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ABSTRACT

This dissertation is motivated by observations of emerging retail practice and the

corresponding customer requirements and behavior. Specifically, it includes the follow-

ing topics: (1) omni-channel and e-commerce logistics, (2) inventory management, and

(3) product strategy and pricing analytics.

In the first chapter of the dissertation, we study the shipment consolidation policy

facing an increasing frequency of orders per customer. Shipment consolidation (i.e.,

shipping multiple orders together instead of shipping them separately) is commonly

used to decrease total shipping costs. However, when the delivery of some orders is

delayed so they can be consolidated with future orders, a more expensive expedited

shipment may be needed to meet shorter deadlines. In this paper, we study the opti-

mal consolidation policy focusing on the trade-off between economies of scale due to

combining orders and expedited shipping costs, in the setting of two warehouses. Our

work is motivated by the application of fulfillment consolidation in e-commerce and

omni-channel retail, especially with the rise of so-called on-demand logistics services.

Sellers have the flexibility to take advantage of consolidation by deciding when to ship

the orders and from which warehouse to fulfill the orders, as long as the orders’ dead-

lines are met. The optimal policies and their structures are characterized. Using the

insights of these structural properties, we propose two easily implementable heuristics

that perform within 1-2% of the optimal solution and outperform other benchmark

consolidation methods in numerical tests.
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In the second chapter of the dissertation, we study the inventory decision when there

are explicit high service-level requirements. We consider a stochastic inventory model

(under both backorder and lost-sales) with non-stationary demands, positive lead times,

and sequential probabilistic service level constraints. This is a notoriously difficult

problem to solve and, to date, not much progress has been made in understanding the

structure of its optimal control, especially for the lost-sales inventory system. In this

paper, we propose a simple order-up-to control, whose parameters can be calculated

using the optimal solution of a deterministic approximation of the backorder inventory

system, and show that it is asymptotically optimal for both the backorder and lost-sales

systems in the regime of high service level requirement. This result contributes to the

growing body of inventory literature that show the near-optimality of simple heuristic

controls. Moreover, it also gives credence to the use of deterministic approximation

for solving complex inventory problems in practice, at least for applications where the

targeted service level is sufficiently high.

In the third chapter of the dissertation, we study product strategy and pricing

analytics, in settings where customers have both positive and negative product network

externalities. One unique feature of luxury products is the coexistence of two opposite

externalities: snob customers experience negative externalities with product sales while

follower customers experience positive externalities. Motivated by several interesting

and (perhaps) counter-intuitive practices in the luxury industry, we study the effect

of these two opposite externalities with respect to the selling strategies from three

perspectives: 1) the product-line strategy in a monopoly setting, 2) the pricing strategy

in a competition setting, and 3) the product bundling strategy. We find that these two

opposite externalities generally work in the same direction, although through different

mechanisms.
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CHAPTER I

Shipping Consolidation across Two Warehouses

with Delivery Deadline and Expedited Options for

E-commerce and Omni-channel Retailers

1.1 Introduction

The total costs of logistics usually account for 9% to 14% of sales of a company,

depending on the industry sector and, at an aggregate level, represent 7.9% of the US

GDP in 2015. Among them, shipping costs alone comprise more than 60% (27th State

of Logistics Report). For a typical online retailer, Amazon.com, the shipping costs

account for as high as 11.89% of the net sales (Amazon 2016 Annual Report). Thus,

it is no surprise that “effectively managing shipping costs directly affects . . . business’

bottom line” (Fell, 2011). One commonly used strategy to save on shipping costs is

to consolidate multiple small shipments into a large one (Cetinkaya, 2005). Although

the value of consolidation is already well recognized in the supply chain, its saving

potential in the Business-to-Customer (B2C) setting, especially for e-commerce and

omni-channel retailers, has not been fully exploited yet and multiple service providers

continue experimentations in this area. Retailers often have significant opportunities

to take advantage of various forms of flexibility when satisfying customers’ orders,
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especially choosing from which warehouse to fulfill the orders and when to ship the

orders. In this paper, we focus on the latter, taking advantage of a time window

between the time the retailer receives an order and the time by which the order needs

to be delivered (Lee et al., 2001; Xu et al., 2009). This window provides an opportunity

to combine existing orders with new incoming orders (either from the same customer

or multiple customers located in nearby regions) and ship them together. However,

since orders must be delivered by their guaranteed due dates (or deadlines), delaying

the shipment of some orders may increase total shipping costs due to the need to

use expedited shipping. Many logistics firms such as Expedited Logistics and Freight

Services1, ASAP Expedited Logistics2, etc., increase shipping rates for faster shipping

modes. Major carriers such as UPS3, FedEx4, and USPS5 also offer shorter lead time

deliveries (3 Day Select, Overnight Delivery, etc.) for higher fees.

Our work is motivated by the potential benefit of consolidation in e-commerce and

omni-channel settings. For e-commerce, the frequency of orders per customer has con-

tinued to increase while the size of each order has become smaller, partly due to the

popularity of free-shipping service offered by retailers such as Neimanmarcus.com and

others (Lewis, 2006; Gil, 2014). In this domain, consolidation can be, and is, imple-

mented for individual customers. Indeed, one of the co-founders of one of the largest

e-commerce retailers in China recently told us that the proportion of its customers

who place two orders within an hour and one day is 5% and 20%, respectively. In

addition, the proportion of customers who place three or more orders within one day

and one week is 1% and 10%, respectively. Given that many orders are shipped for

free, this high customer ordering frequency has intensified pressure to take advantage

1www.elfsfreight.com/services-domestic.php
2www.asapexpediting.net
3www.ups.com/us/en/shipping/zones-and-rates/48-contiguous-states.page
4images.fedex.com/us/services/pdf/FedEx StandardListRates 2018.pdf
5pe.usps.com/text/dmm300/Notice123.htm
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of such situations. The consolidation of multiple orders placed by the same customer

can bring significant savings, due to the “fixed-cost” portion of the shipping costs—we

observe that the cost structures of the main third-party logistics firms in the US and in

China (UPS, USPS, FedEx, SF Express6, Yunda Express7) are all in the form of fixed

cost + variable cost × volume, where the fixed cost is usually more than five times of

the unit variable cost. Thus, consolidating multiple orders avoids incurring the fixed

cost multiple times. Indeed, the firm we talked to expressed concerns about missed

opportunities in reducing costs and considered testing order consolidation: “Under our

current practice, multiple orders from a customer are dispatched individually. Holding

orders for a longer time, especially for customers who have a record of frequently impul-

sive purchases, reduces the number of deliveries, thus saves costs. Such cost reduction

may well compensate more expensive expedited delivery service. Consolidation would

be strongly considered as a future step in our operations improvements.”(Anonymous,

Personal Communication, 2017)

Aside from the e-commerce setting, our work is also directly applicable in omni-

channel setting, for consolidating orders from multiple customers. While having a 5-10

days delivery window was typical a decade ago, today’s standard is a lot more aggressive

and many retailers now offer either a one-day or several-hour delivery guarantee from

their stores (Hausmann, 2014). To meet the same-day deadline as well as to control for

the total shipping costs, the retailers increasingly rely on the third-party-logistics firms

and fulfill orders from the nearest omni-channel stores.8 Given that the third-party-

logistics firms charge a fixed cost for any delivery plus additional variable costs for

each extra stop (usually much smaller than the fixed cost, as we explained below), it is

6www.sf-express.com/cn/en/dynamic-function/price
7www.yundaex.com/cn
8Many third-party logistics companies (e.g., Pulse-commerce and Onestock), who arrange the

ship-from-store for omni-channel retailers, also list shipping from nearest store as their policy. More
details can be found at www.pulse-commerce.com/omnichannel-retail-ship-from-store-slideshare and
onestock-retail.com/en/ship-from-store
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beneficial for the retailer to consolidate orders from customers living in nearby regions

and dispatch one delivery with multiple drop-offs. The following example illustrates the

potential savings: Consider typical order deliveries from downtown areas to midtown

areas in NYC using Breakaway Courier, a NYC-based on-demand logistic firm. The

firm provides several expedited options: 90-min, 60-min, 40-min, and 20-min deliveries,

with the corresponding multipliers of 1×, 1.5×, 2×, 3× times regular price (both fixed

and variable costs), respectively. For the 90-min delivery option, the fixed cost (per

delivery) is $24.95 and the regular variable cost (per additional stop) is $7.25. Thus,

sending three separate orders with the 90-min service incurs a total costs of 3×$24.95 =

$74.85 whereas sending them together incurs a total costs of $24.95+2×$7.25 = $39.45

(a $35.4 saving). If we send all three orders together using the 60-min service, we incur

a total costs of 1.5 × ($24.95 + 2 × $7.25) = $59.175 (a $15.675 saving, in case the

second order arrives so late that a faster service needs to be used). Obviously, an even

larger total savings can be achieved when the number of customers who place such

request (i.e., the number of orders that can be consolidated) is higher.

In this paper, we study the optimal shipping and consolidation policy by taking into

account both the delivery deadline and the expedited shipping options. We assume

that the retailer operates up to two warehouses/stores (i.e., the primary warehouses,

or local stores, for some regions). This reflects the current practice of many online

and omni-channel retailers as they typically ship orders from two nearest warehouse

for one customer (Acimovic, 2015).9 To take advantage of consolidation, the retailer

may either consolidate orders from the same customer or from multiple customers

living in nearby regions. Each shipment incurs both fixed and variable costs, whose

9In the omni-channel situations we consider in the paper, where the deadline is within hours or one
day, there is not much room for the retailers to consider stores other than the nearby ones. Third-party
service-providing companies, who arrange the ship-from-store for omni-channel retailers, also list ship-
ping from nearest store as their policy, e.g. Pulsecommerce (www.pulse-commerce.com/omnichannel-
retail-ship-from-store-slideshare) and Onestock (onestock-retail.com/en/ship-from-store).
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values depend on the delivery speed. We consider a finite-horizon problem where, in

each period, the retailer needs to make three joint decisions: (1) Which orders should

be shipped? (2) From which warehouse/store should the orders be shipped? (3) How

should the shipment be split into multiple packages/delivery tasks? The first decision

is illustrated in the two examples of e-commerce and omni-channel retailers above. We

illustrate the second decision using the cost structure of Breakaway Courier. Consider

a simple setting where a retailer operates two stores/warehouses located in downtown

NYC and fulfills orders from customers located in the midtown. The retailer has

three pending orders, the first order is due in 90 minutes and can be fulfilled from

store/warehouse 1, the second order is due in 60 minutes and can be fulfilled from both

stores/warehouses, and the third order is due in 60 minutes and can be fulfilled from

store/warehouse 2. Consider the case where we know that a new order will arrive in 20

minutes (no other orders will arrive on the day) and that this order can only be fulfilled

from store/warehouse 2. In this case, the first order should be shipped immediately, as

there is no consolidation opportunity. However, it is not obvious whether the second

order should be consolidated with the first one. One alternative is to send both the

first and second orders in the current period, which incurs a shipping cost of 1.5 x

($24.95+$7.25) = $48.3, and send the third order together with the new order after 20

mins, which incurs a shipping cost of 2 x ($24.95 + $7.25) = $64.4. The total shipping

costs is $112.7. Another alternative is to send only the first order in the current period,

which incurs a shipping cost of $24.95, and send all the remaining orders together after

20 mins, which incurs a shipping cost of 2 x ($24.95 + 2 x $7.25) = $78.9. The total

shipping costs of this alternative is $103.85. This example illustrates the complexity of

consolidation decision even in the setting with only two warehouses, as it is not always

economical to consolidate existing orders.

The third decision that the retailers need to make is package splitting. It is not
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necessarily optimal to ship all orders in one package. Splitting the very urgent orders

from the less urgent ones allows us to avoid incurring high variable costs (due to the

need to use an urgent shipping mode) for the less urgent ones as the less urgent orders

can be shipped using slower and cheaper shipping mode. Taking into account future

hypothetical arrivals makes the decision even less obvious. This decision is discussed

in more details in Section 1.3 and 1.6.

Given the complexity of the problem (see Section 1.3), after providing the gen-

eral formulation of the problem, we proceed by analyzing three simplified cases: one-

warehouse setting with only fixed cost, two-warehouse setting with only fixed cost, and

one-warehouse setting with both fixed and variable costs. The insights from these cases

are then used to construct easy-to-implement heuristics for two-warehouse setting with

both fixed and variable costs. Our findings in this paper can be summarized as follows:

1. For the one-warehouse setting with only fixed cost, we show that the optimal

policy can be characterized by a sequence of time-dependent thresholds—it is

optimal to ship all pending orders in period t if the slack time (remaining time

until the deadline) of the most urgent order is smaller than or equal to a threshold

τt. This result is intuitive: Retailers can take advantage of consolidation to

the point where the increase in total costs becomes so high that it exceeds the

potential benefit of consolidation.

2. For the two-warehouse setting with only fixed cost, we show that, in general, the

optimal policy is no longer easy to characterize. For the special case where the

two warehouses are symmetric, the optimal policy can be characterized by six

non-linear boundaries in a three-dimensional space. Motivated by the simplicity

of threshold policy in the one-warehouse setting, we propose two heuristics that

replace these six boundaries with constant thresholds: warehouse-based heuris-

tic and order-based heuristic. Under the warehouse-based heuristic, once the
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threshold for a warehouse is crossed, all orders that are “shippable” from that

warehouse are shipped; under the order-based heuristic, once the threshold for

an order type is crossed, all orders of that type are shipped, together with some

other orders that can be consolidated. Our numerical experiments, based on the

typical range of customer ordering frequency and on the structure of UPS ship-

ping rates, show that the performances of these heuristics across symmetric and

asymmetric problem instances are within 2% of the optimal policy in most cases.

3. For the one-warehouse setting with both fixed and variable costs, we show that

adding variable costs into the model makes the analysis significantly more com-

plicated compared to that of the setting with only fixed cost—more details about

this complexity can be found in Section 1.3. That said, for the special case where

all orders have guaranteed delivery within at most three periods, we are able

to show that the optimal policy can be characterized by thresholds that are a

function of order volume.

4. For the two-warehouse setting with both fixed and variable costs, we do not at-

tempt to analyze the structure of the optimal policy due to the already complex

structure of the optimal policy in the setting with only fixed cost. Instead, given

the good performance of constant-threshold heuristics in the previous settings,

we propose modified heuristics and show, using numerical study, that their aver-

age performances are within 0.29%-1.83% of the optimal policy. While, in most

of the cases, the heuristics perform well, we also identify two conditions where

the average optimality gap is twice as large as that in the other cases. Such poor

performance happens when the mismatch between the pre-determined allocation,

when calculating the thresholds, and the state-dependent allocation, when uti-

lizing the thresholds, is exaggerated. However, the parameters that meet these

7



two conditions are extreme and correspond to a setting that rarely occurs in re-

ality. Thus, despite the complexity of the actual optimal policy, simple heuristics

perform well in most cases.

To conclude, by considering setting that capture key elements of real life situations,

we have illustrated that consolidation is an effective way to improve the standard

outbound shipping policy, with significant cost reductions due to anticipating and

properly planning consolidation across time. Such policies can be implemented by

applying the threshold-form heuristics we propose.

The remainder of the paper is organized as follows: Section 2 provides a brief

literature review. In Section 1.3, we provide a general formulation of the problem. In

Sections 1.4, 1.5, and 1.6, we study the three simplified cases. In Section 1.7, we study

the two-warehouse setting with both fixed and variable costs and numerically test the

proposed heuristics. In Section 1.8, we conclude the paper. All proofs can be found in

the supplemental file.

1.2 Brief Literature Review

Two streams of literature are most closely related to our work: shipment consol-

idation, which studies how to combine several orders, and order fulfillment, which

studies from which warehouse to fulfill the orders. The potential cost savings due to

shipment consolidation have been extensively studied in the logistics literature (Da-

ganzo, 1988; Pooley and Stenger 1992; Popken, 1994). The main trade-off considered

in this literature is between the constant fixed cost of shipping and the inventory

holding cost. Three types of consolidation policies are usually considered: (1) time-

based, which sets a pre-determined interval within which orders are accumulated and

one shipment is dispatched at the end of the interval; (2) quantity-based, which dis-

8



patches one shipment after a pre-determined quantity of orders is accumulated; and

(3) hybrid, or time-and-quantity, consolidation, which releases a shipment either after

a pre-determined quantity is achieved or at the end of a pre-determined time interval.

All these policies are heuristics—most existing literature either focuses on evaluating

and comparing the performance of these policies (Cooper, 1984; Burns et al., 1985;

Campbell, 1990; Higginson and Bookbinder, 1994) or on calculating their optimal pa-

rameters with or without integrating inventory decisions (Gupta and Bagchi, 1987;

Axsater, 2001; Cetinkaya et al., 2000, 2008; Popken 1994). Our work differs from the

previous consolidation literature in two ways: (1) We are the first to study shipping

consolidation in the context of e-commerce and omni-channel retailing. Unlike in the

setting considered in the existing literature, where the main trade-off is between the

fixed cost and the holding cost, in our setting, orders are held for at most a few hours

to a few days, which means that the extra holding cost due to waiting is negligible

and the main trade-off is between the fixed cost and the additional speed-up cost, due

to expedited shipment.10 Although expedited shipment has been considered in the

inventory literature (Zhou and Chao, 2010; Caggiano, etc., 2006; Huggins and Olsen,

2003; Hoadley and Heyman, 1977) and supply chain risk management (Qi and Lee,

2015), it has not been considered in the context of consolidation. (2) Unlike most

works in the existing literature that focus primarily on heuristics, in this paper, we

analyze the structure of the optimal policy (at least for some cases) and then propose

some heuristics based on the structure of this optimal policy. This approach yields a

new insight as our heuristics do not follow the same structure as in the commonly-used

10Note that our model and the holding-cost model are not mathematically equivalent. This is
because that while the unit holding cost and fixed cost in consolidation vs. holding cost setting is
constants, the unit variable cost and fixed shipping costs we considered in the paper depend on the
orders’ remaining time to the deadline. Thus, our problem has different structure and cannot be
translated into the holding-cost problem and actually is much more complex.
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time/quantity-based consolidation policy.11

Another stream of relevant literature analyzes order fulfillment. Order fulfillment

in the context of e-commerce retail has recently received a lot of attention. The main

trade-off considered in this stream of literature is between shipping costs and future

product availability, since not all warehouses stock the same products and there is typ-

ically inventory imbalance across different warehouses.12 Xu et al. (2009) consider the

delivery time window in designing a shipment policy, but their focus is on the fulfillment

of individual orders instead of the consolidation of current order with future orders.

Acimovic and Graves (2015) and Jasin and Sinha (2015) further analyze the model

introduced in Xu et al. (2009) by designing tractable near-optimal shipment heuris-

tics. They consider a very general model with multiple warehouses, multiple customer

locations, and shipping costs that depend explicitly on the shipping distances. Lei et

al. (2016) analyze the joint pricing and fulfillment problem. Since both pricing and

fulfillment jointly affect the distribution of demand and supply across the system, they

argue that these decisions must be considered jointly. None of these papers, however,

considers consolidation of orders arriving at different times. While our work focuses

on a new and economically relevant consolidation, we do not address the problem of

inventory balancing across different warehouses in the current paper. Combining con-

solidation and future inventory availability in a single model is analytically intractable

as even the time consolidation part itself is already not trivial (as we show in this

paper). We consider these two as complementary approaches, as there are settings in

which future inventory availability is more crucial than considering consolidation (e.g.,

when replenishments are infrequent) and vice versa (e.g., when replenishments are very

11Specifically, although all heuristics mentioned above are based on some kind of thresholds, we are
not aware of any work in the literature that uses slack time to define a threshold. The definition of
slack time is given in Section 3.

12A retailer may ship an order from a warehouse with higher shipping cost, hoping that a future
order (containing multiple items) can be shipped from the warehouse in which the inventory was
reserved.
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frequent).

1.3 Model Specification

In this section, we first discuss a general model that incorporates the key elements

reflecting the economy of shipping consolidation problem investigated in this paper.

As shown below, the general model is hard to analyze directly. This motivates us to

analyze special cases and propose heuristics for the general model in the subsequent

sections.

We consider a finite-horizon problem with T periods where time is indexed backward

with period 1 being the last period and period T being the first period. Orders arrive

from either a single customer or a single region.13 Each incoming order must be deliv-

ered no later than d periods after its arrival.14 We define slack time, s, as the remaining

time until the deadline, e.g., s = 1 means that the order must reach customer in the

next period. Reflecting the current practice, where retailers usually ship orders from

at most two closest warehouses/stores, we assume that the retailer operates up to two

warehouses, W1 and W2. Since not all products are available in all warehouses (Xu et

al., 2009),15 incoming orders are classified into three types: type A can only be fulfilled

from W1, type C can only be fulfilled from W2, and type B can be fulfilled from either

W1 or W2.16 We denote the set of pending orders by a vector of their corresponding

13Since the decision for each customer/region is separate, the problem trivially extends to multiple
customers/regions.

14In practice, retailers usually promise a default fixed length of deadline for orders, e.g., two-day
delivery when shipping from warehouses for Amazon prime. There may be alternatives within the
same retailer—Amazon customers may choose delayed delivery for a credit, e.g. $1. We do not
consider multiple-delivery options in our paper.

15This may be due to either temporary stockout or policies that dictate product allocation across
warehouses. Our conversations with operations managers of Target Corp indicate that although some
products are held in all warehouses, there are also products that are stored only in a subset of them.

16Note that this general model also covers some special cases. For example, the nested product
allocation policy, where one warehouse carries a subset of products of the other warehouse, is a special
case where types C products do not exist.
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slack time (we use ∞ to denote the case of no pending orders). We allow multiple

orders to arrive in one period and, for mathematical convenience, we assume that each

order contains exactly one item, with one unit of volume; if an order contains multiple

items, we simply treat them as separate orders. Suppose that there are currently nA,

nB, and nC pending orders of type A, B, and C, respectively. Then, the corresponding

slack times are denoted by ~s = (~sA, ~sB, ~sC), where ~sA, ~sB, ~sC are each a list of actual

slack times of orders of type X ∈ {A,B,C}, sequenced from the smallest slack time

to the largest. That is, ~sX = (sX,1, sX,2, . . . , sX,nX ) and sX,1 ≤ sX,2 ≤ · · · ≤ sX,nX

(X ∈ {A,B,C}), where nX is the number of orders of type X. For the shipping costs,

we use Fi(p) and vi(p) to denote the fixed cost and unit variable cost of delivering an

order in p periods from warehouse i. We assume that both Fi and vi are non-increasing

and convex functions, which is consistent with data observed in practice.17 Moreover,

Fi(0) = ∞, Fi(∞) = 0 and vi(0) = ∞, vi(∞) = 0, i.e., all delivery times are positive

and all orders must be delivered on time.18 For each package/delivery task, the incurred

fixed and unit variable costs are determined by the slack time of the most urgent or-

der in the package/delivery task, while the total variable costs are also determined by

the number of orders. For example, if l orders with slack times (θ1, θ2, . . . , θl), where

θ1 ≤ θ2 ≤ · · · ≤ θl, are shipped in one package from warehouse i (i ∈ {1, 2}), then the

total shipping costs is Fi(θ1) + l · vi(θ1).

The sequence of events is as follows: At the beginning of period t, the retailer first

observes the slack times of all pending orders ~s = (~sA, ~sB, ~sC) and then makes the

17The cost functions we use in the paper are based on the official (non-discounted) UPS rates
for different shipping modes. We looked for sufficiently good statistical fit in terms of both the
functional form and the parameters. The data shows that both the fixed and variable shipping cost
are non-decreasing and convex in the length of the delivery window. Translating these into slack times
is natural—decreasing slack times means changing to faster shipping mode with a shorter delivery
window (in order to meet the deadline for orders). Although the actual cost incurred by retailers is
confidential, we understand that the actual rates have the same format, but linear discounts are used
and these are company dependent.

18Note that this is an imposed assumption to ensure shipment of orders. In the rest of the paper,
unless noted, we only specify the function in the region of (1,∞).
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following shipping decisions: (1) For each order type, which subset of orders should be

shipped? (2) From which warehouse should these orders be shipped? (3) How should

we split them into packages/delivery tasks? After the delivery, if any, is executed, m

new orders of type X arrive with probability αX,m—new orders arrive at the end of

each period. For ease of notation, we assume that the arrivals of different order types

are independent, e.g., the probability that we have two new orders of type A and three

new orders of type B in a period is αA,2 αB,3.

We now provide the Dynamic Programming (DP) formulation of our problem. For

each sX,i in ~s, let xX,i denote the decision whether to ship the corresponding order (i.e.,

xX,i = 1 if the order is shipped and xX,i = ∞ otherwise). For order type B, let hWi

denote the decision whether to ship it from warehouse W ∈ {1, 2} (i.e., if hWi = 1, it

is to be shipped from W ; if h1
i = h2

i =∞, the order is not shipped; since we only ship

from one of the warehouses, the case h1
i = h2

i = 1 is impossible). Let CW (~s′) denote the

minimum cost of shipping a subset ~s′ from warehouse W in the current period and let

f(.) denote the total shipping costs from both warehouses in the current period (i.e.,

f(.) = C1(.) + C2(.)). The rigorous definition of f(.) can be found below in equation

(1.1). CW (~s′) depends on the items shipped and has an “iterative” form since it is

not necessary to put all the items of ~s′ in a single package.19 However, it is easy to

establish that (see Lemma I.14 in Section 1.6), for a given warehouse, if it is optimal to

ship two orders with slack times θi and θj (θi ≤ θj) in the same package from the same

warehouse, then it is also optimal to ship all orders with slack times between θi and θj in

this package. For any vectors v and µ ∈ Rn, we define v·µ = (v1µ1, v2µ2, . . . , vnµn) and

ρ(v, µ) to be a function whose output is the ordered list of all non-∞ elements of both

v and µ combined (e.g., if v = (1, 5,∞) and µ = (3, 4, 6), then ρ(v, µ) = (1, 3, 4, 5, 6)).

19Consider a simple case with two orders to ship, one with slack time 1 and the other with slack
time 10. Suppose that the costs are given by F(1) = 20, v(1) = 10, F(10) = 2, and v(10) = 1. The
total costs of shipping the orders in two separate packages is 20+10+2+1 = 33, which is smaller than
the total costs of shipping both orders in one package 20+2 x 10 = 40.
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Let Vt(~s) denote the cost-to-go function at the beginning of period t. We write Vt(·)

recursively as follows:

For t > 1: Vt(~s) = min
~x

{
f(~sA · ~xA, ~sB · ~xB, ~sC · ~xC) + E[Vt−1( ~̃s~x )]

}
(1.1)

For t = 1: V1(~s) = f(~sA · ~xA, ~sB · ~xB, ~sC · ~xC)

where f(~yA, ~yB, ~yC) = min
~h
{C1(ρ(~yA, ~yB · ~h1)) + C2(ρ(~yB · ~h2, ~yC))},

xX,i = min{h1
i , h

2
i },

CW (θ1, θ2, . . . , θn) = min



FW (θ1) + vW (θ1) + CW (θ2, . . . , θn)

ship one order in the 1st package

FW (θ1) + 2vW (θ1) + CW (θ3, . . . , θn)

ship two orders in the 1st package

. . .

FW (θ1) + nvW (θ1) + CW (∅)

ship n orders in the 1st package

Cw(∅) = 0, ∀i, n, W ∈ {1, 2}, θ1 ≤ · · · ≤ θn

To ensure that all pending orders with sX,i = 1 are shipped, we impose a boundary

condition Vt(~s) = ∞ for all ~s with mini,X sX,i = 0. Note that ~̃s~x is the new vector

of slack times resulting from shipping decisions ~x. We can calculate ~̃s~x in two steps.

We first construct a vector ~̂s as follows: For all sX,i < ∞, if xX,i = ∞, let ŝX,i =

sX,i − 1; if xX,i = 1, which means that the corresponding order is shipped, then it is

no longer included in ~̂s. Next, we can construct ~̃s~x,X by appending ~̂sX with a vector

of new arrivals of type X, i.e., ~̃s~x,X = {~̂sX , d, . . . , d︸ ︷︷ ︸
m

} with probability αX,m. Observe

that the cost function Ci(.) incorporates the optimal splitting of the shipment into

several packages. It does not have an explicit mathematical expression and can only

14



be captured recursively, making the above DP difficult to analyze.20 In the following

sections, we analyze three simplified cases to get a better understanding of the structure

of the optimal policy.

1.4 Single Warehouse with Only Fixed Cost

We first study the simplest case where all orders can be shipped from a single

warehouse, i.e., all orders are of the same type. Suppose that there are currently n

pending orders. While there are 2n− 1 different ways of choosing which orders to ship,

it is not difficult to show that it is always optimal to either ship all n orders at the

same time or none at all. Moreover, all orders are shipped in a single package, i.e., no

package splitting takes place.

Lemma I.1. (a) If it is optimal to ship at least one order in the current period, then

it is optimal to ship all pending orders in the same period. (b) All orders are shipped in

one package. (c) The total shipping costs for this package is a function of the smallest

slack time among the shipped orders.

Lemma I.1 implies state-dimensionality reduction, i.e., it allows us to simply use

the smallest slack time of all pending orders (i.e., z := min{s1, s2, . . . }), instead of all

the slack times (~s), as the state variable. Let α =
∑m̄

m=1 αm, where m̄ is the upper

20Note that the function Cw is high-dimensional and is neither convex nor concave. Thus, it is
difficult to obtain any structural properties. However, in practical settings, the number of comparison
is reasonably small and it is easy to solve Cw numerically. Thus, the retailers can easily calculate the
package splitting decision once a shipping policy is given.
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bound of number of new orders. The DP formulation in (1.1) can be simplified into:

For t > 1 and 1 ≤ z ≤ d, we have:

Vt(z) = min

 F (z) + Vt(∞) Ship

Vt−1(z − 1) Do not ship
(1.2)

Vt(∞) = αVt−1(d) + (1− α)Vt−1(∞). (1.3)

For t = 1, we have: V1(z) = F (z).

Shipping all pending orders in period t incurs a current cost F (z) plus a future cost

Vt(∞), while holding all orders to the next period reduces the slack time by one.

Equation (1.3) corresponds to the case where there is no pending order, i.e., either

new orders arrive with probability α and the slack time becomes d, or no order arrives

and the slack time remains ∞. The above formulation implies that all orders must be

shipped by the end of the horizon. The following proposition describes a property of

Vt(·).

Proposition I.2. Vt(z) is non-increasing in z ≥ 1 given t and is non-decreasing in t given

z ≥ 1.

Proposition I.2 has an intuitive interpretation: Smaller slack time means more

urgency, which implies higher expected total shipping costs; smaller t means fewer

future orders, which implies smaller expected total shipping costs.

1.4.1 The Optimal Policy: Its Structure and Properties

We now show that the optimal shipping policy has a simple threshold structure.

We first state a lemma that will be used to prove this property.

Lemma I.3. For all t ≥ 1 and z ≥ 2, Vt(z − 1)− Vt(z) ≥ F (z − 1)− F (z).
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Lemma I.3 means that if the critical order, the order with smallest slack time,

becomes more urgent, then the impact on the cost-to-go function is larger than that

on the current shipping costs (i.e., if it was shipped in the current period). This result

may seem counter-intuitive: One might argue that the difference between two optimal

values, one for slack of z − 1 and another for slack of z should be smaller than, or

equal to, the difference between the corresponding costs in the current period. This

would be because the optimal value functions have more flexibility and allow for many

alternatives which may make the difference between options that start with z−1 and z

smaller (closer to each other). However, this intuition is incorrect in this case. Vt(z−1)

may correspond to the optimal next shipment taking place in some period t1 whereas

Vt(z) may correspond to the optimal next shipment taking place in a different period t2,

where both t1 and t2 could be different from the current period t. Therefore, without

additional assumptions, either the left hand side or right hand side can be bigger.21

Lemma I.3 provides a link between the cost-to-go functions and the current shipping

costs. It allows us to explicitly compare the shipping costs of different alternatives.

Theorem I.4. There exists an integer threshold τt such that the optimal decision in

period t is to hold all pending orders if z > τt and to ship all of them if z ≤ τt.

Proof. Fix time period t. To prove the existence of a threshold τt, it is sufficient

to show that if the optimal decision for slack time z ≥ 3 is to ship all orders, then

the optimal decision for slack time z − 1 is also to ship all orders. (The case z = 2

and z = 1 are trivial because we must ship when slack time becomes 1.) By DP

21One can express the difference between two optimal values as a comparison between the minimum
cost in two sets of situations, which start with z − 1 or with z, and include the alternatives that ship
with the same delay of k periods from the current period. The difference between shipping costs k
period later, F (z − k − 1) and F (z − k), increases with k (due to the convexity of shipping costs),
which drives the increases in the differences of the cost-to-go function in this problem. The result can
be viewed as a natural extension of a simple mathematics property that the difference between the
minimum of two sets of values is larger than the minimum difference between each element in these
two sets.
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formulation, it is optimal to ship if, for slack time z, F (z) + Vt(∞) ≤ Vt−1(z − 1).

Then, for slack time z− 1, F (z− 1) + Vt(∞) = (F (z− 1)−F (z)) + (F (z) + Vt(∞)) ≤

(F (z − 2) − F (z − 1)) + Vt−1(z − 1) ≤ Vt−1(z − 2), where the last inequality follows

by Lemma I.3. This implies that it is also optimal to ship for slack time z − 1, which

completes the proof.

Theorem I.4 shows the existence of threshold τt for each time t. Since we assume

a stationary arrival probability, using the standard convergence argument as in the

infinite-horizon literature (Gosavi, 2003), it is not difficult to show that there exists

some τ ∗, such that τt → τ ∗ as t→∞. The following theorem tells us that the optimal

constant threshold is easy to compute.

Theorem I.5. Suppose we use a constant threshold τ in all periods. Then, the expected

average shipping cost during T periods converges to Gτ (α, d) = F (τ)
(

1
α

+ d− τ
)−1

as

T →∞.

The interpretation is straightforward. F (τ) is the shipping cost incurred when the

pending orders trigger the threshold τ .
(

1
α

+ d− τ
)−1

is the average cycle time: after

all pending orders are shipped in the last cycle, it takes 1
α

on average until a new order

arrives and d− τ periods until all new orders are shipped. To calculate the optimal τ ∗,

we simply need to minimize Gτ (α, d) over the set {1, 2, ..., d}. One simple application

of Theorem I.5 is for the case where F (·) is linear:

Proposition I.6. If the fixed cost is linear in slack times, then the optimal threshold τ

is either 1 or d.

The following lemma describes the behavior of τ ∗ as a function of α.

Lemma I.7. The optimal constant threshold τ ∗ is non-increasing as α increases.

Lemma I.7 implies that τ ∗ is smallest when α ≈ 1 and is largest when α ≈ 0. This

is quite intuitive: If orders arrive very frequently, the opportunity to consolidate orders
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is high, which provides an incentive for the retailer to delay shipping. If, on the other

hand, orders arrive infrequently, the opportunity to consolidate orders is low. Thus, it

is better to ship the pending orders earlier due to the risk of incurring higher shipping

costs without the benefit of consolidation.

1.5 Two Warehouses with Only Fixed Cost

We now consider the case where the retailer fulfills orders from two warehouses and

orders can be classified into three types as in Section 1.3. The cost structure, similar

to Section 1.4, includes only the fixed cost. Lemma I.8 below is similar to Lemma I.1.

Lemma I.8. (a) If it is optimal to ship an order of a particular type in the current

period, then it is optimal to ship all pending orders of the same type. (b) The incurred

shipping cost in a period is a function of the vector of the smallest slack times of

respective types among the shipped orders.

By Lemma I.8, the vector of the smallest slack times (zA, zB, zC), for orders of types

A,B, and C, respectively, completely describes the state space. Let αX =
∑

m∈N αX,m.

The DP formulation in (1.1) can be simplified to:

For t > 1: Vt(zA, zB, zC) = min
(xA,xB ,xC)

{f(zAxA, zBxB, zCxC) + E[Vt−1(z̃A, z̃B, z̃C)]}

For t = 1: V1(zA, zB, zC) = f(zA, zB, zC)

where f(y1, y2, y3) = min{F1(min{y1, y2}) + F2(y3), F1(y1) + F2(min{y2, y3})}, ∀y1, y2, y3

with boundary conditions Vt(0, ·, ·) = Vt(·, 0, ·) = Vt(·, ·, 0) = ∞, and z̃ denoting the

new vector of slack times resulting from shipping decisions (xA, xB, xC). Similar to

Proposition I.2, we have:
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Proposition I.9. Suppose that 1 ≤ z′A ≤ zA, 1 ≤ z′B ≤ zB, and 1 ≤ z′C ≤ zC . For all

t ≥ 1, we have: Vt(z
′
A, z

′
B, z

′
C) ≥ Vt(zA, zB, zC) and Vt(zA, zB, zC) ≥ Vt−1(zA, zB, zC).

1.5.1 The Optimal Policy: Its Structure and Properties

We first describe the optimal policy for the case where W1 and W2 are symmetric,

i.e., F1(·) = F2(·) and αA = αC . We then briefly discuss the complexity of the optimal

policy in the general case. The following two lemmas are useful for the analysis.

Lemma I.10. Suppose that zA, zB <∞. If it is optimal to ship orders of type B from

W1 in the current period, then it is also optimal to ship orders of type A from W1 in

the same period. By symmetry, if zB, zC < ∞ and it is optimal to ship orders of type

B from W2 in the current period, then it is also optimal to ship orders of type C from

W2 in the same period.

Lemma I.11. For all t ≥ 1 and zA, zB, zC ≥ 2, the following holds:

1. If zA ≤ zB, then Vt(zA − 1, zB, zC)− Vt(zA, zB, zC) ≥ F1(zA − 1)− F1(zA).

2. If zC ≤ zB, then Vt(zA, zB, zC − 1)− Vt(zA, zB, zC) ≥ F2(zC − 1)− F2(zC).

3. If zB ≤ min{zA, zC}, then Vt(zA, zB − 1, zC)− Vt(zA, zB, zC) ≥ min{F1(zB − 1)−

F1(zB), F2(zB − 1)− F2(zB)}

Lemma I.10 simplifies the shipping alternatives by eliminating the possibility of

shipping B alone from either W1 or W2,22 and Lemma I.11 is the analog of Lemma

I.3. The formal definition of the optimal policy and the corresponding six boundaries

are given below.

22It is worth noting that “shipping only A from W1” can still be optimal. A simple example is
when zC < zB < zA and order A is shipped in the current period, but it is more efficient to ship B
later with C. A more detailed example (using the cost structure of Breakaway Courier) can be found
in the Introduction Section.
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Theorem I.12. In the symmetric two-warehouse setting, for zA, zB, zC ≥ 1, there

exist six boundaries τABA,t (zB, zC) ≤ τAA,t(zB, zC), τBCC,t (zA, zB) ≤ τCC,t(zA, zB), τ 1
B,t(zA, zC)

and τ 2
B,t(zA, zC) that completely characterize an optimal policy in the symmetric two-

warehouse setting. For any given state (zA, zB, zC), if zX , X ∈ {A,B,C}, crosses the

boundary, then it is optimal to ship orders of type X, following the policy below.

1. If zA ≤ τABA,t (zB, zC), it is optimal to ship both orders of type A and B from W1;

if zA ≤ τAA,t(zB, zC), it is optimal to ship orders of type A from W1;

2. If zB ≤ τ 1
B,t(zA, zC), it is optimal to ship both orders of type A and B from W1;

if zB ≤ τ 2
B,t(zA, zC), it is optimal to ship orders of type B and C from W2;

3. If zC ≤ τBCC,t (zA, zB), it is optimal to ship both orders of types B and C from W2;

if zC ≤ τCC,t(zA, zB), it is optimal to ship orders of type C from W2.

Moreover, the following also hold: τABA,t (∞, zC) = τAA,t(∞, zC) and τBCC,t (zA,∞) = τCC,t(zA,∞).

Figure 1.1: Boundaries for type A
orders when zB = 5

Figure 1.2: Boundary τ 1
B for type

B orders when zA = 11

Each of the boundaries in the above lemma is a function of two slack variables

(with either slack variable zA or zB fixed), so they can be viewed as surfaces in three-

dimensional space. These boundaries completely characterize the optimal shipping
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policy.23 To visualize the six boundaries in Theorem I.12, we provide two figures which

show 2-dimensional “cuts” from the optimal-decision 3-dimensional space. Figure 1.1

provides an illustration of the boundaries of type A order, and Figure 1.2 provides

an illustration of one of the boundaries of type B orders, τ 1
B(zA, zC). We omit the

illustrations for boundaries of type C orders and τ 2
B(zA, zC) of type B orders. Obviously,

the 2-dimensional cuts provide incomplete information. For example, in Figure 1.1, the

position of zA and zC describes an action with respect to order of type A, but still does

not fully determine the action for orders of type B (which only becomes clear when

one looks at zB).24

In some cases, the six boundaries in the two-warehouse setting can be reduced to

thresholds, similar to the structure in one-warehouse setting. In an extreme case, when

αB = 0, since orders of type B do not exist, W1 is independent of W2 and the optimal

policy for orders types A and C are each characterized by time-dependent thresholds.

This can also be observed based on Theorem I.12: Since αB = 0, the slack time of

orders of type B always equals ∞. As τABA,t (∞, zC) = τAA,t(∞, zC) and τBCC,t (zA,∞) =

τCC,t(zA,∞), the six boundaries reduce to only two boundaries. In general, however,

all six boundaries are required to properly define the optimal shipping policy. The

following lemma is the analog of Lemma I.7.

