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ABSTRACT 

The use of medically-necessary drugs has extended the lives of countless patients.  While 

healthcare providers rely on the pharmaceutical industry for treatments, in recent years, the drug 

supply in the United States has become volatile and drug shortages are common.  Shortages are 

considered a public health crisis and are often caused by disruptions to vulnerable 

pharmaceutical supply chains.  The tightly optimized supply chains have little redundancy and 

low levels of inventory.  This combination can cause minor supply interruptions to become 

widespread shortages.  I study the dynamics of shortages by developing new models of supply 

chains under disruption, and I identify regulations and incentives to induce companies to reduce 

the occurrence and impact of shortages.  There has been minimal analysis on the quantitative 

impact of proposed policies. 

 I present four mathematical models.  The first two are static supply chain design 

problems (SCDD and SCDD-I).  The company decides at the beginning of the horizon how to 

configure its supply chain.  In the second model (SCDD-I), the company may also choose to hold 

inventory.  The models are two of the first to include disruptions and recovery over time.  They 

are solved using Sample Average Approximation.  The analyses suggest that it is either not 

economically feasible or attractive for companies to maintain resilient supply chains for some 

drugs that are vulnerable to shortage.  I use the models to compare policies that have been 

proposed to reduce shortages.  It is less expensive to raise prices in combination with resilience 

requirements than to raise prices alone.  Requiring a second supplier may have the largest 

incremental benefit than requiring a back-up at other levels of the supply chain. 
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 The third model (D-SCDD) is a dynamic supply chain design model.  It is a multi-stage 

stochastic program.  At the beginning of the time horizon, the company selects the supply chain 

configuration and may add components or stop production if disruptions occur.  The formulation 

applies the geometrically-distributed times to recover and disruption via an inverse sampling 

approach to maintain stage-wise independence.  It is solved using the Stochastic Dual Dynamic 

Integer Programming (SDDiP) algorithm.  I find that substantial reductions in the lead times to 

add components or reducing the mean time to recover disrupted components may reduce 

shortages.  Minor lead time reductions have little impact. 

 The fourth model (SCR) is comprised of closed-form expressions that describe the 

reliability characteristics of a given supply chain configuration.  The analyses provide evidence 

that increasing component quality would be effective at reducing shortages.  The model can also 

be used to calculate break-even prices. 

This project provides insight to policymakers and companies to support the profitable 

production of a reliable drug supply. The implications and use of these models is widely relevant 

to other regulated industries and supply chains under distribution.  
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CHAPTER I 

Introduction 

 

-- 

“How do you tell a patient who has recently received a diagnosis of cancer that the first-choice 

chemotherapy agent is not currently available for his treatment?” (Berry 2014) 

 

  “All ask the same question: ‘How could this happen in the United States of America?’” 

(Kweder and Dill 2013) 

-- 

Drug shortages regularly affect health care in the United States (US).  They are often 

caused by disruptions to fragile pharmaceutical supply chains (GAO 2016).  The factors that 

contribute to these disruptions are complex, and shortages continue to persist.  There has been 

very limited work to analyze policy proposals quantitatively.  Existing mathematical models that 

consider disruptions are not able to handle the nuances of shortages in the pharmaceutical 

industry.  

In this dissertation, I address two goals: 

 To develop new mathematical models that capture the relevant characteristics of 

disruption-related decisions in the pharmaceutical industry 
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 To provide evidence to support policy discussions with the aim of reducing drug 

shortages 

In the remainder of this introduction, I present an overview of drug shortages in the US 

and an outline of the technical chapters. 

1. Background on drug shortages 

Shortages became widespread in the US beginning in 2010, and in a 2011 survey, 99.5% 

of hospitals reported at least one drug shortage in the six months prior to the survey (American 

Hospital Association 2011).  In 2018,  all 719 respondents (hospital pharmacy managers and 

leaders) reported they had experienced at least one drug shortage in the prior year, and 69.2% 

reported more than 50 (Hantel et al., 2019).  Among oncology drugs, 34% of marketed drugs 

were short at least once between 2001-2017 (Hosseini et al., 2018).  Estimates projected that 

550,000 patients were affected by an oncology drug shortage in 2011 (IMS 2011).  Saline 

shortages were projected to have affected millions of patients since 2003 (Chen et al., 2016).  

Currently, the COVID-19 (coronavirus) outbreak has begun to affect drug supply chains with 

factory closures in China (McCarthy 2020).  The long term effects on drug manufacturing are 

unclear though concerning. 

Shortages tend to affect drugs that are generic and/or sterile injectable (Dill and Ahn 

2014, Le et al. 2011).  These types of drugs tend to have higher production costs and lower 

prices.  Drugs vulnerable to shortage are not necessarily representative of drugs as a whole.  For 

many drugs, high prices are a major concern; those are not necessarily the drugs affected by 

shortages (Frakt 2016). 

Most drug shortages – when the source is reported – are caused by supply chain 

disruptions (GAO 2016).  If interruptions occur, it is difficult to ramp up production.  The 
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industry has moved to just-in-time inventory practices, particularly for generic drugs, thereby 

making drug supply chains more brittle.  Low profit margins and prices may lead to inadequate 

investments in resiliency strategies and quality systems (Woodcock and Wosinska 2013). 

Shortages have translated into poor health outcomes, and several patients have died.  

During the norepinephrine shortage, there was a 3.7% increase in inpatient mortality (35.9% to 

39.6%) for patients with septic shock (Vail et al., 2017).  For pediatric cancer patients, two-year 

event-free survival dropped during the mechlorethamine shortage (Metzger et al. 2012). 

Shortages are costly.  The national cost in labor associated with mediating drug shortages was 

estimated in 2019 to be $359 million annually (Vizient 2019).  Purchasing alternative 

medications, if available, is also expensive.  The most recent estimate was $200 million in 2011 

(Cherici et al., 2011). 

2. Modeling 

Drug shortages continue in high numbers, and mathematical modeling to tackle the crisis 

has been limited (Tucker et al., 2020a).  The strategic decisions that pharmaceutical companies 

make about their supply chains have direct effects on shortages when disruptions occur and their 

impacts.  There are open questions about which policies would be effective at reducing 

shortages; the effects of increasing supply chain adaptability; and evaluating the risk of 

shortages.   To consider these questions, new supply chain models that include both disruption 

and recovery over time are needed.  Throughout, I will refer to supply chain “components.”  

These represent the key facilities within the supply chain where disruptions can lead to 

shortages, i.e., Active Pharmaceutical Ingredient (API) suppliers; manufacturing plants; and 

manufacturing lines (GAO 2016).  A summary of the technical chapters is as follows, and an 

overview of the models and associated features is presented in Table 1. 
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Chapter 2 addresses the question of resilient supply chain design when disruptions and 

recovery can occur over time.  The chapter presents two models of static supply chain design.  In 

both models, the configuration decisions made in the initial stage are maintained throughout the 

remainder of the horizon.  The first, the Supply Chain Design under Disruption (SCDD) model, 

is a two-stage stochastic program where the decision-maker selects the supply chain 

configuration in the initial stage, and facility availability is revealed in the second stage for each 

of the remaining time periods.  Operational decisions are made, and demand may be met or there 

is a shortage.  The second model is the Supply Chain Design under Disruption with Inventory 

(SCDD-I) model.  This is a multi-stage stochastic program where the company selects the supply 

chain configuration and target safety stock level in the initial stage.  In the following stages, 

facility availability is realized.  The operational decisions – ordering raw materials, producing 

the drug, inventory replenishment, and amount of demand to meet – are made.  An exogenous 

replenishment rule implies standard non-anticipativity constraints are redundant and simplifies 

the model structure.  Both models are solved using Sample Average Approximation (SAA) 

(Kleywegt et al. 2002).  The models are used to conduct extensive analysis on policies that could 

induce generic injectable oncology drug companies to be more resilient.  Two example generic 

injectable oncology drugs are used as case examples (vinblastine sulfate and vincristine sulfate).  

The key contributions of this paper are as follows: 

 It presents new supply chain design models that consider disruptions and recovery. 

They include the new combination of features: the inclusion of time; disruptions at 

multiple echelons and multiple components simultaneously; multiple resiliency 

strategies (redundancy and inventory). 
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 The model with inventory (SCDD-I) incorporates a replenishment rule that forces the 

standard non-anticipativity constraints to hold implicitly. 

 The analyses shift the standard perspective of supply chain resiliency models.  Rather 

than a company optimizing resiliency, they consider how to induce a profit-

maximizing company to be resilient. 

 It is the first paper to compare several policies that have been proposed to reduce drug 

shortages (including mandating redundancy or inventory; adding failure-to-supply 

clauses; and price increases). 

This chapter has been published as Tucker et al. (2020b) and is co-authored with Mark 

Daskin, Burgunda Sweet, and Wallace Hopp. 

Chapter 3 considers the question of a dynamic supply chain design.  When disruptions 

occur, pharmaceutical companies have a limited ability to adjust their supply chain 

configurations.  The process is limited by lengthy review times by the Food and Drug 

Administration (GAO 2016).  Typically, disruption-related models assume that companies will 

remain in the market if a disruption occurs (Snyder et al., 2006).  Their focus is rather on how to 

prevent disruptions or how to recover.  This chapter considers different questions, namely i) how 

the lead times to add new components affect shortages and ii) how disruptions may affect a 

company with low profit-margin decisions to remain in the market.  The analyses are run using 

an example generic injectable oncology drug (vincristine sulfate). 

To address these questions, I introduce a new dynamic supply chain design model that 

incorporates disruptions and recovery.  In the initial stage, the company selects its initial supply 

chain configuration that it maintains throughout the time horizon (unless it leaves the market).  In 

the subsequent stages, facility availability is progressively revealed over time, and the company 
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may choose to maintain the initial configuration, to begin the process of adding new components, 

or to discontinue production and leave the market.  In each stage, demand may be met or there is 

a shortage. 

The model is solved using the Stochastic Dual Dynamic Integer Programming (SDDiP) 

algorithm (Zou et al. 2019).  This algorithm requires the uncertainty to be stage-wise 

independent; yet disruptions and recovery within the pharmaceutical industry is geometrically 

distributed and follow different distributions (Chapter 2).  To consider this, I reformulate the 

model to sample probability values from the inverse of the cumulative distribution function 

(CDF) of the appropriate distributions.  Then the model applies the appropriate stochastic 

availability parameter via the constraints.  This induces the realizations of uncertainty to be 

stage-wise independent and allows the SDDiP algorithm to be applied. 

The key contributions are as follows: 

 It is the first dynamic supply chain design model that considers disruptions and 

recovery. 

 It applies multiple distributions for the times to disruption and recovery in a stage-

wise independent approach. 

 The analysis addresses a key public health question of whether reduced lead times to 

add components would reduce shortages. 

 The model is used to study the relationship between disruptions and product 

discontinuations. 

In Chapter 4, I present a new model of supply chain reliability.  The previous chapters 

consider complex optimizations where the decision-maker seeks to design the pharmaceutical 
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supply chain.  In this chapter, I consider the question of evaluation – what is the reliability of a 

given supply chain structure? 

By considering an exogenous (given) supply chain structure, I develop closed-form 

equations of the probability of shortage, the average time between shortages, and the length of 

shortages when they occur.  As the model is presented in closed-form, they could be solved using 

calculations within a spreadsheet or even by hand (in contrast to the specialized optimization 

software needed in Chapters 2 and 3).  Pharmaceutical companies could use the model as they 

conduct internal risk analysis or by external regulators if they have access to key supply chain 

characteristics. 

The model is used to evaluate the supply chain reliability of a generic injectable oncology 

drug (vincristine sulfate) under several conditions.  Multiple potential configurations are 

considered.  The analyses study the effects of reducing the expected time to recovery or reducing 

the expected disruption rate.  I also consider profitability and costs.  I calculate the prices at 

which more reliable supply chains become more profitable, and the prices where the company 

breaks even for different configurations. 

The contributions of this chapter are: 

 I present a new model for evaluating the reliability of pharmaceutical supply chains to 

disruptions.  The equations are presented in closed-form. 

 I analyze the effects of maintaining higher-quality components and quicker recovery 

after disruptions 

 I conduct a pricing analysis to determine break-even pricing. 
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Table 1. Summary of models 

  Features    

Model name Acronym 

Closed-

form 

solutions 

Optimize 

supply 

chain 

Includes 

inventory 

Can change 

configuration 

Model 

type 

Solution 

method Ch. 

Supply Chain 

Design under 

Disruption 

SCDD  ✓    Two-

stage SP 

SAA 2 

Supply Chain 

Design under 

Disruption 

with 

Inventory 

SCDD-I  ✓  ✓   Multi-

stage SP 

SAA 2 

Dynamic 

Supply Chain 

Design under 

Disruption 

D-SCDD  ✓   ✓  Multi-

stage SP 

SDDiP 3 

Supply chain 

reliability  

SCR ✓     Analytical 

 

Closed-

form; 

Simulation 

4 

Ch. = chapter; SAA = Sample Average Approximation; SDDiP = Stochastic Dual Dynamic Integer Programming; 

SP = stochastic program 

 

The three technical chapters are framed as standalone papers.  They each include 

introductions to the particular problem addressed, reviews of the relevant literature, 

methodology, results, and discussion.  The conclusion in chapter 5 summarizes the dissertation 

and discusses future research directions. 
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CHAPTER II 

Incentivizing Resilient Supply Chain Design to Prevent Drug Shortages: Policy Analysis 

Using Two- and Multi-Stage Stochastic Programs 

 

1. Introduction 

Over the past decade, the United States (US) has experienced unprecedented shortages of 

medically-necessary drugs.  In 2015 alone, 427 drugs were unavailable (GAO 2016).  Shortages 

last 14 months on average and can have negative effects on patient safety, clinical outcomes, and 

health system costs (GAO 2016, Tucker et al., 2020a).  They are often caused by disruptions to 

non-resilient pharmaceutical supply chains.  The question of how best to reduce their impact is 

pressing for patients and the US healthcare system.   

Drugs that have been short span a variety of therapeutic classes including central nervous 

system (anesthetics), cardiovascular, anti-infective, and oncology agents (UUDIS 2016).  When 

shortages occur, treatment of patients may be delayed, changed, or cancelled entirely (Goldsack 

et al. 2014, McLaughlin et al. 2013).  Shortages have been associated with patient deaths (Fox et 

al. 2014, Vail et al. 2017), and managing them has been compared to dealing with a “natural 

disaster or national emergency… occur[ring] on a daily basis” (Fox et al. 2014). 

Costs associated with managing shortages are high.  It has been estimated that traditional 

US health systems spend $216-359 million each year on labor costs to manage shortages 

(Kaakeh et al. 2011, Vizient 2019) and $200 million annually to purchase substitute drugs and 

hold extra inventory (Fox et al. 2014). 
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Shortages are caused by a variety of factors.  Production may be delayed, companies may 

leave the market, or production lines may be contaminated.  In some cases, Food and Drug 

Administration (FDA) inspections have uncovered quality concerns at manufacturing and raw 

material facilities that have led to extended shutdowns (Fox et al. 2014, Palmer 2016).  Some 

drugs have been short multiple times because of intermittent manufacturing issues (UUDIS 

2016).  Often companies do not report the direct cause of a shortage, but of those reported, 82% 

are caused by a supply chain disruption (GAO 2016).   

There has been substantial research on mitigating disruptions in non-pharmaceutical 

supply chains, and researchers have found that maintaining some degree of resiliency is often 

optimal (Snyder et al. 2016, Tomlin 2006).  However, shortages of drugs persist.  This may be 

due, at least in part, to the unique challenges of the highly regulated pharmaceutical industry.  

Whenever a pharmaceutical company changes its supply chain, it must go through a lengthy 

FDA approval process (GAO 2016).  This requirement makes it difficult to adapt to disruptions.  

When this is combined with the complex manufacturing processes of sterile drugs, there are 

inherent vulnerabilities.  A stark contrast can be seen with other industries.  When a fire shut 

down the sole supplier of a critical part for Toyota years ago, they were able to ramp-up other 

suppliers and resume production within days (Nishiguchi and Beaudet 1998).  When Hurricane 

Maria shut down pharmaceutical manufacturing plants in Puerto Rico, drug shortages continued 

to affect the healthcare system for months (Gottlieb 2018b, Thomas and Kaplan 2017).  The 

strategic resiliency decisions made prior to disruption become critical. 

Currently, companies that manufacture drugs that are particularly vulnerable to shortages 

(e.g., sole-source generic injectables) hold little backup capacity and maintain little to no safety 

stock (Fox et al. 2014, GAO 2016, Woodcock and Wosinska 2013).  Profit margins are low 
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(GAO 2016), and there are few consequences if there is a shortage.  Companies rarely pay 

penalties if they cannot supply a drug, and the risk of losing market share to a new competitor is 

small because of high barriers to entry (GAO 2016, Haninger et al. 2011, Jia and Zhao 2017). 

Yet, drugs affected by shortages are often medically-necessary and life-sustaining.  The 

fundamental question becomes: how could pharmaceutical supply chains be strengthened to 

provide a reliable drug supply?  I will answer this by considering two specific questions: i) is it 

optimal for companies to choose low resiliency? and ii) if so, what is the best way to induce 

companies to maintain resilient supply chains? 

Several strategies have been proposed.  These include regulatory changes, e.g., require 

companies to maintain redundancy (ASHP 2013, Chabner 2011, FDA 2013, Gehrett 2012, 

Health Policy Brief: Drug Shortages 2014, Jarosławski et al. 2017) or hold safety stock (ASHP 

2013, Gupta and Huang 2013, Jarosławski et al. 2017, Wiggins et al. 2014).  Others include 

contractual changes such as strengthening failure-to-supply clauses (Conti 2011, FDA 2013, 

Haninger et al. 2011, Health Policy Brief: Drug Shortages 2014, Jia and Zhao 2017, Reed et al. 

2016) and increasing prices (Chabner 2011, Gatesman and Smith 2011, Health Policy Brief: 

Drug Shortages 2014, Link et al. 2012).  Limited analyses of the potential effects of these 

proposals have been conducted despite calls from experts for such studies (FDA 2013, Fox et al. 

2014, Fox and Tyler 2013, ISPE and Pew Charitable Trusts 2017, Roberts et al. 2012).  It 

remains unclear whether market-based interventions or regulatory changes would be more 

effective. 

In this chapter, I seek to fill this gap to consider why pharmaceutical companies may set 

up either vulnerable or resilient supply chains and to analyze how the proposed policy changes 

would affect supply chain decisions.  As different policies have different implementation costs, I 
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analyze the social-efficiency – how to reduce shortages to a specified level for the lowest cost.  

The analyses are focused on generic, oncology drugs and include two steps: first, I develop new 

pharmaceutical supply chain design models, and second, I change the underlying market 

conditions to analyze the effects of the proposed policies. 

The remainder of this chapter is organized as follows.  In Section 2, I review the relevant 

literature and discuss contributions of the analysis.  In Section 3, I present the base model that 

includes redundancy as a resiliency strategy, and in Section 4, I develop the extension that 

includes safety stock.  I discuss the solution methods in Section 5.  In Section 6, I present case 

examples of two oncology drug supply chains.  In Section 7, I discuss the results and policy 

implications and conclude. 

2. Literature review 

This work relates to several streams of literature, and I briefly review relevant studies that 

focus on pharmaceuticals, supply chain risk management, disruptions, and incentives. 

2.1. Pharmaceutical modeling 

The operations research and management science community has only recently begun to 

study drug shortages.  Kim and Scott Morton (2015) analyzed factors that contribute to shortages 

with a game theory model of two competing manufacturers of perfectly substitutable generic 

injectable drugs.  They suggested that spare capacities may have been removed when prices 

dropped in the early 2000s, revealing underlying vulnerabilities that led to shortages.  In one of 

the only papers to evaluate policy, Jia and Zhao (2017) developed a model of contracts between 

key stakeholders to analyze the effects of failure-to-supply clauses and price increases.  At the 

beginning of the contracting period, the manufacturer allocates production capacity at a single 

echelon and decides its inventory policy under stochastic supply and demand.  The authors used 
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this framework to study case examples of fluorouracil, cytarabine, and bleomycin and found 

Pareto-improving contracts for each stakeholder.  Others have studied inventory control for 

hospitals struggling with shortages (Saedi et al. 2016), inventory policies as a response to 

product recalls (Azghandi et al. 2018), and inventory policies related to human behavior and 

shortages (Doroudi et al. 2018).  Jacobson, Sewell, and Proano (2006) analyzed the size of the 

Strategic National Stockpile of pediatric vaccines. 

Optimization is regularly applied more broadly in the pharmaceutical literature (Narayana 

et al. 2014, Shah 2004) though work on supply chain design is uncommon.  Exceptions include a 

multi-stage stochastic program which considered demand uncertainty (Guillén et al. 2006) and a 

four-echelon supply chain model under uncertainty in demand, cost, and desired safety stock 

levels (Mousazadeh et al. 2015).  In this chapter, I consider supply chain design models where 

disruptions are a source of supply uncertainty. 

2.2. Supply chain risk management 

Supply chain risk management (SCRM) is a large research area that considers how 

companies structure and operate their supply chains to provide products to customers in the 

presence of uncertainty.  There have been several reviews of this literature (including Ho et al. 

2015, Tang 2006, Tang and Musa 2011), and one of the early reviews identified four main 

domains of SCRM – managing supply, demand, products, and information (Tang, 2006).  In a 

seminal paper, Chopra and Sodhi (2004) discussed several strategies to manage risk, including 

capacity, inventory, redundancy, and flexibility. 

Since then, many authors have developed quantitative models to analyze strategies in 

different contexts.  Objectives have varied from cost minimization to bi-objective frameworks 

that trade off profit and risk (Nagurney 2006, Tomlin 2006).  Some researchers explicitly 
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penalize unmet demand (Dada et al. 2007, Schmitt et al. 2010), and others consider robust 

approaches (O’Hanley and Church 2011).  Researchers have found that supply and demand risks 

should be managed differently (Schmitt et al. 2015, Snyder and Shen 2006).  When the risk is 

supply chain disruptions, Tomlin (2006) found that it is rarely optimal to passively accept risk; 

companies should nearly always select some level of resiliency.  Yet pharmaceutical companies 

often passively accept risk for generic injectable drugs (Fox et al. 2014, GAO 2016, Woodcock 

and Wosinska 2013).  One open question this chapter seeks to address is whether this choice is 

optimal. 

2.3. Disruptions 

Within the field of SCRM, many models have focused on disruptions as a source of 

supply-side risk.   Snyder et al. (2016) presented an extensive review of this area.  Common 

mitigation strategies include maintaining redundancy, holding inventory, or sourcing from 

multiple suppliers.  

Redundancy or backup capacity decisions are often considered within the facility location 

literature.  A number of studies have considered where to locate facilities at a single echelon 

given disruptions (e.g., Snyder and Daskin 2005).  Fewer papers have considered decisions for 

multiple echelons (e.g., the robust approach of Peng et al. 2011). 

Within the inventory literature, researchers have extended standard, single-supplier 

models to include disruptions.  A survey of key models is available from Atan and Snyder 

(2012).  In the Economic Order Quantity model with Disruptions (EOQD), the supplier is 

disrupted according to a continuous-time Markov chain (presented by Parlar and Berkin 1991; 

corrected by Berk and Arreola‐Risa 1994).  One extension includes the risk of disruptions at the 

retailer (Qi et al. 2009).  In the periodic-review framework, Song and Zipkin (1996) proved that 
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a base-stock policy is optimal for a single echelon if the order costs are linear, and Schmitt, 

Snyder, and Shen (2010) derived the exact and approximate expected costs when there is 

stochastic demand. 

Where there are multiple suppliers, inventory decisions can be made using extensions to 

the EOQD model (Gurler and Parlar 1997, Parlar and Perry 1996) or a network of queues (Song 

and Zipkin 2009).  Schmitt and Tomlin (2012) analyzed whether single- or multi-sourcing is 

optimal in different contexts, and Saghafian and Van Oyen (2012) studied the effects of the 

flexibility of the backup.  Mak and Shen (2012) considered dynamic sourcing to mitigate both 

demand and supply uncertainty. 

Companies may also consider multiple disruption mitigation strategies.  Tomlin (2006) 

compared a firm’s decision to dual-source with holding inventory, rerouting, and passive 

acceptance.  Others analyzed strategies for supply chain networks (Bundschuh et al. 2003, Hopp 

and Yin 2006, Schmitt 2011).  These included separate models for multi-sourcing, safety stock, 

and meeting an expected service level (Bundschuh, Klabjan, and Thurston, 2003) and models 

that traded off backup capacity and safety stock (Hopp and Yin 2006, Schmitt 2011).  Schmitt 

(2011) noted that inventory is helpful for shorter, more frequent disruptions, and backup capacity 

is better for less frequent, longer disruptions.  MacKenzie, Barker, and Santos (2014) studied the 

decisions suppliers and firms make during and after a disruption, including whether to switch to 

an alternate facility.  Where trade-offs were evaluated, the key metric was company cost or profit 

(e.g., Hopp and Yin 2006); this chapter focuses on the overall societal cost, i.e., social-efficiency. 

 Disruption models that included inventory often considered decisions over multiple time 

periods (e.g., Berk and Arreola‐Risa 1994, Tomlin 2006), though location and design models 

generally did not.  The latter often assumed the system returned to steady-state before another 
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disruption occurred (e.g., Hopp and Yin 2006; Kim and Scott Morton 2015; Schmitt 2011) or 

implicitly considered a single time period (e.g., Bundschuh et al. 2003).  The strategic design 

models that included time considered decisions for a single echelon (Fattahi et al. 2017, Losada 

et al. 2012) or single layer of arcs between two echelons (Mak and Shen 2012).  A recent review 

noted that in general very few supply chain design problems under uncertainty have been 

formulated as multi-stage stochastic programs (Govindan et al. 2017), and those that exist have 

tended to be small; e.g., a three-stage model with nine scenarios (Almansoori and Shah 2012). 

2.4. Incentives and policy 

The models in the previous subsections generally took the perspective of a company that 

aims to improve resiliency to reduce costs, though there is a stream of literature that considers 

incentives and policies from external decision-makers.  Among those that included uncertainty in 

supply, researchers have analyzed strategies to incentivize capacity restoration after disruptions 

and to improve recovery time (Hu et al. 2013, Kim et al. 2010).  As discussed, failure-to-supply 

clauses have been analyzed in the context of capacity allocation for drug shortages (Jia and Zhao 

2017).  Tang, Gurnani, and Gupta (2014) studied subsidies and increased demand to incentivize 

a more reliable supply.  Researchers have also analyzed government policy incentives in other 

areas, e.g., tax incentives for renewable energy (Karimi et al. 2018). 

2.5. Contributions 

In this analysis of strategic resiliency decisions and policies to reduce drug shortages, this 

chapter make the following contributions. 

 It studies resiliency decisions for the highly regulated supply chains of generic injectable 

drugs that have low profit margins and a limited ability to adapt if disruptions occur. 

 I develop supply chain design models that incorporate a new combination of 
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characteristics.  They consider time; disruptions may occur at multiple echelons; multiple 

components may be concurrently unavailable; and the company may select multiple 

mitigation strategies (facility redundancy and safety stock). 

 It introduces constraints to enforce a replenishment rule, and the non-anticipativity 

property of the multi-stage stochastic program is induced.  This allows a large thirteen-

stage model to be solved. 

 I evaluate policies to induce resiliency and reduce drug shortages (mandatory 

redundancy, mandatory inventory, failure-to-supply penalties, pricing changes, and the 

combination of price increases and other interventions).  I analyze the social-efficiency of 

these interventions. 

3. Base model (SCDD) 

To begin to study strategic resiliency, I develop a two-stage stochastic program – the 

Supply Chain Design under Disruption (SCDD) model.  In the first stage, the company selects 

the optimal configuration of the supply chain that will be fixed for the remainder of the time 

horizon.  There is uncertainty about which components may be working in future periods.  In 

each subsequent period, the uncertainty is realized, and the company decides the quantities of 

raw materials to order and finished goods to produce. 

