize to broader or bigger chemical problems? What are the ultimate 

efficiency and potential from these interactions? 

How to Approach Future Challenges 

The means of reaching these broader goals will be through developing multidisciplinary 

scientific leaders, building a strong research community with a multidisciplinary mindset, and 

active engagement with other scientists.155 This will require care for the overall health of the 

scientific community, commitment to the pursuit of truth by following the data even when it leads 

to unexpected places, and a willingness to challenge the community to think broadly and deeply. 
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Developing Multidisciplinary Scientific Leaders 

Numerous traditional disciplines contributed to this work, suggesting that building up the 

comprehensive understanding that is required to truly understand methods and apply them robustly 

takes time and investment. There are no shortcuts. In chapter 3, the key insights were developed 

through caring for how the machine was actually learning and a willingness to challenge the 

assumption that quantitative accuracy of machine learning methods implies that the means of 

obtaining this accuracy is consistent with how chemists perceive the relationship between features 

and reactivity. Once an anomaly was uncovered, commitment to following these results at the 

expense of the original goal of the project was necessary to build deeper understanding. The project 

could have been carried to completion as originally hoped and would have appeared impressive, 

but it ultimately would have provided little scientific value to the community. 

For this reason, digging deeper can lead to a need to challenge the scientific community. 

Current prevailing models, methods, and interpretations in computational chemistry form a 

foundation on which computational investigations into the chemical reactivity of specific types of 

reactions are built. Many such investigations lead to the situation where many different chemists' 

understanding of the reactions they study is influenced by the theoretical and computational 

methods that have become common as a means of justifying or grounding mechanistic hypotheses. 

Challenging current understanding in an area propagates into connected areas, making correcting 

misunderstandings important. 

Building a Strong Research Community with a Multidisciplinary Mindset 

No matter how talented, no individual researcher can understand the full picture 

surrounding a project. Relational and conceptual grounding in multiple fields is necessary in order 

to be truly multidisciplinary. Building strong relationships between chemists and data scientists is 
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necessary for people to truly develop methods that will be technically robust, theoretically 

grounded, and provide what chemists desire. The person developing the method also needs to 

personally care about and be invested in people like those who make up the intended 

beneficiaries.156 Strong community must traverse disciplinary boundaries in order for 

methodologies developed in one area to make an impact in another. Machine learning techniques 

have been recently applied in a variety of areas in chemistry, but one of the limitations to their 

wider adoption is a sentiment among some experimental chemists that these computational 

techniques will not solve their real problems. 

An illustrative example comes from a collaboration related to the project described in 

chapter 2. We were developing a method to traverse excited state potential energy surfaces to 

computationally investigate photochemical reactions.100 Confusion arose from a chemical 

perspective when the computational technique failed to find all of the products observed 

experimentally despite attempting to be an exhaustive search, suggesting incompleteness or 

inaccuracy in the modeling. I suggested that my collaborator search along maxima in the 

directional search from the point of state transition. This was counterintuitive because usually 

minimal paths on potential energy surfaces are most important. However, in the case of excited to 

ground state transitions the minimum on the excited state, which would be a logical direction of 

momentum for a molecule to carry through the transition, actually corresponds to a maximum on 

the ground state. Including this insight in the method led to the ability to model additional chemical 

products observed in experiment. However, this type of insight requires coupling of geometrical 

intuition in multidimensional space with a chemical understanding of reaction mechanism in the 

context of potential energy surfaces. 
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Active Engagement with Other Scientists 

Active engagement with scientists outside of one's field also promotes creativity and 

appropriate incorporation of the value of these fields into one's own. An illustrative example comes 

from a collaboration meeting in which I was facilitating collaboration between chemists and 

statisticians. One of the chemists was reporting results of attempting an approach suggested by the 

statisticians and reported that they were actually getting a negative R2 which was confusing to both 

the chemists and the statisticians. I asked a simple question which shed light on the issue: "What 

is the distribution of catalyst frequency like?". It turned out that the majority of the reactions in the 

dataset had used the same type of catalyst. To the chemist thinking in the language of chemistry, 

such details can seem so obvious, insignificant, or mundane that they do not naturally enter the 

discussion. Of course most of the time people would use the standard catalyst for that type of 

reaction. To the statistician thinking in the language of statistics, such details are clearly important 

and worthy of mention. Of course you would want to know if the distribution of your categorical 

feature is extremely far from uniform and is dominated by a single value! However, due to the 

language and cultural barrier, the important information is not naturally communicated from the 

chemists to the statisticians. Someone who understands both cultures and speaks both languages 

is needed to translate. The ability of a collaborative team to communicate across cultural and 

disciplinary language barriers has a transformative impact on the team. 

Conclusion 

I hope that these principles will enable real progress in the ability of humans to create and 

interact with machines in ways that facilitate deeper understanding of truth, effective stewardship 

of our environment, personal growth,157 and meaningful loving relationships. Specific questions I 

hope will be answered towards this end are how an algorithm can learn scientific meaning and 
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effectively teach what it has learned to humans, as well as how human and computer interaction 

can be better utilized to facilitate joint learning. 
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