Lemma I.13. The optimal stationary boundaries are all decreasing in αX , X ∈

{A,B,C}.

Note that when the boundaries of one type of orders change, there is a chain effect

23Note that the optimal policy many be just “shipping only A from W1” or ”shipping both B and
C from W2”. When zA > zB , shipping B with A increases the shipping cost in the current period,
and shipping B with C (in the current or later period) may be cheaper.

24Parameters: F1(z) = F2(z) = −0.005z3 + 0.7z2 − 16z + 109.6, d = 15, α = (0.55, 0.2, 0.55). Note
that in both figures, we have states that are indifferent between shipping alternatives, e.g., in Figure
1.1, there are ties of shipping alternatives for the region of of zA ≤ 4 and zC ≤ 4 – the costs are equal
between “shipping B with A” and “shipping B with C.” Similarly, in Figure 1.2, the line where three
boundaries coincide for zC = 11 is also the line of indifference.
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on orders of other types: The intuition is that increasing the arrival probability for order

type A leads to a lower boundary for order type B, which provides more opportunities

for orders type C to be jointly shipped with orders type B without incurring additional

cost.

We now discuss the case where W1 and W2 are asymmetric, i.e., either the cost

functions of the two warehouses or the arrival probability of order types A and C are

not the same. In such a case, the optimal policy can no longer be characterized by the

six boundaries in Theorem I.12, see Figures 1.3 and 1.4 for illustrations (The optimal

policy is calculated using the dynamic programming (1.1)). In Figure 1.3, for a fixed

zA, when zB decreases, the optimal solution for state (zA, zB, zC) can change from “Do

not ship” to “ship A and B from warehouse 1” and then to “Do not ship” again.

In Figure 1.4, for a fixed zC , the region of “Ship A from warehouse 1” is not even

connected. Since the optimal policy for the asymmetric case can be very complex, we

do not study its structural properties; instead, we propose simple heuristics that can

perform well for most cases. We discuss them next.

Figure 1.3: Asymmetric case 1
when zA = 8

Figure 1.4: Asymmetric case 2
when zC = 9

1.5.2 Simple Heuristics

We now propose two heuristics: warehouse-based heuristic, which utilizes two thresh-

olds, one for each warehouse, and order-based heuristic, which utilizes three thresholds,
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one for each order type. Their performances are evaluated using percentage gap, de-

fined as (CH −C∗)/C∗, where CH is the expected average costs per period by applying

the heuristic and C∗ is the expected average costs under the optimal policy. The two

heuristics perform very similarly.

1.5.2.1 Warehouse-based Heuristic.

The warehouse-based heuristic assigns a constant threshold to each warehouse (τ1

for W1 and τ2 for W2). If the slack time of an order type falls below the threshold for

the corresponding warehouse, then all pending orders for that warehouse are shipped.

Note that this heuristic is not equivalent to treating the two warehouses independently

as it allows orders type B to be fulfilled from either warehouses. The formal description

of the heuristic follows:

Warehouse-Based Heuristic

Given (τ1, τ2) and (zA, zB, zC), do:

1. If min{zA, zB} ≤ τ1, ship orders of types A and B from W1 and update zA =

zB =∞;

2. If min{zB, zC} ≤ τ2, ship orders of types B and C from W2 and update zB =

zC =∞.

The warehouse-based heuristic is easy to implement25. It simplifies the decisions

by bundling the shipment of orders types A and B (and C and B) together. The

thresholds (τ1, τ2) need to be optimized using simulation-based optimization. In the

numerical experiments, we do this by running a complete search over all possible values

25This type of warehouse-based operations is widely used in practice (Xu et al., 2009; Acimovic
and Graves, 2015). Such warehouse-based structure is also consistent with what we learned from the
retailer in China.
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of the thresholds and, for each (τ1, τ2), we estimate the corresponding CH using 100

Monte Carlo simulations.

1.5.2.2 Order-based Heuristic.

The order-based heuristic assigns a constant threshold to each order type (τX for

order type X ∈ {A,B,C}). If the threshold of a particular order type is triggered,

all pending orders of this type are shipped and orders of other types may also be

shipped jointly according to a pre-specified consolidation rule. For each order type,

this heuristic essentially replaces the two boundaries in the optimal policy with one

constant threshold. Further, it uses a myopic consolidation rule to decide whether to

ship the order type alone, or together with other orders from the same warehouse. The

order-based heuristic is more flexible than the warehouse-based heuristic as it allows

shipping order types A and B (or B and C) together or separately depending on the

realization of orders. That said, the order-based heuristic is also more complex. In

the order-based heuristic, when the threshold of an order type is triggered, the retailer

needs to properly decide whether to consolidate this order with other order types.

In the order-based heuristic, we use a one-period myopic consolidation rule. Under

our proposed rule, consolidation is decided by finding the best alternative, as if all

orders had to be shipped in the current period. The details are shown below.

Order-Based Heuristic

Given (τA, τB, τC) and (zA, zB, zC), do:

1. If zA ≤ τA: if F1(min{zA, zB}) + F2(zC) ≤ F1(zA) + F2(min{zB, zC}),26 ship all

orders of types A and B from W1; otherwise, ship only all orders of type A (no

consolidation);

26These are formulations of the one-period myopic cost to ship B from either W1 or W2
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2. If zB ≤ τB: if F1(min{zA, zB}) +F2(zC) ≤ F1(zA) +F2(min{zB, zC}), ship orders

of types A and B from W1; otherwise, ship all orders of types B and C from W2;

3. If zC ≤ τC : if F1(zA) + F2(min{zB, zC}) ≤ F1(min{zA, zB}) + F2(zC), ship all

orders of types B and C from W2; otherwise, ship only all orders of type C (no

consolidation);

4. If more than one threshold is crossed at the same time, orders of type B are the

highest priority and then A and C (e.g., if τB and τC are crossed, we first proceed

according to point 2 and then to point 3).

Similar to the warehouse-based heuristic, the thresholds (τA, τB, τC) need to be

optimized. In the experiments, we do this by running a complete search and, for each

(τA, τB, τC), we estimate CH using 100 Monte Carlo simulations.

1.5.2.3 Simulation results.

The performance of both the warehouse-based and the order-based heuristics are

tested using simulations. Unless otherwise noted, we use d equals 5. This can be inter-

preted either as retailers have five shipment options to deliver orders, or the deadline

of orders is five periods. Both interpretations are close to the current logistics practice.

The customer-ordering frequency for each order type (αX , x ∈ {A,B,C}) varies within

(0,1), capturing a wide range of customers from those who purchase very infrequently

to those who purchase very frequently. The cost function is based on UPS rates, in

terms of both the functional form and the parameters.27 Both symmetric and asym-

metric settings are tested. The asymmetric setting captures the potential asymmetry

27Although the actual cost incurred by retailers is confidential due to discounts, we believe that
the structure is similar to the official (published) rate of logistics firms and that their structures are
not dramatically different from one to another. We average several UPS rates, and since they have a
convex shape, we fit it with a quadratic function.
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in the order frequency, αA 6= αC , and the asymmetry in the cost structures of the two

warehouses: F1(.) = F2(.) + β1 or F2(.) = β2F1(.). These two forms of cost functions

capture the asymmetry driven by either the difference of distance from the warehouse

to the customer (the former additive function), or the various cost “efficiency” of ship-

ping orders from different warehouses (the latter multiplicative function). β1 and β2

vary from low to high across a wide range. This results in 100 cases capturing different

economics and demand frequencies. Details of the simulation can be found in appendix

??. Unless otherwise noted, the tests are run on a PC with 3.5GHz CPU and 16GB

memory.

For the warehouse-based heuristic, the total running time to compute the best

(τ1, τ2) is only 1.79 seconds CPU time on average.28 The warehouse-based heuristic

performs very well with the average percentage gap of 1.93% and a standard deviation

of 2.39%. This suggests that the six boundaries of the optimal policy can be replaced

with two simple warehouse thresholds. For the order-based heuristic, the total running

time to compute the best (τA, τB, τC) is 6.90 seconds CPU time on average. Our

numerical experiments show that the order-based heuristic performs very well, with

the average percentage gap of 0.11% and a standard deviation of 0.25%. Surprisingly,

this is despite the fact that the one-period myopic consolidation rule ignores expected

total costs for future periods. We conclude that both warehouse-based and order-based

heuristic policies perform sufficiently well. Their performance suggest that the six

optimal boundaries in Theorem I.12 can be well-approximated by constant thresholds,

either corresponding to warehouses or order types. These approximations not only

provide easy-to-implement and intuitive heuristics, but also justify the use of these

heuristics in a more complex setting in Section 1.7.

28Note that the values of thresholds are pre-calculated before the heuristics are implemented by
retailers. Given the thresholds, a retailer directly executes the shipping policy, without any need for
further optimization. Thus, the CPU time is an up–front investment and it does not influence the
implementation of the heuristics.
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1.6 One Warehouse with Fixed and Variable Costs

In Section 1.5, we extend the analysis of the one-warehouse case with only fixed cost

to the two-warehouse setting. We now extend the analysis of one-warehouse case to the

setting with both fixed and variable costs. While the optimal policy for the case with

only fixed cost is easy to characterize, the optimal policy for the case with both fixed

and variable costs is more challenging, even for the setting with only one warehouse.

First, it may no longer be optimal to ship all pending orders in one package (i.e.,

package splitting is possible), as discussed in Section 1.3. Second, when some orders

are shipped, it may no longer be optimal to ship all pending orders in the same period

(in contrast to Lemma I.1). Indeed, it may now be more economical to intentionally

delay the shipment of some orders to consolidate them with future orders.29 In what

follows, we first discuss the shipping costs of orders and the simplified DP formulation.

Next we show, for some cases, that the optimal policy is a volume-dependent threshold.

To further simplify this policy, we approximate the optimal threshold with a constant

and show, using numerical experiments, that this approximation incurs a very small

additional cost compared to the optimal policy.

1.6.1 Dynamic Programming (DP) Formulation

To evaluate the shipping costs of orders, we first need to consider how to split them

into shipments. Given a list S of n orders to be shipped, with slack times zs1 , zs2 , . . . , zsn

(zs1 ≤ zs2 ≤ · · · ≤ zsn), the number of all possible package-splitting alternatives is very

high (i.e., 1
e

∑∞
k=0

kn

k!
, according to Lovasz, 1993). Fortunately, under the optimal policy,

29Consider the case where d = 10 and there are two orders to ship, with slack time 1 and 10,
respectively. The costs are F (1) = 20, v(1) = 10, F (9) = 2.5, v(9) = 1.25, and F (10) = 2, v(10) =
1. Anticipating that a new (third) order arrives in the next period, the cost of shipping only the
order with slack time of 1 in the current period and shipping orders 2 and 3 in the next period is
20 + 10 + 2.5 + 2× 1.25 = 35, which is smaller than the cost of shipping orders 1 and 2 in the current
period and shipping the new order 3 in the next period 20 + 10 + 2 + 1 + 2 + 1 = 36.

28



the optimal splitting and shipping is continuous in the sense described below in Lemma

I.14.

Lemma I.14. For any state, if, in the optimal solution, zi is the most urgent or-

der to be shipped and n orders are to be shipped in the current period, then the

other orders shipped in the current period should be those corresponding to slack times

zi+1, . . . , zi+n−1.

For orders in a set S to be shipped, if, in the optimal solution, zsi is the most

urgent order in a package and n orders are to be shipped in this package, then the

other orders included in the same package should be those corresponding to slack times

zsi+1
, . . . , zsi+n−1

.

The optimal shipping and splitting policy above is referred to as continuous. Note,

however, that even when the shipping policy is continuous, it does not imply that most

urgent orders are shipped. For example, for state (z1, z2, z3, z4, z5, z6) = (4, 8, 9, 10, 11, 12),

shipping orders (8, 9, 10, 11, 12) and leaving order (4) to future periods can be more

economical compared to shipping orders (4, 8, 9, 10, 11).30 The lack of clarity on which

order to ship together with the lack of closed-form expression for the cost function

C(.), see Section 1.3, are the key reasons why the optimal policy for the one-warehouse

setting with both fixed and variables costs is difficult to analyze in general. That said,

we are able to derive some results for the case when d ≤ 3 and at most one order arrives

in each period, i.e., αm = 0 for m ≥ 2 and α = α1. We state these in the following

theorem.

Theorem I.15. Suppose that d ≤ 3 and at most one order arrives in each period.

Then, the optimal policy has the following properties:

30Consider the case where d = 12, F (.) = 15, v(z) = 13 − z for 0 < z ≤ 8 and v(z) = 5 for
8 < z ≤ 12. In period t, for state (z1, z2, z3, z4, z5, z6) = (4, 8, 9, 10, 11, 12), suppose a policy suggests
to ship five orders in period t and the remaining order with a new-arrival order z7 in period t − 3.
Shipping orders (z1, z2, z3, z4, z5) in period t and (z6, z7) in period t−3 incurs cost of 85, while shipping
(z2, z3, z4, z5, z6) in period t and (z1, z7) in period t− 3 incurs less cost, 79.
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1. It is optimal to either ship all pending orders or not ship any order at all at any

state that is reachable31 under the optimal policy.

2. Given n pending orders, the optimal policy is characterized by volume-dependent

threshold τt(n). Specifically, if z1 ≤ τt(n), it is optimal to ship all pending orders;

otherwise, it is optimal not to ship any order.

3. For all t, the threshold τt(n) is non-decreasing in n.

Per Theorem I.15, instead of having to consider how many orders to ship, the

retailer only needs to choose between shipping all orders and shipping no order. The

only caveat is that the threshold is a function of the volume of pending orders. The

intuition is that, with a large number of pending orders in the system, the cost of

waiting for future orders increases, as there are more orders that are potentially affected

by the change to more expensive shipping modes. This decreases the incentive to wait

for future orders, which is equivalent to a higher threshold. It is worth noting that,

when it is optimal to ship all pending orders, it may still be optimal to ship orders in

more than one package.32 That is, although the shipping policy is decided only by the

smallest slack time z1 and the volume of pending orders m, it is still necessary to keep

track the slack times of all pending orders as they affect both the package-splitting

and the total shipping costs. While the results of Theorem I.15 are only proved for the

case where d ≤ 3 and at most one arrival per period (due to analytical tractability),

our numerical tests across different instances where d varies from 6 to 10 and multiple

31Reachable states are defined for a given policy. Assume that the initial state is (∞), with no
orders in the system. Then, a state is reachable if there exists a sequence of demand arrivals such that
the system will move into this state, while following the given policy. Not all states are reachable.
Consider a very simple example where we ship each order when the slack time is 2. For that policy
no state with slack = 1 is reachable.

32Consider the case where the orders have two possible volumes, 1 or 100, with arrival probability
α1 and α2 respectively. The deadline of orders is d = 2. The cost function is F (1) = 100, F (2) = 99,
v(1) = 2, v(2) = 1. In any period, for state where there are two orders, one with volume 1 and slack
time 1, the other with volume 100 and slack time 2, it is optimal to ship both orders but in two
separate packages.
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orders can arrive in one period show that these results continue to hold in absolutely

all cases. Assuming the structures of the policy in Theorem I.15, the DP formulation

(1.1) can be simplified into the following:

For t > 1, Vt(z1, z2, . . . , zn) = min



C(z1, z2, . . . , zn) + Vt(∞) Ship m orders

αVt−1(z1 − 1, z2 − 1, . . . , zn − 1, d)

+(1− α)Vt−1(z1 − 1, z2 − 1, . . . , zn − 1)

Do not ship

Vt(∞) = αVt−1(d) + (1− α)Vt−1(∞).

For t = 1, V1(z1, z2, . . . , zn) = C(z1, z2, . . . , zn).

1.6.2 A Simple Heuristic

As the optimal policy in Theorem I.15 can be characterized by volume-dependent

thresholds and the package splitting decision requires another layer of optimization, the

policy is still not easy to implement.33 Motivated by the constant-threshold heuristic

developed in Section 1.4, we propose to (1) replace the volume-dependent threshold

τt(n) with a constant τ independent of volume of pending orders and (2) only allow

orders to be shipped in one package (i.e., no package splitting). The heuristic is formally

defined as follows:

Constant-Threshold One-Package Heuristic

Given τ and (z1, z2, . . . , zn), do:

1. If z1 ≤ τ , ship all n pending orders in one package incurring cost F (z1) +nv(z1).

2. Otherwise, wait for future orders.

Similar to the heuristic in Section 1.5, the threshold τ needs to be optimized and

33Computationally, for d = 5, calculating the optimal policy for a one-warehouse setting with fixed
and variable costs takes more than 100 times that of a one-warehouse setting with fixed cost.
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it can easily be done using complete search and Monte Carlo simulations.

The constant threshold one-package heuristic we propose is labeled as (H3). We

conduct numerical experiments to test the performance of our heuristic in the setting

where d varies from 4 to 10. The customer-order frequency varies within (0,1). Two

cases are tested: (1) at most one arrival per period and (2) up to three orders per

period.34 We adjust the probability of order arrivals such that the expected number of

orders per period are the same in both cases. The variable costs are set as a fraction

of the fixed costs (v(.) = γF (.)), where γ varies within [0.1,1], reflecting a wide range

of cases from where the fixed cost dominates to where the variable costs dominate.

Altogether, this results in 630 cases. Details of simulations can be found in Appendix

??.

For the settings with at most one arrival per period, the percentage gaps compared

to the optimal cost are shown in Table 1.1.35 Heuristic H3 is compared with two other

heuristics: the constant-threshold heuristic where the thresholds are still approximated

by a constant but package splitting is allowed and optimized (H1) and the one-package

heuristic where all orders must be shipped in one package and the thresholds can vary

with number of pending orders (H2). Note that although allowing volume-dependent

thresholds improves the performance of our proposed heuristic, the improvement is

very small. Allowing package splitting also leads to extremely small/negligible im-

provement.36 These results suggest that the optimal policy in the case with fixed and

variable costs can be well-approximated by our proposed heuristic H3.

34In our settings, the length of a period naturally corresponds to a delivery option, which could be
either several hours or a small number of days. For this length of a period, we have some evidence
from the co-founder of one of the largest online retailers in China that the majority of customers place
0 to 3 orders within the actionable time range.

35For the settings with up to three orders per period, the results are very similar–The biggest
difference is 0.2% when compared to the results in Table 1.1. We omit the details due to page limit.

36The intuition for package splitting being less critical than volume-based thresholds is as follows:
Basically, the correct thresholds decide when all the orders are shipped and they affect the cost of all
orders, while the correct package splitting strategy only affects some orders in some packages. Since
most of the time packages are not split, imposing non-splitting rule has a very small negative effect.
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Heuristic (H1) (H2) (H3)

Varying Thresholds No Yes No
Splitting-package Yes No No

Average 0.24% 0.08% 0.24%
Minimum 0.00% 0.00% 0.00%

10th percentile 0.00% 0.00% 0.00%
25th percentile 0.00% 0.00% 0.00%
50th percentile 0.10% 0.00% 0.10%
75th percentile 0.39% 0.07% 0.39%
90th percentile 0.74% 0.30% 0.74%

Maximum 1.24% 0.97% 1.24%

Table 1.1: Percentage Gaps to Optimal Cost

The good performance of heuristic H3 can also be theoretically justified. Theorem

I.17 focuses on large case, and Theorem I.16 focuses on small case of d ≤ 3 where more

convergence properties can be observed. Specifically, Theorem I.17 directly bounds the

performance gap between the optimal policy and the constant-threshold one-package

heuristic (H3), while Theorem I.16 bounds the performance gap between policies that

use varying thresholds (H2) and policies that use constant thresholds (H3). Since

H2 performs very close to the optimal policy, Theorem I.16 provides an additional

theoretical support for the good performance of the constant-threshold one-package

heuristic that we propose.

Theorem I.16. Suppose that d ≤ 3, at most one order arrives in each period, and

v(·) = γF (·) for some γ ≥ 0. Let C̃ denote the average cost per period for a problem

with T periods under the Constant-Threshold One-Package Heuristic (H3) and let C0

denote the average cost per period under the optimal policy with no package splitting

but with varying thresholds. Then, we can bound:

C̃ − C0

C0

≤ min

{
∆

a1γ∆ + (a1 + a2)v(2)
,
F (2)1+(1+3α)(3−α)

1+2α

F (2) 1
α(1−α)

+ ∆ 1
α

}

where ∆ = F (1)− F (2), a1 = 2
α

+ 1 and a2 = 3
1−α .
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Note that the above bound converges to 0 when either ∆ → 0, ∆ → ∞, α → 1,

or α → 0. For the parameters and cost structure used in practice (and also in our

simulations), the value of the above bound is at most around 0.09.37

As for larger problems of d > 3, we provide a performance bound that directly

compares our heuristic (H3) with the optimal policy.

Theorem I.17. Suppose that v(·) = γF (·) for some γ ≥ 0. Let C̃ denote the average

cost per period for a problem with T periods under the Constant-Threshold One-Package

Heuristic (H3) and let C∗ denote the optimal average cost per period. Then,

C̃ − C∗

C∗
≤ min

{
γ(d− τ)α

1 + γ
,

dα

γ(1 + dα) + 1

}

where τ denotes the optimal value of threshold in a system with only fixed costs F (·).

Note that the bound in Theorem I.17 converges to 0 if either γ → 0 or γ → ∞

(the bound may not be tight for intermediate values). This is quite intuitive: when

γ ≈ 0, fixed costs dominate variable costs and the optimal policy is a threshold policy;

when γ ≈ ∞, variable costs dominate fixed costs and the optimal policy is to ship

immediately upon order arrival (in other words, τ = d).

1.7 Two Warehouses with Fixed and Variable Costs

In this section, we consider the general and practical setting introduced in Section

1.3, where the retailer delivers orders from at most two warehouses/stores and incurs

both fixed and variable costs. Given the already complex structure of the optimal pol-

icy for the two-warehouse setting with only fixed cost (Section 1.5) and one-warehouse

setting with both fixed and variable costs (Section 1.6), clearly the structure of the

37This is based on the cost function fitted from UPS shipping rates; see Appendix A for more details.
γ = 0.2 and α varies within (0.01,0.3).
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optimal policy for two-warehouse setting with both fixed and variable costs will not

be tractable. Therefore, inspired by results for the simplified cases discussed in pre-

vious sections, we first propose two base heuristics, warehouse-based and order-based

heuristics, which are similar to the heuristics used in Section 1.5. Based on their per-

formance, we modify the warehouse-based heuristic and label the modified one as the

warehouse-based++ (WB++) heuristic. WB++ performs close to optimal (with average

optimality gap of 0.46%) and is easy-to-implement.

1.7.1 Base Heuristics

We discuss our base heuristics: Warehouse-Based One-Package Heuristic (WB)

and Order-Based One-Package Heuristic (OB). The first heuristic is the same as the

warehouse-based heuristic in Section 1.5. The second heuristic is similar to the order-

based heuristic in Section 1.5, with a minor natural modification: In Section 1.5,

since only fixed cost is considered, consolidation is decided by the comparison between

F1(min{zA, zB})+F2(zC) and F1(zA)+F2(min{zB, zC}). To incorporate variable costs,

consolidation is now decided by the comparison between C1(min{zA,1, zB,1}, nA+nB)+

C2(zC,1, nC) and C1(zA,1, nA) + C2(min{zB,1, zC,1}, nB + nC), where zX,1 denotes the

smallest slack time for order type X and Ci(z, n) = Fi(z) + n · vi(z). Details of

simulations can be found in Appendix ??.

1.7.2 Performance of Base Heuristics: Warehouse-Based and Order-Based

In this section, we first analyze the performances of both warehouse-based and

order-based heuristics using simulation and identify two reasons that could make them

underperform. Based on these reasons, we propose an improved heuristic and numeri-

cally show the improvements.

We test the performances of WB and OB for two warehouses setting in a large scale
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numerical experiments with 4,374 problem instances. We use the same set of parame-

ters of customer-ordering frequency and fixed cost functions as in section 5.2. Variable

costs are set as a portion of the fixed cost, with the same structure as commonly found

in practice, vi(.) = γFi(.) (i ∈ {1, 2}). We vary γ ∈ [0.1, 0.9] to cover a wide range of

cases where the variable costs are relatively small compared to the fixed costs up to

the cases where the variable costs are close to the fixed costs. The average simulation

times to calculate the values of thresholds for the two heuristics are 0.12 and 0.06

seconds for d = 3, and 42.19 and 7.86 seconds for d = 10, respectively. We compare

the performances of our proposed heuristics with the optimal cost (for some cases)

and with three commonly used heuristics: (1) Myopic heuristic, which ships orders

immediately upon arrival; (2) Time-threshold heuristic, which ships orders every sev-

eral periods from each warehouse; and (3) Volume-threshold heuristic, which ships all

pending orders of a certain type whenever the volume of that type triggers a thresh-

old. While the policies used in practice may slightly vary, the dominating ones are

simple myopic policies. We understand from Amazon.com employees and the Chinese

online retailers that their current practices continue to follow the “old” rules, while

considering alternatives to be implemented in the near future. Currently, the arrivals

of orders are treated as a flow. Such flow is directed to the warehouse and each order

is almost immediately packed and shipped. Thus, orders are shipped out (myopically)

as early as operationally possible. We believe that the myopic shipment policy can be

used as a benchmark. As for the time-and volume-threshold heuristics, as discussed

in Section 1.2, they are the two most widely studied heuristics in the consolidation lit-

erature (Cooper, 1984; Higginson and Bookbinder, 1994, Cetinkaya et al., 2000, 2008).

All three heuristics (myopic, time-threshold, and volume-threshold) are appropriately

modified to allow consolidation across the warehouses and the parameters for each

heuristic are optimized through simulation-based optimization.
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We separately describe the results of our experiments for small and large size prob-

lems. For small size problems (d ≤ 5), the optimal cost can be numerically computed

and, thus, the costs of all heuristics are compared with the optimal cost. The aver-

age gaps across parameters other than d are reported in Table 1.2. Note that both

warehouse-based and order-based heuristics are close to optimal and clearly outperform

the other heuristics by significant margins.

d Warehouse-based Order-based Myopic Time-threshold Volume-threshold
3 0.66% 0.11% 15.44% 15.44% 1.22%
4 1.60% 0.29% 20.16% 6.99% 3.32%
5 2.44% 1.43% 25.83% 6.58% 7.98%

Table 1.2: Percentage Gap to Optimal

For large size problems (d > 5), the optimal cost cannot be computed in a reasonable

time. (Solving the DP for a single instance of d = 5 and d = 6 takes more than 5 hours

and 20 days, respectively.) This motivates us to use different benchmarks to assess

the performance of the heuristics. Given that the order-based heuristic performs close

to optimal for d ≤ 5, we measure the performances of all heuristics by the percentage

gaps to the cost of order-based heuristic, see Table 1.3.38

d Warehouse-based Myopic Time-threshold Volume-threshold
6 1.43% 37.59% 3.57% 7.41%
8 1.80% 60.22% 3.52% 8.52%
10 2.42% 80.79% 3.77% 9.52%

Table 1.3: Percentage Gap to Order-Based Heuristic

We find that there are two reasons that make the WB heuristic performs slightly

worse than OB. These reasons provide directions for improvement:

(1) The warehouse-based consolidation rule effectively assigns max{τ1, τ2} as the

threshold for orders of type B (as type B orders are shipped when either τ1 or τ2 is

triggered). Since the value of this threshold is higher for the more expensive warehouse,

38The reasons that the performance gaps of warehouse-based and order-based heuristics are func-
tions of d are subtle. It may be interpreted as due to the length of due dates or due to the discretization
of shipping options. We see that the discretization plays a big role: for each d, the cost function is
discretized into d segments. With fewer choices (small d), the likelihood of choosing wrong threshold
is lower.

37



orders type B cross the higher threshold first and are shipped from the more expensive

warehouse. Consequentially, we consider the following modification: the threshold for

orders type B is set to min{τ1, τ2}, which allows orders type B to be shipped from

the cheaper warehouse. In the numerical tests for the case d = 4, this modification

decreases the optimality gap by 0.27% on average, from 1.60% to 1.33%).

(2) The warehouse-based consolidation rule ignores perfectly foreseeable opportuni-

ties to combine orders that are already placed and orders that will arrive in the future.

Specifically, by looking at the slack times of orders of other types, one can intentionally

delay some orders and ship them from the cheaper warehouse later.39 Motivated by

this observation, we replace the warehouse-based consolidation rule by a simple slack-

time-dependent rule: the one-period myopic rule. In the numerical tests for the case

d = 4, this improvement decreases the optimality gap by 0.94% on average, from 1.33%

to 0.39%.

In addition to considering improvements for WB heuristic, we also consider poten-

tial improvement to OB heuristic. We try other slack-time dependent consolidation

rules beyond the one-period rule. However, in the numerical tests, we observe that the

one-period rule performs better than or almost as good as other rules we considered.40

Thus, we continue using the one-period myopic consolidation rule in OB heuristic.

39Consider the case where d = 3, F1 = F2, v1 = 0.9 ∗ F1, v2 = 0.1 ∗ F2, α = (0.5, 0.5, 0.5), and
the optimal warehouse-based heuristics are (τ1, τ2) = (3, 2). For state (zA, zB , zC) = (3, 3, 3), orders
of type A trigger the thresholds τ1, by the warehouse consolidation rule, orders of type B is shipped
from warehouse 1. However, it is easy to see that shipping B with C from warehouse 2 in the next
period actually incurs less cost.

40We first consider both the current one-period myopic consolidation rule and a two-period rule, and
compare their performances. Observing that neither one dominates the other, we consider separating
rules to utilize both one-period and two-period rule in the heuristic. However, even for the best
separating rules we tested, it over performs the one-period rule by only 0.05% on average.
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1.7.3 Warehouse-based++ Heuristic

In this section, we modify the WB heuristic to the warehouse-based++ heuristic

(WB++). Based on observations in the previous subsection, WB++ uses thresholds τ1

and τ2, which are similar to the WB. For better performance, WB++ uses min{τ1, τ2}

for orders type B and also uses the myopic consolidation rule. However, these features

still mean that it is hard to directly solve the optimal value of τ ’s. Thus, we introduce

a direct way to calculate the value of thresholds, which makes the heuristic very easy-

to-implement.41

WB++ Heuristic

Given (τ1, τ2) and (zA,1, zB,1, zC,1):

1. Ship all orders of types X if: zA,1 ≤ τ1 for X = A, zB,1 ≤ min{τ1, τ2} for X = B,

or zC,1 ≤ τ2 for X = C.

2. Consolidate with orders of other types depending on the one-period myopic rule.

The direct way to calculate the value of (τ1, τ2) is as follows: (1) we assume that

a certain portion (ω) of arrivals of B is directed to warehouse 1 and the remaining

portion (1- ω) to warehouse 2. (2) We optimize the partition (ω) and the thresholds

(τ1, τ2) to minimize the total costs of two separate warehouses.42 The formulation of

the optimization is as below:

min
ω

[
min
τ1

[
C1(αA, αBω, τ1)

]
+ min

τ2

[
C2(αB, αC(1− ω), τ2)

]]
(1.4)

41Although we do not anticipate the need to apply it for more than two warehouses (the practical
setting support that using two warehouses will likely be the rule for the foreseeable future), the WB++

heuristic is easily scalable to multiple warehouses.
42The benefit of using ω is to translate a complicated problem to two very simple separate-warehouse

problems. (While the parameters are found by exhaustive search, this is computationally very efficient
as single-warehouse problems are very easy to solve.) After identifying ω that results in the lowest
cost, we only use the corresponding τ1 and τ2, and do not use ω any further.
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where Ci(α, β, τ) is the average cost per period for a separate warehouse i (i ∈ 1, 2).

Note that Ci(α, β, τ) = F (τ)+E[n]∗ν(τ)
E[L]

where E[L] = 1
2αβ+(1−α)β+(1−β)α

+ d − τ is the

expected number of periods between two consecutive shipments,43 E[n] = 2αβ
M

+ (1−α)β
M

+

(1−β)α
M

+ (d− τ)(2αβ + (1−α)β + (1− β)α) is the average number of orders in a cycle,

and M = αβ + (1− α)β + (1− β)α.44

The intuition of the threshold calculation is as follows: the thresholds in WB++

effectively assign a fraction of orders of type B to be shipped from warehouse 1 and

the remaining fraction to be shipped from warehouse 2, depending on the slack times

in each period. In the direct calculation, we replace the slack-time-based assignment

with a constant assignment for the computational simplicity. Note that it still captures

the economics of the cost structure and order arrival probabilities in each of the two-

separate warehouses. Numerically tests45 also show that the thresholds calculated in

WB++ perform very close to the optimized thresholds.46

d WB++

3 0.17%
4 0.37%
5 1.83%

Table 1.4: Percentage Gap to Optimal

d WB++

6 0.09%
8 0.20%
10 0.81%

Table 1.5: Percentage Gap to Order-Based
Heuristic

Comparing with the optimal policy, the WB++ heuristic with directly-calculated

thresholds also has very good performance. The performance of WB++ is tested using

the same set of parameters as in Section 1.7.2 and the results are summarized in Tables

1.4 and 1.5. In most of the cases, WB++ performs well with optimality gap at most

43Note that 1
2αβ+(1−α)β+(1−β)α is the number of periods until the first order arrived and d − τ is

the number of periods until the threshold is triggered.
44 2αβ

M + (1−α)β
M + (1−β)α

M is the expected number of orders in the period, when the first order arrives
(there are two streams of orders; α and β), and (d − τ)(2αβ + (1 − α)β + (1 − β)α) is the average
number of orders in the following (d− τ) periods.

45We tested on the additive cases where F1 = F2 + β1. The multiplicative case has a similar result.
46The average percentage optimality gap of the optimized τ ’s is 0.38% (Stdv: 0.43%, Max: 3.67%),

while the average percentage optimality gap of the solved τ ’s in WB++ is 0.50% (Stdv: 0.64%, Max:
6.46%).
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Figure 1.5: Average percentage gaps across different d, αA, and αC

2% (the cases with gaps larger than 2% accounts for about 4% of the total cases

tested). To better understand its performance, we also visualize the optimality gaps

of the cases with F2 = F1 + β1
47 and vi = γiFi i ∈ {1, 2}, in Figure 1.5 and 1.6. We

identify two conditions where the heuristic can perform poorly: The first condition, as

is shown in Figure 1.5, is where the variable costs dominate in one warehouse while the

fixed costs dominate in the other warehouse, with a high arrival probability of orders

type B. Specifically, this corresponds to the cases where one warehouse has relatively

larger variable costs but a relatively smaller or equal fixed costs, compared to the other

warehouse. Some examples of such cases would be: (1) warehouse 1 has large variable

costs, γ1 = 0.9, and warehouse 2 has small variable costs, γ2 = 0.1, but both warehouses

have the same fixed costs; (2) the opposite case, with γ1 = 0.1 and γ2 = 0.9; and (3)

the case where warehouse 2 has larger fixed costs (β1 = 90) and warehouse 1 has larger

variable costs (γ1 = 0.4 compared with γ2 = 0.1). The second condition, as is shown

47The cases with F2 = β2F1 has similar results.
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Figure 1.6: Average percentage gaps across different d and αC , with αB = 0.9

in Figure 1.6,48 is where both the fixed and variable costs of one warehouse are either

similar to or lower than that of the other warehouse, but the product that can be only

fulfilled from this warehouse has a fairly small arrival probability. An example would

be the case where warehouse 1 has both smaller fixed costs (β1 = 90) and smaller

variable costs (γ1 = 0.1 and γ2 = 0.9), but product A has an arrival probability of only

0.1. Note that these two conditions are necessary but not sufficient.

The poor performance of the heuristic is driven by a mismatch between the pre-

determined allocation in the calculation of thresholds and the state-dependent alloca-

tion when utilizing the thresholds. Such mismatch is exaggerated in the two conditions

identified above. For the first condition, the pre-determined allocation rule tends to

48As is shown below, the two conditions we identified are mutually exclusive. So we can first exclude
the cases which are already identified in the first condition (and with gaps more than 1.2%), then plot
the remaining data in this graph. Also, note that as we plot data from a different “angle” (taking
average across different parameters) in Figure 1.6, it contains cases that met the first condition but
did not appear to perform poorly in Graph 1.5, e.g., the case with β1 = 40, γ1 = 0.4, γ2 = 0.1, and
αA = 0.4. Further, as a robustness check, we also plot the data from a third “angle” after deleting
the cases that met the first two conditions – the poor performance area does not show up anymore.
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assign a higher-than-necessary threshold for the warehouse with larger variable costs

while assigning a lower-than-necessary threshold for the warehouse with larger fixed

costs. This is because the thresholds are calculated as if they are for two separate

warehouses—less orders of type B are pre-allocated to the warehouse with higher vari-

able costs, which pushes the calculated thresholds higher.49 For the second condition,

the pre-allocation rule allocates all orders of type B to the cheaper warehouse and thus

assigns a lower-than-necessary threshold for the more expensive warehouse (when a

warehouse does not have dominating variable or fixed costs, it is easy to observe from

the formulation of Ci(α, β, τ) that the optimal threshold increases with β), while in

the actual slack-time-dependent allocation, there are, of course, orders that need to be

shipped from the more expensive warehouse.50

In reality, however, the parameters that meet the two conditions above rarely occur:

(1) warehouses with higher fixed costs usually also have larger variable costs,51 and (2)

the cheaper warehouses are usually made to fulfill more orders, which means higher

arrival probability.

It also worth noting that there are cases where the retailer can simply use the naive

heuristics and achieve good performance as well as the WB++ heuristic: when both

warehouses have very high fixed costs (variable costs), then obviously it is optimal

to hold orders as late as possible (to ship out orders as early as possible), where the

WB++ heuristic is effectively equivalent to the case with (τ1, τ2) = (1, 1) (the myopic

policy with (τ1, τ2) = (d, d)). In such cases, naive heuristics perform well. However,

these cases are extreme and are not the majority cases in practice. In other cases,

the naive benchmark heuristics either assign wrong values of thresholds (e.g., myopic

49For example, in the case of β1 = 90, γ1 = 0.4, γ2 = 0.1 and (αA, αB , αC) = (0.1, 0.9, 0.1), the
optimal thresholds are (3, 2) while the thresholds in WB++ are (4, 1).

50For example, in the case of β1 = 90, γ1 = 0.4, γ2 = 0.4 and (αA, αB , αC) = (0.1, 0.9, 0.4), the
optimal thresholds are (3, 2) while the thresholds in WB++ are (3, 1).

51Many shipping costs are distance-based, e.g. shipping via UPS from nearby warehouses incur
both lower fixed cost and variable cost per pound as opposed to a warehouse farther away.
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policy), or use the wrong triggers which mess up with the slack-based delivery schedule

(e.g., time-based and volume-based policy.)

Overall, while OB performs slightly better than WB++, WB++ is easier to imple-

ment in terms of both parameter estimation and execution—the value of the thresholds

can be calculated directly from optimization (1.4) and the warehouse-wise thresholds

are easy to execute. In practice, both OB and WB++ are effective options for retailers,

who can choose which heuristic to use.

To implement these heuristics in practice, the parameters need to be adequately

chosen. (1) The length of period should be set to reflect the available shipping modes.

For example, in omni-channel retail, where the shipping modes are 20 mins, 40 mins, 60

mins, etc, the time unit would naturally be set as 20 mins. In online retail, where the

shipping modes are same-day, next-day, three-day, etc, the time unit would be set to

a day. (2) The order arrival probabilities (αX,m, X ∈ {A,B,C}) should be calculated

based on relevant historical data. For omni-channel, the arrival probability can be set

as the average order frequency of customers from the same region. For online retailer,

since each customer is treated separately, the arrival probability can be set according

to his average frequency of placing orders. (3) The horizon length is not needed for

heuristic calculations.