I consider a three-echelon supply chain for a single drug that is comprised of Active 

Pharmaceutical Ingredient (API) suppliers, manufacturing plants, and manufacturing lines.  

Manufacturers of sterile injectable drugs typically hold little safety stock (GAO 2016), and this is 

reflected in the base analysis. 
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3.1. Background 

A sample supply chain configuration is presented in Figure 1.  It includes two suppliers, 

two plants, and one line in each plant.  Plants may receive raw materials from either API 

supplier, but lines are associated with specific plants.  Each candidate plant 𝑘 ∈ 𝐾 has a set of 

candidate lines 𝑙 ∈ 𝐿𝑘.  In this example, 𝐿1 = {1,2,3} and 𝐿2 = {4,5,6}.  The set of all lines 𝐿 is 

the union of the sets of lines in each plant, i.e., 𝐿 =∪𝑘∈𝐾 𝐿𝑘 = {1,2,3,4,5,6}.  While 

pharmaceutical companies have additional partners in practice (e.g., packaging and non-active 

raw materials), the model includes only the critical steps (cf. Bundschuh et al. 2003) and 

considers all echelons that contributed to shortage categories in a recent Government 

Accountability Office report (GAO 2016). 

 The objective is to maximize the expected profit under uncertainty in the status of the 

supply chain components.  In the first stage, the company selects the supply chain configuration.  

They may choose to not market the drug and select no components.  In the second stage, in each 

period, the company selects production and order quantities after uncertainty about component 

availability is realized.  Demand may be met with production or unmet (a shortage), and both 

demand and price are constant over the time horizon.   

There are fixed costs to select components, and these 

include the costs to maintain suppliers, plants, and lines as well 

as the government-mandated user fees for generic drug production 

(i.e., Generic Drug User Fee Amendments (GDUFA) fees; 

FDA 2018b).  The GDUFA facility fees are incurred as fixed costs for each supplier and plant, 

and the GDUFA program fee is incurred if the company is in the market.  There are variable 

costs to order raw materials and to produce the drug, and revenues come from sales. 

Supplier 1 Supplier 2 

Plant 1 Plant 2 

Line 1 Line 4 

Figure 1. Example supply chain 
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Any component in any echelon may become disrupted, and in each period, the status of 

each component is either available {1} or disrupted {0}.  I model this uncertainty using discrete 

scenarios 𝜔 ∈ Ω, where the random variable 𝜉𝑛𝑡
𝜔  in scenario 𝜔 ∈ Ω represents the status of 

candidate component 𝑛 ∈ 𝑁 in period 𝑡 ∈ 𝑇 (𝜉𝑛𝑡
𝜔 ∈ {0,1}|𝑁|x|𝑇|x|Ω|).  The notation for SCDD is 

presented in Figure 2. 

The lines have capacity limits to be consistent with the model that includes inventory, 

though these are not limiting for the SCDD model. 

 

3.2. Model formulation 

The formulation of SCDD is as follows. 

 

Sets 

𝐽 Set of candidate API suppliers  

𝐾 Set of candidate manufacturing plants 

𝐿 Set of candidate lines 

𝐿𝑘 Set of candidate lines in plant 𝑘 ∈ 𝐾 

𝑁 Set of all components, 𝑁 = 𝐽 ∪ 𝐾 ∪ 𝐿 

𝑇 Set of time periods 

Ω Set of scenarios 

 

Decision Variables 

First Stage 

𝑥𝑗 ≔ ቄ
1 if API supplier 𝑗 ∈ 𝐽 is selected               
0 otherwise                                                     

 

𝑦𝑘 ≔ ቄ
1 if manufacturing plant 𝑘 ∈ 𝐾 is selected
0 otherwise                                                         

 

𝑧𝑙 ≔ ቄ
1 if line 𝑙 ∈ 𝐿 is selected                
0 otherwise                                       

 

 

Second Stage  

As a fraction of demand in period 𝑡 ∈ 𝑇 in scenario 𝜔 ∈ Ω: 

𝑢𝑗𝑡
𝜔 Raw material purchased from supplier 𝑗 ∈ 𝐽 

𝑣𝑙𝑡
𝜔   Finished goods produced on line 𝑙 ∈ 𝐿 

𝜃𝑡
𝜔   Demand met 

Parameters  

𝑝𝜔 Probability of scenario 𝜔 ∈ Ω 

𝜉𝑛𝑡
𝜔 ≔ ቄ

1 if component 𝑛 ∈ 𝑁 is available in period 𝑡 ∈ 𝑇 in scenario 𝜔 ∈ Ω         
0 otherwise                                                                                                                    

  

𝑑 Quantity of drug demanded each period 

𝑞 Sales price per unit of drug 

𝑐𝑟𝑎𝑤 , 𝑐𝑝𝑟𝑜𝑑 Unit cost of raw materials and finished good production 

𝑐𝐴𝑃𝐼 , 𝑐𝑃𝑙𝑎𝑛𝑡 , 𝑐𝐿𝑖𝑛𝑒 Annual fixed costs for each supplier, plant, and line, respectively 

𝑓𝐴𝑃𝐼 , 𝑓𝑃𝑙𝑎𝑛𝑡   Annual GDUFA fees for each supplier and plant, respectively 

𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚 Annual GDUFA fee for drug program 

𝑔𝐿𝑖𝑛𝑒 ∈ ℤ+ Line capacity as a fraction of total demand, if line is available 

𝑡ሷ Number of periods per year  

Figure 2. Notation for SCDD 
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Maximize 

−⌈
|𝑇|

𝑡ሷ
⌉ [(𝑐𝐴𝑃𝐼 + 𝑓𝐴𝑃𝐼)∑ 𝑥𝑗𝑗∈𝐽 + (𝑐𝑃𝑙𝑎𝑛𝑡 + 𝑓𝑃𝑙𝑎𝑛𝑡) ∑ 𝑦𝑘𝑘∈𝐾 + 𝑐𝐿𝑖𝑛𝑒 ∑ 𝑧𝑙𝑙∈𝐿 + 𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑥1]

+𝐸𝛺[𝑄(𝑥, 𝑦, 𝑧)]                                                                                                                                    
  

       (1) 

Subject to: 

 

𝑧𝑙 ≤ 𝑦𝑘 ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿𝑘         (2) 
 

𝑥𝑗 ≥ 𝑥𝑗+1       ∀𝑗 ∈ 𝐽 ∖ {|𝐽|}        (3a)  

𝑦𝑘 ≥ 𝑦𝑘+1       ∀𝑘 ∈ 𝐾 ∖ {|𝐾|}       (3b) 

𝑧𝑙 ≥ 𝑧𝑙+1       ∀𝑙 ∈ 𝐿𝑘 ∖ {|𝐿𝑘|}, 𝑘 ∈ 𝐾       (3c) 

 

𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽 (4a) 

𝑦𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐾 (4b) 

𝑧𝑙 ∈ {0,1} ∀𝑙 ∈ 𝐿 (4c) 

 

𝐸Ω[𝑄(𝑥, 𝑦, 𝑧)] = max
𝑢,𝑣,𝜃

∑ 𝑝𝜔𝑑∑ [𝑞𝜃𝑡
𝜔 − 𝑐𝑟𝑎𝑤 ∑ 𝑢𝑗𝑡

𝜔
𝑗∈𝐽 − 𝑐𝑝𝑟𝑜𝑑 ∑ 𝑣𝑙𝑡

𝜔
𝑙∈𝐿 ]𝑡∈𝑇𝜔∈Ω  (5) 

 

Subject to: 

 

𝑢𝑗𝑡
𝜔 ≤ 𝜉𝑗𝑡

𝜔|𝐿|𝑔𝐿𝑖𝑛𝑒𝑥𝑗  ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇,𝜔 ∈ Ω  (6) 

𝑣𝑙𝑡
𝜔 ≤ 𝜉𝑘𝑡

𝜔𝜉𝑙𝑡
𝜔𝑔𝐿𝑖𝑛𝑒𝑧𝑙 ∀𝑙 ∈ 𝐿𝑘 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω  (7) 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 ≤ ∑ 𝑢𝑗𝑡
𝜔

𝑗∈𝐽  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω  (8) 

𝜃𝑡
𝜔 ≤ ∑ 𝑣𝑙𝑡

𝜔
𝑙∈𝐿   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω  (9) 

𝜃𝑡
𝜔 ≤ 1 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω  (10) 

 
𝑢𝑗𝑡
𝜔 ≥ 0 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇,𝜔 ∈ Ω  (11a) 

𝑣𝑙𝑡
𝜔 ≥ 0 ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω  (11b) 
𝜃𝑡
𝜔 ≥ 0 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω (11c) 

 
The objective function (1) maximizes the expected profit.  The annual fixed costs 

include, respectively, the cost per API supplier, the GDUFA fee per API supplier, the cost per 

plant, the GDUFA fee per plant, the cost per line, and the GDUFA program fee.  Expected 

ordering and production costs and revenues are incurred in the second stage.  Constraints (2) 

ensure that the selected lines are in selected plants.  Constraints (3) require components to be 

selected in numerical order and are used to reduce alternative optima.  Constraints (4) are 
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standard binary constraints. 

In the second stage, the company makes operational decisions each period after 

uncertainty is realized.  The objective function (5) maximizes the expected profit in the second 

stage.  Revenues are accrued based on sales, and costs include raw materials and production.  

Constraints (6) limit orders of raw materials to selected, available suppliers.  Constraints (7) limit 

finished goods production to the capacity of selected, available lines in available plants.  

Constraints (8) limit production to the amount of raw material ordered.  Constraints (9-10) 

ensure the fraction of demand met is not greater than the finished goods available and the amount 

customers demand, respectively.  Constraints (11) enforce non-negativity. 

3.3. Structural property 

It follows from the formulation of SCDD that demand is either fully met or fully unmet 

each period.  This is presented formally in Lemma 1. 

 Lemma 1: 𝜃𝑡
𝜔 ∈ {0,1}, ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω.  Proof: Provided in appendix. 

3.4. Assumptions 

To identify factors that contribute to supply chain vulnerability and resiliency, I make 

several simplifying assumptions.  The model does not consider transportation time or cost.  

While these are clearly present in practice, the time to ship from common API supplier locations 

to the US is often one month or less (SeaRates 2018, US Department of Commerce 2018), which 

is smaller than the periods considered in this chapter’s analyses.  I assume production occurs 

throughout the year and suppliers are uncapacitated.  I exclude some other operational dynamics 

such as costs and time of product changeover that are often present in other papers within the 

pharmaceutical literature (Lakhdar and Papageorgiou 2008, Marques et al. 2017).  Discounting is 

not considered because the focus is on the realized costs and revenues of limited-term contracts.  
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If a disruption occurs, the model do not consider the cost of recovery.  At an API facility, this 

cost would be incurred by the supplier, and at a plant the cost would be spread across multiple 

drugs, though this is a limiting assumption.  I assume constant demand over the time horizon, 

consistent with the fairly stable demand of most drugs (Fox et al. 2014).  If demand is not met 

for the drugs considered in our case examples, in practice a clinical decision is generally made to 

switch to an alternative treatment.  Treatment delays are less common, and as a simplifying 

assumption, I assume all demand is lost rather than backordered due to delays.  The model does 

not consider competition, which is justified by the fact that drugs affected by shortages are often 

sole-source, particularly those that are injectable (IMS Institute for Healthcare Informatics 2011, 

UUDIS 2016).  The drugs analyzed have a single manufacturer. 

I do not allow the company to make changes to the supply chain structure within the time 

horizon.  Disruptions and recovery at each component occur independently and are exogenous to 

the model.  Each candidate component within an echelon, e.g., all candidate lines, have identical 

disruption profiles and capacities.  This could be relaxed by subscripting the capacity parameters 

by the components.  Furthermore, following the work of others, I do not consider location 

decisions; rather the focus is on resiliency strategies and policies (Hopp and Yin 2006, Jia and 

Zhao 2017). 

4. Extension to include inventory (SCDD-I) 

To extend the analyses to consider safety stock as a resiliency strategy, I introduce a 

second model.  It is called the Supply Chain Design model under Disruption with Inventory 

(SCDD-I) and formulate it as a multi-stage stochastic program.  The model relaxes the initial 

decision that no inventory is held, and it can be used to study why companies may or may not 

use inventory. 
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4.1. Background 

In the first stage, the company chooses the supply chain configuration and a target 

amount of safety stock to hold each period (i.e., stage).  Neither the supply chain design nor the 

target safety stock level may be changed throughout the time horizon.  As in the SCDD model, 

the company may choose no components and not produce the drug.  In each of the subsequent 

stages, uncertainty in the component statuses is realized, and the company selects production and 

order quantities.  Demand may be met through production or safety stock.  If production exceeds 

demand, inventory is replenished.  Unmet demand is lost, not backordered.  

To model practice realistically, multi-stage stochastic programs must impose the non-

anticipativity property.  It requires decision-makers to make the same decision for each scenario 

that is identical up to that point.  This prevents them from anticipating realizations of future 

uncertainty.  The non-anticipativity property is typically enforced either through constraints or 

implied via the construction of the scenario tree, but as the number of stages increases, the 

number of constraints substantially increases, and the problem quickly becomes intractable to 

standard solution methods such as Sample Average Approximation (SAA).  To avoid this 

Decision Variables 

First Stage 

𝑧ǁ𝑗𝑙 ≔ ቄ
1 if supplier 𝑗 ∈ 𝐽 and line 𝑙 ∈ 𝐿 are selected 
0 otherwise                                                               

 

𝐼0 Target safety stock level as a fraction of per-period demand 

Subsequent Stages 

As a fraction of per-period demand in scenario ω ∈ Ω: 

𝐶𝑡
𝜔    Capacity available to meet demand in period 𝑡 ∈ 𝑇  

𝐶ሚ𝑡
𝜔    Excess capacity available in period 𝑡 ∈ 𝑇  

𝐼𝑡
𝜔    Safety stock available at the end of period 𝑡 ∈ {0} ∪ 𝑇 

 

In period 𝑡 ∈ 𝑇 in scenario 𝜔 ∈ Ω: 

𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 ≔ ቄ

1 if safety stock is available to meet demand  
0 otherwise                                                                

 

𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

≔ ቄ
1 if sufficient capacity is available to replenish safety stock deficit      
0 otherwise                                                                                                             

 

 

Parameters 

ℎ Unit cost of holding drug for one period 

𝑜𝑚𝑎𝑥  Maximum number of periods of safety 

stock that can be held 

 

Figure 3. Additional Notation for SCDD-I 
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intractability, I impose a safety stock replenishment rule: the manufacturer must meet demand 

when possible; they may only deplete safety stock if production capacity is unavailable; and they 

must replenish deficit safety stock if excess capacity is available.  That is, given the component 

statuses and variables from the previous stage, the rule predetermines the sales and inventory 

decisions; the decision variables will be the same regardless of future realizations of uncertainty.  

This induces the non-anticipativity constraints to hold without including them in the model.  The 

additional notation for SCDD-I is presented in Figure 3. 

4.2. Model formulation 

The SCDD-I model includes constraints (2-4, 6-8, 10-11) from the SCDD model, and the 

revised objectives and additional constraints are as follows. 

Maximize  

 

−⌈
|𝑇|

𝑡ሷ
⌉ [(𝑐𝐴𝑃𝐼 + 𝑓𝐴𝑃𝐼)∑ 𝑥𝑗𝑗∈𝐽 + (𝑐𝑃𝑙𝑎𝑛𝑡 + 𝑓𝑃𝑙𝑎𝑛𝑡)∑ 𝑦𝑘𝑘∈𝐾 + 𝑐𝐿𝑖𝑛𝑒 ∑ 𝑧𝑙𝑙∈𝐿 + 𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑥1]  +

𝐸𝛺[𝑄(𝑥, 𝑦, 𝑧, 𝐼0)]  
                        (12) 

Subject to: 

 

𝐼0 ≤ 𝑜
𝑚𝑎𝑥𝑧ǁ11          (13) 

 

𝑧ǁ𝑗𝑙 ≥ 𝑥𝑗 + 𝑧𝑙 − 1       ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿         (14a) 

𝑧ǁ𝑗𝑙 ≤ 𝑥𝑗         ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿         (14b) 

𝑧ǁ𝑗𝑙 ≤ 𝑧𝑙        ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿     (14c) 

 

𝐼0 ≥ 0   (4d) 

𝑧ǁ𝑗𝑙 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 (4e) 

 

𝐸Ω[𝑄(𝑥, 𝑦, 𝑧, 𝐼0)] = max
𝑢,𝑣,𝜃,𝐼

∑ 𝑝𝜔𝑑∑ [𝑞𝜃𝑡
𝜔 − 𝑐𝑟𝑎𝑤 ∑ 𝑢𝑗𝑡

𝜔
𝑗∈𝐽 − 𝑐𝑝𝑟𝑜𝑑 ∑ 𝑣𝑙𝑡

𝜔
𝑙∈𝐿 − ℎ𝐼𝑡

𝜔]𝑡∈𝑇𝜔∈Ω  (15) 

 

Subject to: 

 

𝜃𝑡
𝜔 ≤ ∑ 𝑣𝑙𝑡

𝜔
𝑙∈𝐿 + 𝐼𝑡−1

𝜔  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω                    (16) 

𝐼𝑡
𝜔 = 𝐼𝑡−1

𝜔 +∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 − 𝜃𝑡
𝜔 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω                    (17) 

𝐼𝑡
𝜔 ≤ 𝐼0 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω                    (18) 

 

𝜃𝑡
𝜔 ≥ 𝐶𝑡

𝜔 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω                  (19) 
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𝜃𝑡
𝜔 ≥ 𝛿𝑡

𝐴𝑣𝑎𝑖𝑙,𝜔 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω                 (20) 

𝐼𝑡−1
𝜔 − 𝐼𝑡

𝜔 ≤ 1 − 𝐶𝑡
𝜔 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω                (21) 

  

𝐶𝑡
𝜔 ≥ 𝜉𝑗𝑡

𝜔𝜉𝑘𝑡
𝜔𝜉𝑙𝑡

𝜔𝑧ǁ𝑗𝑙                                                      ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿𝑘               (22a) 

𝐶𝑡
𝜔 ≤ 1  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω              (22b) 

𝐶𝑡
𝜔 ≤ ∑ ∑ ∑ 𝜉𝑗𝑡

𝜔𝜉𝑘𝑡
𝜔𝜉𝑙𝑡

𝜔𝑧ǁ𝑗𝑙𝑙∈𝐿𝑘𝑘∈𝐾𝑗∈𝐽  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω              (22c) 

𝐶ሚ𝑡
𝜔 = ∑ ∑ ∑ 𝑔𝐿𝑖𝑛𝑒𝜉𝑗𝑡

𝜔𝜉𝑘𝑡
𝜔𝜉𝑙𝑡

𝜔𝑧ǁ𝑗𝑙𝑙∈𝐿𝑘𝑘∈𝐾𝑗∈𝐽 − 𝐶𝑡
𝜔 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω            (23) 

 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 − 𝐶𝑡
𝜔 = min(𝐶ሚ𝑡

𝜔 , 𝐼0 − 𝐼𝑡−1
𝜔 ) ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω         (24-nonlin) 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 − 𝐶𝑡
𝜔 ≥ 𝐶ሚ𝑡

𝜔 − |𝐿|𝑔𝐿𝑖𝑛𝑒𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω         (24a) 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 − 𝐶𝑡
𝜔 ≥ 𝐼0 − 𝐼𝑡−1

𝜔 − (𝑜𝑚𝑎𝑥 + 𝜖)(1 − 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

)  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω     (24b) 

 

1 − 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 ≥ 1 − 𝐼𝑡−1

𝜔  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω             (25a) 

(𝑜𝑚𝑎𝑥 + 𝜖)𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 ≥ 𝐼𝑡−1

𝜔  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω            (25b) 

  

𝐼0
𝜔 = 𝐼0 ∀𝜔 ∈ Ω        (26) 

        

𝐼𝑡
𝜔 ≥ 0 ∀𝑡 ∈ {0} ∪ 𝑇,𝜔 ∈ Ω     (27a) 

𝐶𝑡
𝜔 , 𝐶ሚ𝑡

𝜔 ≥ 0 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω          (27b) 

𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

, 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 ∈ {0,1} ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω           (27c) 

 

The objective function (12) is the same as (1) except it adds the target inventory as an 

argument to the expected cost of the subsequent stages.  In the first stage, constraint (13) 

enforces two safety stock conditions.  It requires a complete supply chain to be selected if safety 

stock is held, via the binary variable, 𝑧11, and it limits the number of periods of safety stock that 

can be held to an upper bound, 𝑜𝑚𝑎𝑥.  Constraints (14) define variables to indicate which 

combinations of suppliers and lines are selected.  These are used in combination with constraints 

(22-23) to define the total capacity available in each period.  Constraints (4d-e) enforce the 

domains of the new first stage decision variables. 

In the subsequent stages, the objective function (15) maximizes expected profit.  

Revenues come from demand met.  The variable costs are incurred through raw material orders; 

production of finished goods; and held safety stock, respectively.  Constraints (16) ensure that 

demand can only be met from production and safety stock.  Constraints (17) provide safety stock 
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balance across the time periods.  The safety stock remaining at the end of a period is equal to the 

amount held-over from the previous period plus the finished goods produced minus the amount 

used to meet demand.  Constraints (18) prevent the manufacturer from holding more safety stock 

than the selected target level.   

Constraints (19-20) enforce the rule that the company must meet demand, if possible.  

Constraints (19) require demand to be satisfied when there is production capacity, and 

constraints (20) require demand to be met when there is safety stock.  Note that the capacity-to-

meet-demand variable 𝐶𝑡
𝜔 is implied to be binary, proven via Lemma 2 in Section 4.3.  

Constraints (21) only allow safety stock to be depleted if there is no available capacity.   

Constraints (22-23) define the two capacity-related variables: capacity-to-meet-demand 

and excess capacity, respectively.  Constraints (22a-b) ensure the capacity-to-meet demand 

variables are 1 if a complete supply chain is working and selected, and constraints (22c) require 

them to be 0, if not.  More specifically, in constraints (22a), the coefficient 𝜉𝑗𝑡
𝜔𝜉𝑘𝑡

𝜔𝜉𝑙𝑡
𝜔 represents 

the status (available or disrupted) of a complete supply chain (𝑗, 𝑘, 𝑙) of a given supplier 𝑗 ∈

𝐽 and line 𝑙 ∈ 𝐿𝑘 in plant 𝑘 ∈ 𝐾 in period 𝑡 ∈ 𝑇.  For a complete supply chain to be available, 

each component in the configuration must be available, i.e., 𝜉𝑗𝑡
𝜔 = 𝜉𝑘𝑡

𝜔 = 𝜉𝑙𝑡
𝜔 = 1.  The variable 

𝑧ǁ𝑗𝑙 designates whether the complete supply chain that includes supplier 𝑗 ∈ 𝐽 and line 𝑙 ∈ 𝐿 is 

selected.  If there is a complete supply chain selected and available, the right-hand side of 

constraint (22a) will be 1 for at least one combination, and the capacity-to-meet demand variable 

will be forced to at least 1; it is limited to 1 via constraints (22b).  In constraints (22c), the term 

∑ ∑ ∑ 𝜉𝑗𝑡
𝜔𝜉𝑘𝑡

𝜔𝜉𝑙𝑡
𝜔𝑧ǁ𝑗𝑙𝑙∈𝐿𝑘𝑘∈𝐾𝑗∈𝐽  sums the statuses of candidate complete supply chains, and if there 

is not a selected and available supply chain, the capacity-to-meet demand variable is forced to 0.  

Constraints (23) define the excess capacity available each period.  It is calculated as the total 
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available capacity minus the capacity-to-meet demand. 

Constraints (24-nonlin) enforce the requirement that the company must replenish safety 

stock when possible, up to the target level.  As these are nonlinear, I reformulate them using 

binary indicator variables and implement constraints (24a-b) rather than constraints (24-nonlin).  

The values of the left-hand sides of constraints (24a-b) represent the amount of drug produced 

over the amount used to meet demand.  The constraints require that these values must be at least 

equal to the excess capacity (24a) or the safety stock deficit (24b). 

Constraints (25) indicate whether safety stock is available to meet demand.  Constraints 

(25a) force the availability indicator to 0 if no safety stock is held-over from the previous period, 

and constraints (25b) force it to 1 if there is.  Note that 𝐼𝑡
𝜔 ∀𝑡 ∈ {0} ∪ 𝑇,𝜔 ∈ Ω will not take on 

fractional values, as stated by Lemma 4 in Section 4.3.  Constraints (26) set the safety stock 

levels at the beginning of the time horizon to the selected target level.  Constraints (27) are 

standard non-negativity and domain constraints. 

4.3. Structural properties 

In this section, I present key structural properties of the SCDD-I model.  In Lemma 2, the  

capacity-to-meet demand variables are implied to be binary, and Lemma 3 states that the excess 

capacity variables are implied to be integer.  Lemma 4 indicates that the number of periods of 

inventory held are implied to be integer.  Lemma 5 states that demand is either fully met or fully 

unmet each period. 

Lemma 2: 𝐶𝑡
𝜔 ∈ {0,1}, ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω.  Proof: Provided in appendix. 

Lemma 3: 𝐶ሚ𝑡
𝜔 ∈ ℤ+, ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω.  Proof: Provided in appendix.  

Lemma 4: 𝐼0, 𝐼𝑡
𝜔 ∈ ℤ+, ∀𝑡 ∈ {0} ∪ 𝑇,𝜔 ∈ Ω.  Proof: Provided in appendix. 

 Lemma 5: 𝜃𝑡
𝜔 ∈ {0,1}, ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω.  Proof: Provided in appendix. 
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I further use these lemmas and the corresponding safety stock replenishment rule to 

establish the implied non-anticipativity of SCDD-I through Theorem 1.  The manufacturer’s 

decisions are only based on variables for the previous stage and the realization of uncertainty at 

the current stage; they do not consider uncertainty that will subsequently be revealed.  For each 

period, it is optimal to make the same decisions for each of the scenarios that have identical 

realizations of uncertainty up to that period. I define 𝑆𝑡
𝜔 as the set of scenarios that have paths 

that are indistinguishable from scenario 𝜔 ∈ Ω in period 𝑡 ∈ {0} ∪ 𝑇. 

Theorem 1: The following relationships are implied by SCDD-I. 

𝐶𝑡
𝜔 = 𝐶𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω   (28a) 

𝐶ሚ𝑡
𝜔 = 𝐶ሚ𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28b) 

𝐼𝑡
𝜔 = 𝐼𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28c)  

𝜃𝑡
𝜔 = 𝜃𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω   (28d) 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 = ∑ 𝑣𝑙𝑡
𝜔′

𝑙∈𝐿    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω   (28e) 

∑ 𝑢𝑗𝑡
𝜔

𝑗∈𝐽 = ∑ 𝑢𝑗𝑡
𝜔′

𝑗∈𝐽    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω   (28f) 

𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 𝛿𝑡

𝐴𝑣𝑎𝑖𝑙,𝜔′
    ∀𝜔′ ∈ 𝑆𝑡

𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω   (28g) 

𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

= 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔′

 except case: 𝐶ሚ𝑡
𝜔 = 𝐼0 − 𝐼𝑡−1

𝜔   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω (28h) 

Proof: Provided in appendix. 

4.4. Additional assumptions 

SCDD-I is subject to the non-inventory-related assumptions of SCDD that are discussed 

in Section 3.4.  In addition, because both the raw materials and finished form of the drugs are 

perishable, I make two assumptions: the company may not hold raw material inventory, and 

there is an exogenous limit to the amount of finished goods inventory that may be held.  In 

conversations with a pharmaceutical manufacturer, these are consistent with practice.  The model 

assumes that inventory is not destroyed if a facility is disrupted.  Finally, the capacity of each 

line as a fraction of per-period demand is required to be integer-valued and at least equal to 1, 

and I evaluate different values in scenario analyses. 
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5. Solution methods 

The problems presented in Sections 3 and 4 represent a two- and a multi-stage stochastic 

program, respectively.  There are 2|𝑁| combinations of possible statuses for the candidate 

components, and over the entire time horizon, this produces a full scenario set of (2|𝑁|)
|𝑇|

.  For 

10 candidate components and 4 time periods, this produces a set of 1.1 ∗ 1012 scenarios and for 

12 time periods produces a set of 1.3 ∗ 1036 scenarios. As this is large, I approximate the optimal 

value using the SAA algorithm (Kleywegt et al. 2002). 

