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Abstract  

Developing direct routes for upgrading methane (the principal component of natural gas) into 

value-added chemicals is crucial for integrating natural gas into the chemical industry in a more 

environmentally sustainable way.  Unlike commercial multi-step methane conversion routes that 

rely on economies of scale, the direct routes can be potentially applied in upgrading natural gas 

from small-scale sources, thereby mitigating their underutilization and flaring to deleterious 

greenhouse gases. The oxidative coupling of methane (OCM) is a promising direct route for 

converting methane to valuable C2 hydrocarbons (ethylene and ethane). This reaction occurs at 

high temperatures in the presence of oxygen and an active catalyst. The main challenge with OCM 

is the formation of undesired byproducts (CO and CO2) from over-oxidation reactions, which 

limits the C2 selectivity. This selectivity problem is particularly significant in conventional co-fed 

reactors (where oxygen is fed together with methane) because the high gas-phase oxygen 

concentrations at the reactor inlet accelerates the undesired over-oxidation reactions. In this 

dissertation, the thermodynamic and kinetic constraints on the C2 selectivity and yield in OCM are 

elucidated. With the aid of reactor models, we demonstrated that an oxygen-ion (O2-) conducting 

catalytic solid oxide membrane reactor, with distributed oxygen feed along the reactor length, can 

achieve significantly higher C2 selectivity and yield compared to a conventional co-fed reactor. 

From systematic experimental studies, BaCe0.8Gd0.2O3-δ (BCG) was identified as an O2- 

conducting material that is catalytically active for OCM and shows high resistance to deactivation 

via solid carbon deposition. These properties make BCG a promising membrane-catalyst material 

for OCM membrane reactors. Further work included fabricating tubular BCG membranes via a 
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combined slip-casting and solid-state reactive sintering technique using Cu as a sintering additive. 

OCM results from the Cu-modified BCG tubular membrane reactors (with distributed oxygen 

feed) showed greater C2+ selectivity compared to co-fed reactor operation, at similar methane 

conversions. This conclusive experimental result supports the main hypothesis of this study; that 

catalytic solid oxide membrane reactors can improve OCM performance compared to conventional 

co-fed reactors. 
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Chapter 1 

 

 

Introduction and Background 

 

1.1 Summary  

 This chapter begins with a discussion on natural gas with a focus on the opportunities and 

challenges associated with the increase in supply of natural gas from shale sources. The various 

routes for converting the principal component of natural gas (methane) to valuable chemicals is 

discussed, highlighting the advantages of direct routes over traditional multi-step industrial routes 

for methane conversion. The discussion then focuses on the oxidative coupling of methane (OCM) 

as a promising route for direct methane conversion. The challenges with OCM are highlighted and 

the potential to overcome some of these challenges using solid oxide membrane reactors is 

discussed. Reactor models that illustrate improved OCM performance of a catalytic solid oxide 

membrane reactor over a conventional packed-bed reactor are presented and analyzed. This is 

followed by a discussion of the benefit of integrating selective OCM catalysts in solid oxide 

membrane reactors along with criteria that will enable optimum performance and long-term 

stability of the integrated membrane-catalyst systems. The chapter concludes with a statement on 

the scope of the dissertation and a brief summary of each chapter in the dissertation.
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1.2 Opportunities and Challenges with Natural Gas 

 The US production of the natural gas (over 500 trillion ft3 of proved reserves) has increased 

significantly since the year 2005 and is projected to continue to increase over the next two 

decades.1,2 The increase in production is driven mainly by advances in the recovery of natural gas 

from shale gas and tight oil reserves by hydraulic fracturing as shown in Figure 1.1.3 The boom in 

shale gas production has contributed to the decoupling of US crude oil and gas prices, with the 

price of natural gas becoming relatively lower than crude oil.2,4 Given the abundance and relatively 

low cost of methane, it an attractive alternative to crude oil as a source of fuel and chemicals. More 

than 90% of natural gas is used as fuel for heating, cooking, power generation and transportation.5 

It is considered a cleaner fossil fuel compared to crude oil and coal as it has a lower carbon footprint 

and produces less amounts of nitrogen and sulfur oxide emissions.2,6   

 A significant portion of natural gas is underutilized because it is found in remote locations 

and is considered “stranded”. This includes natural gas produced as a by-product during oil 

recovery (associated gas).7 Transporting the stranded gas from remote locations to commercial 

upgrading facilities and eventually to market is not cost effective because it requires energy-

intensive pressurization in pipelines or condensation to liquified natural gas (LNG).2,8 Due to the 

unavailability of economically viable means of utilization, stranded gas is often flared or vented. 

This practice does not only result in the waste of a valuable feedstock, but also results in the 

emission of deleterious green-house gases (CO2 and CH4).
8 Gas flaring operations occur not just 

within the US, but also in oil rich countries in the Middle east, Asia and Africa.5 The World Bank 

estimates that over 5 trillion ft3 of natural gas is flared yearly worldwide, which is roughly one-

fifth of the US total annual natural gas consumption. This flaring causes the release of more than 

350 million tons of greenhouse gas CO2 annually.7 To overcome this global challenge, it is 
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imperative to develop methods for valorizing natural gas at remote locations. Since natural gas is 

composed primarily of methane (70 – 90% of the carbon),5,9 the conversion of methane into more 

valuable chemicals is undeniably a crucial pathway for utilizing stranded gas.  

 

Figure 1.1. U.S. dry natural gas production by source from EIA Annual Energy Outlook 2016.3 

 

1.3 Methane to Chemical Conversion  

 Methane is a symmetric molecule that is very difficult to activate under mild temperatures 

and pressures due to its strong and stable C-H bonds (bond strength ∼ 434 kJ/mol) and low 

polarizability.5,10 Industrially, the conversion of methane to valuable chemicals is achieved through 

indirect processes that involve an intermediate synthesis gas (a mixture of mainly CO and H2) 

production step. Synthesis gas (or syngas) is used for methanol production and Fisher-Tropsch 

synthesis. The hydrogen in syngas is also used as a feedstock for ammonia production via the 

Haber-Bosch process.5,11 However, syngas production (e.g., through steam reforming of methane) 
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is very expensive and carbon-intensive requiring high operating temperatures (700 – 1000°C) and 

pressures (15 – 40 atm).9 The high capital investment required for syngas production means that it 

benefits from the economies of scale and is not profitable for use in upgrading methane from 

stranded small-scale sources. This issue contributes to the flaring of stranded natural gas and is a 

major motivation for the development of direct routes for methane conversion that would lend 

themselves to small scale operations.11  

 There are several direct routes under investigation for methane upgrading which include 

oxidative coupling of methane to higher hydrocarbons, non-oxidative coupling of methane to 

higher hydrocarbons including aromatics, and direct partial oxidation of methane to methanol and 

formaldehyde.8,11 However, these direct processes are still in the research stage as their 

commercialization is hampered by low product selectivity and yield. The work in this dissertation 

is focused on the oxidative coupling of methane which is discussed further in the following section. 

1.4 Oxidative Coupling of Methane (OCM) 

 Oxidative coupling of methane (OCM) is a process where methane is converted directly to 

C2 hydrocarbons (ethylene and ethane) in the presence of an oxidant (typically oxygen). It is 

traditionally performed at high temperatures using heterogenous catalysts, although some low 

temperature homogenous activation of methane have been reported with relatively low yields.12 

Keller and Bhasin13 published the first studies on OCM in the early 1980s, which has since then 

been followed up by many researchers. The ethylene product from OCM is particularly desired 

because it is one of the largest volume industrial precursors used in the production of polyethylene 

plastics and other valuable chemicals.14 Ethylene is currently being produced through energy-

intensive processes such as the steam cracking of ethane or naphtha.15,16 Therefore, the possibility 

of converting methane into ethylene in a direct one-step process makes OCM highly desirable. The 
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proposed mechanism for OCM that is widely reported in the literature involves the abstraction of 

a hydrogen atom from methane by surface oxygen species to form methyl radicals (CH3•).
17,18  The 

methyl radicals are released into the gas-phase where they dimerize to form ethane, which is 

subsequently dehydrogenated to ethylene in the gas phase or on the catalyst surface.8,19,20  

 Previous OCM studies have been mainly focused on testing different mixed metal oxide 

catalysts in flow reactors at atmospheric pressure and temperatures of 600 - 1000°C.21  The goal 

of these studies was mainly to identify catalytic systems that maximize the yield of the C2 products. 

Figure 1.2 is a plot of C2 selectivity versus CH4 conversion for a representative number of OCM 

catalysts tested in conventional packed bed reactors.21,22 The data in the figure reveals that, in 

general, high methane conversion leads to lower C2 selectivity and vice versa. Consequently, the 

C2 yield which is calculated from the product of methane conversion and C2 selectivity is always 

limited. The dashed line on the left and right side of the figure represents C2 yield of 20 and 30%, 

respectively. The blue shaded region represents the widely cited commercial viability targets of a 

minimum single-pass C2 yield of ~ 30% at a C2 selectivity ≥ 90%, using undiluted feed 

streams.23,24 It can be observed that the reported single-pass C2 yield and selectivity from various 

catalysts have remained below this target.  

 The conversion-selectivity interplay shown in Figure 1.2 is typically associated with 

reactions where the desired product is an intermediate that can be sequentially converted at 

relatively high rates to more thermodynamically favored products. To promote the selectivity of 

an intermediate in a series reaction, it is desired to employ reactor designs that allow low mixing 

of chemical species, which can be achieved using a plug flow reactor design.25 Accordingly, most 

of the studies in OCM have been performed using plug flow reactor designs such as packed bed 

reactors (PBRs) illustrated in Figure 1.3.21 
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Figure 1.2. Plot of C2 selectivity versus CH4 conversion for a representative number of mixed 

oxide catalysts in packed bed reactors.26–33  

 

 

Figure 1.3. Schematic representation of a packed bed reactor operation in OCM 

 

  



7 
 

1.5 Challenges with OCM 

 A fundamental reason for the low C2 yield observed in previous OCM studies is the process 

thermodynamics.22 Data in Figure 1.4a shows the change in Gibbs free energy for various reactions 

that can occur between methane and oxygen at 1073K and 1atm. It can be observed that the 

thermodynamics favor not only the formation of C2 products, but also the formation of solid carbon 

(Cs) and to a greater extent, the formation of COx (CO and CO2). The data in Figure 1.4b shows 

the dependence of the thermodynamic equilibrium carbon product selectivity on the O2/CH4 feed 

ratio at 1073K and 1atm calculated by minimizing the Gibbs free energy of the system. High 

O2/CH4 ratios favor the formation of COx while low O2/CH4 ratios (closer to the stoichiometric 

ratio for C2 formation) favor the formation of carbon deposits, which has been modelled as 

graphite. Under no condition is the formation of C2 products favored at thermodynamic 

equilibrium. 

 To determine other reaction conditions that may favor the formation of C2 products, it is 

important to understand the process kinetics. These kinetic studies are vital to identify the key 

reaction steps that occur in OCM, to develop rate expressions that can be used to quantify reaction 

rates and for use in simulating the performance of catalytic flow reactors.  However, in comparison 

to screening of various catalysts for OCM, there are much fewer detailed kinetic studies that have 

been reported.20,34,35 Reasons for the limited number of rigorous kinetic studies include (1) the 

occurrence of rapid, free radical, gas phase reactions which promotes the deep oxidation pathways 

irrespective of the type of catalyst, (2) the difficulty in preventing large increases in local catalyst 

temperature  (hot spots) due to the occurrence of highly exothermic deep oxidation reactions, and 

(3) thermally and chemically induced phase changes of the catalysts during the reaction as well as 

the formation of carbon deposits.22,36 Recent studies on the gas-phase reaction network in OCM  



8 
 

 

 

Figure 1.4. (a) Change in Gibbs free energy for various reactions that can occur from methane and 

oxygen at 1073K and 1atm.  (b) Plot of thermodynamic carbon product selectivity (obtained by 

minimizing Gibbs free energy) as a function of the O2/CH4 feed ratio for a reactor at 1073K and 

1atm.  
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reveal that the deep-oxidation reactions that occur in the gas-phase are mainly initiated by the 

reaction of gas-phase O2 with hydrocarbon radicals as shown in the OCM reaction network in 

Figure 1.5.37 As mentioned above, these unselective gas-phase reactions occur regardless of the 

nature of the catalyst and contribute significantly to the low selectivity observed in OCM.   

 Despite the challenges discussed above, Stansch et al20 performed a detailed kinetic study 

of OCM on a La2O3/CaO catalyst. From their experimental data, they proposed a simplified 10-

step reaction network shown in Figure 1.6 which consists of parallel and sequential reactions of 

methane to C2 and COx products as well as water-gas shift reactions. The authors also proposed 

various rate expressions for the different reaction steps in the network and estimated the kinetic 

parameters (e.g. apparent frequency factors and activation barriers) from their experimental data. 

This kinetic model has been found to adequately predict the experimental data from La2O3/CaO20 

and other oxide catalysts.38,39 The rate expressions proposed in the kinetic model by Stansch et al20 

show that the reactions that lead to the formation of COx products have an ~ 1st order dependence 

on O2 partial pressure, while those leading to C2 formation have an ~ ½ order dependence. A 

similar dependence of reaction rates on O2  partial pressure has been reported by Tiermersma et 

al40 on a Mn/Na2WO4/SiO2 catalyst, one of the best performing OCM catalyst reported in 

literature.41 This kinetic behavior also indicates that operating at high partial pressures of gas-

phase O2 limits the C2 product selectivity.  
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Figure 1.5. A detailed OCM reaction network on an oxide catalyst 

 

 

               

Figure 1.6. Simplified 10-step OCM reaction network used in kinetic study on a La2O3/CaO 

catalyst. Figure was reproduced from Stansch et al.20 
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1.6 Solid Oxide Membrane Reactors  

 In conventional PBRs where methane and oxygen are fed together at one end of the reactor, 

high oxygen partial pressures are required at the inlet to achieve high methane conversions, which 

in turn leads to lower selectivity as discussed above. In other words, operating these systems at 

low oxygen partial pressures can improve selectivity but at the expense of methane conversion. 

Alternative reactor designs which allow the distribution of oxygen across the length of a flow 

reactor can be used to achieve low local oxygen partial pressures. One such design is a membrane 

reactor in which methane and an oxygen-containing stream is separated by a membrane that allows 

the permeation of oxygen to the methane side but prevents the opposite transfer of methane.42 In 

OCM, dense (non-porous) membranes made from solid oxide materials are commonly used due 

to their relatively high stability at elevated temperatures and their ability to transfer O2- ions 

(referred to as ionic conductivity). These membranes give the added benefit of providing the 

reaction with pure oxygen from air eliminating the need for expensive separation due to their 

ability to screen out other air components.
42   

 Figure 1.7 illustrates the operation of a dense solid oxide membrane plug flow reactor. As 

shown in the figure, an optimal membrane reactor design will include an integrated OCM catalyst. 

The oxygen transfer across the membrane is driven by the difference in the oxygen partial pressure 

between the methane side and the oxygen side. To fulfill overall charge neutrality in the membrane, 

there is a need for countercurrent flow of electrons. This can be achieved by using a mixed ionic 

and electronic conducting (MIEC) membrane which allows the countercurrent flow of electrons 

i.e., in the opposite direction to O2-.42–44 There are multiple steps involved in the transfer of oxygen 

across MIEC membranes. 1) Oxygen molecule adsorbs unto the membrane, combines with 

electrons and dissociates into O2- on the air side. 2) O2- diffuses through the membrane towards 
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the methane side as driven by the oxygen partial pressure difference. 3) O2- is transferred from the 

membrane to the methane-side catalyst where it either reacts with methane or evolves producing 

electrons. 4) Electrons flow in the opposite direction, returning to the air side to complete the 

cycle.45  

 

Figure 1.7. Schematic representation of a dense solid oxide membrane plug flow reactor with 

integrated OCM catalyst 

 

 MIEC materials with the best oxygen-ion transport rates are typically oxides with 

perovskite-type structure.46,47 Perovskite oxides have an ABO3 compositional formula (e.g., 

BaCeO3, LaGaO3) with the A-site cation being larger than the B-site cation in most structures as 

shown in Figure 1.8.46,47 O2- conductivity in these materials is made possible due to hopping of 

oxygen between oxygen vacancies present in the perovskite structure. These oxygen vacancies are 

formed by acceptor doping of the B site with a lower valent cation. For example, doping the Ce4+ 

sites in BaCeO3 with Gd3+, creates a charge imbalance in the perovskite structure. To preserve 

charge neutrality the structure releases some of its oxygen, which creates empty oxygen sites 

known as oxygen vacancies.47,48 Therefore, when the material is subject to an oxygen partial 

pressure gradient at high temperatures, oxygen can move across the lattice by “hopping” from one 
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vacancy to another, which is referred to as O2- conduction.46,48 The presence of oxygen vacancies 

in a perovskite oxide is indicated by the oxygen non-stoichiometry (3 – δ), where δ is the extent 

of oxygen vacancy, defined as the oxygen deficiency per unit volume of ABO3.
49 The formation 

of oxygen vacancies is accompanied by the formation of electrons which enable electronic 

conductivity.46 The presence or introduction of a multivalent metal cation to the B-site of the 

structure can contribute to the electronic conductivity by enabling the hopping of electrons 

between cations with different oxidation states in the lattice.46–48  

 

Figure 1.8. Ideal perovskite oxide (ABO3) structure. A and B represent metal cations (e.g., Ba2+ 

and Ce4+ in BaCeO3). 

 

 Several operating variables can be modified to tune the oxygen flux across MIEC 

membranes. These variables include temperature, oxygen partial pressure gradient across the 

membrane, and membrane thickness. The oxygen flux through the membrane can be increased by 

increasing the temperature since the oxygen transport is thermally activated and the resistance to 

this transport (both bulk diffusion and surface kinetics) decreases with increasing temperature. 
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Increasing the oxygen partial pressure gradient across the membrane increases the driving force 

for oxygen transfer hence the oxygen flux.46,50 Another variable that can be controlled to increase 

the oxygen flux is the membrane thickness.  It is generally accepted that decreasing the membrane 

thickness leads to lower bulk diffusion limitations and improves the oxygen flux until a 

characteristic thickness where the resistance to oxygen flux switches from predominantly bulk 

diffusion to surface kinetics controlled.46,51 In the case where the characteristic thickness has been 

reached, further improvement in the oxygen flux could be achieved by adding a catalyst on either 

side of the membrane to accelerate the surface reactions.52 Therefore, knowing the characteristic 

thickness of a membrane is useful for optimum system design and some researchers have 

attempted to estimate this quantity. For example, by tuning the thickness of a La0.3Sr0.7CoO3-δ 

membrane, Chen et al51 estimated the characteristic thickness of the membrane to 80 µm. However, 

this characteristic thickness is not universally applicable due to differences in membrane 

compositions and other related properties. Mathematically, the oxygen flux through MIEC 

membranes controlled by bulk diffusion can be described by the Wagner equation.52 A simplified 

Wagner equation for membranes with a good correlation between the oxygen ion conductivity and 

the oxygen partial pressure is given in Equation 1.1, where JO2 represents the oxygen flux, R is the 

ideal gas constant, F is the Faraday’s constant, T is the absolute temperature, L is the thickness of 

the membrane; σi
o is the ionic conductivity at 1 atm, n is an experimentally determined index and 

𝑝𝑂2

′  and 𝑝𝑂2

′′   are the oxygen partial pressures on the oxygen-side and opposite side of membrane, 

respectively.52  

                                                                   𝐽𝑂2
=

𝑅𝑇𝜎𝑖
𝑜

4𝐹2𝐿
(𝑝𝑂2

′𝑛 − 𝑝𝑂2

′′𝑛)                                                      (1.1) 
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1.7 OCM Reactor Models 

1.7.1 Packed bed reactor model 

 We have used the reaction steps and rate expressions proposed by Stansch et al (Figure 

1.6) to develop a reactor model that illustrates the outcome of using a conventional packed bed 

plug flow reactor for OCM.22 The conditions applied in the model are a O2/CH4 molar feed ratio 

of 0.25 (stoichiometric ratio for ethane formation from methane and oxygen), temperature of 

1073K and a total pressure of 1.1 atm. The net rate expressions were combined with component 

mole balances to form a series of differential equations that were solved in Matlab.53  Figure 1.9a 

shows a plot of the mole fraction of different species in the reactor as a function of space time. The 

space time is defined as the ratio of catalyst weight to the inlet mass flow rate of methane, which 

gives a measure of the residence time of methane in the reactor. The data in Figure 1.9a show that 

oxygen is consumed rapidly near the reactor inlet and that the methane mole fraction attains a near 

steady value when all oxygen has been consumed. The concentration of ethane produced decreases 

with increasing space time while that of ethylene increases which is consistent with the proposed 

mechanism that ethylene is formed sequentially from ethane. The other products formed (CO, CO2, 

H2O and H2) do not change significantly after all oxygen has been consumed. Although not 

included in the plot, it should be noted that at much higher space times the products will equilibrate 

into a mixture of CO, CO2, H2O and H2 due to continuous steam reforming of ethylene (Reaction 

8) and the water gas shift reactions (Reaction 9 & 10). Data in Figure 1.9b show that the calculated 