1.8 Conclusion

This paper analyzes emerging and increasingly promising areas of consolidation

of orders in outbound logistics. In addition to its general applicability in the supply

chain setting, it can also be a potentially efficient way to improve the current practice of

outbound shipment in Business-to-Customer settings, including e-commerce and omni-

channel retail. Consolidating orders placed at different times can reduce the number

of shipments and decrease the total shipping costs. However, it leads to new trade-offs
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that retailers need to carefully balance: on one hand, combining several orders into

one shipment can eliminate some of the fixed shipping costs; on the other hand, it may

cause a shipping delay to consolidate current orders with future one and, thus, may

require expedited more-expensive shipping. In this paper, we have analyzed the opti-

mal consolidation policy and described its structure for the practical setting with two

warehouses. We focus on crucial factors that determine the economies of the situations:

fixed cost, variable cost, options to expedite, and different product availabilities. The

structure of the optimal policy in three simplified cases is derived: (1) For one ware-

house with fixed cost, we show that the optimal policy can be directly characterized by

a sequence of time-dependent thresholds. (2) For two warehouses, with fixed cost and

overlapping availability of products, the optimal policy, in the symmetric settings, can

be characterized by six non-linear boundaries in three-dimensional space. We show that

in asymmetric settings, the optimal policy can be approximated by constant-threshold

heuristics, with less than a 2% optimality gap. (3) For one warehouse and both fixed

and variable costs, the optimal policy is a function of volume-dependent thresholds,

which can be approximated by constant thresholds, with less than a 0.3% optimality

gap. Based on these special cases, three easily implementable threshold-based heuristic

policies, WB, OB, and WB++, are proposed, which significantly outperform the best

benchmark policies found in practice/literature. We show that among them, WB++

and OB can be very useful in practice. The OB is very efficient, with 0.61% opti-

mality gap on average, and the WB++ is easy to implement and efficient, with 0.79%

optimality gap on average.
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CHAPTER II

On a Deterministic Approximation of Inventory

Systems with Sequential Probabilistic Service Level

Constraints

2.1 Introduction

The problem of minimizing inventory cost over time while providing a high quality

customer service in the presence of stochastic demand is one of the most fundamental

and challenging core problems of inventory management. Depending on whether un-

met demand can be satisfied at a later time or not, many inventory systems can be

categorized as either a backorder or lost-sales system. In the so-called canonical cost-

based model where there is no service level constraint (i.e., no explicit targeted service

level guarantee) and the objective is simply to minimize the expected total ordering,

holding, and stock-out costs, both backorder and lost-sales inventory models have been

extensively studied in the literature (cf. Zipkin [96]). It is a common belief that, in

the presence of positive lead time (i.e., the time lag between when an order for more

inventory is placed and when the order is received), it is much more difficult to optimize

a lost-sales inventory system than its backorder counterpart. Indeed, while the back-

order system usually has a simple optimal order-up-to (or base-stock) type of control
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(e.g., Zipkin [96]), the lost-sales system is notoriously challenging to analyze and the

structure of its optimal control is poorly understood. We refer interested reader to an

excellent review paper by Bijvank and Vis [15] for more discussions on lost-sales inven-

tory models. As an exact solution seems out of reach, asymptotic analysis has been

performed recently by various researchers. For example, Huh et al. [47] show that an

order-up-to control is asymptotically optimal for the lost-sales system as the lost-sales

penalty grows. The intuition of this result is that the event of stock-out becomes rare

as the lost-sales penalty grows; in fact, so much so that the lost-sales system behaves

nearly identical to its corresponding backorder system. Hence, the order-up-to control

that is optimal for the backorder system is asymptotically optimal for the lost-sales

system. Note that although this argument may seem quite intuitive, it does not di-

rectly translate into a simple mathematical proof. To the contrary, the proof of this

seemingly intuitive result is non-trivial. On a different asymptotic regime, a simple

constant-order policy that places an order with exactly the same quantity in every

time period, regardless of the current inventory level, is proved to be asymptotically

optimal for the lost-sales system as the lead time grows in Goldberg et al. [40], Xin and

Goldberg [89]. The intuition of this result is that, since lead time is large, there is a

significant amount of randomness in the system between when an order is placed and

when the order is eventually received. This suggests that dynamically adjusting order

quantities over time may not provide much benefit compared to a passive control that

simply order the same quantity at every time period. Perhaps this argument seems

intuitive as well, it does not directly translate into a simple mathematical proof. Other

recent works in the inventory literature that use asymptotic analysis include Reiman

and Wang [67] (large lead time asymptotic), Wan and Wang [86] (large volume asymp-

totic), Ahn et al. [3] (large batch size asymptotic), Bu, Gong and Yao [22] (large lead

time asymptotic), and Xin [91] (large lead time asymptotic).
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While much of the inventory literature in the past decade have focused on the

cost-based model for tractability reason, there are also works in the literature that

study inventory control under a so-called service-based model. This is motivated by

the fact that, in practice, the cost of unmet demand is often difficult to quantify

(e.g., Chen and Krass [30]) and, therefore, service level is typically used as a more

direct metric for evaluating the performance of inventory replenishment controls (see

Bertsimas and Paschalidis [13] for more discussions on the drawback of cost-based

model). For example, some firms such as Walmart use both average on-hand inventory

and service level as their two key performance metrics (Xin et al. [90]). In the literature,

there is more than one way to define a service level. The event-oriented α-service level is

defined as the probability of no stock-out; the quantity-based β-service level is defined

as the proportion of total demand that is immediately satisfied without delay, capturing

not only the stock-out event but also the amount of stock-out; the time-and-quantity-

related γ-service level is defined to reflect not only the amount of backorders but also

the waiting times of the demands backordered. Among these three, the α-service level

is one of the most widely used service level criteria in the inventory literature (e.g.,

Snyder and Shen [71]) and is also recognized in practice (see Jiang, Shi and Shen [50] for

practical examples). In our paper, we focus on the sequential version of the α-service

level. Note that if the service-level constraint is not sequential (as considered in Bitran

and Yanasse [19]), such a constraint is essentially an expected service-level requirement

which is set upfront. However, in practice, when a company makes decisions in week

t, all realized demand information in the past are naturally considered to meet the

in-stock probability requirement in the following weeks. The sequential service-level

constraints we considered here appropriately reflect such a practice.

Our work is closely related to some of the early studies of periodic review inventory

models with α-service level constraints such as Bitran and Yanasse [19], Bitran and
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Sarkar [18], Bitran and Leong [17]. The authors in these papers assume a backorder

inventory system and use deterministic programs to approximate the stochastic inven-

tory problems. They derive bounds on the gap between the two formulations to show

that deterministic inventory models well-approximate stochastic inventory models in

the regime of high service level (i.e., the setting where probability of stock-out is close

to zero). Their results have an important practical implication: while the multi-period

stochastic inventory problem with service level constraints is very difficult to solve,

decision-makers can use its deterministic approximation for the purpose of estimat-

ing total costs in the context of strategic inventory planning. In this paper, we ask

whether similar results can be established for a more complex lost-sales inventory sys-

tem. Specifically, we consider both the backorder and lost-sales inventory systems with

positive lead time and sequential α-service level constraints, and analyze the perfor-

mance of a simple order-up-to control in the regime of high service level requirement.

The parameters of our heuristic control can be computed using the optimal solution of

a deterministic program (in fact, a linear program), which is a deterministic approx-

imation of the stochastic backorder system. We show that this order-up-to control is

asymptotically optimal for both the backorder and lost-sales inventory systems as the

service level increases to 100%. In summary, our results have two main contributions.

First, it complements the results of Bitran and Yanasse [19], Bitran and Sarkar [18],

and Bitran and Leong [17] by providing an asymptotically optimal order-up-to control

for the backorder system. Specifically, while Bitran and Yanasse [19] and Bitran and

Leong [17] consider the expected service-level constraint, we consider the more realistic

sequential service-level constraint. While Bitran and Sarkar [18] use a deterministic

system to approximate the sequential problem, it does not provide an asymptotically

optimal heuristic as we do – this is mainly because their deterministic system does not

incorporate the updating nature of the sequential constraints. Second, our work fur-
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ther shows that the order-up-to control that we propose is also asymptotically optimal

for the lost-sales system. In terms of methodological contributions, our analysis for

the lost-sales system involves a construction of an alternative backorder system whose

expected total cost can be related to that of the analogous lost-sales system. In terms

of practical implications, our results give credence to the use of deterministic program

to approximate complex lost-sales inventory problem with service level constraints. In

fact, since many real-world inventory problems with service level constraints are diffi-

cult to solve, the majority of existing research has simply focused on directly analyzing

the deterministic formulation of the problems (e.g., Tarim and Kingsman [75], Tarim

et al. [76], Worm et al. [88]). Although our result is specific to the setting that we

consider in this paper, we believe that it is an important step for further analyzing

the quality of deterministic approximation in other related inventory systems with ser-

vice level constraints (e.g., joint inventory and fulfillment decisions, and dual-sourcing

problems).

It is worth noting that our work shares the same spirit as Huh et al. [47] in the

sense that both papers show that the lost-sales model is asymptotically identical to

its backorder counterpart as the lost-sales penalty (or, equivalently, the service level)

increases. However, there are some notable differences. In Huh et al. [47], demands are

assumed to be independent and identically distributed (i.i.d.) and there is no explicit

rate of convergence; by contrast, in our work, demands across different periods can

be highly non-stationary, as long as they share the same support (see the definition

in Section 2), and we also derive an explicit bound for the optimality gap. In Huh et

al. [47], the order-up-to level is derived from the stochastic backorder system whereas

the order-up-to level in our heuristic control is computed using the optimal solution

of a linear program. Overall, our results in the service-based model complement their

results in the cost-based model.
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Aside from the above cited papers that use deterministic programs to approxi-

mate the original stochastic inventory problem, there are other works in the literature

that study inventory problem with service level constraints with the focus on devel-

oping/analyzing heuristic controls of certain forms. These include Boyaci and Gallego

[21], Shang and Song [68], Özer and Xiong [63], Bijvank and Vis [16], and Bijvank [14].

More recently, Jiang, Shi and Shen [50] study an inventory model with backorder and

α-service level constraints, and propose a novel 2-approximation algorithm based on

the idea of delayed forced holding and production cost.

2.1.1 Outline of Paper

The rest of the paper is organized as follows. We formally define our inventory

models with service level constraints and lead times and introduce a deterministic

backorder relaxation in Section 2.2. We propose our heuristic controls, state our main

results, and discuss the key ideas of the proofs for the backorder and lost-sales systems

in Section 2.3 and Section 2.4 respectively (unless otherwise noted, all remaining details

of the proofs can be found in the e-companion of the paper). We conclude and propose

directions for future research in Section 2.5. We also attach a technical appendix in

the e-companion.

2.2 Model Description

We consider a multi-period stochastic inventory problem with independent but

possibly non-stationary (time-varying) demands. Demand at period t is denoted by

Dt and has a support in interval [0, D̄] for some D̄ <∞. Specifically, we assume that

P (Dt ∈ [0, D̄]) = 1 and P (Dt ≤ D̄ − ε) < 1 for all ε > 0. Lead time is deterministic

and equals L ≥ 0. We consider both backorder and lost-sales systems. As usual, we

use c to denote the per-unit ordering cost, h to denote the per-unit per-period holding

51



cost, and p to denote either the per-unit per-period backorder cost or the per-unit per-

period lost-sale penalty, depending on whether the corresponding system is backorder

or lost-sales. (Although we study service-based model, we still include penalty cost to

allow instances with real penalty cost (i.e., the cost of drop-shipping, etc.). That said,

consistent to the philosophy of service-based model, in our asymptotic analysis, we will

assume that p is fixed while the value of service level is increased to 1.)

Let Iπ,bt denote the inventory level at the beginning of period t in the backorder

system under control π before the new order arrives. Since lead time equals L, we

have: Iπ,bt+1 = Iπ,bt + xπ,bt−L − Dt, where xπ,bt is the quantity ordered under control π in

period t. Similarly, let Iπ,`t denote the inventory level at the beginning of period t in

the lost-sales system under control π before the new order arrives. Under the lost-sales

system, we have: Iπ,`t+1 = (Iπ,`t + xπ,`t−L −Dt)
+ where xπ,`t is the quantity ordered under

control π in period t. Let =π,bt and =π,`t denote the history of all realizations (both

demands and ordering decisions) up to the end of period t under control π for the

backorder and lost-sales systems, respectively. Also, let C∗,b(α) and C∗,`(α) denote the

optimal expected total costs over a finite horizon under the backorder and lost-sales

systems with service level 1 − α, respectively. We can write C∗,b(α) and C∗,`(α) as

follows:

C∗,b(α) = min
π∈Πb

E

[
T∑
t=1

c · xπ,bt−L +
T∑
t=1

h · (Iπ,bt + xπ,bt−L −Dt)
+

+
T∑
t=1

p · (Dt − Iπ,bt − x
π,b
t−L)+

]
, (2.1)

C∗,`(α) = min
π∈Π`

E

[
T∑
t=1

c · xπ,`t−L +
T∑
t=1

h · (Iπ,`t + xπ,`t−L −Dt)
+

+
T∑
t=1

p · (Dt − Iπ,`t − x
π,`
t−L)+

]
,
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where the set of feasible controls Πb and Π` are defined as:

Πb =
{
π : xπ,bt ≥ 0 , P

(
Iπ,bt + xπ,bt−L −Dt ≥ 0

)
≥ 1− α, ∀ 1 ≤ t ≤ L+ 1

and P
(
Iπ,bt + xπ,bt−L −Dt ≥ 0

∣∣∣ =π,bt−L−1

)
≥ 1− α, ∀L+ 2 ≤ t ≤ T

}
,

Π` =
{
π : xπ,`t ≥ 0 , P

(
Iπ,`t + xπ,`t−L −Dt ≥ 0

)
≥ 1− α, ∀ 1 ≤ t ≤ L+ 1

and P
(
Iπ,`t + xπ,`t−L −Dt ≥ 0

∣∣∣ =π,`t−L−1

)
≥ 1− α, ∀L+ 2 ≤ t ≤ T

}
.

Both C∗,b(α) and C∗,`(α) depend on T and we suppress this dependency on our

notations. Note that if p = 0, both backorder and lost-sales problems become trivial

and an optimal control orders as little as possible as long as the service level constraint

is satisfied.

Assumptions. We make the following modeling assumptions:

A1. The order quantities arriving in periods 1, 2, . . . , L, L+1 (i.e., x1−L, x2−L, . . . , x0, x1)

are decided jointly at the beginning of period 1;

A2. The initial inventory level at the beginning of period 1 is zero, i.e., Iπ,b1 = Iπ,`1 = 0

for all π;

A3. We allow fractional (continuous) order quantities and demand fulfillment.

Assumptions A1 and A2 are made without loss of generality and are useful to

simplify some of the analysis. For assumption A1, we can alternatively assume that

the quantities arriving in periods 1 to L+1 have been decided beforehand. In this case,

since we have no control over these quantities, the sequence of probabilistic service level

constraints defined in Πb and Π` will have to start from period L+ 2 instead of period

1. Assumption A3 is a standard assumption made in the inventory literature and is

often made to simplify the analysis. In addition, the impact of rounding error due to
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integrality consideration is relatively negligible when order quantities are on the scale

of hundreds or more.

On cost-based vs. service-based model. One advantage of our service-based

model is that the control derived from our model can always achieve the required service

level. However, this is not true for the canonical cost-based model as its objective

is to simply minimize the expected total costs. We demonstrate this point through

the following example when demands are stochastically decreasing by showing that

the service level under an optimal solution of the canonical cost-based model can be

arbitrarily poor. Suppose that c = 0, L = 0, T = 2, h = 1, p = 1−α
α

(to ensure

p
h+p

= 1−α) and D2 = 0 w.p.1. Then, the optimal order-up-to levels of the cost-based

model are xc2 = 0 and

xc1 ∈ arg min
x1∈R

E
[
h · (x1 −D1)+ + p · (D1 − x1)+ + h · (x1 −D1)+

]
.

The above is equivalent to xc1 = F−1
D1

(
p

p+2h

)
= F−1

D1

(
1−α
1+α

)
. It can only achieve service

level 1−α
1+α

in the first period, which is less than 1 − α. Similarly, it is not difficult to

extend it to general T with Dt = 0 w.p.1. for t = 2, . . . , T . In that case, the service

level in the first period is 1−α
1+(T−1)α

, which can be arbitrarily small for a sufficiently large

T .

A Deterministic Approximation of Backorder System. We now discuss a de-

terministic approximation of backorder system. The solution of this deterministic for-

mulation will be later used to construct heuristic controls for the original (stochastic)

backorder and lost-sales systems.

First, note that, in the backorder system, we can write:
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Iπ,bt + xπ,bt−L −Dt =


Iπ,b1 +

∑t
s=1 x

π,b
s−L −

∑t
s=1 Ds ∀ 1 ≤ t ≤ L+ 1;

Iπ,bt−L +
∑t

s=t−L x
π,b
s−L −

∑t
s=t−LDs ∀L+ 2 ≤ t ≤ T .

(2.2)

Let µt = E[Dt] denote the expected demand in period t, and define βkt (α) to be the

smallest β ∈ [−
∑t+k−1

s=t µs, ∞] satisfying inequality

P

(
β +

t+k−1∑
s=t

µs −
t+k−1∑
s=t

Ds ≥ 0

)
≥ 1− α

for α ∈ [0, 1]. That is,
∑t+k−1

s=t µs + βkt (α) can be interpreted as the (1 − α)-quantile

of
∑t+k−1

s=t Ds. Using {βkt (α)}, the probabilistic service level constraints in Πb can be

equivalently written as linear constraints:

Iπ,b1 +
t∑

s=1

xπ,bs−L −
t∑

s=1

µs ≥ βt1(α) ∀ 1 ≤ t ≤ L+ 1, (2.3)

Iπ,bt−L +
t∑

s=t−L

xπ,bs−L −
t∑

s=t−L

µs ≥ βL+1
t−L (α) ∀L+ 2 ≤ t ≤ T. (2.4)
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Constraints (2.3) and (2.4) motivate us to define the following deterministic model:

DET: D∗,b(α) = min
x,y,z,m

T∑
t=1

c · xt−L +
T∑
t=1

h · zt+1 +
T∑
t=1

p ·mt+1 (2.5)

s.t. y1 = 0

yt = yt−1 + xt−1−L − µt−1 ∀ 2 ≤ t ≤ T + 1

zt ≥ yt ∀ 2 ≤ t ≤ T + 1

mt ≥ −yt ∀ 2 ≤ t ≤ T + 1
t∑

s=1

xs−L −
t∑

s=1

µs ≥ βt1(α) ∀ 1 ≤ t ≤ L+ 1

t∑
s=1

xs−L −
t∑

s=1

µs ≥ βL+1
t−L (α) ∀L+ 2 ≤ t ≤ T

xt, zt,mt ≥ 0 ∀ 1− L ≤ t ≤ T − L.

The variables xt, yt, zt, mt in the above deterministic formulation can be interpreted

as the order quantity placed in period t, the inventory level at the beginning of period

t, the amount of inventory overstocked in the end of period t, and the amount of inven-

tory understocked in the end of period t, respectively, all in a deterministic backorder

system. We use xD,b(α) = (xD,bt (α)) and yD,b(α) = (yD,bt (α)) to denote the optimal solu-

tion of (2.5) (note that the variables zt and mt are redundant). It is not difficult to show

that xD,bt (α) can be written recursively as a function of xD,bt−1(α), xD,bt−2(α), . . . , xD,b1−L(α):

Lemma II.1. We can write:

xD,b1−L(α) = µ1 + β1
1(α),

xD,bt−L(α) =

(
t∑

s=1

µs + βt1(α)−
t−1∑
s=1

xD,bs−L(α)

)+

∀ 2 ≤ t ≤ L+ 1,

xD,bt−L(α) =

(
t∑

s=1

µs + βL+1
t−L (α)−

t−1∑
s=1

xD,bs−L(α)

)+

∀L+ 2 ≤ t ≤ T.
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It is not difficult to see from Lemma 1 that if demands are i.i.d with mean µ, then

xD,b1−L(α) = µ+ β1
1(α),

xD,bt−L(α) = µ+ βt1(α)− βt−1
1 (α), ∀ 2 ≤ t ≤ L+ 1,

xD,bt−L(α) = µ, ∀L+ 2 ≤ t ≤ T

(for i.i.d. demands, βL+1
t−L (α) = βL+1

t−L−1(α) for all L + 2 ≤ t ≤ T ). For the case with

general independent demands, as long as α is sufficiently small, we have:

xD,b1−L(α) = µt + β1
1(α),

xD,bt−L(α) = µt + βt1(α)− βt−1
1 (α), ∀ 2 ≤ t ≤ L+ 1,

xD,bt−L(α) = µt + βL+1
t−L (α)− βL+1

t−L−1(α), ∀L+ 2 ≤ t ≤ T.

Formulation DET is quite intuitive; indeed, as noted in Section 2.1, it has been

widely used in the academic literature to approximate complex stochastic backorder

systems with probabilistic service level constraints (e.g., Bitran and Yanasse [19], Bi-

tran and Sarkar [18], Bitran and Leong [17]). The following lemma tells us that the

optimal value of DET is a lower bound of the optimal expected total cost in the

stochastic backorder system; thus, we can view DET as a relaxation of (2.1). This

observation will be useful for our analysis later and we defer the proof to the appendix.

Lemma II.2. D∗,b(α) ≤ C∗,b(α).

2.3 Backorder Inventory System

In this section, we focus on backorder system. We first describe our heuristic control

and discuss its theoretical performance in Section 3.1. Next, we provide an outline of
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the proof of our main result (Theorem II.5) in Section 3.2. Finally, we report results

from numerical experiments in Section 3.3.

2.3.1 Proposed Heuristic Control and Its Performance

We first describe our heuristic control for the backorder system, which we simply

call Hb. Given the service level 1−α in period t, Hb places a new order xHb,bt (α) defined

as below:

xHb,bt (α) =



xD,bt (α), ∀ 1− L ≤ t ≤ 1;

(
yD,bt (α) +

∑t
s=t−L x

D,b
s (α)− IHb,bt −

∑t−1
s=t−L x

Hb,b
s (α)

)+

∀ 2 ≤ t ≤ T − L.

(2.6)

Note that, by definition, Hb is an order-up-to control whose order-up-to level equals

yD,bt (α) +
t∑

s=t−L

xD,bs (α) ∀t ≥ 2.

Moreover, it is not difficult to see that Hb is a feasible control to the stochastic back-

order system. (To see this, note that, from the definition of Hb, we have: IHb,bt +∑t
s=t−L x

Hb,b
s ≥ yD,bt (α) +

∑t
s=t−L x

D,b
s (α). Since xD,b(α) and yD,b(α) satisfy the de-

terministic analogue of constraints (2.3) and (2.4) in DET, consequently, constraints

(2.3) and (2.4) are also satisfied by Hb. Hence, Hb satisfies the service level constraints

and, therefore, it is feasible.) We state this formally as a lemma below.

Lemma II.3. Hb ∈ Πb.

Since Hb is defined using the deterministic solution xD,b(α), it is important to

quantify the difference between the total orders placed by Hb in the stochastic system
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and the total orders placed by the deterministic solution in the deterministic system as

this difference will affect the performance of Hb (see the bound in Theorem II.5 below).

Lemma II.4. We can bound:

E

[
t−L∑
s=2

(xHb,bs (α)− xD,bs (α))

]
≤ E

[
t−L−1∑
s=1

(µs − xD,bs+1(α)−Ds)
+

]
for all t.

In particular, if demands are i.i.d, then

E

[
t−L∑
s=2

(xHb,bs (α)− xD,bs (α))

]
= 0 for all t.

Observe that the first bound in Lemma II.4 goes to zero as α → 0. This is so

because, per our discussions following Lemma II.1, for t ≥ 2 and all sufficiently small

α, we have:

xD,bt (α) = µL+t + βL+1
t (α)− βL+1

t−1 (α)

= µt−1 +

(
L+t∑
s=t

µs + βL+1
t (α)

)
−

(
L+t−1∑
s=t−1

µs + βL+1
t−1 (α)

)
.

Note that the two summations inside the (·) converge to (L + 1)D̄ as α → 0. So,

xD,bt (α) → µt−1 as α → 0 for all t ≥ 2 and, therefore, the first bound in Lemma II.4

goes to zero as α→ 0. As for the second bound in Lemma II.4, it immediately follows

from the first bound and our discussions following Lemma II.1 (i.e., the fact that

xD,bt (α) = µ for all t ≥ 2 and all α).

The following theorem provides a bound for the loss of Hb with respect to the

optimal control.
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Theorem II.5. We can bound:

CHb,b(α)− C∗,b(α) ≤
T−L∑
t=2

[c+ h · (T − L− t+ 1)] · E
[
xHb,bt (α)− xD,bt (α)

]
+ (h+ p) ·

L+1∑
t=1

E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]

+ (h+ p) ·
T∑

t=L+2

E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
.

Moreover, we also have:

C∗,b(α) ≥ c ·

[
T∑
t=1

µt + βL+1
T−L(α)

]
+ h ·

[
L+1∑
t=1

βt1(α) +
T∑

t=L+2

βL+1
t−L (α)

]
.

Note that the term
∑T−L

t=2 (T −L− t+ 1) ·E[xHb,bt (α)−xD,bt (α)] in the bound can be

expressed as
∑T−L

k=2

∑k
s=2 E[xHb,bs (α)− xD,bs (α)] and can, therefore, be further bounded

using Lemma II.4. Specifically, if demands are i.i.d, the bound in Theorem II.5 can be

bounded by a rough bound as follows:

CHb,b(α)− C∗,b(α) ≤ (h+ p) · T · (L+ 1) · D̄ · α,

which shows that CHb,b(α)− C∗,b(α) converges to 0 (at least) linearly in α. If, on the

other hand, demands are independent but not necessarily stationary, then in addition

to the term (h + p) · T · (L + 1) · D̄ · α, we also have the sum of O(T 2) terms, each of

which converges to 0 as α→ 0.

2.3.2 Proof of Theorem II.5

We now provide an outline of the proof of Theorem II.5. For notational brevity,

whenever there is no loss of information, and with an exception of a few notations such
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as βkt (α), we will often suppress the dependency of all other notations on α (e.g., we

will often write xD,bt (α) and xHb,bt (α) simply as xD,bt and xHb,bt ). Note that CHb,b − C∗,b

can be written as a sum of two terms:

CHb,b − C∗,b = [CHb,b −D∗,b] + [D∗,b − C∗,b].

By Lemma II.2, D∗,b − C∗,b ≤ 0. To bound the second term, we proceed in several

steps.

Step 1

Let ∆t = Dt − µt for all t and define

U b
t := yD,bt − IHb,bt +

t∑
s=t−L

(xD,bs − xHb,bs ) =
t∑

s=1−L

(xD,bs − xHb,bs ) +
t−1∑
s=1

∆s

for 1 ≤ t ≤ T − L. U b
t represents the difference between the inventory position under

the optimal policy of the deterministic model and that under policy Hb in period t.

Also, let

kbt := E[U b
t − U b

t+1] = E
[
xHb,bt+1 − x

D,b
t+1

]

for 1 ≤ t ≤ T −L− 1, representing the difference between the order quantity of policy

Hb and that of the optimal policy of the deterministic model in period t+ 1.

The following lemmas are useful for our analysis (see Step 2 below).

Lemma II.6. For t ≥ 2, we have:

xHb,bt = (xD,bt + ∆t−1 + U b
t−1)+ and U b

t = −(U b
t−1 + ∆t−1 + xD,bt )−

where (x)− = max{−x, 0}.
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Lemma II.7. We can express E[IHb,bt ] as a function of yD,bt and ks (s ≤ t− 1− L) as

follows:

E[IHb,bt ] =


yD,bt ∀ 1 ≤ t ≤ L+ 2;

yD,bt +
∑t−1−L

s=2 kbs−1 ∀L+ 3 ≤ t ≤ T.

The proofs of Lemmas II.6 and II.7 are by induction and provided in the Appendix

(the identities in Lemma II.6 are used to prove Lemma II.7).

Step 2

We derive an upper bound for CHb,b −D∗,b. By definition,

CHb,b = E

[
T∑
t=1

c · xHb,bt−L +
T∑
t=1

h · (IHb,bt + xHb,bt−L −Dt)
+ +

T∑
t=1

p · (Dt − xHb,bt−L − I
Hb,b
t )+

]
.(2.7)

For the first summation in (2.7), by definition of kbt , we immediately have:

E

[
T∑
t=1

c · xHb,bt−L

]
=

T∑
t=1

c · xD,bt−L +
T−L∑
t=2

c · kbt−1. (2.8)

As for the second summation in (2.7), note that

E

[
T∑
t=1

(IHb,bt + xHb,bt−L −Dt)
+

]

= E

[
T∑
t=1

(IHb,bt + xHb,bt−L −Dt) +
T∑
t=1

(Dt − xHb,bt−L − I
Hb,b
t )+

]

=
T∑
t=1

(yD,bt + xD,bt−L − µt) +
T∑

t=L+3

t−1−L∑
s=2

kbs−1 +
T−L∑
t=2

kbt−1 + E

[
T∑
t=1

(Dt − xHb,bt−L − I
Hb,b
t )+

]

=
T∑
t=1

(yD,bt + xD,bt−L − µt) +
T−L∑
t=2

(T − L− t+ 1) · kbt−1 + E

[
T∑
t=1

(Dt − xHb,bt−L − I
Hb,b
t )+

]
,

(2.9)
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where the second equality follows from the definition of kbt and Lemma II.7. By (2.3)

and (2.4), the terms E[(Dt − xHb,bt−L − I
Hb,b
t )+] can be bounded as follows:

E[(Dt − xHb,bt−L − I
Hb,b
t )+] ≤ E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]
∀ 1 ≤ t ≤ L+ 1, (2.10)

E[(Dt − xHb,bt−L − I
Hb,b
t )+] ≤ E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
∀L+ 2 ≤ t ≤ T. (2.11)

Combining (2.8), (2.9), (2.10), and (2.11) and noting that, by definition,

D∗,b ≥
T∑
t=1

c · xD,bt−L +
T∑
t=1

h · yD,bt+1 =
T∑
t=1

c · xD,bt−L +
T∑
t=1

h · (yD,bt + xD,bt−L − µt)

immediately yields

CHb,b −D∗,b ≤
T−L∑
t=2

[c+ h · (T − L− t+ 1)] · E
[
xHb,bt (α)− xD,bt (α)

]
+ (h+ p) ·

L+1∑
t=1

E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]

+ (h+ p) ·
T∑

t=L+2

E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
.

Step 3

To derive a lower bound of C∗,b, by Lemma II.2, C∗,b ≥ D∗,b. By the constraints in

(2.5), we know that
∑T

t=1 xt−L ≥
∑T

t=1 µt + βL+1
T−L(α), yt+1 ≥ βt1(α) for 1 ≤ t ≤ L + 1,

yt+1 ≥ βL+1
t−L (α) for L+ 2 ≤ t ≤ T , and pt ≥ 0 for all t. So, we can bound:

C∗,b ≥ D∗,b ≥ c ·

[
T∑
t=1

µt + βL+1
T−L(α)

]
+ h ·

[
L+1∑
t=1

βt1(α) +
T∑

t=L+2

βL+1
t−L (α)

]
.
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This completes the proof of Theorem II.5. �

2.3.3 Numerical Results

In this section, we numerically investigate the performance of Hb. We assume that

demands are non-i.i.d. (specifically, demands are cyclic in the sense that their means

follow the following pattern: 5, 6,, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, . . . ) and report the

percentage performance gaps of Hb with respect to the LP lower bound. In Tables

2.1 and 2.2, demand follows Poisson or Normal Distribution respectively (similar to

Bitran and Yanasse [19]) and is truncated between [0, D̄]. In Table 2.1, the mean (and

standard deviation) of the untruncated demand varies from 5 to 10 and D̄ is set to

be 23. In Table 2.2, the mean in the untruncated demand varies from 5 to 10, the

standard deviation is set to be 2, and D̄ is set to be 16.

In the numerical experiment, we set value of the other problem parameters either

similar to the practical settings or similar to that used in the literature (Zipkin [95]).

Specifically, the length of the time horizon varies from 10 to 40 (the practical planning

horizon is usually no longer than several weeks); the length of lead time varies from 1

to 4; the ordering cost is set to 0; the holding cost is normalized to 1; and the penalty

cost varies from 2 to 20. In addition, we also vary service level requirement from 0.9

to 0.999. As noted in the introduction, we are primarily interested in the setting with

a high service level. Thus, we set the smallest service level to be 0.9.

In both cases (Normal and Poisson demands), the performance gap of Hb converges

to 0 when the service-level increases. Interestingly, we observe that the percentage gap

is not very sensitive with T , especially when the penalty cost is high. Thus, although

our theoretical bound in Theorem II.5 suggests that the performance gap might signif-

icantly worsen when T is large, the actual performance of Hb is very promising. As for

the impact of the penalty cost on performance, the gaps grow almost linearly with the
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penalty cost, which is not surprising and is predicted by the bound in Theorem II.5.

The intuition is as follows. As the penalty cost increases, the optimal order quan-

tity should also increase. However, since our deterministic approximation is mainly

designed to handle the service-level constraints, as can be seen from Lemma 1, its so-

lution is, unfortunately, not affected by the penalty cost. This suggests a limitation in

applying deterministic approximation to settings with large penalty costs. We leave it

as an interesting open question how to approximate an inventory problem with both

service level constraints and a large penalty cost.

2.4 Lost-Sales Inventory System

We now focus on the lost-sales system. We first describe our heuristic control and

discuss its theoretical performance in Section 4.1, and then we provide an outline of

the proof of our main result (Theorem II.9) in Section 4.2.

2.4.1 Proposed Heuristic Control and Its Performance

We call our heuristic control for the lost-sales system simply as H`. Given the

service level 1− α, in period t, H` places a new order xH`,`t (α) as follows:

xH`,`t (α) =


xD,bt (α) ∀ 1− L ≤ t ≤ 1;

(
yD,bt (α) +

∑t
s=t−L x

D,b
s (α)− IH`,`t −

∑t−1
s=t−L x

H`,`
s (α)

)+

∀ 2 ≤ t ≤ T − L.

Note that H` uses the same order-up-to level as control Hb defined in (2.6) in Section

2.3.1. Moreover, by construction, H` is a feasible control to the stochastic lost-sale

system. We state this formally below.
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Lemma II.8. H` ∈ Π`.

Let φ(T, α) =
∑T−1

t=1

∑t−1
s=1 θs(α) where θt(α) is defined as follows:

θt(α) =


t · D̄ −

∑t
s=1 µs − βt1(α) ∀ 1 ≤ t ≤ L+ 1;

(L+ 1) · D̄ −
∑t

s=t−L µs − β
L+1
t−L (α) ∀L+ 2 ≤ t ≤ T.

Note that, by definition, θt(α)→ 0 as α→ 0 for all t.

We present our main result for the lost-sale system below.

Theorem II.9. We can bound:

CH`,`(α)− C∗,`(α) ≤ (c+ h) · φ(T, α) + (c+ L · p) · T · α · D̄

+ (c+ h) ·
T−L∑
t=2

(T − L− t+ 1) · E
[
xHb,bt (α)− xD,bt (α)

]
+ (h+ p) ·

L+1∑
t=1

(T − t+ 1) · E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]

+ (h+ p) ·
T∑

t=L+2

(T − t+ 1) · E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
.

Moreover, we also have:

C∗,`(α) ≥ c ·

[
T∑
t=1

µt + βL+1
T−L(α)

]
+ h ·

[
L+1∑
t=1

βt1(α) +
T∑

t=L+2

βL+1
t−L (α)

]
−2 · (c+ h) · φ(T, α)− (c+ L · p) · T · α · D̄.

Similar to the discussions following Theorem II.5, it is not difficult to see that

the bound in Theorem II.9 contains O(T 2) terms, each of which converges to 0 as

α → 0, even for the case when demands are i.i.d. It remains unclear to us whether
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a deterministic approximation can be used to construct a policy whose bound can be

written as a sum of O(T ) terms each of whom converges to 0 as α→ 0, at least for the

case of i.i.d demands. We leave it as an interesting open question.

2.4.2 Proof of Theorem II.9

As in the proof of Theorem II.5, with an exception of a few notations, we will often

suppress notational dependency on α. Note that CH`,` − C∗,` can be written as a sum

of two terms:

CH`,` − C∗,` = [CH`,` −D∗,b] + [D∗,b − C∗,`].

In what follows, we will divide the proof of Theorem II.9 into two major parts: in

part 1 (Section 2.4.2.1), we derive an upper bound for CH`,` −D∗,b; in part 2 (Section

2.4.2.2), we derive an upper bound for D∗,b − C∗,`. A lower bound for C∗,` is also

discussed in Section 2.4.2.2.

2.4.2.1 An Upper Bound for CH`,` −D∗,b.

We state our main proposition for part 1 below.

Proposition II.10. We can bound:

CH`,` −D∗,b ≤ (c+ h) ·
T−L∑
t=2

(T − L− t+ 1) · kbt−1

+ (h+ p) ·
L+1∑
t=1

(T − t+ 1) · E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]

+ (h+ p) ·
T∑

t=L+2

(T − t+ 1) · E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
.
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Below we state a lemma that will be useful for proving Proposition II.10.

Lemma II.11. xH`,`t ≤ xHb,bt ∀ t ≥ 1− L.

The proof of Lemma II.11 can be found in the Appendix. We now proceed to prove

Proposition II.10 in two steps. In Step 1, we provide upper bounds for E[(Dt−xH`,`t−L −

IH`,`t )+]; in Step 2, we use the bound derived in Step 1, together with the identities

derived in Lemmas II.11 to bound CH`,`; the result in Proposition II.10 immediately

follows by subtracting D∗,b from the bound derived in Step 2.

Step 1

We claim that

E[(Dt − xH`,`t−L − I
H`,`
t )+] ≤ E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]
∀ 1 ≤ t ≤ L+ 1,

E[(Dt − xH`,`t−L − I
H`,`
t )+] ≤ E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
∀L+ 2 ≤ t ≤ T.

As xH`,`s = xD,bs for s ≤ 1, for 1 ≤ t ≤ L+ 1, we immediately have

E[(Dt − xH`,`t−L − I
H`,`
t )+] ≤ E

[(
t∑

s=1

Ds −
t∑

s=1

xD,bs−L

)+]

≤ E

[(
t∑

s=1

Ds −
t∑

s=1

µs − βt1(α)

)+]
.

The first inequality follows from the fact that, given the same order quantities, the

inventory level in the lost-sale system cannot be smaller than the inventory level in the

backorder system (i.e., IH`,`t ≥ IH`,bt for 1 ≤ t ≤ L + 1). The second inequality follows

from the constraints in (2.5), i.e.,

t∑
s=1

xD,bs−L −
t∑

s=1

µs ≥ βt1(α).
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As for periods t ≥ L+ 2, note that

IH`,`t + xH`,`t−L −Dt ≥ IH`,`t−L +
t∑

s=t−L

xH`,`s−L −
t∑

s=t−L

Ds

≥ yD,bt−L +
t∑

s=t−L

xD,bs−L −
t∑

s=t−L

Ds, (2.12)

where the second inequality follows because xH`,`k ≥ yD,bk +
∑k

s=k−L x
D,b
s − IH`,`k −∑k−1

s=k−L x
H`,`
s for k ≥ 2 (in particular, xH`,`t−L ≥ yD,bt−L+

∑t−L
s=t−2L x

D,b
s −I

H`,`
t−L−

∑t−L−1
s=t−2L x

H`,`
s ,

which implies (2.12)). By the constraints in (2.5) again, for L+2 ≤ t ≤ T , we therefore

have:

E[(Dt − xH`,`t−L − I
H`,`
t )+] ≤ E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

xD,bs−L − y
D,b
t−L

)+]

≤ E

[(
t∑

s=t−L

Ds −
t∑

s=t−L

µs − βL+1
t−L (α)

)+]
.

Step 2

We now explicitly bound the expected total costs incurred by H` in the lost-sales

system:

CH`,` = E

[
T∑
t=1

c · xH`,`t−L +
T∑
t=1

h · (IH`,`t + xH`,`t−L −Dt)
+ +

T∑
t=1

p · (Dt − IH`,`t − xH`,`t−L )+

]
.(2.13)

We first do the following transformation on the total order quantities. Note that for

any π ∈ Π`, we have the following identity (2.14) due to the fact that the inventory

on-hand in the end of period t (the left side of (2.14)) equals the total supply over

periods [1, t] (the first term on the right side of (2.14)) minus the total demand over

periods [1, t] (the second term on the right side of (2.14)) plus the total lost-sales over
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periods [1, t] (the third term on the right side of (2.14)):

(Iπ,`t + xπ,`t−L −Dt)
+ =

t∑
s=1

xπ,`s−L −
t∑

s=1

Ds +
t∑

s=1

(Ds − Iπ,`s − x
π,`
s−L)+. (2.14)

It follows that

T∑
s=1

xH`,`s−L = (IH`,`T + xH`,`T−L −DT )+ +
T∑
s=1

Ds −
T∑
s=1

(Ds − IH`,`s − xH`,`s−L)+.

Using this, (2.13) can be re-written as

CH`,` = E

[
h ·

T−1∑
t=1

(IH`,`t + xH`,`t−L −Dt)
+ + (c+ h) · (IH`,`T + xH`,`T−L −DT )+(2.15)

+ c ·
T∑
t=1

Dt + (p− c) ·
T∑
t=1

(Dt − IH`,`t − xH`,`t−L )+

]
.

The first summation in (2.15) can be bounded as follows:

E

[
T−1∑
t=1

(IH`,`t + xH`,`t−L −Dt)
+

]

= E

[
T−1∑
t=1

(
t∑

s=1

xH`,`s−L −
t∑

s=1

Ds +
t∑

s=1

(Ds − xH`,`s−L − I
H`,`
s )+

)]

≤ E

[
T−1∑
t=1

(
t∑

s=1

xHb,bs−L −
t∑

s=1

Ds +
t∑

s=1

(Ds − xH`,`s−L − I
H`,`
s )+

)]

=
T−1∑
t=1

{
t∑

s=1

xD,bs−L +
t−L∑
s=2

kbs−1 −
t∑

s=1

µs + E

[
t∑

s=1

(Ds − xH`,`s−L − I
H`,`
s )+

]}

=
T−1∑
t=1

(yD,bt + xD,bt−L − µt) +
T−L−1∑
t=2

(T − L− t) · kbt−1 + E

[
T−1∑
t=1

(T − t) · (Dt − xH`,`t−L − I
H`,`
t )+

]
,

where the first equality again follows by repeatedly applying identity z+ = z + (−z)+
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and the first inequality follows from Lemma II.11. Similarly,

E
[
(IH`,`T + xH`,`T−L −DT )+

]
≤ (yD,bT + xD,bT−L − µT ) +

T−L∑
t=2

kbt−1 + E

[
T∑
t=1

(Dt − xH`,`t−L − I
H`,`
t )+

]
.