The implementation is presented in Figure 4.  The algorithm is comprised of three key 

steps – optimization, solution evaluation, and bound calculation.  SCDDSAA represents either the 

SCDD or SCDD-I model, as appropriate, where the complete uncertainty set Ω is replaced by a 

set of sampled scenarios.  In the optimization step, the set of 𝜏 sampled scenarios is Ω̃𝑟 , ∀𝑟 ∈

{1, . . . , 𝑅}.  In the evaluation step, the set of �̆� sampled scenarios is Ω̆.  The optimal value of each 

solution evaluation step, �̆�𝑟 , ∀𝑟 = {1, . . . , 𝑅}, is an approximate lower bound on the true optimal 

value, 𝑉∗.  To set the lower bound, I select 𝑟′ to be the index of the median value of �̆�𝑟. 
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6. Case study: two generic oncology drugs 

To evaluate potential policy effects, two drugs are considered as case examples – 

vinblastine sulfate and vincristine sulfate.  Both are generic, injectable drugs produced by single 

manufacturers that have been subject to recent shortages in the US (UUDIS 2016).  Vinblastine 

is used to treat various cancers including testicular cancer and lymphomas, and vincristine is 

used to treat leukemias and lymphomas (Drugs.com 2018).  Both are curative for some 

conditions, and they were selected based on conversations with an oncology pharmacist and a 

review of the literature. 

6.1. Data 

Table 2 presents data that are used for both analyses. Table 3 presents data that are 

specific to each drug, including demand and costs.  These are derived from the available 

literature and conversations with subject matter experts. 

The total US demand of each drug is estimated based on Medicare Part B data (CMS 

2018a, b), and prices are applied from the Red Book (IBM Micromedex 2018).  Raw material 

Figure 4. Implementation of SAA 

1. Optimization and approximation 

a. For 𝑟 = 1, . . . , 𝑅, sample 𝜏 independently and identically distributed scenarios 𝜉𝑛𝑡
𝜔  from the complete 

uncertainty set Ω 

i. Define the set of these scenarios to be Ω̃𝑟 
ii. Solve SCDDSAA with uncertainty set Ω̃𝑟 

iii. Record the optimal value, 𝑉ǁ𝑟, and the first stage decision variables, 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝐼0
𝑟 

2. Evaluation 

a. Generate �̆� independently and identically distributed samples of 𝜉𝑛𝑡
𝜔  from the complete uncertainty set 

Ω 

i. Define the set of these scenarios to be Ω̆ 

ii. For 𝑟 = 1. . 𝑅, 
1. Fix 𝑥 = 𝑥𝑟 , 𝑦 = 𝑦𝑟 , 𝑧 = 𝑧𝑟 , 𝐼0 = 𝐼0

𝑟 

2. Solve SCDDSAA with uncertainty set Ω̆ 

3. Record the optimal value, �̆�𝑟 
3. Computation of the lower and upper bounds 

a. Select replication index 𝑟′, and set 𝐿𝐵 ≔ �̆�𝑟
′
  

b. Set 𝑈𝐵 ≔
1

𝑅
∑ 𝑉𝑟𝑅
𝑟=1  

c. Record solution 𝑥𝑟
′
, 𝑦𝑟

′
, 𝑧𝑟

′
, 𝐼𝑟

′
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costs are estimated from conversations with suppliers and available data online (PharmaCompass 

2018).  Some of the costs are proprietary, but conversations with an industry expert estimated the 

full cost to produce a drug are 20-60% of the drug price, consistent with the values used by Jia 

and Zhao (2017).  Using this range and other cost values, I calculated the production costs for 

each drug and non-fee-related fixed costs.  Details are included in the supplementary materials, 

and these values were tested in sensitivity analyses.  Based on conversations with an industry 

expert, the analyses allow up to 2 years of finished goods inventory to be held, and capacities for 

the suppliers and lines are assumed. 

The distributions of time to disruption are estimated based on FDA data on drug approval 

dates and the start dates of shortages reported by University of Utah Drug Information Service 

(UUDIS) (FDA 2018a, UUDIS 2016).  The distributions of time to recover are estimated from 

UUDIS on shortage length (UUDIS 2016).  Based on the data, geometric distributions are 

applied for both disruption and recovery, and further detail is available in the supplementary 

material. I consider a two-year time horizon based on conversations with the procurement office 

at a large academic health system and apply two-month time periods to be sufficiently granular 

while maintaining feasible run times.  For the SCDD model, I apply 30 replications (𝑅), 600 

optimization scenarios (𝜏), and 1,200 evaluation scenarios (�̆�).  For SCDD-I, I apply 40, 100, and 

1,500, respectively.  These were calibrated to consistently produce optimality gaps of 1% 

(SCDD) and 2% (SCDD-I).  When the parameter values are at their baseline values, the SCDD 

model required approximately 340 seconds to run, and the SCDD-I required approximately 3,000 

seconds. 
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API = Active Pharmaceutical Ingredient; GDUFA = Generic Drug User Fee Amendments; SAA = Sample Average 

Approximation 
§Costs in 2018 US dollars 

 

Table 3. Drug-specific data§ 

ml = milliliter; WAC = Wholesale Acquisition Cost 
§Costs in 2018 US dollars 

 

Input Supplier Plant Line Source 

Annual fixed costs $33,000 $65,000 $32,500 Rudge (2012) and 

assumptions 

Annual GDUFA fees $1,169 $4,401 n/a Calculated based on FDA 

(2018b) 

Capacity as a fraction of per-

period demand 

n/a n/a 2 Assumed 

Average time to disruption, in 

years 

17.3 28.2 8.5 Calculated based on FDA 

(2018a) and UUDIS (2016) 

Average time to recovery, in 

years 

1.2 0.8 0.08 Calculated from UUDIS 

(2016) 

Table 2. Values for all analyses§ 

Input Vinblastine Vincristine Source 

Annual demand, in ml 315,000 90,000 Estimated from CMS (2018a, b) and 

National Cancer Institute (2018) 

Price, per ml $4.31 $5.55 WAC reported by IBM Micromedex 

(2018); Vincristine sulfate price taken as 

average of WAC per unit. 

Raw material cost per ml $0.23 $0.34 Procurement representatives; 

PharmaCompass (2018) 

Production cost per ml $1.16 $2.22 Calculated 

Annual holding cost per ml $1.55 $2.00 Based on 3% monthly from Jia and Zhao 

(2017)  

Annual GDUFA program fee $11,445 $9,700 Calculated based on FDA (2018b, c) 
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6.2. Analysis results 

Using the two models, I analyze how companies design their supply chains under 

different conditions and the associated impact on shortages and profit.  All of the analyses were 

conducted with both the SCDD and SCDD-I versions of the model, except for the safety stock 

analysis.  When inventory is not selected in the optimal solution for either drug, the SCDD are 

presented.   

For each policy analysis, I present figures with 3 or 4 panels for each drug.  These are: 

the optimal supply chain configuration; the target number of periods of inventory to hold (if 

selected); the expected shortage, and the percent difference in profit versus baseline.  In some 

cases, there is apparent variability within a given cluster of points; this is largely due to the fact 

that the SAA method does not guarantee exact optimality.  In the text, I round the values for 

unmet demand to the nearest percent and profit to the nearest $1,000.  The algorithm and model 

were programmed in AMPL and solved using CPLEX 12.7 (Fourer et al. 2002, IBM 2017).  The 

analyses were conducted on a PC with a 2.3 GHz Intel Core i7 and 16 GB of RAM. 

No Intervention (Baseline) 

In the base-case, no policies are imposed.  The manufacturer of vinblastine selects 2 

suppliers, 1 plant, 1 line, and no safety stock.  The expected percent of demand that is not 

satisfied (shortage) is 6% with a corresponding expected annual profit of $686,000.  For 

vincristine (a higher cost, lower demand drug), the manufacturer selects 1 supplier, 1 plant, and 1 

line with no safety stock, and the expected annual profit is $93,000.  The expected shortage is 

11%.  

Redundancy 

One proposal to increase resiliency is to require a company to maintain multiple 

components at a single echelon.  This has been noted in the FDA Strategic plan (FDA 2013), a 
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report from the Drug Shortages Summit (ASHP 2013), a joint letter to Congress from major 

health organizations (AHA et al. 2017), and other literature (Chabner 2011, Gehrett 2012, Health 

Policy Brief: Drug Shortages 2014, Jarosławski et al. 2017).  To test the effects of redundancy 

regulation, I add the following variables and constraints.  

New decision variables 

𝛿ሚ𝑘 ≔ ቄ
1 if at least one line in plant 𝑘 ∈ 𝐾 is selected               
0 otherwise                                                                              

  

Constraints 

∑ 𝑥𝑗𝑗∈𝐽 ≥ 2𝑥1           (29) 

∑ 𝑦𝑘𝑘∈𝐾 ≥ 2𝑦1            (30) 

 ∑ 𝑧𝑙𝑙∈𝐿 ≥ 2𝑧1          (31) 

 

𝛿ሚ𝑘 − 𝑧𝑙 ≥ 0      ∀𝑙 ∈ 𝐿𝑘 , 𝑘 ∈ 𝐾  (32) 

𝛿ሚ𝑘 ≤ ∑ 𝑧𝑙𝑙∈𝐿𝑘       ∀𝑘 ∈ 𝐾   (33) 

∑ 𝛿ሚ𝑘𝑘∈𝐾 ≥ 2𝑦1          (34) 

These constraints mandate that the company have multiple components at the given 

echelon(s) if they choose to be in the market.  Constraints (29-31) require two suppliers, two 

plants, and two lines to be selected given that one component is selected, respectively.  

Constraints (32-34) require lines to be selected in multiple plants.  Constraints (32-33) assign 

variables to indicate whether a line is selected in each plant.  Constraint (34) requires lines to be 

selected in at least two plants if any plants are selected.  To require the company to have multiple 

API suppliers, I include constraint (29).  To require multiple plants, constraints (32-34) are 

included, and to require multiple lines, constraint (31) is included.  To enforce redundancy at all 

levels, I include constraints (29-31).  

The results for this analysis are presented in Figure 5.  For both drugs across all 

regulations, the company selects no inventory and adds exactly as much redundancy as is 

required, unless it is unprofitable.  For vinblastine, the company continues to maintain a second 
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supplier, even when it is not mandatory, as in the baseline analysis.  Any level of required 

redundancy is profitable for vinblastine, and the resiliency decisions lead to shortages of 1-6%, 

varying by echelon.  Redundancy at all levels reduces the shortage to 1% but is the most costly; 

the expected annual profit decreases by 8%. 

S 

P 

L 

P 

L 

S 

Figure 5. Effects of redundancy regulations 
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For vincristine, when redundancy at a single level is mandatory, the expected shortage 

drops to 5-9% of demand.  Shortages are lowest (5% of demand) when a backup supplier is 

required, and expected profit is 21% lower than at baseline.  If redundancy is required at every 

echelon, it would be unprofitable to make the drug, and the company chooses not to produce it 

(an expected shortage of 100%). 

For both drugs, requiring a second plant causes substantial declines in expected profit 

(8% for vinblastine; 98% for vincristine).  The costs and fees to maintain an additional plant and 

line are high relative to the baseline profits, and the increases in revenue from providing more of 

the drugs do not fully cover them.  In general, redundancy regulations affect the difference in 

expected profit of vincristine more than vinblastine; this occurs because the baseline profit of 

vincristine is substantially lower.  For a given regulation, the expected shortages for vincristine 

are generally higher than vinblastine because the vincristine supply chain does not include a 

backup supplier unless mandated. 

Mandatory Inventory Levels 

Some have proposed requiring manufacturers to hold minimum levels of inventory (e.g., 

ASHP 2013, FDA 2013, Gupta and Huang 2013).  To run these analyses, I add a new parameter, 

Π̃, to represent the minimum level of target safety stock if the manufacturer is in the market.  I 

also add constraint (35) to require that the target safety stock level be at least the minimum if any 

plants are selected.  These analyses were run using the SCDD-I model. 

𝐼0 ≥ Π̃𝑦1            (35) 

For both drugs, the manufacturer holds exactly the amount of inventory required up to a 

threshold at which it becomes unprofitable (Figure 6).  For vinblastine, the company holds up to 

20 months of inventory and for vincristine, up to 8 months.  When at least 4 months are required, 
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the vinblastine manufacturer does not maintain a backup supplier and uses inventory as the sole 

resiliency strategy.  At 6 months of inventory, the expected shortages of vinblastine and 
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S 
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Does not produce drug 

Does not produce drug 

Figure 6. Effects of safety stock requirements 
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vincristine are 5 and 4%, respectively, with drops in profit vs. baseline of 25% and 62%. 

As the amount of mandatory inventory increases, the expected profits decrease.  The 

expected shortages also generally decrease, up until the point where the drugs are not produced.  

The one exception occurs for vinblastine when the inventory requirement is increased from 2 

months to 4 months.  At 4 months of inventory, the company no longer maintains a backup 

supplier (Figure 6; panel A).  This occurs because they are optimizing for expected profit, rather 

than for shortages, and with four months of inventory, it is more profitable to maintain a single 

supplier than multiple (even though 4 and 6 months of inventory provide less protection against 

expected shortages than a backup supplier and 2 months of inventory). 

Failure-to-Supply Penalties 

Pharmaceutical contracts typically do not include strong penalties if the manufacturer 

cannot supply the drug.  If penalties are included, contracts are often written to require 

reimbursement for the additional cost to purchase the same drug from a different manufacturer 

(Haninger et al. 2011, Jia and Zhao 2017).  However, frequently the drug is not available 

elsewhere, and these penalties are rarely paid.  Several researchers have suggested that 

strengthening failure-to-supply clauses may induce resiliency (Conti 2011, FDA 2013, Haninger 

et al. 2011, Health Policy Brief: Drug Shortages 2014, Jia and Zhao 2017, Reed et al. 2016).  In 

this analysis, I apply a failure-to-supply penalty for each unit of unmet demand and add the term 

−𝑐𝑠ℎ𝑜𝑟𝑡(1 − 𝜃𝑡
𝜔) to the objective functions (5) and (15).  I present results for the SCDD-I model 

(Figure 7).   

As it becomes more costly to not meet demand, the companies choose to add resiliency, 

and the expected shortages decrease.  Resiliency is added at thresholds of the failure-to-supply 

penalties.  Between these thresholds, as the penalty values increase, there is no change in the 
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resiliency decisions, nor by extension, in the expected shortages.  For example, when the failure-

to-supply penalty for vincristine is $3.89 (70% of price), the company adds a backup supplier, 

and the shortages decrease from 12% to 5%.  At the next threshold, $11.10 (200% of price), the 

company chooses to hold 2 months of safety stock and shortages drop to 2%.  Between these 

thresholds, as the penalty is increased, the expected profit declines though the expected shortages 

stay fairly consistent (Figure 7, panels G and H).  It becomes unprofitable to produce vincristine 

when the penalty is at least $22.20 (400% of price). 

The thresholds at which failure-to-supply penalties change the resiliency decisions for 

vinblastine are $2.16 (50% of the unit price) when the company adds a backup line, and at $6.47 

(150% of price) when the company adds a backup plant.  These additions reduce the expected 

shortages to 3% and 1%, respectively. 
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Figure 7. Effects of failure-to-supply penalties 
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Pricing 

Some experts have pointed to the low prices of certain types of drugs as a primary driver 

of drug shortages.  There have been corresponding calls for higher prices (e.g., Chabner 2011; 

Frakt 2016; Gatesman and Smith 2011; “Health Policy Brief: Drug Shortages,” 2014; Link et al. 

2012).  In this analysis, I vary the prices of each drug (Figure 8).   

As the prices increase, the manufacturers of vinblastine and vincristine add more 

resiliency and expected shortages decline.  As the price increases, the opportunity cost for not 

providing the drug during periods of shortage increases; at certain thresholds, it becomes more 

profitable to invest in resiliency and to be able to provide the drug more often.  For vinblastine, 

when the price is 2 times baseline, the company adds a second line, and at 2.5 times baseline, it 

adds a second plant; the expected shortages are 3% and 1%, respectively.  The corresponding 

expected profits increase 189% and 286% vs. baseline.  For prices between 2.5 and 10 times 

baseline, the company does not add resiliency though expected profit continues to increase 

nearly linearly. 

For vincristine, the price thresholds at which the company changes its supply chain are 

1.75 times baseline (adds backup supplier); 2.5 times baseline (adds 2 months of inventory); and 

9 times baseline (adds backup plant and removes inventory).  The corresponding expected 

shortages are 5%, 3%, and 1%, and the difference in expected profits are 344%, 759%, and 

4,214% vs. baseline, respectively. 

 The model can also be used to analyze the potential effects of price declines.  If the price 

of vinblastine drops to 70% of baseline, the company does not maintain a second supplier, and 

the expected shortage increases from 5% to 11%.  For vincristine, if the price drops to 75% of 

baseline, the company does not produce the drug.  
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Figure 8. Effects of varying drug price 
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Social-Efficiency 

Many of the proposed policies increase cost, and prices could be concurrently increased 

to mitigate the effects on company profit.  In this section, I analyze how much prices would need 

to increase to maintain expected profits at approximately baseline levels and calculate the 

societal costs to achieve target shortage levels.  Table 4 presents the policies that would lead to 

expected shortages of at most 5% and 2%, meaning the drug is available 95% and 98% of the 

time, respectively.  The societal costs of each policy are calculated as the extra amount paid 

annually due to price increases, i.e., the product of the baseline drug price, annual demand, and 

the percentage price increase.  For each policy analysis, I incrementally increased the price until 

the expected profit was approximately the baseline level.   

For vinblastine, shortages at baseline are approximately 5%, and no intervention is 

necessary to reach this threshold.  To achieve expected shortages of at most 2%, the following 

policies in combination with price increases would be effective: requiring a backup plant, failure-

to-supply penalties of 150% of price, or 12 months of inventory; a price increase of 150% 

without other intervention would also be effective.  The societal costs of each are $136,000 to $2 

million, varying by policy. 

To achieve expected vincristine shortages of at most 5%, requiring a backup supplier and 

increasing the price by 10% has the lowest societal cost.  For expected shortages of 2%, price 

increases of 30% in combination with requiring redundancy at all levels or 12 months of 

inventory have the lowest societal costs. 
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Table 4. Summary of policy costs 

§The results at baseline approximately achieve the 5% threshold (using the SCDD model: 6%; SCDD-I model: 5%). 

 

6.3. Sensitivity, scenario, and validation analyses 

To analyze the sensitivity of the results to changes in the parameter values, I conducted a 

one-way sensitivity analysis using the SCDD-I model.  The value of each parameter was varied 

by 20%.  In each of these analyses, the optimal solution remained the same as in the baseline 

analysis.  The variation in expected profit is available in the supplementary material.  For both 

vinblastine and vincristine, the unit and fixed cost values are most influential on expected profit.  

In particular, the unit cost of production has the largest effect on expected profit.  The disruption 

and recovery distribution parameters have less of an impact. 

I also conducted scenario analyses on the other parameters.  These included the lengths of 

the time horizon and periods, annual demand, and production capacity.  The optimal solution did 

not change for either drug though there were minor differences in expected profit.  Further detail 

is available in the supplementary material. 

To validate the models, I compared the results with available data in the literature.  The 

Drug Shortage 

Upper 

Bound 

Policy Price Increase Annual 

Societal Cost 

Vinblastine 

0.05 Not applicable§ 0% $0 

0.02 

Require multiple plants 10% $136,000 

150% failure-to-supply penalty 10% $136,000 

Require 12 months inventory 30% $407,000 

Price increase 150% $2,036,000 

Vincristine 

0.05 

Require multiple suppliers 10% $50,000 

70% failure-to-supply penalty 20% $100,000 

Require 6 months of inventory 20% $100,000 

Price increase 70% $350,000 

0.02 

Require multiple redundancy at all 

levels 

30% $150,000 

Require 12 months of inventory 30% $150,000 

200% failure-to-supply penalty 50% $250,000 

Price increase 800% $3,996,000 
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solutions at baseline also follow the lean supply chains and low inventory seen in practice (Fox 

et al. 2014, GAO 2016, Woodcock and Wosinska 2013).  The failure-to-supply results are 

qualitatively confirmed with Jia and Zhao (2017).  The baseline shortages of 6% for vinblastine 

and 11% for vincristine are similar to the percentage of drugs short each day reported by the drug 

shortage staff at a large academic health system.  The other results have face validity; as price 

increases, resiliency increases, and the results mimic the dynamics of higher-margin, branded 

drugs. 

7. Discussion 

7.1. Modeling 

Drug shortages are concerning because they are widespread, harmful, and persistent.  To 

study why pharmaceutical companies may make supply chain decisions that contribute to 

shortages, I develop two new supply chain design models: SCDD and SCDD-I.  These models 

combine features previously considered separately to provide a framework for understanding the 

effects of disruptions over time and for evaluating policies.  They incorporate the multi-period 

aspect of inventory models under disruption with the facility selection decisions of location 

models to consider multiple mitigation strategies.  In addition, disruptions may occur at multiple 

echelons and concurrently.  These models allow us to approximate the strategic decisions 

pharmaceutical companies make for fixed-term contracts. 

The baseline model, SCDD, is relatively simple and could be easily extended to include 

additional echelons, location decisions, or correlations between component disruptions.  It is 

appropriate for settings in which inventory either cannot be held or is very expensive.  The 

extended model, SCDD-I adds inventory as a resiliency strategy.  This feature complicates the 

model, though I impose a replenishment rule that implies the non-anticipativity property holds in 
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the optimal solution.  This substantially reduces the computational burden and allows us to use 

SAA to solve thirteen-stage stochastic programs within tight optimality gaps (i.e., thirteen based 

on the initial stage and 12 subsequent periods).  Without this rule, the problem would require 

specialized algorithms to solve. 

7.2. Is low resiliency optimal? 

Using these models, I consider the case examples of the supply chains of the oncology 

drugs vinblastine and vincristine.  While resiliency is often optimal in other contexts (Tomlin 

2006), pharmaceutical companies may find instead that passive acceptance of risk is optimal for 

certain drugs, i.e., low-margin products with long, infrequent disruptions.  The results suggest 

that with a profit-maximizing objective and no intervention, it would be best to have no 

resiliency in the supply chain of vincristine, a low volume drug, leading to an expected shortage 

of 11%.  For the higher volume drug, vinblastine, it is beneficial to have a backup supplier, and 

the expected shortage is 6%.  For other stakeholders in the healthcare system, these levels are 

untenable. 

7.3. How can we induce resiliency and reduce drug shortages? 

Given that it is in society’s best interest to reduce shortages of life-supporting drugs, the 

question becomes which strategies to induce resiliency would be best.  I use the metric of social-

efficiency (i.e., lowest total cost to meet specified expected shortage levels) to evaluate proposed 

options.  I studied the legislative policies of mandating redundancy and safety stock and 

contractual policies of failure-to-supply penalties and price increases.  For each, I evaluated the 

prices needed to maintain company profits at baseline levels.  As a reminder, these results are 

presented within the context of low-profit margin, sole-source, generic, injectable oncology 

drugs.   
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I find that the most efficient policy depends on the desired shortage level.  For shortages 

of 5% or less (i.e., expected to be available at least 95% of the time), no intervention is needed 

for vinblastine, and for vincristine, it is most efficient to require multiple suppliers and increase 

prices by 10%.  A failure-to-supply penalty of 70% would equivalently induce a backup supplier 

but would require a greater price increase, 20%.  These results suggest that maintaining multiple 

suppliers is an effective way to reduce shortages, though the societal cost to induce them would 

depend on the decision maker. 

Shortages of at most 2% could be achieved by requiring a backup plant with a 10% price 

increase (vinblastine) or requiring redundancy at all levels with a 30% price increase 

(vincristine).  In both cases, the outcome is a supply chain with a backup at each echelon.  An 

alternative policy to induce the same supply chain for vinblastine would be a failure-to-supply 

penalty of 150% with a price increase of 10%.  For vincristine, an alternative would be to 

mandate the company hold one year of safety stock in combination with a 30% price increase. 

In general, requiring safety stock is a relatively expensive policy option.  This may be 

because the average disruption length is long and holding inventory of injectable drugs is costly.  

For vinblastine to have at most 2% shortages, a safety stock mandate is three times as costly as 

mandating multiple plants or adding a 150% failure-to-supply penalty (price increases of 30% vs. 

10%).  For vincristine, it is two times as costly to mandate sufficient inventory as it is to require 

multiple suppliers for a 5% shortage level (price increases of 20% vs. 10%).  If safety stock were 

held, it could either be maintained at the manufacturer or in a stockpile similar to the Strategic 

National Stockpile of pediatric vaccines (Jacobson et al. 2006); the analysis would be the same in 

either case.  

 While shortages may be driven by low profit margins, in no analysis are price increases 
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alone the most efficient policy.  For vinblastine, at the 2% shortage level, price increases are 15 

times more costly than the most efficient policy (150% increase vs. 10%).  For vincristine at the 

5% shortage level, price increases are 7 times more costly (70% increase vs. 10%) than the most 

efficient option, and they are 27 times more costly (800% increase vs. 30%) at the 2% shortage 

level.  These pricing results are consistent with an analysis from Jia and Zhao (2017) that found 

that adding failure-to-supply clauses in combination with moderate price increases would be 

more efficient than price increases alone. 

These results suggest that legislative action to mandate redundant components in 

combination with price increases would have the lowest societal cost for both drugs.  For 

vinblastine, sufficient failure-to-supply penalties in combination with price increases would also 

have the lowest societal cost; for vincristine, this is a costlier option.  Though legislative change 

is difficult, it may be possible.  A 2012 law changed reporting requirements for shortages, and in 

2018, the FDA and other agencies initiated a Drug Shortage Task Force to provide new 

recommendations to Congress (FDASIA, Public Law 112–144 2012, Gottlieb 2018a).  

Contractual changes could be negotiated by Group Purchasing Organizations or other 

procurement officials.  Price increases would likely be incurred by Medicare for Part B recipients 

and passed on to private payers for patients with private insurance. 

7.4. Limitations 

The results of this chapter are tempered by its limitations, and readers should be careful 

to interpret analyses within the appropriate scope.  The models are subject to a variety of 

assumptions, discussed in Sections 3.4 and 4.4.  The analyses assume a stationary market share, 

i.e., other companies do not enter the market.  Given the high utilization of existing 

manufacturing capacity, most firms make decisions for a portfolio of products, rather than 
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individual drugs.  These analyses assume the manufacturer does not choose to use the capacity 

for a more profitable drug.  Finally, the analyses are limited by available data as pharmaceutical 

data are frequently proprietary.  I have taken strides to estimate reasonable parameter values and 

conduct sensitivity analyses.  In particular, profit results should not be taken as exact projections 

but rather as indications of the magnitude of policy effects.  For this reason, the focus has been 

on the change vs. baseline rather than absolute numbers.  The optimal supply chain 

configurations and target inventory levels do not vary as parameter values are varied by 20%, 

and analyses of demand indicate that the solutions do not change within wide ranges. 

7.5. Conclusions 

Strategic supply chain decisions have contributed to major drug shortages, and I find that 

for certain types of drugs with low profit margins, pharmaceutical companies may find it optimal 

to maintain vulnerable supply chains.  In this analysis, I seek to align the interests of for-profit 

companies with the public good of a stable drug supply.  Experts have suggested that regulation 

may be required to reduce shortages.  The results provide evidence that redundancy regulations 

would be at least as efficient as market-based solutions.  If legislation is pursued, additional 

analysis would be necessary to determine the particular characteristics of medically-necessary 

drugs to which it should be applied.  In the absence of expanded regulation, group purchasing 

organizations and other contract-makers could negotiate failure-to-supply clauses in combination 

with modest price increases to reduce shortages.  Price increases alone could also be effective but 

would cost substantially more.  These models provide a framework to consider disruptions in 

strategic design decisions.  Future work could consider improving quality as a resiliency 

strategy, which could lead to less frequent disruptions or faster recovery. 