C2 selectivity, C2 yield and CH4 conversions become nearly constant when oxygen has been 

completely consumed. In addition, the maximum C2 yield from the PBR is 16% at a CH4 

conversion and C2 selectivity of approximately 29% and 57%, respectively. This calculated value 

of C2 yield is consistent with the reported experimental value for a La2O3/CaO catalyst.54  
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Figure 1.9. Packed bed plug flow reactor model results (a) Plot of mole fraction of species as a 

function of space time. (b) Plot of C2 selectivity, C2 yield and CH4 conversion as a function of 

space time. Figure was reproduced from Farrell et al.22 
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 To determine the reaction steps with the most influence on C2 yield and selectivity, a 

sensitivity analysis was performed on the reaction network. A sensitivity coefficient was calculated 

for each reaction step using Equation 1.2.22 The sensitivity coefficient (Si) is a normalized measure 

of the impact of a slight pertubation in the rate constant (ki) of the ith step on the overall C2 yield 

or selectivity (ZC2). The rate constant for each reaction step is perturbed by 0.1%, while the rate 

constants for the remaining steps (kj) are kept at the published values. δki is the change in ki and 

δZC2 is the resulting change in the value of ZC2 due to perturbation of ki. If Si is zero, it implies 

that C2 yield or selectivity is not affected by a small change in ki. A positive Si indicates that the 

C2 yield or selectivity increases as ki increases. On the other hand, a negative sensitivity co-

efficient (Si) means that ZC2 decreases as ki increases. Furthermore, the higher the absolute value 

of Si, the higher the rate at which ZC2 changes for a given change in ki 

                                                 𝑆𝑖 = (
𝜕𝑍𝐶2

𝜕𝑘𝑖
)

𝑘𝑗

(
𝑘𝑖

𝑍𝐶2

)  ≈ (
𝛿𝑍𝐶2

𝛿𝑘𝑖
)

𝑘𝑗

 (
𝑘𝑖

𝑍𝐶2

)                                        (1.2)  

 Data in Figure 1.10 show the calculated sensitivity coefficient for the various steps in the 

reaction network using the packed bed reactor model. As shown in the figure, the C2 yield and 

selectivity are mostly affected positively by an increase in the rate of formation of ethane from 

methane and oxygen (reaction 2). Furthermore, increasing the rate of partial oxidation of ethane 

to ethylene (reaction 5) has the most significant negative effect on C2 yield and selectivity. It is 

somewhat counterintuitive that an increase in the rate of reaction 5 decreases C2 yield and 

selectivity since ethylene is also a preferred product. However, this behavior is because the 

ethylene produced is consumed much more quickly in sequential reactions leading to an overall 

decrease in C2 yield. These results imply that a good OCM catalyst should be able to readily 

activate the C-H bonds in methane and promote its conversion to ethane at high rates. In addition, 
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an optimal OCM catalyst should also be able to minimize the rates of further oxidation of ethane 

and ethylene i.e., it should not readily activate the C-H bonds in C2 products. However, known 

OCM catalysts that can activate the C-H bonds in methane can typically also activate the C-H 

bonds in ethane and ethylene at even higher rates.55 In fact, Stansch et al20 calculated the ratio of 

the rate of reaction 5 (partial oxidation of ethane to ethylene) to reaction 2 (formation of ethane 

from methane) at a selected condition and found that reaction 5 occured about five times as fast as 

reaction 2. Similarly, the rate of reaction 6 (ethylene oxidation) was calculated to be about 42 times 

that of reaction 2. Using analogous kinetic arguments, a C2 yield of 28 – 30% has been estimated 

as the maximum achievable from OCM.56,57 Therefore, we infer that simply focusing on catalyst 

screening in conventional PBRs is unlikely to significantly advance the field of OCM. 

1.7.2 Membrane reactor model 

 To elucidate the potential benefits of using a dense solid oxide membrane reactor over a 

PBR, we have modeled a membrane plug flow reactor using the same kinetic parameters and 

reaction conditions applied in the PBR model. In the membrane reactor model, oxygen was not 

added at the inlet alongside methane as in a PBR model, instead it enters through the sides of the 

reactor at the reported diffusion rate of oxygen through a state-of-the-art membrane material i.e. 

La0.6Sr0.4Co0.2Fe0.8O3-δ  (LSCF).58 Figure 1.11a and 1.11b show the plots of mole fraction of 

different species, CH4 conversion, C2 selectivity and C2 yield as a function of space time for the 

membrane plug flow reactor model. Due to distributed oxygen feeding in the membrane reactor 

model, these results can only be reasonably compared with that of the PBR model at the highest 

space time plotted (corresponding to the reactor outlet) where the total amount of oxygen, O2/CH4 

ratio and catalyst mass in both models become equal. At the highest space time, Figure 1.11b  
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Figure 1.10. Plot of sensitivity co-efficient for C2 selectivity and C2 yield for different steps in the 

reaction network using packed bed reactor model. Figure was reproduced from Farrell et al.22 
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shows that the CH4 conversion, C2 selectivity and C2 yield from the membrane reactions model 

are 45%, 85% and 38%, respectively. These values are significantly higher than that obtained from 

the PBR model. The higher C2 selectivity observed is mainly because the rates of C2 formation are 

more favored over COx formation at the lower oxygen partial pressures that occur in the membrane 

reactor model. This observation is consistent with the process kinetics which show a lower order 

dependence (~ ½ order) of C2 product formation on the oxygen partial pressure compared to COx 

product formation (~1st order) as mentioned earlier. Interestingly, a higher overall methane 

conversion was achieved in the membrane reactor model even though the total amount of oxygen 

was the same as the PBR model. This is attributed to the fact that the reactions leading to C2 

products require less oxygen than the deeper oxidation reactions.  

 We have also performed a sensitivity analysis on the membrane reactor model. The 

sensitivity coefficients for the membrane reactor model plotted in Figure 1.12 show that aside from 

the rate of ethane formation (reaction 2) and rate of ethylene oxidation (reaction 6), the oxygen 

flux through the membrane also has an even larger impact on the C2 yield. This result suggests that 

increasing oxygen flux through the membrane can improve the C2 yields. It should be noted that 

due to the relatively low oxygen fluxes through the LSCF membrane (used in our model) and other 

state-of-the-art membrane materials, the volume of the membrane reactor that would be required 

to achieve the same total amount of oxygen as the PBR, would be significantly larger than the 

PBR. This would have an impact on the reactor cost and could also promote sequential reactions 

of the C2 products to COx downstream. Therefore, one way to improve the performance of the 

membrane reactors in OCM is to develop membrane materials and utilize membrane designs that 

enable higher oxygen fluxes compared to the current state-of-the-art membranes. 
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Figure 1.11. Membrane plug flow reactor model results (a) Plot of mole fraction of species and 

(b) Plot of C2 selectivity, C2 yield and CH4 conversion as a function of space time. Figure was 

reproduced from Farrell et al.22 
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Figure 1.12. Plot of sensitivity co-efficient for C2 selectivity and C2 yield for different steps in the 

reaction network. Figure was reproduced from Farrell et al.22 
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1.8 Catalyst Integration in Solid Oxide Membrane Reactors for OCM 

 The reactor models presented above show that membrane reactors should, in principle, 

perform better than PBRs in OCM. However, there have been comparatively much fewer OCM 

experimental studies in membrane reactors compared to PBRs, and the performance of the 

membrane reactors have not met the techno-economic target.22 An important research direction in 

the development of solid oxide membrane reactors for OCM is to identify and integrate selective 

OCM catalysts with the membranes. Not all membrane reactors previously tested in OCM included 

an OCM catalyst on the methane-side of the membrane. In other words, the membranes in these 

studies, which are typically unselective for OCM, performed a dual role of activating methane as 

well as conducting O2- ions. However, it has been reported that the inclusion of a selective OCM 

catalyst on the methane-side of the membrane can lead to significantly higher C2 selectivities and 

yields.59,60 For example, Tan et al59 demonstrated that by including an additional SrTi0.9Li0.1O3  

catalyst in a LSCF membrane reactor, the C2 yield could be improved from 14% to 21% at 1248 

K. Therefore, it is important that future membrane reactor designs incorporate OCM catalysts for 

improved performance.  

 Aside from having a high selectivity for OCM, it is important to ensure that the integrated 

catalysts have good O2- conductivity and are compatible with the membrane material. The ionic 

conductivity of the catalyst is desired to allow the facile transfer of O2- ions from the membrane to 

the catalyst layer while preventing recombination of the ions to undesired gas-phase O2.
60,61 To 

enable sufficient contact area between catalyst and membrane for facile O2- transport  between 

layers, the catalysts are typically adhered to the membrane by firing at elevated temperatures prior 

to reactor tests.60,61 Furthermore, the catalyst layers have to remain in close contact to the 

membrane under the high temperature conditions (≥ 973K) used in reactor tests. At such high 
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temperatures, solid-state reactions can occur between the membrane and catalyst which can lead 

to undesired changes in the properties (e.g., conductivity, activity or selectivity) of the materials.62 

In addition, if the membrane and catalyst expand at different rates with temperature, it can lead to 

cracking of the membrane or separation of both layers at high temperatures. Therefore, the 

membrane and catalyst material should have similar thermal expansion co-efficients.63 One way 

to fulfil all of these criteria is to employ a membrane and catalyst of the same or similar 

composition 

 Furthermore, to ensure long-term stability, the integrated catalyst should not only be 

compatible with the membrane material, but also resistant to solid carbon-induced catalyst 

deactivation. OCM membrane reactors are highly susceptible to carbon deposition issues (also 

known as coking) due to the presence of low O2/CH4 ratios and high ethylene concentrations at 

high operating temperatures. As shown in Figure 1.4b, the thermodynamically favored product in 

the limit of low O2/CH4 ratios is solid carbon. This carbon deposition can poison the active sites 

on the catalyst leading to a decline in its performance over time. Although, the coked 

membrane/catalyst can be intermittently regenerated by high temperature oxidation, developing 

systems that are resistant to carbon deposition is important as this will minimize the number of 

costly regeneration cycles in long-term (e.g., commercial) operations. 

1.9 Scope of the Dissertation 

 The overall objective of this dissertation is to identify and integrate selective OCM 

catalysts and membranes in solid oxide membranes reactors, improve the understanding of these 

reactors and demonstrate that they can provide improved C2 selectivity and yield compared to 

conventional co-fed reactors applied in OCM. In our membrane reactor design, we focus on 
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utilizing membrane materials of similar composition as the integrated OCM catalysts in order to 

minimize incompatibility issues and promote long-term stability.  

 In Chapter 2, a description of the experimental techniques used to obtain the data in this 

dissertation is presented. It begins with a description of the synthesis techniques and experimental 

set-up followed by a detailed description of the various characterization techniques used in this 

work. The information in the chapter would serve as an important guide for researchers who wish 

to reproduce the experimental work in this dissertation. 

 The work in Chapter 3 is focused on identifying O2- conducting membrane – catalyst 

materials for application in OCM. We chose to study a gadolinium-doped barium cerate 

(BaCe0.8Gd0.2O3-δ or BCG) perovskite because it is an O2- conducting material composed of 

elements that have been shown to be selective in OCM. This work was conducted using a 

conventional co-fed PBR. We present conversion-selectivity and conversion-yield curves that 

illustrate the OCM performance of BCG. While this material was found to be active and selective 

for OCM, we found that its perovskite phase, which is required for its conductive (membrane) 

properties, decomposes into carbonate and oxide phases due to reactions with CO2. We 

demonstrate that doping BCG with Zr was effective at suppressing the phase instability in OCM 

without significantly affecting the C2+ yields in a PBR. 

 In Chapter 4, selected membrane-catalyst materials were studied in small button-shaped 

membrane reactors. The materials investigated were all perovskite oxides and include BCG, Zr-

doped BCG (BaCe0.4Zr0.4Gd0.2O3-δ) and La0.8Sr0.2Ga0.8Mg0.2O3−δ. This preliminary study was done 

to identify the most promising membrane-catalyst material for further studies in a tubular 

membrane reactor. We were particularly interested in determining the stability of the materials 

against carbon-induced deactivation at low O2/CH4 ratios that occur in practical OCM membrane 
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reactors. The results obtained show that BCG gives excellent resistance to carbon-induced 

deactivation and the best oxygen permeation rates among the tested materials. 

 In Chapter 5, BCG tubular membranes were fabricated using Cu as a sintering additive and 

studied in OCM. The Cu modified BCG (Cu-BCG) membranes were tested as a membrane reactor 

(with distributed oxygen feed) and as a co-fed reactor (where methane was fed together with 

oxygen from one inlet). The data show that the Cu-BCG membrane reactor achieves significantly 

higher C2 selectivity compared to a co-fed reactor at similar methane conversions. These results 

provide conclusive experimental evidence in support of our overall hypothesis of the improved 

OCM performance of a catalytic membrane reactor over a conventional co-fed reactor. Data on 

the stability of the Cu-BCG membrane reactor over time is also presented and discussed. 

 Chapter 6 is the final chapter of this dissertation and presents the main conclusions from 

this study as well as recommendations for future work. 
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Chapter 2 

 

 

Experimental Techniques 

 

2.1 Summary  

 This chapter presents a description of the various experimental techniques used in this 

dissertation work.  It begins with a description of the procedures used to synthesize the catalysts 

and membranes for the OCM experiments. This is followed by a description of the experimental 

set-ups and the procedures used in the tests. Lastly, a detailed description of the various 

characterization techniques (microscopic and spectroscopic) used in this work is presented 

including the fundamental principles behind each technique. The information in this chapter would 

serve as a useful guide for researchers who wish to replicate the experimental work in this 

dissertation. 

  



32 
 

2.2 Synthesis Techniques 

2.2.1 Synthesis of packed bed reactor catalysts  

 The catalysts tested for OCM in the packed bed reactor were synthesized using a modified 

Pechini sol-gel method.1,2 Two perovskite oxide catalysts were synthesized: BaCe0.8Gd0.2O3-δ 

(BCG) and a BaCe0.4Zr0.4Gd0.2O3-δ (BCZG). Details of the materials used in the synthesis including 

manufacturer and purity levels are given in Table 2.1. It includes high-purity metal nitrates, 

ethylenediaminetetraacetic acid (EDTA), aqueous ammonia (NH4OH), ethylene glycol (EG) and 

deionized water. The EDTA serves as a chelating agent, while ethylene glycol serves as a 

polymerizing agent.2–4 The molar ratio of EDTA to metal ion was 3/2, while that of EDTA to 

ethylene glycol was 1/3.  

 The overall synthesis procedure is illustrated in Figure 2.1. EDTA was added into a 

measured amount of DI water followed by the addition of NH4OH, which aids the dissolution of 

EDTA. The measured pH of the solution after mixing with NH4OH was ~10. In a separate beaker, 

stoichiometric amount of barium nitrate was dissolved in DI water while stirring at 80°C. The clear 

EDTA/NH4OH solution was poured into the barium nitrate solution and labelled solution A. A 

separate solution (solution B) was prepared by dissolving stoichiometric amount of the remaining 

metal nitrates (i.e., cerium (III) nitrate hexahydrate and gadolinium (III) nitrate hexahydrate) in DI 

water with the aid of a sonicator. In the case of BCZG, a stoichiometric amount of zirconium 

dinitrate oxide hydrate was also added to solution B. Solution B was then added slowly (drop by 

drop) to solution A while stirring at 80°C. This dropwise addition helps prevent irreversible 

precipitation of the metal salts resulting in a clear solution. After mixing the two solutions, a 

measured amount of ethylene glycol was added. The beaker was sealed and left to stir over night 

at 80°C to promote polymerization between the EDTA and ethylene glycol. Thereafter, the 



33 
 

solution was opened and left to evaporate until a transparent gel like residue was formed. The gel 

was subsequently calcined at 250°C for 2 hours to form a black ash, which was lightly ground in 

a mortar and pestle. The black ash was calcined further at 1000°C for 4 hours to decompose any 

organics and form the final perovskite powders.  

Table 2.1. Materials used in the synthesis of packed bed reactor catalysts 

Chemical Manufacturer or Vendor Purity Level 

Ethylenediaminetetraacetic acid 

(EDTA) 

Fisher Scientific 99.7% 

Aqueous ammonia (29% NH4OH) Fisher Scientific > 95% 

Barium nitrate [Ba (NO3)2] Sigma Aldrich ≥ 99% 

Cerium (III) nitrate hexahydrate 

[Ce (NO3)3·6H2O] 

Acros Organics 99.5% 

Gadolinium (III) nitrate 

hexahydrate [Gd (NO3)3·6H2O] 

Acros Organics 99.9% 

Zirconium dinitrate oxide hydrate 

[ZrO (NO3)2•xH2O], x ~1.8 

Alfa Aesar 99.9% 

Ethylene Glycol (C2H6O2) J.T. Baker ≥ 99% 
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Figure 2.1. Procedure for the synthesis of doped barium cerate perovskite oxide powders using 

the modified pechini method. 

 

2.2.2 Synthesis of button membranes 

 Button-shaped membrane reactors were synthesized and tested in OCM. These membranes 

have limited surface area compared to tubular membranes but are relatively easier to synthesize 

and require less material. The button membranes were used for preliminary performance 

evaluation of the membranes/catalysts in order to identify the most promising materials. In the 

button membranes, a thin porous layer of higher surface area was coated on one side of the 

membranes to act as the OCM catalyst and increase the ratio of active surface area to volume. 

Catalysts were of the same or similar composition to the membrane. This catalyst/membrane 

matching helps prevent undesired chemical reactions between the membrane and catalyst, in 
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addition to minimizing thermal stress. Three different button membrane/catalyst systems were 

synthesized in this work. This includes a BCG membrane coated with a BCG catalyst (BCG/BCG), 

a BCZG membrane coated with a BCZG catalyst (BCZG/BCZG) and a Ni doped 

La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) membrane coated with LSGM catalyst (Ni-LSGM/LSGM). Note 

that the membrane portion of the LSGM system was doped with 15 mol% Ni to ensure its electron 

conductivity, since LSGM by itself has poor electron conductivity.5,6 This was achieved by mixing 

LSGM (Sigma Aldrich, 99%) and NiO (Alfa Aesar, 99%) in a weight ratio of 5:0.28 using an agate 

mortar and pestle. The mixture was then placed on a yttria-stabilized zirconia (YSZ) plate and 

calcined in a muffle furnace at 1000°C for 6 hours using ramp rates of 2°C/min.  

 To synthesize the button membranes, the perovskite powders were first sifted through a 75 

µm stainless steel sieve.  A measured amount of sifted perovskite powders (0.3g of BCG or BCZG 

and 0.36g of Ni-LSGM) was uniaxially pressed into pellets in a 15 mm die press at ~ 40 MPa for 

2-3 minutes. The pellets were carefully transferred onto a YSZ plate, which was previously covered 

with a powder bath of respective perovskite powders. The powder bath is necessary to help 

minimize chemical reaction of the pellets with the YSZ plate at the high fabrication temperatures. 

The pellets were covered with an extra layer of respective perovskite powders to minimize 

contamination and mitigate the evaporation of Ba from the doped barium cerate membranes at 

high temperatures.7,8 The porous pellets were then transferred to a furnace where they were 

sintered at high temperature to transform them into dense (non-porous and gas-tight) membranes. 

The Ni-LSGM membranes were sintered at 1450°C for 4 hours while the BCG and BCZG 

membranes were sintered at 1650°C for 5 hours using slow ramp rates of 1°C/min to prevent 

cracking of the membranes due to thermal stress. The as-pressed pellets were 15 mm in diameter 
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while the sintered membranes were ~ 10 mm in diameter, corresponding to a linear shrinkage of ~ 

33%. The final thickness of the sintered membranes was ∼ 500 µm.  

 The catalyst layers were prepared by mixing respective perovskite powders (BCG, BCZG 

or LSGM) with graphite (Alfa Aesar, 75-micron size) in a 3:1 weight ratio using a mortar and 

pestle. 0.2 g of the mixture was first mixed with 600 µL of ethanol to form a suspension, then 25 

µL of the suspension was drop-coated one side of the membranes. To minimize inconsistency in 

the area coated by the catalyst suspension, the surface of each membrane was first covered with 

Kapton tape containing a 3/8-inch center hole before drop-coating. After a few minutes of drying, 

the Kapton tape was peeled off the membrane leaving behind a circular layer of the catalyst 

coating. The coated membranes were covered with glass vials and left to dry slowly overnight to 

prevent cracking of the layers. Thereafter, they were transferred to a muffle furnace and calcined 

at 1150°C for 2 hours (for the LSGM system) or 1500°C for 4 hours (for the BCG and BCZG 

system) using ramp rates of 2°C/min. The calcination step burns off the graphite in the catalyst 

layers to create pores and adheres the catalysts to the membranes.  

2.2.3 Synthesis of tubular membranes  

 Tubular BCG membranes were fabricated using a combination of slip-casting, solid-state 

reaction (SSR) and sintering. Slip-casting is a well-known traditional technique used for the 

preparation of ceramic objects with complex shapes and forms. It offers the advantage of being 

cheaper than extrusion-based methods of fabricating tubular membranes as it requires less 

equipment.9,10 Specific details of the slip-casting process developed in this work is discussed later 

in this section. SSR is the traditional method used in synthesizing perovskite oxide powders. It is 

achieved by thoroughly mixing carbonate and oxide precursor powders, then heating the mixture 

to high temperatures for several hours.11 For example, the synthesis of BCG by SSR can be 
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accomplished by ball milling a mixture BaCO3, CeO2 and Gd2O3 powder in stoichiometric weight 

ratios, followed by calcination in air at 1350°C for 6 – 10 hours.12,13 The perovskite phase is formed 

due to diffusion of metal cations across the solid-solid interfaces of the different crystalline phases 

in the sample and the nucleation of the perovskite at the interfaces.11 Compared to solution-based 

methods (e.g., sol gel), membranes synthesized from SSR require higher sintering temperature and 

longer sintering times due to the slow rate of solid-state diffusion.2,11 However, SSR is easily 

scalable and useful for synthesizing large batches of perovskite material that is required for 

fabricating tubular membranes by slip-casting. The scalability of SSR is a major advantage over 

solution-based methods, which typically require substantial quantities of solvent per unit gram of 

perovskite powder resulting in large liquid waste. Details of the materials used in synthesizing of 

the tubular membranes are provided in Table 2.2. Figure 2.2 illustrates the process used in slip-

casting the precursor tubes. 