Now, by definition,

D∗,b ≥
T∑
t=1

c · xD,bt−L +
T∑
t=1

h · (yD,bt + xD,bt−L − µt)

=
T−1∑
t=1

h · (yD,bt + xD,bt−L − µt) + (c+ h) · (yD,bT + xD,bT−L − µT ) + c ·
T∑
s=1

µs.

Thus, we can bound (2.15) as follows:

CH`,` −D∗,b ≤ h · E

[
T−1∑
t=1

(T − t) · (Dt − xH`,`t−L − I
H`,`
t )+

]

+ (c+ h) · E

[
T∑
t=1

(Dt − xH`,`t−L − I
H`,`
t )+

]

+ (p− c) · E

[
T∑
t=1

(Dt − IH`,`t − xH`,`t−L )+

]

+ (c+ h) ·
T−L∑
t=2

(T − L− t+ 1) · kbt−1

≤ (h+ p) · E

[
T∑
t=1

(T − t+ 1) · (Dt − xH`,`t−L − I
H`,`
t )+

]

+ (c+ h) ·
T−L∑
t=2

(T − L− t+ 1) · kbt−1.

This completes the proof.

2.4.2.2 An Upper Bound for D∗,b − C∗,` and a Lower Bound for C∗,`.

We state a proposition.
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Proposition II.12. We can bound:

D∗,b − C∗,` ≤ (c+ h) · φ(T, α) + (c+ L · p) · T · α · D̄.

Moreover, we also have:

C∗,` ≥ c ·

[
T∑
t=1

µt + βL+1
T−L(α)

]
+ h ·

[
L+1∑
t=1

βt1(α) +
T∑

t=L+2

βL+1
t−L (α)

]
− 2 · (c+ h) · φ(T, α)− (c+ L · p) · T · α · D̄.

Unlike the quantities CH`,` and D∗,b in subsection 2.4.2.1 that are not too difficult

to compare by exploiting the relationships among the key variables in the lost-sales,

backorder, and deterministic systems, which can be explicitly derived (cf. Proposition

II.10), the quantities D∗,b and C∗,` are not easily comparable since the optimal con-

trol for the lost-sales system is not known. One natural approach would be to first

decompose D∗,b − C∗,` into a sum of two terms, i.e., [D∗,b − C∗,b] + [C∗,b − C∗,`], and

then bound each of the terms separately. However, note that while D∗,b−C∗,b ≤ 0 (by

Lemma II.2, so this term can be ignored), the term C∗,b − C∗,` is not easy to bound

directly. To bypass this difficulty, in proving the upper bound in Proposition II.12, we

will construct an alternative backorder system b̃ whose optimal expected total costs

is only slightly larger than the optimal expected total costs under the lost-sales sys-

tem. Note that although not the same, this comparison shares the same spirit as the

comparison between the backorder and lost-sales systems in the canonical cost-based

model; e.g., Janakiraman, Seshadri and Shanthikumar [48].

Define C∗,b̃ as follows:

C∗,b̃ = min
π∈Πb̃

E

[
T∑
t=1

c · xπ,b̃t−L +
T∑
t=1

h · (Iπ,b̃t + xπ,b̃t−L −Dt)
+ +

T∑
t=1

p · (Dt − Iπ,b̃t − x
π,b̃
t−L)+

]
,
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where the set of feasible controls Πb̃ is defined as:

Πb̃ =

{
π : xπ,b̃t ≥ 0 , P

(
Iπ,b̃t + xπ,b̃t−L −Dt ≥ −

t−1∑
s=1

θs(α)

)
≥ 1− α, ∀ 1 ≤ t ≤ L+ 1 and

P

(
Iπ,b̃t + xπ,b̃t−L −Dt ≥ −

t−1∑
s=t−L

θs(α)

∣∣∣∣∣ =π,b̃t−L−1

)
≥ 1− α, ∀L+ 2 ≤ t ≤ T

}
,

and Iπ,b̃t+1 = Iπ,b̃t + xπ,b̃t−L −Dt for all t.

Define γt(α) and wt(α) as follows:

• For 1 ≤ t ≤ L+ 1, γt(α) is the smallest γ that satisfies

P

(
γ +

t∑
s=1

µs −
t∑

s=1

Ds ≥ −
t−1∑
s=1

θs(α)

)
≥ 1− α.

• For L+ 2 ≤ t ≤ T , wt(α) is the smallest w that satisfies

P

(
w +

t∑
s=t−L

µs −
t∑

s=t−L

Ds ≥ −
t−1∑

s=t−L

θs(α)

)
≥ 1− α.

The probabilistic service level constraints in Πb̃ can be equivalently written as follows:

Iπ,b̃1 +
t∑

s=1

xπ,b̃s−L −
t∑

s=1

µs ≥ γt(α) ∀ 1 ≤ t ≤ L+ 1,

Iπ,b̃t−L +
t∑

s=t−L

xπ,b̃s−L −
t∑

s=t−L

µs ≥ wt(α) ∀L+ 2 ≤ t ≤ T.

The following deterministic optimization is the analogue of (2.5) for backorder system
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b̃:

D∗,b̃ = min
x,y

T∑
t=1

c · xt−L +
T∑
t=1

h · zt+1 +
T∑
t=1

p ·mt+1 (2.16)

s.t. y1 = 0

yt = yt−1 + xt−1−L − µt−1 ∀ 2 ≤ t ≤ T + 1

zt ≥ yt ∀ 2 ≤ t ≤ T + 1

mt ≥ −yt ∀ 2 ≤ t ≤ T + 1
t∑

s=1

xs−L −
t∑

s=1

µs ≥ γt(α) ∀ 1 ≤ t ≤ L+ 1

t∑
s=1

xs−L −
t∑

s=1

µs ≥ wt(α) ∀L+ 2 ≤ t ≤ T

xt, zt,mt ≥ 0 ∀ 1− L ≤ t ≤ T − L.

The following relations between βtk(α), γt(α), and wt(α) are useful. By the defini-

tions of βkt (α), γt(α), wt(α), we can write:

γt(α) = βt1(α)−
t−1∑
s=1

θs(α) ∀ 1 ≤ t ≤ L+ 1

wt(α) = βL+1
t−L (α)−

t−1∑
s=1

θs(α) ∀L+ 2 ≤ t ≤ T

Since θs(α) ≥ 0, we have:

γt(α) ≤ βt1(α) ∀ 1 ≤ t ≤ L+ 1,

wt(α) ≤ βL+1
t−L (α) ∀L+ 2 ≤ t ≤ T.

In addition, noting that γt(0) = βt1(0) and wt(0) = βL+1
t−L (0), we have

γt(α)→ βt1(α), wt(α)→ βL+1
t−L (α) as α→ 0.
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Intuitively, one can interpret γt(α) and ωt(α) as the adjusted “(1 − α) percentiles”,

which are adjusted by the maximum possible accumulated “lost” reflected in θ’s.

Below, we state several lemmas that will be useful for proving Proposition II.12;

their proofs can be found in the Appendix.

Lemma II.13. D∗,b̃ ≤ C∗,b̃.

Lemma II.14. Under any feasible control π ∈ Π`, the following holds for all t ≥ 1:

Iπ,`t + xπ,`t−L −Dt = −
t∑

s=1

Υs + max

{
0,Υ1,

2∑
s=1

Υs, . . . ,
t−1∑
s=1

Υs

}

where Υs = Ds − xπ,`s−L.

Lemma II.15. For any π ∈ Π`, if we apply the same ordering decision xπt at period

t in the backorder system b̃ as if the inventory levels evolve according to a lost-sales

system, the resulting sequence of ordering decisions satisfies the probabilistic service

level constraints in Πb̃, i.e., Π` ⊆ Πb̃.

Note that Lemma II.15 does not imply C∗,b̃ −C∗,` ≤ 0, as the backorder systems b̃

and the lost-sales system ` have different inventory evolution dynamics.

Lemma II.16. C∗,b̃ − C∗,` ≤ (c+ L · p) · T · α · D̄.

Lemma II.17. We can bound D∗,b −D∗,b̃ as follows:

D∗,b −D∗,b̃ ≤ (c+ h) · φ(T, α).

To prove the upper bound in Proposition II.12, note that we can decompose D∗,b−

C∗,` as follows:

D∗,b − C∗,` = [D∗,b −D∗,b̃] + [D∗,b̃ − C∗,b̃] + [C∗,b̃ − C∗,`].
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By Lemma II.13, D∗,b̃−C∗,b̃ ≤ 0. The upper bound in Proposition II.12 then immedi-

ately follows from Lemma II.17 and Lemma II.16.

As for the lower bound for C∗,`, note that C∗,` ≥ C∗,b̃ − (c + L · p) · T · α · D̄ ≥

D∗,b̃ − (c + L · p) · T · α · D̄, where the first inequality is from Lemma II.16. By the

constraints in (2.16), we know that
∑T

t=1 xt−L ≥
∑T

t=1 µt + wT (α), zt+1 ≥ γt(α) for

1 ≤ t ≤ L+ 1 and zt+1 ≥ wt(α) for L+ 2 ≤ t ≤ T . So, we can bound:

C∗,` ≥ c ·

[
T∑
t=1

µt + wT (α)

]
+ h ·

[
L+1∑
t=1

γt(α) +
T∑

t=L+2

wt(α)

]
− (c+ L · p) · T · α · D̄

= c ·

[
T∑
t=1

µt + βL+1
T−L(α)

]
+ h ·

[
L+1∑
t=1

βt1(α) +
T∑

t=L+2

βL+1
t−L (α)

]

− c ·

[
T−1∑
t=1

θt(α)

]
− h ·

[
T∑
t=1

t−1∑
s=1

θs(α)

]
− (c+ L · p) · T · α · D̄

≥ c ·

[
T∑
t=1

µt + βL+1
T−L(α)

]
+ h ·

[
L+1∑
t=1

βt1(α) +
T∑

t=L+2

βL+1
t−L (α)

]
− 2 · (c+ h) · φ(T, α)− (c+ L · p) · T · α · D̄.

This completes the proof of Proposition II.12.

2.5 Conclusion

In this paper, we showed that stochastic inventory models with lead times and

sequential probabilistic service level constraints can be well-approximated by deter-

ministic programs when the targeted service level is sufficiently high. To accomplish

this, we proposed a simple order-up-to control whose parameters can be computed us-

ing the solution of a deterministic approximation of backorder system, and proved its

asymptotic optimality. Our work contributes to the growing body of literature that use

asymptotic analysis to analyze the performance of simple heuristic controls in complex
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stochastic inventory systems.

This work leaves several interesting future research directions. First, we mainly

focus on the deterministic linear program approximation in this work, which is not

necessarily tight due to the nature. To address this, instead of using a deterministic

linear program, one could possibly use a more refined stochastic program or adapt a

re-solving LP technique. We will leave the investigation on this direction for future

research. Second, in our work, we have assumed that lead time is deterministic. It

will be interesting, and impactful, if it can be shown that stochastic inventory models

with random lead time and sequential probabilistic service level constraints can also be

well-approximated by deterministic programs. Third, in this paper we have primarily

focused on the analysis of order-up-to control. It is curious to see whether other simple

heuristic controls such as constant-order policy is also asymptotically optimal (in some

sense) in the presence of sequential probabilistic service level constraints. Note that the

convexity argument in Xin and Goldberg [89] cannot be directly applied here. Fourth,

it will be interesting to extend our analysis to other important neighboring inventory

systems such as the dual-sourcing setting.
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CHAPTER III

Snob and Follower Effects in Luxury Retailing

3.1 Introduction

The value of the luxury goods market is estimated at around 1.2 trillion Euro

globally in 2018 (1.5% of GDP). The luxury industry has also grown rapidly, especially

over the last two decades – for example, the global sales of personal luxury goods, a

segment of the luxury products, has grown from 73 billion Euro in 1994 to 260 billion

Euros in 2018 (Bain and Company [11]), which is double of the inflation rate. Although

the moral legitimacy of luxury products is sometimes debatable, the luxury industry

is too relevant for researchers to ignore, especially as it is becoming one of the drivers

of economic growth (Berghaus, Müller-Stewens, and Reinecke [12]).

Luxury products has drawn attention from academia since Veblen [80]. It differs

from other ordinary goods in many fundamental ways. Commonly, five effects are linked

to luxury consumptions (Leibenstein [56]; Vigneron and Johnson [83]): (a) The Veblen

effect, where people make conspicuous consumption to signal their wealth status; (b)

the snob effect, where people value exclusiveness, scarcity, or uniqueness of a product;

(c) the bandwagon effect, where people purchase for conformity by either following the

purchase made by others in their group or imitating the affluent lifestyle of people whom

they want to be (Dittmar [33]); (d) the hedonism effect, where people get emotional
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satisfaction by purchasing; (e) the perfectionism effect, where people value the superior

product quality or product characteristics.

Among the above five effects, the first three suggest an interesting structure of

inter-personal influences (externalities) of the luxury products, namely the existence

of both negative and positive externalities. The first and second effects reflect the

negative externalities of luxury products – a higher sales of the product means either

a less-efficient signal of wealth status or a dampened uniqueness; Customers’ utility of

the product decreases in its total sales. We refer to such negative externalities as snob

effect. The third effect indicates positive externalities: customers’ willingness-to-pay

increase as he observes or expects higher purchases made by other people, either in

his group or in a “higher-perceived” group. We refer to such positive externalities as

follower effect.

The coexistence of these two opposing effects, i.e., follower and snob effects, are

considered as the core of the luxury industry. We can easily find articles discussing

how luxury brands deal with, or sometimes struggle with each of these effects. On the

one hand, brands are working on enhancing the follower effect – for example, the CEOs

of the leading luxury groups, LVMH group and the former Gucci group, view a core

mission of luxury as selling dreams (Havard Business Review, October 2001; Fortune,

6 September 2007). In other words, they advertise the consumption of the snobs and

make more followers dream about the products and purchase them. On the other hand,

to maintain the scarcity or exclusiveness of the products, brands might also want to

limit the number of followers. For example, Tiffany & Co. decided to limit the sales

of its “cash-cow” silver products to the massive volume of teen followers, in order to

decrease the negative externalities to other (snob) customers (The Wall Street Journal,

January 2007).

While the literature on luxury products includes extensive studies on the reasons
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and drivers of luxury consumption (see Gurzki and Woisetschläger [42] for a compre-

hensive review), very few papers study the optimal selling strategies. At the same

time, the literature that studies externalities contains extensive analysis of either pos-

itive or negative externalities, separately,1 but very few papers study the snob and

follower effects jointly and investigate how these two effects influence the retailing

strategies under various market and pricing structures (more details in the Literature

Review Section). In this paper, we aim to fill these gaps. We study the joint effect of

snob and follower and analyze the selling strategies in the following three settings: (1)

the product-line and pricing strategy in a monopoly market, where the retailer offers

vertically-differentiated products, (2) the pricing strategies in a duopoly market where

each retailer offers a single product, and (3) the product bundling strategies.

The aspects we consider are very relevant because we can easily observe a volume of

interesting and (perhaps) counter-intuitive practices. Using personal fashion products

as an example, we discusses these practices with respect to two scenarios: (1) products

within the same category and (2) products across different categories. For scenario (1),

we have two observations in cases where either a single retailer or multiple retailers

offer various products. For the former case, the product-line strategy is relevant. For

example, several luxury brands have secondary lines that offer similar types of products

as the mainline but at lower prices (e.g., Prada has one secondary line MiuMiu, Ralpha

Lauren has Lauren Ralph Lauren and Polo Ralph Lauren as the secondary lines, and

Armarni (Giorgio Armani) holds secondary lines including Emporio Armani, Armani

Exchange, etc.). Note that the general fashion brands like Zara and H&M, in contrast,

usually only have one brand line. For the latter case, the competitive market structure

can play a role. Note that a wide range of luxury products, with various qualities

1On positive externalities: see Liebenstein 1950, Becker 1991, Besen and Farrell 1994, Katz and
Shapiro 1994, Candogan, Bimpikis, and Ozdaglar [27], etc. On negative externalities: see Bagwell
and Bernheim, 1996, Naor 1969, Lippman and Stidham 1977, Mendelson and Whang 1990, Momot et
al. 2019, Tereyağoğlu and Veeraraghavan [77] etc.
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and prices, are offered by different companies – for example, in terms of handbags,

such a range can be from higher price Chanel bags to lower price Tory Burch bags.

The product range of general handbags has similarities, e.g., from relatively higher

price handbags (with a general brand name) to lower price supermarket handbags.

For scenario (2), bundling across products becomes an option. While the total mixed

bundling strategy, where products are both offered separately and in bundles with

discounts, is widely used for general products, it is rare to see such a form of bundling

in the luxury industry. Instead, bundling in the luxury industry is often taken different

forms, e.g., partial mixed bundling, where relatively low-value products are available

both separately and in bundles, while a high-value product is only offered in the bundle.

One example is that, for those highly-exclusive handbags like the Hermès Birkin and

Kelly handbags, in most cases, they can only be obtained with the purchase of other

relatively low value products (Forbes, January 2016; Bloomberg, June 2015). Another

example is that, for certain limited-edition luxury sport cars like McLaren Speedtail,

customers need to “spend on several regular models and ... be invited to put [their]

name down for a limited-edition hypercar” (Economist, September 2018). Although

this partial mixed bundling exist in practice, its underlining motivation is in fact not

obvious – if the goal of such a bundling strategy is simply to generate a higher revenue

through the bundle, then it can be easily achieved by charging a higher price for the

high-value product instead.

Motivated by above observations, we aim to understand the driving forces from

these three aspects of firm decisions through the lens of externalities. For each aspect,

we use a stylized model to capture the main trade-offs of the market and product

structures.

In the first aspect, product-line strategy, we model the retailer as a monopoly who

offers two products with exogenous qualities. The monopolist decides which product(s)
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to offer and the corresponding price(s). We have two findings. First, when the exter-

nalities are not too strong, the two opposite externalities, ie., snob and follower effects,

turn out to reinforce each other and reduce the cannibalization between products. The

optimal policy, thus, may be to offer both products and segment the market. As an

comparison, the optimal policy in the no externalities case is to offer only one product.

Second, when externalities become very strong, the cost of maintaining a self-selected

segmentation becomes too large, and the optimal policy becomes to offer only one

product.

In the second aspect, pricing in competitive market, we assume that each retailer

offers a single product with exogenous quality. We find that, in equilibrium, while the

two externalities work in the same direction, their impacts on market segmentation can

be different depending on the distributions of customers’ valuation. When customers’

values follow a discrete distribution, the two externalities both induce a pricing war

where one firm sells its products to both types of customers while the other cannot sell

its product even by setting the price to 0. When customers’ values follow a continuous

distribution, the two externalities work through a joint mechanism to induce a new

form of segmentation, i.e., partial segmentation, where one firm exclusively sells its

product to one type of customers while the other one sells its product to both types

of customers. In the continuous distribution case, we discover a new mechanism. Its

intuition is as follows (more detailed discussions can be found in Section 3.5). On the

one hand, a stronger follower effect indicates that one of the firms has the incentive to

sell its products to more followers, since the followers’ willingness-to-pay increases with

the follower effect; such higher sales thus further reinforce the follower effect. On the

other hand, a stronger snob effect indicates that the value of product offered by this

firm is “contaminated” in the eyes of snobs, which makes it strictly dominated by the

other product. The other firm, who faces less competition from the first firm, could
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thus focus on snobs and charge a higher price.

In the third aspect, bundling strategy, to focus on the interaction between bundling

decisions and externalities, we model the retailer as a monopoly. In terms of the

optimal bundling policy, we find that it depends on the difference between customers’

quality sensitivities. When snobs are much more sensitive to quality than followers,

the retailer is more likely to offer the high-value product only in the bundle (partial-

mixed bundling). Such a policy reduces the total sales of the high-value product and

weakens the snob effect, but allow him to charge a higher price to snobs. When snobs’

sensitivity to quality is similar to that of followers, the retailer is now more inclined to

offer pure bundling – it is not wise to lose followers on any product in order to gain

the “exclusiveness” from snobs who do not have a significant higher willingness-to-pay

in such a case. In terms of the impact of externalities, we find that both the positive

and negative externalities make the difference in quality sensitivities to be smaller and

thus, make the retailer favor the pure bundling strategy.

Note that the insights related to the effect of joint positive and negative externalities

are not limited to the settings of luxury products. These insights would apply to any

product which features both snob and follower effects (e.g., customers purchase choices

can be affected by the world-of-mouth effect, while many customers may still value the

uniqueness of a non-luxury product to show their taste), or any service where additional

joining customer creates both positive and negative externalities (e.g., more customers

waiting for service may signal high quality of the service, i.e., positive externalities, but

also create more congestion in the system, i.e., negative externalities (Veeraraghavan

and Debo [81]; Veeraraghavan and Debo [82])).

The structure of the rest of the paper is as follows. We briefly discuss the most-

relevant literature in Section 3.2. In Section 3.3, we introduce the general model

of products and customer utilities. We study the effect of externalities along the
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three outlined questions and develop our main results in Sections 3.4, 3.5, and 3.6,

respectively.

3.2 Literature Review

Our discussion of literature consists of three parts, each corresponding to one of the

aspects of the market and product structure that we study in this paper. For brevity,

in this section, we only include the most relevant papers that consider externalities.

The product-line decision aspect is studied in both monopolistic and competitive

settings. In monopolistic setting, firm decides whether to offer multiple products, or

not, but only a few papers study the effect of externalities. They either include only

snob effect or only follower effect: Jing [51] considers only the follower effect and studies

how the effect changes the product portfolio decision. While in Jing [51], the follower

effect is modeled in an aggregated way such that the total sales of all products affect

the utility of each products, in our paper, both of the two externalities are modeled as

product specific – the utility of a product is only affected by its own sales. Such product

specific externalities not only better fit the luxury product settings we consider, but

also change the structure of the trade-offs in the selling decision, and, thus provides

new insights. Balachander and Stock [10] focus on the snob effect and investigate its

impact on the decision about whether to offer limited edition product or not.2 While,

in Balachander and Stock [10], all customers either strictly prefer the limited edition

product or are all indifferent between the two products (since the two products (normal

and limited-edition products) the firm can potentially provide are always with the same

quality and they only differ in whether there is a pre-announced amount of sales), in

our paper, we consider a more general setting where different types of customers can

2While Balachander and Stock [10] mainly discuss the competitive setting of horizontal-
differentiation case, it also covers a monopoly setting where horizon differentiation is mathematically
equivalent to vertical differentiation.
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have various preference of products (since we assume that the two products can be of

heterogeneous quality and the sales of each product is generate by customers’ choice

instead of the exogenous limited-edition sales number). The only paper we are aware of,

that has both externalities in monopolistic setting is Amaldoss and Jain [7] who study

the branding decision, i.e., whether to sell two products under the same brand, facing

both types of customer, snobs and followers. However, they do not allow customers

to freely choose which product to purchase; Instead, they assume that any type of

customer (snobs or followers) can only purchase the product that is exclusively offered

for his own type. Thus, the paper does not reflect the critical nature of cannibalization

across products in the vertical differentiation setting. In this paper, we include both

snobs and followers effect, and further, we allow customers to choose the product that

has a higher utility for him.3

In the competitive setting, while there is a rich literature on the network effect of

products, there are very few papers consider both positive and negative externalities

(explicitly as functions of product sales) and vertical-differentiated products. Many

early papers (e.g., Matutes and Regibeau [60] and Laffont, Rey and Tirole [54]) focus

on the compatibility of products offered by different firms – although they study prod-

ucts that have positive network effect, they do not consider the customers’ utilities

of products as functions of total sales. Instead, compatibility only means that cus-

tomers have a larger choice set to “mix and match.” Among the papers where product

utilities are explicitly modeled as functions of total sales, many of them use Hotelling

model (of horizontal differentiation product) to model the intrinsic value of products

(e.g., Balachander and Stock [10], Viswanathan [84]). Note that in this paper, how-

ever, we focus on the vertical differentiation, which better fits the luxury industry that

3Other two papers in this context that include both snob and follower effects are Amaldoss and
Jain [4] and Amaldoss and Jain [6], both of which consider a single product – The former focuses on
the slope (upward or downward) of the demand function, while the latter considers pricings in two
periods where the snobs and followers make purchase sequentially in separate periods.
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we study because customers highly value qualities and there is usually a clear rank

across different products (a key feature in vertical differentiation). The key difference

between horizontal and vertical differentiation product is that the former implies neg-

ative correlations of customers’ utility across products while the latter implies positive

correlations. Thus, the insights generated from these two differentiation settings could

be very different. So far we know, the most relevant papers are Katz and Shapiro

[52], Balachander and Stock [10], and Amaldoss and Jain [5]. Katz and Shapiro [52]

captures the symmetric equilibrium in a Cournot duopoly game with (explicit) positive

externalities. While symmetric equilibrium can be representative for a single follower

effect, asymmetric equilibrium, however, is inevitable for the asymmetric externalities

(snobs and followers) we study in this paper (we discuss in more details later in Sec-

tion 3.5). Balachander and Stock [10] study how competition influences the decision

whether to offer limited-edition products or not. While Balachander and Stock [10]

only consider negative externalities, we expect that including both positive and neg-

ative externalities can bring new insights on the competitive market (remember that

one of the key lessons from the externalities literature is that the positive externalities

may change the equilibrium). Amaldoss and Jain [5] considers both follower and snob

effects and focuses on the horizontally-differentiated products. Similar to the discus-

sion of horizontal differentiation above, we expect that the insights are different in the

vertical differentiation setting we consider in this paper.

The bundling strategy is studied in Marketing, Economics, Information Systems,

and Operations Management literatures. The economic intuition for bundling is based

on extracting a higher surplus when consumers have heterogeneous valuations of prod-

ucts (Adams and Yellen [2], Schmalensee [69]). We refer readers to Stremersch and

Tellis [73] for a comprehensive review of bundling. For the bundling strategy of verti-

cally differentiated products, which we study in this paper, the most relevant paper is
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Ma and Mallik [59], but they do not consider any externalities. Another related paper

is Prasad, etc. [64], where they provide the optimal bundling strategy with positive ex-

ternalities. In this paper, we focus on positive and negative externalities jointly when

studying the optimal bundling strategy. Another main difference between our paper

and Prasad, etc. [64] is that while Prasad, etc. [64] is mainly about the interactions of

costs and positive externalities, we focus on the zero-cost cases and show that the two

externalities themselves can already change the optimal bundling strategies.

Our work also contributes to the broader modeling literature of luxury products.

While early modeling papers focus on the drivers of the consumption of luxury prod-

ucts (Corneo and Jeanne [31]) and the reasons why brands leverage on the product

scarcity (Stock and Balachander [72]), recent works have been shifting their focus to

the optimal decisions and strategies. For example, Rao and Schaefer [66] character-

ize the product depreciation and upgrade decision over time for a single product that

customers use to signal their wealth status and, Momot, Belavina, and Girotra [61]

characterize the decision of choosing which customer(s) to offer the product given their

network structures, in the case where all customers value the exclusiveness. Our paper

complements these recent studies by providing optimal decisions facing three different

market and product structures mentioned above.

3.3 Model

In this section, we introduce the general model.

We consider two products that are differentiated in their qualities, q1 ≥ q2, where

qualities are given exogenously.4 Such a setting can be viewed as the second stage of

decisions after firms have decided the quality. We focus on the second stage to study

the effect of externalities, without interactions with costs in the stage of designing

4The assumption follows Balachander and Stock [10] and Shaked and Sutton [70]
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product quality.

The customer utility of a product comes from two parts, the functional utility de-

termined by the attributes of the product, and the network utility determined by only

externalities. Depending on whether customers experience positive or negative exter-

nalities, we consider two types of customers: snobs and followers. Snob customers are

those who experience negative externalities – they value the exclusiveness and unique-

ness of products. Thus, their utility decreases with total sales. Follower customers

experience positive externalities – they like to follow the purchase of others and, thus,

their utility increases with total sales. We normalize the quantity of snobs to 1 unit

and use β to denote the quantity of followers. The utilities of snobs and followers are

assumed to be:

US
i (v) = vqi − kDe

i − pi

UF
i (v) = vqi +mDe

i − pi

where pi is the price of product i and De
i represents the expected sales of product i.

For a type-v customer, where v represents his sensitivity to quality, the functional

value of product i is vqi. For snobs, the network value is −kDe
i , where k represents

the sensitivity to uniqueness. A higher total sales of product i hurts the product

uniqueness and, thus, results in a lower utility for a snob customer. Similarly, for a

follower customer the network utility is mDe
i , where m represents the sensitivity to

conformity. A higher total sales of product i increases his utility.

Note that we express the network value of a product as a function of total sales.

This allows to captures the main drivers of positive and negative externalities (snobs

and followers) and avoids the complexity of considering the structure of the social

network. Such an approach is also one of the most widely-used ones in the literature,
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e.g., Prasad, etc. [64], Amaldoss and Jain [7].

3.4 Product-line Strategy

In this section, we consider a simple case, where a monopolist determines the prices

of two products with exogenous qualities, and illustrate how the snob and follower

effects affect the pricing and the product-line decisions.

We assume that each customer needs only one unit of the product, and purchases

the product with higher utility. Customers have an outside option, which we normalize

to zero, without loss of generality.

We first consider the case, where all snobs are of the same type vS, with mass unit

one, and all followers are of the same type vF , with mass β. Such discrete distribution

setting is widely used in the literature (e.g. Adams and Yellen [2]; Stremersch and Tellis

[73]), especially in the stage of illustrating the main trade-offs. We adopt this setting

to illustrate the main changes brought by both positive and negative externalities. We

assume that vS > vF , i.e., snobs have higher willingness-to-pay (Vigneron and Johnson

[83]).

We start the analysis with a benchmark case where there are no externalities.

No Externalities

With no externalities, the utilities of customers are reduced to the following form.

US
i (vS) = vSqi − pi

UF
i (vF ) = vF qi − pi

Although there is no snob or follower effect in this case, we still denote the customers

of type vS as snobs and those of type vF as followers, to be consistent with the rest of

the paper.
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The decision rule for each type of customer can be easily calculated. Snob chooses

to purchase product 1 (the higher-quality product) if vS ≥ p1−p2
q1−q2 and vS ≥ p1

q1
(such

that vSq1−p1 ≥ vSq2−p2 and vSq1−p1 ≥ 0), while he chooses to purchase product 2 if

vS ≤ p1−p2
q1−q2 and vS ≥ p2

q2
. Similarly, for a follower, he purchases product 1 if vF ≥ p1−p2

q1−q2

and vF ≥ p1
q1

or product 2 if vF ≤ p1−p2
q1−q2 and vF ≥ p2

q2
. With this decision rule, there

does not exist a market outcome such that high quality sensitive customers, i.e., snobs,

purchase the high-quality product (product 1) while low quality sensitive customers

(followers) purchase the low-quality product (“market segmentation”).

Proposition III.1. When there are no externalities, under the optimal prices, the sales

outcome can be either of the two following cases:

• If vS ≥ (1 + β)vF , snobs purchase product 1 while followers make no purchase.

The optimal prices are p∗1 = vSq1 and any p∗2 > vF q2.

• Otherwise, both snobs and followers purchase product 1. The optimal prices are

p1 = vF q1 and any p2 > vF q2.

In other words, although there are two potential products with different qualities,

under the optimal policy, the firm only sells one product. Such a policy induces pur-

chase from either both snobs and followers or only snobs, depending on customers’

sensitivity to quality.

The intuition is that, if a firm wants to offer both products, these two products

naturally cannibalize each other. In order to prevent snob customers from purchasing

the low-quality product (instead of the high-quality one), the price of the high-quality

product needs to be set lower than its actual value to snobs. If the followers’ willingness-

to-pay for the low product is low enough (vS ≥ (1 + β)vF ), then the cannibalization

effect dominates the revenue from the low-quality product. Thus, it is optimal to only

attract snobs customers to purchase the high-quality product. On the other hand, for
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the case where the followers are sensitive enough to quality (vS < (1+β)vF ), if a firm is

better off by lowering prices and bear cannibalization to allow the followers to purchase

the low-quality product (instead of excluding them from any product), then the firm

can be even better off by lowering prices all the way to allow followers purchasing the

high-quality product. This is due to the multiplicity structure of the functional value,

i.e., vqi ∀i ∈ {1, 2}.

The analysis in Proposition III.1 can be extended to the case where multiple prod-

ucts are offered and multiple choices of customers.

In the rest of the paper, we denote ∆q = q1 − q2.

Snob and Follower Effects

With both snob and follower effects, the utility of one type of customer is affected

by the purchase of the other type of customer.

For the snob customers to purchase product 1, the utility of product 1 needs to

be positive to them, vSq1 − kDe
1 − p1 ≥ 0, and also be larger than that of product 2,

vSq1 − kDe
1 − p1 ≥ vSq2 − kDe

2 − p2:


vS ≥ p1−p2+k(De1−De2)

∆q

vS ≥ p1+kDe1
q1

For the snob customers to purchase product 2, we need vSq2 − kDe
2 − p2 ≥ 0 and

vSq1 − kDe
1 − p1 < vSq2 − kDe

2 − p2:


vS ≥ p2+kDe2

q2

vS <
p1−p2+k(D2

1−De2)

∆q
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Similarly, the followers choose to purchase product 1 if

 vS ≥ p1−p2−m(De1−De2)

∆q

vS ≥ p1−mDe1
q1

And the followers purchase product 2 if

 vS <
p1−p2−m(D2

1−De2)

∆q

vS ≥ p2−mDe2
q2

With both externalities, we find that a market segmentation becomes possible,

which is in contrast with the “no segmentation” result with no externalities.

Theorem III.2. When there are both positive and negative externalities, under the

optimal prices, the equilibrium can be of the following forms depending on the values

of parameters:

(1) if (vS − vF )q2 ≤ (m+ k)β, the equilibrium can be in the following four forms

• Snob customers purchase product 1 while follower customers purchase product 2

if the condition (vS−vF )(∆q) ≥ (k+m)(1−β) holds. The optimal prices are p1 =

vSq1−k and p2 = min{vF q2 +mβ, vSq2−vF (∆q)−k−m(1−β)} and the revenue

is R1 = p1 + βp2 = vSq1− k+ βmin{vF q2 +mβ, vSq2− vF (∆q)− k−m(1− β)}.

• Both snob and follower customers purchase product 1. The optimal price of prod-

uct 1 is p1 = min{vSq1 − k(1 + β), vF q1 + m(1 + β)}. The price of product 2

can be set as long as p2 ≥ p∗1 − min{vS(∆q) − k(1 + β), vF (∆q) + m(1 + β)} is

satisfied. The revenue is R2 = (1 + β) min{vSq1 − k(1 + β), vF q1 +m(1 + β)}

• Snob customers purchase 2 while followers purchase product 1 if the condition

(vS − vF )(∆q) < (k + m)(β − 1) holds. The optimal prices are p∗2 = vSq2 − k
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and p∗1 = min{vSq2 − k + vF∆q +m(β − 1), vF q1 +mβ}. The optimal revenue is

R∗ = vSq2 − k + βmin{vSq2 − k + vF∆q +m(β − 1), vF q1 +mβ}.

• Snob customers make no purchase while follower customers purchase product 1

if the condition of (vs − vF )q1 < (k + m)β also holds. The optimal prices are

p1 = vF q1 +mβ and any p2 ≥ vF q2. And R3 = β(vF q1 +mβ)

(2) If (vS − vF )q2 > (m+ k)β, the equilibrium can be in the following three forms

• Snob customers purchase product 1 while follower customers purchase product 2.

The optimal prices are p∗1 = vF q2 +mβ + vS∆q − k(1− β) and p∗2 = vF q2 +mβ.

The revenue is R∗ = vF q2 +mβ + vS∆q − k(1− β) + β(vF q2 +mβ).

• Both snob and follower customers purchase product 1. The optimal prices and

revenue are the same as shown above.

• Snob customers purchase 1 while follower customers make no purchase if the

condition of (vS − vF )q1 ≥ k + m holds. The optimal prices are p∗1 = vSq1 − k

and any p2 ≥ vSq2. The revenue is R = vSq1 − k.

• Snob customers purchase 2 while followers purchase product 1. The optimal prices

and revenue are the same as shown above.

The actual equilibrium outcome would fall into only one of the above scenarios

depending on the parameter values.

Note that the equilibrium structure shown in Theorem III.2 is different from that

shown in Proposition III.1 (the no externalities case). First, the market can be seg-

mented where snobs purchase the high-quality product and followers purchase the low-

quality one.5 Second, when the impact of the network values dominates the impact of

5Mathematically, it is because the externalities reverse the order of preference of the low-quality
product. vSq2 − β ≤ vF q2 + mβ. Such a case can appear when either type difference is low, or q2 is
low, or any one of the snob or follower effect is large.
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the functional values for all products6, equilibrium outcomes such that “only followers

make purchase” or “followers purchase the high-quality product while snobs purchase

the low quality one” can exist. To make a fair comparison to the no externalities case,

we do not focus on such cases in the following analysis. In the rest of the paper, we

make the following assumption to focus only on the cases where the externalities do

not completely reverse the order of preference.

Assumption III.3. vSq1 − k(1 + β) ≥ vF q1 +m(1 + β).

Under Assumption III.3, the case (1) in Theorem III.2 is reduced to the following

form.

Proposition III.4. Under Assumption III.3, the equilibrium in the case of (vS−vF )q2 ≤

(m+ k)β can be of the following forms.

• Snobs purchase product 1 while followers purchase product 2. The optimal prices

are p1 = vSq1 − k and p2 = min{vF q2 + mβ, vSq2 − vF∆q − k −m(1 − β)} and

the revenue is R = vSq1 − k + βmin{vF q2 +mβ, vSq2 − vF∆q − k −m(1− β)}.

• Both snobs and followers purchase product 1. The optimal prices are p1 = vF q1 +

m(1+β) and any p2 ≥ p∗1−min{vS∆q−k(1+β), vF∆q+m(1+β)}. The revenue

is R = (1 + β)[vF q1 +m(1 + β)]

It is also easy to see that when m = k = 0, the equilibrium structure reduces to

the no-segmentation form in Proposition III.2.7

We have two observations about how the externalities affect the equilibrium struc-

ture. First, when m or k increases, the optimal product strategies first change from

6In this scenario, the “willingness-to-pay” of snobs becomes smaller than that of the followers for
all products, i.e., vSq1 − kβ < vF q1 +mβ.

7This is because that the feasibility condition of the last form of equilibrium does not hold. The
remaining forms of equilibrium are the same as those in Theorem III.2.
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the no-segmentation form (similar to Proposition III.1 without externalities) to “of-

fering both product 1 and 2” (the first equilibrium shown in Proposition III.4), and

then to “only offering product 1” (the second equilibrium shown in Proposition III.4).

The intuition is that when m or k increases, it first eases the cannibalization of the

two products, which makes a market segmentation profitable. However, when m and k

becomes larger, followers’ utility of product 1 becomes closer to that of snobs and there-

fore, the “cost” of maintaining a market segmentation, i.e., keeping followers away from

product 1, becomes higher. Note that although the positive and negative externalities

affect the product utility in opposite directions, in the settings that we consider, they

actually work in the same way by pushing the difference between utilities of snobs and

utilities of followers smaller. Another observation is that when the portion of followers,

β, increases, the optimal policy is more inclined to be “only offering product 1.” The

intuition is similar to above; when the portion of followers increases, the profit losses

from the cannibalization for followers become larger. This drives the firm to break the

market segmentation and induce both snobs and followers to purchase product 1.

Our finding shares some similarities with Jing [51], where they also show that

positive externalities can favor the market segmentation and change the product line

offered by a monopoly. Our work complements their findings by further including the

negative externalities in the analysis. We also enrich their findings: first, we derive

additional insights into the product strategy changes by introducing the heterogeneity

of quality sensitively across the customers; second, we show that both positive and

negative externalities favor the market segmentation in the same direction, which may

be counterintuitive at first glance (as one may suspect that negative externalities may

go against market segmentation after knowing the positive-externalities results in Jing

[51]).
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3.5 Selling Strategy in Competitive Market

In this section, we focus on a competitive market where a single type of products

are offered by different brands (with different qualities). Our interests in such a market

structure stem not only from the industry practice as discussed in Section 3.1 but also

from the insights we learn from Section 3.4 that externalities reduce the cannibaliza-

tion between products. We are interested in whether externalities change the product

decision in the (competition) settings where cannibalization from the same seller is

irrelevant.

We study the duopoly market where each retailer i ∈ {1, 2} offers a single product,

with an exogenous quality, q1 and q2 (q1 ≥ q2). Each retailer decides the price pi for

its product i. Without loss of generality, we assume that if a customer’s utilities of the

two products happen to be the same, he would always choose product 1.

In order to illustrate the impact of externalities, similar to Section 3.4, we start from

studying the equilibrium without externalities as the benchmark, and then investigate

the cases with both snob and follower effects. Note that the game structure is differ-

ent in these two cases. The former can be directly analyzed using the standard Nash

Equilibrium framework, while the latter needs to be captured by a joint framework

of Rational Expectation and Nash Equilibrium. The intuition is that customers’ ex-

pected demand and their corresponding purchase decisions would affect firms’ pricing

decisions and the equilibrium, and at the same time, the resulting equilibrium would

affect whether the realized demands are consistent with customers’ expectations (more

detailed discussions on game structure will be provided in each subsection.)