 

  



50 

 

 

 

 

CHAPTER III 

Dynamic Supply Chain Design under Disruption: Applications in Pharmaceutical Drug 

Shortages 

 

1. Introduction 

Drug shortages have become common in the United States (US), and they are largely 

caused by disruptions to non-resilient pharmaceutical supply chains (GAO 2014, UUDIS 2016). 

Facilities and suppliers may be temporarily closed due to quality concerns.  Manufacturing 

delays, caused by capacity constraints and the high utilization of the manufacturing lines, may 

also interrupt production.  Optimized supply chains may have little redundancy, and supply 

shocks can cause widespread shortages (Woodcock and Wosinska 2013). 

Shortages persist for over a year on average, (GAO 2016) and often involve drugs 

produced by a single company (UUDIS 2016).  Low profit margin, generic injectable drugs are 

particularly vulnerable to shortage.  Nearly all of the manufacturers did not have an operational 

back-up facility if there was a disruption (Woodcock and Wosinska 2013). 

If a disruption occurs, a pharmaceutical company could work to recover the disrupted 

component and/or add a new one.  Yet, supply chains are fairly rigid, and it can take months for 

reviews of new components to be completed and to become available (GAO 2016).  Because of 

this, previous models considered static designs to evaluate policies to reduce shortages (Chapter 

2). 
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However, if the lead time to add new components or the recovery time of disrupted 

components were decreased, it could make the supply chain more flexible to adapt to disruptions.  

In this chapter, I present a dynamic version of the supply chain design model under disruption 

(D-SCDD).  It will consider how the times to start up new components and recover disrupted 

components affect shortages.  In addition, I will consider discontinuations due to disruption and 

consider how these parameters affect a company’s decision to remain in the market.  I will use a 

multi-stage stochastic programming framework and apply the Stochastic Dual Dynamic Integer 

Programming algorithm to solve the dynamic problem (Zou et al. 2019). 

2. Literature 

2.1. Drug shortages 

While there have been numerous reports documenting the extent of the drug shortage 

crisis, there have been few quantitatively-based recommendations.  In a working paper, Kim and 

Scott Morton develop a game-theory model to determine the extra manufacturing capacity that 

pharmaceutical companies should maintain for generic sterile injectable drugs (Kim and Scott 

Morton 2015).  They find the Nash equilibrium of the capacity game where firms set spare 

capacity to maximize the payoff and provide the threshold for which firms should have a non-

zero amount of spare capacity.  There has been work to analyze policies to reduce shortages 

using Pareto-improving contracts (Jia and Zhao 2017) and optimizing static supply chain design 

(Chapter 2).  Other work includes the study of human behavior (Doroudi et al., 2018) and 

reliability indices (Chapter 4).  Much of the modeling work has focused on the prevention phase 

rather than reactive decisions.  While there are mitigation strategies at the health system-level 

(Azghandi et al. 2018, Saedi et al. 2016), the focus of this chapter is to improve structural issues 
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that contribute to companies’ inability to reliably provide supply.  There is a need to study the 

dynamic context. 

2.2. Disruptions 

Beyond drug shortages, the operations research literature related to supply chains under 

disruption is rich and growing.  A seminal paper by Kleindorfer and Saad (2005) divides 

disruption prevention into two categories:  companies may either a) reduce the severity or 

incidence of risk, or b) add capacity to be able to sustain more risk.  They propose that extreme 

leanness leads to vulnerability which is consistent with my observations in the pharmaceutical 

industry (Kleindorfer and Saad 2005).  Within the context of infrastructure failures,  both 

robustness (i.e., the ability to maintain full capacity) and the rapidity of recovery are important to 

reduce losses (McDaniels et al. 2008).  The objective is not to maximize the former nor minimize 

the latter but rather to minimize the cumulative loss (to which both contribute). 

A recent review of operations research papers related to disruptions provides references 

to a variety of modeling approaches and application areas (Snyder et al. 2016).  Most supply 

chain design models that incorporate disruptions consider a single stage.  These include facility 

location models under disruption (Snyder et al. 2006).  A popular approach is to consider an 

interdiction framework where the objective is to minimize the maximum damage caused by an 

attacker (e.g., Church, Scaparra, and Middleton, 2004; O’Hanley and Church, 2011).  This 

framework allows the company to prepare for the worst-case disruption that could occur.  

However, the perspective of interdiction models is inherently risk-averse, and the results would 

be very conservative for risk-neutral pharmaceutical companies. 

Among multi-period disruption models, a simulation evaluated the effects of disruption 

risk in a high-tech supply chain over the course of three months (Deleris and Erhun 2005).  A 
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risk-averse facility location model considered the question of recovery time (Losada et al. 2012), 

and a multi-stage stochastic program considered demand that was dependent on facility 

availability (Fattahi et al. 2017). 

A recent review presented an overview of supply chain network design problems under 

uncertainty (Govindan et al. 2017).  Only a handful of papers have considered disruptions and 

included more than one echelon.  These have included a robust optimization approach to 

handling unreliable nodes (Peng et al. 2011) and constraining the maximum allowable disruption 

cost (Shishebori et al. 2014).  An early work minimized the expected costs of constructing the 

network such that service level constraints were satisfied (Bundschuh et al. 2003).  Hopp and 

Yin (2006) considered where to install extra capacity in a supply chain network subject to 

disruptions.  

Modelers also generally assume that disruptions are independent across periods.  That is, 

they may consider yield to be a Bernoulli random variable (Snyder et al. 2016) which allows for 

stage-wise independence (e.g., Fattahi, Govindan, and Keyvanshokooh, 2017). 

However, in the context of drug shortages, recovery is long, and the approval process of 

new suppliers and plants can extend far beyond the length of single periods.  Research on re-

configuring supply chains with uncertainty over time is rare (Govindan et al. 2017), and this 

chapter helps to address this gap.  I consider both the dynamic case and dependent disruptions. 

2.3. Capacity adjustment 

When conditions change over time – be it demand, capacity availability, or another 

parameter – organizations may adjust their strategic decisions.  Within the facility location 

literature, the key choices are when and where to add capacity and whether capacity should be 

removed.  Reviews of the capacity expansion literature are available in (Julka et al. 2007, Luss 
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1982, Martínez-Costa et al. 2014).  Most commonly, capacity is added to meet demand.  These 

include a multi-period SCND model with demand and interest rate uncertainty (Nickel et al. 

2012) and a multi-product facility location model with increasing, deterministic demands (Thanh 

et al. 2008). 

When capacity is added, there may be a lead time between the decision to add it and its 

ability to be used.  This has been included in some models, especially when the model considers 

multiple sites (e.g., Lin et al. 2014). 

2.4. Multi-stage stochastic programming 

Multi-stage stochastic programs have been used in some SCND problems that include 

uncertainty (Govindan et al. 2017), though the problems studied have tended to be small (e.g., 9 

scenarios Almansoori and Shah 2012).  Multi-stage stochastic programs have been used broadly 

in other contexts, however, and a textbook treatment is available in Birge and Louveaux (2011).   

Large-scale linear multi-stage stochastic programs are often solved using variants of the 

Stochastic Dual Dynamic Programming (SDDP) algorithm (Pereira and Pinto 1991).  The 

algorithm considers a nested multi-stage stochastic program; the objective function of each stage 

is based on the costs incurred at the current stage and an approximation term of the expected 

value-to-go.  A dynamic programming recursion iteratively passes the scenario tree forwards and 

backwards to generate cuts for the approximation of the expected value-to-go.  Though widely 

used, the algorithm requires uncertainty to be stage-wise independent and decision variables to 

be continuous.  This would not apply to the model proposed in this chapter; the uncertainty I 

consider is stage-wise dependent with binary decision variables. 

Recent work has extended SDDP to address these restrictions.  Philpott and de Matos 

(2012) consider cases where the uncertainty is defined according to a hidden, discrete-time 
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Markov chain.  They test instances with four states in each stage but suggest that their algorithm 

would not scale well beyond 16 states.  Given a set of N candidate components, my model would 

have 2^|N| states in each stage, i.e., easily over 16.  A more promising algorithm for this context 

is the Stochastic Dual Dynamic Integer Programming (SDDiP) algorithm (Zou et al. 2019).  This 

method extends SDDP to allow decision variables to be binary.  Yet, it requires stage-wise 

independent uncertainty.  This is because the cuts are shared across nodes in a stage rather than 

maintained at each node.   

As the data on the times to disruption and recovery in the pharmaceutical industry follow 

a geometric process (FDA 2018a, UUDIS 2016), sampling the component statuses would 

typically be modeled using stage-wise dependence.  Researchers have developed cut-sharing 

methods to adjust cuts to be used at multiple nodes in the same stage (Infanger and Morton 1996, 

De Queiroz and Morton 2013).  In other cases, modelers can transform the underlying stage-wise 

dependent stochastic process to be an autoregressive process with an independent error term and 

apply the methods as presented (Shapiro 2011).   

The geometrically-distributed times to recover and disruption do not have random errors.  

Instead, I reformulate the Markovian random variables to be stage-wise independent by sampling 

realizations of the inverse cumulative distribution function (CDF) of the appropriate geometric 

distributions.  Then, I apply the SDDiP algorithm to the dynamic supply chain design problem. 

2.5. Contributions 

The contributions of this chapter are the following: 

 I present a dynamic design model where the supply chain may be disrupted and 

recover over time.  The company may choose to re-configure its supply chain over 

time.  
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 The model is used to study the effects of disruptions on configuration changes and 

production discontinuations. 

 I apply the SDDiP algorithm to supply chain design under disruption and reformulate 

the Markovian random process to be stage-wise independent. 

 The analyses present the effects of varying the lead time of starting up a new 

component and improving the recovery process. 

3. Model 

3.1. Overview 

The model determines the dynamic supply chain configuration when each component is 

at risk of disruption.  Supply chain components include raw material suppliers, manufacturing 

plants, and manufacturing lines within the plants.  Each may be available or disrupted in a given 

period.  Demand is deterministic and constant across the time horizon. 

The model represents a single firm making choices about a single drug.  The objective is 

to maximize the expected profit under uncertainty regarding the status of the supply chain 

components.  The model is formulated as a multi-stage stochastic program.  In each stage, the 

company decides which candidate supply chain components to use, how much to order from the 

raw material suppliers, production quantities at the manufacturing plants, and how much to sell 

(Figure 9).  At the initial selection (𝑡 = 1), the company does not know which components will 

be working in the subsequent stages.  In the second stage (𝑡 = 2), the component statuses are 

sampled from the steady-state distribution of availability.  Uncertainty is realized progressively 

at each stage, and demand is either met or there is a shortage.  

The supply chain configuration may be changed over the course of the time horizon.  If 

the company is in the market, the company must maintain the components that are selected in the 



57 

 

initial stage.  It may start the process of adding new components at any stage, given eligibility 

criteria are met.  Components can only be added when there is a disrupted component in the 

echelon.  As a simplifying assumption, new lines may be added within new plants that are added 

to the configuration but not within plants that are already part of the configuration.  The latter 

restriction is due to the quick recovery of the lines.   

There is a lead time to add new components.  For example, a one stage lead time would 

require the company to wait one stage until the component may be used (Figure 10).  

Components that are added after the initial stage may be removed at any stage.   

The company may also choose to discontinue the drug for all stages prior to a cutoff at 

which it may no longer leave the market.  If it discontinues, the components are not available for 

the remainder of the horizon including the current stage; the company incurs no costs and 

generates no revenue. 

The fixed costs include the annual fixed cost of components, the required annual Generic 

Drug User Fee Amendment (GDUA) fees for API suppliers and manufacturing plants, and the 

fixed costs during the lead time process.  Variable costs are incurred due to production and raw 

material orders.  The revenues come from drug sales.  

Figure 9. Timing of decisions 
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3.2. D-SCDD 

In this section, I present the Dynamic Supply Chain Design Model under Disruption (D-

SCDD).  The sets and parameters are presented in Table 5.  The decision variables are presented 

in Table 6.  There are two primary types of variables: state and local.  The state variables are 

those that are carried over to the next stage; the local variables are not recorded across stages.  

They are only used in the current stage. 

Each state variable has a corresponding auxiliary variable, designated with a tilde.  The 

auxiliary variables are set equal to the (fixed) state variables from the previous stage 𝑡 − 1 ∈ 𝑇.  

For example, within stage 𝑡, the state variable 𝑥𝑗,𝑡−1 is fixed and is set equal to the auxiliary 

variable �̃�𝑗𝑡.  These variables are redundant, but the dual variables of these constraints are used to 

generate cuts in the backwards recursion.  This will be discussed in more detail in Section 4.  For 

notational convenience, the variable 𝑧𝑡 will be used to represent a vector of all of the state 

variables in 𝑡 ∈ 𝑇. 

D-SCDD is formulated as a nested stochastic program.  The function 𝜓𝑡(𝑧𝑡) calculates 

the expected value-to-go.  The objective of the sub-problem, 𝑃𝑡(𝜓𝑡(𝑧𝑡)), at each stage 𝑡 ∈ 𝑇 is 

Figure 10. Expansion example 



59 

 

to maximize the profit at the current stage plus an approximation of the expected value-to-go in 

future stages.  The constraints are applied to the current stage 𝑡.  Cuts are iteratively generated 

via the SDDiP algorithm to improve the approximation of the expected value-to-go (Section 4).  

Below, the formulation is presented by stage, and an explanation of each expression follows. 
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Table 5. Sets and parameters 

Sets  

𝐻 Set of echelons, i.e., 𝐻 ≔ {𝐴𝑃𝐼, 𝑃𝑙𝑎𝑛𝑡, 𝐿𝑖𝑛𝑒} 

𝐽ℎ Set of candidate components in echelon ℎ ∈ 𝐻 

𝐽 Set of all components, where 𝐽 ≔ ∪ℎ∈𝐻 𝐽
ℎ 

𝑡ሷ Number of periods per year 

𝑇 
Set of time periods, defined such that {|𝑇| 𝑚𝑜𝑑 𝑡ሷ = 1}, i.e., the length of 

the time horizon can be divided into years plus a initial period 

𝐼 Set of iterations 

𝑅𝑡 Set of realizations at stage 𝑡 ∈ 𝑇 

 

Parameters  

𝐿ℎ Number of periods required to open a new component in echelon ℎ ∈ 𝐻 

𝑏𝑙𝑝 ≔ {1 if candidate line 𝑙 ∈ 𝐽𝐿𝑖𝑛𝑒 is in plant 𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡                          
0 otherwise                                                                                              

  

𝑑 Quantity of drug demanded per period 

𝑐𝑟𝑎𝑤 Unit cost of raw material 

𝑐𝑝𝑟𝑜𝑑 Unit production cost 

𝑓ℎ Fixed costs per period per component in echelon ℎ ∈ 𝐻 

𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚 Per period GDUFA program fee 

𝑐ℎ
𝑠𝑡𝑎𝑟𝑡 Start-up costs per component in echelon ℎ ∈ 𝐻 

𝑐ℎ
𝐿𝑇 

Fixed costs per period per component of lead time to acquire a component 

in echelon ℎ ∈ 𝐻 

𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚 Per period GDUFA program fee 

𝑞 Sales price per unit of drug 

𝑡𝑛𝑜𝑑𝑖𝑠𝑐 
Period at which company can no longer discontinue production and leave 

the market 

𝑝𝑗
𝐹𝑎𝑖𝑙 Per period probability of component 𝑗 ∈ 𝐽 failing 

𝑝𝑗
𝑅𝑒𝑐 Per period probability of component 𝑗 ∈ 𝐽 recovering 

𝑝𝑗
𝑊,𝑠𝑡𝑒𝑎𝑑𝑦

 Probability of component 𝑗 ∈ 𝐽 working in steady-state 

𝜉�̅�0 ≔ ቄ
1 if component 𝑗 ∈ 𝐽 is initially working
0 otherwise                                                     

  

𝑈𝑗𝑡 Probability value corresponding to component 𝑗 ∈ 𝐽 in stage 𝑡 ∈ 𝑇 

𝐺𝑡 Upper bound on the objective function at stage 𝑡 ∈ 𝑇 

𝑣𝑟
𝑖  Cut coefficient for realization 𝑟 ∈ 𝑅𝑡 for iteration 𝑖 ∈ 𝐼 
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Table 6. Decision variables 

Stat

e 

Auxiliar

y 

Description 

𝑥𝑗𝑡 �̃�𝑗𝑡 ≔ ቄ
1 if component 𝑗 ∈ 𝐽 is in the configuration in stage 𝑡 ∈ 𝑇         
0 otherwise                                                                                               

  

𝑥𝑗𝑡
𝑖𝑛𝑖𝑡 �̃�𝑗𝑡

𝑖𝑛𝑖𝑡 ≔ ቄ
1 if component 𝑗 ∈ 𝐽 is open at the initial stage                                   
0 otherwise                                                                                                     

  

𝑦𝑗𝑘𝑡 �̃�𝑗𝑘𝑡 ≔ {
1 if component 𝑗 ∈ 𝐽ℎ in echelon ℎ ∈ 𝐻 has 𝑘 ∈ {1, . . . , 𝐿ℎ} periods 
 remaining as of 𝑡 ∈ 𝑇 until it can be added to the configuration    
0 otherwise                                                                                                         

 

𝜙𝑡 �̃�𝑡 ≔ ቄ
1 if the company is in the market in stage 𝑡 ∈ 𝑇 
0 otherwise                                                                     

   

𝜉𝑗𝑡 𝜉ሚ𝑗𝑡 ≔ ቄ
1 if component 𝑗 ∈ 𝐽 is non − disrupted in stage 𝑡 ∈ 𝑇    
0 otherwise                                                                                    

  

𝑧𝑡 𝑧ǁ𝑡 The vector of all binary state variables in stage 𝑡 ∈ 𝑇 

 

Local  

𝛿𝑗𝑡 ≔ {
1 if component 𝑗 ∈ 𝐽 maintains the same status from 𝑡 − 1           
 to 𝑡 ∈ 𝑇 initeration 𝑖 ∈ 𝐼                                                                        
0 otherwise                                                                                                  

    

𝜏𝑗𝑡 ≔ {
1 if component 𝑗 ∈ 𝐽 is non − disrupted in 𝑡 − 1 ∈ 𝑇 and
 continues to be non − disrupted in 𝑡 ∈                                
0 otherwise                                                                                       

  

𝜂𝑗𝑡 ≔ {
1 if component 𝑗 ∈ 𝐽ℎ is in the configuration yet disrupted         
 in 𝑡 ∈ 𝑇                                                                                                      
0 otherwise                                                                                                  

  

𝛾𝑡 Approximation of the expected value-to-go at stage 𝑡 ∈ 𝑇 

𝜃𝑡 Fraction of per period demand met in stage 𝑡 ∈ 𝑇 

𝑢𝑗𝑡 
Raw material that is supplied by supplier 𝑗 ∈ 𝐽𝐴𝑃𝐼 in stage 𝑡 ∈ 𝑇 (as a 

fraction of per period demand) 

𝑤𝑗𝑡 
Finished goods produced on line 𝑗 ∈ 𝐽𝐿𝑖𝑛𝑒 in stage 𝑡 ∈ 𝑇 (as a fraction of 

per period demand) 

𝜋𝑟
𝑖  Cut coefficient for realization 𝑟 ∈ 𝑅𝑡 in iteration 𝑖 ∈ 𝐼 in stage 𝑡 ∈ 𝑇 

 

For 𝒕 = 𝟏: 

 

(𝑃𝑡(𝜓𝑡)): max∑ ∑ −𝑐ℎ
𝑠𝑡𝑎𝑟𝑡𝑥𝑗𝑡𝑗∈𝐽ℎℎ∈𝐻 + 𝜓𝑡(𝑧𝑡)                      (1) 

 

Subject to: 

𝑥𝑗𝑡 ≥ 𝑥𝑗+1,𝑡 ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ ∖ {|𝐽ℎ|}        (2) 

 

𝑥𝑙𝑡 + 𝑏𝑙𝑝 ≤ 1 + 𝑥𝑝𝑡 ∀𝑙 ∈ 𝐽𝐿𝑖𝑛𝑒 , 𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡 (3) 
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𝑥𝑝𝑡 ≤ ∑ 𝑏𝑙𝑝𝑥𝑙𝑡𝑙∈𝐽𝑙𝑖𝑛𝑒  ∀𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡 (4) 

𝜙𝑡 ≤ ∑ 𝑥𝑗𝑡𝑗∈𝐽ℎ  ∀ℎ ∈ 𝐻 (5) 

 

𝜙𝑡 ≥ 𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽 (6) 

 

𝑥𝑗𝑡
𝑖𝑛𝑖𝑡 = 𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽 (7) 

 

𝜉𝑗𝑡 = 𝜉�̅�0  (8a) 

𝜃𝑡 = 1  (8b) 

𝑦𝑗𝑘𝑡 = 0 ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ, 𝑘 ∈ {1,… , 𝐿ℎ} (8c) 

 

𝑥𝑗𝑡 , 𝑥𝑗𝑡
𝑖𝑛𝑖𝑡 , 𝜉𝑗𝑡 ∈ {0,1}  ∀𝑗 ∈ 𝐽            (9a) 

𝑦𝑗𝑘𝑡 ∈ {0,1} ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ, 𝑘 ∈ {1,… , 𝐿ℎ}     (9b) 

𝜙𝑡 ∈ {0,1}                     (9c) 

𝜃𝑡 ≥ 0          (9d) 

 

 

Where: 

𝜓𝑡(𝑧𝑡) ≔ max 𝜆𝑡               (10) 

 

Subject to: 

 𝜆𝑡 ≤ 𝐺𝑡               (11) 

𝜆𝑡 ≤
1

|𝑅𝑡+1|
∑ (𝑣𝑟

𝑖′ + (𝜋𝑟
𝑖′)
𝑇
𝑧𝑡)𝑟∈𝑅𝑡+1    ∀𝑖′ ∈ {1,… , 𝑖 − 1}           (12) 

 

For 𝒕 ∈ 𝑻 ∖ {𝟏, |𝑻|}: 
 

(𝑃𝑡(𝑧𝑡−1, 𝜓𝑡)): 
 

max𝑑(𝑞𝜃𝑡 − 𝑐
𝑟𝑎𝑤 ∑ 𝑢𝑗𝑡𝑗∈𝐽𝐴𝑃𝐼 − 𝑐𝑝𝑟𝑜𝑑 ∑ 𝑤𝑗𝑡𝑗∈𝐽𝐿𝑖𝑛𝑒 ) − ∑ ∑ [𝑓ℎ𝑥𝑗𝑡 +𝑗∈𝐽ℎℎ∈𝐻

𝑐ℎ
𝐿𝑇 ∑ 𝑦𝑗𝑘𝑡𝑘∈{1,…,𝐿ℎ} ] − 𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝜙𝑡 + 𝜓𝑡(𝑧𝑡)              (13) 

 

Subject to: 

 

𝑥𝑗𝑡
𝑖𝑛𝑖𝑡 = �̃�𝑗𝑡

𝑖𝑛𝑖𝑡 ∀𝑗 ∈ 𝐽 (14) 

𝑥𝑗𝑡 ≥ 𝑥𝑗𝑡
𝑖𝑛𝑖𝑡 − (1 − 𝜙𝑡)  ∀𝑗 ∈ 𝐽 (15) 

 

𝑦𝑗,𝑘−1,𝑡 = �̃�𝑗𝑘𝑡 ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ, 𝑘 ∈ {2, . . . , 𝐿ℎ} (16) 

𝑥𝑗𝑡 ≤ �̃�𝑗𝑡 + �̃�𝑗,1,𝑡 ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ (17) 

∑ 𝑦𝑗𝑘𝑡𝑘∈{1,…,𝐿ℎ} ≤ 1 − �̃�𝑗,1,𝑡 ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ (18) 

 

𝜂𝑗𝑡 ≤ 𝑥𝑗𝑡  ∀𝑗 ∈ 𝐽 (19) 

𝜂𝑗𝑡 ≤ 1 − 𝜉𝑗𝑡 ∀𝑗 ∈ 𝐽 (20) 
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𝜂𝑗𝑡 ≥ 𝑥𝑗𝑡 + (1 − 𝜉𝑗𝑡) − 1 ∀𝑗 ∈ 𝐽 (21) 

 

𝑦𝑗,𝐿ℎ,𝑡 ≤ ∑ 𝜂𝑗𝑡𝑗∈𝐽ℎ  ∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽ℎ (22) 

 

𝑥𝑙𝑡 + 𝑏𝑙𝑝 ≤ 1 + 𝑥𝑝𝑡 ∀𝑙 ∈ 𝐽𝐿𝑖𝑛𝑒 , 𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡 (23) 

𝑥𝑝𝑡 ≤ ∑ 𝑏𝑙𝑝𝑥𝑙𝑡𝑙∈𝐽𝑙𝑖𝑛𝑒  ∀𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡 (24) 

 

𝑦𝑙𝑘𝑡 + 𝑏𝑙𝑝 ≤ 1 + 𝑦𝑝𝑘𝑡 ∀𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡, 𝑙 ∈ 𝐽𝐿𝑖𝑛𝑒 , 

 𝑘 ∈ {2, . . . , 𝐿𝑃𝑙𝑎𝑛𝑡} (25) 

𝑦𝑝𝑘𝑡 ≤ ∑ 𝑦𝑙𝑘𝑡𝑏𝑙𝑝𝑙∈𝐽𝐿𝑖𝑛𝑒   ∀𝑝 ∈ 𝐽𝑃𝑙𝑎𝑛𝑡, 𝑘 ∈ {2, . . . , 𝐿𝑃𝑙𝑎𝑛𝑡}  (26) 

  

𝜙𝑡 ≤ ∑ 𝑥𝑗𝑡𝑗∈𝐽ℎ  ∀ℎ ∈ 𝐻 (27) 

𝜙𝑡 ≤ �̃�𝑡  (28) 

𝜙𝑡 ≥ 𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽 (29) 

 

𝐹𝑜𝑟: 𝑡 ≥ 𝑡𝑛𝑜𝑑𝑖𝑠𝑐  
𝜙𝑡 ≥ �̃�𝑡  (30) 

 

𝑢𝑗𝑡 ≤ 𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽𝐴𝑃𝐼  (31) 

𝑢𝑗𝑡 ≤ 𝜉𝑗𝑡 ∀𝑗 ∈ 𝐽𝐴𝑃𝐼  (32) 

 

∑ 𝑤𝑙𝑡𝑙∈𝐽𝐿𝑖𝑛𝑒 ≤ ∑ 𝑢𝑗𝑡𝑗∈𝐽𝐴𝑃𝐼    (33) 

𝑤𝑙𝑡 ≤ ∑ 𝑏𝑙𝑝𝜉𝑝𝑡𝑝∈𝐽𝑃𝑙𝑎𝑛𝑡  ∀𝑙 ∈ 𝐽𝐿𝑖𝑛𝑒   (34) 

 

𝑤𝑗𝑡 ≤ 𝜉𝑗𝑡 ∀𝑗 ∈ 𝐽𝐿𝑖𝑛𝑒  (35) 

𝑤𝑗𝑡 ≤ 𝑥𝑗𝑡 ∀ 𝑗 ∈ 𝐽𝐿𝑖𝑛𝑒  (36) 

 

𝜃𝑡 ≤ 1   (37) 

 𝜃𝑡 ≤ ∑ 𝑤𝑗𝑡𝑗∈𝐽    (38) 

 

 

𝑡 = 2:  

(1 − 𝑝𝑗
𝑊,𝑠𝑡𝑒𝑎𝑑𝑦

) − (1 − 𝑈𝑗𝑡) ≤ 1 − 𝜉𝑗𝑡 ∀𝑗 ∈ 𝐽 (39) 

𝑝𝑗
𝑊,𝑠𝑡𝑒𝑎𝑑𝑦

− 𝑈𝑗𝑡 ≤ 𝜉𝑗𝑡 ∀𝑗 ∈ 𝐽 (40) 

 

Otherwise: 