2.2.3.1 Preparation of plaster molds 

 Plaster molds were prepared by mixing gypsum powder and water in a 1:1 weight ratio. 

The plaster slurry was immediately poured in a cylindrical container then degassed under vacuum 

for 5 minutes to reduce air bubbles. After degassing, a glass test tube (16 mm OD) was carefully 

inserted vertically at the center of the slurry (~10 cm deep) avoiding contact with the bottom of 

the container. The slurry was left to solidify for a few minutes and then the test tube was carefully 

removed, creating a cylindrical hollow in the mold. The plaster mold was subsequently removed 

from the container and dried at 50°C for 72 hours.  
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2.2.3.2 Preparation of slip-casting slurry 

 The slurry (slip) for slip-casting was prepared by ball milling stoichiometric amounts of 

BCG precursor powders (e.g., 30 g of BaCO3, 21 g of CeO2 and 11 g of Gd2O3) in ethanol for 24 

h using YSZ balls as the grinding media. After ball milling, the solution was dried under constant 

stirring. In a separate beaker, a measured amount of Gum Arabic (as binder) was dissolved in 

deionized water under continuous stirring at room temperature. The ball-milled precursor powder 

was added to the Gum Arabic solution and stirred for ~ 10 minutes. The weight ratio of binder: 

precursor powder: water used was 1:9:45. This specific ratio was determined by systematically 

tuning the quantities of each component until an effective slip-casting procedure was developed. 

CuO (0.82 g per 100 g of BCG precursor) was also added to the slurry as a sintering additive to 

help reduce the temperature required for densifying the BCG tubes. The sintering additive creates 

lower-melting phases and increases the concentration of electronic defects in the system, which 

promotes cation diffusion and mass transport, leading to densification at lower temperatures.14,15 

Note that CuO was measured in an amount required to achieve 4 mol% Cu in BCG. 

2.2.3.3 Slip-casting of tubular precursors 

 To slip-cast the tubes, the slurry was poured into the dry plaster mold, which absorbs water 

leaving behind a solid layer of precursor powder on the wall. The slurry was poured in 

continuously ensuring that the top surface of the slurry in the plaster mold is kept at a constant 

level. After casting for one minute, the excess slurry was emptied. This process was repeated five 

times using the same plaster mold such that the total casting time was five minutes. The multiple 

casting layer approach helps to prevent the formation of continuous holes in the casted tubes by 

any bubbles present. After slip-casting, the mold was wrapped in parafilm and allowed to dry 
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slowly at room temperature. The solid layer (casted tube) shrank during drying and was carefully 

removed from the mold.  

2.2.3.4 Sintering of tubular precursors 

 Once removed, the casted tubes (~14 mm ID, 16 mm OD and 10 cm in length) were 

carefully transferred to a YSZ plate within a furnace with the open-end of the tubes facing 

downwards. A thick layer of YSZ powder was placed underneath the open-end of the tubes to 

minimize stress. Alumina tubes (open both ends, 24 mm ID) were also placed over the casted tubes 

in the furnace to prevent them from falling over during sintering. The casted tubes were sintered 

at 1450°C for 5 hours using ramp rates of 1°C/min. After sintering, the open-end of the tubes were 

slightly deformed due to compressive stress and reaction with the YSZ powder on the sintering 

plate. Therefore, they were polished using 240 grit silica carbide paper until even. The dried casted 

tubes weighed ~ 12 g before sintering and ~ 10 g after sintering. The polished sintered tubes have 

~10 mm ID, 11 mm OD and 6 cm length. The linear shrinkage of the tubes upon sintering was ~ 

40%. Prior to testing, the tubular membranes were thoroughly cleaned by rinsing and sonicating 

in ethanol. Note that the sintering temperature mentioned above (1450°C) is ~ 200 °C less than 

that required for the BCG button membranes reported in Section 2.2.2 due to presence of the 

sintering additive. In the absence of a sintering additive, the BCG precursor tubes did not fully 

densify even after sintering at 1650°C for 5 hours using ramp rates of 1°C/min. Moreover, the 

higher sintering temperature promoted undesired chemical reactions between the tubes and the 

YSZ powder/support plate and created additional thermal stress that caused the tubes to crack.  

 In the synthesis described above, the SSR (where BCG perovskite phase is formed from 

the carbonate and oxide precursors) and sintering (densification) is achieved in a single high 

temperature step. In other words, the BCG perovskite phase is formed simultaneously during the 
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sintering process. The combination of both steps (SSR and sintering) with the aid of a metal oxide 

sintering additive is referred to as solid state reactive sintering (SSRS) and is technique that was 

recently developed as a simplified approach for the synthesis of barium cerate/zirconate perovskite 

membranes.16,17 

2.2.3.5 Coating of tubular membranes with catalyst  

 A layer of BCG catalyst was coated on the inner surface of some of the tubular membranes. 

The coating layer was prepared by mixing BCG powder, graphite and binder (6wt% ethyl cellulose 

in terpineol) in ethanol to form a slurry. The BCG powder was prepared by SSR and sifted to < 75 

µm size prior to use. The weight ratio of the binder: graphite: BCG powder: ethanol in the slurry 

was 4:7:21:80. The prepared slurry was sonicated for about 10 minutes to break up any 

agglomerates and then poured into the inner surface of the tubular membrane. After ~5 s, the slurry 

was emptied then the tubular membrane was dried at 70°C for 10 minutes. The coating process 

was repeated 10 times to increase the thickness of the coated layer. To minimize contamination, 

the outer surface of the tubular membrane was wrapped in Teflon tape before the coating process. 

After drying the final coating layer, the coated membranes were calcined at 900°C for 2 h (ramp 

rate 1.5°C/min) to burn off graphite and create a porous catalyst layer attached to the membrane. 

 

 

 

 



41 
 

 

 

Table 2.2. Materials used in the synthesis of tubular membranes 

Chemical Manufacturer or Vendor Purity Level 

Barium carbonate (BaCO3) 

1µm powder 

Alfa Aesar 99.8% 

Cerium (IV) oxide (CeO2) 

5 µm powder 

Alfa Aesar 99.9% 

Gadolinium (III) oxide (Gd2O3) 

<10 µm powder 

Alfa Aesar 99.9% 

Copper (II) oxide (CuO) 

<10 µm powder 

Sigma Aldrich 98% 

Gum Arabic The Ceramic Shop Not specified 

Activa Art Plaster (Gypsum Powder) Blick Art Materials Not specified 

Alpha-Terpineol Acros Organics 97+% 

Ethyl cellulose Sigma Aldrich 48% ethoxyl 

Graphite Alfa Aesar ≥ 99% 

 

 

Figure 2.2. Five consecutive steps involved in slip casting precursor tubes: (a) a plaster mold is 

prepared from a mixture of gypsum plaster and water; (b) the dry mold is filled with slurry 

composed of chemical precursors and water; (c) the mold extracts water from the slurry forming a 

solid layer of precursor on the wall of the mold; (d) excess slip is decanted from the mold; (e) solid 

layer or casted tube is removed from mold after partial drying. 
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2.3 Experimental Set-ups 

2.3.1 Packed bed reactor set-up 

Figure 2.3 shows a schematic of the set-up used for the OCM packed bed reactor experiments. The 

catalyst powder was placed in the center of a quartz tube (6.35 mm ID and 9.5 mm OD) and 

supported on both sides with quartz wool. The quartz tube was oriented horizontally in an insulated 

furnace and a thermocouple was located near the catalyst bed.  The reactor was heated to 750°C in 

a flow of Argon that was discontinued when the reactant gases were introduced. Methane 

(containing 5% He) and air were fed through separate mass flow controllers (Cole-Parmer) and 

were mixed before entering one end of quartz tube. The effluent gases pass through a condenser 

to remove any water vapor formed during the reaction before entering a Gas Chromatograph (GC) 

for compositional analysis.   

 

Figure 2.3. Packed bed reactor set-up for OCM 
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2.3.2 Button membrane reactor set-up 

A diagram of the button membrane reactor set-up is shown in Figure 2.4.  The reactor was housed 

in an insulated furnace. The button membrane was attached to the top of an alumina tube (12.7 

mm OD and 9.5 mm ID) using glass and ceramic sealants (Aremco-Seal 617, Mo-Sci GL1729P/-

45 and Ceramabond 552). The sealants were applied one layer after another (in the order mentioned 

above), dried after each layer, then cured by heating in the furnace to 880°C in helium flow. The 

reactor was then cooled down to desired reaction temperature. In the OCM experiments, a mixture 

of O2 and N2 (or air) was fed from the top through a quartz tube (19 mm OD and 17 mm ID) to the 

membrane region. Methane and helium flow upwards through a smaller inner quartz tube (6.35 

mm OD and 4 mm ID) to the catalyst-coated side of the membrane where the reaction occurs with 

permeated oxygen. The effluent gases from the methane side flow down the annular region 

between the alumina tube and the inner quartz tube to a GC for analysis.  
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Figure 2.4. Button membrane reactor set-up. Note that air was sometimes used in place of a 

mixture of oxygen and nitrogen 

 

2.3.3 Tubular membrane reactor set-up 

The tubular membranes were tested in the membrane reactor set-up shown in Figure 2.5a. This 

set-up is very similar to that of the button membranes. The open-end of the tubular membrane was 

sealed to the top of an alumina tube (12.7 mm OD and 9.5 mm ID) using glass and ceramic sealants. 

Methane and helium were introduced through an inner quartz tube (6.35 mm OD and 4 mm ID) 

that extends towards the dead-end of the tubular membrane. A mixture of O2 and N2 was fed from 

the top through a larger quartz tube (19 mm OD and 17 mm ID) to the membrane region. The 

effluent gas containing products formed from the reaction between methane and permeated oxygen 

is sent to a GC for analysis. The tubular membranes were also tested in a “co-fed reactor” 

configuration where CH4 is co-fed with O2 on one side of the membrane while pure N2 is fed on 
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the opposite side as shown in Figure 2.5b. This configuration was used to evaluate the effect of 

changing the mode of feeding oxygen (distributed vs co-fed) on the OCM performance when all 

other conditions are kept the same as the membrane reactor. This approach allowed us to test our 

overall hypothesis of the improved performance of a membrane reactor over a conventional co-

fed reactor. 
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Figure 2.5. Tubular membrane experimental set-up (a) membrane reactor configuration (b) co-fed 

reactor configuration. 
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2.4 Characterization Techniques 

 Several characterization techniques were used in this dissertation work. In this section, a 

general description of each characterization technique is provided along with specific descriptions 

of the equipment and conditions employed this work. 

2.4.1 X-ray diffraction  

 X-ray diffraction (XRD) is a technique used for analyzing the structure of crystalline 

materials. It is primarily a bulk-sensitive technique because it has a large penetration depth (~1 – 

500 µm) into the material.18 XRD utilizes two key properties of X-ray electromagnetic radiation: 

(i) An X-ray travels in a straight line with speed c, (ii) An X-ray interferes with itself and with 

objects on the order of its wavelength. Since X-rays have wavelength (0.01 – 100 Å) of similar 

dimensions as the inter-atomic spacing in crystalline materials (0.5 – 2.5 Å), they can interfere 

these materials.18   

 In XRD, a beam of X-ray photons generated from a source is directed towards a sample. 

The incident X-ray beam can be treated as a wave with an oscillating electric field. When the X-

ray hits the sample at an angle (θ), the waves are scattered by the sample. In other words, the 

electrons surrounding the atoms in the sample start to oscillate about a mean position, emitting an 

electromagnetic wave that interacts with the oscillating electric field of the X-ray wave.18 The 

scattered waves can either undergo constructive or destructive interference depending on how the 

waves overlap with each other.18 In most directions, the waves are out of phase with each other 

and destructive interference (incoherent scattering) occurs resulting in lower scattered intensity. 

However, in a few directions, the waves will move in phase and reinforce each other resulting in 

greater scatter intensity. This is termed constructive interference (coherent scattering). For an 
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idealized sample consisting of parallel plane of atoms separated by a distance d, constructive 

interference is achieved when Bragg's Law (Equation 2.1) is satisfied.18  

                                                                   𝑛𝜆 = 2𝑑 sin 𝜃     (2.1) 

Where n is an integer, d is the interatomic spacing, θ is the incident angle and λ is the wavelength 

of the X-ray beam. The angle between the incoming and outgoing beam directions is called the 

scattering or diffraction angle (2θ). Prior to hitting the sample, the X-ray beam is typically filtered 

to produce monochromatic (single wavelength) radiation.  

 The XRD measurements in this work was obtained using a Rigaku MiniFlex 600 

spectrometer, equipped with JADE software for phase identification and data processing. The 

device utilized a Cu Kα radiation source with wavelength (λ) =1.54059 Å and was operated at a 

tube voltage and current of 40kV and 15mA, respectively.  The sample (typically in powder form) 

was loaded onto a sample holder and inserted into the device chamber, where it was continuously 

scanned through a range of 2θ angles at a speed of 2°(2ϴ) per minute and a step size of 0.02°. The 

detector records the X-ray scattering intensity at each 2θ angle and a plot of the scattering intensity 

as a function of 2θ is obtained in the XRD spectrum. The relative peak positions obtained in the 

spectrum is a function of the d-spacing (determined by the crystal structure), while the peak width 

is related to the mean crystallite size with smaller crystals resulting in more peak broadening.18  

2.4.2 Scanning electron microscopy 

 Scanning electron microscopy (SEM) is a technique used to obtain magnified images of 

samples. The images obtained give information on the dimensions, topography, morphology and 

composition of the samples. In this technique, a beam of electrons emitted from an electron source 

(e.g., tungsten filament) are accelerated to high energy (E0 = 0.1 to 30 keV). The high energy beam 

is then finely focused on the sample by passing it through a series of apertures, lenses, and 
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electromagnetic coils. The focused beam is scanned by the coils in a rectangular raster (x-y) pattern 

such that it is placed sequentially at neighboring but distinct positions on the sample. At each 

distinct position, the interaction between the electron beam and the sample produces secondary 

and back-scattered electrons.  

 The secondary electrons are electrons ejected from atoms at the surface of the sample after 

interaction with the electron beam, while the back-scattered electrons are beam electrons (i.e., not 

ejected from sample atoms) that retain a large fraction of incident energy after interacting with the 

electric fields of atoms in the sample. The intensities of the secondary and back-scattered electron 

signals are measured using respective detectors, digitized and stored in a computer memory. The 

stored signals are then used to determine relative brightness levels in the resulting gray-scale image 

which is displayed on the computer screen. Compared to secondary electrons, images obtained 

from back scattered electrons give significant contrast between elements of different atomic 

numbers, and therefore give information on the composition of the sample. Images obtained from 

the lower energy (0 - 50 eV) secondary electrons give information on the topography of the 

sample.19 

 To prevent attenuation of the electrons (both incoming beam electrons and the emitted 

electrons) by the atoms and molecules in atmospheric gases, the conventional SEM sample 

chamber and electron-optical column are maintained under high-vacuum conditions (< 10-4 Pa). 

Furthermore, non-conductive samples will accumulate charges when impacted by the high-

electron beam in a conventional SEM, which results in bad image quality. To prevent charge 

accumulation, such samples need a pathway for electrical discharge that is well grounded. This is 

commonly achieved by coating the samples with a conductive layer such as gold or carbon.19 
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 In this dissertation work, secondary electron SEM images of samples were obtained using 

a Tescan MIRA3 FEG microscope, which has spatial resolution < 10 nm. The device was equipped 

with an EDAX detector that can be used for Energy Dispersive X-ray Spectroscopy (EDS) 

measurements as described in the following section. Samples were typically sputter coated with a 

thin gold layer to minimize charging during image collection. The images were collected at 

accelerating voltages ≤12 keV and working distances ≤ 15 mm.  

2.4.3 Energy dispersive x-ray Spectroscopy  

 Energy dispersive x-ray spectroscopy (EDS) is a technique used for the identification and 

quantification of elements present in a sample. It is typically used in conjunction with an electron 

microscope (e.g., SEM) to determine the elemental composition of the imaged sample. In EDS, a 

beam electron (at energy E0) incident on a sample, ejects an electron in the inner (core) shell of an 

atom in the sample leaving the atom in an excited (ionized) state. In this process, the incident beam 

electron loses energy (E) which is transferred to the ejected electron. The ejected electron goes to 

an empty energy level or vacuum leaving behind a hole that is then filled with an electron from an 

outer (higher energy) shell. As the outer electron relaxes to fill the hole, it releases a characteristic 

X-ray photon which has energy equivalent to the difference in energy in the outer shell and the 

core shell.20,21 The characteristic X-ray emitted is specific for each element and can be used for 

elemental analysis. Figure 2.6 illustrates the EDS process using a simple Bohr model of an atom.   

 To ionize an atom, the incoming beam electron must have enough energy that exceeds the 

binding energy of the specific inner shell electrons (i.e., the energy of the characteristic X-rays). 

Therefore, the accelerating voltage of the beam must be selected such it exceeds (by about 1.5 – 3 

times) the minimum specific energy required to excite the inner electron, known as the absorption 

edge energy or critical excitation potential.20 In addition to the characteristic X-rays, continuum 
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(Bremsstrahlung) X-rays are also emitted due to interaction of beam electrons with the atomic 

nucleus. However, these X-rays occur at a wide range of energies and have relatively weaker 

intensities; thus, they show up as background in the EDS spectrum.  

 The nomenclature of the characteristic X-ray emitted is dependent on the relative positions 

of the outer and inner electrons. For example, if an electron from an L or M shell drops to fill a 

hole in the K-shell, it emits a Kα and Kβ X-radiation, respectively. Likewise, if the electron transfer 

is from an M-shell to an L-shell, Lα radiation is emitted etc.20,21 EDS can be used for spot analysis, 

line scan analysis or elemental mapping. In spot analysis the beam is focused on one or consecutive 

spots in a sample to obtain local information on sample composition. In line scan analysis, the 

beam follows a straight line drawn on the sample and a spectrum showing the relative amounts of 

various identified elements along that line is obtained. Elemental maps are obtained over a 

rectangular scanned image area and show the distribution and relative amounts of identified 

elements over the scanned area. The EDS detector is typically semi-conductor based and can detect 

X-ray photons from a threshold of approximately 40 eV to E0 as high as 30 keV.19 The lightest 

element that can be analyzed in most conventional SEM/EDS is Be as Li emits characteristic X-

rays that are too low in energy, and H and He do not emit X-rays.  

 The EDS measurements reported in the dissertation were obtained using an EDAX Octane 

Plus EDS unit, which was connected to the Tescan Mira FEG SEM machine. The device was 

equipped with TEAM software for data collection and analysis. The working distance was fixed 

at a specified optimal of 15 mm and the accelerating voltage for each measurement was selected 

to be at least 1.5 times the maximum absorption edge energy of elements to be detected in the 

sample. Elemental maps were obtained at a resolution (matrix size) of 256 x 200 pixels and dwell 
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time of 200 µs. A drift corrected mode was used during mapping to minimize effect of sample 

drifting. 

 

Figure 2.6. Schematic of EDS process using a simple Bohr model of an atom 

 

2.4.4 Wavelength dispersive spectroscopy 

 Wavelength dispersive spectroscopy (WDS) was used to determine the composition of 

some samples in this dissertation work. In WDS, a sample is bombarded by a beam of electrons 

which leads to the generation of characteristics X-rays. A fraction of the emitted X-rays is directed 

to an analyzing crystal with a specific lattice spacing (d). The X-rays hit the crystal at an incident 

angle (θ) and are strongly diffracted by the crystal if the wavelengths satisfy Bragg’s law (Equation 

2.1).  The diffracted X-rays leave the crystal at an angle 2θ relative to the incident X-ray beam and 

are focused such that a single wavelength is sent to a detector. The detector collects and counts the 

X-rays at that wavelength, processes them and generates an output signal that represents the X-ray 

intensity at the specific wavelength.22  
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 Only a single wavelength (and therefore a single element in a sample) can be analyzed by 

the detector at a given time. To analyze the wavelength from a different element in the sample, the 

incident angle (θ) of the X-rays on the analyzing crystal must be changed. In original WDS 

spectrometers, the incident angle (θ) of the X-rays on the analyzing crystal is modified by moving 

the crystal along an arc (known as a Rowland circle) relative to the sample, such that different 

wavelengths are selected for detection and analysis. Since the diffracted X-rays leave at a 2θ angle, 

the detector in the Rowland circle must also be rotated at twice the angular speed of the analyzing 

crystal to ensure that the diffracted beam hits the center of the detector. Only a limited range of 

wavelengths can be achieved from a single analyzing crystal, therefore multiple crystals with 

different lattice (d) spacings are typically applied to allow the analysis of a wide range of elemental 

wavelengths. Multiple detectors are normally included in the WDS unit such that the wavelengths 

of the different elements’ samples can be analyzed simultaneously.22,23 

 WDS is typically performed in a specialized Electron Probe Microanalyzer (EPMA) unit, 

although it is sometimes integrated into a microscopy (e.g., SEM) device. For accurate estimation 

of sample composition, the samples should ideally be flat and well-polished to ensure uniform 

emission of X-rays. The analysis system must also be calibrated with standards of known 

composition as the X-ray intensities are corrected for matrix effects (e.g., atomic-number, 

absorption and fluorescence excitation effects) by a computer program which compares the raw 

intensities to that of the known standards.23 The main advantages of WDS over EDS for sample 

composition analysis include lower detection limits, higher spectral resolution and better accuracy. 