In each of the no-externalities cases and with-externalities cases, we consider two

types of customer distributions: discretely distributed customers, similar to that in

Section 3.4, and continuously distributed customers. The reason that we add the

latter type is as follows. In the competitive market that we study in this section, each
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retailer i effectively faces only two possible scenarios (i.e., either snobs or followers

choose to purchase product i), while, in the monopoly case in Section 3.4, the retailer

faces four possible scenarios (i.e., snobs can purchase products 1 or 2 and followers can

purchase products 1 or 2 as well). To make our results more robust, we thus further

study uniformly distributed customers in addition to discretely distributed customers.

These two distributions can be viewed as two extreme cases of a realistic customers’

value distribution to help us draw insights of the general case. We also illustrate the

new insights brought by continuously distributed customers by comparing the discrete

and continuous cases.

The structure of this section is as follows. We discuss 4 different parts in total,

which are combinations of the cases with and without externalities, and the cases with

discrete and continuous customer distributions. In each part, we start with describing

customers’ decision rule (of which product to purchase) and the best response functions

of both firms. We then characterize the equilibrium and investigate the impact of

externalities and other relevant parameters.

3.5.1 No Externalities

We study the equilibrium with no externalities using the Nash equilibrium frame-

work, focusing on the competition between two firms.

Discrete Distribution Cases

We start with the discrete distribution case. Customers’ purchase decisions are as

follows. For a customer with type v, either snobs or followers, he purchases product 1

from firm 1 if the following conditions hold: (1) v ≥ p1−p2
∆q

(such that q1v−p1 ≥ q2v−p2)

and (2) v ≥ p1
q1

. Similarly, he purchases product 2 from firm 2 if the following conditions

hold: (1) v < p1−p2
∆q

and (2) v ≥ p2
q2

.

Accordingly, we can describe the best response functions of the firms as follows:
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(1) Given p2, the revenue of firm 1 is,

π1 =

 p1 if min{vF (q1 − q2) + p2, vF q1} ≤ p1 ≤ min{vS(q1 − q2) + p2, vSq1}

(1 + β)p1 if p1 ≤ min{vF (q1 − q2) + p2, vF q1}

(2) Given p1, the revenue of firms 2,

If the condition min{p1 − vF (q1 − q2), vF q2} ≤ min{p1 − vS(q1 − q2), vSq2} holds, then

π1 =

 p2 if min{p1 − vF (q1 − q2), vF q2} ≤ p2 ≤ min{p1 − vS(q1 − q2), vSq2}

(1 + β)p2 if p2 ≤ min{p1 − vF (q1 − q2), vF q2}

Otherwise, π1 = (1 + β)p2.

Proposition III.5. When firm 1 and 2 compete on price, given their products with

quality q1 and q2 respectively, the equilibrium can be in either of the following forms

• If (vS− vF )∆q ≥ vF (βq1− (1 +β)q2), then firm 1 set price p1 = vS∆q+ vF q2 and

effectively only sell to snob customers; firm 2 set price p2 = vF q2 and effectively

only sell to follower customers.

• Otherwise, firm 1 set price p1 = vF∆q and clear the market by selling to both

snob and follower customers. Firm 2 generate no sales even by setting p2 = 0.

Proposition III.5 shows that only when either snobs and followers have similar

sensitivities to the quality or the two products have similar quality themselves, it is

likely for firm 1 to fully occupy the market. The intuition is straightforward – when the

customers and products become homogeneous, then the high-quality product strictly

dominates the other and takes the full market.

For the first form of equilibrium in Proposition III.5, by comparing with Proposition

III.1, we observe that competition brings back the perfect market segmentation – while
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in the monopoly case the retailer does not induce snobs and followers to purchase

different products, in the duopoly case each of the two retailers/competitors can sell the

product exclusively to one type of customers. The intuition can be explained through

two channels. The first channel is cannibalization: while cannibalization between two

products prevents the monopoly from offering more than one product (as shown in

Proposition III.1), such cannibalization within one retailer naturally disappears when

the two products are managed by separate retailers. In other words, in the monopoly

setting, providing an additional product cannibalizes with existing product(s) offered

by the monopoly itself, while in the competitive setting, an additional product only

cannibalizes with products offered by other firms. The second channel is through

coordination. In the monopoly setting, the seller can coordinate two products and

choose whether to offer only one of them or both. In the competitive setting, however,

such coordination is not possible (and we do not consider any coordination game).

These two channels lead to market segmentation in the competitive setting. Also,

note that the equilibrium prices under market segmentation are the same as those in

Proposition III.1 (although such segmentation scenario is dominated in the case of

Proposition III.1).

The second form of equilibrium in Proposition III.5 describes the situation where

firm 1 and 2 are involved in a pricing war, in which case the price of each product is

driven down by each other until p2 equals zero. Note that it is possible for one firm to

take the entire market because customers are discretely distributed.

In the rest of the paper, we simply refer to these two forms of equilibrium in

Proposition III.5 as perfect segmentation and pricing war, respectively.

Continuous Distribution Cases

Next, we analyze the equilibrium where customers’ quality sensitivities/valuations

follow uniform distributions. Motivated by the fact that snobs normally have a higher
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sensitivity to quality, we assume that vF ∼ U [0, 1] and vS ∼ U [0,M ], where M ≥ 1.

For any customer with type v, his purchase decision is the same as that described in the

discrete distribution case above (where we provide a general description of customers’

decision rules).

The best response functions of the firms are as follows:

(1) Given p2, the revenue of firm 1 is

π1 =

 maxp1 p1[(β + 1)− (β + 1
M

)p1−p2
∆q

] if p1 >
p2q1
q2

maxp1 p1[(β + 1)− (β + 1
M

)p1
q1

] if p1 ≤ p2q1
q2

(2) Given p1, the revenue of firms 2 is

π2 =

 maxp2 p2(β + 1
M

)[p1−p2
∆q
− p2

q2
] if p2 <

p1q2
q1

0 o.w.

Before we further analyze the equilibrium structure, it is useful to first discuss the

following property.

Lemma III.6. When customers follow continuous distributions, no single firm can

fully occupy the market and earn positive revenue.

Lemma III.6 means that a pricing war, similar to that in Proposition III.5, cannot

survive in an equilibrium. In other words, there does not exist any equilibrium where

the firm who sells a lower quality product, i.e., firm 2, cannot generate positive sales

even by setting p2 = 0. The intuition is that in the case where all customers purchase

product 1, firm 2 can always increase p2 a bit, attract a small portion of customers,

and thus generate a positive revenue. We show the detailed proof below.

Proof. Proof of Lemma III.6 We first show that for any given p1 > 0, a pricing war

cannot survive in an equilibrium. We prove it by contradiction. Suppose there exist
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a case where for p2 = 0, firm 1 still occupies the whole market with some strictly

positive price p1 > 0. In this case, for any type t (t ≥ 0) of customers, he has a

positive utility from product 1, tq1 − p1 ≥ 0. In such a case, firm 2 can increase p2

to pε(> 0) to attract customers of type v where 0 ≤ v ≤ p1−pε
∆q

. Any customer with

type v prefers product 2 over product 1 and extracts a positive utility from product

2,, since vq2 − pε ≥ vq1 − p1 ≥ 0 (where the last inequality follows from the condition

tq1 − p1 ≥ 0 for any t ≥ 0). Thus, firm 2 can always deviate from p2 = 0 and get

a positive revenue. Next, it is easy to see that if firm 1 sets p1 = 0, he can take the

entire market but only with zero revenue. Combining these two parts, we complete the

proof.

Next, we describe the structure of the equilibrium,

Proposition III.7. With products quality q1 and q2 and two types of customers with

quality sensitivity vF ∼ U [0, 1] and vS ∼ U [0,M ], when firm 1 and 2 compete on price,

in equilibrium, firm 1 sets p1 = β+1

β+ 1
M

2q1
4q1−q2 ∆q and firm 2 sets p2 = β+1

β+ 1
M

q2
4q1−q2 ∆q.

Note that in equilibrium, both snobs and followers make positive purchases from

both firms. In the rest of the paper, we refer to this form of market segmentation as

Mixed Segmentation.

Two properties of the equilibrium structure are worth noting. First, the intuition

about the existence of mixed segmentation in the equilibrium is as follows. The fact

that customers are continuously distributed suggests that firms no longer need to face

the binary choice between a pricing war and a perfect segmentation as they face in

the discretely distributed customers case (see Proposition III.5). Second, regarding

the optimal prices, product 1 has a higher unit price of quality, p1
q1
≥ p2

q2
(specifically,

the relation of optimal prices in the equilibrium follows q1/p1
q2/p2

= 1
2
). In other words, to

achieve an additional unit of quality, customers need to pay more for product 1 relative

to product 2. The intuition is that two firms divide the market share through different
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prices per quality – firm 2 targets at those customers with low sensitivity by charging

a lower price per unit quality while firm 1 targets at those high sensitivity customers.

Such intuition is consistent with that in the market segmentation literature.

Another important takeaway is that no symmetric equilibrium exists even with

symmetric qualities q1 = q2, or symmetric distributions where M = 1. The asymmetric

structure of the equilibrium is inevitable given the asymmetric externalities (snobs and

followers) we study in this paper.

In summary, while a perfect segmentation no longer exists in the equilibrium due to

the nature of the continuity of customers, the equilibrium with continuously-distributed

customers still has the same flavor of market segmentation as that in the discretely

distributed customers case studied in Proposition III.5.

3.5.2 Snob and Follower Effects

With both positive and negative externalities, we need to adopt a joint framework

of Rational Expectation and Nash Equilibrium in order to fully capture the game.

This is because that customers’ demand expectation and the resulting equilibrium

have multiple layers of effects on each other – (1) firms’ decisions on prices affect

the demand expectations formed by customers, (2) customers’ expected demand and

the corresponding purchase decisions also affect firms’ price choices and the resulting

equilibrium, and (3) at the same time, the equilibrium also affects whether the realized

demands is consistent with customers’ expectations.

The sequence and structure of the game can be described as follows. First, each of

the two firms sets the price individually. Then, after observing such prices, customers

form rational expectations about the demands of both products and make purchase

decisions correspondingly. Given such customers’ purchasing behavior, each firm sets

the price optimally according to its best response function, which is also coincident with
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the price set at the beginning of the game. Then, in the equilibrium, importantly, the

realized demand should also be consistent with the expectations formed by customers.

Note that not every Nash Equilibrium satisfies the condition of equilibrium described

above: if there is a Nash Equilibrium where the realized demands coincide with the

demand expectations, we refer to it as a rational equilibrium; otherwise, even when a

Nash equilibrium exists, we still consider it as a non-rational equilibrium because it

violates the rational expectation condition.8

In the following analysis, we also follow Assumption III.3 in Section 3.4, such that

the externalities do not completely reverse customers’ product preferences.

Discrete Distribution Cases

We start with the discrete distribution case. Given any pair of prices (p1, p2) and the

corresponding demand expectations (De
1, D

e
2) formed by customers, customers’ choices

between products are as follows:

For a snob customer with type vS, he purchases product 1 from firm 1 if the following

two conditions hold: (1) vS ≥ kDe1+p1
q1

, and (2) vS ≥ k(De1−De2)+p1−p2
∆q

, meaning that the

utility of product 1 is (1) positive (i.e., q1vS − kDe
1 − p1 ≥ 0) and (2) higher than that

of product 2 (i.e., q1vS − kDe
1− p1 ≥ q2vS − kDe

2− p2.) Similarly, he purchases product

2 from firm 2 if vS ≥ kDe2+p2
q2

and vS ≤ k(De1−De2)+p1−p2
∆q

.

By the same token, for a follower customer with type vF , he purchases product

1 from firm 1 if vF ≥ −mDe1+p1
q1

and vF ≥ −m(De1−De2)+p1−p2
∆q

. Similarly, he purchases

product 2 from firm 2 if vF ≥ −mDe2+p2
q2

and vF ≤ −m(De1−De2)+p1−p2
∆q

.

The form of firms’ best response functions vary across different customers’ demand

expectations.

Due to the discreteness of customer distribution, we only need to analyze best

response functions with four different combinations of demand expectations: (1)De
1 = 1

8Such a game structure in widely used in the literature of competition with externalities. See more
discussions in Katz and Shapiro [52].
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and De
2 = β, where snobs purchase product 1 (from firm 1) while followers purchase

product 2 (from firm 2), (2) De
1 = 1 + β and De

2 = 0, where both snobs and followers

purchase product 1, (3) De
1 = 0 and De

2 = 1 + β, where both snobs and followers

purchase product 2, and (4) De
1 = β and De

2 = 1, where snobs purchase product

2 while followers purchase product 1.9 We list out these four different scenarios to

highlight the fact that not each Nash Equilibrium, with given demand expectations,

would lead to a rational equilibrium – see discussion after Theorem III.8 below. The

specific form of each firm’s best response, however, can be easily derived under each

scenario. To reserve space, we relegate the full analysis to the proof of Theorem III.8

as shown in the Appendix.

Next, we describe the structure of the rational equilibrium.

Theorem III.8. With both positive and negative externalities, there are two possible

rational equilibria:

• If (vS−vF )∆q ≥ (m+k)(1−β) and min{vSq1−k−(vS−vF )q2 +β(k+m), vSq1−

k} ≥ (1 +β) min{vS(q1− q2)−k(1 +β), vF (q1− q2) +m(1 +β)}, firm 1 only sells

to snobs while firm 2 only sells to followers. The prices set by firms are

p1 =

 vSq1 − k if (vS − vF )q2 ≤ β(m+ k)

vSq1 − k − (vS − vF )q2 + β(k +m) o.w.

p2 = vF q2 +mβ

• Otherwise, only firm 1 sells to both snobs and followers. The optimal price set

by firm 1 is p1 = min{vS(q1 − q2) − k(1 + β), vF (q1 − q2) + m(1 + β)}. Firm 2

generates no sells even if setting p2 = 0.

9Note that there do not exist cases where only snobs (or followers) make a purchase (e.g., snobs
purchase product 1 while followers make no purchase), as the firm of 0 sales can always attract the
followers (or snobs) and be better off.
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In terms of the equilibrium itself, we have two main observations. First, no rational

equilibrium exists under demand expectations scenarios (3) and (4) described above

(i.e., both snobs and followers purchase product 2 or snobs purchase product 2 while

followers purchase product 1). In scenario (3), firm 1 always has the incentive to

deviate from making zero sales (such that the realized demand of product 1 equals the

expected demand, i.e., De
1 = 0), while in scenario (4), given any p2, there is no such p1

that equates the realized demand with the expected demand. Second, the structure of

equilibrium with externalities (as shown in Theorem III.8) is the same as that without

externalities (as shown in Proposition III.5).

While in the monopoly case externalities change the policy structure by reducing

the cannibalization (as discussed in Section 3.4), they do not change the equilibrium

structure in the competition setting where cannibalization or coordination is absent. In

the competitive case, externalities, anyway, do not change the fact that firms need to

make sharp choices between perfect segmentation and pricing war when facing discrete

customers.

In terms of the impact of externalities and the portion of followers on equilibrium,

we also have two main observations. The first observation is that, under most cases,

both snob and follower effects are more likely to induce a pricing war in the equilibrium.

We discuss the intuition in two parts. First, when k is away from a narrow medium-level

range, i.e., k ≤ (vS−vF )∆q
1+β

−m or k ≥ (vS−vF )∆q
1−β −m, both the snob and follower effects

make the seller with the higher-quality product (i.e., firm 1) have a higher incentive

to induce purchases from all customers. This is because when either snob or follower

effect is enhanced (k or m increases), followers’ willingness-to-pays become closer to

those of snobs. Therefore, it is less worthwhile for firm 1 to “lose” followers in exchange

for snobs by creating “exclusiveness” values for them (note that snobs do not have a

much higher willingness-to-pay than followers in this case). Second, when k is in a
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narrow medium-level range, i.e., (vS−vF )∆q
1+β

− m ≤ k ≤ (vS−vF )∆q
1−β − m, an increase in

the snob effect, however, reduces the sellers’ incentives to induce a pricing war. This

is because k in this value range creates a distortion – price p1 is more sensitive to snob

effect in the pricing war compared with that in the market segmentation. If firms 1

wants to initiate a pricing war, the price that he needs to attract snobs is even lower

than that to attract followers (remember that the “outside option” for any type of

customers is to choose product 2 at no cost (i.e., p2 = 0 in the pricing war)). Thus,

an increase of snob effect means that it is more costly for firm 1 to initiate the pricing

war by lowering p1.

The second observation is that when the portion of followers becomes larger, firm

1 has less incentive to ignore followers. Thus, it is more likely for firm 1 to go for the

“price-war” equilibrium. The intuition is similar to that in Section 3.4.

Continuous Distribution Cases

Next, we analyze the equilibrium where customers’ sensitivity to quality/valuations

follow uniform distributions. Recall that we are only interested in any “rational”

equilibrium where (1) the prices form a Nash Equilibrium and (2) realized demands

coincide with expected ones.

Consistent with the continuous distribution cases in Section 3.5.1, we assume that

vF ∼ U [0, 1] and vS ∼ U [0,M ], where M ≥ 1.

First, note that customers’ decision rule is the same as that described in the discrete

distribution case above (where we provide a general description of customers’ decision

rules) given prices (p1, p2) and their prior of demand (De
1, De

2).

In order to capture the best response function of each firm, we first characterize

the aggregate demand functions for both products for any given pair of prices (p1, p2).

There are two layers of complexity about demand functions. First, customers’ demand

may have various function forms with respect to different values of expected demand.
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Second, although De
1 and De

2 are functions of p1 and p2, there is no direct way for

firms to pin down the exact demand expectations that customers form – Instead, both

the expected and the realized demands need to be solved in a rational expectation

equilibrium. Thus, similar to the discrete distribution case, we divide the analysis into

6 cases, depending on the given prices (p1, p2) and the possible demand expectations

(see Table 3.1). It is worth noting that the cut-offs between different cases are not

exogenous; instead, they are functions of choice variables p1 and p2. Therefore, without

solving for the optimal prices, firms do not know which cases it would fall into. This is

one of the reasons why the equilibrium is challenge to capture and why we first need

to analyze each case separately.

Case Conditions
1 p2q1 − p1q2 ≥ k(De

1q2 −De
2q1)

2 De
1q2 −De

2q1 ≥ 0 −m(De
1q2 −De

2q1) ≤ p2q1 − p1q2 ≤ k(De
1q2 −De

2q1)
3 p2q1 − p1q2 ≤ −m(De

1q2 −De
2q1)

4 p2q1 − p1q2 ≥ −m(De
1q2 −De

2q1)
5 De

1q2 −De
2q1 < 0 k(De

1q2 −De
2q1) ≤ p2q1 − p1q2 ≤ −m(De

1q2 −De
2q1)

6 p2q1 − p1q2 ≤ k(De
1q2 −De

2q1)

Table 3.1: 6 Cases of Demand Functions

Before we get into the details of the aggregate demand functions, we first briefly

discuss the meaning of two sets of conditions that define these six cases (i.e., two

columns in Table 3.1). The conditions in the first column describe the relations between

quality and demand. In the first 3 cases, for each unit of quality, firm 1 induces more

demand than firm 2 does under the equilibrium, while in the last 3 cases, the reverse

holds. The conditions in the second column describe the relation of price per quality

between the two products. In cases 1 and 4, firm 1 always charges a lower price per

quality than firm 2 does. In cases 2 and 5, either firm may charge a higher price per

unit. In cases 3 and 6, firm 1 always charges a higher price per unit quality than firm

2 does.
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The demand functions, D1 andD2, in each of the above six cases are shown as below.

Again, recall that as discussed above, we are only interested in the equilibrium where

the expected demands coincide with the realized ones, i.e., D1 = De
1 and D2 = De

2.

Also note that notation-wise, we still use both Di and De
i (i ∈ {1, 2}) in the expressions

below in case readers would like to see a clear link between the customers’ decision rule

and the aggregate demand functions.

Case 1: All customers, both snobs and followers, choose to purchase product 1, but

not to purchase product 2.10

D1 = (β + 1)−
(
β +

1

M

)
p1

q1

+

(
βm− k

M

)
De

1

q1

(3.1)

D2 = 0

Case 2: Followers only purchase product 1, while snobs purchase both products

(some snobs choose product 1, while the others choose product 2).11

D1 = (β + 1)− β−mD
e
1 + p1

q1

− 1

M

k(De
1 −De

2) + p1 − p2

∆q
(3.2)

D2 =
1

M

(
k(De

1 −De
2) + p1 − p2

∆q
− kDe

2 + p2

q2

)

Case 3: Both snobs and followers purchase both product 1 and 2 (for either snobs

or followers, some of them choose product 1, while others choose product 2).12

10DF
1 = β(1− −mDe

1+p1
q1

), DF
2 = 0, DS

1 = 1
M (M − kDe

1+p1
q1

), and DS
2 = 0.

11DS
1 = 1

M (M − k(De
1−D

e
2)+p1−p2

∆q ), DS
2 = 1

M (
k(De

1−D
e
2)+p1−p2

∆q − kDe
2+p2
q2

), DF
1 = β(1 − −mDe

1+p1
q1

),

and DF
2 = 0

12DF
1 = β(1 − −m(De

1−D
e
2)+p1−p2

∆q ), DF
2 = β(

−m(De
1−D

e
2)+p1−p2

∆q − −mDe
2+p2
q2

), DS
1 = 1

M (M −
k(De

1−D
e
2)+p1−p2

∆q ), and DS
2 = 1

M (
k(De

1−D
e
2)+p1−p2

∆q − kDe
2+p2
q2

).
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D1 = (β + 1)− β−m(De
1 −De

2) + p1 − p2

∆q
− 1

M

k(De
1 −De

2) + p1 − p2

∆q
(3.3)

D2 = β

(
−m(De

1 −De
2) + p1 − p2

∆q
− −mD

e
2 + p2

q2

)
(3.4)

+
1

M

(
k(De

1 −De
2) + p1 − p2

∆q
− kDe

2 + p2

q2

)

Case 4: All customers, both snobs and followers, choose to purchase product 1 but

not to purchase product 2. Note that although the demand functions are the same

as that in Case 1, the “feasible sets” are different – Case 1 and 4 are under different

conditions of quality and expected demands.

Case 5: Snobs only purchase product 1, while followers purchase both product 1

and 2 (some followers choose product 1, while others choose product 2).13

D1 = β + 1− β−m(De
1 −De

2) + p1 − p2

∆q
− 1

M

kDe
1 + p1

q1

(3.5)

D2 = β

(
−m(De

1 −De
2) + p1 − p2

∆q
− −mD

e
2 + p2

q2

)

Case 6: Both snobs and followers purchase both product 1 and 2. Note that

although the demand functions are the same as in Case 3, the “feasible sets” are

different – Case 3 and 6 are under different conditions of quality and expected demands.

Among these six cases, we first observe that certain demand functions are similar to

the corresponding/benchmark cases as we discussed earlier. In particular, Case 1 and

4 are similar to the pricing war studied in Theorem III.8 (Discrete distribution case

with externalities). Case 3 and 6 are similar to the mixed segmentation in Proposition

III.7 (Continuous distribution case without externalities). Further, we also observe a

13DF
1 = β(1− −m(De

1−D
e
2)+p1−p2

∆q ), DF
2 = β(

−m(De
1−D

e
2)+p1−p2

∆q − −mDe
2+p2
q2

), DS
1 = 1

M (M − kDe
1+p1
q1

),

and DS
2 = 0.
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new form of segmentation that does not exist in either the no-externalities case or the

discrete distribution case. That is, one type of customers exclusively purchase only

one product, while the other type of customers purchase both products. There are

two specific forms of such segmentation: (1) all followers only purchase product 1 (and

snobs make positive purchases for both products), as described in case 2, and (2) all

snobs only purchase 1 (and followers make positive purchases for both products), as

described in case 5. We refer to such a segmentation as Partial Segmentation in the

rest of the paper.

Based on the demand functions above, we can implicitly derive the following best

response functions of firm 1 and 2. The complete form of the best responses can be

found in the Appendix. Note that while the best response of each firm needs to be

analyzed in each demand case separately, both firm 1 and 2 need to pick the same case

in a rational equilibrium.

Before we characterize the equilibrium, we first show the following property.

Lemma III.9. When customers’ values follow uniform distribution, there does not

exist any equilibrium where one firm fully occupied the market and generates positive

revenue.

Lemma III.9 means that any form of pricing war, as described in demand cases 1

and 4, could not survive in the rational equilibrium. The intuition is similar to that of

Lemma III.6. We, however, use a different type of argument that fits the settings here.

Consider the equilibrium in each of the two possible scenarios. In scenario 1, firm 1,

knowing the fact that firm 2 will never set price as p2 ≥ k(De1q2−De2q1)+p1q2
q1

(and thus get

0 revenue), will set price within the last two cases. In scenario 2, firm 1, knowing the

fact that firm 2 will never set price as p2 ≥ −m(De1q2−De2q1)+p1q2
q1

(and thus get 0 revenue),

will also set price within the last two cases. We omit the full proof.

In terms of the equilibrium structure, we note that it is difficult to characterize it
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analytically. As is discussed before, there are multiple layers of complexity: (1) Any

equilibrium outcome needs to satisfy the conditions of both rational expectation and

Nash Equilibrium, (2) there is no explicit demand function for any given prices (Instead,

demand functions have various function forms depending on the expected demand, and

we need to solve a rational expectation equilibrium to know the realized demand), and

(3) both firm 1 and 2 need to pick prices that satisfy the same set of conditions (listed

in Table 3.1) to form a rational equilibrium. Given such complexities, instead, we

study the properties of equilibrium numerically. In the numerical experiments, the

parameters we use are: M ∈ {1.5, 2}, m ∈ {0.1, 0.2}, k ∈ {0.1, 0.2}, β ∈ {0.5, 1.5},

and q2 ∈ {0.3, 0.7}. Without loss of generality, we normalize q1 to 1. The parameters

are carefully chosen such that Assumption 1 is always satisfied – the preferences of

products are not completely altered by the externalities.

Table 3.2 reports the equilibria. The last column list the corresponding realized

demand structure, which refer to the six cases listed in Table 3.1.

Based on the simulation results above, we observe several properties of the equilib-

rium.

First, our main observation is that stronger snob and follower effects are more likely

to induce partial segmentation in the equilibrium. We identify two mechanisms through

which externalities can play a role. The first mechanism, formed jointed by snob and

follower effects, was absent in the no-externalities or the discrete distribution cases,

and therefore, brings new insight. We call it as the “competition-free” mechanism:

On the one hand, when follower effect becomes stronger, firm 2 has more incentive

to sell product 2 to followers since the followers’ willingness-to-pay increases with m

and is further enhanced by a higher sales D2. On the other hand, when snob effect

becomes stronger, the value of product 2 decreases for snobs (because of the higher

sales of product 2) such that snobs prefer product 1 over product 2. Firm 1 could thus
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Parameters Equilibrium
case M m k β q1 q2 p1 p2 D1 D2 Demand Case
1 1.50 0.10 0.10 0.50 1.00 0.30 0.50 0.08 0.79 0.39 6
2 1.50 0.10 0.10 0.50 1.00 0.70 0.25 0.09 0.87 0.47 3
3 1.50 0.10 0.10 1.50 1.00 0.30 0.38 0.07 1.66 0.50 3
4 1.50 0.10 0.10 1.50 1.00 0.70 0.37 0.19 1.53 0.42 2
5 1.50 0.10 0.30 0.50 1.00 0.30 0.55 0.10 0.67 0.30 6
6 1.50 0.10 0.30 0.50 1.00 0.70 0.34 0.15 0.68 0.47 6
7 1.50 0.10 0.30 1.50 1.00 0.30 0.44 0.07 1.32 0.58 6
8 1.50 0.10 0.30 1.50 1.00 0.70 0.45 0.29 0.44 0.41 2
9 1.50 0.30 0.10 0.50 1.00 0.30 0.43 0.07 1.00 0.30 3
10 1.50 0.30 0.10 0.50 1.00 0.70 0.38 0.18 0.89 0.35 2
11 1.50 0.30 0.10 1.50 1.00 0.30 0.69 0.40 0.81 1.69 5
12 1.50 0.30 0.10 1.50 1.00 0.70 0.70 0.54 0.50 0.97 5
13 1.50 0.30 0.30 0.50 1.00 0.30 0.51 0.08 0.76 0.36 6
14 1.50 0.30 0.30 0.50 1.00 0.70 0.46 0.27 0.70 0.33 2
15 1.50 0.30 0.30 1.50 1.00 0.30 0.72 0.40 0.64 1.52 5
16 1.50 0.30 0.30 1.50 1.00 0.70 0.51 0.47 0.55 1.41 5
17 2.00 0.10 0.10 0.50 1.00 0.30 0.57 0.08 0.81 0.40 6
18 2.00 0.10 0.10 0.50 1.00 0.70 0.28 0.11 0.41 0.47 3
19 2.00 0.10 0.10 1.50 1.00 0.30 0.42 0.07 1.68 0.50 3
20 2.00 0.10 0.10 1.50 1.00 0.70 0.39 0.21 1.64 0.35 2
21 2.00 0.10 0.30 0.50 1.00 0.30 0.62 0.10 0.71 0.33 6
22 2.00 0.10 0.30 0.50 1.00 0.70 0.36 0.16 0.74 0.46 3
23 2.00 0.10 0.30 1.50 1.00 0.30 0.43 0.06 1.46 0.62 6
24 2.00 0.10 0.30 1.50 1.00 0.70 0.45 0.27 0.44 0.38 2
25 2.00 0.30 0.10 0.50 1.00 0.30 0.47 0.07 1.04 0.31 3
26 2.00 0.30 0.10 0.50 1.00 0.70 0.42 0.19 0.94 0.33 2
27 2.00 0.30 0.10 1.50 1.00 0.30 0.74 0.40 0.87 1.63 5
28 2.00 0.30 0.10 1.50 1.00 0.70 0.61 0.49 0.66 1.26 5
29 2.00 0.30 0.30 0.50 1.00 0.30 0.57 0.08 0.81 0.40 6
30 2.00 0.30 0.30 0.50 1.00 0.70 0.49 0.27 0.33 0.32 2
31 2.00 0.30 0.30 1.50 1.00 0.30 0.71 0.40 0.83 1.67 5
32 2.00 0.30 0.30 1.50 1.00 0.70 0.55 0.47 0.63 1.37 5

Table 3.2: Equilibriums in Competitive Market
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focus on snobs without worrying about the competition from product 2 and therefore,

is able to charge a higher price p1. In all, stronger follower and snob effects are more

likely to induce one form of partial segmentation, in which firm 2 only sells product

2 to followers while firm 1 sells product 1 to both snobs and followers (Demand Case

5), in the equilibrium. Such a mechanism plays a dominating role when the portion of

followers is larger than the snobs and the quality between products is quite different

(examples of such changes can be seen by comparing Case 11, 15 to Case 3, 7, and

comparing Case 27, 31 to Case 19, 23, where β = 1.5 and (q1, q2) = (1, 0.3)).

The second mechanism follows a similar spirit as in Theorem III.8 (see the dis-

cussion of impacts of externalities on equilibrium). When follower and snob effects

become stronger (i.e., m and k increases), the followers’ willingness-to-pay for product

1 becomes closer to the snobs’, and it drives firm 1 to sell product 1 to both types of

customers. Given the high sales of product 1 and a large follower effect, followers nat-

urally have little incentive to purchase product 2. As a result, another form of partial

segmentation (in which firm 2 only sells product 2 to snobs while firm 1 sells product

1 to both snobs and followers) is thus more likely to occur in the equilibrium (Demand

Case 2). Such a mechanism plays a dominating role when the portion of followers is

smaller than the snobs and the quality of two products are similar (examples of such

changes can be seen by comparing Case 10, 14 to Case 2, 6, and comparing Case 26,

30 to Case 18, 22, where β = 0.5 and (q1, q2) = (1, 0.7)).14

It is worth noting that when the two mechanisms above play dominating roles, a

larger portion of followers further enhance the forces in these mechanisms and make

it even more likely to result in a partial segmentation in equilibrium (for the form

described in Demand Case 2, see examples by comparing Case 2 and 6 with Case 4 and

14Note that when β is small and the difference between q1 and q2 is small, there are not enough
purchases from followers to boost the snob effect and not enough quality difference to construct a
“competition-free” situation for firm 1. Thus, a segmentation similar to that of the first mechanism
does not occur.
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8, respectively; for the form described in Demand Case 5, see examples by comparing

Case 10 and 14 to Case 12 and 16, respectively).

Some other impact of externalities includes (1) altering the relation of induced

demand per quality between two products (when snob effect increases, the condition

of demand changes from D1q2 − D2q1 ≥ 0 to D1q2 − D2q1 < 0) 15 and (2) affecting

the optimal prices p1 and p2 (increase of k causes increases in both p1 and p2).16 We

view these impacts as minor ones, as the structure of the equilibrium is unaffected, and

provide brief discussions of intuitions in the footnotes above.

Another interesting observation is that, in general, the equilibrium structure is not

affected by (1) the upper bound of the value distribution of snobs (i.e., M) and (2)

the quality difference between two products (i.e., q1 − q2). This is because that the

order of customers’ willingness-to-pay distributions between snobs and followers and

the preference of products are unchanged by the above parameters. Therefore, neither

customers’ decisions nor firms’ decisions would be affected.

In sum, we identify two mechanisms where snob and follower effects work together to

induce a partial segmentation in the equilibrium. While the portion of followers could

also play a role, we find other parameters irrelevant in determining the equilibrium

structure.

15When m is small, larger snob effect changes the equilibrium from case 3 to case 6, i.e., the condition
of demand changes from D1q2 −D2q1 ≥ 0 to D1q2 −D2q1 < 0 (Examples can be seen by comparing
cases 6 and 7 to cases 2 and 3). Basically, when suffering more from the negative externalities (snob
effect), firm 1 has less incentive to sell to more customers and thus sets a higher price p1, which reverses
the relation of induced demand per unit quality – product 2 becomes more appealing to customers.

16When m is large and the equilibrium is already in the form of partial segmentation (as is shown
in the main observation above), increase of k causes increases in both p1 and p2 (see examples by
comparing case 14 and case 10 and comparing case 15 and case 11). The intuition is that a stronger
snob effect makes firm 1 to induce fewer sales and sets a higher price. Firm 2, therefore, could also
charge a higher p2 without losing much market share.
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3.6 Bundling Strategy

In the previous two sections, we consider the settings where the firm(s) sell one type

(category) of product (either one firm sells two products under the same category in the

monopoly setting, or two firms sell different products under the same category), and

each customer only needs one unit of such a product. In this section, we consider the

case where a firm offers two types (categories) of product (with exogenous quality q1

and q2),17 and each customer needs one unit of each type of product. We are interested

in whether allowing the firm to offer bundles of products would affect its pricing and

selling strategies.

The firm/retailer has three different types of selling strategies: (1) Pure component,

where products are offered separately, with price p1 and p2, respectively; (2) Pure

bundling, where only a bundle containing both products is offered, with price pB (no

product is sold individually); (3) Mixed bundling, where both the bundle and product(s)

are offered. Depending on the number of products offered individually, the mixed

bundling has two forms. The first form is called partial mixed bundling, where one of

the products is not offered individually. The second form is called total mixed bundling,

where both of the products can be purchased individually.

We assume that customers’ utilities from a bundle are additive, i.e., the value of

a bundle is the sum of the value of each of its components. In other words, the two

products are neither complements nor substitutes. Such a setting (where the only

possible connection between the two products is through the bundle) allows us to

concentrate on the effects of externalities on bundling strategy and avoid distortions

from product substitution/compatibility. .

Regarding the network value, we assume that snobs are only affected by the snob

17The two-product setting is treated as a representative case to get insights for the more general
cases (Stremersch and Tellis [73]).
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effect for their purchase of product 1, i.e., US
1 (vS) = vSq1 − kDe

1 − p1 and US
2 (vS) =

vSq2−p2. Follower customers, on the contrary, still experience positive externalities on

any of their purchases, i.e., UF
1 (vF ) = vF q1 +mDe

1 − p1 and UF
2 (vF ) = vF q2 +me

2 − p2

(which is unlike that in the single product-category case where snobs experience nega-

tive externalities on any of their purchases). Note that such an asymmetric structure

of externalities reflects customers’ behavior when one type of product is considered

superior to the other type (i.e., the vertical differentiation we consider here). As an

illustration, we use the example of the Hermes silk scarf and Birkin handbag. Clearly, a

Birkin handbag is considered superior to a silk scarf – one may tell it from their market

prices (the price of the former is about $10,000 while the latter is only $400). While

snobs who value uniqueness tend to show off with a Birkin handbag (and experience

negative externalities when more people own Birkin(s)), their network values from the

silk scarf can be considered minimal. First, the show-off value from a silk scarf is very

small itself relative to that from a Birkin handbag. Second, even in the case where

snobs suffer negative externalities from scarves, there are ways to reduce them largely,

e.g., wrapping the silk scarf around the handle of a Birkin handbag as a personal touch

instead of wearing it on the neck.18 For followers, on the contrary, mimicking other

customers’ purchases happen for all products.

For the market structure, we focus on the monopoly market, which we consider as

a good and clean setting to focus on the interaction between externalities and bundling

strategies. The competitive bundling case is beyond the scope of this paper.19

In the remaining part of this section, we first analyze the four possible selling

strategies one by one and then derive the optimal strategy. For each strategy, we

18One can easily find many discussions on the social media, e.g.,
www.pinterest.com/pin/325244404320200046/

19The bundling decision in the competitive setting has drawn many discussions and is known as a
complex problem (Armstrong and Vickers [8], Ghosh and Balachander [38], Zhou [94]). Incorporating
the effects of externalities on such a case is considered to be beyond the scope of this work, and we
view it as interesting future work.
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directly analyze it in the cases with both positive and negative externalities – the cases

without externalities are of similar structures (note that the no-externalities case can

be easily obtained by setting m = k = 0). For the overall optimal strategy, however,

we analyze the cases with and without externalities separately because, as we will see

below, the structures are different with or without externalities.

We focus on the cases where externalities do not completely reverse the order of

preferences, as is discussed in Section 3.4. Similar to Assumption III.3 (for products

of a single category) in Section 3.4 and 3.5, we make the following assumption for each

of the two product categories:

Assumption III.10. vSqi − k(1 + β) ≥ vF qi +m(1 + β), ∀i{1, 2}.

Pure Component Strategy. Under this strategy, since products are offered

separately, the monopoly firm can simply manage each product separately. For each

product, the firm only needs to decide whether to sell it only to snobs or to both types

of customers. For example, if the firm wants to sell product 1 only to snobs, then

D1 = 1, p∗1 = V 1
S = vSq1 − k and the revenue is vSq1 − k; if the firm wants to sell

product 1 to both snobs and followers, then D1 = 1 + β, p∗1 = V 1
F = vF q1 + m(1 + β),

and the revenue is (1 + β)[vF q1 +m(1 + β)]. Thus, the revenue from selling product 1

is R1 = max{vSq1 − k, (1 + β)[vF q1 + m(1 + β)]}. Similarly, the revenue from selling

product 2 is R2 = max{vSq2, (1 + β)[vF q2 +m(1 + β)]}.

Proposition III.11. The revenue of offering a pure component strategy is max{vSq1 −

k, (1 + β)[vF q1 +m(1 + β)]}+ max{vSq2, (1 + β)[vF q2 +m(1 + β)]}

Pure Bundling Strategy. Under this strategy, the pricing decision is straightfor-

ward – the firm decides whether to sell the bundle only to snobs, with price pB = vSq1+

vSq2−k, or to both snobs and followers, with price pB = min{vF (q1 +q2)+2m(1+β)}.
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Proposition III.12. The profit of offering a pure bundling strategy is max{vS(q1 + q2)−

k, (1 + β)[vF (q1 + q2) + 2m(1 + β)]}.

Total Mixed Bundling Strategy. Although we discuss the total bundling strat-

egy here, such a form of bundling is actually very rare in the luxury product industry.

The firm is effectively always offering a discount through the bundle, since customers

choose the bundle only if the bundle price is smaller than the sum of the prices of both

products. However, one of the key rules in the luxury retailing practice is to avoid

always offering discounts (in order to maintain the brand image, Kapferer [53]).

Thanks to the representative customer model, we can naturally rule out the total

mixed bundling strategy in the analysis. This is because that even if a firm offers

the total mixed bundling, such a strategy effectively reduce to one of the strategies

among pure component, pure bundling, and partial mixed bundling. In the total mixed

bundling with positive sales of each option, only two scenarios could occur: first, snobs

purchase product 1 and 2 separately, while followers purchase the bundle; second,

followers purchase product 1 and 2 separately, while snobs purchase the bundle. Any

other cases are irrelevant because if a customer purchases a bundle, then he does not

need any product 1 or 2 anymore, and if a customer purchases a product separately,

purchasing a bundle is dominated by purchasing the other products separately. Note

that these two scenarios, De
1 = De

2 = 1 + β always hold, as all customers effectively

always purchase one unit of product 1 and product 2 no matter which option(s) they

choose. However, given the fact that pB < p1 + p2, for any type of customers, the

utility is always higher from purchasing the bundle, and therefore, there is always an

incentive to deviate from purchasing products individually.

We write it formally as the property below and omit the formal proof.

Proposition III.13. If a firm offers total mixed bundling, the optimal prices will never

generate a scenario where there are positive sales of each option.
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Partial Mixed Bundling. There are two different strategies of the partial mixed

bundling: the firm can either offer both the bundle and product 1 or offer both the

bundle and product 2. Recall that each customer only needs one unit of each product.