𝜉𝑗𝑡 = 𝜉ሚ𝑗𝑡𝛿𝑗𝑡 + (1 − 𝜉ሚ𝑗𝑡)(1 − 𝛿𝑗𝑡)  ∀𝑗 ∈ 𝐽          (41) 

 

𝜏𝑗𝑡 ≤ 𝜉ሚ𝑗𝑡      ∀𝑗 ∈ 𝐽       (41a) 

𝜏𝑗𝑡 ≤ 𝛿𝑗𝑡      ∀𝑗 ∈ 𝐽       (41b) 

𝜏𝑗𝑡 ≥ 𝜉ሚ𝑗𝑡 + 𝛿𝑗𝑡 − 1     ∀𝑗 ∈ 𝐽       (41c) 

𝜉𝑗𝑡 = 1 − 𝜉ሚ𝑗𝑡 − 𝛿𝑗𝑡 + 2𝜏𝑗𝑡  ∀𝑗 ∈ 𝐽                                     (41d) 
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[𝑝𝑗
𝐹𝑎𝑖𝑙𝜉ሚ𝑗𝑡 + 𝑝𝑗

𝑅𝑒𝑐𝑜𝑣(1 − 𝜉ሚ𝑗𝑡)] − (1 − 𝛿𝑗𝑡) ≤ 𝑈𝑗𝑡  ∀𝑗 ∈ 𝐽         (42) 

[𝑝𝑗
𝐹𝑎𝑖𝑙𝜉ሚ𝑗𝑡 + 𝑝𝑗

𝑅𝑒𝑐𝑜𝑣(1 − 𝜉ሚ𝑗𝑡)] + 𝛿𝑗𝑡 ≥ 𝑈𝑗𝑡   ∀𝑗 ∈ 𝐽         (43) 

 

�̃�𝑗𝑡 = 𝑥𝑗,𝑡−1      ∀𝑗 ∈ 𝐽       (44a) 

�̃�𝑗𝑡
𝑖𝑛𝑖𝑡 = 𝑥𝑗,𝑡−1

𝑖𝑛𝑖𝑡       ∀𝑗 ∈ 𝐽       (44b) 

�̃�𝑗𝑘𝑡 = 𝑦𝑗,𝑘,𝑡−1      ∀𝑗 ∈ 𝐽ℎ, ℎ ∈ 𝐻, 𝑘 ∈ {1,… , 𝐿ℎ}   (44c) 

�̃�𝑡 = 𝜙𝑗,𝑡−1             (44d) 

𝜉ሚ𝑗𝑡 = 𝜉𝑗,𝑡−1      ∀𝑗 ∈ 𝐽       (44e) 

 

𝑥𝑗𝑡 , �̃�𝑗𝑡, 𝑥𝑗𝑡
𝑖𝑛𝑖𝑡, �̃�𝑗𝑡

𝑖𝑛𝑖𝑡, 𝜉𝑗𝑡, 𝜉ሚ𝑗𝑡, 𝛿𝑗𝑡 , 𝜏𝑗𝑡 , 𝜂𝑗𝑡 ∈ {0,1} ∀𝑗 ∈ 𝐽             (45a) 

𝑦𝑗𝑘𝑡 , �̃�𝑗𝑘𝑡 ∈ {0,1}  ∀𝑗 ∈ 𝐽ℎ, ℎ ∈ 𝐻, 𝑘 ∈ {1,… , 𝐿ℎ} (45b) 

𝜙𝑡 , �̃�𝑡 ∈ {0,1}  (45c) 

𝑢𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝐽𝐴𝑃𝐼   (45d) 

𝑤𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝐽𝐿𝑖𝑛𝑒           (45e) 

𝜃𝑡 ≥ 0          (45f) 

𝛽ℎ𝑡 ∈ {0,1}      ∀ℎ ∈ 𝐻      (45g) 

𝑈𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝐽 (45h) 

 

Where: 

𝜓𝑡(𝑧𝑡) ≔ max 𝜆𝑡                    (46) 

 

Subject to: 

 𝜆𝑡 ≤ 𝐺𝑡               (47) 

𝜆𝑡 ≤
1

|𝑅𝑡+1|
∑ (𝑣𝑟

𝑖′ + (𝜋𝑟
𝑖′)
𝑇
𝑧𝑡)𝑟∈𝑅𝑡+1    ∀𝑖′ ∈ {1,… , 𝑖 − 1}          (48) 

 

 

Objective (𝒕 = |𝑻|): 
 

(𝑃𝑡(𝑧𝑡−1)): 
 

max𝑑(𝑞𝜃𝑡 − 𝑐
𝑟𝑎𝑤 ∑ 𝑢𝑗𝑡𝑗∈𝐽𝐴𝑃𝐼 − 𝑐𝑝𝑟𝑜𝑑 ∑ 𝑤𝑗𝑡𝑗∈𝐽𝐿𝑖𝑛𝑒 ) − ∑ ∑ [𝑓ℎ𝑥𝑗𝑡 +𝑗∈𝐽ℎℎ∈𝐻

𝑐ℎ
𝐿𝑇 ∑ 𝑦𝑗𝑙𝑡𝑙∈{1,…,𝐿ℎ} ] − 𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝜙𝑡              (49)  

 

Subject to: 

(14-45) 

Expressions (1-12) define the initial stage problem.  Expressions (13-49) define the 

problem for the subsequent stages. 
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 In the initial stage, 𝑡 = 1, the objective function (1) maximizes expected profit by 

subtracting the fixed start-up costs for each component and adding an approximation of the 

expected value-to-go.  The approximation is defined via the sub-problem in expressions (10-12). 

 Constraints (2) require the components to be selected in the order of their indices.  These 

are used to reduce the number of alternative optima.  Constraints (3) require that the plant 

associated with a selected line is selected.  Constraints (4) do not allow the company to select a 

manufacturing plant unless it contains a selected line.  Constraints (5-6) determine whether the 

company is in the market.  Constraints (5) require a component to be selected in each echelon.  

Constraints (6) ensure that if a component is selected, the company is considered in the market.  

The combination of (5-6) requires that there is either a complete supply chain configuration or no 

components selected.  Constraints (7) record the initial supply chain configuration. 

 Constraints (8) initialize the component statuses, demand met, and lead time variables, 

respectively.  Constraints (9) enforce variable domains. 

 Expressions (10-12) are the sub-problem that defines the approximation of the expected 

value-to-go.  Objective (10) maximizes the value-to-go approximation.  Constraint (11) limits the 

approximation to an exogenous upper bound.  Constraints (12) are cutting planes that provide an 

outer-approximation of the value-to-go.  The coefficients {𝑣𝑟
𝑖′ , 𝜋𝑟

𝑖′}, ∀𝑟 ∈ 𝑅𝑡+1, 𝑖 ∈ {1, … , 𝑖 − 1} 

are fixed in constraints (12) and are defined by solving the relaxation (𝑅𝑡
𝑖).  This is discussed in 

Section 4. 

 In the subsequent stages, where 𝑡 ∈ {2, . . , |𝑇| − 1}, the objective function (13) 

maximizes the sum of the profit in the current stage and an approximation of the expected value-

to-go.  The profit is the sum of revenue generated from drug sales, the cost of ordering raw 

materials, the cost of producing finished goods, and the fixed costs.  There are fixed costs for 
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each component and the GDUFA program fee.   The approximate value-to-go is calculated via 

the sub-problem in expressions (46-48). 

 Constraints (14-26) focus on the selected configuration and lead time.  Constraints (14) 

record the supply chain configuration selected in the initial stage.  Constraints (15) require the 

initial configuration to be maintained unless the company is not in the market. 

Constraints (16-18) enforce the lead time to add a new component.  The lead-time-

remaining indicator records how many stages remain before a component can be added to the 

configuration.  Constraints (16) decrease the indicator by one period from the previous stage.  

Constraints (17) require that each component in the configuration either i) to have been in the 

configuration in the previous stage or ii) to have had one period of lead time remaining in the 

previous stage.  Constraints (18) force the lead-time-remaining indicator to 0 if there was one 

period remaining in the previous period.  It also limits each component to be at a single point in 

the lead time process at any given time.  Multiple components can have different lead times, but 

each component can only have one lead time in a given period. 

Constraints (19-22) require that a company may only begin the lead time of a component 

if a component within the echelon is in the configuration and non-disrupted.  Constraints (19-21) 

define the component selected-and-available variable.  Constraints (22) require that the process 

to add a new component in echelon ℎ ∈ 𝐻 may only begin if there is a disrupted component in 

the echelon. 

Constraints (23-26) enforce plant-line compatibility.  Constraints (23) and (25) require 

lines must be in selected plants, for selected components and the lead-time process, respectively.  

Constraints (24) and (26) ensure at least one line is selected in a selected plant, for selected 
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components and the lead-time process, respectively.  Constraints (25) ensure that when the 

process to add a new plant begins, at least one line within the new plant will also be added. 

Constraints (27-30) relate to the company’s status in the market.  Constraints (27) require 

at least one component at each echelon to be selected if the company is in the market.  Constraint 

(28) does not allow the company to reenter the market if they have exited.  Constraints (29) 

designate the company to be in the market if any components are selected.  Beginning at period 

𝑡𝑛𝑜𝑑𝑖𝑠𝑐, constraint (30) requires the company to be in the market if they were in the previous 

period. 

 Constraints (31) limit the raw materials purchased to selected API suppliers.  Constraints 

(32) prevent raw materials from being purchased from disrupted API suppliers.  Constraints (33-

36) impose upper bounds on the amount of finished goods that can be produced.   Constraints 

(33) limit the total amount of drugs produced to the amount of raw materials available.  

Constraints (34-35) prevent the drug from being produced in disrupted plants and on disrupted 

lines, respectively.  Constraints (36) limit the amount of drug produced to selected lines. 

 Constraints (37) prevent the company from selling more drug than is demanded.  

Constraints (38) limit the amount of drug sold to the amount that has been produced in the 

period.  The company may not carry any inventory. 

 In period 𝑡 = 2, constraints (39-40) define the status of each component.  They are based 

on the steady-state availability of each component. 

For all other periods, Constraints (41) define the status of each component 𝑗 ∈ 𝐽 in the 

current stage 𝑡 ∈ 𝑇 ∖ {1} based on: i) the status in the previous stage, 𝜉ሚ𝑗𝑡, and ii) the indicator 

variable, 𝛿𝑗𝑡, that designates whether it maintains the same status.  These are non-linear 
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expressions because they include products of binary variables, and constraints (41a-d) are used to 

implement an extra linearization. 

 Constraints (42-43) define the indicator of whether a component maintains the same 

status from the previous stage.  The expression [𝑝𝑗
𝐹𝑎𝑖𝑙𝜉ሚ𝑗𝑡 + 𝑝𝑗

𝑅𝑒𝑐𝑜𝑣(1 − 𝜉ሚ𝑗𝑡)] represents the 

probability that a component changes its status.  The binary variables 𝛿𝑗𝑡 indicate whether the 

component 𝑗 ∈ 𝐽 maintains the same status in stage 𝑡 ∈ 𝑇.  𝑈𝑗𝑡 are realizations of the uniform 

random variable corresponding to component 𝑗 ∈ 𝐽 in stage 𝑡 ∈ 𝑇.  They are sampled before the 

model is run.  That is, 𝛿𝑗𝑡 = 0 if 𝑈 ≤ [𝑝𝑗
𝐹𝑎𝑖𝑙𝜉ሚ𝑗𝑡 + 𝑝𝑗

𝑅𝑒𝑐𝑜𝑣(1 − 𝜉ሚ𝑗𝑡)], and 1 otherwise.  The 

indicator is defined using Big-M style constraints (39-40) with M = 1. 

In more detail: 

If the status of component 𝑗 ∈ 𝐽 in the previous stage is non-disrupted (𝜉ሚ𝑗𝑡 = 1), the 

constraints are simplified to: 

𝑝𝑗
𝐹𝑎𝑖𝑙 − (1 − 𝛿𝑗𝑡 ) ≤ 𝑈𝑗𝑡  ∀𝑗 ∈ 𝐽       

𝑝𝑗
𝐹𝑎𝑖𝑙 + 𝛿𝑗𝑡  ≥ 𝑈𝑗𝑡   ∀𝑗 ∈ 𝐽  

 The probability the component is disrupted is 𝑝𝑗
𝐹𝑎𝑖𝑙.  If the realization of the 

uniform random, 𝑈𝑗𝑡, is less than 𝑝𝑗
𝐹𝑎𝑖𝑙, then the indicator variable 𝛿𝑗𝑡 is forced to 0.  If it 

is greater than 𝑝𝑗
𝐹𝑎𝑖𝑙, then the indicator variable is forced to 1.  This represents a 

probability of 𝑝𝑗
𝐹𝑎𝑖𝑙 that component 𝑗 ∈ 𝐽 changes status if it is non-disrupted in the 

previous period.  The analysis is similar if the component is disrupted in the previous 

stage, i.e., 𝜉ሚ𝑗𝑡 = 0.   

 Constraints (44a-e) assign the auxiliary state variables as the fixed values of the state 

variables from the previous stage.  Constraints (45a-h) enforce the domains.  
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 Expressions (46-48) calculate the approximation of the expected value-to-go.  They are 

similar to expressions (10-12) in the initial stage.  The objective (46) maximizes the 

approximation.  Constraint (47) limits it to a given upper bound.  Constraints (48) apply cuts 

based on fixed coefficients {𝑣𝑟
𝑖′ , 𝜋𝑟

𝑖′}, ∀𝑟 ∈ 𝑅𝑡+1, 𝑖 ∈ {1, … , 𝑖 − 1}. 

When 𝑡 = |𝑇|, the objective function (49) maximizes the profit in the final stage.  It is 

calculated in the same way as expression (13) except it excludes an approximation of the 

expected value-to-go.  The model is subject to the same constraints as the other non-initial stages 

(14-45). 

Note that none of the stages include non-anticipativity constraints.  These are typically 

applied in multi-stage stochastic programs that are decomposed by scenario (rather than by 

stage).  They prevent the model from incorrectly applying information about future stages.  D-

SCDD is modeled using a nested structure, and the non-anticipativity property is implied. 

3.3. Assumptions 

The model includes several assumptions.  The API suppliers represent individual 

facilities and can supply any plant.  As freight shipping between common supplier and plant 

locations is sufficiently shorter than the length of a period (e.g., 2 weeks vs. three months), 

(SeaRates 2018, US Department of Commerce 2018), the shipping time between a supplier and 

plant is assumed to be zero.  The transportation costs are not explicitly modeled, though they 

could be implicitly included via the raw material ordering costs. As a simplifying assumption, 

the GDUFA fees for API suppliers and facilities are applied per stage rather than annually.  They 

are only applied to components that are in the configuration, not those in the expansion process.  

A separate per-period cost to the company is applied to the latter.  I assume each non-disrupted 
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line can produce sufficient quantities to meet demand and each non-disrupted API supplier can 

supply sufficient raw materials. 

It takes time to add a new component, and I assume that this lead time is deterministic.  

In practice, this would vary, but I applied a known, constant value to allow the analysis to focus 

on the effects of varying the lead time.  In contrast, disruptions and recovery are uncertain.  They 

occur to components independently, and components are either available or disrupted.  Within an 

echelon, each component has the same probability of disruption recovery each period.  The 

model does not consider correlations nor partial availability, following the analysis in earlier 

work (Chapter 2). 

 The demand is deterministic and constant, similar to the demand distributions of many 

drugs vulnerable to shortages (Fox et al. 2014).  If demand is unmet, it is lost, not backordered. 

The sales price and costs are constant across time periods.  Finally, the company is not allowed 

to hold inventory.  Companies of generic sterile injectables typically hold low amounts of 

inventory (GAO 2016). 

4. Solution methods 

To solve D-SCDD, I apply the SDDiP algorithm, introduced by Zou et al. (2019).  It is 

appropriate for multi-stage stochastic mixed-integer linear programming problems.  The 

objective at each stage is the profit at the current stage and the expected value-to-go in the 

remaining stages.  The algorithm decomposes the model by stage.  The objective then becomes 

the profit at the current stage plus an approximation term of the expected value-to-go.  To 

improve the approximation, each iteration of the algorithm generates cutting planes that form an 

outer-approximation of the value-to-go term.  The sub-problems are much easier to solve than 
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the full problem, and the algorithm progressively traverse stages of the tree to generate cuts and 

approximate the optimal solution of the full problem. 

Each iteration has two steps – a forward pass and a backwards pass.  In the forward step, 

the algorithm samples one path of realizations of uncertainty, 𝑈𝑗𝑡 , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, corresponding 

to each component 𝑗 and each time period 𝑡.  Then from stage 𝑡 = 1 to 𝑡 = |𝑇|, it solves the 

optimization problem 𝑃𝑡
𝑖(𝜓𝑡

𝑖) in each stage.  It records the state variables, 𝑧𝑡, and value-to-go 

approximation, 𝜆𝑡, for each stage. 

In the backward step, the algorithm traverses the sample path “backwards” in time, from 

𝑡 = |𝑇| to 𝑡 = 2.  At each included stage, the algorithm solves a relaxation of the stage problem 

(discussed more specifically in Section 4.3), and the cut coefficients are obtained. 

The algorithm iterates through forward and backward steps.  It terminates when the 

objective function is within appropriate optimality bounds or a maximum number of iterations is 

reached. 

4.1. Applicability of the algorithm 

The SDDiP algorithm requires the following conditions.  The problem must i) have a 

linear objective function in the state and local variables at each state; ii) have a nonempty, 

compact, mixed-integer polyhedral set; and iii) have complete, continuous recourse. 

These conditions hold for D-SCDD.  The objective function is linear in the variables at 

each stage.  The constraint set is nonempty; it is always feasible to select no components.  It is 

compact (closed and bounded) because a) none of the inequalities are strict, and b) each variable 

is limited below by 0 and has an upper bound. The binary variables have an upper bound of 1, 

and the continuous variables (i.e., raw materials ordered, production quantities) are limited by 

capacity.  Capacity is bounded by the discrete, finite set of candidate components.  Demand met 
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is limited by demand.  Finally, it has complete, continuous recourse because for any value of the 

state variables (i.e., 𝑥𝑗𝑡 , 𝑥𝑗𝑡
𝑖𝑛𝑖𝑡 , 𝑦𝑗𝑘𝑡, 𝜙𝑡 , 𝜉𝑗𝑡), the local continuous variables (i.e., 𝑢𝑗𝑡 , 𝑤𝑗𝑡) can be set 

to 0. 

4.2. Uncertainty 

The SDDiP algorithm requires the uncertainty to be stage-wise independent.  This is 

relevant to many supply chain models that incorporate disruptions.  Often, the availability of 

components is modeled using a Bernoulli random variable that does not depend on prior periods 

(Snyder et al. 2016).  However, if disruptions occur in the pharmaceutical industry, they may 

persist for many months, and the times to disruption and recovery follow different geometric 

distributions (Chapter 2). 

When the times to disruption and recovery have different distributions, the component 

statuses, i.e., the realizations of uncertainty, are no longer stage-wise independent.  As an 

example, if geometrically distributed disruptions are modeled using the conventional framework 

where availability is the random variable, the status at stage 𝑡 − 1 affects the status at stage 𝑡.  

That is, if a component is disruption in stage 𝑡 − 1, it is more likely to still be disrupted in stage 𝑡 

than if it were available in stage 𝑡. 

In other contexts, a model can sometimes be reformulated to have stage-wise independent 

uncertainty.  This is generally done by converting the random process to an autoregressive 

process (Shapiro 2011).  The stage-wise independent random errors are sampled, and the random 

variables corresponding to the original process can be recovered using the constraints.  Each 

node of the scenario tree is a realization of the random error, rather than a realization of the 

variables from the original process. 
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In a Markov process, there are not random errors.  However, inspired by this 

reformulation idea, I redefine the random variables in two steps.  First, I add binary variables to 

represent whether the component maintains its status from the previous stage (i.e., 1 if it 

maintains the same status from period 𝑡 − 1 to 𝑡, and 0 if it changes status).   The second step is 

to add random variables that represent the realization of probability it changes its status 

i.e., 𝑈𝑗𝑡~𝑈𝑛𝑖𝑓[0,1], ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇.  These are uniform random variables distributed between 0 

and 1.  This process essentially samples the inverse of the appropriate cumulative distribution 

function (CDF) of the geometric distribution.  Yet, it is stage-wise independent because the 

appropriate inverse CDF is applied in the constraints, rather than the uncertainty realizations.  

The random variable itself does not depend on the previous stage; it simply samples 

𝑈~𝑈𝑛𝑖𝑓[0,1].  

Constraints (41-43) use the realizations 𝑈𝑗𝑡 and the exogenous parameters 𝑝𝑗
𝑅𝑒𝑐𝑜𝑣 and 

𝑝𝑗
𝐹𝑎𝑖𝑙 to define the statuses as variables 𝜉𝑗𝑡.  This is an alternative to sampling the statuses 

directly as random variables (as in Chapter 2).  

Using this reformulation, the underlying random process is stage-wise independent, and 

the SDDiP can be applied.  This reformulation has not been applied to supply chain disruptions 

that progress according to a Markovian structure.   

4.3. Lagrangian cuts and implementation 

To solve the model, I apply Lagrangian cuts (Zou et al. 2019).  The cut coefficients, 𝜋𝑡
𝑖 , 

and 𝑣𝑡
𝑖, are calculated by solving relaxations of the stage problems (𝑅𝑡

𝑖).  For these cuts, the 

linking constraints are relaxed (i.e., Constraints (44a-e)), and I solve the Lagrangian dual of the 

stage problems.  The coefficient 𝜋𝑡
𝑖  is the optimal solution, 𝜋𝑡

∗, to (𝑅𝑡
𝑖), and the coefficient 𝑣𝑡

𝑖 is 

obtained as 𝑣𝑡
𝑖: = ℒ𝑡

𝑖(𝜋𝑡
𝑖∗).  



74 

 

(𝑅𝑡
𝑖):min

𝜋𝑡
{ℒ𝑡
𝑖(𝜋𝑡) + 𝜋𝑡

𝑇𝑥𝑡−1
𝑖 }          (50) 

Where: 

ℒ𝑡
𝑖(𝜋𝑡) = max𝑑(𝑞𝜃𝑡 − 𝑐

𝑟𝑎𝑤 ∑ 𝑢𝑗𝑡𝑗∈𝐽𝐴𝑃𝐼 − 𝑐𝑝𝑟𝑜𝑑 ∑ 𝑤𝑗𝑡𝑗∈𝐽𝐿𝑖𝑛𝑒 ) − ∑ ∑ [𝑓ℎ𝑥𝑗𝑡 +𝑗∈𝐽ℎℎ∈𝐻

𝑐ℎ
𝐿𝑇 ∑ 𝑦𝑗𝑘𝑡𝑘∈{1,…,𝐿ℎ} ] − 𝑓𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝜙𝑡 + 𝜆𝑡 − 𝜋𝑡

𝑇𝑧ǁ𝑡       (51) 

 

Subject to:  

Constraints (14-43; 45; and 47-48) 

Then the SDDiP algorithm can be applied.   

It is presented in Figure 11.  The parameter, 𝑄𝑖𝑚, represents the profit in the current stage 

for iteration 𝑖 ∈ 𝐼 and simulation sample 𝑚 ∈ {1,… , �̃�}, where �̃� is the number of simulations.  

�̇�𝑡
𝑚 is used as a record-keeping parameter for sample 𝑚 ∈ {1,… , �̃�} in stage 𝑡 ∈ 𝑇.  �̃�𝑚 is the 

total profit across all stages in sample 𝑚 ∈ {1,… , �̃�}. 

The model was programmed in Julia v1.2 (Bezanson et al. 2017).  I used the SDDiP 

functionality within the SDDP.jl package to apply the algorithm and Gurobi 7.2 as the solver 

(Dowson and Kapelevich 2017, Gurobi Optimization LLC 2019).  The analyses were conducted 

on a PC with 3.2GHz Intel Core i7 processor and 64GB of RAM. 

There were nine stages with 10 realizations of uncertainty per stage.  This is equivalent to 

one billion scenarios.  Monetary values are scaled down by 100 to keep the matrices better 

conditioned.  They are scaled up in the presentation of the results.   

In each forward pass, a single path was sampled, and every 50 iterations, the algorithm 

sampled 200 iterations to generate a statistical bound.  The algorithm terminated when the upper 

and lower bounds were not statistically different.  After the algorithm terminated, I simulated 
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1,000 sample paths to calculate the expected profit and shortages as well as to see how the 

company responds to different disruption scenarios.   

Figure 11. SDDiP Algorithm 
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5. Numerical study 

A generic oncology drug, vincristine sulfate, will be used as an example of how supply 

chain decisions may change over time.  It has been studied in the static supply chain case 

(Chapter 2) and using reliability modeling (Chapter 4).  I will conduct analyses to evaluate the 

effects of reducing the lead time to add components and reducing the time to recovery.  The 

profit results are rounded to the nearest $1,000, and percentages are rounded to the nearest 1%.  

5.1. Data 

The analysis applies data for the vincristine supply chain that has been previously 

reported in Chapter 2.  It is repeated in Table 7 for reference.  

The company selects from a set of candidate components.  These include three API 

suppliers, two manufacturing plants; and five manufacturing lines.  Lines are associated with 

particular plants, and three of the lines are in the first plant; two are in the second plant. 

I apply a two-year time horizon to be consistent with typical pharmaceutical procurement 

contracts.  The periods are three months (one quarter) which leads to nine stages overall 

including the initial configuration decision.   The lead time to add new components is one year in 

the baseline analysis.  The times to disruption and recovery are geometrically distributed, based 

on data from the FDA and the University of Utah Drug Information Service (FDA 2018a, 

UUDIS 2016). 

 



77 

 

Table 7. Data 

 General API 

Supplier 

Plant Line Reference 

Fixed costs (annual) 

 $34,169 $69,401 $42,200 

Original source 

(FDA 2018b, 

Rudge 2012) and 

assumed.  

Calculated in 

Chapter 2 

Fixed program cost 

(annual) $9,700  

(FDA 2018b, c) 

Calculated in 

Chapter 2 

Lead time (annual) 

 

Half the annual fixed costs Assumed 

Start-up costs (annual) One-tenth the annual fixed costs Assumed 

Mean time to fail (in 

quarters) 69.2 112.8 34 

Calculated based 

on FDA (2018a) 

and UUDIS (2016) 

Failure probability 

(per quarter) 
0.014 0.009 0.029 

Calculated 

Mean time to recover 

(in quarters) 
4.8 3.2 0.32 

Calculated from 

UUDIS (2016) 

Recover probability 

(per quarter) 
0.18 0.268 0.956 

Calculated 

Steady-state 

availability 
0.929 0.968 0.971 

Calculated 

Lead time (in quarters) 4 4 4  

Raw material (unit) 

$0.34 

 PharmaCompass 

(2018) and 

procurement 

representatives 

Production cost (unit) 
$2.22 

Calculated in 

Chapter 2 

Price (unit) 
$5.55 

(IBM Micromedex 

2018) 

Demand (annual units) 

90,000 

CMS (2018a, b) 

and National 

Cancer Institute 

(2018) Calculated 

in Chapter 2 

Objective function 

bound 
2𝑑𝑞|𝑇| 

Calculated 
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5.2. Numerical results 

Baseline (1 year lead time) 

 In the baseline analysis, the company decides its initial configuration and has a one year 

lead time to add additional components.  The expected profit over the time horizon is $184,000 

(corresponding annual profit is $92,000) and expected shortages are 13%.  The distributions are 

shown in Figure 12. The company is profitable most of the time; in 96% of the simulated runs, 

Figure 12. Total profit and shortages (1 year lead time) 

Two year total profit (in $100s) 
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the company makes money.  In 57% of the runs, there is not a shortage, though in 19% of the 

runs, the drug was short for at least two quarters.  

The company remains in the market in 88% of the simulated runs.   Among 

discontinuations (i.e., when the company leaves the market), 9% occur in the 6th stage.  Recall 

that the model enforces that companies may not leave the market in the last 2 stages; at this point 

they either decide to remain in the market until the end of the horizon or discontinue.  The 

distribution of decisions over time is shown in Figure 13 panel B.  The shading represents the 

percent of simulations.  The lightest shading is the 0-100th percentiles.  For panel B, observe that 

the company was in the market for all of the simulation runs until stage 5.  At stage 5, the 

company leaves the market in 3% of the simulated runs.  At stage 6, the company leaves the 

market in 9% of the simulated runs.  This is represented with the medium shading, reflecting the 

proportion of runs within the 10-90th percentiles. 