The detection limit for WDS is ~ 100 ppm, while that of EDS is ~ 1000 ppm.20 WDS signals also 

have narrower peak widths (~ 5 – 20 eV) and therefore lower peak interference compared to EDS 
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signals, which have spectral resolution of ~ 100 - 200 eV. However, WDS requires a longer data 

acquisition compared to EDS.21–23 

  In this work, WDS measurement were obtained using a Cameca SX100 EPMA. A focused 

electron beam with an accelerating voltage of 15 keV and a beam current of 20 nA was used for 

the measurements. Standard samples were used for calibration and the raw intensities were 

corrected using the X-PHI intensity correction method.24 

2.4.5 Raman spectroscopy  

 Raman spectroscopy is a technique that can be used to identify the molecules or bonding 

present in a sample based on the energy of the vibrational modes detected. In Raman spectroscopy, 

monochromatic light (laser) irradiated on a sample is scattered by molecules in the sample. Most 

of the scattered photons have same frequency as the incoming photons (Rayleigh scattered) while 

a minor amount of the scattered photons have different frequency (Raman scattered). The Raman 

scattered light detected with a lower frequency (lower energy) than Rayleigh scattered light is 

referred to as Stokes radiation, while that detected at higher frequency (higher energy) is referred 

to as anti-Stokes radiation. In other words, Rayleigh scattering leaves the molecule in its original 

vibrational state, while Stokes and anti-Stokes scattering leaves the molecule in a higher and lower 

energy vibrational state, respectively.25 

 Stokes lines typically arise from molecules initially in their ground vibrational state, while 

anti-Stokes originate from molecules initially in a vibrational excited state. Since most molecules 

are found in the ground state at ambient conditions, Stokes lines have much higher intensity than 

anti-Stokes and are used for analysis. The frequency difference between the vibrational state of the 

incident light and final vibrational state of the scattered light is known as the “Raman shift” (in 

units of wavenumbers, cm-1) and is calculated using Equation 2.2, where λi and λs is the wavelength 
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(in nm) of the incident and scattered light, respectively. The Raman spectrum of a sample plots the 

intensity of the scattered light as a function of the Raman shift. The spectrum is plotted with 

reference to the incident laser wavelength such that the Rayleigh band lies at 0 cm-1.25 

                                                             𝑅𝑎𝑚𝑎𝑛 𝑠ℎ𝑖𝑓𝑡 (𝑐𝑚−1) = 107 (
1

𝜆𝑖
−

1

𝜆𝑠
 )                                (2.2) 

 In this dissertation work, Raman spectrum of samples were obtained at ambient conditions 

using a Horiba LabRAM HR system. The spectra were collected at constant laser power using a 

532 nm green excitation laser (at 50% intensity). 

2.4.6 Nitrogen physisorption 

 Nitrogen physisorption was used to estimate the surface area of catalyst powders. This 

technique estimates the surface area of the powders from the monolayer volume of adsorbed N2 

(Vm), which is calculated from a relationship between the amount of nitrogen adsorbed and its 

pressure. The most prevalent method used as an approximation for this relationship is based on the 

Brunauer–Emmett–Teller (BET) gas adsorption theory26,27 and is given in Equation 2.3, where V 

is the volume of adsorbed N2 gas, Vm is the monolayer volume of adsorbed N2 gas, P/P0 is the 

relative pressure, and CBET is the BET constant.27 

                                     
𝑃 𝑃0⁄

𝑉(1 − 𝑃 𝑃0⁄ )
=

1

𝑉𝑚 ∙ 𝐵𝐸𝑇 
𝐶

+
𝑃 𝑃0⁄ ∙ ( 𝐵𝐸𝑇 

𝐶 − 1)

𝑉𝑚 ∙ 𝐵𝐸𝑇 
𝐶

                                       (2.3) 

 The BET surface areas of the catalyst powders in this work were obtained using a 

Micrometrics 3-Flex Surface Characterization Analyzer. To begin the process, the catalyst 

powders (~1g) were loaded onto pre-weighed glass tubes and degassed under vacuum at 698 K for 

4 hours. The degassing step is necessary to remove any contaminants (e.g., moisture, organics) 

from the catalyst, which improves the accuracy of the N2 adsorption measurement. After 
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degassing, the glass tubes were weighed together with the sample and the total mass recorded. The 

“dry” weight of the degassed samples, obtained by subtracting the weight of each empty glass tube 

from the total weight of glass tube with degassed sample, was inputted into the BET analysis 

software.  The degassed samples in the glass tubes were loaded into the 3-Flex Analyzer. Nitrogen 

gas was introduced into the system and the adsorption process was initiated by inserting the tubes 

into a Dewar containing liquid nitrogen at boiling point (77K), since N2 physisorption is a weak 

process at room temperature. During the run, the relative pressure (P/P0) of nitrogen gas in the 

glass tubes is tuned and the amount of nitrogen adsorbed by the samples at each relative pressure 

is recorded. The software generates a straight-line plot of 
𝑃 𝑃0⁄

𝑉(1−𝑃 𝑃0⁄ )
 vs 

𝑃

𝑃0
 known as the BET surface 

area plot and uses the slope and intercept of this plot to calculate Vm, from which the BET surface 

area is derived.27 

2.4.7 Temperature programmed reduction 

 Temperature programmed reduction (TPR) is a technique used to evaluate the reducibility 

of solid materials. In this technique, the solid material is exposed to a reducing gas (e.g., hydrogen) 

while the temperature of the system is increased at a specific ramp rate. The concentration of the 

gaseous effluent from the system is measure and recorded and used to generate a reduction profile. 

When hydrogen is used as the reducing gas on a solid oxide material, the reduction profile can 

either be a plot of the H2 consumed or H2O produced as a function of temperature. Each peak 

observed in the reduction profile indicates the occurrence of a distinct reduction process in the 

material and the temperature at which the peak occurs is called the reduction temperature. In 

general, the lower the reduction temperature, the more reducible the material is. The area under 

the peak also indicates the concentration of a component (e.g., oxygen) present in the solid 

material.28  
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 In this work, H2-TPR experiments were conducted using a Micrometrics Autochem II 2920 

equipped with a mass spectrometer. 500 mg of catalyst powder was loaded into a U-shaped quartz 

tube and pretreated at 200°C for 30 minutes under helium flow. After cooling down to 30°C, the 

temperature was ramped up to 1000°C at 10°C/min under 5% H2 in Argon stream at a flow rate of 

50 L/min. The mass spectrometer records the signal for H2O, which is used to generate the 

reduction profiles. 

2.4.8 Gas chromatography 

 Gas chromatography (GC) is a technique used for the identification and quantification of 

molecules in a gaseous stream. A gas chromatograph utilizes a stationary phase, a mobile phase, a 

sample introduction device, columns and detectors. The stationary phase is located on the inside 

of the column and can be a solid or a liquid (e.g., a highly viscous polymer with negligible vapor 

pressure) coated on a solid support. The mobile phase is typically an inert carrier gas such as 

helium, argon or nitrogen.29 In a typical GC run, a gaseous sample is injected alongside a carrier 

gas through an appropriate sample introduction device. The sample is sent through one or multiple 

columns where the molecules in the stream are separated based on differences in the interaction of 

the molecules with the mobile phase and the stationary phase. Specific properties of the molecules 

such as vapor pressure, size, etc., causes the differences in these interactions. After passing through 

the column, the separated sample in the carrier gas is sent to a detector. The detector outputs the 

signal which is sent to a data analysis software on a computer that produces a spectrum 

(chromatogram) and provides additional information such as height, width and areas of the 

resolved peaks in the chromatogram.29 

 Two types of GC detectors were used in this dissertation work; a thermal conductivity 

detector (TCD) and a flame ionization detector (FID). The TCD is a non-destructive concentration-
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sensitive detector that uses a Wheatstone bridge circuit to detect changes in the thermal 

conductivity of the column effluent in comparison to a reference carrier gas. In a basic circuit with 

two filaments, the column effluent gas flows over one filament while a reference gas (e.g., carrier 

gas) flows over a second filament. The carrier gases used typically have much higher thermal 

conductivity than the analytes. This means that the carrier gas can remove heat from the filament 

much faster than the analytes.30 Therefore, the temperature of the filament in contact the effluent 

gas will become higher than the reference filament. The measured increase in temperature of the 

effluent filament (relative to the reference filament) is thus proportional to the thermal conductivity 

of the solutes in the effluent (relative to the carrier gas), as well as the concentration of the 

solutes.29,30 The FID is a destructive mass-sensitive detector which operates by combusting the 

column effluent gases in a flame produced from hydrogen/air mixture. The combustion process 

produces positively charged intermediate species (primarily CHO+) that are collected in a 

negatively biased electrode. This process generates current which creates an electrical signal.30 

The current produced is directly proportional to the mass of carbon atoms passing through the 

detector per unit time and is independent of the molecule structure.29,30  

 Two different GCs were used in this dissertation work; a Varian CP-3800 and an Agilent 

7890B. The Varian CP-3800 GC was used in the work reported in Chapter 3, while the more 

modern Agilent 7890B GC was used in the work reported in Chapters 4 and 5. The  Agilent 7890B 

was acquired as a replacement for the Varian CP-3800 and both GCs had similar configurations. 

The GCs were equipped with several multiple port valves, sample loops, columns, two TCDS and 

one FID detector. One TCD, using helium as the carrier gas, detects O2, N2, CO, CO2 and low 

molecular weight hydrocarbons (CH4, C2H4, C2H6 and C3s). An auxiliary TCD detector, using 

argon as the carrier gas, was specifically used for detecting H2 and He. The FID detector detects 
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all gaseous hydrocarbons present in the sample. The GCs were calibrated (using certified gas 

mixtures) before the experiments to obtain linear calibration curves that relate component 

concentrations to the peak areas obtained from the chromatograms. 
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Chapter 3 

 

 

In Search of Membrane/Catalyst Materials for Oxidative Coupling of Methane: 

Performance and Phase Stability Studies of Gadolinium-Doped Barium Cerate and the 

Impact of Zr Doping 

 

3.1 Summary 

 Oxidative coupling of methane (OCM) is a promising technology for the direct conversion 

of methane to ethylene and ethane (C2).  This process is yet to be commercialized due its poor 

yield reflected in the formation of undesired products such as CO and CO2 (COx) as methane 

conversion increases, particularly in conventional packed bed reactors (PBRs). It has been argued 

that by applying O2- conducting membrane reactors that distribute the oxygen feed, the selectivity 

to the C2 products can be increased. A practical design for these membrane reactors would include 

combining a selective catalyst, preferably O2- conducting, with an O2- conducting membrane. In 

this work, we studied an O2- conducting material, gadolinium-doped barium cerate 

(BaCe0.8Gd0.2O3-δ or BCG), to evaluate its potential applicability as a catalyst and membrane in 

OCM membrane reactors. From PBR tests, we found that this material was active for OCM, and 

achieved a maximum C2+ yield of ∼14% at 1023 K. Furthermore, at low oxygen partial pressures 

expected to occur in membrane reactors, a C2+ selectivity of ∼90% was obtained at methane 

conversions of ∼3%. Although the C2+ yield from this material was stable over 48 hours on stream 

at high methane conversions, X-ray diffraction data showed that the BCG perovskite phase, which 

is required for its conductive (membrane) properties, decomposes into BaCO3, CeO2 and Gd2O3 
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like phases, due to reactions with CO2. We showed that doping BCG with Zr was effective at 

suppressing the phase instability in OCM without significantly affecting the C2+ yields in a PBR. 

3.2  Introduction 

 Natural gas is an abundant resource with over 500 trillion cubic feet of proven reserves in 

the US.1 Its production is projected to increase due to the availability of unconventional sources 

such as shale gas, and the possibility of harnessing methane hydrates in the long term. 2,3 It is 

composed mainly of methane which has vast potential as an advantaged feedstock for chemical 

and fuel production. In general, converting methane directly into chemicals under mild conditions 

is challenging due to its strong C-H bonds (bond strength ∼ 434 kJ/mol). 3–5 Commercially, 

methane is converted through a high temperature, energy intensive reforming process to syngas 

(mixture of mainly CO and H2), which is then used to produce chemicals such as methanol and 

higher hydrocarbons. This indirect conversion of methane to chemicals via syngas production is 

only commercially practical when applied on a large scale. Consequently, methane from isolated 

small-scale sources (e.g., associated gas), that cannot be economically transported, is commonly 

flared causing the release of greenhouse gases. 3,5 Direct conversion of methane into valuable 

chemicals can alleviate the need for costly syngas production and is potentially more suitable for 

valorizing methane released from small scale sources. Therefore, there is significant interest in the 

development of direct methane conversion routes. 5–7 

 A potential route for direct methane conversion is through a process known as the oxidative 

coupling of methane (OCM) which was first reported in the early 1980s. 8 In OCM, methane is 

activated at high temperatures (923 – 1173 K) in the presence of oxygen and an active catalyst to 

produce C2 hydrocarbons  (ethane and ethylene).9 It has been proposed that during OCM, hydrogen 

is abstracted from methane to form methyl radicals which couple in the gas phase to form ethane. 



63 
 

6,10,11 The ethane formed is subsequently dehydrogenated to ethylene through catalytic and gas 

phase reaction steps.7,12 Various mixed metal oxide catalysts have been investigated for OCM and 

some of the best C2 yields have been achieved on Mn/Na2WO4/SiO2 and Li/MgO catalysts.13,14 

Even for these catalysts, the reported performance have largely remained below the widely-cited 

commercial viability target of a minimum single-pass C2 yield of ∼ 30% at a C2 selectivity of ∼ 

90%, using undiluted feed streams.15,16 

 A fundamental issue with OCM is that, at the high temperatures applied, undesired over 

oxidation products such as CO and CO2 (COx) are more thermodynamically favored than the C2 

products.15 Furthermore, when conventional co-fed packed bed reactors (PBRs) are used, the 

desired C2 products can be converted sequentially to COx at relatively higher rates, 12,17 and in 

general the C2 selectivity decreases as methane conversion increases. It has also been demonstrated 

that the C2 selectivity in OCM is higher at lower oxygen partial pressures (i.e., higher CH4/O2 

ratios) 12,18. These observations have been used to argue that reactors with a distributed oxygen 

feed, such as a membrane reactor, can give significantly higher C2 yields than a co-fed packed bed 

reactor modeled under the same operating conditions.15  

 The most common type of membrane reactor studied in OCM are solid oxide membranes 

which operate at high temperatures (> 923 K). The configuration of these membranes is such that 

the methane and oxygen-containing streams (e.g., air) are separated by an ion-conducting 

membrane which transfers O2- from the oxygen side to the methane side where the OCM reaction 

occurs. An added advantage of this membrane reactor is that it is able to supply the catalyst with 

pure oxygen from air without a costly separation step due to the lack of transfer of other air 

components (e.g., N2).
15 For these membranes to conduct O2- effectively, there is a need for 

countercurrent flow of electrons to fulfill overall charge neutrality in the membrane. This is 
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commonly achieved by using a mixed ionic and electronic conducting (MIEC) membrane, where 

the electrons are transferred through the membrane itself in the opposite direction of O2-
. 

 Despite the potential benefits of solid oxide membrane reactors over conventional co-fed 

reactors, the performance of these systems in OCM are also generally below the techno-economic 

target.15,19 An issue that has limited the performance of membrane reactors in OCM is the relatively 

low oxygen fluxes through the membranes which, aside from limiting methane conversion, 

promotes carbon deposition and catalyst/membrane deactivation. In general, MIEC membranes 

doped with transition metal ions (e.g., Co and Fe) give higher oxygen fluxes.20 However, it has 

been demonstrated that the presence of transition metal ions in membrane materials leads to a 

dramatic decline in OCM selectivity.21  

 In the present study, we aim to develop alternative O2-
 conducting materials that are 

selective for OCM. This step is considered crucial to the advancement of OCM membrane reactors. 

Specifically, we focus our attention on doped barium cerates because they are a class of high 

temperature O2- conducting membrane materials composed of elements that have been shown to 

be selective in OCM. 9,22–25 A potential problem in using doped barium cerate membranes in OCM 

is that the perovskite structure of barium cerate (BaCeO3) is prone to destruction on prolonged 

exposure to CO2-containing atmospheres.26 This phase instability has been attributed to a 

thermodynamically favorable reaction of the perovskite with CO2 to form BaCO3 and CeO2 at 

temperatures below ∼ 1373 K.26–28 Destruction of the perovskite structure can lead to conductivity 

losses and mechanical failure which are both detrimental to the performance of these membrane 

reactors.29  

 In this contribution, we study the performance and stability of gadolinium-doped barium 

cerate (BaCe0.8Gd0.2O3-δ or BCG) and Zr-doped BCG under OCM operating conditions. The 
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rationale behind studying the Zr-doped sample is that doped barium zirconates (BaZrO3) are more 

thermodynamically resistant to CO2 attack compared to doped barium cerates.26–28 We present 

conversion-selectivity and conversion-yield curves that illustrate the OCM performance of the 

BCG and Zr-doped BCG powders in a packed bed reactor. The phase instability of BCG under 

OCM conditions is confirmed and related to the presence of CO2, with higher CO2 concentrations 

leading to more rapid transformation of BCG into BaCO3, CeO2 and Gd2O3 like phases. We show 

that the phase stability of BCG in OCM can be improved by doping with Zr without significantly 

affecting the C2 yields obtained. To our knowledge, the phase structure and performance stability 

of gadolinium-doped barium cerate powders in OCM has not been previously investigated.  

3.3 Experimental  

3.3.1 Catalyst synthesis 

 The doped barium cerate powders were synthesized using a modified pechini method 

described partly elsewhere.30 In this method, ethylenediaminetetraacetic acid (EDTA, Fisher 

Scientific, 99.7%) was mixed with deionized water followed by the addition of aqueous ammonia 

(29% NH4OH, Fisher Scientific) to aid the dissolution of EDTA and adjust the pH of the solution 

to ∼ 10. In another flask, barium nitrate (Sigma Aldrich, ≥ 99%) was dissolved in deionized water. 

The EDTA/NH4OH solution was added to the barium nitrate solution under continuous stirring at 

353 K (solution A). In a third flask, stoichiometric amounts of cerium (III) nitrate hexahydrate 

(Acros Organics, 99.5%) and gadolinium (III) nitrate hexahydrate (Acros Organics, 99.9%) 

required to form the composition of BCG were dissolved in deionized water (solution B). For the 

BaCe0.4Zr0.4Gd0.2O3-δ (BCZG) catalyst, a stoichiometric amount of zirconium dinitrate oxide 

hydrate (Alfa Aesar, 99.9%) was also added to solution B. Solution B was added dropwise to 

solution A while stirring at 353 K. Subsequently, ethylene glycol (J.T. Baker) was added to the 
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mixture. The EDTA/metal ion and EDTA/ethylene glycol molar ratio used in synthesis were 1.5 

and 1/3, respectively. The resulting mixture was sealed and left to stir overnight at 353 K to 

promote polymerization, and then evaporated at the same temperature until a viscous gel was 

formed. The gel was calcined at 523 K for 2 hours with temperature ramps of 2 K/min resulting in 

a black ash. The ash was lightly grinded using a mortar and pestle then calcined again at 1273 K 

for 4 hours with temperature ramps of 2 K/min to form the final powder.  

3.3.2 Catalyst characterization 

  The X-ray Diffraction (XRD) patterns of the catalyst powders was obtained using a Rigaku 

MiniFlex 600 spectrometer (Cu Kα source, λ = 1.54059 Å) equipped with JADE software for phase 

identification and data processing. The device was operated at a tube voltage and current of 40kV 

and 15mA, respectively. A continuous sweep mode was used to collect the data in a 2ϴ range from 

20 to 90 at a speed of 2°(2ϴ) per minute and a step size of 0.02°. The BET surface areas of the 

catalysts were measured using a Micrometrics 3-Flex Surface Characterization Analyzer. Prior to 

the BET measurement, the catalysts were degassed under vacuum at 698 K for 4 hours to remove 

moisture and other adsorbed volatiles. Bulk composition of the materials was measured using 

Wavelength Dispersive X-ray Spectrometry (WDS), using a Cameca SX100 electron probe 

microanalyzer (EPMA) at the University of Michigan Electron Microbeam Analysis Lab (EMAL). 

WDS measurements were conducted using a focused electron beam with an accelerating voltage 

of 15 keV and a beam current of 20 nA. Synthetic zircon (Zr Lα), synthetic gadolinium-aluminum 

garnet (Gd Lα), synthetic alforsite (Ba Lα) and synthetic CePO4 (Ce Lα) were used for calibration. 