Thus, if a customer purchases the bundle, then any separately-sold product 1 or 2

does not add value to him anymore. Similarly, if the customer purchases product 1

individually, then only product 2 is valuable to him in the bundle. (Obviously, this

behavior is sub-optimal; instead of purchasing product 1 and the bundle, the customer

can simply purchase the bundle and get the utilities from both products).

In the following analysis of the partial mixed bundling setting, we only focus on the

cases where each option, i.e., the bundle and the separate product, generates positive

sales. Other cases are equivalent to either the pure bundling case or the case of only

selling one product.

Proposition III.14. When a firm offers partial mixed bundling, in the cases where there

are positive sales of each option, the selling strategies can be of the following two forms

• If vF (q1− q2) ≤ k, the optimal selling strategy is to offer the bundle and product

1 at prices pB = vs(q1 + q2) − k and p1 = min{vF q1 + m(1 + β), vS(q1 + q2) −

vF q2− k−m}. The revenue is R = vS(q1 + q2)− k(1 + β) + βmin{vF q1 +m(1 +

β), vS(q1 + q2)− vF q2 − k −m}

• Otherwise, the optimal strategy is to offer the bundle and product 2 at prices

pB = vs(q1+q2)−k and p1 = min{vF q2+m(1+β), vS(q1+q2)−vF q2−k−m}. The

revenue is R = vS(q1 +q2)−k+βmin{vF q2 +m(1+β), vS(q1 +q2)−vF q1−k−m}

For the no externalities case (m = k = 0), the optimal selling strategy (in the form

of partial mixed bundling) can only be to offer the bundle and product 1. The intuition

is that since customers have higher values for product 1, selling product 1 (together

with the bundle) helps to extract more surplus.
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Externalities change the structure of the partial mixed bundling strategy. When

the negative externalities become large, as long as the firm still wants to use the partial

mixed bundling strategy, offering product 1 separately backfires through the snob effect.

In contrast, by offering product 2 separately (together with the bundle),the firm can

still enjoy the follower effect.

The Optimal Strategy

We next discuss the optimal strategy considering all different types of bundling

strategies. We start from the case with no externalities.

Theorem III.15. The optimal policy without externalities are as follows:

Under conditions q1 + (1− β)q2 ≤ 1 and vS ≥ (1+βq2
q1+q2

)vF , it is optimal to offer the

partial mixed bundling where both the bundle and product 1 are offered; otherwise, it is

optimal to offer the pure bundling.

The intuition of Theorem III.15 is straightforward – Only when the proportion of

followers is large enough and snobs have similar quality sensitivity as followers, the

pure bundling dominate other strategies, because it drives all followers to purchase the

bundle (rather than only the product 1 separately) and such benefit from followers

outweighs the loss from snobs.

We provide Figure 3.1 as a brief illustration.20

Next, we discuss the case with externalities.

Theorem III.16. The optimal policy with both positive and negative externalities is

as follows:

For the cases of k ≥ vF (q1 − q2): it is optimal to offer the partial mixed bundling

20It shows the cases of q1 + (1− β)q2 ≤ 1.
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Figure 3.1: Optimal Policies without Externalities

where both the bundle and product 2 are offered if the following conditions hold.

(vS − vF )(q1 + q2) ≥ (2 + β)m+ k

(vS − vF )q2 ≥ m(1 + β)

and either (vS − vF )(q1 + q2)− βvF q1 ≥ (2 + β)(1 + β)m+ k or vF q2 +m(1 + β) ≥ k.

For the other cases of k < vF (q1 − q2): it is optimal to offer the partial mixed

bundling where both the bundle and product 1 are offered if the following conditions

hold.

(vS − vF )(q1 + q2) ≥ (2 + β)m+ k

(vS − vF )q2 + βvF (q1 − q2) ≥ m(1 + β) + kβ

and either (vS−vF )(q1+q2)−βvF q2 ≥ (2+β)(1+β)m+k(1+β) or vF q1+m(1+β) ≥ k.

For all other cases, it is optimal to offer the pure bundling.

Figure 3.2 illustrates the optimal policy.21

21While the shape of the plot varies across different cases, the overall form is relatively stable.
The plotted case is of conditions q1 + (1 − β)q2 ≤ 1, q1 + q2 ≥ 1, kq2 ≤ m(1 + β)2(q1 − q2), and
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Figure 3.2: Optimal Policies with Externalities

Before jumping into the detailed explanation of Theorem III.16, it is constructive

for us first to conjecture why offering the bundle and product 2 in the mixed bundling

strategy would be optimal – recall that this is the counter-intuitive bundling strategy

that we observe in practice. One possible conjecture would be: by only offering product

1 in the bundle, it effectively reduces the total sales of product 1 and weakens the snob

effects such that the retailer can charge a higher price for the snobs. Further, by forcing

any customer who purchases product 1 to also purchase product 2 (through the bundle),

this strategy strengthens the follower effects such that the retailers can charge more for

the followers. Although such an intuition seems plausible, we find in our analysis that

only the first half of the above conjecture is accurate, but not the second half. The first

half is true, especially when the sensitivity to quality of snobs (vS) is much higher than

(2 + β)(1 + β)m+ k ≤ m(1+β)2+k(1+β)
q1

.
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that of followers (vF ). The snob effect indeed determines whether to offer product 2

or product 1 separately (as is shown by the partition line vF = k
q1−q2 ) – when the snob

effect becomes large, i.e., vF ≤ k
q1−q2 , the focus of the optimal policy switches from

extracting more surplus from the high-value product (offering product 1 separately) to

reducing the negative externalities caused by sales of the high-value product (offering

product 2 separately). The second half of the above intuition, however, is wrong. It

is easy to observe, from comparing Figure 3.2 with Figure 3.1, that when either the

follower or the snob effect becomes stronger, the retailers are more inclined to adopt

the pure bundling strategy, especially when snobs and followers have similar values for

each product, i.e., the difference between vS and vF is small. In such cases, it is not

wise for the retailer to bear losing followers on any product in order to exchange for

the “exclusiveness” value for snobs (who do not have a much higher willingness-to-pay

anyway). Instead, taking advantage of the follower effect on both products through

pure bundling becomes more beneficial.

It is also worth noting that the pure component strategy is never the optimal

strategy in any setting we consider, neither with nor without externalities. As shown

in the proof of Theorem III.16, the pure component is either equivalent to the pure

bundling strategy22 or strictly dominated by the mixed bundling strategy.23 This is

mainly driven by the discrete distribution of customer types.

3.7 Conclusions

Motivated by the interesting and (perhaps) counter-intuitive practices in the luxury

industry, in this paper, we aim to understand the driving forces of these practices

22It happens in two cases, one case is where the retailer only sells to snobs and the other case is
where the retailer sells both products to both types of customers

23This is the case where the retailer effectively sells both products to the snobs and only sells a
single product to the followers. It can be viewed as a case of the partial mixed bundling since the
realized demand is equivalent.
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through the lens of externalities. Externalities of luxury products have a unique feature

– They are composed of two opposite effects: snobs experience negative externalities

while followers experience positive ones.

We study the joint effect of these two effects with respect to the optimal selling

strategy from three aspects: (1) the product-line decision in a monopoly setting, (2)

the pricing decisions in a competitive setting, and (3) the product bundling decision. In

each aspect, we choose a stylized model to capture the main trade-offs and characterize

the optimal decisions or the equilibrium structure. We find that snob and follower

effects generally work in the same direction. In the monopoly setting, when these two

externalities are not too strong, they both ease the cannibalization between products

and tend to induce market segmentation (where more than one product is offered);

when these two externalities become very strong, then they both tend to induce an

equilibrium where only one product is offered. In the competitive setting, when it is

possible for a firm to occupy the entire market, these externalities jointly induce the

firm with a higher quality product to sell its product to both types of customers and

to initiate a pricing war; when no firm can take the entire market, these externalities

then work jointly through the two mechanisms that we identified to induce a partial

segmentation in the equilibrium. For bundling decisions, the two externalities work in

the same way to make the firm more inclined to choose the pure bundling (when the

partial mixed bundling is still the optimal policy, the snob effect itself could change

the firm’s decision of which product to offer separately). In summary, we find these

two opposite externalities generally work in the same direction, although the specific

mechanism could be different under different market/product settings and parameters.
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APPENDIX A

Parameters in Simulation Experiments of Chaper I

In Section 1.5.2: d = 5. T = 20. F1 = ax2 +bx+c, where a = 0.7, b = −13.5, c =

109.6. F2 = F1+β1 or F2 = F1∗β2, β1 ∈ [0, 90] and β2 ∈ [0.01, 0.9]. αX (x ∈ {A,B,C})

varies in [0.1, 0.9]. In Section 1.6.2: d = {4, 5, . . . , 10}. T = 30. v(.) = γF (.) where

γ ∈ (0, 1). α ∈ [0.1, 0.9]. In Section 1.7: In Table 1.2 - 1.5, F1 = ax2 + bx+ c, where

a = 0.7, b = −13.5, c = 109.6, F2 = F1 + β1 or F2 = F1 ∗ β2, where β1 ∈ [0, 90] and

β2 ∈ [0.01, 0.9], αX ∈ [0.1, 0.9] (x ∈ {A,B,C}), and vi(.) = γFi(.), i ∈ {1, 2} where γ

∈ [0.1, 0.9]. d ∈ {3, 4, . . . , 10} and for each d, the cost functions are discretized into d

segments. Such rescaling is intended to make the performances across ds comparable.
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APPENDIX B

Proof of Chapter I

Proof of Lemma I.1: (a) Suppose that we are at the beginning of period t and

there are n pending orders that have not been fulfilled. If it is optimal to ship order 1,

then it is also optimal to ship orders 2, 3, ..., n because including orders 2, 3, ..., n does

not increase the current shipping cost. If, on the other hand, it is not optimal to ship

order 1 in period t, then it is also not optimal to ship any subset of orders 2, 3, ..., n in

period t. To see this, suppose that it is optimal to ship orders S = {i1, i2, ..., ik}, where

1 < i1 < i2 < ... < ik. Consider the following alternative shipping policy: instead of

shipping S in period t, we ship them in a later period t′ < t when order 1 is shipped. The

current shipping cost is saved and no new additional cost is incurred, which contradicts

the optimality of shipping orders in S. (b) and (c) are straightforward as there are

only fixed shipping costs.

Proof of Proposition I.2: For any optimal solution of Vt(z), it is also feasible for

Vt(z + 1). Thus, Vt(z + 1) ≤ Vt(z). Also, extending the time-to-go horizon increases

the total shipping cost, as the shipping cost is positive.

Proof of Lemma I.3: We first show that the cost-to-go function Vt(z) can also be

written as: Vt(z) = min{F (z) + Vt(∞), F (z − 1) + Vt−1(∞), . . . , F (z − k) + Vt−k(∞)}
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where k = min{t, z} − 1. The terms after the equality represent the costs of different

alternatives. For example, F (z) + Vt(∞) is the cost of shipping all orders in period t,

F (z − 1) + Vt−1(∞) is the cost of delaying for one period and shipping all orders in

period t−1, etc. It is important to note that the cost-to-go function Vt(z) is completely

characterized by the values of Vt(∞) for all z and t. We then introduce a technical

lemma which shows that the difference between the minimum of two set of numbers is

larger than the minimal pairwise difference.

LEMMA E1. Define x = min{a1 + b1, ..., an + bn} and y = min{a1, ..., an}. If

b1 ≥ b2... ≥ bn, then x− y ≥ bn.

Proof. Proof. Suppose that x = ak + bk for some k. Then, x − y ≥ (ak + bk) − ak =

bk ≥ bn.

Then we show the proof of Lemma 2. Suppose that t ≥ d (the case t < d

can be proved in a similar manner and so is omitted). We can write: Vt(z − 1) =

min{F (z−1)+Vt(∞), F (z−2)+Vt−1(∞), · · · , F (1)+Vt−(z−2)} and Vt(z) = min{F (z)+

Vt(∞), F (z− 1) + Vt−1(∞), · · · , F (1) + Vt−(z−1)(∞)} ≤ min{F (z) + Vt(∞), F (z− 1) +

Vt−1(∞), · · · , F (2)+Vt−(z−2)(∞)} := Ṽt(z). Thus, Vt(z−1)−Vt(z) ≥ Vt(z−1)−Ṽt(z) ≥

F (z − 1) − F (z), where the last inequality follows by Lemma E1 and the convex-

ity of F (.): a1 = F (2) + Vt−(z−2)(∞),..., an = F (z) + Vt(∞), b1 = F (1) − F (2),...,

bn = F (z − 1)− F (z), and F (1)− F (2) ≥ F (2)− F (3) ≥ ... ≥ F (z − 1)− F (z).

Proof of Theorem I.5: Let Xi ∼ Geometric(α) for all i. (We assume that X ′is

are i.i.d.) Consider a sufficiently long time horizon T. If we use the same threshold

τ in all periods, then the whole selling horizon can be approximately decomposed

into N random cycles S1, S2, ..., SN , where Si = Xi + d − τ and N is the smallest

n such that
∑n

i=1 Si > T . (Intuitively, N − 1 is the number of shipments during T

periods.) Note that N is a stopping time, so by Wald’s equation, E
[∑N

i=1 Si

]
=

E[N ] · E[S1] = E[N ]
(

1
α

+ d− τ
)
. Since

∑N−1
i=1 Si ≤ T <

∑N
i=1 Si, we have (E[N ] −
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1)
(

1
α

+ d− τ
)
≤ T < E[N ]

(
1
α

+ d− τ
)
. If T is sufficiently large, E[N ] is approxi-

mately T
(

1
α

+ d− τ
)−1

and the average shipping costs is approximately Gτ (α, d) :=

F (τ)
(

1
α

+ d− τ
)−1

.

Proof of Proposition I.6: Denote F (x) = a− bx (F (d) ≥ 0), the long run cost is

G = minxGτ (x) = minx
a−bx

1
α
−1+d−x . We have G′τ (x) =

−b( 1
α
−1+d−x)+(a−bx)

( 1
α
−1+d−x)2

=
b(1− 1

α
)+a−bd

( 1
α
−1+d−x)2

.

(1) When b(1− 1
α

) + a− bd ≥ 0 (α ≥ b
a−bd+b

), τ ∗ = 1. (2) When b(1− 1
α

) + a− bd < 0

(α < b
a−bd+b

), τ ∗ = d− 1.

Proof of Lemma I.7: We have G′τ (α) = T
F ′(τ)( 1

α
+d−τ)+F (τ)

( 1
α

+d−τ)2
. As F (z) is first-order

continuous, G′τ is continuous. By the property of G′τ (α), to show that τ ∗ decreases

as α increases, we only need to show that: for any α1 and its corresponding optimal

τ ∗α1
, G′τ∗α1

(α2) ≥ G′τ∗α1
(α1) for any α2 ≥ α1. As α1 ≤ α2 and F ′(.) ≤ 0, we have

F ′(τ ∗α1
)( 1
α2

+ d − τ ∗α1
) ≥ F ′(τ ∗α1

)( 1
α1

+ d − τ ∗α1
) and ( 1

α2
+ d − τ ∗α1

)2 ≤ ( 1
α1

+ d − τ ∗α1
)2.

Thus, G′τ∗α1
(α2) ≥ G′τ∗α1

(α1). This completes the proof.

Proof of Lemma I.8: (a) For order type i (i ∈ {A,B,C}) , suppose that we are

at the beginning of period t and there are n pending orders that have not been fulfilled.

If it is optimal to ship order 1, then it is also optimal to ship orders 2, 3, ..., n because

including orders 2, 3, ..., n does not increase the current shipping cost. If, on the other

hand, it is not optimal to ship order 1 in period t, then it is also not optimal to ship

any subset of orders 2, 3, ..., n in period t. To see this, suppose that it is optimal to

ship orders S = {i1, i2, ..., ik}, where 1 < i1 < i2 < ... < ik. Consider the following

alternative shipping policy: instead of shipping S in period t, we ship them in a later

period t′ < t when order 1 is shipped. The current shipping cost is saved and no new

additional cost is incurred, which contradicts the optimality of shipping orders in S.

(b) As the orders should be shipped using one shipment and the earliest order should

meet the due date, the shipping cost is a function of the smallest slack time of orders.

Proof of Proposition 3 I.9: For the first part, we argue the case z′A ≤ zA in
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detail. The other cases are similar. For any Vt(zA − 1, zB, zC), the same optimal ship-

ping policy can be applied for Vt(zA, zB, zC). Thus, the optimal solution is a feasible

one for Vt(zA, zB, zC) and Vt(zA − 1, zB, zC) ≥ Vt(zA, zB, zC). For the second part,

a longer time horizon increases the total shipping cost, as the shipping cost is posi-

tive. It can be easily proved by induction. For t = 2, V1(zA, zB, zC) = f(zA, zB, zC)

and V2(zA, zB, zC) = min(xA,xB ,xC) f(xAzA, xBzB, xCzC) + E[V1(z̃A,~x, z̃B,~x, z̃C,~x)]. Given

that f(·, ·, ·) ≥ 0, z̃X ≤ zX for X ∈ {A,B,C}, and Vt(z
′
A, z

′
B, z

′
C) ≥ Vt(zA, zB, zC)

for z′X ≤ zX (X ∈ {A,B,C}), we know that V1(zA, zB, zC) ≤ V2(zA, zB, zC). Sup-

pose that it holds for all t ≤ t′, then for t = t′ + 1, note that Vt−1(zA, zB, zC) =

min(xA,xB ,xC) f(xAzA, xBzB, xCzC) + E[Vt−2(z̃A,~x, z̃B,~x, z̃C,~x)]

and Vt(zA, zB, zC) = min(xA,xB ,xC) f(xAzA, xBzB, xCzC)+E[Vt−1(z̃A,~x, z̃B,~x, z̃C,~x)]. Given

the induction hypothesis, it is easy to see that Vt−1(zA, zB, zC) ≤ Vt(zA, zB, zC). This

completes the proof.

Proof of Lemma I.10: We only focus on the first part, as the second one can be

argued in a similar way. Suppose that zA, zB < ∞ and it is optimal to ship product

B from W1. We will argue that it is also optimal to ship order type A together with

B. We divide the analysis into two cases: (1) If zA ≤ zB, we prove by contradiction:

Suppose the optimal policy ships only type B orders in the current period (type A

order would be shipped in some later period). Consider a modified policy that does

not ship type B order in the current period, but instead delays the shipment till the

time when type A order would be shipped under this optimal policy. Clearly, such a

modified policy would incur a lower cost. (2) If zA > zB, then shipping type A together

with type B in the current period does not increase shipping cost.

Proof of Lemma I.11: We prove it by induction.

For t = 1: for zA ≤ zB, Vt(zA, zB, zC) = min{F1(min{zA, zB}) + F2(zC), F1(zA) +

F2(min{zB, zC})} = F1(zA)+F2(zC). Thus, Vt(zA−1, zB, zC)−Vt(zA, zB, zC) = F1(zA−
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1)−F1(zA). Similarly, for zC ≤ zB, Vt(zA, zB, zC) = F1(zA)+F2(zC) and Vt(zA, zB, zC−

1) − Vt(zA, zB, zC) = F2(zC − 1) − F2(zC); For zB ≤ min{zA, zC}, Vt(zA, zB, zC) =

min{F1(zB) + F2(zC), F1(zA) + F2(zB)}. Thus, Vt(zA, zB − 1, zC) − Vt(zA, zB, zC) ≥

min{F1(zB − 1) − F1(zB), F2(zB − 1) − F2(zB)}, where the last inequality is from

Lemma E1. Then, suppose the inequalities hold for t ≤ t′ (for some t′). Then for

t = t′+1, we compare the cost of all the possible shipping alternatives in Vt(zA, zB, zC)

and Vt(zA, zB, zC).

We first prove the Vt(zA − 1, zB, zC)− Vt(zA, zB, zC) part for zA ≤ zB. By Lemma

E1, we know that if there exist a shipping alternative, of which the corresponding costs

difference between Vt(zA−1, zB, zC) and Vt(zA, zB, zC) equals F1(zA−1)−F1(zA), while

for all other shipping alternatives, the difference is larger than F1(zA − 1) − F1(zA),

then, then Vt(zA − 1, zB, zC) − Vt(zA, zB, zC) ≥ F1(zA − 1) − F1(zA). We classify all

shipment alternatives into 2 cases: xA = 1 and xA =∞. (1) For any given (xA, xB, xC)

with xA = 1, when applying (xA, xB, xC), Vt(zA − 1, zB, zC)− Vt(zA, zB, zC) = f(zA −

1, zBxB, zCxC)+E[Vt−1(z̃A, z̃B, z̃C)]−f(zA, zBxB, zCxC)−E[Vt−1(z̃A, z̃B, z̃C)] = F1(zA−

1) − F1(zA). The last equation is from zA ≤ zB, and the fact that when it en-

ters period t − 1, the slack time of type A orders, z̃A, is the same in the cases of

(zA, zB, zC) and (zA−1, zB, zC), as the pending type A orders are all shipped in period

t (as xA = 1). (2) For any given (xA, xB, xC) with xA = ∞, Vt(zA − 1, zB, zC) −

Vt(zA, zB, zC) = f(∞, zBxB, zCxC) + E[Vt−1(zA − 2, z̃B, z̃C)] − f(∞, zBxB, zCxC) −

E[Vt−1(zA− 1, z̃B, z̃C)] ≥ F1(zA− 1)−F1(zA). The inequality is from the induction hy-

pothesis that for each scenario of z̃B and z̃C , Vt−1(zA−2, z̃B, z̃C)−Vt−1(zA−1, z̃B, z̃C) ≥

F1(zA − 2) − F1(zA − 1) ≥ F1(zA − 1) − F1(zA) (the last inequality is from the con-

vexity of Fi, i ∈ {1, 2}). With (1) and (2), the Vt(zA − 1, zB, zC)− Vt(zA, zB, zC) part

naturally holds by Lemma E1.

Second, as products A and C are symmetric, Vt(zA, zB, zC − 1) − Vt(zA, zB, zC) ≤
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F2(zC − 1)− F2(zC) for zC ≤ zB also holds.

Then, we prove the Vt(zA, zB−1, zC)−Vt(zA, zB, zC) part for zB ≤ min{zA, zC}. By

similar logic as above, we divide the shipment alternatives into the following 2 cases.

(1) For (xA, xB, xC) with xB = 1, when applying (xA, xB, xC), Vt(zA, zB − 1, zC) −

Vt(zA, zB, zC) = f(zAxA, zB − 1, zCxC) + E[Vt−1(z̃A, z̃B, z̃C)] − f(zAxA, zB, zCxC) −

E[Vt−1(z̃A, z̃B, z̃C)] ≥ min{F1(zB−1)−F1(zB), F2(zB−1)−F2(zB)}. The last inequal-

ity is from zB ≤ min{zA, zC} and the fact that when it enters period t − 1, the slack

time of type B orders, z̃B, is the same in the cases of (zA, zB, zC) and (zA, zB − 1, zC),

as the pending type B orders are all shipped in period t (as xB = 1). (2) For any given

(xA, xB, xC) with xB =∞, Vt(zA, zB−1, zC)−Vt(zA, zB, zC) = E[Vt−1(z̃A, zB−2, z̃C)]−

E[Vt−1(z̃A, zB − 1, z̃C)] ≥ min{F1(zB − 1)−F1(zB), F2(zB − 1)−F2(zB)}. The inequal-

ity follows from the induction hypothesis, Vt−1(z̃A, zB − 2, z̃C)− Vt−1(z̃A, zB − 1, z̃C) ≥

min{F1(zB−2)−F1(zB−1), F2(zB−2)−F2(zB−1)} ≥ min{F1(zB−1)−F1(zB), F2(zB−

1)−F2(zB)} (the last inequality is from the convexity of Fi, i ∈ {1, 2}). With (1) and

(2), the zB ≤ min{zA, zC} part naturally holds by Lemma E1.

Proof of Theorem I.12: We first provide the following two results, Lemma E2

and Lemma E3, which will be useful in the proof of Theorem 3.

LEMMA E2. In symmetric case where F1(x) = F2(x) = F (x) ∀x and αA = αC,

Vt(zA,∞,∞)−Vt(∞,∞,∞) ≥ F (zA)−F (d), Vt(∞, zB,∞)−Vt(∞,∞,∞) ≥ F (zB)−

F (d), Vt(∞,∞, zC) − Vt(∞,∞,∞) ≥ F (zC) − F (d). Vt(∞, zB, zC) − Vt(∞,∞, zC) ≥

F (zB) − F (zC), for zB ≤ zC. Vt(zA, zB,∞) − Vt(zA,∞,∞) ≥ F (zB) − F (zA) for

zB ≤ zA.

Proof of Lemma E2: We prove the claims above by induction. For t = 1, Vt(zA,∞,∞)−

Vt(∞,∞,∞) = F (zA) ≥ F (zA)−F (d) and it is easy to see that other inequalities also

hold. Suppose the inequalities hold for all t ≤ t0. Then for t = t0 + 1, we show the

proof for the first inequality in detail. Other inequalities can be shown in a similar
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way. For the first inequality, we know that Vt(zA,∞,∞) = minxA{f(zAxA,∞,∞) +

E[Vt−1(z̃A,xA , ∞̃, ∞̃)]} and Vt(∞,∞,∞) = E[Vt−1(∞̃, ∞̃, ∞̃)]. To clearly show the

proof, we can write down the former more explicitly: Vt(zA,∞,∞) = min{f(zA,∞,∞)+

E[Vt−1(∞̃, ∞̃, ∞̃)], f(∞,∞,∞)+E[Vt−1(z̃A−1, ∞̃, ∞̃)]}. First note that f(zA,∞,∞) =

F (zA) and f(∞,∞,∞) = 0. Then, from the induction hypothesis, E[Vt−1(z̃A −

1, ∞̃, ∞̃)]−E[Vt−1(∞̃, ∞̃, ∞̃)] ≥ F (zA−1)−F (d). Thus, we naturally have Vt(zA,∞,∞)−

Vt(∞,∞,∞) = min{f(zA,∞,∞)+E[Vt−1(∞̃, ∞̃, ∞̃)], f(∞,∞,∞)+E[Vt−1(z̃A−1, ∞̃, ∞̃)]}−

E[Vt−1(∞̃, ∞̃, ∞̃)] ≥ min{F (zA), F (zA − 1) − F (d)} = F (zA) − F (d), where the first

inequality follows from Lemma E1.

Before stating Lemma E3, note that the DP formulation can be equivalently written

as a pseudo-DP formulation as follows. Note that the shipping alternative of shipping

only B from W1 or W2 is omitted by Lemma 5. For t > 1 and zA, zB, zC ≥ 1, we have:

Vt(zA, zB, zC) = min{F1(zA)+Ṽ 1
t (∞, zB, zC), F1(min{zA, zB})+Ṽ 1

t (∞,∞, zC), Ṽ 1
t (zA, zB, zC)},

where the corresponding alternatives are “Ship A from W1,” “Ship A and B from

W1,” and “Do not ship from W1,” respectively. Ṽ 1
t (zA, zB, zC) = min{F2(zC) +

Ṽ 2
t (zA, zB,∞), F2(min{zB, zC})+Ṽ 2

t (zA,∞,∞), Ṽ 2
t (zA, zB, zC)}, where the correspond-

ing alternatives are “Ship C from W2,” “Ship C and B from W2,” and “Do not

ship from W2,” respectively. Ṽ 2
t (zA, zB, zC) = E[Vt−1(gA(zA), gB(zB), gC(zC))], where

gX(zX) is a random variable which equals zX − 1 with probability 1− αX and d with

probability αX . For t = 1 and zA, zB, zC ≥ 1, V1(zA, zB, zC) = min{F1(min{zA, zB}) +

F2(zC), F1(zA) + F2(min{zB, zC})}. It is worth noting that while the notations of

Ṽ 1
t (zA, zB, zC) and Ṽ 2

t (zA, zB, zC) help us to clearly define the DP formulation, it is actu-

ally mathematically equivalent to the formulation which replaces them by Vt(zA, zB, zC)

(with a bit abuse of notation.) In this way, Vt(zA, zB, zC) is defined in a recursive man-

ner. In the following proofs, we directly use this latter version for the simplicity of

notation.
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LEMMA E3. In a symmetric case, where F1(x) = F2(x) = F (x) ∀x and αA = αC:

(1) If zA ≥ max{zB, zC}, then Vt(zA−1, zB, zC)−Vt(zA, zB, zC) ≥ F1(zA−1)−F1(zA).

(2) If zC ≥ max{zA, zB}, then Vt(zA, zB, zC−1)−Vt(zA, zB, zC) ≥ F2(zC−1)−F2(zC).

Proof of Lemma E3: This is an extension of Lemma 6. We prove it by induction. We

show the proof of the zA ≥ max{zB, zC} part in details below. The zC ≥ max{zA, zB}

part can be proved by similar logic. For t = 1, Vt(zA − 1, zB, zC) = F (zA − 1) +

F (zC) and Vt(zA, zB, zC) = F (zA) + F (zC). The inequality naturally holds. Suppose

it holds for ∀t ≤ t0. Then, for t = t0 + 1: (1) for zA ≥ zB ≥ zC , note that the

shipping alternative of “ship A and B from W1” is always dominated by “ship B and C

from W2.” This is because that in symmetric case F (min{zA, zB}) + Vt(∞,∞, zC) ≥

F (min{zB, zC}) + Vt(zA,∞,∞), as Vt(∞,∞, zC) − Vt(zA,∞,∞) = Vt(zC ,∞,∞) −

Vt(zA,∞,∞) ≥ F (zC) − F (zA) ≥ F (zC) − F (zB) (where the first inequality is from

Lemma E2 and the second inequality is from zA ≥ zB). Second, note that “ship C from

W2” cannot be optimal (it is dominated by “shipping B and C from W2”), as F (zC) +

Vt(zA−1, zB,∞) ≥ F (zC)+Vt(zA−1,∞,∞) = F (min{zB, zC})+Vt(zA−1,∞,∞). (2)

for zA ≥ zC ≥ zB, “shipping C from W2” is dominated by “shipping B and C from W2”

as F (zB) + Vt(zA,∞,∞) ≤ F (zC) + Vt(zA, zB,∞), which follows from Vt(zA, zB,∞)−

Vt(zA,∞,∞) ≥ F (zB) − F (zA) ≥ F (zB) − F (zC) (where the first inequality is from

Lemma E2 and the second inequality is from zA ≥ zC). Also, “ship A and B from

W1” is dominated by “ship B and C from W2” as F (zB) + Vt(∞,∞, zC) ≥ F (zB) +

Vt(zA,∞,∞), which follows from Vt(∞,∞, zC) = Vt(zC ,∞,∞) ≥ Vt(zA,∞,∞). Thus,

only three shipping alternatives need to be considered in the pseudo-DP: “Ship A from

W1,” “Ship C and B from W2” and “Do not ship.” Vt(zA, zB, zC) = min{F (zA) +

Vt(∞, zB, zC), F (min{zB, zC})+Vt(zA,∞,∞), Vt−1(zA−1, zB−1, zC−1)}. Then, from

induction hypothesis, Lemmas E1 and E2, Vt(zA− 1, zB, zC)−Vt(zA, zB, zC) ≥ F (zA−

1)− F (zA). This completes the proof.
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Next, we show the six-boundary result by splitting the proof into three parts. In

the first part, we show the existence of thresholds τABA,t (zB, zC) and τBCC,t (zA, zB). The

second part is for boundaries τAA,t(zB, zC) and τCC,t(zA, zB), while the third part describes

τ 1
B,t(zA, zC) and τ 2

B,t(zA, zC).

Part 1: The existence of thresholds τABA,t (zB, zC) is proved below in detail. Similar

argument holds for τBCC,t (zA, zB). We divide the proof into two cases, zA ≤ zB and

zA > zB. Case 1: zA ≤ zB. We show that, if for some (zA, zB, zC), the optimal policy

(x∗A, x
∗
B, x

∗
C) is to ship A and B from W1 (x∗A, x

∗
B = 1), then for (zA − 1, zB, zC),

the optimal policy is also to ship A and B from W1. Note that the cost of ap-

plying policy (x∗A, x
∗
B, x

∗
C) in state (zA − 1, zB, zC) is C(x∗A,x

∗
B ,x
∗
C)(zA − 1, zB, zC) =

f(zA − 1, zB, zCx
∗
C) + E[Vt−1(z̃′A, z̃B, z̃C)], where z′A = zA − 1. As x∗A = 1, it is obvi-

ous that E[Vt−1(z̃′A, z̃B, z̃C)] = E[Vt−1(z̃A, z̃B, z̃C)]. Thus, C(x∗A,x
∗
B ,x
∗
C)(zA − 1, zB, zC) −

C(x∗A,x
∗
B ,x
∗
C)(zA, zB, zC) = f(zA−1, zB, zCx

∗
C)−f(zA, zB, zCx

∗
C) = F (zA−1)−F (zA). In

other words, applying (x∗A, x
∗
B, x

∗
C) for state (zA − 1, zB, zC) incurs F (zA − 1)− F (zA)

more cost than applying it for state (zA, zB, zC). Note that from Lemma 6, we know that

Vt(zA− 1, zB, zC)−Vt(zA, zB, zC) ≥ F (zA− 1)−F (zA), which indicates that using any

shipping policies for state (zA− 1, zB, zC) incurs at least additional cost of F (zA− 1)−

F (zA), compared to (zA, zB, zC). Thus, we can easily conclude that (x∗A, x
∗
B, x

∗
C) is the

optimal policy of state (zA−1, zB, zC), which ships A and B from W1. Case 2: zA > zB.

As (x∗A, x
∗
B, x

∗
C) (ship A and B from W1) is optimal for (zA, zB, zC), then from the op-

timality of this policy, we know that f(zA, zB, zCx
∗
C) = F (zB) +F (zCx

∗
C) and F (zB) +

F (zCx
∗
C) ≤ F (zA)+F (min{zB, zCx∗C}). For (zA−1, zB, zC), C(x∗A,x

∗
B ,x
∗
C)(zA−1, zB, zC) =

f(zA−1, zB, zCx
∗
C)+E[Vt−1(z̃′A, z̃B, z̃C)] where f(zA−1, zB, zCx

∗
C) = F (zB)+F (zCx

∗
C)

as F (zB) + F (zCx
∗
C) ≤ F (zA) + F (min{zB, zCx∗C}) ≤ F (zA − 1) + F (min{zB, zCx∗C}).

Thus, C(x∗A,x
∗
B ,x
∗
C)(zA − 1, zB, zC) = C(x∗A,x

∗
B ,x
∗
C)(zA, zB, zC). Note that the shipping cost

of (zA−1, zB, zC) is always higher than or equal to that of (zA, zB, zC). (With zA > zB,
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Lemma 6 not necessary hold. But we always have Vt(zA − 1, zB, zC) ≥ Vt(zA, zB, zC)

from Proposition 3.) Thus, we can easily conclude that (x∗A, x
∗
B, x

∗
C) is the optimal

policy of (zA − 1, zB, zC), which ships A and B from W1.

Part 2: The existence of thresholds τ 1
A,t(zB, zC) is proved in detail. Similar ar-

guments hold for τ 1
C,t(zA, zB). We want to show that if, for some Vt(zA, zB, zC),

the optimal policy (x∗A, x
∗
B, x

∗
C) is to ship both A and B from W1 or to ship only

A from W1 (x∗A = x∗B = 1 or x∗A = 1), then for Vt(zA − 1, zB, zC), the optimal

policy is also to ship both A and B from W1 or to ship only A from W1. For

x∗A = x∗B = 1, it is already discussed in part 1. We next prove x∗A = 1 part: We

want to show that if, for some Vt(zA, zB, zC), the optimal policy (x∗A, x
∗
B, x

∗
C) is to

ship only A from W1 (x∗A = 1), then for Vt(zA − 1, zB, zC), the optimal policy is to

ship both A and B from W1 or to ship only A from W1. Note that only the case of

zA > max{zB, zC} need to be analyzed in this part, because in other cases (1) and

(2) listed below, shipping A from W1 incurs larger cost than shipping A and B from

W1: (1) with zA ≤ zB, F (zA) + Vt(∞, zB, zC) ≥ F (min{zA, zB}) + Vt(∞,∞, zC). (2)

with zC ≥ zA > zB, F (zA) +Vt(∞, zB, zC) ≥ F (zB) +Vt(∞,∞, zC), as Vt(∞, zB, zC)−

Vt(∞,∞, zC) ≥ F (zB) − F (zC) ≥ F (zB) − F (zA) where the first inequality is from

Lemma E1. Then we only need to consider the case of zA > max{zB, zC}. Again, as

x∗A = 1, E[Vt−1(z̃′A, z̃B, z̃C)] = E[Vt−1(z̃A, z̃B, z̃C)]. Thus, C(x∗A,x
∗
B ,x
∗
C)(zA − 1, zB, zC) −

C(x∗A,x
∗
B ,x
∗
C)(zA, zB, zC) = f(zA−1, zBx

∗
B, zCx

∗
C)−f(zA, zBx

∗
B, zCx

∗
C) = F (zA−1)−F (zA).

From Lemma E2, we know that Vt(zA−1, zB, zC)−Vt(zA, zB, zC) ≥ F (zA−1)−F (zA),

which indicates that using shipping policies other than (x∗A, x
∗
B, x

∗
C) for (zA− 1, zB, zC)

will incur cost at least F (zA − 1)− F (zA) higher than (zA, zB, zC). Thus, we can con-

clude that (x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA − 1, zB, zC), which ships A from

W1.

Part 3: The existence of thresholds τ 1
B,t(zA, zC) is proved in detail. Similar argu-
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ments hold for τ 2
B,t(zA, zC). We want to show that if, the optimal policy (x∗A, x

∗
B, x

∗
C) is

to ship both A and B from W1 (x∗A = x∗B = 1), then for Vt(zA, zB − 1, zC), the optimal

policy is also to ship both A and B from W1. Only zA < zC need to be considered in

this part. Otherwise, with zA ≥ zC , shipping both A and B from W1 is dominated by

shipping both B and C from W2. This is because F (min{zA, zB}) + Vt(∞,∞, zC) ≥

F (min{zB, zC}) + Vt(zA,∞,∞), as Vt(∞,∞, zC) − Vt(zA,∞,∞) = Vt(∞,∞, zC) −

Vt(∞,∞, zA) ≥ F (zC)−F (zA) ≥ F (min{zB, zC})−F (min{zA, zB}) (the first inequal-

ity is from Lemma E1 and the second inequality is easy to see by considering all possible

relations among zA, zB, and zC , satisfying the condition of zA ≥ zC). We divide the

proof into two cases: (1) zB ≤ zA < zC . (2) zA < min{zB, zC}. Case 1: zB ≤ zA < zC .

C(x∗A,x
∗
B ,x
∗
C)(zA, zB − 1, zC)− C(x∗A,x

∗
B ,x
∗
C)(zA, zB, zC) = f(zA, zB − 1, zCx

∗
C)− f(zA, zB −

1, zCx
∗
C) = F (zB−1)−F (zB), as in symmetric case F (min{zA, zB−1})+Vt(∞,∞, zC)−

F (min{zA, zB}) + Vt(∞,∞, zC) = F (zB − 1)− F (zB). From Lemma 6, we know that

Vt(zA, zB − 1, zC) − Vt(zA, zB, zC) ≥ F (zB − 1) − F (zB), which indicates that using

shipping policies other than (x∗A, x
∗
B, x

∗
C) for (zA, zB − 1, zC) incur at least additional

cost of F (zB − 1) − F (zB), compared to (zA, zB, zC). Thus, we can conclude that

(x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA, zB − 1, zC), which ships A and B from W1.

Case 2: zA < min{zB, zC}. C(x∗A,x
∗
B ,x
∗
C)(zA, zB − 1, zC) − C(x∗A,x

∗
B ,x
∗
C)(zA, zB, zC) =

f(zA, zB − 1, zCx
∗
C) − f(zA, zB − 1, zCx

∗
C) = 0. From Proposition 3, we know that

Vt(zA, zB − 1, zC) ≥ Vt(zA, zB, zC), which indicates that for (zA, zB − 1, zC) using

shipping policies other than (x∗A, x
∗
B, x

∗
C) incur higher cost than (zA, zB, zC). Thus,

(x∗A, x
∗
B, x

∗
C) is the optimal policy of (zA, zB − 1, zC), which ships A and B from W1.

Proof of Lemma I.13:First, we show a result of the effect of α on Vt(zA, zB, zC)−

Vt−1(zA, zB, zC), which will be useful in the proof of Lemma 7. Denote the cost-

to-go function as V̄t(zA, zB, zC) and Vt(zA, zB, zC) for ᾱ and α, respectively. Note

that under optimal stationary policy, Vt(zA, zB, zC)− Vt−1(zA, zB, zC) converges to the
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expected one-period cost. For ᾱ ≥ α, the expected one-period cost of ᾱ is larger

than that of α. This is because on average, more orders arrive per period in the

case of ᾱ, which incurs more shipping cost. Thus, V̄t(zA, zB, zC) − V̄t−1(zA, zB, zC) ≥

Vt(zA, zB, zC)−Vt−1(zA, zB, zC). Next, we show the proof of τAA (zB, zC) in detail. Other

cases are similar. For any zB, zC and zA = τAA {zB, zC}, Vt(zA, zB, zC) = F1(zA) +

Vt(∞, zB, zC) ≤ Vt−1(zA − 1, zB − 1, zC − 1). Then consider V̄t(zA, zB, zC). Following

V̄t(zA, zB, zC)− V̄t−1(zA, zB, zC) ≥ Vt(zA, zB, zC)−Vt−1(zA, zB, zC) and V̄1(zA, zB, zC) =

V1(zA, zB, zC) (∀zA, zB, zC), we have V̄t(∞, zB, zC)− Vt(∞, zB, zC) ≥ V̄t−1(zA − 1, zB −

1, zC − 1)−Vt−1(zA− 1, zB − 1, zC − 1). Thus, shipping only A (the policy correspond-

ing to τAA {zB, zC}) is not necessarily the policy with smallest cost, which indicates the

decreasing of τA(zB, zC).