Similarly, we observe the proportion of shortages over time in panel A.  Shortages are 

higher in the latter stages, which is shown via darker shades with lower demand met. 

 In none of the simulated runs did the company add components. 
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Figure 13. Demand met and proportion in market over time (1 year lead time) 
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Next, we will look at the results for specific sample paths.  The figures will be presented 

with four panels.  The supply chain design is presented in panel A, in which the black elements 

represent that a component is in the configuration in a given stage.  Panel B shows the status of 

each of the candidate components for each stage; green represents available, and white is 

unavailable.  Panels C and D are the profit and shortages in each stage. 

In many of the sample paths, there are no disruptions.  An example is given Figure 14.  

The company selects a lean supply chain and maintains the same configuration for the entire 

time horizon.  The profit is negative in the initial stage because of the start-up costs, and positive 

once the company starts meeting demand (stages 2-9).  The total profit is $234,000, and all 

demand is met. 

 In another sample path presented in Figure 15, the selected plant is disrupted for a single 

stage.  The company does not make changes to its supply chain.  Rather it waits to see if the 

component continues to be disrupted in future stages before it makes a change (e.g., adding a 

A B 

C D 

Figure 14. Results for sample path without a disruption (1 year lead time) 
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second plant or leaving the market).  During the disruption, the company loses money (i.e., 

paying the fixed supply chain costs without accruing revenue), and there is a shortage.  The total 

profit is $166,000, and the drug is short 12.5% of the time. 

Six month lead time 

 This analysis will apply a lead time of six months (2 stages) for a component to be added.  

The results are very similar to the case in which there is one year of lead time.  The profit 

differences are likely based on more variation in the underlying uncertainty than the change in 

lead time itself.  The expected shortages are 13%, and the expected total profit is $182,000.  The 

distribution of shortages and market status over time are shown in Figure 16.  In a handful of the 

simulated runs (0.6%, n = 6), the company adds a second supplier.  These correspond to a small 

increase (0.6%) in the proportion of sample paths where the company remains in the market. The 

company does not add a plant in any of the runs. 

A B 

C D 

Figure 15. Results for sample path with a brief disruption (1 year lead time) 
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 One path where the company adds a second supplier is when there is a supplier disruption 

in the 6th stage (Figure 17).  Panel A represents which components are in the configuration.  

Panel B is the availability of each of the components over time.  The company selects to bring up 

an additional supplier when the disruption occurs; it is operational in the final 2 stages.  The 

annual profit is $37,000 with shortages of 25%.  Had the company instead decided to leave the 

market in the 6th stage, shortages would have been 50%. 

 

 

 

 

 

Figure 17. Disruption towards end of horizon (6 months of lead time) 
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Figure 16. Demand met and proportion in market over time (6 month lead time) 
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Three month lead time 

 

 With three months of lead time, there begins to be a decrease in shortages.  Expected 

shortages decline to 9% (vs. 13% with longer lead times), and the expected total profit is slightly 

higher at $186,000.  The distribution of shortages and profit in the simulated paths are shown in 

Figure 18.  In 88% of the runs, shortages occur for a single quarter or not at all.  

Prominently, the company decides to leave the market less often.  Comparing the 

outcomes in Figure 16 (six month lead time) with Figure 19 (three month lead time), we see 

effects of the reduced lead time in the later stages.  Demand is met more often in the latter stages 

(A panels), and the company decides to leave the market less often (B panels).  This is 

Figure 18. Distribution of total profit and shortages by simulated path (3 month lead time) 
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represented with lighter shadings in the latter stages, reflecting fewer simulated runs where the 

company leaves the market. 

With a lead time of three months, the company leaves in only 3% of the simulated paths 

(vs. 12% with longer lead times).  

The company adds an API supplier in 10% of the simulated paths (n = 100).  One 

example is presented in Figure 20.  The total profit is $144,000, and the drug is short 12.5% of 

the time.  In the 6th stage, a disruption occurs to the selected supplier occurs (API 1), and the 

drug is unavailable.  The company begins the process of bringing up a second supplier (API 2), 

and it is available in the next stage because of the three month lead time.  After the first supplier 

recovers in the final stage, the company removes the second supplier and returns to a lean supply 

chain.  In contrast, the company does not select an additional plant in any of the simulated paths.   
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Figure 19. Demand met and proportion in the market over time (3 month lead time) 
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Halve the mean time to recover 

 In the final analysis, I evaluate an alternative intervention: reducing the recovery time.  

The previous analyses focused on reducing the time to add components to the supply chain; in 

this, the focus is on the components that have already been selected.  I apply a lead time of one 

year and reduce the mean time to recover by half for each of the components. 

 The expected shortages are 9%, and the expected total profit is $202,000.  In 88% of the 

simulated paths, shortages last for at most a quarter.  At the end of the horizon, in 90% of the 

paths, the company is still in the market.  Figure 22 presents the distributions of expected profit 

and shortages across sample paths.  The distributions of market status and shortage outcomes are 

available by stage in Figure 21. 

Figure 20. Results of supplier disruption (3 month lead time) 

A B 

C D 
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Figure 21. Proportion of demand met and proportion in the market (1 year lead time; half mean time to recover) 
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Figure 22. Total profit and shortages (1 year lead time; half mean time to recover 
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As compared to the baseline, expected shortages decrease (13% to 9%).  This is 

comparable to the three month lead time analysis.  The expected profit is higher than in either the 

baseline or the lead time analyses.  The benefits compared to the baseline are intuitive; as 

components are available more often, the company provides the drug more often and makes 

more revenue.  The profit is higher compared to the three month lead time analysis because the 

company is not incurring the costs of additional components. 

Table 8 provides a summary of the main results from each analysis.  The expected total 

profit does not change substantially among the lead time analyses.  It increases as the mean time 

to recover is halved.  Expected shortages are lowest when the lead time is 3 months and when the 

mean time to recover is halved.  The 3 month lead time analysis has the highest proportion of 

simulated runs where the company remains in the market (97%). 

Table 8. Summary of analyses 

Analysis Expected total 

(2 year) profit 

Expected 

shortages 

Percent in the market 

at the end of the 

horizon 

1 year lead time $184,000 13% 88% 

6 month lead time $182,000 13% 88% 

3 month lead time $186,000 9% 97% 

Half mean time to 

recover 
$202,000 9% 90% 

 

6. Discussion 

In this chapter, I present a new model of a dynamic supply chain configuration with 

components that may be disrupted and recover.  I apply the model in the pharmaceutical context 

and consider the effects of dynamic configurations on drug shortages.  The analyses suggest that 
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decreasing the lead time to bring new components up or the time to recover can reduce 

shortages. 

An earlier chapter considered the static design problem under disruption (Chapter 2).  In 

the baseline analysis of the dynamic model, with a lead time of one year to bring up new 

components, shortages are greater than the static case (13% vs. 11%).  This is initially 

counterintuitive as the dynamic model has the ability to adapt to disruptions when they occur.  

However, the objective is to maximize the expected profit, not to minimize shortages, and when 

a disruption occurs, a dynamic decision-maker can choose to leave the market and avoid paying 

the fixed costs.  In the static model, a company that experienced a disruption would remain in the 

market.  The higher percentage of shortages at the baseline for the dynamic model is a result of 

these differences between the models. 

In all of the analyses, the company is more likely to leave the market later in the time 

horizon.  The earliest a company leaves the market is in the 5th stage.  In the quick-recovery 

analysis, the company does not leave in any of the sample paths until the 6th stage.  The 

proportion of paths which the company leaves varies depending on the lead time.  As the lead 

time to bring on new components decreases, the proportion of paths where the company 

discontinues production decreases, from 12% with one year of lead time to 3% with three months 

of lead time. 

As the lead time decreases, shortages may also decrease as well.  There is no difference 

between the one year and six month lead time cases (both exhibit 13% shortages), though 

decreasing the lead time to three months reduces expected shortages to 9%.  Halving the mean 

time to recover also leads to expected shortages of 9%.  This suggests that either could be 

effective at reducing shortages.   



89 

 

The lead time results suggest that it is worthwhile to consider ways to reduce the barriers 

to adding capacity.  This could include reducing regulatory review times and pre-qualifying 

components.  There is some evidence that when the FDA has expedited reviews for new facilities 

that produce short drugs, shortages have been reduced (GAO 2016).  There could also be 

incentives for dual-sourcing.  For the quick-recovery case, shorter review times would also be 

beneficial, and companies could explore ways to improve response to disruptions.  In practice, a 

company could also hold inventory to meet demand when capacity is unavailable, though, this is 

not frequently done for generic injectables. 

However, in all analyses, shortages continue to remain high (9-13% across the analyses).  

This suggests that reducing the lead time or reducing the time to recovery may not be enough to 

eliminate the drug shortage crisis.  It may be necessary to implement other types of interventions 

such as legislation or contractual changes (Jia and Zhao (2017), Chapter 2). 

When a disruption occurs, a company may choose to leave the market.  This occurred in 

the case of the oncology drug Doxil (Palmer 2013).  The plant was disrupted, and the company 

decided to not re-open the plant.  In these analyses, some of the shortages occur because the 

company chooses to leave the market.  This highlights the value of considering discontinuation 

decisions in disruption models.  In disruption models, it is often assumed a company aims to 

return to the initial state (Hopp and Yin 2006), but it may not be optimal to do so, particularly 

when the profit margins are tight. 

The analyses used a low-profit-margin drug as a case example.  It is optimal to have a 

vulnerable, lean supply chain in the baseline analysis, which may not be the context for other 

types of products.  Nonetheless, the modeling framework is applicable to other settings.  Many 

areas have embraced lean supply chains, and disruptions can have major ramifications on a 
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company’s ability to supply its products.  In practice, companies may add components to an 

existing supply chain after a disruption, though this has received limited study in the literature.  

Nearly always, capacity expansion problems assume stochastic demand (e.g., Yu et al. 2018).  

In this chapter, I allow the company to adjust which components are selected as a 

mitigation strategy and apply the SDDiP algorithm.  It is well-suited to strategic supply chain 

decisions as it is often natural to model component selections using binary variables.  Recent 

work has applied SDDiP to the facility location problem with stochastic demand (Yu et al. 

2018).  This chapter study provides evidence of its utility for disruption modeling. 

Often disruption models will sample disruptions from a Bernoulli distribution (Snyder et 

al. 2016).  This would work well with the SDDiP algorithm because these random variables are 

naturally stage-wise independent.  With the multiple distributions for the times to disruption and 

recovery, the uncertainty is initially stage-wise dependent.  I reformulate the random variables 

and constraints to apply stage-wise independence.  The change is in the spirit of sampling 

random errors of an autoregressive process instead of the process itself (Shapiro 2011), though in 

the case of geometric distributions, I sample the probability values instead.  In both contexts, the 

random process is applied in the constraints.  The reformulation provides a new framework to 

apply Markovian uncertainty in SDDiP, without an exponential expansion of the state space that 

quickly becomes intractable (Philpott and De Matos 2012). 

 The analysis is limited in that a single drug is considered as a case example.  It is not 

representative of all pharmaceutical products, and results should not be applied without further 

study of the effects on other products.  In addition, because some data were estimated or 

assumed, the results should be interpreted as indicating the magnitude of effects rather than 

precise estimates. 
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7. Conclusions 

Drug shortages continue in the US, and better supply chain models are needed to 

represent the disruption and recovery dynamics of the pharmaceutical industry.  I address the 

case where the configuration of the supply chain may change in response to a disruption’s 

occurrence.  The endogenous component decisions allow the company to add capacity or 

discontinue production as availability changes.  I reformate the Markov process for availability 

to implement stage-wise independent uncertainty and highlight the use of the SDDiP algorithm 

for supply chain design problems. The analyses suggest that shortening the time to add capacity 

or reducing the time to recover disrupted capacity may reduce shortages.  Future work could 

consider competition between companies or incorporating endogenous demand. 
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CHAPTER IV 

Pharmaceutical Supply Chain Reliability: A New Model and Analysis of Drug Shortages 

 

1. Introduction 

The pharmaceutical industry is subject to disruptions that range from natural disasters to 

supplier failures.  Supply chain disruptions are a major cause of drug shortages (UUDIS 2016) 

and improving risk assessment could help reduce them.  Supply chains of generic injectable 

drugs are particularly vulnerable.  They often lack redundancy (Woodcock and Wosinska 2013), 

and disruptions can quickly lead to shortages.  These shortages have large effects on patient care 

and health system costs (Tucker et al., 2020a).  While it may be more profitable for companies to 

maintain the unreliable supply chains that can lead to shortages (Chapter 2), some have reported 

that they manufacture drugs with limited profitability, in part, because of their need in patient 

care (GAO 2011). 

I believe that it is important to provide drugs for patients who need them.  My other work 

studies how incentives could increase the ability of companies to produce a resilient and 

profitable drug supply (Chapter 2) and how improving disruption response could reduce 

shortages (Chapter 3).  These have been modeled using stochastic programs, and the focus has 

been optimizing the configuration.  Simpler models can be developed for the evaluation step.  In 

this chapter, I study given supply chain configurations.  I develop simple, closed-form 

expressions for pharmaceutical supply chain reliability.   
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For a given supply chain configuration, the model reports the expected reliability, 

average shortage length (downtime), and average time between shortages (uptime).  I consider a 

generic oncology drug as a case example and study the effects of different configurations on 

drug shortages.  I also evaluate the profitability of different configurations under varying prices. 

This model could be used by regulators or companies to quickly evaluate the reliability of 

a pharmaceutical supply chain configuration.  These evaluations could occur during risk 

assessments or in external evaluations.  The model could also be extended to be used for other 

supply chain structures or in other industries. 

2. Literature review 

There is a wide literature on drug shortages.  A recent review surveyed 430 papers that 

have been published or disseminated since 2001 (Tucker et al., 2020a).  Much of the research 

focused on the health effects of shortages or on what causes them (e.g., Vail et al. 2017).  Far 

fewer were quantitative studies of supply chains, despite the strong connection between supply 

chain management and shortages.   

Among those that have considered supply chains, some have studied contractual and 

legislative policies to reduce shortages (Jia and Zhao 2017, Chapter 2).  Others considered 

human behavior in supply chain decisions (Doroudi et al., 2018) and how competition affected 

spare capacity decisions (Kim and Scott Morton 2015).  Downstream, there has been work to 

optimize hospital inventory in response to shortages (Saedi et al. 2016) and recalls (Azghandi et 

al. 2018) as well as to stockpile pediatric vaccines (Jacobson et al. 2006).  There are not models 

to evaluate the risk of shortages for pharmaceutical supply chains. 

More broadly, supply chain resiliency is an active field.  Recent reviews (Pires Ribeiro 

and Barbosa-Povoa 2018, Snyder et al. 2016) noted the wide range of research.  To help 
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companies consider resiliency, researchers have developed overarching frameworks.  

Kleindorfer and Saad (2005) focused on disruption management and reported steps to understand 

and mitigate risks.  These steps may include considering the categories and sources of 

disturbance (Svensson 2000) and considering vulnerabilities and capabilities (Pettit et al. 2010).  

Asbjørnslett (2009) gave a seven-step process that included classification of vulnerability factors, 

evaluation of vulnerability scenarios, and mitigation.  Two phases – understanding and 

mitigation – resonate throughout these works.  To be resilient a company needs to understand its 

supply chain and its susceptibility to disruptions and ensure satisfactory steps are taken to 

address risk factors.   

An important step in the understanding phase is to conduct a vulnerability assessment.  In 

this, the company evaluates its exposure to risk.  These could be global suppliers, dependence on 

particular suppliers or customers, or single-sourcing (Wagner and Bode 2006).  One way to 

measure risk is to use an index. This can evaluate the current supply chain as well as mitigation 

options. 

A popular approach for indices is to apply graph theory.  This has led to the Supply Chain 

Resilience Index (SCRI) (Soni et al. 2014) and the Supply Chain Vulnerability Index (SCVI) 

(Wagner and Neshat 2010), with a follow-up empirical study (Wagner and Neshat 2012). The 

effects of disruptions on an automotive supply chain was studied using a risk-exposure index 

(Simchi-Levi et al. 2015). 

Other methods have also been used.  A time-series model (an auto-regressive integrated 

moving average model [ARIMA]) was applied to generate vulnerability indicators (Sakli et al. 

2014).  Their indicators included delays, inventory levels, and over-cost.  A simulation analysis 

found that delays were an effective metric for measuring impact on the supply chain (Vilko and 
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Hallikas 2012).  The model was parameterized using data gathered from interviews of many 

supply chain stakeholders.  Copulas have been used to consider correlations (Jia and Cui 2012), 

and fuzzy methods have been used to incorporate subjective inputs (Liu et al. 2016, Samvedi et 

al. 2013). 

There are also non-index methods to understand a supply chain’s susceptibility to risk.  In 

a fault-tree approach, logic gates are used to represent a supply chain.  The analysis showed the 

risk of delay (Sherwin et al. 2016) and can be overlaid with an optimization model to produce 

effective mitigation strategies (Sherwin et al. 2020).  To consider interactions between 

components, dynamic fault-trees have also been used (Lei and MacKenzie 2019). 

The propagation of disruptions has been analyzed using network modeling (Wu et al. 

2007).  Disruption severity has also been considered in a conceptual study (Craighead and 

Blackhurst 2007) and using network simulation (Adenso-Diaz et al. 2012). 

Some assessment methods are based on reliability modeling. These include an early study 

of contingency logistics systems (Thomas 2002) and more recent work on interdependent 

suppliers (Hagspiel 2018).  In a paper related to this work, Ha, Jun and Ok (2018) present 

reliability functions for different supply chain configurations.  This chapter considers different 

configurations and analyzes them in the context of drug shortages. 

Within the pharmaceutical industry, there is a need for models to evaluate supply chain 

reliability.  This is particularly important when the company is the sole manufacturer of the drug.  

Reliability metrics could affect strategic decisions as companies design or re-design their supply 

chains.  In addition, if supply chain information becomes available to regulators or the public (as 

proposed by ASHP (2018b)), external stakeholders could also use the model to assess strategic 

shortage risks. 
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The contributions of this chapter are: 

 The development of new reliability functions for pharmaceutical supply chains 

subject to disruption 

 A case study of generic injectable oncology drugs to consider the effects of reliability 

on drug shortages 

 A pricing analysis, including break-even drug prices and optimality thresholds 

The rest of the chapter will proceed as follows.  Section 3 presents the supply chain 

reliability formulation.  In Section 4, I conduct a numerical study on drug shortages, and in 

Section 5, I present the pricing analysis.  I discuss the results in Section 6 and conclude in 

Section 7. 

3. Supply chain reliability (SCR) 

3.1. Overview 

Within pharmaceutical supply chains, disruptions to the API suppliers, manufacturing 

plants, and manufacturing lines most often cause shortages (GAO 2014, UUDIS 2016).  The 

focus will be on these three types of components.  The goal is to produce closed-form equations 

of the reliability of a pharmaceutical supply chain.  The proposed Supply Chain Reliability 

(SCR) model can be used to calculate the reliability and expected shortages of echelons of a 

pharmaceutical supply chain where disruptions may lead to shortages. 

Given the number of API suppliers, plants, and lines in the supply chain of a single drug, 

it will output: the reliability of the supply chain, the corresponding expected shortages, the 

average uptime (time between shortages), and the average downtime (length of a shortage).  

Reliability is defined as the probability of a supply chain being able to meet demand. Each of the 

components are either available or disrupted.   
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In the supply chain configuration, there are two stages: the API suppliers and the plant-

line combinations.  The lines are associated with specific plants, but the API suppliers can send 

materials to any plant (as in Chapter 2).  The stages operate in series; at least one supplier and 

one plant-line combination must be working for the drug to be produced.  Within the stages, the 

components operate in parallel; only one component is needed for the stage to be considered 

available.  That is, only one API supplier needs to be available for the API to be supplied, and 

only one plant-line combination needs to be available to produce the finished form of the drug.  

Each component has adequate capacity to supply call demand. 

Each component fails or recovers independently of the other components.  I consider the 

overall risk of disruption rather than specific types of disruptions.  The rates of component 

failure and recovery can be based on any continuous distribution and vary by the type of 

component.  For example, lines can have different recovery rates than suppliers.  

The supply chain as a whole is able to supply the drug if there is at least one supplier 

available and at least one plant-line combination available.  In this case, the company is able to 

meet demand, called “system availability.”  If the company is not able to meet demand, this is 

designated “system disruption.”   

3.2. Sets and notation 

The notation for the sets, parameters, and outcomes is presented in Figure 23.  It follows 

the notation in Ross (2014).  The bold terms are vectors, and the non-bold terms are scalars. 
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The structure function, 𝜙(𝑿, 𝒛), reports whether demand can be met given the current 

status of the supply chain components.  The notation for the structure function and probabilities 

are summarized in Figure 24.  The reliability function, 𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ), is the probability that 

demand can be met for a particular configuration, i.e., the expectation of the structure function.  

The probability the system is available given that a particular component 𝑛 ∈ 𝑁 is available is: 

𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 1). 

Sets 

𝐻 Set of echelons, 𝐻 = {𝐴𝑃𝐼, 𝑝, 𝑙} 
𝑁 Set of all components 

𝑁ℎ Set of components in echelon ℎ ∈ 𝐻, where 𝑁ℎ ⊂ 𝑁 

Parameters 

𝑧𝐴𝑃𝐼 Number of API suppliers selected 

𝑧𝑝 Number of plants selected 

𝑧𝑙 Number of lines selected in each plant 

𝒛 Vector of components per echelon, i.e., 𝑧𝐴𝑃𝐼 , 𝑧𝑝, 𝑧𝑙 
 

𝝁 Recovery rate, a vector comprised of the recovery rates for each echelon, i.e., 

𝜇𝐴𝑃𝐼 , 𝜇𝑝, 𝜇𝑙 
𝝀 Disruption rate, a vector comprised of the disruption rates for each echelon, i.e., 

𝜆𝐴𝑃𝐼, 𝜆𝑝, 𝜆𝑙 
𝑿 State vector of component statuses where 𝑿 ∈ {0,1}|𝑁|.  A value of 1 represents a  

Outcomes 

𝑠  Expected shortages 

𝑈ഥ Average system uptime 

𝐷ഥ Average system downtime 

 
Figure 23. Notation for sets, parameters, and outcomes 
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I also define reliability functions for specific stages of the supply chain.  The probability 

that raw materials are available is 𝑟𝐴𝑃𝐼 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ), and the probability that finished goods can be 

produced is 𝑟𝑃𝐿 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ).  These represent the probabilities at least one supplier is available and 

a least one plant-line combination is available, respectively.  Finally, for a given supply chain 𝒛, 

the probability that the failure of a particular component 𝑛 ∈ 𝑁 in echelon ℎ ∈ 𝐻 leads to a 

system failure is 𝑟ǁ𝑛
ℎ (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ). 

3.3. Model 

The model is three equations: the expected shortages (𝑠), the average uptime (𝑈ഥ), and the 

average downtime (𝐷ഥ).  These are exact, closed-form equations given the failure rates (𝜆), 

recovery rates (𝜇), and supply chain configuration (𝑁ℎ).   

Reliability and expected shortages 

Reliability is the probability the system is able to produce the drug in the long-run.  The 

equation is presented in       (1). 

𝜙(𝑿, 𝒛) = ቄ
1 if supply chain 𝐳 is available if the components have status 𝑿
0 otherwise                                                                                                 

   

𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑃{𝜙(𝑿, 𝒛) = 1} = 𝐸[𝜙(𝑿, 𝒛)]  Reliability function given system 𝒛 

𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 1) probability the system 𝒛 is available given component 𝑛 ∈ 𝑁 is working 

𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 0) probability the system 𝒛 is available given component 𝑛 ∈ 𝑁 is not 

working 

𝑟𝐴𝑃𝐼 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝑧𝐴𝑃𝐼 ) probability at least one supplier is working given 𝑧𝐴𝑃𝐼 suppliers 

𝑟𝑃𝐿 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝑧𝑝, 𝑧𝑙 ) probability at least one plant-line combination is working given 𝑧𝑝 plants 

and 𝑧𝑙 lines in each plant 

𝑟ǁ𝑛
ℎ (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 )  probability that the failure of component 𝑛 ∈ 𝑁 in echelon ℎ ∈ 𝐻 causes a 

system failure 
Figure 24. Additional notation 
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𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) 𝑟𝑃𝐿 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 )      (1) 

It is the product of the probability that raw materials can be ordered and the probability 

that the finished form can be produced. 

The probability that raw materials can be ordered is the probability at least one supplier 

can supply them, equation (2).  It is one minus the probability that all of the suppliers are 

unavailable. 

𝑟𝐴𝑃𝐼 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 1 − (

𝜆𝐴𝑃𝐼

𝜇𝐴𝑃𝐼+𝜆𝐴𝑃𝐼
)
𝑧𝐴𝑃𝐼

        

(2) 

The probability that the finished form can be produced is the probability that at least one 

plant-line combination is available, equation (3).  It is one minus the probability that in each 

plant: either the plant is unavailable or all of lines in a working plant are unavailable. 

𝑟𝑃𝐿 (
𝝁

𝝀 + 𝝁 ∣
∣∣ 𝒛 ) = 1 − ((

𝜆𝑝

𝜇𝑝 + 𝜆𝑝
) + (

𝜇𝑝

𝜇𝑝 + 𝜆𝑝
)(

𝜆𝑙

𝜇𝑙 + 𝜆𝑙
)

𝑧𝑙

)

𝑧𝑝

 

(3) 

It follows that expected shortages are one minus the reliability, equation (4). 

𝑠 = 1 −  𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 )  

(4) 

 

Average uptime and downtime 

The average uptime is given in equation (5) and the average downtime is given in 

equation (6).  These represent the average time between shortages and the average time to 

recover, respectively.   
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𝑈ഥ =
𝑟𝐴𝑃𝐼(

𝝁

𝝀+𝝁∣
∣
∣𝒛 )𝑟𝑃𝐿(

𝝁

𝝀+𝝁∣
∣
∣𝒛 )

𝑧𝐴𝑃𝐼[
𝜆𝐴𝑃𝐼𝜇𝐴𝑃𝐼

𝜇𝐴𝑃𝐼+𝜆𝐴𝑃𝐼
]𝑟ǁ𝐴𝑃𝐼(

𝝁

𝝀+𝝁∣
∣
∣𝑧 )+𝑧𝑝[ 𝜆

𝑝𝜇𝑝

𝜇𝑝+𝜆𝑝
𝑟ǁ𝑃𝑙𝑎𝑛𝑡(

𝝁

𝝀+𝝁
)+𝑧𝑙[

𝜆𝑙𝜇𝑙

𝜇𝑙+𝜆𝑙
]𝑟ǁ𝐿𝑖𝑛𝑒(

𝝁

𝝀+𝝁
)] 

  

(5) 

𝐷ഥ =
𝑈ഥ

𝑟𝐴𝑃𝐼 (
𝝁

𝝀 + 𝝁 ∣∣
∣ 𝒛 ) 𝑟𝑃𝐿 (

𝝁
𝝀 + 𝝁 ∣∣

∣ 𝒛 )
− 𝑈ഥ 

(6) 

Derivations 

Given a system of independently available and disrupted components, a general 

expression of the average uptime is shown in equation (7) (Ross 2014).  The only restriction is 

that the availability and distribution distributions be continuous.  It is the probability the 

component is available divided by the rate individual components lead to failure. 

𝑈ഥ =
𝑟(

𝝁

𝝀+𝝁
)

∑
𝜆𝑛𝜇𝑛
𝜆𝑛+𝜇𝑛

[𝑟(
𝝁

𝝀+𝝁
|𝒛,𝑋𝑛=1)−𝑟(

𝝁

𝝀+𝝁
|𝒛,𝑋𝑛=0)]𝑛∈𝑁

   

(7) 

I define the probability a component failure causes system failure, i.e., 

𝑟 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 1) − 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 0) , ∀𝑛 ∈ 𝑁

ℎ , ℎ ∈ 𝐻  as 𝑟ǁ𝑛
ℎ (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ). 