Compositions were calculated from raw intensities using the X-PHI intensity correction method.31 

In preparation for WDS measurements, the catalyst powders were pressed into cylindrical pellets, 

sintered at 1650°C to reduce porosity and polished to reduce surface defects.  
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3.3.3 OCM catalytic tests 

 Prior to the catalyst tests, the synthesized powders were pressed, crushed and sifted to 

agglomerates of ~ 125 - 350 µm in diameter. Unless stated otherwise, approximately 110 mg of 

sifted powder was used in each experiment. The sifted powder was positioned in the center of a 

6.35 mm ID quartz tube and held in place with silica wool on both sides.  The quartz tube 

containing the catalyst powder was oriented horizontally in a furnace and heated to the desired 

temperature at a rate of 2 K/min under argon flow. A thermocouple was positioned next to the 

center of the quartz tube to monitor the reactor temperature. At the desired reactor temperature, 

methane (containing 5% helium) and air were fed to the reactor through mass flow controllers 

(Cole-Palmer) and the argon flow was discontinued. The effluent gases leaving the reactor were 

analyzed in a Varian CP-3800 gas chromatograph (GC) equipped with thermal conductivity and 

flame ionization detectors. The GC was calibrated for each measured component using certified 

gas mixtures supplied by Cryogenic Gases (PurityPlus). The methane conversion (X), C2+ 

selectivity (S) and C2+ yield (Y) were calculated using Equations 3.1 – 3.3,
21 where C2+ denotes 

ethane, ethylene, propane and propylene. In all experiments, the estimated carbon balance was ≥ 

96%. The data points reported are averages of at least 3 experimental measurements and the error 

bars represent the calculated standard deviations. 

 

𝑋(%) =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑓𝑒𝑑
× 100                                           (3.1) 

 𝑆(%) =
[2(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶2𝐻4 + 𝐶2𝐻6 ) + 3(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶3𝐻6 + 𝐶3𝐻8)]𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
× 100         (3.2) 

                                                               𝑌(%) =
𝑆𝑋

100
                                                                              (3.3) 
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3.4 Results and Discussion 

3.4.1 Synthesis 

 The XRD spectra of the as-synthesized BCG and BCZG powders are shown in Figure 3.1. 

The spectra confirm that the perovskite structures were successfully obtained without the presence 

of significant secondary phases. The spectra also show that the peak positions from BCZG is at 

slightly higher angles compared to BCG which is expected as the perovskite unit volume should 

decrease when the Zr4+ ion of smaller ionic radius (RIV = 0.72 Å) partially replaces the larger Ce4+ 

ion (RIV = 0.87 Å).28,32 The estimated BET surface area of the as-synthesized BCG and BCZG 

catalyst were ∼ 3.7 m2/g and 6.5 m2/g, respectively. Such low surface area is expected for 

unsupported perovskite oxide catalysts calcined in air at a high temperature of 1273 K.33,34  Table 

3.1 shows the bulk composition of the BCG and BCZG catalysts from stoichiometric calculations 

and WDS measurements. The stoichiometric weight (%) was calculated based on the weight of 

each metal element required for the synthesis of the catalysts. As shown in Table 3.1, the WDS 

composition are reasonably close to the stoichiometric composition. 
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Figure 3.1. XRD patterns of as-synthesized powders (a) BCZG and (b) BCG 

  

Table 3.1. Catalyst composition from stoichiometric calculations and WDS measurements 

 BaCe0.8Gd0.2O3-δ  BaCe0.4Zr0.4Gd0.2O3-δ 

Element Stoichiometric (wt%) WDS (wt%)  Stoichiometric (wt%) WDS (wt%) 

Ba 41.8 39.6  44.4 42.6 

Ce 34.1 35.3  18.1 19.9 

Zr - -  11.8 10.4 

Gd 9.6 9.4  10.2 8.7 

 



70 
 

3.4.2. Catalytic performance of BCG in OCM 

 The data in Figure 3.2 show the C2+ selectivity, C2+ yield, and methane conversion for the 

BCG catalyst as a function of the CH4/O2 feed ratio. These experiments were performed at 1023 

K and the different CH4/O2 ratios were obtained by varying the flowrate of the methane and air 

streams while keeping the total flow rate constant at 100 cm3/min. Note that all flow rates are given 

at standard conditions (STP). The methane stream (containing 5% He) flowrate was varied 

between 25 – 95 cm3/min, while the air flowrate was varied between 5 – 75 cm3/min. The data 

show that the C2+ selectivity decreases with increasing methane conversion which is typical for 

OCM catalytic reactions and attributable to increased sequential reactions of the desired C2 

products to more thermodynamically favored COx products at higher methane conversions. A 

maximum C2+ selectivity of ∼ 90% was attained at a high CH4/O2 ratio of 86, which resulted in 

relatively low methane conversion.  The C2+ yield increased with methane conversion to a 

maximum value of ∼ 14 % at a CH4/O2 ratio of 2.4. It should be noted that, at 1023 K and a CH4/O2 

ratio of 2.4, the CH4 conversion and C2+ yield obtained from experiments with silica wool only 

was 2.2% and 1.2%, respectively. Furthermore, at a CH4/O2 of 86, a methane conversion of ∼ 

0.01% was achieved in the presence of silica wool only at 1023K. These values are considered 

negligible compared to that obtained in the presence of the BCG catalyst. 
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Figure 3.2. Dependence of C2+ selectivity, C2+ yield and methane conversion from BCG catalyst 

on CH4/O2 feed ratio. Temperature = 1023 K. Total flow = 100 cm3/min. Catalyst weight = 110 

mg. 

 

 The BCG catalyst was tested at different temperatures while using a constant methane 

stream flow of 35 cm3/min and an air flow of 65 cm3/min (i.e., CH4/O2 feed ratio of 2.4). The 

amount of higher hydrocarbons (i.e. propane and propylene) produced in these experiments were 

below 0.08 mol % and considered negligible. The data in Figure 3.3a show the methane 

conversion, C2+ selectivity and the C2H4/C2H6 ratio at temperatures between 1023 K and 1123 K. 

The data show that methane conversion was not significantly affected by temperature in the studied 

temperature range which is expected since oxygen is nearly exhausted (oxygen conversion ≥ 97%) 
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at these conditions. The effect of temperature on methane conversion is expected to become 

significant under conditions where the oxygen conversion is relatively low (e.g., lower 

temperatures). The data also show that the overall C2+ selectivity decreases while the C2H4/C2H6 

ratio increases with increasing temperature. This is accompanied by a decrease in the yield of 

ethane, and an increase in the yield of ethylene as shown in Figure 3.3b. The data indicates 

increased occurrence of sequential reactions of ethane to ethylene and COx at higher temperatures.  

3.4.3 Stability studies of BCG in OCM 

 The spent catalyst was collected and characterized using XRD. The XRD spectrum of the 

spent BCG catalyst is shown in Figure 3.4b. This catalyst was characterized after testing for several 

hours at 1023 K, using CH4/O2 ratios ranging from 1.5 to 86 consecutively. The spectrum of 

unreacted BCG catalyst is also included (Figure 3.4a) for comparison. Analysis of the spectrum of 

the reacted catalyst reveals that the BCG perovskite phase, which is required for ion and electron 

conduction,29 had been significantly transformed. The spectrum suggests the emergence of BaCO3, 

CeO2 and Gd2O3 like phases. This phase transformation is likely caused by a reaction of BCG with 

CO2 as discussed previously.  
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Figure 3.3. Effect of temperature on (a) CH4 conversion, C2+ selectivity and C2H4/C2H6 ratio, (b) 

Ethylene and Ethane yields, from BCG catalyst. Total flow = 100 cm3/min. CH4/O2 = 2.4. Catalyst 

weight = 110 mg. 
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Figure 3.4. XRD patterns of (a) unreacted BCG and (b) BCG reacted at 1023 K using CH4/O2 

ratios ranging from 1.5 to 86 consecutively. 
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 To determine the effect of CO2 concentration on BCG phase stability in OCM, additional 

experiments were conducted using high and low CH4/O2 ratios. As shown above, the CO2 

concentration is higher at lower CH4/O2 ratios. These experiments were performed at 1023 K with 

a total flowrate of 100 cm3/min using 200 mg of catalyst powder. In each experiment, the catalyst 

was heated and cooled in argon flow to minimize any chemical transformations that could occur 

during heating and cooling. The XRD data for the unreacted BCG catalyst and BCG catalysts 

reacted at different CH4/O2 ratios are presented in Figure 3.5. The data show that the catalysts 

tested at a high CH4/O2 ratio of 26 for one hour (Figure 3.5b) and six hours (Figure 3.5c) largely 

retained their perovskite structure. On the other hand, the catalyst used for only 1 hour, at a low 

CH4/O2 ratio of 2.4 (Figure 3.5d), changed significantly, segregating into the BaCO3, CeO2 and 

Gd2O3 phases. The estimated CO2 concentration at the reactor outlet was ∼ 0.7 mol% for the 

reaction performed at a CH4/O2 ratio of 26, while it was ∼ 6.2 mol% at a CH4/O2 ratio of 2.4. 

These data show that the phase structure of BCG is more readily decomposed at higher CO2 

concentrations.  Furthermore, despite the observed changes in phase structure of the BCG catalyst, 

the data in Figure 3.6 show that the methane conversion, C2+ selectivity and C2+ yield obtained 

was relatively stable over 48 hours on stream using a low CH4/O2 ratio of 2.4. The data suggest 

that the phase change in the catalyst does not result in a significant change in the catalyst 

performance. The performance of BCG remains stable even with significant phase changes 

probably because at least one of the new phases formed is also active for OCM. For example, 

BaCO3 and  Ba/CeO2 have been shown to be active for OCM in previous studies.22,23,35  
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Figure 3.5. XRD patterns from (a) unreacted BCG (b) BCG reacted for 1 hour at CH4/O2 = 26 and 

T = 1023 K (c) BCG reacted for 6 hours at CH4/O2 = 26 and T = 1023 K and (d) BCG reacted for 

1 hour at CH4/O2 = 2.4 and T = 1023 K. 
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Figure 3.6. Plot of CH4 Conversion, C2+ selectivity and C2+ yield over time from BCG catalyst. 

Catalyst weight = 110 mg. CH4/O2 = 2.4. Total flow rate = 100 cm3/min. Temperature = 1023 K. 

 

3.4.4 Effect of Zr doping on BCG performance and phase stability  

 Based on our analysis of the performance of the BCG catalyst, we conclude that this 

material can perform OCM with high selectivity to C2+ products under low O2/CH4 ratios. This 

high performance along with the ion/electron conducting properties of BCG makes it a promising 

material for use as membrane or catalyst in solid oxide membrane reactors for OCM. The issue 

with this material is that, as we described above, even small amounts of CO2, which is inevitable 
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at elevated (and realistic) methane conversion, results in changes in its perovskite structure. While 

these changes do not have much effect on the catalytic performance of this material, these changes 

are expected to have a dramatic effect on its ion/electron conducting properties. To address this 

problem of instability of the perovskite phase of BCG in OCM, we probed the impact of 

introducing Zr into the structure of BCG. As mentioned previously, the phase structure of BaZrO3 

is more stable than BaCeO3 in CO2 containing environment.  

 Data in Figure 3.7a and b show respective conversion-selectivity and conversion-yield 

curves from the Zr-doped BCG catalyst (BCZG) and undoped BCG. These experiments were also 

performed at 1023 K, CH4/O2 ratios of 1.5 - 86 and using 110 mg of catalyst. The data show that 

the catalysts exhibit very similar performance, and that the introduction of Zr has no negative effect 

on the catalytic performance of BCG. Data in Figure 3.8a and b show the selectivity of carbon-

containing products formed during the reaction with BCG and BCZG catalyst, respectively, as a 

function of the methane conversion. As shown in the figures, the product distribution obtained 

from the BCG and BCZG catalyst is similar, which indicates a similar reaction mechanism on the 

both catalysts. The ethane selectivity is high at low methane conversions, which corresponds to 

high CH4/O2 ratios. As the methane conversion increases due to decreasing the CH4/O2 ratio, the 

ethane selectivity decreases monotonously. The ethylene and C3 (propane and propylene)  
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Figure 3.7. (a) Conversion-selectivity curve and (b) conversion-yield curve from BCG and BCZG 

catalyst. Temperature = 1023 K. Total flow =100 cm3/min. Catalyst weight = 110 mg. CH4/O2 

ratio = 1.5 – 86. The CH4/O2 ratio increases from the right to the left of the plots as indicated by 

the arrows above the figures 

 

selectivity increase with increasing methane conversion, reach a maximum, and then decrease. The 

COx selectivity increased monotonously with increasing methane conversion (i.e., decreasing 

CH4/O2 ratio). This data indicate that ethane is the primary product formed in the reaction. The 

decrease in ethane selectivity and increase in COx selectivity with increasing methane conversion 

is consistent with the occurrence of higher sequential reactions of ethane to COx at lower CH4/O2 

feed ratios. 
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Figure 3.8. Selectivity of carbon-containing products (C2H6, C2H4, COx and C3) as a function of 

methane conversion for (a) BCG catalyst (b) BCZG catalyst. C3 represents propane and propylene. 

The CH4/O2 ratio increases from the right to the left of the plots as indicated by the arrows above 

the figures. 

 

 The XRD spectra for unreacted and reacted BCG and BCZG catalysts are shown in Figure 

3.9. The spectra of the reacted catalysts were obtained from samples tested at 1023 K, a low 

CH4/O2 feed ratio of 2.4 and a total flow rate of 100 cm3/min. The data show that there was no 

significant change in the phase structure of the BCZG catalyst reacted for 1 hour (Figure 3.9c) 

compared to the unreacted BCZG catalyst (Figure 3.9a). New phases corresponding to BaCO3, 

CeO2 and Gd2O3 start appearing in the BCZG catalyst reacted for over 48 hours (Figure 3.9d). 

Comparison between the XRD spectrum of the BCG catalyst reacted for 1 hour (Figure 3.9e) and 

the spectra of the reacted BCZG catalysts showed that the introduction of Zr to BCG improves 

phase stability, without changing the C2+ yields. Figure 3.10 presents a plot of CH4 conversion, 
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C2+ selectivity and C2+ yield from BCZG over time using a CH4/O2 ratio of 2.4. The data show 

that the catalytic performance was relatively stable over 48 hours. 

 

Figure 3.9. XRD patterns of (a) unreacted BCZG (b) unreacted BCG (c) BCZG reacted for 1 hour 

at CH4/O2 = 2.4 and T = 1023 K (d) BCZG reacted for 48 hours at CH4/O2 = 2.4 and T = 1023 K 

(e) BCG reacted for 1 hour at CH4/O2 = 2.4 and T = 1023 K. 
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Figure 3.10. Plot of CH4 Conversion, C2+ selectivity and C2+ yield over time from BCZG catalyst. 

Catalyst weight = 110 mg. CH4/O2 = 2.4. Total flow rate = 100 cm3/min. Temperature = 1023 K. 
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3.5 Conclusions 

 We performed OCM tests on BaCe0.8Gd0.2O3-δ (BCG) powders in a packed bed reactor 

(PBR) and obtained high C2+ selectivities (up to 90%) at low O2 partial pressures expected to occur 

in membrane reactors. For the conditions tested, a maximum C2+ yield of ∼ 14% was achieved at 

1023 K and a CH4/O2 feed ratio of 2.4. Under this reaction condition, phase segregation of BCG 

into BaCO3, CeO2 and Gd2O3 like phases occurred, and this phase instability was related to the 

presence of CO2. While this phase transformation is not detrimental to the CH4 conversion, C2+ 

selectivity and C2+ yield, the loss of the perovskite structure is detrimental to the ionic and 

electronic conductivity of the material, which is important for its application in OCM membrane 

reactors. We showed that by doping BCG with Zr, the phase instability in OCM is suppressed 

without significantly affecting the C2 yields in a PBR.   
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Chapter 4 

 

 

Oxidative Coupling of Methane over Membrane/Catalyst Hybrid Systems: Reactor 

Performance at High Methane Concentrations 

 

4.1 Summary 

 Solid oxide membrane/catalyst hybrid systems have been proposed as a promising platform 

for selective oxidative coupling of methane to form higher values C2+ products. In these hybrid 

systems, the membrane controls the local chemical potential of reacting oxygen atoms while the 

catalyst allows for selective reaction of these oxygen atoms with methane to form the desired C2 

products. One critical challenge with these systems is that due to relatively low local O2/CH4 ratios, 

they can promote carbon-induced catalyst deactivation. Herein, we demonstrate that a 

BaCe0.8Gd0.2O3-δ based membrane/catalyst system can achieve excellent carbon resistance at low 

O2/CH4 ratios, and high and stable selectivity (over 80%) to C2+ products (ethane, ethylene, 

propane and propylene). Our analysis of the system suggests that its high carbon resistance is due 

to its relatively high oxygen storage/release capacity which suppresses carbon deposition in the 

system. 
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4.2 Introduction 

 Oxidative Coupling of Methane (OCM) is a chemical transformation that converts methane 

directly into ethane and ethylene (C2). This reaction occurs at ~ 600-900°C on several 

heterogeneous oxide catalysts, albeit with limited C2 product yields. The main issue is that at near 

stoichiometric feed ratios (O2/CH4 ratio ∼ 0.5), where the reaction is typically performed, the C2 

product selectivity is limited as thermodynamically stable over-oxidation products, such as CO 

and CO2 (COx), are formed at the expense of the C2 products.1 Figure 4.1a shows the equilibrium 

distribution of carbon-containing products as a function of the O2/CH4 feed ratio at 1073K and 

1atm, calculated by minimizing the Gibbs free energy of the system. The data show that the 

thermodynamically favored product at near stoichiometric feed ratios is CO, and this changes to 

CO2 as the O2/CH4 ratio increases. The unselective reactions that lead to the formation of COx 

often proceed through chemical pathways that include direct gas-phase reactions of hydrocarbon 

radicals and O2 as shown in Figure 4.1b.2,3 

 To overcome this challenge of low C2 selectivity and yield, it has been proposed that solid 

oxide membranes are applied in combination with catalysts to deliver oxygen to the active site in 

a more controlled way.1,4,5 In these membrane/catalyst systems, methane and an oxygen-containing 

stream (e.g., air) are separated by a dense (non-porous) oxide membrane which conducts O2- from 

the oxygen-side of the membrane to the methane-side where the reaction occurs.6–10,11 The 

membrane also conducts electrons in the opposite direction to O2- for charge neutrality (Figure 

4.1c).12,13 In this system, since the lattice oxygen species in the membrane are utilized as the main 

source of reactive oxygen, the local partial pressure of gas phase O2 on the methane side is low  
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Figure 4.1. (a) Plot of thermodynamic carbon-containing product selectivity (obtained by 

minimizing Gibbs free energy) as a function of the O2/CH4 feed ratio at 800°C and 1atm. 

Simplified mechanism for OCM on a (b) catalyst co-fed with methane and oxygen (c) catalyst 

coupled with a solid oxide membrane. Dashed lines represent gas-phase reactions 

 

(and can approach zero) limiting the rates of formation of undesired COx products.  Additional 

benefits of these membrane/catalyst systems include: (1) better control of reactor temperature i.e., 

minimizing hot-spots which are typically formed due to high rates of deep oxidations reactions 

and (2) simultaneous OCM and separation of pure oxygen from nitrogen and other components in 

air, thereby simplifying potential downstream separation of valuable C2 products.  

 While this membrane/catalyst system seems promising, it introduces other set of technical 

challenges that need to be addressed. One critical challenge is that due to relatively low partial 

pressure of oxygen (low oxygen to hydrocarbon ratio), these membrane systems promote higher 

carbon deposition rates on the surface of the membrane/catalyst on the methane side. The data in 

Figure 4.1a shows that the thermodynamically favored product in the limit of low O2/CH4 ratios 

is solid carbon. This solid carbon poisons the membrane/catalyst material, leading to a reduction 

in the performance over time.14,15 Identifying membrane/catalyst systems that can conduct O2- ions 
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and concurrently retain high carbon tolerance and C2+ selectivity when operating under high 

methane concentration is a critical challenge that needs to be addressed. We note that the challenge 

of carbon deposition has often been neglected in previous OCM literature since the primary issue 

in conventional co-fed packed bed reactor systems, operating near stoichiometric feed ratios, is to 

minimize overoxidation to COx. On the other hand, in membrane/catalyst systems, which operate 

at very low gas-phase O2/CH4 ratios, an additional challenge of minimizing carbon deposition is 

critical. To avoid this issue of carbon deposition, previous OCM studies in membrane/catalyst 

systems have typically employed heavily diluted methane feed streams (≤ 0.1 bar of methane).7–10 

However, this approach is commercially impractical as it exacerbates downstream separation 

costs. 

 Herein, we have investigated selected button-shaped membrane/catalyst systems in OCM. 

Our goal was to evaluate the OCM performance of these systems at high methane concentrations 

(low oxygen to hydrocarbon ratios). A thin porous layer of same or similar composition as the 

membrane, but of higher surface area to volume ratio, was coated on one side of each membrane 

to act as the OCM catalyst. Specifically, we studied a BaCe0.8Gd0.2O3-δ (BCG) membrane coated 

with BCG catalyst (BCG/BCG), a BaCe0.4Zr0.4Gd0.2O3-δ (BCZG) coated with BCZG catalyst 

(BCZG/BCZG) and a Ni doped La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) membrane coated with LSGM 

catalyst (Ni-LSGM/LSGM). We chose to study these materials (BCG, BCZG and LSGM) because 

they emerged as promising membrane and catalyst candidates from previous packed bed reactor 

screening studies in our group.16,17 We note that the membrane portion of the LSGM system was 

doped with Ni to ensure its mixed ion and electron conductivity, since LSGM by itself is a poor 

electron conductor.17,18  
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 Our results demonstrate that the BCG/BCG system exhibits high C2 selectivity and 

relatively stable OCM performance in the limit of high methane concentration. On the other hand, 

the Ni-LSGM/LSGM system exhibits an anticipated behavior that plagues most membrane 

materials, characterized by a decline in performance over time due to carbon-induced 

membrane/catalyst deactivation. Our analysis of the chemical characteristics of both membrane 

materials suggest that the high carbon resistance of the BCG catalyst is related to its relatively high 

surface reducibility and oxygen storage/release capacity which suppresses carbon deposition on 

the catalyst surface. We also show that the BCZG/BCZG system exhibits significantly lower and 

almost negligible oxygen flux compared to the BCG/BCG system. The reduced oxygen flux was 

attributed to a reduction in the electron conductivity of the BCZG membrane due to the presence 

of the Zr dopant.19 

 4.3 Experimental 

4.3.1 Membrane fabrication and catalyst addition 

 LSGM was doped with 15 mol% of Ni to improve its mixed ion and electronic 

conductivity.18 The Ni doped LSGM (Ni-LSGM) powder was synthesized by mixing NiO (Alfa 

Aesar) and LSGM (Sigma Aldrich) powder in a weight ratio of 0.28:5 using a mortar and pestle. 