Proof of Lemma I.14: For the first part: suppose order zi is shipped and n orders

are shipped in the current period. Suppose it is optimal to ship zk(k > i+n−1). Then

there must be some order zj (i ≤ j ≤ i+ n− 1) shipped in the future. By exchanging

zk and zj, the shipping cost in the current period can be kept the same while the future

cost is reduced. This contradicts with the optimality.

For the second part: suppose a package (denote Pi) includes zi as the most urgent

order and n orders are shipped in it. Suppose it is optimal to include zk(k > i+n− 1)

in the current package. Then there must be some order zj (i ≤ j ≤ i+ n− 1) shipped

in another package (denote Pj). By exchanging zk and zj, the shipping cost of package

Pj is reduced while the cost of package Pi does not change. This contradicts with the

optimality.

Proof of Theorem I.15: Before we show the proof, we first introduce notations

for the changes of states across periods. For any state i in period t, we denote its

predecessor in period t+ 1 as p(i) and successors in period t− 1 as s(i). We start from

proving parts 1 and 2. The states for d = 3 are (∞). (1), (2), (3), (1, 2), (1, 3), (2, 3)
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and (1, 2, 3). We prove, by induction, that in (1, 2), (1, 3), (2, 3) and (1, 2, 3), it is not

optimal to ship only partial of the orders. For t = 1, by definition, it is optimal to ship

all of the pending orders. Suppose it is not optimal to ship only partial of the orders

for t ≤ t′ − 1 periods. In other words, it is optimal to either ship all orders or do not

ship in states (1, 3), (1, 2), (1, 2, 3) and (2, 3). We only list these four cases, as in

other cases it is natural to either ship the order or not. For t = t′, we consider the

following 4 cases. Case 1: State (1, 3). Suppose in period t under the optimal policy

π∗, it is optimal to ship only order 1 in state (1, 3). Note that p(1, 3) = (2) in period

t+ 1 and the optimal policy for (2) has to be “Do not ship.” We next argue that “Do

not Ship” cannot be an optimal policy for (2). If (2) is not shipped in period t+ 1, the

state in period t becomes (1) with probability α and (1, 3) with probability 1− α. In

either case, order 1 is shipped, resulting in a higher cost than in the previous period.

Also, if the optimal policy of (1, 3) is to ship both orders but in separate packages, the

above argument also holds. Thus, if state (1, 3) is reachable, the optimal policy has

to be shipping both orders in one package: Vt(1, 3) = C(1, 3) + Vt(∞) ≤ C(1) + Vt(3),

where C(1, 3) = F (1) + 2v(1) ≤ F (1) +v(1) +F (3) +v(3), and the following inequality

holds, v(1) ≤ F (3) + v(3). Note that the equation (v(1) ≤ F (3) + v(3)) does not

impose any assumption about the relation between F (.) and v(.). It only states that, if

state (1, 3) is reachable, then this equation must hold. In other words, if this equation

does not hold, then state (1, 3) cannot be reached under the optimal policy. Case

2: State (1, 2). Suppose that under the optimal policy π∗, it is optimal to ship only

order 1 in state (1, 2) in period t. Then, in period t − 1, the remaining order (2)

has successor s(2) = {(1, 3), (1)} with probability α and 1 − α, respectively. Thus,

state (1,3) is reachable and inequality of v(1) ≤ F (3) + v(3) holds. Then, it can be

shown that both orders in state (1, 2) need to be shipped in one package: C(1, 2) =

min{F (1)+2v(1), F (1)+v(1)+F (2)+v(2)} = F (1)+2v(1) = C(1, 3), as F (1)+2v(1) ≤
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F (1) + v(1) + F (3) + v(3) ≤ F (1) + v(1) + F (2) + v(2), where the first inequality

follows from v(1) ≤ F (3) + v(3). Also, note that C(1, 2) + Vt(∞) ≤ C(1) + Vt(2), as

C(1, 2) + Vt(∞) = C(1, 3) + Vt(∞) ≤ C(1) + Vt(3) ≤ C(1) + Vt(2). Thus, shipping

both order 1 and 2 in one package incurs smaller cost than π∗, which contradicts the

optimality of π∗. Thus, if state (1, 2) is reachable, the optimal policy is to ship both

orders in one package. Vt(1, 2) = C(1, 2) +Vt(∞), where C(1, 2) = F (1) + 2v(1). Case

3: State (1, 2, 3). There are 4 shipment alternatives for state (1, 2, 3): ship 1 alone,

ship 1 and 2, ship 1 and 3 and ship all orders. We argue that the first three alternatives

cannot be optimal. First, suppose that under the optimal policy π∗ it is optimal to

ship only order (1, 2) in state (1, 2, 3) in period t. Note p(1, 2, 3) = (2, 3) where the

optimal policy for (2, 3) should be ”Do not ship.” And s(2, 3) = {(1, 2, 3), (1, 2)}

with probability α and 1 − α, respectively. As (1, 2) is reachable, from the results

in Case 2, C(1, 2) = F (1) + 2v(1). Note that in both cases of (1, 2, 3) and (1, 2),

orders (1, 2) are shipped in one package and incur cost F (1) + 2v(1). Consider policy

π̃ which chooses to ship in state (2, 3) in period t + 1 and keeps other decisions the

same as π∗. The cost of π̃ is F (2) + 2v(2), which is smaller than that of π∗, which

contradicts the optimality of π∗. Also, note that, if the optimal policy for (1, 2, 3)

is to ship order 1 and 2 in package one and order 3 in package two, the argument

also holds. Second, suppose it is optimal to ship 1 and 3 in state (1, 2, 3) in period

t. If (2) is not shipped in period t, the state in period t − 1 becomes (1, 3) with

probability α and (1) with probability 1−α. As (1, 3) is reachable, v(1) ≤ F (3) + v(3)

holds. Then, C(1, 3) = F (1) + 2v(1) ≤ F (1) + v(1) + F (3) + v(3). Thus, 1 and 3 are

shipped in the same package. Consider policy π̃ that ships orders 1 and 2 in period

t and ships order 3 following the same policy as order 2 in policy π∗. π̃ incurs the

same cost in period t but lower cost in future period, which contradicts the optimality

of policy π∗. Third, suppose under the optimal policy π∗ it is optimal to ship only
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order (1) in state (1, 2, 3) in period t. Thus, in period t − 1, the remaining orders

(2, 3) becomes s(2, 3) = {(1, 2, 3), (1, 2)} with probability α and 1 − α, respectively.

From induction hypothesis, it is optimal to ship all orders in state (1, 2, 3) and (1, 2)

in period t − 1. Thus, the remaining order 2 in period t incurs at least variable cost

v(1) in period t− 1. Consider policy π̃ which chooses to ship (1, 2) in state (1, 2, 3) in

period t, and keeps other decisions the same as π∗. π̃ incurs additional cost of v(1) in

period t, while the cost decreases at least by v(1) in period t − 1. It contradicts the

optimality of policy π∗. Thus, if state (1, 2, 3) is reachable, the optimal policy is to

ship all orders. Whether to ship them in one package or in separate packages depends

on the relationship of F (.) and v(.): C(1, 2, 3) = min{F (1) + 3v(1), F (1) + v(1) +

F (2) + 2v(2), F (1) + v(1) + F (2) + v(2) + F (3) + v(3). Case 4: State (2, 3). We

show that shipping either (2) or (3) along can not be optimal. First, suppose under

the optimal policy π∗ it is optimal to ship only order 2 in state (2, 3) in period t. In

period t− 1, the remaining order (3) has successor s(3) = {(2, 3), (2)} with probability

α and (1− α), respectively. From induction hypothesis, in state (2, 3), it is optimal to

either ship both orders or not to ship. Thus, the remaining order (3) in period t will

be shipped with other orders arriving in later periods, which incurs at least variable

cost v(2). Consider policy π̃ which ships (2, 3) in period t and keep other decisions

the same as in policy π∗. π̃ incurs v(2) higher cost in period t while decrease at least

v(2) cost in later periods. It contradicts the optimality of policy π∗. Second, suppose

under the optimal policy π∗ it is optimal to ship only order 3 in state (2, 3) in period

t. In period t − 1, the remaining order (2) has successor s(2) = {(1, 3), (1)} with

probability α and (1 − α), respectively. It is easy to see that exchange the policy of

order 2 and 3 in period t incurs v(2)− v(3) higher cost in period t while decreases at

least v(2) − v(1) cost in period t − 1. It contradicts with the optimality of π∗. Thus,

if state (2, 3) is reachable, the optimal policy is to ship both orders. Whether to ship
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them in one package or in separate packages depends on the relation between F (.) and

v(.): C(2, 3) = min{F (2) + 2v(2), F (2) + v(2) + F (3) + v(3)}.

Finally, we prove the third part of Theorem 4 using the result from the first and

second parts of Theorem 4. Note that it is sufficient to consider the following three

scenarios: Scenario 1, if it is optimal to ship for state (1), then it is optimal to ship in

states (1, 2) and (1, 3); Scenario 2, if it is optimal to ship for state (1, 2) or (1, 3), then it

is optimal to ship in state (1, 2, 3); Scenario 3, if it is optimal to ship for state (2), then it

is optimal to ship in state (2, 3). The first two scenarios are obvious, as the order needs

to be shipped for z1 = 1. Thus, we only need to prove the third scenario. As the optimal

policy for Vt(2) (∀t > 1) is to ship, F (2) + v(2) +Vt(∞) ≤ αVt−1(1, 3) + (1−α)Vt−1(1).

Then, for state (2, 3), F (2) + 2v(2) + Vt(∞) ≤ αVt−1(1, 3) + (1 − α)Vt−1(1) + v(2) ≤

αVt−1(1, 2, 3) + (1 − α)Vt−1(1, 2). Thus, it is also optimal to ship (all pending orders)

in state (2, 3).

Proof of Theorem I.16: We first want to show the cases where apply varying

threshold τ(m) and constant threshold τ are equivalent. First, note that for τ(m) where

m = 3, there is only one case where three orders are accumulated, i.e. (z1, z2, z3) =

(1, 2, 3). As the orders must be shipped when the slack time equals 1, setting any value

to τ(3) has the same impact on the policy. Thus, we only need to focus on the values of

τ(1) and τ(2). Second, note that for τ(m) where m = 2, setting τ(2) = 3 is equivalent

to τ(2) = 2, as the smallest slack time of the two orders cannot be larger than 2.

Thus, the only varying thresholds, which are not equivalent to a constant threshold,

are τ(1) = 1 and τ(2) = 2. We denote the average cost per period incurred by these

threshold as C1,2, and the average cost incurred by constant threshold τ = m by Cm.

Thus, the gap between varying threshold and constant threshold is equivalent

to the gap between C1,2 and minm∈{1,2,3}Cm. By simple Markov Chain argument,

it is easy to see that for policies where orders are shipped in one package, C1 =
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F (1) α
1+3α

+v(1)α(1+2α)
1+3α

, C2 = F (2) α
1+2α

+v(2)α(1+α)
1+2α

, and C1,2 = [F (2)+2v(2)] α2

1+3α−α2 +

F (1) α(1−α)
1+3α−α2 + v(1) α(1−α2)

1+3α−α2 .

Then, for β = (1+3α)(1−α)
1+3α−α2 . minm∈{1,2,3}Cm ≤ βC1 + (1 − β)C2 = C1,2 + [v(1) −

v(2)] α
2(1−α)

1+3α−α2 . Thus,
minm∈{1,2,3} Cm−C1,2

C1,2
≤

[v(1)−v(2)]
α2(1−α)
1+3α−α2

[F (2)+2v(2)] α2

1+3α−α2
+F (1)

α(1−α)
1+3α−α2

+v(1)
α(1−α2)
1+3α−α2

=

[v(1)−v(2)]

[F (2)+2v(2)] 1
(1−α)+F (1) 1

α
+v(1)(1+ 1

α
)
≤ ∆

a1γ∆+(a1+a2)v(2)
, where a1 = 2

α
+ 1 and a2 = 3

1−α . The

bounds above goes to 0 when ∆→ 0, α→ 1, or α→ 0.

For the other extreme case where ∆ goes to ∞. It is obvious that C1 cannot be

optimal. Thus,
minm∈{1,2,3} Cm−C1,2

C1,2
≤ C2−C1,2

C1,2
. As C2 − C1,2 = F (2) α

1+2α
+ v(2)α(1+α)

1+2α
−

[F (2)+2v(2)] α2

1+3α−α2−F (1) α(1−α)
1+3α−α2−v(1) α(1−α2)

1+3α−α2 = F (2)[ α
1+2α
− α2

1+3α−α2 ]+v(2)[α(1+α)
1+2α

−
2α2

1+3α−α2 ]−F (1) α(1−α)
1+3α−α2 −v(1) α(1−α2)

1+3α−α2 ≤ 1
1+3α−α2 [α

2(1−α)2

1+2α
F (1)− α(1−α)(1+3α)

1+2α
∆], we have

C2−C1,2

C1,2
≤ F (2)

1+(1+3α)(3−α)
1+2α

−∆( 1+γ
α

+γ)

[F (2)+2v(2)] 1
1−α+F (1) 1

α
+v(1)(1+ 1

α
)
≤ F (2)

1+(1+3α)(3−α)
1+2α

−∆( 1+γ
α

+γ)

F (2) 1
α(1−α)+∆ 1

α

. It goes to nega-

tive with ∆ → ∞. Note that this is quite intuitive: as ∆ → ∞, it is not optimal

to set any threshold to 1. Thus, it is easy to see that C2 should has smaller cost

than C1,2. And note that in such cases, the optimal policy with varying threshold

(including scenarios of constant thresholds) should be the same as the optimal pol-

icy with constant threshold. In other words, the actual bound in this case becomes

C̃−C0

C0
≤ max{F (2)

1+(1+3α)(3−α)
1+2α

−∆( 1+γ
α

+γ)

F (2) 1
α(1−α)+∆ 1

α

, 0}. We can further loose this bound and write

it compactly: C̃−C0

C0
≤ F (2)

1+(1+3α)(3−α)
1+2α

F (2) 1
α(1−α)+∆ 1

α

, which goes to 0 as ∆→∞.

Proof of Theorem I.17: Denote the packages shipped under any policy π in

T periods as pπi (i ≤ kπ, where kπ is the total number of packages). In package

pπi , denote the smallest slack time as z(pπi ) and the number of orders in the package

as m(pπi ). The total cost of any policy π is E[
∑

i≤kπ F (z(pπi )) + m(pπi ) v(z(pπi ))].

For the first bound: We derive the relation between the costs C∗ of the opti-

mal policy π∗ and the costs CF of the policy πF which considers only fixed cost.

C∗ = E[
∑

i≤kπ∗ F (z(pπ
∗
i )) + m(pπ

∗
i ) v(z(pπ

∗
i ))] ≥ E[

∑
i≤kπ∗ F (z(pπ

∗
i )) + γ F (z(pπ

∗
i ))] =

E[(1 + γ)
∑

i≤kπ∗ F (z(pπ
∗
i ))] ≥ (1 + γ)E[

∑
i≤kπF F (z(pπFi ))]. The first inequality
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follows from v = γF and the fact that there must be at least one order in each

packages. The second inequality follows from the optimality of πF , which considers

only fixed cost. Thus, C∗ ≥ (1 + γ)CF . Let C(πF ) denote the cost of applying πF

in the case with both fixed and variable cost. Then, C(πF ) ≥ C∗ ≥ (1 + γ)CF .

As πF is one-threshold(τ) policy, the cost of C(πF ) and CF can be derived explic-

itly as CF = T
1
α

+d−τF (τ) and C(πF ) = T
1
α

+d−τ [F (τ) + E(m)v(τ)] where E(m) =

1 + (d − τ)α. Plugging in the inequality C(πF ) ≥ C∗ ≥ (1 + γ)CF and by simple

algebra, C(πF )−C∗
C∗

≤ 1
1+γ

C(πF )
CF
− 1 ≤ γ(d−τ)α

1+γ
. For the second bound: We derive

the relation between C∗ and the costs Cv of the policy πv which considers only vari-

able cost. C∗ = E[
∑

i≤kπ∗ F (z(pπ
∗
i )) + m(pπ

∗
i )v(z(pπ

∗
i ))] = E[

∑
i≤kπ∗

1
γ
v(z(pπ

∗
i )) +

m(pπ
∗
i )v(z(pπ

∗
i ))] ≥ E[

∑
i≤kπ∗

1
γ
v(d) + m(pπ

∗
i )v(d)] ≥ v(d)

γ
T

1
α

+d
+ Cv. The last inequal-

ity follows from the fact that the expected number of packages shipped in the long

run is T
1
α

+d
(when always arrange shipment corresponding to the shipping method of

cost v(d)) and the optimality of Cv, which considers only variable cost. Denote the

cost of applying πv to the case with both fixed and variable cost as C(πv). Then,

C(πv) ≥ C∗ ≥ Cv + v(d)
γ

T
1
α

+d
. Note that C(πv) and Cv can be written explicitly as

orders are shipped upon arrivals: C(πv) = T
1
α

[F (d) + v(d)] = Tα[F (d) + v(d)] and

Cv = Tαv(d). Plugging C(πv) and Cv into the above inequality and by simple algebra,

C(πv)−C∗
C∗

≤
C(πv)−Cv− v(d)γ

T
1
α+d

Cv+
v(d)
γ

T
1
α+d

= dα
γ(1+dα)+1

.
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APPENDIX C

Proof of Chapter II

Proof of Lemma II.1. Note that (2.5) can be written more compactly as follows:

D∗,b = min
x

d′x

s.t. Ax ≥ b, x ≥ 0

where d = (dt) with dt = c + h · (T − t + 1) (we simply replace the variable yt in the

original formulation with
∑t−1

s=1 xs−L −
∑t−1

s=1 µs), b = (bt) with bt =
∑t

s=1 µs + βt1(α)

for 1 ≤ t ≤ L + 1 and bt =
∑t

s=1 µs + βL+1
t−L (α) for L + 2 ≤ t ≤ T , and A is a T × T

lower-triangular matrix defined below:

A =



1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0

: : :
. . . :

1 1 1 · · · 1


.
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The recursive formulas stated in Lemma II.1 immediately follow from the fact that

dt is decreasing in t and A is a lower-triangular matrix whose lower-triangle components

are all equal to one (i.e., given x1−L, . . . , xt−1−L, we always want to set xt−L to be as

small as possible). �

Proof of Lemma II.2. Let I∗,bt and x∗,bt denote the inventory level and ordering

decision at period t under an optimal control in the backorder system. First note that,

by Jensen’s inequality,

C∗,b =
T∑
t=1

c · E[x∗,bt−L] +
T∑
t=1

h · E[(I∗,bt + x∗,bt−L −Dt)
+] +

T∑
t=1

p · E[(Dt − I∗,bt − x
∗,b
t−L)+]

≥
T∑
t=1

c · E[x∗,bt−L] +
T∑
t=1

h ·
(
E[I∗,bt ] + E[x∗,bt−L]− µt

)+

+
T∑
t=1

p ·
(
µt − E[I∗,bt ]− E[x∗,bt−L]

)+

:= Φ.

By (2.2), (2.3) and (2.4), the terms E[I∗,bt ] and E[x∗,bt ] satisfy:

t∑
s=1

E[x∗,bs−L]−
t∑

s=1

µs ≥ βt1(α), ∀ 1 ≤ t ≤ L+ 1,

t∑
s=1

E[x∗,bs−L]−
t∑

s=t−L

µs ≥ βL+1
t−L (α), ∀L+ 2 ≤ t ≤ T.

Therefore, the following is a feasible solution to DET:

yt = E[I∗,bt ],

xt = E[x∗,bt ],

zt+1 = (E[I∗,bt ] + E[x∗,bt−L]− µt)+ = (yt+1)+,

mt+1 = (µt − E[I∗,bt ]− E[x∗,bt−L])+ = (−yt+1)+.

We conclude that C∗,b ≥ Φ ≥ D∗,b. �
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Proof of Lemma II.4. For notational brevity, we will suppress the notational depen-

dency on α and simply write xHb,bt (α) and xD,bt (α) as xHb,bt and xD,bt , respectively. We

will prove the lemma by induction.

For t ≤ 1, by definition of Hb, x
Hb,b
t = xD,bt and, therefore, xHb,bt − xD,bt = 0.

For t = 2, by definition of Hb, we have:

xHb,b2 =

(
yD,b2 +

2∑
s=2−L

xD,bs − I
Hb,b
2 −

1∑
s=2−L

xHb,bs

)+

= (xD,b2 +D1 − µ1)+

= (xD,b2 +D1 − µ1) + (µ1 − xD,b2 −D1)+.

So, we can bound:

E
[
xHb,b2 − xD,b2

]
= E

[
(D1 − µ1) + (µ1 − xD,b2 −D1)+

]
≤ (µ1 − xD,b2 −D1)+.

Now, for any t ≥ 2, by definition of Hb, we have:

xHb,bt =

(
t∑

s=2

xD,bs −
t−1∑
s=1

µs −
t−1∑
s=2

xHb,bs +
t−1∑
s=1

Ds

)+

=
t∑

s=2

xD,bs −
t−1∑
s=1

µs −
t−1∑
s=2

xHb,bs +
t−1∑
s=1

Ds +

(
t−1∑
s=1

µs +
t−1∑
s=2

xHb,bs −
t−1∑
s=1

Ds −
t∑

s=2

xD,bs

)+

and, therefore,

t∑
s=2

(xHb,bs − xD,bs ) =
t−1∑
s=1

(Ds − µs) +

(
t−1∑
s=1

µs +
t−1∑
s=2

xHb,bs −
t−1∑
s=1

Ds −
t∑

s=2

xD,bs

)+

.(C.1)
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Suppose that the following inequality holds for t ≤ t′:

E

[
t∑

s=2

(xHb,bs − xD,bs )

]
≤ E

[
t−1∑
s=1

(µs − xD,bs+1 −Ds)
+

]
. (C.2)

Then, for t = t′ + 1, we have:

E

[
t∑

s=2

(xHb,bs − xD,bs )

]
= E

[
t−1∑
s=1

(Ds − µs)

+

(
t−1∑
s=1

µs +
t−1∑
s=2

xHb,bs −
t−1∑
s=1

Ds −
t∑

s=2

xD,bs

)+


= E

[(
t−2∑
s=1

µs +
t−1∑
s=2

xHb,bs −
t−2∑
s=1

Ds −
t−1∑
s=2

xD,bs

+µt−1 −Dt−1 − xD,bt

)+
]

≤ E

( t−2∑
s=1

µs +
t−1∑
s=2

xHb,bs −
t−2∑
s=1

Ds −
t−1∑
s=2

xD,bs

)+

+(µt−1 −Dt−1 − xD,bt )+
]

= E

( t−2∑
s=1

µs +
t−2∑
s=2

xHb,bs −
t−2∑
s=1

Ds −
t−1∑
s=2

xD,bs

)+

+(µt−1 −Dt−1 − xD,bt )+
]

= E

[
t−1∑
s=2

(xHb,bs − xD,bs ) + (µt−1 −Dt−1 − xD,bt )+

]

≤ E

[
t−1∑
s=1

(µs − xD,bs+1 −Ds)
+

]

where the third equality follows from the definition of xHb,bt−1 and the identity (−z +

z+)+ = (−z)+ for all z, the fourth equality follows from the identity in (C.1), and

the last inequality follows by induction hypothesis in (C.2). This completes the proof.

�
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Proof of Lemma II.6. For t ≥ 2, we have:

xHb,bt =

(
yD,bt +

t∑
s=t−L

xD,bt − I
Hb,b
t −

t−1∑
s=t−L

xHb,bs

)+

=

(
(yD,bt−1 + xD,bt−1−L − µt−1) +

t∑
s=t−L

xD,bs − (IHb,bt−1 + xHb,bt−1−L −Dt−1)−
t−1∑

s=t−L

xHb,bs

)+

=

(
xD,bt + ∆t−1 + yD,bt−1 − I

Hb,b
t−1 +

t−1∑
s=t−1−L

xD,bs −
t−1∑

s=t−1−L

xHb,bs

)+

=
(
xD,bt + ∆t−1 + U b

t−1

)+

, (C.3)

where the second equality follows from the definition of yD,bt and IHb,bt , and the last

equality follows by the definition of U b
t−1. In addition, we also have:

U b
t = yD,bt − IHb,bt +

t∑
s=t−L

(xD,bs − xHb,bs )

=

[
(yD,bt−1 + xD,bt−1−L − µt−1)− (IHb,bt−1 + xHb,bt−1−L −Dt−1) +

t−1∑
s=t−L

(xD,bs − xHb,bs )

]
+ xD,bt − x

Hb,b
t

=

[
yD,bt−1 − I

Hb,b
t−1 +

t−1∑
s=t−1−L

(xD,bs − xHb,bs ) +Dt−1 − µt−1

]
+ xD,bt − (xD,bt + ∆t−1 + U b

t−1)+

= U b
t−1 + ∆t−1 + xD,bt − (xD,bt + ∆t−1 + U b

t−1)+

= −(U b
t−1 + ∆t−1 + xD,bt )−,

where the second equality follows from the definition of yD,bt and IHb,bt , the third equality

follows from (C.3), and the fourth equality follows from the definition of Ut−1, and the

last equality follows from fact that −(z)− = z − (z)+ for all z. �

Proof of Lemma II.7. For 1 ≤ t ≤ L+ 2, as xHb,bs = xD,bs for s ≤ 1, it is obvious that

E[IHb,bt ] = yD,bt . For L+ 3 ≤ t ≤ T , we prove by induction.
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For t = L+ 3, note that

E[IHb,bL+3 ] = E[IHb,bL+2 + xHb,b2 −DL+2]

= E[IHb,bL+2 + (xD,b2 + ∆1 + U b
1)+ −DL+2]

= E[IHb,bL+2 + (xD,b2 + ∆1 + U b
1)−DL+2 + (xD,b2 + ∆1 + U b

1)−]

= yD,bL+2 + xD,b2 − µL+2 + E[U b
1 − U b

2 ]

= yD,bL+3 + kb1,

where the second equality follows by the identity of xHb,b2 in Lemma II.6 and the fourth

equality follows by E[∆1] = 0 and the identity of U b
2 in Lemma II.6.

Now, suppose that E[IHb,bt ] = yD,bt +
∑t−1−L

s=2 kbs−1 for all t ≤ t′. Then, for t = t′+ 1,

by Lemma II.6 and our induction hypothesis,

E[IHb,bt ] = E[IHb,bt−1 + xHb,bt−1−L −Dt−1]

= E[IHb,bt−1 + (xD,bt−1−L + ∆t−2−L + U b
t−2−L)+ −Dt−1]

= E[IHb,bt−1 + (xD,bt−1−L + ∆t−2−L + U b
t−2−L)−Dt−1 + (−xD,bt−1−L −∆t−2−L − U b

t−2−L)+]

=

[
yD,bt−1 +

t−2−L∑
s=2

kbs−1

]
+ xD,bt−1−L − µt−1 + E[U b

t−2−L − U b
t−1−L]

= yD,bt−1 +
t−2−L∑
s=2

kbs−1 + xD,bt−1−L − µt−1 + kbt−2−L

= yD,bt +
t−1−L∑
s=2

kbs−1,

where the second equality follows by the identity of xHb,bt−1−L in Lemma II.6 and the

fourth equality follows by E[∆t−2−L] = 0 and the identity of U b
t−1−L in Lemma II.6.

This completes the induction. �

Proof of Lemma II.8. For notational brevity, we will suppress the notational depen-
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dency on α. For t ≤ 1, we have xH`,`t = xD,bt , so the inequality P (IH`,`t + xH`,`t−L −Dt ≥

0) ≥ 1− α naturally holds.

For t ≥ 2, we can bound:

P
(
IH`,`t + xH`,`t−L −Dt ≥ 0

∣∣∣ =H`,`t−L−1

)
≥ P

(
IH`,`t−L +

t∑
s=t−L

xH`,`s−L −
t∑

s=t−L

Ds ≥ 0

∣∣∣∣∣ =H`,`t−L−1

)

≥ P

(
yD,bt +

t∑
s=t−L

xD,bs −
t∑

s=t−L

Ds ≥ 0

∣∣∣∣∣ =H`,`t−L−1

)
≥ 1− α

where the first inequality follows from the fact that, given the same starting point and

the same order quantities, the inventory level in the lost-sale system is larger than the

inventory level in the backorder system, the second inequality follows from the definition

of H` that xH`,`t (α) =
(
yD,bt (α) +

∑t
s=t−L x

D,b
s (α)− IH`,`t −

∑t−1
s=t−L x

H`,`
s (α)

)+

, and the

last inequality is directly from the deterministic system. �

Proof of Lemma II.11. As the order-up-to policies H` and Hb both use the same

order-up-to level, we have

IH`,`t +
t∑

s=t−L

xH`,`s = IHb,bt +
t∑

s=t−L

xHb,bs . (C.4)

We will simultaneously prove the following set of inequalities by induction:

IH`,`t ≥ IHb,bt , (C.5)

IH`,`t +
t−1∑

s=t−L

xH`,`s ≥ IHb,bt +
t−1∑

s=t−L

xHb,bs , (C.6)

xH`,`t ≤ xHb,bt , (C.7)

IH`,`t + xH`,`t−L ≥ IHb,bt + xHb,bt−L . (C.8)

153



For our induction base, note that 0 = IH`,`1 ≥ IHb,b1 = 0 and xH`,`t = xHb,bt for

1 − L ≤ t ≤ 1. So, inequalities (C.5) - (C.8) naturally hold for t = 1. Next, suppose

that inequalities (C.5) - (C.8) hold for all t ≤ t′. For t = t′ + 1, we have the following:

1. For inequality (C.5),

IH`,`t = (IH`,`t−1 + xH`,`t−1−L −Dt−1)+

≥ IH`,`t−1 + xH`,`t−1−L −Dt−1

≥ IHb,bt−1 + xHb,bt−1−L −Dt−1

= IHb,bt ,

where the second inequality follows from the induction hypothesis on inequality

(C.8).

2. For inequality (C.6),

IH`,`t +
t−1∑

s=t−L

xH`,`s = (IH`,`t−1 + xH`,`t−1−L −Dt−1)+ +
t−1∑

s=t−L

xH`,`s

≥ IH`,`t−1 + xH`,`t−1−L −Dt−1 +
t−1∑

s=t−L

xH`,`s

= IHb,bt−1 + xHb,bt−1−L −Dt−1 +
t−1∑

s=t−L

xHb,bs ,

where the second equality is from (C.4).

3. Inequality (C.7) followes immediately from (C.4) and (C.6).

4. For inequality (C.8), first note that, by induction hypothesis, xH`,`s ≤ xHb,bs for all
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s ≤ t′. Since we also have xH`,`t ≤ xHb,bt (as argued in #3), this implies:

t∑
s=t−L+1

xH`,`s ≤
t∑

s=t−L+1

xHb,bs .

Put the above inequality together with (C.4) immediately yields IH`,`t + xH`,`t−L ≥

IHb,bt + xHb,bt−L .

This completes our induction. �

Proof of Lemma II.13. The proof is very similar to the proof of Lemma II.2; we

omit the details. �

Proof of Lemma II.14. We prove by induction. For t = 1, Iπ,`1 + xπ,`1−L −D1 = −Υ1.

Suppose that the identity in Lemma II.14 is true for any t ≤ t′. Then, for t = t′ + 1,

we have:

Iπ,`t + xπ,`t−L −Dt = (Iπ,`t−1 + xπ,`t−1−L −Dt−1)+ + xπ,`t−L −Dt

= max

{
0,−

t−1∑
s=1

Υs + max

{
0,Υ1,

2∑
s=1

Υs, . . . ,
t−2∑
s=1

Υs

}}
−Υt

= −
t∑

s=1

Υs + max

{
0,Υ1,

2∑
s=1

Υs, . . . ,
t−2∑
s=1

Υs,
t−1∑
s=1

Υs

}
,

where the first equation follows by induction hypothesis. This completes the induction.

�

Proof of Lemma II.15. Fix π ∈ Π`. We want to show that π satisfies the probabilistic

service level constraints defined in Πb̃ for all 1 ≤ t ≤ T (i.e., if we apply the same

ordering decision xπt at period t in the backorder system b̃ as if the inventory levels

evolve according to a lost-sales system, the resulting sequence of ordering decisions

satisfies the probabilistic service level constraints in Πb̃). In what follows, we will
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consider the two cases 1 ≤ t ≤ L + 1 and L + 2 ≤ t ≤ T in turn; their proofs proceed

by induction.

Step 1: Case 1 ≤ t ≤ L+ 1

For t = 1, since P (xπ1−L − D1 ≥ 0) ≥ 1 − α, the probabilistic service level constraint

in Πb̃ is also satisfied. Suppose that the probabilistic service level constraints in Πb̃ are

satisfied for 1 ≤ t ≤ t′ < L+ 1, i.e.,

1− α ≤ P

(
Iπ,b̃t + xπt−L −Dt ≥ −

t−1∑
s=1

θs(α)

)
= P

(
t∑

s=1

xπs−L −
t∑

s=1

Ds ≥ −
t−1∑
s=1

θs(α)

)

for 1 ≤ t ≤ t′ < L+ 1. By definition of γt(α), this implies:

t∑
s=1

xπs−L +
t−1∑
s=1

θs ≥
t∑

s=1

µs + βt1(α) (C.9)

for 1 ≤ t ≤ t′ < L+ 1. So, for t = t′ + 1, we can bound:

P

(
Iπ,b̃t + xπt−L −Dt ≥ −

t−1∑
s=1

θs(α)

)

= P

(
t∑

s=1

xπs−L −
t∑

s=1

Ds ≥ −
t−1∑
s=1

θs(α)

)

= P

(
t∑

s=1

xπs−L −
t∑

s=1

Ds ≥ −max

{
0, θ1(α), . . . ,

t−1∑
s=1

θs(α)

})

≥ P

(
t∑

s=1

xπs−L −
t∑

s=1

Ds ≥ −max

{
0,Υ1,

2∑
s=1

Υs, . . . ,

t−1∑
s=1

Υs

})
= P (Iπ,`t + xπt−L −Dt ≥ 0)

≥ 1− α,

where the second equality follows since θs(α) ≥ 0; the first inequality follows by equa-

156



tion (C.9) and

s∑
k=1

Υk =
s∑

k=1

Dk −
s∑

k=1

xπk−L ≤ sD̄ −
s∑

k=1

µk − βs1(α) +
s−1∑
k=1

θk(α) =
s∑

k=1

θk(α)

the third equality follows by Lemma II.14; and, the last inequality follows since π ∈

Π`. This completes the induction. We conclude that the probabilistic service level

constraints in Πb̃ are satisfied by π for 1 ≤ t ≤ L+ 1.

Step 2: Case L+ 2 ≤ t ≤ T

For t = L+ 2, we have:

P

(
Iπ,b̃L+2 + xπ2 −DL+2 ≥ −

L+1∑
s=1

θs(α)

∣∣∣∣∣ =π,b̃1

)

= P

(
L+2∑
s=1

xπs−L −
L+2∑
s=1

Ds + max

{
0, θ1(α), . . . ,

L+1∑
s=1

θs(α)

}
≥ 0

)

≥ P

(
L+2∑
s=1

xπs−L −
L+2∑
s=1

Ds + max

{
0,Υ1,

2∑
s=1

Υs, . . . ,
L+1∑
s=1

Υs

}
≥ 0

)
= P (Iπ,`t + xπt−L −Dt ≥ 0)

≥ 1− α,

where the first equality holds since θs(α) ≥ 0; the first inequality again follows from

(C.9), which holds for t = L + 1 (by our result in Step 1 above); the second equality

follows from Lemma II.14; and, the last inequality follows since π ∈ Π`.

Suppose that the second probabilistic service level constraints in Πb̃ are satisfied
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for L+ 2 ≤ t ≤ t′ < T ; in particular,

1− α ≤ P

(
Iπ,b̃t + xπt−L −Dt ≥ −

t−1∑
s=1

θs(α)

∣∣∣∣∣ =π,b̃t−L−1

)

= P

(
Iπ,b̃t−L +

t∑
s=t−L

xπs−L −
t∑

s=t−L

Ds ≥ −
t−1∑
s=1

θs(α)

∣∣∣∣∣ =πt−L−1

)

for L+ 2 ≤ t ≤ t′ < T . By definition of wt(α), this implies:

Iπ,b̃t−L +
t∑

s=t−L

xπs−L +
t−1∑
s=1

θs(α) ≥
t∑

s=t−L

µs + βL+1
t−L (α)

for L+ 2 ≤ t ≤ t′ < T . So, for t = t′ + 1, we can bound:

P

(
Iπ,b̃t + xπt−L −Dt ≥ −

t−1∑
s=1

θs(α)

∣∣∣∣∣ =π,b̃t−L−1

)

= P

(
Iπ,b̃t + xπt−L −Dt ≥ −max

{
0, θ1(α),

2∑
s=1

θs(α), . . . ,
t−1∑
s=1

θs(α)

} ∣∣∣∣∣ =π,b̃t−L−1

)

≥ P

(
Iπ,b̃t + xπt−L −Dt ≥ −max

{
0,Υ1,

2∑
s=1

Υs, . . . ,
t−1∑
s=1

Υs

} ∣∣∣∣∣ =π,`t−L−1

)
= P

(
Iπ,`t + xπt−L −Dt ≥ 0

∣∣∣ =π,`t−L−1

)
≥ 1− α,

where the first equality follows since θs(α) ≥ 0; the first inequality follows from (C.10),

i.e.,

s∑
k=1

Υk =
s∑

k=s−L

(Dk − xπk−L)− Iπ,b̃s−L ≤ (L+ 1)D̄ −
s∑

k=s−L

µk − βL+1
s−L (α) +

s−1∑
k=1

θk(α) =
s∑

k=1

θk(α);

the third equality follows from Lemma II.14; and, the last inequality follows since

π ∈ Π`. This completes the induction; we conclude that the probabilistic service level

constraints in Πb̃ are also satisfied by π for L+ 2 ≤ t ≤ T , which proves Lemma II.15.

158



�

Proof of Lemma II.16. Denote the optimal control corresponding to C∗,` as π∗ and

its order quantities as
{
xπ
∗
t

}
t
. Now let us construct a new control π̃ such that

xπ̃t+1 , xπ
∗

t+1 +
(
Dt − xπ

∗

t−L − I
π∗,`
t

)+

,

namely, the order quantity under π̃ equals the order quantity under π∗ plus the amount

of lost-sales incurred during the previous period in the optimal lost-sales system. As

π̃ orders at least as many as π∗ does and π∗ is feasible to the backorder system b̃ by

Lemma II.15, π̃ is also feasible to the backorder system b̃. It follows that

C∗,b̃ − C∗,` ≤ C π̃,b̃ − C∗,`.

Let us compare the backorder system b̃ under policy π̃ (called System I) to the lost-sales

system under the optimal policy π∗ (called System II). Observe that

1. the two systems always have the same inventory position;

2. System I always has a lower inventory level than System II does;

3. the additional total penalty costs in System I (compared with System II) is at

most pL times the total lost-sales incurred in System II.

Note that a similar comparison between a backlog system and a lost-sales one was
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conducted earlier in the cost-based model (see Theorem 5 in 48). Hence, we have:

C π̃,b̃ − C∗,` ≤ c ·
T∑
t=1

E
[(
Dt − xπ

∗

t−L − I
π∗,`
t

)+
]

+ L · p ·
T∑
t=1

E
[(
Dt − xπ

∗

t−L − I
π∗,`
t

)+
]

= (c+ L · p) ·
T∑
t=1

E
[
I
(
Dt − xπ

∗

t−L − I
π∗,`
t ≥ 0

)(
Dt − xπ

∗

t−L − I
π∗,`
t

)]
≤ (c+ L · p) · T · α · D̄,

where the first inequality comes from the observations above and the last inequality

comes from the feasibility of the policy π∗. The proof is completed. �

Proof of Lemma II.17. We first re-write DET in matrix form. Replace yt in DET

with
∑t−1

s=1 xs−L −
∑t−1

s=1 µs (this way, we no longer need the first two constraints in

(2.5)). Now, (2.5) can be expressed as follows:

D∗,b(α) = min
x,z,m


d1

d2

d3


′ 

x

z

m



s.t.


A O O

−A I O

A O I



x

z

m

 ≥

b1

b2

b3

 ,

x

z

m

 ≥ 0,

where d1 is a vector of c’s, d2 is a vector of h’s, d3 is a vector of p’s, the b’s are the

proper right-hand-side (RHS) of the constraints in (2.5), I is an identity matrix, O is

a zero matrix.
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We can also rewrite formulation (2.16) compactly as follows:

D∗,b̃ = min
x,z,m


d1

d2

d3


′ 

x

z

m



s.t.


A O O

−A I O

A O I



x

z

m

 ≥

b̃1

b̃2

b̃3

 ,

x

z

m

 ≥ 0,

where b̃2 = b2 and b̃3 = b3. The dual formulation of (2.16) is given by

max
λ1,λ2,λ3


b̃1

b̃2

b̃3


′ 

λ1

λ2

λ3

 (:= b̃′λ)

s.t.