Then the average uptime can be written as in equation (8). 

𝑈ഥ =
𝑟(

𝝁

𝝀+𝝁
)

∑ ∑
𝜆𝑛𝜇𝑛
𝜆𝑛+𝜇𝑛

𝑟ǁ𝑛
ℎ(

𝝁

𝝀+𝝁∣
∣
∣𝒛 )

𝑛∈𝑁ℎℎ∈𝐻

  

(8) 

Substituting the average reliability produces equation (9). 

𝑈ഥ =
𝑟𝐴𝑃𝐼(

𝝁

𝝀+𝝁∣
∣
∣𝒛 )𝑟𝑃𝐿(

𝝁

𝝀+𝝁∣
∣
∣𝒛 )

∑ ∑
𝜆𝑛𝜇𝑛
𝜆𝑛+𝜇𝑛

𝑟ǁ𝑛
ℎ(

𝝁

𝝀+𝝁∣
∣
∣𝒛 )

𝑛∈𝑁ℎℎ∈𝐻

  

(9) 
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 Finally, the probabilities that component failure causes system failure (derived below) are 

incorporated, and the equation simplifies to Equation (5). 

 The downtime is similarly derived using the general Equation (10) from Ross (2014). 

𝐷ഥ =
𝑈ഥ[1−𝑟(

𝝁

𝝀+𝝁
)]

𝑟(
𝝁

𝝀+𝝁
)

  

(10) 

 

Component failure causes system failure 

The time to fail is based on i) the probability a given component causes the system to fail 

and ii) the probability of the system is available at any given time.   

The probability that a given component failure causes system failure is calculated as the 

probability the system is available when the component is working minus the probability the 

system is available when the component is not working.  It is given in Equation (11). 

𝑟ǁ𝑛
ℎ (

𝝁

𝝀+𝝁 ∣
∣∣ 𝒛 ) = 𝑟 (

𝝁

𝝀+𝝁 ∣
∣∣ 𝒛, 𝑋𝑛 = 1) − 𝑟 (

𝝁

𝝀+𝝁 ∣
∣∣ 𝒛, 𝑋𝑛 = 0) , ∀𝑛 ∈ 𝑁

ℎ, ℎ ∈ 𝐻   

(11) 

 The probability that a component failure leads to a system failure differs by the type of 

component.  Equations (12), (13), and (14) present the probabilities for API suppliers, 

manufacturing plants, and manufacturing lines, respectively. 

𝑟ǁ𝐴𝑃𝐼 (
𝝁

𝝀 + 𝝁 ∣∣
∣ 𝒛 ) = 𝑟𝑃𝐿 (

𝝁
𝝀 + 𝝁 ∣∣

∣ 𝒛 ) (
𝜆𝐴𝑃𝐼

𝜇𝐴𝑃𝐼 + 𝜆𝐴𝑃𝐼
)

𝑧𝐴−1

 

(12) 

𝑟ǁ𝑃𝑙𝑎𝑛𝑡 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) (1 − (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

) ((
𝜆𝑝

𝜇𝑝+𝜆𝑝
) + (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

  

(13) 
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𝑟ǁ𝐿𝑖𝑛𝑒 (
𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

(
𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
( 

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

  

(14) 

API suppliers 

First, I will consider the derivation of 𝑟ǁ𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
) for API suppliers.  Equation (15) 

 was previously defined as the difference between the probabilities that the system is 

working when the component is available and when the component is not. 

𝑟ǁ𝑛
𝐴𝑃𝐼 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 1) − 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 0 ) , ∀𝑛 ∈ 𝑁

𝐴𝑃𝐼   

(15) 

If there is a working supplier, the system is available if a plant-line combination is 

available (Equation (16)). 

𝑟 (
𝝁

𝝀+𝝁
|𝑋𝑛 = 1) = 𝑟

𝑃𝐿 (
𝝁

𝝀+𝝁
)   ∀𝑛 ∈ 𝑁𝐴𝑃𝐼 

(16) 

 If the given API supplier 𝑛 ∈ 𝑁𝐴𝑃𝐼 is not available, there needs to be at least one other 

available supplier and a working plant-line combination for the system to be available.  The 

probability this occurs is the probability at least one other supplier is available multiplied by the 

probability a plant-line combination is available (Equation (17)).  The probability another 

supplier is available is one minus the probability all other suppliers are unavailable. 

𝑟 (
𝝁

𝝀+𝝁
|𝑋𝑛 = 0) = [1 − (

𝜆𝐴𝑃𝐼

𝜇𝐴𝑃𝐼+𝜆𝐴𝑃𝐼
)
𝑧𝐴−1

] 𝑟𝑃𝐿 (
𝝁

𝝀+𝝁
)  ∀𝑛 ∈ 𝑁𝐴𝑃𝐼 

(17) 

Then, 𝑟ǁ𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
) can be calculated in equation (18): 
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𝑟ǁ𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
) = 𝑟𝑃𝐿 (

𝝁

𝝀+𝝁
) − [1 − (

𝜆𝐴𝑃𝐼

𝜇𝐴𝑃𝐼+𝜆𝐴𝑃𝐼
)
𝑧𝐴𝑃𝐼−1

] 𝑟𝑃𝐿 (
𝝁

𝝀+𝝁
)  

(18) 

Simplifying, this produces Equation (19): 

𝑟ǁ𝐴𝑃𝐼 (
𝝁

𝝀 + 𝝁
) = 𝑟𝑃𝐿 (

𝝁

𝝀 + 𝝁
)(

𝜆𝐴𝑃𝐼

𝜇𝐴𝑃𝐼 + 𝜆𝐴𝑃𝐼
)

𝑧𝐴𝑃𝐼−1

 

(19) 

That is, for raw material suppliers, the probability that a component failure leads to a 

system failure is the [probability that the plant-line system is available] multiplied by the 

[probability that all other suppliers are disrupted]. 

Manufacturing plants 

 Next, I will consider the susceptibility of the system to a particular manufacturing plant’s 

failure, 𝑟ǁ𝑃𝑙𝑎𝑛𝑡 (
𝝁

𝝀+𝝁
).  I will begin, similarly to the derivation for the API echelon, with the 

difference between the probability of the system working given a particular plant is available and 

the probability the system is working given a particular plant is unavailable (Equation  

(20)). 

𝑟ǁ𝑛
𝑝 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 1) − 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 0) , ∀𝑛 ∈ 𝑁

𝑝   

(20) 

 To calculate the first term, I will consider the case whether a particular plant is available.  

The probability the system is available is the product of the probability at least one API supplier 

is available with the product that at least one plant-line combination is working (Equation (21)).  

The probability that at least one plant-line combination is available is one minus the probability 
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none are.  This is the probability that none of the lines are available in the given plant multiplied 

by none of the other plant-line combinations are available. 

 

𝑟 (
𝝁

𝝀+𝝁
|𝑋𝑛 = 1) = 𝑟

𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
)(1 − (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

((
𝜆𝑝

𝜇𝑝+𝜆𝑝
) + (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

)   

(21) 

The probability the system is working given a particular plant is unavailable is given in 

Equation (22).  It is the probability an API supplier is available multiplied by the probability at 

least one of the other plant-line combinations is available.  The probability that at least one other 

plant-line combination is available is one minus the probability that no other plant-line 

combinations are available.  That is, for the other 𝑧𝑝 − 1 plants, either the plant itself is 

unavailable (represented by the probability (
𝜆𝑝

𝜇𝑝+𝜆𝑝
)), or all of the lines are unavailable in an 

available plant, which has a probability of (
𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

. 

𝑟 (
𝝁

𝝀+𝝁
|𝑋𝑛 = 0) = 𝑟

𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
)(1 − ((

𝜆𝑝

𝜇𝑝+𝜆𝑝
) + (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

)  

(22) 

Substituting these into equation (20) produces the following: 
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𝑟ǁ𝑃𝑙𝑎𝑛𝑡 (
𝝁

𝝀+𝝁
) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁
)(((

𝜆𝑝

𝜇𝑝+𝜆𝑝
) + (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

− (
𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

((
𝜆𝑝

𝜇𝑝+𝜆𝑝
) +

(
𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

)   

(23) 

This simplifies to equation (24): 

𝑟ǁ𝑃𝑙𝑎𝑛𝑡 (
𝝁

𝝀+𝝁
) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁
) (1 − (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

) ((
𝜆𝑝

𝜇𝑝+𝜆𝑝
) + (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

  

(24) 

Summarized, for manufacturing plants, the probability a component failure causes a 

system failure is the [probability that the supplier echelon is available] multiplied by the 

[probability the other plants are either not working or have no working lines] and multiplied by 

the [probability there is at least one working line in the given plant]. 

Manufacturing lines 

Last, I will consider manufacturing lines.  The probability the system fails given a 

particular line 𝑙 fails is given by Equation (25). 

𝑟ǁ𝑛
𝑙 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛 ) = 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 1) − 𝑟 (

𝝁

𝝀+𝝁 ∣∣
∣ 𝒛, 𝑋𝑛 = 0) , ∀𝑛 ∈ 𝑁

𝑙   

(25) 

 If a given line is available, the system is available if a) there is a working supplier and b) 

either the plant corresponding to the line is available or the plant is unavailable and another 

plant-line combination is available.  This probability is presented in Equation (26). 
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 𝑟 (
𝝁

𝝀+𝝁
|𝑋𝑛 = 1) = 𝑟

𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
)(

𝜇𝑝

𝜇𝑝+𝜆𝑝
+

𝜆𝑝

𝜇𝑝+𝜆𝑝
(1 − (

𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
(

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

))  

(26) 

 If a given line is unavailable, the system is available if a supplier is available and a plant-

line combination is available.  The plant-line combination could be another line in the plant that 

corresponds to the given line or a different plant line combination.  The probability is presented 

in Equation (27).   

𝑟 (
𝝁

𝝀+𝝁
|𝑋𝑛 = 0) = 𝑟

𝐴𝑃𝐼 (
𝝁

𝝀+𝝁
)

(

 
 𝜇𝑝

𝜇𝑝+𝜆𝑝
((1 − (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

) + (
𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

(1 −

(
𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
( 

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

))+
𝜆𝑝

𝜇𝑝+𝜆𝑝
(1 − (

𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
( 

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

)

)

 
 

    

(27) 

To calculate the probability that a given line’s failure leads to a system failure, I substitute 

equations (26) and (27) into (25).  This produces equation (28). 

𝑟ǁ𝐿𝑖𝑛𝑒 (
𝝁

𝝀+𝝁
) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁
) (

𝜇𝑝

𝜇𝑝+𝜆𝑝
)((

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

− (
𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

(1 − (
𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
( 

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

))   

(28) 

This can be simplified to Equation (29) and further to Equation (30). 
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𝑟ǁ𝐿𝑖𝑛𝑒 (
𝝁

𝝀+𝝁
) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁
) (

𝜇𝑝

𝜇𝑝+𝜆𝑝
)

(

 
 
(

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

(1 − (1 − (
𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
( 

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

))

)

 
 

    

(29) 

𝑟ǁ𝐿𝑖𝑛𝑒 (
𝝁

𝝀+𝝁
) = 𝑟𝐴𝑃𝐼 (

𝝁

𝝀+𝝁
) (

𝜇𝑝

𝜇𝑝+𝜆𝑝
) (

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙−1

(
𝜆𝑝

𝜇𝑝+𝜆𝑝
+

𝜇𝑝

𝜇𝑝+𝜆𝑝
( 

𝜆𝑙

𝜇𝑙+𝜆𝑙
)
𝑧𝑙

)

𝑧𝑝−1

     

(30) 
 

The probability that a manufacturing line failure causes a system failure is then: the 

[probability that the supply echelon is available] multiplied by the [probability the plant the line 

is in is available] and multiplied by the [probability the other lines in the plant are unavailable 

and all other plants are unavailable]. 

3.4. Assumptions 

The framework is subject to several assumptions.  First, I assume that disruptions and the 

recovery processes occur independently at different components.  The model also assumes that 

components within an echelon are homogenous; i.e., the same transition rates are applied.  These 

follow the assumptions in earlier chapters (Chapters 2 and 3).  Each of the API suppliers can 

fulfill the entire order of raw materials, and the manufacturing plants and lines can each produce 

sufficient quantities of the finished form to meet demand. 

The model does not consider partial availability (cf. Yano and Lee (1995)) to follow what 

is observed in practice.  For example, facilities may be closed because of natural disasters or 

quality issues (Palmer 2016, Thomas and Kaplan 2017). 

To focus on capacity risk, the model does not consider the effects of holding safety stock.  

This is consistent with the low levels of safety stock held in practice for generic injectable drugs 
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(GAO 2016).  A company could choose to maintain additional stock to meet demand during 

periods of system unavailability. 

Finally, the aim of this model is to evaluate the vulnerability of a particular company’s 

supply chain, and hence, I do not consider competition.  If a given company is not able to meet 

demand, another company could supply the drug instead.  However, drug shortages often affect 

drugs without competition or companies with large market shares (Fox et al. 2014).  The case 

example considers a drug sold by a single company, where the unavailability of the supply chain 

would indicate a market-wide shortage if there is no inventory. 

4. Numerical study 

To illustrate the use of the model, I consider supply chain characteristics of one generic 

oncology drug.  I evaluate the reliability of five types of supply chain configurations (lean; one 

backup supplier; one backup plant; one backup line; and one backup supplier and one backup 

plant) in different conditions.  In the first analysis (Section 4.2), I will study the baseline case 

where disruptions and recovery are based on available data.  The second analysi (Section 4.3) 

will be the “high-quality” case where the mean time-to-disruption is doubled for each of the 

components.  The third analysis (Section 4.4) is the “quick recovery” scenario, where the mean 

time-to-recover is halved.  In each analysis, the shortage results in the text will be rounded to the 

nearest percentage, and the mean time to status change will be rounded to the nearest 0.1 year. 

4.1. Data 

The data on a component’s mean time to fail and recover are presented in Table 9.  The 

failure data is based on the time between drug approval from the FDA (FDA 2018a) and the start 

of shortages as reported by the University of Utah Drug Information Service (UUDIS) (UUDIS 

2016).  The recovery data is based on the shortage durations reported by UUDIS (2016). 
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Table 9. Component characteristics 
 

Mean time to… 

Echelon Fail (
𝟏

𝝀𝒃𝒂𝒔𝒆
) Recover (

𝟏

𝝁𝒃𝒂𝒔𝒆
) 

Supplier 17.3 years 1.2 years 

Plant 28.2 years 0.8 year 

Line 8.5 years 0.08 years 

Source (FDA 2018a, 

UUDIS 2016) 

(UUDIS 2016) 

 

 

4.2. Baseline results 

There are three primary outcomes: expected shortage, mean time-to-failure and mean 

time-to-recovery.  These represent the overall proportion of time the drug is unavailable, the 

average time between shortages, and the average length of a shortage. 

First, I will consider how the configuration of the supply chain affects expected 

shortages.  The model uses the data from Table 9, and the results are presented in Table 10.  If a 

manufacturer selects a supply chain without redundancy, shortages will occur 10% of the time.  

With back-up components, the expected shortages decrease.  If they choose to maintain a back-

up supplier, the expected shortage drops by over half to 4%.  A back-up line is less effective, 

shortages are close to baseline at 9%.  Maintaining two plants leads to expected shortages of 7%.   
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Table 10. Supply chain configurations and corresponding effects on drug shortages 

Configuration Shortage Mean time to… 

Suppliers  

(𝑧𝐴𝑃𝐼) 
Plants 

(𝑧𝑝) 

Lines per 

plant (𝑧𝑙) 
𝑠 System Failure 

(𝑈ഥ) 

System 

Recovery 

(𝐷ഥ) 

1 1 1 10% 4.7 years 0.5 years 

2 1 1 4% 6.2 years 0.3 years 

1 2 1 7% 14.6 years 1.0 years 

1 1 2 9% 10.5 years 1.0 years 

2 2 1 1% 56.0 years 0.3 years 

 

 

Figure 25 presents the relationship between configurations and shortages visually.  It is a 

full-factorial analysis of maintaining between one and five suppliers, plants, and lines per plant.  

The color gradient of the points indicate the expected shortage from dark (higher shortages) to 

light (low shortages).  As the number of components increase, the expected shortages decrease.  

As observed in Table 10, adding a second supplier decreases shortages substantially, where 

adding a second line does not have as large of an impact.  As the number of components 

increases further, shortages continue to drop.  Qualitatively, we can see that maintaining back- 

ups at multiple echelons is more effective at reducing shortages than having many back-ups at a 

single echelon. 
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We can also consider subsets of the data presented in Figure 25.  By holding the number 

of components at one of the echelons constant, we can more precisely observe the effects of 

changing the number of components in the other echelons.  These are presented in Figure 26 

(single supplier), Figure 27 (single plant), and Figure 28 (single line).   

Figure 25. Configuration vs. expected shortages 

Darker: lower reliability 
Lighter: higher reliability 
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Figure 26. Effects of different configurations on shortages (single supplier) 

Figure 27. Effects of different configurations on shortages (single plant) 
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In addition to expected shortages, the configurations also affect the times to system 

failure and system recovery.  Recall that system unavailability is different from component 

unavailability.  If a supply chain has two lines, both would need to be disrupted for the system to 

be unavailable. 

 In the case with a single component at each echelon, the mean time to failure is 4.7 years.  

This means that the average time between shortages is 4.7 years.  As back-up components are 

added, the mean time-to-failure increases.  The longest mean time-to-failure occurs when there is 

a back-up supplier and back-up plant (56 years).  A back-up plant (with an implicit backup line) 

leads to a mean time-to-failure of 14.6 years.  The system is ergodic, and with non-rounded 

values, the condition 
𝑈ഥ

𝑈ഥ+𝐷ഥ
= 1 − 𝑠 holds.  The model was also validated with a simulation model. 

 Note that configurations do not necessarily have the same effect on the expected shortage 

and the mean time-to-failure.  A back-up supplier drops shortages by more than half (10% to 

4%) and increases mean time to failure by 1.5 years (4.7 to 6.2 years).  In contrast, a back-up line 

results in a small decrease in expected shortages vs. the no-back-up case (10% to 9%), but it 

Figure 28. Effects of different configurations on shortages (single line) 
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increases the mean time to failure by 5.8 years (4.7 to 10.5 years).  In the back-up line case, 

shortages happen less often than in the back-up supplier case, but they last for 0.7 years longer 

when they do occur (1.0 vs. 0.3 years).  This leads to a higher expected shortage for the back-up 

line case (9%) vs. 4% for suppliers even though shortages happen less frequently. 

 These results are caused by the differences in the mean time-to-recovery.  The back-up 

line case has one of the longest mean times-to-recovery (1.0 years).  When the system does fail, 

it is more likely to be caused by a supplier or plant failure than in the lean case.  Suppliers and 

plants have a longer time to recovery (1.2 and 0.8 years, respectively) than lines (0.08 years).  

When they are more likely to be the cause of a shortage, the mean time-to-recovery for the 

supply chain overall will increase. 

4.3. High-quality scenario 

One proposal to reduce shortages is to increase the quality of the production process 

(FDA Drug Shortages Task Force 2019).  If this were the case, disruptions would occur less 

often.  For example, facilities would be shut down less frequently for quality violations and 

batches would be contaminated less frequently.  This analysis will consider the effects of 

increasing component quality. 

To model higher quality, the mean time to disruption are doubled relative to the baseline 

analysis.  This represents a halving of the disruption rate; I apply 𝝀 = 𝝀𝒒𝒖𝒂𝒍𝒊𝒕𝒚 =
1

2
𝝀𝒃𝒂𝒔𝒆.  The 

recovery rate remains the same as in the baseline analysis. 

The results are presented in Table 11.  For each configuration, the expected shortage is 

less than the baseline case (Section 4.2).  This is intuitive because disruptions that could cause 

the system to be unavailable occur less frequently.  The mean times-to-recovery are about the 

same as the baseline case. 
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Table 11. Shortage results with high-quality components 

Configuration Shortage Mean time to… 

Suppliers Plants Lines per 

plant 

 
System Failure System 

Recovery 

1 1 1 5% 9.5 years 0.5 years 

2 1 1 2% 12.8 years 0.3 years 

1 2 1 3% 31.5 years 1.1 years 

1 1 2 5% 21.2 years 1.0 years 

2 2 1 0% 214.1 years 0.3 years 

 

4.4. Quick recovery scenario 

Another opportunity to reduce shortages could be to improve the recovery process.  This 

could involve reducing the time it takes to recover from a disruption.  In this analysis, we half the 

mean time it takes to recover for each of the components.  This represents a doubling of the 

recovery rate; 𝝁 = 𝝁𝒒𝒖𝒊𝒄𝒌𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 = 2𝝁. 

The results of the quick recovery analysis are presented in Table 12.  For each of the 

configurations, the expected shortages drop by about half relative to the baseline case.  Similarly, 

the mean times-to-system-recovery are about half of baseline.  The mean times-to-system-failure 

are about the same as in the baseline analysis, except the configuration with a backup supplier 

and plant which is doubled. 
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Table 12. Quick recovery results 

Configuration Shortage Mean time to… 

Suppliers Plants Lines per 

plant 

 
System Failure System 

Recovery 

1 1 1 5% 4.7 years 0.3 years 

2 1 1 2% 6.4 years 0.1 years 

1 2 1 3% 15.8 years 0.6 years 

1 1 2 5% 10.6 years 0.5 years 

2 2 1 0% 107.0 years 0.2 years 

 

5. Pricing analyses 

A natural question is what configuration would be most profitable.  In an earlier chapter, 

stochastic programming models were developed to optimize the design of a pharmaceutical 

supply chain that may become disrupted (Chapter 2).  The approach maximized the expected 

profit under different incentive policies and observed the optimal configuration and resulting 

shortages.  It produced rough thresholds for when the optimal configuration would change. 

The framework in this chapter is not an optimization model and does not include 

inventory as a resiliency strategy (as the SCDD-I model in Chapter 2 does).  However, it can be 

used descriptively to compare the profitability and shortages under different policies.  I will 

calculate the pricing thresholds at which the most profitable configuration changes. 

As a case example, the analysis study vincristine sulfate, a drug used to treat pediatric 

cancers (Vincristine Sulfate 2018).  The data on costs, pricing, and demand was previously 

presented in Chapter 2.  For ease of reference, these data are reported again in Table 13 along 

with the notation for the objective function.  

The objective of the company is to maximize its expected annual profit.  It is modeled 

with Equation (31).  It is comprised of the revenue for selling the drug; the variable costs for the 
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raw materials and production; and the fixed costs of the selected configuration and the program 

fee.  

𝑄 = 𝑑[(1 − 𝑠)(𝑞 − 𝑐𝑟𝑎𝑤 − 𝑐𝑝𝑟𝑜𝑑)] − (𝑓𝑐,𝐴𝑃𝐼 + 𝑐𝑔,𝐴𝑃𝐼)𝑧𝐴𝑃𝐼 − (𝑓𝑐,𝑃𝑙𝑎𝑛𝑡 + 𝑐𝑔,𝑃𝑙𝑎𝑛𝑡)𝑧𝑝

− 𝑓𝑐,𝐿𝑖𝑛𝑒𝑧𝑝𝑧𝑙 − 𝑓𝑔,𝑃𝑟𝑜𝑔𝑟𝑎𝑚 

(31) 

Table 13. Notation and data 

Notation Parameter/Outcome 

Name 

Value Source 

 Annual fixed costs Company GDUFA fees  

𝑓𝑐,𝐴𝑃𝐼; 𝑓𝑔,𝐴𝑃𝐼  Supplier $33,000 $1,169 (FDA 2018b, 

Rudge 2012) and 

assumptions 
𝑓𝑐,𝑃𝑙𝑎𝑛𝑡; 𝑓𝑔,𝑃𝑙𝑎𝑛𝑡  Plant $65,000 $4,401 

𝑓𝑐,𝐿𝑖𝑛𝑒  Line $32,500 n/a 

𝑓𝑔,𝑃𝑟𝑜𝑔𝑟𝑎𝑚  Program fee  $9,700 (FDA 2018b, c) 

𝑐𝑟𝑎𝑤  Raw material cost per 

ml 

$0.34  (PharmaCompass 

2018), 

procurement 

representatives 

𝑐𝑝𝑟𝑜𝑑  Production cost per 

ml 

$2.22  Calculated 

𝑞  Sales price per ml $5.55  (IBM 

Micromedex 

2018) 

𝑑  Annual demand in ml 90,000  (CMS 2018a, b, 

National Cancer 

Institute 2018) 

𝑄  Expected annual 

profit 

   

§Costs in 2018 US dollars 

GDUFA = Generic Drug User Fee Amendments 

It has been suggested that the prices of drugs vulnerable to shortage may be too low 

(Frakt 2016).  To study the potential effects of price changes on shortages, I evaluated the most 

profitable configuration under different policies.  In particular, I calculated the expected profit 

for four supply chain configurations for prices between $0 and $30 per unit of the drug using 

equation (31).  Prices were tested in increments of $0.25.   



119 

 

The profits are presented in Figure 29, and the four configurations are as follows.  The 

“Lean” configuration is a single component in each echelon.  “Two lines” represents a single 

API supplier and single plant with two lines.  “Two plants” and “two suppliers” are defined 

similarly.  The series “All” represents the configuration with a backup at each echelon.   

As the price increases, the expected profit increases monotonically for each 

configuration.  This is intuitive; for a given configuration, the expected quantity of the drug 

remains the same, and the revenue increases.  This leads to higher profits.  Below certain 

thresholds, though, the expected profit is $0.  In these cases, the company does not expect to 

make enough money to cover its expenses and would choose to not produce the drug.  The 

threshold varies depending on the configuration because the configurations have different costs. 

The most profitable configuration changes based on the price.  The expected profit for the 

most profitable configurations are presented in Figure 30.  Note that the unit prices considered in 

Figure 30 range from $0 to $50 (where the prices in Figure 29 are $4 to $10).  As the price 

increases, it is optimal to choose a more reliable supply chain.  At $4.36, the company chooses to 

maintain a lean supply chain (one API supplier; one plant; and one line), and the expected 

shortage is 10%.  At a unit price of $9.06, it becomes more profitable to maintain a second 

supplier.  The expected shortage is 4%.  The next threshold is $34.76 when the most profitable 

configuration is to have a backup at each echelon (two suppliers; two plants; one line in each 

plant).  Expected shortages are 1%.  

Equation (31) is used to calculate the profitability thresholds between configurations.  

The aim is to find the unit price, 𝑞, that produces the same expected profit.  Below this value, the 

less reliable configuration is more profitable, and above this value, the more reliable 

configuration leads to higher profits. 
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I will take the example of the lean supply chain (𝑧𝐴𝑃𝐼 = 𝑧𝑝 = 𝑧𝑙 = 1; 𝑠 = 0.10) vs. a 

supply chain with a backup supplier (𝑧𝐴𝑃𝐼
′
= 2; 𝑧𝑝′ = 𝑧𝑙

′
= 1; 𝑠′ = 0.04).  Substituting the 

configurations and expected shortages produces the equation (32): 

𝑑(1 − 𝑠)(𝑞 − 𝑐𝑟𝑎𝑤 − 𝑐𝑝𝑟𝑜𝑑) − 1(𝑓𝑐,𝐴𝑃𝐼 + 𝑓𝑔,𝐴𝑃𝐼) − 1(𝑓𝑐,𝑃𝑙𝑎𝑛𝑡 + 𝑓𝑔,𝑃𝑙𝑎𝑛𝑡) − 1𝑓𝑐,𝐿𝑖𝑛𝑒

− 𝑓𝑔,𝑃𝑟𝑜𝑔𝑟𝑎𝑚

= 𝑑(1 − 𝑠′)(𝑞 − 𝑐𝑟𝑎𝑤 − 𝑐𝑝𝑟𝑜𝑑) − 2(𝑓𝑐,𝐴𝑃𝐼 + 𝑓𝑔,𝐴𝑃𝐼) − 1(𝑓𝑐,𝑃𝑙𝑎𝑛𝑡 + 𝑓𝑔,𝑃𝑙𝑎𝑛𝑡)

− 1𝑓𝑐,𝐿𝑖𝑛𝑒 − 𝑓𝑔,𝑃𝑟𝑜𝑔𝑟𝑎𝑚 

(32) 

Solving for the unit price 𝑞 gives a value of $9.06.  This is the threshold at which it 

becomes more profitable to maintain a backup supplier. 