The mixture was then calcined in air at 1000°C for 6 hours using ramp rates of 2 °C/min. BCG 

and BCZG powder were synthesized using a modified pechini method described in our previous 

work.16 A measured amount of the sifted powder (Ni-LSGM, BCG or BCZG) was pressed into 

pellets in a 15 mm die press. After pressing, the pellets were placed on a zirconia plate covered 

with powder bath of the same composition as the pellets to minimize contamination and Ba 

evaporation from the BCG and BCZG pellets during sintering.20,21 The BCG and BCZG pellets 

were sintered in air at 1650°C for 5 hours, while the Ni-LSGM pellets were sintered in air at 
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1450°C for 4 hours, using ramp rates 1 °C/min. The sintered pellets (membranes) were ∼ 10 mm 

in diameter. To add the porous catalyst layers to the membranes, LSGM, BCG or BCZG powder 

was mixed with graphite powder in a 3:1 ratio using a mortar and pestle. 0.2 g of the mixture was 

mixed with 600 µL of ethanol to form a suspension. 25 µL of the suspension was drop-coated on 

one side of the membrane and air-dried. The coated membranes were calcined in air at 1150°C for 

2 hours (for the Ni-LSGM membrane) and 1500°C for 4 hours (for the BCG and BCZG membrane) 

at ramp rates of 2°C/min to burn off graphite and create a porous catalyst layer adhered to the 

membrane surface.  

4.3.2 Membrane and catalyst characterization 

4.3.2.1 X-ray diffraction (XRD) 

 XRD was used to determine the crystalline phases present in the membranes and catalysts. 

The XRD patterns were collected at room temperature using a Rigaku MiniFlex 600 spectrometer 

(Cu Kα source, λ = 1.54059 Å). A continuous scan mode was used to collect 2ϴ data with a step 

size of 0.02°and speed of 2°/min. The tube voltage and current were set at 40kV and 15mA, 

respectively. Phases were identified with the aid of JADE software.  

4.3.2.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) 

 The membranes and catalysts were examined by SEM and EDS to evaluate the 

morphology, thickness, composition and interaction between membrane and catalyst layers. SEM 

images were collected using a Tescan MIRA3 microscope. The images were collected at an 

accelerating voltage of 5 – 12 kV and working distance of 8 – 15 mm. The device was equipped 

with an EDAX detector and TEAM software which were used for EDS measurements. The EDS 

elemental maps were collected at an accelerating voltage of 12 kV, working distance of 15 mm, 

dwell time of 200 µs, and resolution of 256 x 200 pixels. A drift corrected mode was used during 
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mapping to minimize effect of sample drifting. Samples were sputtered with gold beforehand to 

minimize charging during image collection. 

4.3.2.3 Raman spectroscopy 

 Raman spectra was collected at room temperature using a Horiba LabRAM HR system. 

The membrane with coated catalyst was placed on a flat transparent holder with the catalyst side 

facing upwards. A 532 nm green excitation laser (at 50% intensity) was focused on the catalyst 

surface while been monitored with the aid of a microscope. The spectra were collected at a constant 

laser power.  

4.3.2.4 H2-TPR measurements  

 The H2-TPR experiments were conducted using a Micrometrics Autochem II 2920 

equipped with a thermal conductivity (TCD) detector and a mass spectrometer. Prior to the tests, 

the catalysts were calcined at the same temperature used to adhere the catalyst to the membranes 

(i.e., 1150°C for LSGM and 1500°C for BCG). ∼0.5g of each catalyst was loaded in a U-shaped 

quartz tube, pretreated at 200°C for 30 minutes under 50 ml/min flow of helium, then cooled back 

down to 30 °C. Afterwards, the sample were heated at 10°C/min to 1000°C under a 5% H2 in 

Argon stream at a flow rate of 50 L/min. The H2O signal at the outlet of the reactor was monitored 

by the mass spectrometer. 

4.3.3 Membrane reactor set-up and testing 

 A schematic of the button membrane reactor set-up is shown in Figure 4.2. Membranes were 

sealed to the top of an alumina tube (12.7 mm OD and 9.5 mm ID) using a combination of glass 

and ceramic sealants with the porous catalyst layer facing downwards. The alumina tube 

containing the sealed membrane was oriented vertically over a quartz tube (6.35 mm OD and 4 

mm ID) in a furnace. The furnace was heated to 880°C at a ramp rate of 1°C/min under helium 
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flow. High purity gases purchased from Cryogenic Gases were used in the experiments. The gases 

were supplied to the reactor through mass flow controllers (Cole-Parmer). For the oxygen 

permeation measurements, 50 cm3/min of air or a mixture of oxygen and nitrogen was fed from 

the top through a larger quartz tube (19 mm OD and 17 mm ID) to the membrane region and 5 

cm3/min of helium was fed from the bottom through the smaller quartz tube towards the porous 

catalyst side of the membrane. Note that all flow rates reported here are given at standard 

conditions (STP). For the OCM performance measurements, 5 cm3/min of methane (containing 

5% helium) was fed from the bottom through the smaller quartz tube and 50 cm3/min of air was 

fed on the opposite side. Temperature was monitored by a thermocouple placed next to the 

membrane region. The effluent gases flow down the alumina tube to an Agilent 7890B GC 

equipped with two thermal conductivity (TCD) detectors and a flame ionization detector (FID) for 

analysis. The GC was calibrated beforehand using certified gas mixtures.  

 The oxygen flux (JO2) was calculated using Equation 4.1, where yO2 is the concentration of 

oxygen permeated, Fe is the total exit flow rate and Aeff is the effective membrane surface area. 

yO2 was calculated using an oxygen mole balance. Aeff is calculated as the geometric surface area 

(πr2) of the membrane exposed to the methane stream which was estimated to be ∼ 0.7 cm2. Sealing 

can be a problem with button-shaped membranes especially due to their relatively high  
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Figure 4.2. Schematic of experimental set-up for button membrane reactor 

 

sealing/membrane area ratio. The amount of leak in the reactor can be determined by monitoring 

the N2 concentration in the outlet stream. In our tests, the molar fraction of N2 in the outlet stream 

was typically very low (≤ 0.3%). Therefore, any O2 leaked into reactor is considered negligible 

compared to the O2 permeated though the membrane. 

 

                                             𝐽𝑂2
 (µmol 𝑐𝑚−2𝑚𝑖𝑛−1) =  

y𝑜2
𝐹𝑒𝑥𝑖𝑡 (𝜇𝑚𝑜𝑙/𝑚𝑖𝑛)

 𝐴𝑒𝑓𝑓 (𝑐𝑚2)
                              (4.1) 
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 CH4 conversion (%) and C2+ selectivity (%) were calculated using Equations 4.2 and 4.3.17 

The CH4 conversion rate (in µmol cm-2 min-1) was calculated using Equation 4.4, where XCH4 is 

the CH4 conversion (in fraction) and FCH4in is the flow rate of methane in the inlet stream.  

 

𝑋(%) =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑓𝑒𝑑
× 100                                           (4.2) 

     𝑆(%) =
[2(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶2𝐻4 + 𝐶2𝐻6 ) + 3(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶3𝐻6 + 𝐶3𝐻8)]𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
× 100         (4.3) 

      CH4 conversion rate (µmol 𝑐𝑚−2𝑚𝑖𝑛−1) =  
𝑋𝐶𝐻4

𝐹𝐶𝐻4𝑖𝑛(𝜇𝑚𝑜𝑙/𝑚𝑖𝑛)

𝐴𝑒𝑓𝑓 (𝑐𝑚2)
                               (4.4) 

 

4.4. Results and Discussion 

 Cross-section and surface SEM micrographs of as-synthesized LSGM, BCG and BCZG 

membrane/catalyst systems are shown in (Figure 4.3). The images show that the membranes are 

dense with only a few isolated pores. The cross-section micrographs also show that all three 

membranes are ∼500 µm thick while the porous catalyst layers are ∼100 µm thick. The estimated 

surface area of the catalyst layers was ∼80 cm2 based on a catalyst weight of ∼2 mg and the 

measured BET surface area of ∼ 4 m2/g.16,17 Note that the actual active surface area of the catalyst 

layers is expected to be lower than this value due to partial sintering of the layers to the membranes 

at the high calcination temperatures (> 1000°C) required for adhesion. Energy Dispersive 

Spectroscopy (EDS) maps of La and Ni at the interface of Ni doped LSGM (Ni-LSGM) membrane 

and LSGM catalyst suggests that there was no migration of Ni from the membrane to the catalyst 

layer during synthesis and testing (Figure 4.4a-d). X-ray diffraction (XRD) patterns from the 

membranes (Figure 4.5a) also confirmed that they have the desired perovskite structures with no 
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significant secondary crystalline phases. The diffraction pattern from the Ni-LSGM membrane 

shows no significant peak corresponding to that of NiO (also shown in Figure 4.5a), which 

suggests that Ni was either incorporated into the perovskite lattice and/or highly dispersed within 

the membrane. 

 The data in Figure 4.5b shows the oxygen flux from the Ni-LSGM/LSGM, BCG/BCG and 

BCZG/BCZG system as a function of temperature. The oxygen flux from all three membranes 

increases with increasing temperature which is expected as the oxygen ion transport is thermally 

activated. The oxygen flux follows the order BCG > Ni-LSGM > BCZG. In particular, the oxygen 

flux from BCZG was significantly lower compared to BCG. We hypothesize that the lower oxygen 

flux from BCZG in part due to its lower electronic conductivity compared to BCG. Electron 

conduction in doped barium cerate/zirconate systems has been linked to a reduction of the Ce ions 

present from +4 to +3 oxidation state at high temperatures.19,22 Therefore, partial substitution of 

Ce by Zr in the BCZG membrane could have led to a significant reduction in the electronic 

conductivity and therefore the oxygen flux. The surface SEM image of the BCZG membrane 

(Figure 4.3i) also shows that it has smaller grain size in comparison to that of BCG (Figure 4.3f). 

This indicates that the BCZG membrane has a higher grain boundary volume fraction than the 

BCG membrane and therefore may possess higher grain boundary resistance to the transport of 

oxygen ions.23 Due to the low oxygen flux from the BCZG/BCZG system, the remainder of this 

study was focused on the BCG/BCG and Ni-LSGM/LSGM system. 
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Figure 4.3. Cross-section and surface SEM micrographs of synthesized LSGM, BCG and BCZG 

membrane/catalyst systems. 
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Figure 4.4. SEM images and corresponding EDS maps of La (green) and Ni (yellow) at the 

interface of (a,b) as-synthesized and (c,d) reacted Ni-LSGM membrane and LGSM catalyst. 
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Figure 4.5. a) XRD patterns from as-sintered membranes and NiO b) Oxygen flux from Ni-

LSGM/LSGM, BCG/BCG and BCZG/BCZG membrane systems as a function of temperature 
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 The data in Figure 4.6a and b show the methane conversion rate (in µmol cm-2 min-1) and 

C2+ selectivity as a function of time measured for the Ni-LSGM/LSGM and BCG/BCG 

membrane/catalyst system (C2+ includes propane and propylene), respectively. The reactor tests 

were performed at 810°C using 5 cm3/min of 95 % CH4 in helium on the permeate side and 50 

cm3/min of air on the opposite side of the membrane. We chose to operate our system at high 

partial pressures of methane (as opposed to highly diluted methane stream typically reported in the 

literature) since these conditions are more technologically relevant and there is a strong 

thermodynamic driving force to form solid carbon (Figure 4.1a). Note that due to the low 

membrane surface area, the percentage methane conversion in both systems was low (∼ 1.4 % for 

the BCG/BCG and ≤ 0.5 % for the Ni-LSGM/LSGM). By operating in the differential conversion 

regime, we are essentially assessing the inherent propensity of the materials to form different 

products, including solid carbon. The data in Figure 4.6a show that the C2+ selectivity from the Ni-

LSGM/LSGM system decreased from ∼ 70% to 30% over 24 hours. Conversely, the data in Figure 

4.6b show that the C2+ selectivity from the BCG/BCG membrane/catalyst system was relatively 

stable at ∼ 80% over 24 hours. The data also show that, over the 24-hour period, the methane 

conversion rate dropped by ∼ 30 % for the Ni-LSGM/LSGM membrane/catalyst, while this drop 

was < 10 % for the BCG/BCG system. We also tested the BCG/BCG system at similar methane 

conversion rates (controlled by controlling the flux of oxygen through the membrane as shown in 

Figure 4.6c) as the Ni-LSGM/LSGM system and found that the OCM performance of the 

BCG/BCG system was consistently more stable than that of the Ni-LSGM/LSGM system (Figure 

4.6d). 

 To shed light on the observed difference in the performance of the two systems, we 

characterized both systems. The XRD spectra of as-synthesized and used LSGM and BCG 
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catalysts on respective membranes are shown in Figure 4.7a. The XRD pattern from the used 

LSGM catalyst shows a peak at ~ 26°, indicative of the presence of graphitic carbon. The XRD 

spectra from used BCG catalyst shows no detectable carbon diffraction pattern, suggesting a lower 

degree of carbon build-up. The data in Figure 4.7b presents the Raman spectra from as prepared 

and used LSGM and BCG systems. The spectrum from the used LSGM catalyst show peaks at 

approximately 1350 cm-1 and 1580 cm-1, assigned to the D- and G-band of solid carbon, due to the 

stretching of the C-C bond in sp2-bonded carbon and the presence of disorder in the carbon 

deposits, respectively24. The Raman spectrum from the used BCG catalyst has no feature 

corresponding to carbon. 

 SEM images and corresponding EDS elemental maps obtained from the catalyst surface 

side of the as-prepared and used Ni-LSGM/LSGM membrane/catalyst system are shown in Figure 

4.8 (a,e) and 4.8(b,f), respectively. The elemental maps from the reacted catalyst show that the 

surface was covered with a significant amount of carbon (in red) that was absent in the unreacted 

catalyst. Figure 4.8(c,g) and 4.8(d,h) shows the SEM image and corresponding EDS elemental 

maps of the fresh and spent BCG systems. The EDS maps from the spent BCG catalyst (Figure 

4.8h) does not show detectable carbon build up suggesting a lower rate of carbon deposition on 

this catalyst compared to the LSGM catalyst. The SEM images suggest some morphological 

changes in the used BCG and LSGM catalysts compared to the fresh catalysts. These changes are 

mainly due to the formation of new phases (e.g., carbonates and oxides) which are a common 

feature of the OCM process.16,17 Raman spectrum from the reacted BCG catalyst (Figure 4.9a) also 

shows a new peak appearing at around 470 cm-1, which indicates the presence of a CeO2-like phase 

that was absent in the spectrum of the unreacted BCG catalyst (also shown in Figure 4.9a). Despite 
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these changes in morphology, the performance of BCG with respect to both activity and selectivity 

is very stable over the time on stream studied. 

 

 

Figure 4.6. Methane conversion rate and C2+ selectivity over time from (a) Ni-LSGM/LSGM 

membrane/catalyst and (b) BCG/BCG membrane/catalyst (c) Oxygen flux through ∼ 500 µm thick 

Ni-LSGM and BCG button membrane as a function of temperature. The oxygen flux through the 

BCG membrane was lowered by reducing the O2 partial pressure on the air-side of the membrane 

(PO2) from 0.21 bar to 0.04 bar (d) Methane conversion rate and C2+ selectivity over time from 

BCG/BCG membrane/catalyst at 810°C and similar oxygen flux as Ni-LSGM/LSGM 

membrane/catalyst. 
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Figure 4.7. (a) X-ray diffraction patterns (b) Raman spectra, from unreacted and reacted LSGM 

and BCG catalyst on respective membranes.  

 

 

Figure 4.8. SEM images and corresponding EDS maps from the surface of (a,e) unreacted LSGM 

catalyst (b,f) reacted LSGM catalyst (c,g) unreacted BCG catalyst (d, h) reacted BCG catalyst, 

supported on respective membranes. La is depicted by light green, Ga by dark blue, Ba by cyan, 

Ce by yellow and carbon by red.   
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 The characterization data from XRD, Raman spectroscopy and EDS paint a consistent 

picture indicating that under identical external conditions, there is a significant carbon build-up on 

the reacted LSGM catalyst, while BCG is less prone to the carbon deposition. Based on these data, 

we hypothesize that the decline in the C2+ selectivity and methane conversion over time, observed 

for the Ni-LSGM/LSGM membrane/catalyst, is due to carbon deposition on the LSGM catalyst 

surface. The higher carbon resistance of the BCG/BCG system prolongs the membrane/catalyst 

lifetime which is desired as it allows for fewer regeneration cycles in long-term (e.g., commercial) 

operations. We speculate that the high carbon resistance of the BCG/BCG system is related to its 

intrinsic oxygen storage/release capacity (i.e., the chemical potential of oxygen in the surface 

layers of the material). We note that oxygen suppresses carbon deposition on the catalyst surface 

as these highly chemically active oxygen atoms serve to oxidize carbon deposits before they can 

nucleate and grow on the catalyst surface.   

 One measure of this oxygen storage/release capacity is the reducibility of the material. We 

have conducted H2-Temperature Programmed Reduction (TPR) studies on the BCG and LSGM 

catalyst powders (using ∼ 0.5 g of each) to compare their relative reducibilities. Figure 4.9b shows 

H2-TPR profiles obtained from the BCG and LSGM catalysts. The data for the BCG sample show 

a peak around 330°C and a larger broader peak around 560°C. The H2-TPR profile for the LSGM 

sample shows smaller peaks around 340°C and 610°C. A comparison of the H2-TPR peak 

intensities from BCG and LSGM catalysts in Figure 4.9b suggests that for the same amount of 

material, the H2 consumption by the BCG catalyst is overall larger than the LSGM catalyst 

indicating higher storage of available O2- in BCG. In addition, the lower reduction temperatures 

for BCG compared to LSGM suggests that the BCG catalyst is more reducible than the LSGM 

catalyst, i.e., it binds the reactive oxygen atoms with a lower interaction energy. This essentially 
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means that the oxygen stored in BCG is more chemically reactive that that stored in LSGM. Note 

that the BET surface areas of both catalyst powders are very similar (< 4 m2/g), therefore the 

differences observed cannot be attributed to differences in surface area. Another manifestation of 

the intrinsic oxygen storage/release capacity is the oxygen permeation flux through the 

membranes. The resistance to oxygen ion transport appears to be higher in the Ni-LSGM 

membrane as evidenced by its lower oxygen flux compared to the BCG membrane at similar 

operating conditions (Figure 4.6c). This result is consistent with the H2-TPR data which shows a 

lower capacity of LSGM to store and release oxygen compared to BCG.  

 

Figure 4.9. (a) H2-TPR profiles from LSGM and BCG catalyst (b) Oxygen flux through ∼ 500 

µm thick Ni-LSGM/LSGM and BCG/BCG button membrane as a function of temperature. 

 

4.5 Conclusions 

 We have tested BCG/BCG, BCZG/BCZG and Ni-LSGM/LSGM membrane/catalyst 

systems to evaluate their OCM performance at high methane concentrations. We discovered that 
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the BCG/BCG membrane system exhibits more stable C2+ selectivity compared to the Ni-

LSGM/LSGM system. Characterization data confirmed the presence of significant amount of 

carbon deposits on the reacted LSGM catalyst and negligible amounts on the reacted BCG catalyst 

(supported on respective membranes). We hypothesize that the decline in C2+ selectivity over time 

from the Ni-LSGM/LSGM system is due to a higher carbon deposition rate compared to the 

BCG/BCG system. We attribute the higher carbon tolerance of the BCG/BCG system to a higher 

oxygen storage/release capacity of the BCG material compared to LSGM. We also found that the 

BCZG/BCZG system gives significantly lower oxygen flux compared to the BCG/BCG system.  

We hypothesize that the lower oxygen flux from BCZG is related to a reduction in its electron 

conductivity compared to BCG due the presence of the Zr dopant. 
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Chapter 5 

 

 

Enhancing Selectivity in Oxidative Coupling of Methane Using Tubular Catalytic Solid 

Oxide Membrane Reactors 

 

5.1 Summary  

 The oxidative coupling of methane (OCM) is a promising route for the direct conversion 

of methane (the principal component of natural gas) to higher value C2 hydrocarbons (ethylene 

and ethane). The main challenge with this process is the formation of undesired by-products (CO 

and CO2) from over-oxidation reactions, which limits the C2 product selectivity. This selectivity 

problem is particularly significant in conventional reactors, where methane and oxygen are co-fed, 

due to the presence of high gas-phase O2 concentrations at the reactor inlet that accelerates the 

over-oxidation reactions. To overcome this challenge, catalytic solid oxide membrane reactors 

have been proposed as an alternative to co-fed reactors. The membrane reactors allow the delivery 

of oxygen-ions (O2-) to the catalytically active sites in a distributed and controlled manner, thereby 

reducing the gas-phase O2 concentration in the reactor, which should limit the occurrence of over-

oxidation reactions. In this work, catalytic BaCe0.8Gd0.2O3-δ (BCG) tubular membranes were 

synthesized via a combination of slip-casting and solid-state reactive sintering (using Cu as a 

sintering additive) and tested in OCM. The Cu modified BCG (Cu-BCG) membrane reactor 

achieved a methane conversion of ~ 6% and a C2+ selectivity of ~ 65% at 845°C. The Cu-BCG 

membrane reactor also achieved significantly higher C2+ selectivity (≥ 14% increase) compared to 

a co-fed reactor at similar methane conversions. This finding provides conclusive evidence of the 
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improved OCM performance of a catalytic membrane reactor over a conventional co-fed reactor. 