A′ −A′ A′

O I O

O O I



λ1

λ2

λ3

 ≤

d1

d2

d3

 ,

λ1

λ2

λ3

 ≥ 0.

Let λD and λ̃D denote optimal dual solutions to D∗,b and D∗,b̃, respectively. By the

standard duality theory,

D∗,b −D∗,b̃ = b′λD − b̃′λ̃D ≤ (b− b̃)′λD = (b1 − b̃1)′λD1 ,

where the inequality follows because, by the optimality of λ̃D, we have b̃′λ̃D ≥ b̃′λD,

and the last equality follows since b̃2 = b2 and b̃3 = b3. Let ∆̄ = b1− b̃1. We can further
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bound D∗,b −D∗,b̃ as follows:

D∗,b −D∗,b̃ ≤ max
q1,q2,q3

∆̄′q1

s.t.


A′ −A′ A′

O I O

O O I



q1

q2

q3

 ≤

d1

d2

d3

 ,

q1

q2

q3

 ≥ 0

≤ max
q1

∆̄′q1 (C.10)

s.t. A′q1 ≤ A′d2 + d1, q1 ≥ 0.

The second inequality above follows by setting q2 = d2 and q3 = 0. Now, note that

A′d2 + d1 =



c+ T · h

c+ (T − 1) · h

:

c+ h


and ∆̄ =



0

θ1(α)

:∑T−1
s=1 θs(α)


.

Since θt(α) ≥ 0, it is not difficult to see that the optimal solution to (C.10) is given by

q1 =



h

h

:

h

c+ h


.

We conclude that

D∗,b −D∗,b̃ ≤ (c+ h) ·

[
T−1∑
t=1

θt(α)

]
+ h ·

[
T−1∑
t=1

t−1∑
s=1

θs(α)

]
≤ (c+ h) · φ(T, α). �
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APPENDIX D

Proof of Chapter III

Proof of Section 3.4

Proof of Proposition III.1:

In this case, any pricing decision corresponds a certain demand structure – (1)

The snobs purchase product 1 while the followers purchase product 2. (2) Both snobs

and followers purchase product 1. (3) Both snobs and followers purchase product 2.

(4) Snobs purchase 1 while followers make no purchase. (5) Snobs purchase 2 while

followers make no purchase.

Scenario (1). The optimization problem that the firm faces is maxp1,p2≥0 p1 + βp2,

s.t. p1 − p2 ≤ vS∆q, p1 ≤ vSq1, p1 − p2 ≥ vF∆q, p2 ≤ vF q2. The optimal prices are

p∗1 = vSq1−(vS−vF )q2 and p∗2 = vF q2. The optimal revenue is R∗ = vS∆q+(1+β)vF q2.

Scenario (2). The optimization problem that the firm faces is maxp1,p2≥0 (1 + β)p1,

s.t. p1 − p2 ≤ vS∆q, p1 ≤ vSq1, p1 − p2 ≤ vF∆q, p1 ≤ vF q1. The optimal prices are

p∗1 = vF q1 and p∗2 > vF q2. The optimal revenue is R∗ = (1 + β)vF q1.

Scenario (3). The optimization problem that the firm faces is maxp1,p2≥0 (1 + β)p2,

s.t. p1 − p2 ≥ vS∆q, p2 ≤ vSq1, p1 − p2 ≥ vF∆q, p2 ≤ vF q1. The optimal prices are

p∗1 > vF q2 + vS∆q and p∗2 = vF q2. The optimal revenue is R∗ = (1 + β)vF q2, which is

clearly dominated by scenario (2).

Scenario (4). The optimization problem that the firm faces is maxp1,p2≥0 p1, s.t.

p1 − p2 ≤ vS∆q, p1 ≥ vF q1, p1 ≥ vF q2, p1 ≤ vSq1. The optimal prices are p∗1 = vSq1

and p∗2 > vSq2. The optimal revenue is R∗ = vSq1.

Scenario (5). The optimization problem that the firm faces is maxp1,p2≥0 p2, s.t.
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p1 − p2 ≥ vS∆q, p2 ≥ vF q2, p1 ≥ vSq1, p2 ≥ vF q2. The optimal prices are p∗1 ≥ vSq2

and p∗2 = vSq2. The optimal revenue is R∗ = vSq2, which is dominated by scenario 4.

In summary, the optimal policies can only be among scenarios (1), (2) and (4) and

we can further reduce it as follows. Note that (a) if vS ≥ (1 + β)vF , then the profit

in scenario (4) dominate those in (1) and (2), i.e., vSq1 ≥ vS∆q + (1 + β)vF q2 and

vSq1 ≥ (1 + β)vF q1 ; (b) if vS < (1 + β)vF , then the profit in scenario (2) dominate

those in (1) and (4), i.e., (1 + β)vF q1 ≥ vS∆q + (1 + β)vF q2 and (1 + β)vF q1 ≥ vSq1.

Proof of Theorem III.2:

We follow the logic of rational expectation in this proof: we first assume a certain

expectation of demand, then solve for the corresponding optimal prices such that the

realized demand meet the expected demand.

In this setting, there are 8 scenarios of the demand expectation: (1) The snob

customers purchase product 1 while the followers purchase product 2. (2) Both snob

and follower customers purchase product 1. (3) Both snob and follower customers

purchase product 2. (4) Snob customers purchase 1 while follower customers make no

purchase. (5) Snob customers purchase 2 while follower customers make no purchase.

(6) The snob customers purchase product 2 while the followers purchase product 1. (7)

The snob customers make no purchase while the followers purchase product 1. (8) The

snob customers make no purchase while the followers purchase product 2. We analyze

them individually. In the following analysis, we denote q1 − q2 simply as ∆q.

Scenario (1). The snob customers purchase product 1 while the followers purchase

product 2. Thus, De
1 = 1 and De

2 = β. The conditions for snob to purchase 1 are

vS ≥ p1−p2+k(1−β)
∆q

and vS ≥ p1+k
q1

, while the conditions for the follower customers

choose to purchase product 2 are vF <
p1−p2−m(1−β)

∆q
and vF ≥ p2−mβ

q2
. In other words,

the optimization problem that the firm faces is maxp1,p2≥0 p1 + βp2, s.t. p1 − p2 ≤
vS∆q − k(1 − β), p1 ≤ vSq1 − k, p1 − p2 ≥ vF∆q + m(1 − β), p2 ≤ vF q2 + mβ. The

condition for feasibility of the above problem is (vS − vF )∆q ≥ (k + m)(1 − β). It is

easy to observe that the optimal prices are as follows.

If vSq2 − kβ ≤ vF q2 + mβ, p∗1 = vSq1 − k and p∗2 = min{vF q2 + mβ, vSq1 − k −
vF∆q −m(1− β)}. O.w., p∗1 = vF q2 +mβ + vS∆q − k(1− β) and p∗2 = vF q2 +mβ.

We can write the optimal revenue compactly as R∗ = min{vSq1 − k, vF q2 + mβ +

vS∆q − k(1− β)}+ βmin{vF q2 +mβ, vSq1 − k − vF∆q −m(1− β)}.
Scenario (2). Both snob and follower customeres purchase product 1. De

1 = 1 + β

and De
2 = 0.

The optimization problem that the firm faces is maxp1,p2≥0 (1 + β)p1, s.t. p1 −
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p2 ≤ vS∆q − k(1 + β), p1 ≤ vSq1 − k(1 + β), p1 − p2 ≤ vF∆q + m(1 + β), p1 ≤
vF q1 +m(1 + β). The optimal prices are, p∗1 = min{vSq1− k(1 + β), vF q1 +m(1 + β)},
and any p2 ≥ p∗1 −min{vS∆q − k(1 + β), vF∆q + m(1 + β)}. The optimal revenue is

R∗ = (1 + β) min{vSq1 − k(1 + β), vF q1 +m(1 + β)}.
Scenario (3). Both snob and follower customers purchase product 2. De

1 = 0 and

De
2 = 1 + β. The optimization problem is maxp1,p2≥0 (1 + β)p2, s.t. p1 − p2 > vS∆q +

k(1 + β), p2 ≤ vSq2 − k(1 + β), p1 − p2 > vF∆q −m(1 + β), p2 ≤ vF q2 + m(1 + β).

The optimal prices are, p∗2 = min{vSq2 − k(1 + β), vF q2 + m(1 + β)} and any p∗1 ≥
p∗2 + max{vS∆q + k(1 + β), vF∆q − m(1 + β)}. The optimal revenue is R∗ = (1 +

β) min{vSq2− k(1 + β), vF q2 +m(1 + β)}. It is easy to see that such a selling strategy

generates less revenue than scenario (2).

Scenario (4). Snob customers purchase 1 while follower customers make no purchase.

De
1 = 1 and De

2 = 0. The optimization problem is maxp1,p2≥0 p1, s.t. p1−p2 ≤ vS∆q−k,

p1 ≤ vSq1 − k, p1 > vF q1 + m, p2 > vF q2. The condition for feasibility of the above

problem is (vS − vF )q1 ≥ (k +m).

The optimal prices are, p∗1 = vSq1 − k and any p∗2 ≥ vSq2. The optimal revenue is

R∗ = vSq1 − k. Then if vSq2 − kβ ≤ vF q2 + mβ, then it is dominated by the selling

strateyg described in Scenario (1).

Scenario (5). Snob customers purchase 2 while follower customers make no purchase.

De
1 = 0 and De

2 = 1. The optimization problem is maxp1,p2≥0 p2, s.t. p1−p2 > vS∆q+k,

p2 ≤ vSq2 − k, p1 > vF q1, p2 > vF q2 + m. The condition for feasibility of the above

problem is (vS − vF )q1 ≥ (k +m).

The optimal prices are, p∗2 = vSq2 − k and any p∗1 ≥ vSq1. The optimal revenue is

R∗ = vSq2 − k, which is dominated by the selling strategy described in Scenario (4).

Scenario (6). Snob customers purchase 2 while follower customers purchase product

1. De
1 = β and De

2 = 1. The optimization problem is maxp1,p2≥0 βp1 + p2, s.t.

p1− p2 > vS∆q− k(β− 1), p2 ≤ vSq2− k, p1− p2 ≤ vF∆q+m(β− 1), p1 ≤ vF q1 +mβ.

The condition for feasibility of the above problem is (vS − vF )∆q < (k + m)(β − 1).

Note that in the cases where β < 1, such an inequality can never hold.

The optimal prices are, p∗2 = vSq2 − k and p∗1 = min{vSq2 − k + vF∆q + m(β −
1), vF q1 + mβ}. The optimal revenue is R∗ = vSq2 − k + βmin{vSq2 − k + vF∆q +

m(β − 1), vF q1 +mβ}.
Scenario (7). Snob customers make no purchase while follower customers purchase

product 1. De
1 = β and De

2 = 0. The optimization problem is maxp1,p2≥0 βp1, s.t.

p1 > vSq1 − kβ, p2 > vSq2, p1 − p2 ≤ vF∆q + mβ, p1 ≤ vF q1 + mβ. The condition for
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feasibility of the above problem is (vS − vF )q1 < (k + m)β. The optimal prices are,

p∗1 = vF q1 +mβ and any p∗2 ≥ vF q2. The optimal revenue is R∗ = β(vF q1 +mβ).

Scenario (8). Snob customers make no purchase while follower customers purchase

product 2. De
1 = 0 and De

2 = β. The optimization problem is maxp1,p2≥0 βp2, s.t.

p1 > vSq1, p2 > vSq2 − kβ, p1 − p2 > vF∆q −mβ, p2 ≤ vF q2 + mβ. The condition for

feasibility of the above problem is (vS − vF )q2 < (k +m)β.

The optimal prices are, p∗2 = vF q2 + mβ and any p∗1 ≥ vF q1. The optimal revenue

is R∗ = β(vF q2 +mβ), which is dominated by the revenue in Scenario (7).

After knowing the prices in each of the 8 scenarios, we know that the equilibrium

can only be among scenarios (1), (2), (4), (6), and (7). Next, we classify the possible

forms of equilibria in four cases, depending on the relation between (vS − vF )q2 and

(m+k)β. Case 1: When (vS−vF )q2 ≤ (m+k)β, any scenarios other than (1), (2), (6)

and (7), are dominated by other scenarios, as scenario (4) is dominated by (1). Case

2: When (vS − vF )q2 ≥ (m + k)β, any scenarios other than (1), (2), (4), and (6), are

dominated by other scenarios, as scenario (7) is dominated by (6).

Proof of Proposition III.4 In the case of (vS − vF )q2 ≤ (m+ k)β, with Assumption

III.3, we know that (vS − vF )(q1 − q2) ≥ k + m. Thus, the feasibility condition for

scenario (6) does not hold. Also, scenario (7) is dominated by (2) under Assumption

III.3.

Proof of Section 3.5

Proof of Proposition III.5. We first analyze the strategy of firm 1 given the price

of firm 2, p2. For firm 1, the price to get the snob customers is p1 ≤ vS(q1 − q2) + p2

and p1 ≤ vSq1 (such that snobs have positive utility from product 1 and it is higher

than that from product 2, i.e., q1vS − p1 ≥ q2vS − p2) and the price to get the followers

is p1 ≤ vF (q1 − q2) + p2 and p1 ≤ vF q1(such that followers have positive utility from

product 1 and it is higher than that from product 2, i.e., q1vF − p1 ≥ q2vF − p2).

Similarly, we can get the pricing and revenue function of firm 2. For firm 2 the

price to get the snob customers is p2 ≤ p1 − vS(q1 − q2) and p2 ≤ vSq2, and the price

to get the followers is p2 ≤ p1 − vF (q1 − q2) and p2 ≤ vF q2.

From the above utility functions, we can observe that the equilibrium may be (and

can only be) in the following two forms. Form (1), firm 1 sells to snob customer while

firm 2 sells to follower customers. In other words, p1 has the following form:

p1 =

{
vS(q1 − q2) + p2 if p2 ≤ vSq2

vSq1 o.w.
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p2 has the following form:

p2 =

{
p1 − vF (q1 − q2) if p1 ≤ vF q1

vF q2 o.w.

Thus, in equilibrium, firm 1 sets p1 = vS(q1 − q2) + vF q2 and firm 2 sets p2 = vF q2.

The revenue of the firms are R1 = vS(q1 − q2) + vF q2 and R2 = βvF q2. A quick check

for the equilibrium is that: For firm 1, rising p1 means losing snobs customer while

lowering p1 means losing revenue, unless lowering the price all the way to the form

(2) shown below; For firm 2, rising p2 means losing followers while lowering p2 means

losing revenue.

Form (2), firm 1 sets p1 = vF (q1−q2) and p2 = 0. Remember that customers choose

product 1 if they have equal utility from both products. The revenue of the firms are

R1 = (1 + β)vF (q1 − q2) and R2 = 0. A quick check for the equilibrium: For firm 1,

rising p1 means losing customers while lowering p1 means losing revenue; For firm 2,

rising p2 does not win back any customers while there is no room to further lowering

p2.

In summary, if (vS − vF )(q1 − q2) ≥ vF (βq1 − (1 + β)q2), then firm 1 will choose to

adopt the form (1) equilibrium (which the firms 2 knows that firm 1 will choose such

an equilibrium); Otherwise, firm 1 will choose to adopt the form (2) equilibrium.

Proof of Lemma III.6 We first show that for any given p1 > 0, a pricing war cannot

survive in an equilibrium. We prove it by contradiction. Suppose there exist a case

where for p2 = 0, firm 1 still occupies the whole market with some strictly positive

price p1 > 0. In this case, for any type t (t ≥ 0) of customers, he has a positive

utility from product 1, tq1 − p1 ≥ 0. In such a case, firm 2 can increase p2 to pε(> 0)

to attract customers of type v where 0 ≤ v ≤ p1−pε
∆q

. Any customer with type v

prefers product 2 over product 1 and extracts a positive utility from product 2,, since

vq2−pε ≥ vq1−p1 ≥ 0 (where the last inequality follows from the condition tq1−p1 ≥ 0

for any t ≥ 0). Thus, firm 2 can always deviate from p2 = 0 and get a positive revenue.

Next, it is easy to see that if firm 1 sets p1 = 0, he can take the entire market but only

with zero revenue. Combining these two parts, we complete the proof.

Proof of Proposition III.7

Remember that for a customer with type v, either snob or followers, he purchases

product 1 from firm 1 if the following conditions hold: (1) v ≥ p1−p2
∆q

(such that

q1v − p1 ≥ q2v − p2) and (2) v ≥ p1
q1

. Similarly, he purchase product 2 from firm 2 if
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the following conditions hold: (1) v < p1−p2
∆q

and (2) v ≥ p2
q2

.

Based on the customer purchase decision, between product 1 and 2, we described

in Section 3.4, we can write the aggregation demand in the following two cases:

(1) if q1
p1
≤ q2

p2
(product 1 has higher unit cost of quality), then customers who have

type v ≥ p1−p2
∆q

purchase product 1, and customers who have type p2
q2
≤ v ≤ p1−p2

∆q

purchase product 2. The total purchase from follower customers, DF
1 and DF

2 , and

those from snob customers, DS
1 and DS

2 , are as follows, respectively.

DF
1 = β(1− p1 − p2

∆q
)

DF
2 = β(

p1 − p2

∆q
− p2

q2

)

DS
1 =

1

M
(M − p1 − p2

∆q
)

DS
2 =

1

M
(
p1 − p2

∆q
− p2

q2

)

Thus, the total demand of product 1 and 2 are

D1 = (β + 1)− (β +
1

M
)
p1 − p2

∆q

D2 = (β +
1

M
)[
p1 − p2

∆q
− p2

q2

]

(2) if q1
p1
> q2

p2
(product 2 has higher unit cost of quality), then customers who have

type v ≥ p1
q1

purchase product 1; otherwise, they do not make any purchase. The total

purchase from follower customers, DF
1 and DF

2 , and those from snob customers, DS
1

and DS
2 , are as follows, respectively.

DF
1 = β(1− p1

q1

)

DF
2 = 0

DS
1 =

1

M
(M − p1

q1

)

DS
2 = 0
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Thus, the total demand of product 1 and 2 are

D1 = (β + 1)− (β +
1

M
)
p1

q1

D2 = 0

Based on the demand functions above, we can derive the following response function

of firm 1 and 2.

For firm 1, given any p2, (1) if he sets price p1 >
p2q1
q2

, then the sales are D1 =

(β+1)−(β+ 1
M

)p1−p2
∆q

. In such case, the optimal price p∗1 is set to maximize his revenue

π1 = p1D1: if β+1

β+ 1
M

∆q > (2q1
q2
− 1)p2, p∗1 = 1

2
[p2 + β+1

β+ 1
M

∆q]; Otherwise, p∗1 = p2q1
q2

. (2) If

he sets price p1 ≤ p2q1
q2

, then the sales is D1 = (β + 1) − (β + 1
M

)p1
q1

. In such cases, if
β+1

β+ 1
M

≤ 2p2
q2

, p∗1 = q1
2

β+1

β+ 1
M

; Otherwise, p∗1 = p2q1
q2

.

For firm 2, given any p1, (1) if he sets price p2 <
p1q2
q1

, then the sales are D2 =

(β + 1
M

)[p1−p2
∆q
− p2

q2
]. In such case, p∗2 = p1q2

2q1
. (2) If he sets price p2 ≥ p1q2

q1
, then his

revenue is reduced to 0.

The best responses of firm 2 is to always choose to set price as p∗2 = p1q2
2q1

. Firm

1, knowing the best response of firm 2, then set p∗1 =
1
2
β+1

β+ 1
M

∆q

1− q2
4q1

(and firm 2 sets p2 =

β+1

β+ 1
M

q2
4q1−q2 ∆q).

Proof of Theorem III.8. In the first part of the analysis, we first start from the

part where the demand expectation affects the customer purchases and optimal prices.

Then, in the second part of the analysis, we analyze customers’ expectations formed

by the prices set by the firms.

Part 1: In the analysis, we also adopt the rational expectation framework. There

are four cases in such a setting. (1) Snobs purchase product 1 (from firm 1) while

followers purchase product 2 (from firm 2). (2) Both snobs and followers purchase

product 1. (3) Both snobs and followers purchase product 2. (4) Snobs purchase

product 2 while followers purchase product 1. Note that there does not exist cases

where only snobs (or followers) makes a purchase (e.g., snobs purchase product 1 while

followers make no purchase), as the no-sales firm can always attract the followers (or

snobs) and be better off.

In case (1), De
1 = 1 and De

2 = β. Given p2, the price for firm 1 to get snob customer

is p1 ≤ vSq1 − k and p1 ≤ vS(q1 − q2)− k(1− β) + p2 such that vSq1 − k − p1 ≥ 0 and
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vSq1 − k − p1 ≥ vSq2 − kβ − p2.

p1 =

{
vSq1 − k if p2 ≥ vSq2 − kβ
vS(q1 − q2)− k(1− β) + p2 o.w.

Given p1, the price for firm 2 to get follower customer is p2 ≤ vF q2 + mβ and p2 ≤
p1−vF (q1−q2)−m(1−β) such that q2vF+mβ−p2 ≥ 0 and q2vF+mβ−p2 ≥ q1vF+m−p1.

p2 =

{
vF q2 +mβ if p1 ≥ vF q1 +m

p1 − vF (q1 − q2)−m(1− β) o.w.

By the best response functions of firm 1 and 2, we know that: (i) If (vS − vF )∆q ≥
(m+ k)(1− β), (a) if (vS − vF )q2 ≥ β(m+ k), p1 = vSq1 − k− (vS − vF )q2 + β(k+m)

and p2 = vF q2 + mβ; (b) Otherwise, p1 = vSq1 − k and p2 = vF q2 + mβ. (ii) If

(vS − vF )∆q < (m+ k)(1− β), then there does not exist equilibrium in this case.

In case (2), De
1 = 1 + β and De

2 = 0. Given p2, the price for firm 1 to get snob

customers is p1 ≤ vSq1 − k(1 + β) and p1 ≤ vS(q1 − q2) − k(1 + β) + p2 such that

vSq1 − k(1 + β) − p1 ≥ 0 and vSq1 − k(1 + β) − p1 ≥ vSq2 − p2. And the price to get

follower customers is p1 ≤ vF q1 +m(1 + β) and p1 ≤ vF (q1 − q2) +m(1 + β) + p2 such

that vF q1 +m(1+β)−p1 ≥ 0 and vF q1 +m(1+β)−p1 ≥ vF q2−p2. For firm 2, for any

given p1, he has the incentive to lower p2 to win customer. Thus, in the equilibrium,

p1 = min{vS(q1 − q2)− k(1 + β), vF (q1 − q2) +m(1 + β)} and p2 = 0.

In case (3), De
1 = 0 and De

2 = 1 + β. Given p1, the price for firm 2 to get snob

customers is p2 ≤ vSq2 − k(1 + β) and p2 ≤ p1 − vS(q1 − q2) − k(1 + β) such that

vSq2 − k(1 + β) − p2 ≥ 0 and vSq2 − k(1 + β) − p2 ≥ vSq1 − p1. And the price to get

follower customers is p2 ≤ vF q2 +m(1 + β) and p2 ≤ p1 − vF (q1 − q2) +m(1 + β) such

that vF q2 + m(1 + β)− p2 ≥ 0 and vF q2 + m(1 + β)− p2 ≥ vF q1 − p1. For firm 1, for

any given p2, he has the incentive to lower p1 to win customer, until a point such that

p2 = 0 (from the constraints shown above). And from this point, any further reduce

of p1 means that firm 1 can generate positive sales, which conflicts with the demand

expectation of De
1 = 0. In other words, there does not exist an equilibrium that meet

the demand expectations in this case.

In case (4), De
1 = β and De

2 = 1. Given p1, the price for firm 1 to get follower

customer is p1 ≤ vF q1 + mβ and p1 ≤ vF (q1 − q2) −m(1 − β) + p2 such that vF q1 +

mβ − p1 ≥ 0 and vF q1 + mβ − p1 ≥ vF q2 + m − p2. Given p1, the price for firm 2 to

get snob customer is p2 ≤ vSq2 − k and p2 ≤ p1 − vS(q1 − q2) − k(1 − β) such that

170



vSq2 − k − p2 ≥ 0 and vSq2 − k − p2 ≥ q1vS − kβ − p1. Note that such case is not

feasible as the above constraints requires that p1 ≤ vF (q1 − q2) − m(1 − β) + p2 ≤
p1 −m(1− β)− (vS − vF )(q1 − q2)− k(1− β), which does not hold.

Part 2: From the above analysis, for rational customers, if they observe that p1

and p2 are set as the same in case (1), they will form expectations of De
1 = 1 and

De
2 = β; If they observe that p1 and p2 are set as the same in case (2), they will

form expectations of De
1 = 0 and De

2 = 1 + β. In other words, firms pricing can fully

determined customers’ expectations and the corresponding purchases.

Next, consider firm 1’s pricing decision. (i) If (vS − vF )∆q ≥ (m+ k)(1− β), (a) if

min{vSq1 − k − (vS − vF )q2 − β(k + m), vSq1 − k} ≥ (1 + β) min{vS(q1 − q2) − k(1 +

β), vF (q1 − q2) +m(1 + β)}, then the firm 1 prefers the equilibrium shown in case (1),

and firm 2 also knows such preference. Thus, the equilibrium will be in the form shown

in case (1). (b) Otherwise, firm 2 prefers the equilibrium shown in case (2), and firm

2 also knows such preference. Thus, the equilibrium will be in the form shown in case

(2). (ii) If (vS − vF )∆q < (m + k)(1 − β), then the only equilibrium is as the form

shown in case (2).

Firms’ Best Response Function. Based on the demand functions shown in Section

3.5.2, we can implicitly derive the following best response functions of firm 1 and 2.

We organize our discussion in two scenarios, depending on the relation of quality and

expected demand (as listed in the first column of conditions in Table 3.1).

(1) Scenario 1, D1q2 −D2q1 ≥ 0.

For firm 1, for any given p2, he picks p1 that maximizes profit π1.

π1 =



maxp1 p1[(β + 1)− (β + 1
M

)p1
q1

+ (βm− k
M

)
De1
q1

]

if p1 ≤ p2q1−k(De1q2−De2q1)

q2
,

maxp1 p1[(β + 1)− β−mD
e
1+p1
q1

− 1
M

k(De1−De2)+p1−p2
∆q

]

if
p2q1−k(De1q2−De2q1)

q2
≤ p1 ≤ p2q1+m(De1q2−De2q1)

q2
,

maxp1 p1[(β + 1)− β−m(De1−De2)+p1−p2
∆q

− 1
M

k(De1−De2)+p1−p2
∆q

]

if p1 ≥ p2q1+m(De1q2−De2q1)

q2
.
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For firm 2, for any given p1, he picks the p2 that maximizes profit π2.

π2 =



0, if p2 ≥ p1q2+k(De1q2−De2q1)

q1
,

maxp2 p2[ 1
M

(
k(De1−De2)+p1−p2

∆q
− kDe2+p2

q2
)],

if
−m(De1q2−De2q1)+p1q2

q1
≤ p2 ≤ k(De1q2−De2q1)+p1q2

q1
,

maxp2 p2[β(
−m(De1−De2)+p1−p2

∆q
− −mD

e
1+p1
q1

) + 1
M

(
k(De1−De2)+p1−p2

∆q
− kDe2+p2

q2
)],

if p2 ≤ −m(De1q2−De2q1)+p1q2
q1

.

(2) Scenario 2, De
1q2 −De

2q1 < 0.

For firm 1, for any given p2, he picks p1 that maximizes profit π1.

π1 =



maxp1 p1[(β + 1)− (β + 1
M

)p1
q1

+ (βm− k
M

)
De1
q1

]

if p1 ≤ p2q1+m(De1q2−De2q1)

q2
,

maxp1 p1[β + 1− β−m(De1−De2)+p1−p2
∆q

− 1
M

kDe1+p1
q1

]

if
p2q1+m(De1q2−De2q1)

q2
≤ p1 ≤ p2q1−k(De1q2−De2q1)

q2
,

maxp1 p1[(β + 1)− β−m(De1−De2)+p1−p2
∆q

− 1
M

k(De1−De2)+p1−p2
∆q

]

if p1 ≥ p2q1−k(De1q2−De2q1)

q2
.

For firm 2, for any given p1, he picks the p2 that maximizes profit π2.

π2 =



0, if p2 ≥ −m(De1q2−De2q1)+p1q2
q1

,

maxp2 p2[β(
−m(De1−De2)+p1−p2

∆q
− −mD

e
1+p1
q1

)],

if
k(De1q2−De2q1)+p1q2

q1
≤ p2 ≤ −m(De1q2−De2q1)+p1q2

q1
,

maxp2 p2[β(
−m(De1−De2)+p1−p2

∆q
− −mD

e
1+p1
q1

) + 1
M

(
k(De1−De2)+p1−p2

∆q
− kDe2+p2

q2
)],

if p2 ≤ k(De1q2−De2q1)+p1q2
q1

.
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Proofs of Section 3.6

Proof of Lemma III.12.

From Assumption III.3, we know that there are three possible scenarios: (1) Only

snob customers purchase the bundle. (2) Both snob and follower customers purchase

the bundle. (3) Only follower customers purchase the bundle.

(1) In the first scenario, De
1 = 1 and De

2 = 1. It is easy to see that the optimal

bundle price is pB = vSq1 +vSq2−2k. The revenue is RB = pB = pB = vSq1 +vSq2−2k.

(2) In the second scenario, De
1 = 1 + β and De

2 = 1 + β. The optimal bundle price

is pB = vF q1 + vF q2 + 2m(1 + β). Revenue is RB = (1 + β)[vF q1 + vF q2 + 2m(1 + β)].

(3) In the third scenario, De
1 = β and De

2 = β. The optimal bundle price is

pB = vF q1 + vF q2 + 2βm. Note that such a case appears only if vF q1 + vF q2 + 2βm ≥
vSq1 + vSq2 − 2k. Revenue is RB = β(vF q1 + vF q2 + 2βm). Note that the revenue is

dominated by that in the second scenario.

Thus, the revenue from pure bundling is max{vSq1 +vSq2−2k, (1+β)[vF q1 +vF q2 +

2m(1 + β)]}.

Proof of Lemma III.14

We analyze this case by checking the 2 possible strategies of product bundling: (1)

Offering only the bundle and product 2. (2) Offering only the bundle and product 1.

Regarding the first strategy, there are two scenarios of the realized sales. We analyze

them one by one as follows.

Scenario 1: Snob customers purchase bundle and follower customers purchase

product 2. De
1 = 1 and De

2 = 1 + β.

The firm chooses price pB and p2 to maximize profit, with the above set of con-

straints.

max pB + p2β

s.t. vSq1 − k ≥ pB − p2

vSq1 + vSq2 − k − pB ≥ 0

vF q1 +m ≤ pB − p2

vF q2 +m(1 + β)− p2 ≥ 0

where the constraints represents the conditions for snobs to purchase the bundle and

only snobs want to purchase the bundle. First, the utility from bundle should be larger

than that of product 2 for snobs vSq1+vSq2−k−pB ≥ vSq2−p2 ⇐⇒ vSq1−k ≥ pB−p2.
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Second, the utility of bundle is positive. Third, for followers, bundle utility is smaller

than separate product 2, vF (q1 + q2) +m+m(1 +β)− pB < vF q2 +m(1 +β)− p2 ⇐⇒
vF q1 +m < pB − p2. Last, product 2 has positive utility for follower customer.

Note that the above optimization is feasible if vSq1 − k ≥ vF q1 + m, which auto-

matically holds with Assumption III.10.

Solving the above optimization, the optimal prices are

p∗2 = min{vF q2 +m(1 + β), vS(q1 + q2)− vF q1 − k −m}

p∗B = vS(q1 + q2)− k

One observation is that, depending on the paramters, the snob customers may have

positive utility, while follower customers always have zero utility.

The total revenue is then

R = vS(q1 + q2)− k + βmin{vF q2 +m(1 + β), vS(q1 + q2)− vF q1 − k −m}

Scenario 2: Snob customers only purchase 2 and follower customers only purchase

the bundle. De
1 = β and De

2 = 1 + β.

The following conditions must hold in this case. First, for snobs customers, the

utility of bundle is smaller than 2. vSq1 +vSq2−kβ−pB ≤ vSq2−p2 ⇐⇒ vSq1−kβ ≤
pB − p2. And, for followers, the utility of product 2 is smaller than that of the bundle.

vF q1 + vF q2 + βm+m(1 + β)− pB > vF q2 +m(1 + β)− p2 ⇐⇒ vF q1 + βm > pB − p2.

By Assumption III.10, it is easy to see that there is no feasible solutions in this case.

Regarding the second strategy, by similar logic, we can derive that the total revenue

is

R = vS(q1 + q2)− k(1 + β) + βmin{vF q1 +m(1 + β), vS(q1 + q2)− vF q2 − k −m}

Thus, the optimal selling strategy is to offer bundle and product 1 if min{vF q1 +

m(1+β), vS(q1+q2)−vF q2−k−m}−min{vF q2+m(1+β), vS(q1+q2)−vF q1−k−m} ≤ k.

Note that this condition can be easily simplified as vF (q1 − q2) ≤ k; Otherwise, the

optimal strategy is to offer bundle and product 2.

Proof of Lemma III.15

For the cases of k = m = 0, from propositions III.11, III.12, III.13, and III.14, we
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know that the revenue of each selling strategy is as below

RPure Bundling = max{vS(q1 + q2), (1 + β)vF (q1 + q2)}

RPure Component = max{vSq1, (1 + β)vF q1}+ max{vSq2, (1 + β)vF q2}

RPartial Mixed Bundle = vS(q1 + q2) + βmin{vF q1, vS(q1 + q2)− vF q2}

For the cases of vS < (1 +β)vF , the revenues from pure bundling, pure component,

and partial mixed bundling are (1+β)vF (q1 +q2), vSq1 +(1+β)vF q2, and vS(q1 +q2)+

βvF q1, respectively. Note that the partial mixed bundling and the pure bundling cases

always dominate the pure component strategy. If (vS − vF )(q1 + q2) ≥ βvF q2, then the

mixed bundling dominates the pure bundling strategy; Otherwise, the pure bundling

strategy is optimal.

For the cases of vS ≥ (1 +β)vF , the revenues from pure bundling, pure component,

and partial mixed bundling are vS(q1 + q2), vSq1 +(1+β)vF q2, and vS(q1 + q2)+βvF q1,

respectively. It is easy to see that the partial mixed bundling always dominates other

strategies.

Proof of Lemma III.16

We identify the cases where partial mixed bundling outperform the other strategies

by analyzing the subcases one by one.

Scenario (1): k ≥ vF (q1 − q2). Remember that in the cases with k ≥ vF (q1 − q2),

offering product 2 with bundle is better than offering product 1 with bundle. The

revenue of each strategy in as below.

RPure Bundling = max{vS(q1 + q2)− k, (1 + β)[vF (q1 + q2) + 2m(1 + β)]}

RPure Component = max{vSq1 − k, (1 + β)[vF q1 +m(1 + β)]}

+ max{vSq2, (1 + β)[vF q2 +m(1 + β)]}

RPartial Mixed Bundle = vS(q1 + q2)− k

+βmin{vF q2 +m(1 + β), vS(q1 + q2)− vF q1 − k −m}

Note that if (a) vSq1−k ≥ (1+β)[vF q1+m(1+β)] and vSq2 ≥ (1+β)[vF q2+m(1+β)]

or (b) vSq1 − k < (1 + β)[vF q1 + m(1 + β)] and vSq2 < (1 + β)[vF q2 + m(1 + β)], the

revenue of pure component is equal to that of pure bundling. The only case where they

are not equal is vSq1−k ≥ (1+β)[vF q1 +m(1+β)] and vSq2 < (1+β)[vF q2 +m(1+β)].

In such a case, RPure Component = vSq1− k+ (1 + β)[vF q2 +m(1 + β)]. In the following
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analysis, with a bit abuse of notation, we only refer the pure component to this case.

(1) If vS(q1 + q2)− k < (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) <

(2 + β)m+ k, pure bundling revenue is RPure Bundle = (1 + β)[vF (q1 + q2) + 2m(1 + β)]

and the partial mixed bundling is RPartial Mixed Bundle = vS(q1 + q2) − k + β[vSq2 +

(vS − vF )q1 − k − m]. The partial mixed bundling dominates pure bundling if (1 +

β)(vS − vF )(q1 + q2) − βvF q1 ≥ k(1 + β) + mβ + 2m(1 + β)2, which contradicts the

second condition in (1). Thus, the partial mixed bundling is always dominated by pure

bundling in this case.

(2) If vS(q1 + q2)− k < (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) ≥
(2 + β)m+ k, pure bundling revenue is RPure Bundle = (1 + β)[vF (q1 + q2) + 2m(1 + β)]

and the partial mixed bundling revenue is RPartial Mixed Bundle = vS(q1 + q2) − k +

β[vF q2 + m(1 + β)]. The partial mixed bundling dominates pure bundling if (vS −
vF )(q1 + q2)− βvF q1 ≥ (2 + β)(1 + β)m+ k. And it dominates the pure component if

(vS − vF )q2 ≥ m(1 + β), which always hold by Assumption III.10.

(3) If vS(q1 + q2)− k ≥ (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) <

(2 + β)m + k, these two conditions conflict each other. So there does not exist such

cases.

(4) If vS(q1 + q2)− k ≥ (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) ≥
(2 + β)m + k, pure bundling revenue is RPure Bundle = vS(q1 + q2)− k and the partial

mixed bundling revenue is RPartial Mixed Bundle = vS(q1 + q2)− k + β[vF q2 +m(1 + β)].

The partial mixed bundling dominates the pure bundling if vF q2 +m(1 + β) ≥ k. And

it dominated the pure component if (vS − vF )q2 ≥ m(1 + β), which always hold by

Assumption III.10.

Scenario (2): k < vF (q1−q2), where offering product 1 with bundle is better than

offering product 2 with bundle. The revenue of each strategy in as below.

RPure Bundling = max{vS(q1 + q2)− k, (1 + β)[vF (q1 + q2) + 2m(1 + β)]}

RPure Component = max{vSq1 − k, (1 + β)[vF q1 +m(1 + β)]}

+ max{vSq2, (1 + β)[vF q2 +m(1 + β)]}

RPartial Mixed Bundle = vS(q1 + q2)− k(1 + β)

+βmin{vF q1 +m(1 + β), vS(q1 + q2)− vF q2 − k −m}

Again if (a) vSq1−k ≥ (1+β)[vF q1 +m(1+β)] and vSq2 ≥ (1+β)[vF q2 +m(1+β)]

or (b)vSq1 − k < (1 + β)[vF q1 + m(1 + β)] and vSq2 < (1 + β)[vF q2 + m(1 + β)], the
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revenue of pure component is equal to that of pure bundling. The only case where they

are not equal is vSq1−k ≥ (1+β)[vF q1 +m(1+β)] and vSq2 < (1+β)[vF q2 +m(1+β)].

In such a case, RPure Component = vSq1− k+ (1 + β)[vF q2 +m(1 + β)]. In the following

analysis, with a bit abuse of notation, we only refer the pure component to this case.

(1) If vS(q1 + q2)− k < (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) <

(2 + β)m+ k, pure bundling revenue is RPure Bundle = (1 + β)[vF (q1 + q2) + 2m(1 + β)]

and the partial mixed bundling is RPartial Mixed Bundle = vS(q1 + q2) − k(1 + β) +

β[vS(q1 + q2)− vF q2− k−m]. The partial mixed bundling dominates pure bundling if

(1 + β)(vS − vF )(q1 + q2)− βvF q2 ≥ k(1 + 2β) +mβ + 2m(1 + β)2, which contradicts

with the second condition in (1) (of Scenario (2)). Thus, partial mixed bundling is

always dominated by pure bundling in this case.

(2) If vS(q1 + q2)− k < (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) ≥
(2 + β)m+ k, pure bundling revenue is RPure Bundle = (1 + β)[vF (q1 + q2) + 2m(1 + β)]

and the partial mixed bundling revenue is RPartial Mixed Bundle = vS(q1 + q2) − k(1 +

β) + β[vF q1 + m(1 + β)]. The partial mixed bundling dominates pure bundling if

(vS − vF )(q1 + q2) − βvF q2 ≥ (2 + β)(1 + β)m + k(1 + β). And it dominates the

pure component if (vS − vF )q2 + βvF (q1 − q2) ≥ m(1 + β) + kβ, which always hold by

Assumption III.10.

(3) If vS(q1 + q2)− k ≥ (1 + β)[vF (q1 + q2) + 2m(1 + β)] and (vS − vF )(q1 + q2) <

(2 + β)m + k, these two conditions conflict each other. So there does not exist such

cases.

(4) If vS(q1 +q2)−k ≥ (1+β)[vF (q1 +q2)+2m(1+β)] and (vS−vF )(q1 +q2) ≥ (2+

β)m+ k, pure bundling revenue is RPure Bundle = vS(q1 + q2)− k and the partial mixed

bundling revenue is RPartial Mixed Bundle = vS(q1 + q2)− k(1 + β) + β[vF q1 +m(1 + β)].

The partial mixed bundling dominates the pure bundling if vF q1 +m(1 + β) ≥ k. And

it dominated the pure component if (vS− vF )q2 +βvF (q1− q2) ≥ m(1 +β) +kβ, which

always hold by Assumption III.10.
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