 

Figure 29. Profit of Configurations under Different Prices 
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Drug companies are under increasing pressure to reduce prices (US Department of Health 

and Human Services 2018).  At some point, it is no longer profitable for companies to produce 

the drugs. 

To calculate the breakeven price, I set the profit in equation (31) to $0 and solve for the 

breakeven unit price, 𝑞0.  The simplified expression is given in equation (33).   

𝑞0 = 𝑐𝑟𝑎𝑤 + 𝑐𝑝𝑟𝑜𝑑

+
(𝑓𝑐,𝐴𝑃𝐼 + 𝑓𝑔,𝐴𝑃𝐼)𝑧𝐴𝑃𝐼 − (𝑓𝑐,𝑃𝑙𝑎𝑛𝑡 + 𝑓𝑔,𝑃𝑙𝑎𝑛𝑡)𝑧𝑝 − 𝑓𝑐,𝐿𝑖𝑛𝑒𝑧𝑝𝑧𝑙 − 𝑓𝑔,𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝑑 ∗ 𝑟 (
𝝁

𝝀 + 𝝁 ∣∣
∣ 𝒛 )

 

(33) 

This represents the price that covers the variable costs (𝑢 + 𝑣) and the unit contribution 

to the fixed cost.  The latter is the total fixed cost divided by the expected demand met. 

For vincristine, the breakeven price for a lean supply chain is $4.36; to have a backup 

supplier is $4.64; and to have a backup supplier and plant is $5.71.  At each of these prices, the 

company would be covering its expected costs, and to be profitable, the company would need to 

charge more. 

 

Figure 30. Most Profitable Configuration by Price 
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6. Discussion 

There is a need to evaluate the resiliency of pharmaceutical supply chains to disruptions. 

I developed a closed-form model of supply chain availability and conducted analyses for generic 

oncology drugs.  

The model requires minimal data and produces closed-form equations for system 

reliability, expected shortages, expected uptime, and expected downtime.  It can be studied for an 

arbitrarily large number of components.  The failure and recovery distributions can be 

represented by any continuous distribution; they are not limited to be exponential. 

The two different types of supply chain stages (suppliers and plant-line combinations) 

provide a framework to extend the model to additional echelons.  The reliability function is the 

product of the reliability of individual stages in series.  To add another independent stage, the 

practitioner could multiply the reliability function by the reliability of the additional stage.  If the 

additional stage were comprised of multiple echelons whose operation is dependent upon one 

another, the practitioner would calculate the reliability of the entire stage in a process similar to 

the plant-line combination. 

A cancer drug, vincristine, was used to evaluate the reliability of sample supply chain 

configurations.  Increasing the redundancy of the configuration decreases expected shortages.  

This varies by echelon; adding a supplier reduces shortages more than an additional line does 

(from a baseline of 10% to 4% and 9%, respectively).  These support earlier results produced by 

a stochastic programming model (Chapter 2). 

Adding redundancy also increases the expected time to a shortage.  As the system has 

more capability to continue to produce during disruptions, shortages occur less often.  The time 

to system failure is 4.7 years with the lean configuration and 6.2 years with an extra supplier.  
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There are mixed effects on shortage length, however.  With a lean configuration, shortages 

persist for 0.5 years on average, and with an additional supplier, the expected length of the 

shortage is about half, 0.3 years.  Yet with an additional line, shortages last for 1.0 years on 

average.  This difference is because as redundancy is added, the echelon that is more likely to 

lead to a system failure changes.  This analysis highlights the difference between time to recover 

and time to disruption.  

The high-quality and quick-recovery analyses highlight other opportunities to reduce 

shortages.  Many shortages are caused by quality issues (UUDIS 2016), and reducing the 

frequency of quality-related disruptions could reduce shortages.  This could include upgrading 

equipment or taking steps to reduce contamination (ISPE 2015).  It is worth considering ways to 

increase the time to disruption and decrease the time to recover.  This may be particularly 

valuable if backup capacity is not viable, whether for cost or other reasons. 

These results also underscore the importance of bringing production back quickly.  

Doubling the recovery rate could reduce shortages by half.  This could occur through 

streamlining regulatory processes, often cited as burdensome (Tucker et al., 2020a). 

The analytical model also allows us to conduct more precise policy analyses than are 

possible using a stochastic program.  In particular, it can calculate the exact thresholds where the 

most profitable configuration changes.  For example, a price threshold of $9.06 for vincristine 

may induce companies to add a backup supplier.  The accuracy of the thresholds depends on the 

input data.  Further sensitivity analysis would be necessary before it is applied in practice. 

A company could use the model to evaluate the reliability of its own supply chain.  The 

numerical study in this chapter is based on general estimates of the time to recover and 

disruption.  If a company had more specific data on the characteristics of its specific 
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components, they could use the model to estimate more precisely the vulnerability of their own 

supply chains.   

The company could also use the model to decide how much safety stock to hold to 

mitigate shortages.  For example, they could carry inventory based on the expected shortage 

length.  This would vary based on the configuration selected.  

 There are limitations to the use of the model.  While only a handful of data points are 

needed, disruptions and recovery can be difficult to parameterize.  The values were based on 

available databases, but in applying this method, the practitioner should recognize that the results 

are only as good as the underlying data.  Data on pharmaceutical costs are frequently proprietary, 

and further sensitivity analyses are needed before policy results are implemented.  Finally, the 

model does not allow for correlations between the components. 

7. Conclusions 

Improving supply chain reliability can help reduce drug shortages.  My simple model 

provides metrics to evaluate configurations of pharmaceutical supply chains.  It could be used by 

companies, regulators, or researchers to estimate shortages.  The supply chain components have 

different costs, and there are opportunities to use the model to conduct cost-effectiveness 

analyses.  Future work could consider extensions to include additional echelons or inventory. 
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CHAPTER V 

Conclusions 

 

Drug shortages are a crisis in the United States (US).  New disruption-focused 

mathematical models and quantitative policy analysis were needed to address the problem.  In 

this dissertation, I developed four mathematical models to tackle aspects of the crisis.  Each 

considered different conditions under which decisions are made. 

Summary of technical chapters 

 In Chapter 2, I compared policies proposed to reduce drug shortages.  I presented two, 

new static supply chain design problems.  They are among the first to include both disruptions 

and recovery within a design optimization.  The formulation of the multi-stage stochastic 

program (that includes both configuration design and inventory decisions) implies the non-

anticipativity constraints are redundant and simplifies the model considerably. 

The model and analysis changed the perspective under which disruption problems are 

typically studied; the focus was on changing the underlying conditions to incentivize companies 

to be resilient.  I observed that under status quo conditions for two example generic oncology 

drugs, it may be in a profit-maximizing company’s best interest to select a supply chain 

configuration that is vulnerable to shortages.  Yet, incentives could be put in place to change the 

optimal configuration; policies such as requiring back-up components in combination with 

moderate price increases could substantially reduce drug shortages. 
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In Chapter 3, I proposed a dynamic supply chain design model.  The availability of the 

components is stochastic each period, and the time between disruptions and recovery apply 

different distributions, following available data.  While this characteristic would previously have 

been intractable for a multi-stage stochastic program with binary state variables, I introduced a 

reformulation to apply the disruptions and recovery using stage-wise independent uncertainty.  

This set-up lays the groundwork for more realistic multi-stage disruption optimizations models; 

it expands our modeling capability from Bernoulli distributions to incorporate different 

geometrically-distributed disruption parameters as well. 

Using the dynamic model, I studied the effects of reducing the lead times to add new 

supply chain components if disruptions occur.  I found that for a sample generic injectable 

oncology drug, a lead time of 3 months could reduce shortages vs. a one year lead time.  Halving 

the mean time to recover may reduce shortages as well.  I also studied the effects of disruptions 

and product discontinuations.  Rather than assuming the company will continue to produce the 

drug if a disruption occurs, the model allowed the decision-maker to drop out of the market.  At 

baseline, in 12% of the simulations the company left the market.  As the lead time decreases, 

product discontinuations also decrease (3% discontinuations with a 3 month lead time). 

 In Chapter 4, I developed a new model of pharmaceutical supply chain reliability (SCR).  

Using a given supply chain configuration, it outputs the probability the drug will be available and 

shortage characteristics (i.e., how often they occur and how long they last, on average).  The 

baseline analyses considered generic oncology drugs and studied the reliability of different 

supply chain configurations.  I found that adding a back-up line could double the time to 

shortage (from 4.7 years with a lean supply chain to 10.5 years with a back-up line).  Adding 

redundancy at multiple levels could lead to even more substantial results.  A back-up Active 



127 

 

Pharmaceutical Ingredient (API) supplier and back-up manufacturing plant could lead to the 

expected time to shortage of 56 years (compared to 4.7 years with a lean supply chain). 

 I also used the reliability model to analyze how improving component quality and 

reducing the time to recover from a disruption could reduce shortages.  Either reducing the 

disruption rate (i.e., improving quality) or doubling the recovery rate (i.e., improving recovery) 

would be expected to drop the shortages by half.  Further pricing analyses presented break-even 

points for the profitability of different configurations as well as the pricing thresholds for which 

design is optimal. 

Extensions 

 Drug shortages continue to occur in the US and abroad.  This dissertation lays a 

foundation to develop new mathematical models to address the problem.  Several areas are 

worthy of further study. 

 The work in this dissertation focused on a single pharmaceutical company as the 

decision-maker.  This approach was appropriate for my work because the example drugs I 

considered are produced by a single company.  Yet, many drugs affected by shortages are 

generic (GAO 2016), and they may be affected by competition.  It would be useful to consider 

how competition and the threat of disruptions affects supply chain design decisions.  These 

analyses could provide evidence for regulatory policies to either incentivize additional 

competition or put further patent protection in place. 

 To analyze policies, I varied the values of exogenous input parameters.  Modelers could 

develop bilevel models in which the leader (e.g., regulator) optimizes the policy parameters and 

the follower (e.g., a company) optimizes the supply chain design in response to the imposed 



128 

 

policies.  A leader-follower context has been applied in other areas of policy but not for 

pharmaceuticals and disruptions. 

 Researchers could develop predictive models to identify which drugs are vulnerable to 

imminent shortages.  Models to predict how long shortages will last could also be useful to help 

health systems plan their shortage management.  Often manufacturer-provided projections for the 

time until shortage resolution are underestimated (McLaughlin et al. 2014). 

 Future work could refine the models to study increasingly realistic scenarios.  With 

additional data (e.g., in-house at a pharmaceutical company), the design models could be 

extended to optimize location decisions under disruption and recovery.  They could also 

incorporate correlations between facility disruptions. 

Companies often make supply chain decisions for portfolios of drugs, rather than 

individual drugs.  New models that include supply chain decisions for multiple drugs could be 

used to study trade-offs between maintaining the production of medically-necessary drugs and 

using manufacturing capacity to produce higher margin products.  

This dissertation has focused on US policy, yet the pharmaceutical industry is 

international.  Further research is necessary to consider international aspects of drug shortages.  

This could include optimizing regulatory policy among countries; how to allocate the drug when 

shortages occur; and pricing decisions. 

To conclude, this dissertation developed new models to consider disruptions and recovery 

in pharmaceutical supply chain design.  I applied the models to analyze policies to reduce drug 

shortages.  It is my hope that the contributions will not be solely theoretical but also lead to the 

reduction in drug shortages. 
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APPENDIX 

Supplemental Information for Chapter 2 

Section 1 presents detail on the data used for the parameter values, and Section 2 presents 

the sensitivity and scenario analysis results. Section 3 includes proofs of the lemmas and theorem 

presented in the text. 

1. Parameters 

1.1. Distribution of time to recover 

There are three recovery time distributions: time to supplier recovery, time to plant 

recovery, time to line recovery.  The specific data on recovery times were unavailable.  As a 

proxy, I used the distributions of shortage durations and adjusted them to account for reporting 

delays (UUDIS 2016).   

For the supplier recovery distribution, I fit the distribution of shortage durations for all 

resolved shortages 2001-2016 in which the reported cause was due to raw material issues.  For 

the plant recovery distribution, I fit the distribution of sole-source injectable shortage durations 

for which the cause was a manufacturing-related issue.  I did not have data for the time to line 

recovery and assumed it was equal to 0.1 of the time to plant recovery.  I evaluated this in 

sensitivity analysis.  For each of these distributions, I also factored in the time the product is 

partially available (ASHP 2018) and evaluated several types of distributions and determined that 

an exponential distribution fit best (Delignette-Muller and Dutang 2015, R Core Team 2018).  

Because I consider discrete time periods, I discretized the distributions to apply a geometric 

distribution. 
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1.2. Distribution of time to disruption 

To estimate the distribution of the time to disruption for suppliers, plants, and lines, I fit 

distributions for the time of FDA approval for the generic drug application to the date the 

shortage began (FDA 2018a, UUDIS 2016). 

For suppliers, I considered drugs that were short due to raw material issues, and for 

plants, I considered shortages where the direct cause was a manufacturing issue. I assumed the 

time to line disruption was 0.3 times the time to a disruption of a plant.  Similarly to the time to 

recover, I evaluated different types of distributions and fit geometric distributions for each. 

1.3. Demand 

I estimated the annual demand in the United States for vinblastine and vincristine based 

on Medicare Part B data for individuals at least 65 years old and the demographic information of 

the population that the drugs are used to treat.   

The amounts of vinblastine and vincristine charged to Medicare Part B were 

approximately 45,000 mg in 2015 and 2016 (CMS 2018a).  These drugs are commonly used to 

treat certain cancers (vinblastine - Hodgkin’s disease, testicular cancer, and AIDS-related 

Kaposi’s sarcoma; vincristine - Acute Lymphocytic Leukemia, Acute Myeloid Leukemia, 

Hodgkin’s Disease, and Non-Hodgkin lymphoma; (Drugs.com 2018).  The average proportion of 

new cases that are in individuals at least 65 years old are 13% for vinblastine-treated cancers and 

51% for vincristine-treated cancers (National Cancer Institute 2018).  Then I produced a rough 

estimate of the total national demand and converted to liquid volume (ml) based on the strengths 

provided in the Red Book (IBM Micromedex 2018). 

Note that this process assumes the proportion of drug usage for these conditions by age is 

consistent with the proportion of new cases under 65 and that individuals under 65 are treated at 
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the same rate as individuals on Medicare.  I evaluate the sensitivity of the results to the demand 

estimates in scenario analyses (Appendix Section 2). 

1.4. Costs 

GDUFA program fees: 

Companies pay an annual fee to the FDA based on the number of approved Abbreviated 

New Drug Applications (ANDAs) they hold.  These represent the number of generic drugs the 

companies are able to market.  I estimated the GDUFA program fee that is allocated to each drug 

by dividing the appropriate fee by the total number of ANDAs the company holds based on the 

National Drug Code Directory (FDA 2018c).  The company which produces vinblastine has 139 

ANDAs which corresponds to a per drug cost of $11,445.  The company which produces 

vincristine holds 164 ANDAs.  This corresponds to a per drug cost of $9,700. 

Fixed costs: 

I estimated the plant fixed cost as the amortized 30-year cost of a plant based on 

estimates of costs of fill-and-finish facilities, adjusted to 2018 dollars, and divide by 100 

products (GAO 2014, Rudge 2012).  I assumed the fixed line cost is half of this value, and I 

assumed the supplier fixed cost is one quarter of the total raw material order (calculated as the 

variable raw material cost multiplied by annual demand).   

Production costs: 

The loaded cost to produce an injectable drug is 20-60% of the sales price based on 

conversations with a pharmaceutical manufacturing executive and estimates in literature (Jia and 

Zhao 2017).  For the base parameter values, I assumed the loaded cost to be 40% of the sales 

price.  I calculated the total cost to produce the drug annual as the product of 40%, the sales 

price, and annual demand.  To back out the unit production costs, I subtracted the GDUFA and 
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non-GDUFA fixed costs and raw material costs and divided the resulting value by annual 

demand. 

2. Sensitivity and scenario analyses 

The one-way sensitivity analysis results for each drug are presented in the tornado 

diagrams of Figure A-1.  In the upper bound (UB) analyses, the parameters were increased by 

20% vs. the baseline values, and in the lower bound (LB) analyses, they were decreased by 20%. 

In the baseline analysis, the time horizon length is two years.  When this is varied to one 

year, three years, and five years, for vinblastine, the expected annual profit is within 1% of the 

baseline value, and the optimal solution does not change.  Similarly, for vincristine, for one-, 

three-, and five- year time horizons, the expected annual profit is within 2% of the baseline 

value, and the optimal solution does not change. The baseline period length is two months.  

When the period length is decreased from two months to one month, the expected profit for 

vinblastine does not change and increases 3% vs baseline for vincristine.  When the period length 

is increased to three months, the expected profit decreases 3% vs. baseline for both drugs.  

Adjusting the period length does not change the optimal solution from baseline for either drug.  

As the annual demand varies, the optimal solution does not change between 0.7-1.6 times 

baseline demand for vinblastine and 0.6-2 times baseline for vincristine.  As the production 

capacity of the lines varies to 4 and 8 times the per-period demand, the companies continue to 

hold no inventory in the optimal solution. 
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3. Proofs 

SCDD Model: 

 

Lemma 1: 𝜃𝑡
𝜔 ∈ {0,1}   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   

 

𝑔𝐿𝑖𝑛𝑒 ∈ ℤ+         By definition 

𝜉𝑛𝑡
𝜔 ∈ {0,1}     ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇,𝜔 ∈ Ω  By definition 

⇒ 𝜃𝑡
𝜔 ∈ {0,1}        Constraints (6-11), Objective 

function (5)             

 ∎ 
  

SCDD-I Model: 

Lemma 2: 𝐶𝑡
𝜔 ∈ {0,1}   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Constraints (22) 

                     ∎ 

Lemma 3: 𝐶ሚ𝑡
𝜔 ∈ ℤ+   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω 

 

𝑔𝐿𝑖𝑛𝑒 ∈ ℤ+         By definition 

𝜉𝑛𝑡
𝜔 ∈ {0,1}    ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇,𝜔 ∈ Ω  By definition 

𝑧ǁ𝑗𝑙 ∈ {0,1}    ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿   Constraints (4e) 

⇒ 𝐶ሚ𝑡
𝜔 ∈ ℤ+    ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Lemma 2 and Constraints 

(23) 

       

              ∎ 
 

Lemma 4: 𝐼0, 𝐼𝑡
𝜔 ∈ ℤ+   ∀𝑡 ∈ {0} ∪ 𝑇,𝜔 ∈ Ω   

Constraints (10, 17, 20, 21, 25, 26, 27c), Objective function (15), Lemma 2 

                      

∎ 

Figure 31. One-way sensitivity analysis results 
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Lemma 5: 𝜃𝑡
𝜔 ∈ {0,1}   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω  Constraints (10, 11, 16, 24), 

Objective function (15), 

Lemmas 2-4 

                      

∎ 
 

Theorem 1: The following relationships are implied by SCDD-I. 

𝐶𝑡
𝜔 = 𝐶𝑡

𝜔′   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28a) 

𝐶ሚ𝑡
𝜔 = 𝐶ሚ𝑡

𝜔′   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω     (28b) 

𝐼𝑡
𝜔 = 𝐼𝑡

𝜔′   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω     (28c)  

𝜃𝑡
𝜔 = 𝜃𝑡

𝜔′   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28d) 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 = ∑ 𝑣𝑙𝑡
𝜔′

𝑙∈𝐿   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28e) 

∑ 𝑢𝑗𝑡
𝜔

𝑗∈𝐽 = ∑ 𝑢𝑗𝑡
𝜔′

𝑗∈𝐽   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28f) 

𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 𝛿𝑡

𝐴𝑣𝑎𝑖𝑙,𝜔′
   ∀𝜔′ ∈ 𝑆𝑡

𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω    (28g) 

𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

= 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔′

 except case: 𝐶ሚ𝑡
𝜔 = 𝐼0 − 𝐼𝑡−1

𝜔   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω (28h) 

For (28e-f), I focus on the aggregate used in the objective function (15) because the 

specific supplier or line used in a given stage are not affected by uncertainty in later stages.  For 

(28h), I exclude the case 𝐶ሚ𝑡
𝜔 = 𝐼0 − 𝐼𝑡−1

𝜔  because the indicator of sufficient capacity (𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

) 

can be assigned either the value of 0 or 1 when the excess capacity (𝐶ሚ𝑡
𝜔) is equal to the safety 

stock deficit (𝐼𝑡−1
𝜔 − 𝐼0).  The purpose of the indicator is to enforce the minimum operator in 

constraints (24).  The values of the other variables in the constraints (24) are implied to be non-

anticipative, and the indicator is not affected by uncertainty revealed in subsequent stages. 

Proof of Theorem 1: 

Lemma 6: 𝐶𝑡
𝜔 = 𝐶𝑡

𝜔′   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω 

 

If ∃(𝑗, 𝑘, 𝑙) s.t. 𝜉𝑗𝑡
𝜔𝜉𝑘𝑡

𝜔𝜉𝑙𝑡
𝜔𝑧ǁ𝑗𝑙 = 1, then 𝐶𝑡

𝜔 = 1, else 𝐶𝑡
𝜔 = 0 

∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿𝑘 , 𝑡 ∈ 𝑇, 𝜔
′ ∈ 𝑆𝑡

𝜔 , 𝜔 ∈ Ω  Constraints 

(22) 

𝜉𝑗𝑡
𝜔 = 𝜉𝑗𝑡

𝜔′; 𝜉𝑘𝑡
𝜔 = 𝜉𝑘𝑡

𝜔′; 𝜉𝑙𝑡
𝜔 = 𝜉𝑙𝑡

𝜔′       ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇,𝜔′ ∈ 𝑆𝑡
𝜔 , 𝜔 ∈ Ω  

        Definition of 𝑆𝑡
𝜔 

⇒ 𝐶𝑡
𝜔 = 𝐶𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω            

∎ 
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Lemma 7: 𝐶ሚ𝑡
𝜔 = 𝐶ሚ𝑡

𝜔′ ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω             

             Lemma 6 and Constraints (23) 

                          ∎ 
 

Lemma 8: ∑ 𝑢𝑗𝑡
𝜔

𝑗∈𝐽 = ∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω 

 

∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 ≤ ∑ 𝑢𝑗𝑡
𝜔

𝑗∈𝐽    ∀𝑡 ∈ 𝑇 , 𝜔 ∈ Ω    Constraints (8) 

⇒ ∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 = ∑ 𝑢𝑗𝑡
𝜔

𝑗∈𝐽  ∀𝑡 ∈ 𝑇 , 𝜔 ∈ Ω            Objective function (15) 

                        ∎ 

Lemma 9: If 𝐶𝑡
𝜔 = 0, then 𝜃𝑡

𝜔 = {
1, 𝛿𝑡

𝐴𝑣𝑎𝑖𝑙,𝜔 = 1

0, 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 0

 ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω        

 

𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 ∈ {0,1}   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω         Constraints (27c) 

 

If 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 1, then 𝜃𝑡

𝜔 = 1  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω         Constraints (10, 20) 

If 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 0: 

𝜉𝑗𝑡
𝜔𝜉𝑘𝑡

𝜔𝜉𝑙𝑡
𝜔𝑧ǁ𝑗𝑙 = 0   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿𝑘  

       Constraints (22a) 

 ∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 = 0   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Constraints (6-8, 14) 

𝜃𝑡
𝜔 = 0   ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Constraints (16, 24) 

                                ∎ 
 

Lemma 10: If 𝐼𝑡−1
𝜔 = 𝐼𝑡−1

𝜔′ , then 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 𝛿𝑡

𝐴𝑣𝑎𝑖𝑙,𝜔′
 ∀𝜔′ ∈ 𝑆𝑡

𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω 

 

∄𝐼𝑡−1
𝜔 ∈ (0,1)                                           ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω Lemma 4 

𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = {

1, 𝐼𝑡−1
𝜔 ≥ 1

0, 𝐼𝑡−1
𝜔 = 0

  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Constraints (25, 27c)   

         ∎ 

 

Lemma 11:  If 𝛿𝑡
𝐴𝑣𝑎𝑖𝑙,𝜔 = 𝛿𝑡

𝐴𝑣𝑎𝑖𝑙,𝜔′
, then 𝜃𝑡

𝜔 = 𝜃𝑡
𝜔′ ∀𝜔′ ∈ 𝑆𝑡

𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω 

 

𝐶𝑡
𝜔 ∈ {0,1}    ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Lemma 2 

 

Case 1: 𝐶𝑡
𝜔 = 1 ⇒ 𝜃𝑡

𝜔 = 1  ∀𝑡 ∈ 𝑇,𝜔 ∈ Ω   Constraints (10, 19) 

Case 2: 𝐶𝑡
𝜔 = 0 ⇒ 𝜃𝑡

𝜔 = 𝜃𝑡
𝜔′  ∀𝜔′ ∈ 𝑆𝑡

𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Lemma 9 

                 ∎ 

  

Lemma 12: 𝐼𝑡
𝜔 = 𝐼𝑡

𝜔′   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω 

 

By induction: 

𝐼0
𝜔 = 𝐼0

𝜔′    ∀𝜔′ ∈ 𝑆0
𝜔 , 𝜔 ∈ Ω  Constraints (26) 

𝐼𝑡−1
𝜔 = 𝐼𝑡−1

𝜔′     ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Induction hypothesis 
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⇒ ∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 = ∑ 𝑣𝑙𝑡
𝜔′

𝑙∈𝐿  ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Constraints (24) and Lemma 

6 and 7 

𝜃𝑡
𝜔 = 𝜃𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Lemmas 10 and 11 

 

⇒ 𝐼𝑡−1
𝜔 + ∑ 𝑣𝑙𝑡

𝜔
𝑙∈𝐿 − 𝜃𝑡

𝜔 = 𝐼𝑡−1
𝜔′ + ∑ 𝑣𝑙𝑡

𝜔′
𝑙∈𝐿 − 𝜃𝑡

𝜔′  

∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω  

⇒ 𝐼𝑡
𝜔 = 𝐼𝑡

𝜔′    ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Constraints (17) 

                     

∎ 
 

Lemma 13: ∑ 𝑣𝑙𝑡
𝜔

𝑙∈𝐿 = ∑ 𝑣𝑙𝑡
𝜔′

𝑙∈𝐿  ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Constraints (24) and Lemmas  

6, 7, and 12 

               ∎ 
 

Lemma 14: ∑ 𝑢𝑖𝑡
𝜔

𝑖∈𝐼 = ∑ 𝑢𝑖𝑡
𝜔′

𝑖∈𝐼   ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω Lemmas 8 and 13 

                    ∎ 
 

Lemma 15: 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

= 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔′

 except case: 𝐶ሚ𝑡
𝜔 = 𝐼0 − 𝐼𝑡−1

𝜔   

∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω 

 

𝛿𝑡
𝜔,𝑆𝑢𝑓𝑓𝑖𝑐

= {
1, 𝐶ሚ𝑡

𝜔 > 𝐼0 − 𝐼𝑡−1
𝜔

0, 𝐶ሚ𝑡
𝜔 < 𝐼0 − 𝐼𝑡−1

𝜔  ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω     Constraints (10, 17, 18, 24, 27c) 

⇒ 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔

= 𝛿𝑡
𝑆𝑢𝑓𝑓𝑖𝑐,𝜔′

, except case: 𝐶ሚ𝑡
𝜔 = 𝐼0 − 𝐼𝑡−1

𝜔  ∀𝜔′ ∈ 𝑆𝑡
𝜔 , 𝑡 ∈ 𝑇, 𝜔 ∈ Ω  

Lemmas 6, 7, 12, and 13 

 

    ∎ 

Thus, Theorem 1 follows from Lemmas 6-15.   

      ∎ 
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