However, stability studies revealed that the methane conversion from the Cu-BCG membrane 

reactor declined over time. The decline in catalytic activity of the Cu-BCG membrane was 

attributed to phase changes occurring on the membrane surface under the operating conditions. 

5.2 Introduction 

 The increase in the supply of low-cost natural gas from unconventional sources (e.g., shale 

oil and gas reserves) in the United States is causing a shift from petroleum to natural gas as the 

main source of hydrocarbon feedstock for the chemical industry.1 Methane (the principal 

component of natural gas) is industrially converted to value-added chemicals such as methanol 

and higher hydrocarbons via technologies requiring an intermediate syngas (CO, H2) production 

step.2,3 However, the high cost associated with these technologies indicate that they benefit from 

economies of scale and are not suitable for small-scale operations. Since it is expensive to transport 

the “stranded” natural gas from small-scale sources, they are typically flared or vented.  This 

practice does not only lead to the waste of a valuable resource but also contributes towards the 

emission of deleterious greenhouse gases. Therefore, the desire for modular upgrading 

technologies that are applicable to stranded natural gas is a major driver for the development of 

direct methane conversion routes.3–5 

 The oxidative coupling of methane (OCM) is a promising route for the direct conversion 

of methane to higher value C2 hydrocarbons such as ethylene and ethane. This process occurs at 

high temperatures (600-900°C) in the presence of oxygen and an active catalyst.6 The widely 

proposed mechanism for OCM begins with the abstraction of hydrogen from methane by a surface 

oxygen specie to form methyl radicals. The methyl radicals are released to the gas-phase where 

they couple to form ethane, which can be further dehydrogenated into ethylene.7–9 The main 
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challenge with OCM is that the C2 selectivity is limited due to the formation of thermodynamically 

favored over-oxidation products, CO and CO2 (COx). This problem is particularly significant in 

conventional OCM reactors where methane and oxygen are co-fed at the reactor inlet.10 Since the 

total oxygen amount is fed together with methane, co-fed reactors enable high concentrations of 

gas-phase O2 at the reactor inlet. The gas-phase O2 reacts with hydrocarbon radicals to form COx, 

which limits the overall C2 selectivity.11  

 An approach to overcome this challenge is to utilize catalytic solid oxide membrane 

reactors where a dense (non-porous) perovskite membrane separates the methane from the oxygen 

feed. The membrane allows the selective conduction of O2- (lattice oxygen) from the oxygen side 

of the membrane to the methane side where the reaction occurs.10,12 In this system, the lattice 

oxygen species are delivered to the active sites in a distributed and controlled manner. Therefore, 

gas-phase oxygen concentration on the methane-side is considerably minimized which should limit 

the rates of COx product formation.10 The membrane reactors offer additional benefits including 

better control of reactor temperature (due to reduced rates of exothermic over-oxidation reactions) 

and simultaneous separation of pure oxygen from other components in the air, thereby simplifying 

downstream separation and enabling process intensification.  

 Although solid oxide membrane reactors offer several advantages, there are relatively few 

experimental studies of these membrane reactors in OCM.13–18 Moreover, studies on the long-term 

performance and phase stability of the membrane reactors in OCM are limited.18 In this work, we 

fabricate BaCe0.8Gd0.2O3-δ (BCG) tubular membranes via a combined slip-casting and solid-state 

reactive sintering (SSRS) method, using Cu as a sintering additive. The Cu-modified BCG (Cu-

BCG) tubular membrane was studied in OCM to evaluate the impact of changing the mode of 

feeding oxygen (distributed versus co-fed) and the stability of the membrane reactor overtime on 
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stream. Our results show that significantly higher C2+ selectivity can be achieved from membrane 

reactor operation (distributed oxygen feed) compared to the co-fed operation of the Cu-BCG 

membrane, at similar methane conversions. Additionally, we show that the OCM performance of 

the membrane reactor declines slightly over time which we attribute to phase changes occurring 

on the membrane surface under operating conditions. 

5.3 Experimental  

5.3.1 Membrane fabrication  

 Dead-end BCG tubular membranes were fabricated by slip-casting and solid-state reactive 

sintering using Cu (4 mol %) as a sintering additive.19,20  The materials used for fabrication include 

barium carbonate (BaCO3, Alfa Aesar, 99.8%), cerium (IV) oxide (CeO2, Alfa Aesar, 99.9%), 

gadolinium (III) oxide (Gd2O3, Alfa Aesar, 99.9%), copper (II) oxide (CuO, Sigma Aldrich, 98%), 

gum arabic (The Ceramic Shop), gypsum powder (Blick Art Materials), α-terpineol (Acros 

Organics, 97+%), ethyl cellulose (Sigma Aldrich, 48% ethoxyl), and graphite (Alfa Aesar, 75-

micron size). The slip-casting process is illustrated in Figure 5.1.  

 The plaster mold was fabricated from a mixture of gypsum powder and water in a 1:1 

weight ratio. The mixture was poured into a cylindrical container and degassed under vacuum for 

5 minutes. After degassing, a glass test-tube was inserted in the center of the mixture avoiding 

contact with the bottom of the container. The test-tube was removed when the mixture was partially 

solidified leaving behind a hollow in the mold. After complete solidification, the mold was 

removed from the container and dried at 50°C.  

 To prepare the slurry for slip-casting, stoichiometric amounts of BCG precursors (BaCO3, 

CeO2 and Gd2O3) were ball milled in ethanol for 24 hours and then dried under stirring. A separate 

solution was prepared by dissolving gum arabic (as a binder) in deionized water.  The ball-milled 
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BCG precursor and CuO (0.82 g per 100 g of BCG precursor) was added to the binder solution 

and stirred for ~10 minutes. The weight ratio of the binder: precursor powder: water used in the 

slurry was 1:9:45. The prepared slurry was poured into a dry plaster mold. Water in the slurry was 

absorbed by the mold leaving a solid layer of BCG precursor, CuO and binder. The slurry was 

poured in continuously maintaining a constant level at the top surface of the mold.  After a total 

casting time of 5 minutes, the excess slurry was decanted. The solid layer (casted tube) shrank 

while drying and was carefully removed from the mold. The casted tube was sintered at 1450°C 

for 5 hours using ramp rates of 1°C/min. Figure 5.2 shows representative images of the slip-casted 

Cu-BCG precursor tubes (~14 mm ID, 16 mm OD and 10 cm in length) and the sintered Cu-BCG 

tubular membranes (~10 mm ID, 11 mm OD and 6 cm length) on the left and right, respectively. 

The linear shrinkage of the tubes upon sintering was ~ 40%. 

 The inner surface of some tubular membranes was coated with a catalyst slurry composed 

of BCG powder (sifted to < 75 µm size), ethanol, graphite, and binder (6wt% ethyl cellulose in 

terpineol). The BCG powder was prepared by solid-state reaction where a stoichiometric amount 

of BaCO3, CeO2 and Gd2O3 were ball milled in ethanol for 24 h, dried than calcined at 1350°C for 

10 hours. The weight ratio of binder: graphite: BCG powder: ethanol in the slurry was 4:7:21:80. 

Prior to coating the inner surface, the outer surface of the tubular membrane was wrapped in Teflon 

tape to minimize contamination. The slurry was sonicated for 10 minutes to disperse the solids and 

then poured into the tubular membrane. After approximately 5 s, the slurry was decanted, and the 

tube was dried at 70°C for 10 minutes. The coating process was repeated 10 times to increase the 

thickness of the catalyst layer. The coated membrane was then dried and calcined at 900°C for 2 

hours (ramp rate 1.5°C/min) to adhere the catalyst layer to the membrane. The final thickness of 

the coated catalyst layer was 25 – 50 µm as determined by SEM imaging. 
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Figure 5.1. Five consecutive steps involved in slip casting: (a) a plaster mold is prepared from a 

mixture of gypsum plaster and water; (b) the dry mold is filled with slurry composed of chemical 

precursors and water; (c) the mold extracts water from the slurry forming a solid layer of precursor 

on the wall of the mold; (d) excess slip is decanted from the mold; (e) solid layer or casted tube is 

removed from mold after partial drying.  

 

 

Figure 5.2. Representative pictures of the slip-casted Cu-BCG precursor tubes and the sintered 

Cu-BCG tubular membranes on the left and right, respectively 
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5.3.2 Membrane characterization 

 The tubular membranes were characterized by X-ray diffraction (XRD) to determine the 

crystalline phases present. The XRD measurements were obtained at room temperature with a 

Rigaku MiniFlex 600 spectrometer using a Cu Kα (λ =1.54059 Å) radiation source and operating 

at a tube voltage and current of 40kV and 15mA, respectively. The patterns were recorded at 2θ 

angles from 20 to 80 in a continuous scan mode at a speed of 2°(2ϴ) per minute and a step width 

of 0.02°.   

Scanning electron microscopy (SEM) was used to evaluate the morphology and thickness 

of the tubular membranes. The SEM micrographs were obtained using a Tescan MIRA3 FEG 

microscope. The membranes were fractured to obtain relatively flat pieces of samples that were 

attached to SEM sample stubs (using double-sided copper tape) for imaging. The samples were 

also sputter-coated with a thin layer of gold to minimize charging during imaging. Energy 

Dispersive X-ray Spectroscopy (EDS) analysis of the samples was achieved using an EDAX 

detector (with TEAM software) that was connected to the SEM microscope. EDS elemental maps 

were collected at an accelerating voltage of 12kV, a working distance of 15 mm, dwell time of 200 

µs and a frame size of 256 x 200 pixels. Drift corrected mode was applied to minimize the effect 

of sample drift during mapping. 

5.3.3 Membrane reactor set-up and testing 

 A diagram of the tubular membrane reactor is shown in Figure 5.3a. The open-end of the 

membrane was attached to the top of an alumina tube (12.7 mm OD and 9.5 mm ID) using a 

combination of glass and ceramic sealants. After drying the sealant, the alumina tube with the 

attached membrane was inserted into an insulated furnace and heated under helium flow to 880°C 
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at a ramp rate of 1°C/min. The inlet flow rate of the gases was controlled using mass flow 

controllers (Cole Parmer).  

For oxygen permeation tests, 100 cm3/min of O2 and N2 mixture was supplied from the top 

through a large quartz tube (19 mm OD and 17 mm ID) to one side of the membrane (referred to 

as the shell-side) and 40 cm3/min of helium was fed on the opposite side through an inner quartz 

tube (6.35 mm OD and 4 mm ID) that extended towards the dead-end of the membrane (referred 

to as tube-side) as shown in Figure 5.3a. For the OCM experiments, 20 cm3/min of methane 

(containing 5% helium) diluted with an additional 20 cm3/min of helium were fed on the tube-side 

while 100 cm3/min of O2 and N2 mixture was fed on the shell-side. This results in an inlet methane 

partial pressure (PCH4) of ~ 0.5 bar. The methane stream flows down the annular region between 

the tubular membrane and the inner quartz tube where it can react with permeated oxygen. A 

thermocouple was placed near the membrane to monitor the reactor temperature. The effluent 

gases leaving the tube-side were analyzed with an Agilent 7890B GC gas chromatograph (GC) 

equipped with two thermal conductivity detectors (TCD) and a flame ionization detector (FID) . 

For comparison, co-fed reactor experiments were performed where methane, oxygen and helium 

were all fed to the tube-side while pure nitrogen was supplied to the shell-side of the membrane 

(Figure 5.3b). The flow rate of methane and helium into the co-fed reactor was the same as the 

membrane reactor i.e., 20 cm3/min of methane (containing 5% helium) diluted with an additional 

20 cm3/min of helium. All flow rates reported here are given at standard conditions (STP). 

 The oxygen flux (𝐽𝑂2
) through the membranes was calculated using Equation 5.1, where 

𝑦𝑂2
 is the concentration of permeated oxygen, Fexit is the total exit flow rate and Aeff is the effective 

permeation area of the tubular membrane. 𝑦𝑂2
 was calculated by application of mole balance on 

oxygen and Aeff was estimated to be approximately 15 cm2. In all tests, the amount of N2 detected 
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in the effluent gas was low (< 0.2%). This indicates that the amount of oxygen that leaked into the 

system from the air-side is negligible and does not affect the performance evaluation.  

 

Figure 5.3. Reactor set-up (a) membrane reactor (b) co-fed reactor 

 

                           𝐽𝑂2
 (µmol 𝑐𝑚−2𝑚𝑖𝑛−1) =  

y𝑜2
𝐹𝑒𝑥𝑖𝑡 (𝜇𝑚𝑜𝑙/𝑚𝑖𝑛)

 𝐴𝑒𝑓𝑓  (𝑐𝑚2)
                                                (5.1) 

 

 CH4 conversion (%), C2+ selectivity (%) and C2+ yield (%) were calculated using Equations 

5.2, 5.3 and 5.4, respectively.  In membrane reactor operation, the methane conversion was varied 

by changing the oxygen partial pressure on the shell-side of the membrane (𝑃𝑂2,𝑠
) from 0.21 to 1 

bar while keeping the total flow rate constant at 100 cm3/min. By varying 𝑃𝑂2,𝑠
, the driving force 

for oxygen transport through the membrane (i.e., the oxygen partial pressure difference across the 
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membrane) is altered, which changes the oxygen flux. In the co-fed operation, methane conversion 

was varied by changing the flow rate of pure oxygen co-fed with methane from 0.6 – 1 cm3/min. 

𝑋(%) =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑓𝑒𝑑
× 100                                           (5.2) 

 𝑆(%) =
[2(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶2𝐻4 + 𝐶2𝐻6 ) + 3(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶3𝐻6 + 𝐶3𝐻8)]𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
× 100         (5.3) 

𝑌(%) =
𝑆𝑋

100
                                                                          (5.4) 

 

5.3.4 Packed bed reactor set-up and testing 

 Cu modified BCG (Cu-BCG) powder was tested in a conventional packed bed reactor 

(PBR) to evaluate its performance in comparison to that of BCG. The Cu-BCG powder was 

prepared by crushing and sifting Cu-BCG tubular membranes to particles 125 – 350 µm in 

diameter. 0.1g of the sifted powder was loaded in the middle of a 6.35 mm ID quartz tube and 

supported on both ends with silica wool. The loaded quartz tube was placed horizontally in an 

insulated furnace equipped with a thermocouple and a temperature controller. The furnace was 

heated under 40 cm3/min of Argon flow to 750°C at a ramp rate of 2°C/min. At 750°C, the Argon 

flow was discontinued and methane (containing 5% helium) and air were fed to the reactor at a 

total flow rate of 100 cm3/min. The flow rate of the methane stream was varied between 25 – 95 

cm3/min, while the air flowrate was varied between 5 – 75 cm3/ min. The effluent gases leaving 

the reactor were passed through a condenser to remove water vapor and then fed to an Agilent 

7890B Gas Chromatograph (GC) equipped with two thermal conductivity detectors (TCD) and a 

flame ionization detector (FID) for analysis. CH4 conversion (%), C2+ selectivity (%) and C2+ yield 

(%) were calculated using Equations 5.2 - 5.4.   
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5.4 Results and Discussion 

5.4.1 Characterization of fresh membranes  

 Figure 5.4a shows the XRD pattern from a representative Cu modified BCG (Cu-BCG) 

tubular membrane as well as the standard patterns for BaCeO3 perovskite and CuO. The pattern 

for the Cu-BCG membrane shows that it had the desired perovskite structure with no secondary 

impurity phases. No diffraction peaks corresponding to CuO were detected in the XRD pattern of 

the Cu-BCG membrane. This indicates that Cu was either incorporated into the lattice of BCG or 

was highly dispersed within the membrane at low concentrations (4 mol% Cu) that is not detectable 

by the XRD.  

The Cu-BCG membranes were approximately 500 µm thick as shown in the cross-section 

SEM image in Figure 5.4b. The SEM image of the inner (Figure 5.4c) and the outer surface (Figure 

5.4d) of the membranes also show that the membranes were highly dense (non-porous). The high 

density of the membranes is important as it enables the selective transfer of O2- across the 

membrane at high temperature while preventing the transfer of other components (e.g., N2).  
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Figure 5.4. (a) XRD pattern from Cu-BCG tubular membrane and standard patterns for BaCeO3 

and CuO. SEM images of Cu-BCG tubular membrane showing (b) cross-section (c) inner surface 

and (d) outer surface 

 

5.4.2 Membrane and co-fed reactor performance 

 The data in Figure 5.5a shows the C2+ selectivity as a function of methane conversion for 

the Cu-BCG membrane and co-fed reactor at 845°C. As shown in the figure, the C2+ selectivity 

from the membrane reactor was significantly higher than that from the co-fed reactor at comparable 

methane conversions. The membrane reactor achieves a C2+ selectivity of ~ 65 % at methane 

conversions of 5.6 – 6.5 %. On the other hand, the co-fed reactor achieves C2+ selectivity of 54 – 

57 % at methane conversions of 5.0 – 7.0 %. The higher selectivity achieved in the membrane 

reactor is attributed to a decrease in the occurrence of unselective gas-phase reactions that promote 

the sequential conversion of the C2+ products to CO and CO2 (COx). This result supports our 

overall hypothesis that improved C2+ selectivity is achieved in the membrane reactors compared 
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to the co-fed reactors due to the distributed oxygen feed resulting in lower gas-phase oxygen 

concentrations in the former. 

 The data in Figure 5.5b shows the oxygen conversion as a function of methane conversion 

from the membrane and co-fed reactor at 845°C. The figure shows that the oxygen conversion was 

≥ 90% in both the membrane and co-fed reactor, however, oxygen conversion was lower in the 

membrane reactor. The apparent lower oxygen conversion in the membrane reactor is attributed 

to the presence of unreacted oxygen that permeated through the membrane near the reactor outlet. 

In other words, the oxygen that permeates near the membrane outlet has a lower probability of 

reacting with methane as it spends a relatively shorter amount of time in the reactor. On the other 

hand, the oxygen introduced in the co-fed reactor is rapidly consumed near the reactor inlet leading 

to nearly a 100% oxygen conversion.  

 Note that in the experiments described above, the Cu-BCG tubular membranes were tested 

in the absence of an additional catalyst layer i.e., the membrane serves a dual role as both 

membrane (transfers and supplies lattice oxygen) and catalyst (activates methane). To evaluate the 

catalytic activity of the Cu-BCG tubular membrane in the absence of an additional catalyst layer, 

we performed co-fed control experiments. The control experiments were performed in the absence 

of the Cu-BCG tubular membrane i.e., methane and oxygen were co-fed into a dead-end inert 

(quartz) tube instead of the tubular membrane. In these experiments, the methane feed inlet flow 

rate was fixed at 40 cm3/min (PCH4 ~ 0.5 bar, balance helium) while the oxygen flow rate was 

varied between 0.6 – 1.2 cm3/min. Figure 5.5c shows the methane conversion as a function of the 

oxygen concentration in the feed (𝐶𝑂2,𝑖𝑛
) for the co-fed reactor (i.e., with the Cu-BCG tubular 

membrane) and the control experiment (i.e., with the dead-end inert tube). As shown Figure 5.5c, 

the methane conversion from the control experiment was significantly lower than the co-fed 
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reactor at all 𝐶𝑂2,𝑖𝑛 . Specifically, the methane conversion was ≤ 1.3% in the control experiment 

while it was ≥ 5.0% in the co-fed reactor. Figure 5.5d shows the oxygen conversion as a function 

of 𝐶𝑂2,𝑖𝑛 . The data shows that the oxygen conversion was significantly lower in the control 

experiment compared to the co-fed reactor i.e., ≤ 22 % in the control experiment as opposed to 

nearly 100 % in the co-fed reactor. The minor methane and oxygen conversions obtained in the 

control experiment is attributed to homogenous reactions in the absence of a catalyst. The fact that 

the methane and oxygen conversion from the co-fed reactor is significantly higher than the control 

experiment confirms that the Cu-BCG membrane has considerable catalytic activity for OCM (i.e., 

it promotes the rates of CH4 activation) in the absence of an additional catalyst layer.  
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Figure 5.5. (a) C2+ selectivity as a function of methane conversion and (b) Oxygen conversion as 

a function of methane conversion from Cu-BCG membrane reactor and co-fed reactor. (c) Methane 

conversion as a function of the oxygen concentration in feed and (d) Oxygen conversion as a 

function of oxygen concentration in feed for co-fed reactor (with Cu-BCG membrane) and co-fed 

control experiment. The co-fed control experiments were performed using a dead-end quartz tube. 

All experiments were performed at 845°C.  
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5.4.3 Membrane stability under operating conditions  

 The data in Figure 5.6a show the oxygen flux from the Cu-BCG tubular membrane over 

24 hours at 845°C. The data was obtained with 40 cm3/min of helium on the tube-side and 100 

cm3/min of synthetic air (21% O2 and 79% N2) on the shell-side. Note that there was no methane 

introduced in this test. As shown in Figure 5.6a, the oxygen flux decreases from ~1.2 to 1.0 µmol. 

cm-2.min-1 over 24 hours on stream. This behavior is attributed to phase transformations occurring 

on the membrane surface at the operating condition, which will be illustrated using SEM and EDS 

analysis later in this section.  The data in Figure 5.6b show the methane conversion and C2+ 

selectivity over time from the Cu-BCG tubular membrane when operated as a membrane reactor. 

This experiment was performed at 845°C with 40 cm3/min of diluted methane feed (PCH4 ~ 0.5 

bar, balance He) on the tube-side and 100 cm3/min of synthetic air on shell-side of the membrane. 

As shown in Figure 5.6b, the methane conversion decreases from 6.1% to 5.5% over 20 hours. 

The decrease in methane conversion over time is attributed to a decline in the oxygen flux, which 

occurs even in the absence of methane as shown in Figure 5.6a. As the oxygen flux declines over 

time, the amount of lattice oxygen species available to activate methane also reduces, which 

decreases the methane conversion. The C2+ selectivity increases from 56% to 66% over 20 hours 

as shown in Figure 5.6b.  The increase in C2+ selectivity over time is, at least in part, due to the 

conversion-selectivity interplay that is typical in OCM, where a decrease in the methane 

conversion is accompanied by an increase in the selectivity. 
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Figure 5.6. (a) Oxygen flux and (b) CH4 conversion and C2+ selectivity as a function of time from 

Cu-BCG tubular membrane reactor. The oxygen flux measurements were obtained at 845°C using 

40 cm3/min of pure helium on the tube-side and 100 cm3/min of synthetic air on the shell-side of 

the membrane. The OCM stability test was performed using 40 cm3/min of diluted methane feed 

(PCH4 ~ 0.5 bar, balance helium) on the tube-side under the same reaction conditions.  
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 SEM micrographs from the fresh and spent surface on the tube-side (methane-side) and 

shell-side (oxygen-side) of the membrane are shown in Figure 5.7. As shown in the figure, the 

fresh surfaces on both sides of the membrane were relatively smooth (Figure 5.7a and c). After the 

reaction, the surface morphology on both sides was significantly transformed as shown in Figure 

5.7b and d. The spent surfaces appear to be covered with droplet-like features, which we attribute 

to new phases formed during the reaction. For example, new phases composed of carbonates and 

oxides may have been formed on the methane-side due to reaction between the BCG perovskite 

and CO2.
21–23 

 Figure 5.8 shows SEM images of the spent surfaces on the tube-side and shell-side of the 

membrane with corresponding EDS maps of barium, cerium, oxygen, and carbon. The EDS maps 

from the spent methane-side surface of the membrane (Figure 5.8b) show a relatively even 

distribution of elements despite the morphological changes in the SEM image. This indicates that 

there was either negligible elemental segregation or that the elemental composition of the tiny 

droplet-like regions was not adequately distinguished by EDS. On the contrary, the EDS maps 

from the spent oxygen-side surface (Figure 5.8d) show that the larger droplet-like regions in the 

SEM micrograph have significantly different composition compared to other regions of the 

membrane. The droplet-like regions appear to be mainly composed of oxygen (shown in blue). 

This result indicates that, at the operating conditions, the BCG perovskite phase segregated up a 

few µm below some regions of the membrane surface on the oxygen-side. The exact cause and 

composition of the new phases formed are unknown and of interest in future work. Note that 

similar phase transitions have been observed on the oxygen-side of state-of-the-art 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite membranes used in air separation leading to a steady 

decline in oxygen flux.24–26 
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 Since the perovskite-type structure of BCG is necessary for its oxygen-ion conduction,27 

we attribute the decline in the oxygen flux from the membrane (Figure 5.6a) to phase changes that 

occurred over time on stream, particularly on the oxygen-side of the membrane. Note that the EDS 

maps from the spent membrane surface on the methane-side (Figure 5.8b) did not show any regions 

covered in carbon (shown in red), which suggests that there was no carbon residue on the surface 

after the reaction. Figure 5.9 shows the XRD pattern from the fresh and spent Cu-BCG tubular 

membrane. The figure shows that the spent membrane has the same XRD pattern as the fresh 

membrane, with no significant impurity phase. This result indicates that membranes retain the bulk 

perovskite structure, therefore the phase changes occurred only at the membrane surfaces under 

the reaction condition.  

 

Figure 5.7. SEM images from Cu-BCG tubular membrane (a) fresh surface on tube-side (b) spent 

surface on tube-side (c) fresh surface on shell-side and (d) spent surface on shell-side. The tube-

side was exposed to methane while the shell-side was exposed to oxygen during the OCM tests at 

845 oC.              
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Figure 5.8. SEM images and corresponding EDS maps from spent surfaces on the tube-side (a,b) 

and shell-side (c,d) of the Cu-BCG tubular membrane. The tube-side was exposed to methane 

while the shell-side was exposed to oxygen during the OCM tests at 845 oC. 

 

 

Figure 5.9. XRD patterns from fresh and spent Cu-BCG tubular membrane 
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5.4.4 Performance of Cu-BCG membrane powder in a packed-bed reactor 

 The data in Figure 5.10 show the C2+ selectivity as a function of the methane conversion 

for the Cu-BCG powder in a packed-bed reactor at 750°C. The corresponding data for BCG 

catalyst powder tested under the same conditions is also shown in Figure 5.10.22 Note that the 

oxygen partial pressure in the feed decreases from the right to the left of the figure as indicated by 

the arrow above the figure. The data show the typical conversion-selectivity interplay in OCM, 

where the C2+ selectivity drops as methane conversion increases due to an increase in the sequential 

reactions of the C2+ products to COx. The data also show that the Cu-BCG powder gives 

significantly lower methane conversion and C2+ selectivity compared to the BCG powder. 

Furthermore, the oxygen conversion from the Cu-BCG powder was relatively low (6 - 85%) while 

it was ≥ 97% from the BCG catalyst.22 The lower methane and oxygen conversion from the Cu-

BCG powder is attributed to its reduced catalytic activity caused by the presence of Cu and/or the 

application of a higher synthesis temperature. The Cu-BCG powder was synthesized at 1450°C 

(as opposed to 1000°C for BCG), therefore it is expected to have a lower surface area (due to 

particle sintering) and therefore lower OCM activity.  The lower C2+ selectivity from the Cu-BCG 

is attributed to the presence of a transition metal (Cu) in the material. In general, oxides with 

transition metals give low selectivity in OCM as these metals tend to be selective for deeper 

oxidation of methane.28  Note that at ~ 6% methane conversion, the C2+ selectivity from the Cu-

BCG powder was ~ 53% as shown in Figure 5.10. These values are consistent with that obtained 

from the Cu-BCG tubular membrane in co-fed operation (Figure 5.5a). 
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Figure 5.10. C2+ selectivity as a function of methane conversion from Cu-BCG membrane powder 

and BCG catalyst powder in a packed bed reactor at 750°C. 

 

5.4.5 Effect of BCG catalyst coating on Cu-BCG membrane performance 

 As described above, the presence of Cu in the Cu-BCG membrane powder reduced its 

OCM performance compared to BCG. To improve the OCM performance of the Cu-BCG 

membrane reactor, the effect of adding a porous layer of the BCG catalyst to the inner surface 

(methane-side) of the membrane was investigated. The hypothesis was that the catalyst layer will 

provide a more active and selective surface for the OCM reaction and thereby improve the 

performance. Figure 5.11a-c show a cross-section SEM image and corresponding EDS elemental 

maps from a spent catalyst-coated Cu-BCG tubular membrane. As shown in the elemental maps, 

Cu (shown in pink) appears prominently in the BCG catalyst layer. On the other hand, the Cu in 

the membrane layer is well distributed and barely distinguishable from the other elements present. 

This data indicates that Cu migrated from the membrane to the catalyst layer presumably both 

during the calcination step (at 900°C) that was used to adhere the catalyst to the membrane and 
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during the OCM reaction (at 845°C). Figure 5.12 shows the XRD pattern from the spent BCG 

catalyst layer (which was carefully removed from the membrane) as well as the standard diffraction 

pattern for CuO. As shown in the figure, the spent catalyst layer had the desired BCG perovskite 

structure with no significant impurity phases. There was also no diffraction peak corresponding to 

CuO in the pattern from the catalyst layer which suggests that the concentration of Cu in the 

catalyst layer was below the detection limit of the XRD. 

 

Figure 5.11. Cross-section SEM image and corresponding EDS elemental maps of spent Cu-BCG 

tubular membrane coated with BCG catalyst. 

 
 

Figure 5.12. XRD pattern of the spent BCG catalyst layer that was recovered from the spent Cu-

BCG membrane along with the standard diffraction pattern of CuO. 
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 Data in Figure 5.13a show the oxygen flux from the uncoated and catalyst-coated tubular 

membranes. Note that this data was obtained with 40 cm3/min of pure helium fed to the tube-side 

and 100 cm3/min of synthetic air on the shell-side. The data shows that the oxygen flux from the 

catalyst-coated membrane was slightly lower than the uncoated membrane. We hypothesize that 

the catalyst layer on the coated membrane provides additional bulk-diffusion resistance to the 

transport of oxygen ions and thereby limits the oxygen flux. The data in Figure 5.13b show the 

methane conversion and C2+ selectivity from the uncoated and catalyst-coated membranes. The 

data was obtained with 40 cm3/min of diluted methane (PCH4 ~ 0.5 bar, balance helium) fed to the 

tube-side and 100 cm3/min of synthetic air on the shell-side As shown in the figure, the catalyst-

coated membranes gave lower methane conversion and C2+ selectivity than the uncoated 

membranes. The reduced methane conversion from the catalyst-coated membrane is attributed to 

its lower oxygen flux as shown in Figure 5.13a.  In other words, there is a lesser amount of lattice 

oxygen species available to activate methane in the catalyst-coated membrane reactor, which limits 

the methane conversion. The slightly lower C2+ selectivity from the catalyst-coated membrane (as 

shown in Figure 5.13b) may be caused by the agglomeration of Cu in some regions of the catalyst 

layer as can be observed in the EDS elemental maps shown in Figure 5.11b and c. The regions 

with Cu agglomerates have a higher Cu concentration that the uncoated membrane. Therefore, if 

the selectivity decreases with increasing Cu content, those regions with high Cu concentration will 

reduce the overall selectivity of the catalyst-coated membranes compared to the uncoated 

membranes.  

 The data in Figure 5.13b contradicts our initial hypothesis of improved OCM performance 

of the catalyst-coated membrane compared to the uncoated membrane. We believe that this is 

because the OCM performance of the tubular membrane is limited by bulk-diffusion of lattice 
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oxygen as opposed to surface kinetics on the methane-side. A better OCM performance could be 

achieved by decreasing the membrane thickness in order to reduce bulk oxygen diffusion 

limitations up to a point where the surface kinetics becomes rate limiting. Thereafter, a sufficiently 

thin porous catalyst layer can be added to the membrane to further improve the performance. To 

preserve the mechanical strength of the thinner membranes, they can be supported on porous 

substrates (known as asymmetric membranes).29,30 Another way to improve the performance of 

the Cu-BCG tubular membranes will be to eliminate Cu from the system. In the fabrication method 

used in this study, the addition of Cu to BCG was necessary to reduce the sintering temperature 

and prevent the membranes from cracking during sintering. More sophisticated fabrication 

techniques will be required to achieve crack-free BCG tubular membranes without a sintering 

additive. 
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Figure 5.13. (a) Oxygen flux from uncoated and catalyst-coated Cu-BCG tubular membranes as a 

function of temperature (b) CH4 conversion and C2+ selectivity from uncoated and catalyst-coated 

Cu-BCG tubular membranes at 845°C. 
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5.5 Conclusions 

 Catalytic BCG tubular membranes were fabricated by slip-casting and solid-state reactive 

sintering (using Cu as a sintering additive) and were studied for OCM. At 845°C, the Cu modified 

BCG (Cu-BCG) membrane reactor achieved a methane conversion of ~ 6% at a C2+ selectivity of 

~ 65% using 40 cm3/min of diluted methane feed (PCH4 ~ 0.5 bar, balance He). Significantly higher 

C2+ selectivity was achieved from membrane reactor operation (distributed oxygen feed) compared 

to co-fed operation of the Cu-BCG membrane, at similar methane conversions. The methane 

conversion from the Cu-BCG membrane reactor declined over time which was attributed to phase 

transformations occurring at the surface of the membrane at the operating condition. 

Unexpectedly, it was found that coating the Cu-BCG tubular membrane with a layer of BCG 

catalyst reduced the OCM performance. The lower OCM performance of the catalyst-coated 

membranes was attributed to the transfer of Cu from the membrane to the catalyst layer and 

additional bulk-diffusion resistance to oxygen transport introduced by the catalyst layer. 
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Chapter 6 

 

 

Conclusions and Future Directions 

 

6.1 Overall Conclusions 

 This dissertation research was focused on identifying selective catalysts and membranes 

for integration in solid oxide membrane reactors, fabricating the integrated systems and evaluating 

the performance of the systems in the oxidative coupling of methane (OCM) to C2 hydrocarbons. 

The overall hypothesis of this research is that solid oxide membrane reactors can improve C2 

selectivity in OCM compared to conventional co-fed reactors. This improvement is attributed to 

lower gas-phase oxygen concentrations attained through the distributed and controlled delivery of 

lattice oxygen (O2-) in the membrane reactor. In a background study, we developed reactor models 

for a membrane reactor and a co-fed reactor. The model results illustrate that membrane reactors 

should, in principle, give significantly higher C2 selectivity and yield compared to co-fed reactors.1  

 In subsequent work, we identified, synthesized and studied an O2- conductive gadolinium-

doped barium cerate (BaCe0.8Gd0.2O3-δ or BCG) perovskite material to evaluate its potential 

applicability both as a catalyst and membrane in solid oxide membrane reactors for OCM. From 

packed bed reactor (PBR) tests, we found that BCG is catalytically active and achieves high C2+ 

selectivity in OCM particularly at low oxygen concentrations which makes it a promising 

membrane-catalyst candidate. Unfortunately, under the reaction conditions, BCG segregates into 

carbonate and oxide phases which will impact its membrane (O2- conductive) properties. This 
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study highlights a critical problem in the application of O2- conducting membrane reactors in 

OCM; the contamination of membrane materials with carbonate due to reaction with CO2. 

However, we demonstrated that the phase stability of BCG in OCM can be improved by partially 

doping the perovskite with Zr without significantly affecting the C2 yields in a PBR.2  

 We proceeded to synthesize button-shaped membrane/catalyst systems and studied their 

OCM performance under membrane reactor conditions. This preliminary study aims to identify 

the most promising system to be used in a tubular membrane reactor. In this study, we 

demonstrated that carbon-induced catalyst deactivation deposition is a major issue in OCM solid 

oxide membrane reactors due to limited oxygen concentration (i.e., low O2/CH4 ratios). This is 

one of first studies in literature to address the issue of carbon deposition in OCM membrane 

reactors as previous studies were typically performed using heavily diluted methane feed streams 

which suppresses this issue. From this work, we identified key chemical requirements of the 

membrane/catalyst systems that lead to stable performance. Specifically, we showed that a BCG 

membrane/catalyst system can achieve excellent stability at low O2/CH4 ratios which would 

normally lead to solid carbon-induced catalyst deactivation. Our analysis of the BCG 

membrane/catalyst system suggests that its high carbon resistance is due to its relatively high 

oxygen storage/release capacity which suppresses carbon deposition in the system.3 We also 

showed that, although Zr doping improves the phase stability of BCG in OCM as observed in our 

PBR tests, it had a negative effect of significantly reducing the oxygen permeation rate through 

the membrane.  

 The final part of this dissertation work was focused on synthesizing and testing tubular 

BCG membranes in OCM. We successfully developed a creative and cost-effective procedure for 

synthesizing BCG tubular membranes via a combined slip-casting and solid-state reactive sintering 
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(SSRS) technique using Cu as a sintering additive. This synthesis procedure is versatile and can 

be applied in fabricating tubular-shaped barium cerate/zirconate membranes for related 

applications e.g., solid oxide fuel cells. In OCM tests, we achieved significantly higher C2+ 

selectivity from membrane reactor operation (distributed oxygen feed) compared to co-fed 

operation of the Cu-modified BCG (Cu-BCG) membranes, at similar methane conversions. This 

result provides conclusive experimental evidence in support of our overall hypothesis that catalytic 

membrane reactors can perform better than conventional co-fed reactors in OCM. We also show 

that the methane conversion from the Cu-BCG membrane reactor declined over time which we 

attribute to phase transformations occurring at the surface of the membrane at the operating 

condition. This is one of the first studies on the long-term performance and phase stability of 

perovskite membrane reactors in OCM. We also found that coating the Cu-BCG tubular membrane 

with a layer of BCG catalyst reduced the OCM performance. Analysis of the uncoated and coated 

membrane suggests that a better OCM performance can be achieved by eliminating Cu from the 

membrane and by decreasing the membrane thickness to minimize bulk diffusion limitations. 

6.2 Recommended Future directions 

 In this study, we have identified BCG as an O2- conducting perovskite material that is 

catalytically active and shows high resistance to deactivation via solid carbon deposition, and as 

such is promising for application in OCM membrane reactors. Our overall hypothesis of the 

improved OCM performance of a membrane reactor over a co-fed reactor was supported by results 

from the Cu-BCG tubular membrane experiments. In the following sections we discuss future 

research directions that would improve the OCM performance of the BCG membrane reactors. 
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6.2.1 Synthesize and test BCG tubular membranes without Cu 

 As discussed on Chapter 5, the addition of Cu to BCG as a sintering additive negatively 

affected the C2 selectivity. To avoid this issue and improve the selectivity, BCG tubular 

membranes without Cu should be synthesized and tested in OCM. To achieve adequate 

densification of the BCG membranes at lower temperatures (e.g., at 1450°C) without a sintering 

additive, BCG powder of very small particle size should be utilized and longer sintering times (> 

10 hours) should be employed. The slip-casting method of tube fabrication requires large quantities 

of BCG powder that would normally be synthesized by solid state reaction (SSR), which yields 

powders of relatively large particle size compared to solution-based methods. The particle size of 

the synthesized BCG powder can be decreased by ball milling at high rotation speeds over long 

periods.4 Note that the effectiveness of the slip-casting method is affected by the particle size of 

the BCG powder. For example, if the particle size of the powder in the slip (slurry) is smaller than 

the pores in the plaster mold, they can penetrate the pores of the mold such that it becomes difficult 

to separate the casted tube from the mold after drying.  Therefore, the composition of the BCG 

slurry and/or the porosity of the plaster mold would need to be systematically optimized for 

different particle sizes. Alternative methods for tube fabrication (e.g., by extrusion) should also be 

explored.4 Once an effective tube fabrication method is developed for smaller BCG particle size, 

the sintering time should be systematically tuned to determine if dense BCG tubular membranes 

can be achieved at lower temperature. 

6.2.2 Increase oxygen flux by decreasing the thickness of the BCG membranes 

 Another approach to improve the performance of BCG membranes in OCM is to increase 

the oxygen flux through the membranes. The ~500 µm thick BCG membranes used in this 

dissertation work had relatively low oxygen flux which limits the overall methane conversion. 
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Consequently, in practical applications, large reactor sizes will be required to achieve high 

conversions, which will drive up reactor cost. One approach to improve the oxygen flux is to 

minimize bulk O2- diffusion limitations by reducing the membrane thickness. To ensure that the 

thinner membranes have enough mechanical strength, they should be supported on porous 

substrates of the same perovskite material (referred to as asymmetric membranes). Asymmetric 

ceramic membranes can be fabricated using a number of techniques including dry pressing, slurry 

dropping, tape casting, dip coating, screen printing and electrophoretic deposition.5,6 Using such 

techniques, membranes with different thicknesses can be synthesized and tested at varying oxygen 

partial pressures gradients to determine the characteristic thickness of the BCG membranes i.e., 

the thickness at which the kinetics is no longer limited by bulk O2-
 transport but by surface 

reaction.7 

6.2.3 Fabricate and test BCG hollow fiber membranes 

 BCG hollow fiber membranes should be fabricated and tested for OCM as they can provide 

higher surface area to volume ratio compared to conventional tubular membranes. Hollow fiber 

membranes have very narrow diameter (~ 0.5 – 3 mm ID),6,8 which would allow the attainment of 

high packing densities when arranged in bundles, thus enabling higher oxygen supply per unit 

volume. Such a design is particularly advantageous for smaller-scale, modular applications (e.g., 

for the distributed upgrading of natural gas) where the overall size of the membrane reactor for a 

given C2 production rate needs to be minimized. Asymmetric BCG hollow fiber membranes should 

also be fabricated to allow the simultaneous attainment of high surface area to volume ratio and 

improved oxygen flux due to lower membrane thickness.  The BCG hollow fiber membranes can 

be synthesized by adapting a combined phase-inversion and sintering technique which has been 

reported in the literature for synthesizing other ceramic hollow fiber membranes.9  
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6.2.4 Develop models for membrane reactor optimization 

 In an optimum OCM membrane reactor design, the oxygen transport rates across the 

membrane should be comparable to the surface reaction rates. The oxygen flux and surface 

reaction rates can be matched by tuning certain parameters e.g., membrane thickness, temperature, 

flowrate, methane feed concentration and oxygen partial pressure difference. A mathematical 

model that captures transport and kinetic parameters should be developed and applied in system 

optimization. This model should sufficiently describe the rates of O2- transport through the 

membranes as a function of the membrane thickness and reaction conditions. The model 

development would involve conducting OCM kinetic studies on the integrated catalyst and 

validating the kinetic model. Developing a comprehensive mathematical model that incorporates 

transport and kinetics should enable the identification of geometries and reaction conditions that 

maximize the membrane reactor performance.  
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