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ABSTRACT

Faced with a myriad of costly and frequent cyber threats, organizations not only invest in soft-
ware security mechanisms such as firewalls and intrusion detection systems but increasingly also
turn to cyber insurance which has emerged as an accepted risk mitigation mechanism and allows
purchasers of insurance policies to transfer their risks to the insurer.

Insurance is fundamentally a method of risk transfer, which in general does not reduce the over-
all risk and may provide disincentives for firms to strengthen their security; an insured may lower
its effort after purchasing coverage, a phenomenon known as moral hazard. As cyber insurance is
a common method for cyber risk management, it is critical to be able to use cyber insurance as both
a risk transfer mechanism and an incentive mechanism for firms to increase their security efforts.

This is the central focus and main goal of this dissertation. Specifically, we consider two
features of cybersecurity and their impact on the subsequent insurance contract design problem.

• The first is the interdependent nature of cybersecurity, whereby one entity’s state of security
depends not only on its own effort but also on the effort of others in the same eco-system
(e.g., vendors and suppliers).

• The second is our ability to perform an accurate quantitative assessment of security posture
at a firm-level by combining recent advances in Internet measurement and machine learning
techniques.

xii



The first feature, i.e., the risk interdependence among firms is an interesting aspect that makes
this contract problem different from what is typically seen in the literature: how should policies be
designed for firms with dependent risk relationships? We show security interdependence leads to
a profit opportunity for the insurer, created by the inefficient effort levels exerted by the insureds
who do not account for risk externalities when insurance is not available. Security pre-screening
then enables effective premium discrimination: firms with better security conditions may get a
discount on their premium payment. This type of contract allows the insurer to take advantage of
the profit opportunity by incentivizing insureds to increase their security effort and improve the
state of network security. We show this conclusion holds even when an insurer has the ability
to seek loss recovery when an incident can be attributed to a third party. By embedding these
concepts in a practical rate-schedule based underwriting framework we show that these results can
be readily implemented in existing practice.

While pre-screening is an effective method to incentivize effort, the insureds may lower their
efforts after the pre-screening and post-contract, within the policy period, in yet another manifes-
tation of moral hazard. We show that this can be mitigated through periodic screening combined
with premium adjustment, effectively resulting in an active policy that has built-in contingencies,
and the actual premium payable is realized over time based on the screening results.

Outside the context of insurance, the study of inefficient security investment and how to design
incentives is commonly formulated as an interdependent security game. In a departure from typical
taxation and subsidy based mechanisms, we consider resource pooling as a way to incentivize
effort in a network of interdependent agents, by allowing agents to invest in themselves as well as
in other agents. We show that the interaction of strategic and selfish agents under resource pooling
improves the agents’ efforts as well as their utilities.
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CHAPTER 1

Introduction

1.1 Motivation and background

Cyber technologies have brought enormous benefit to society over the past decades and made
people and communities more connected. On the other hand, these technologies also provide
opportunities for data breaches and large-scale cyber attacks. These incidents can compromise
personal and sensitive data and cause business interruptions and ruin companies’ reputation and
assets. Many large companies, such as Marriot, Facebook, Google, Amazon, Equifax, and Capital
One, Target, JP Morgan Chase, have been the victims of cyber attacks and data breaches. For
instance, Google had to shut down its Google+ service in April 2019 as personal information of 52
million users were at risk due to the software vulnerabilities. In July 2019, Capital One experienced
a cyber incident where the personal information of 100 million individuals was compromised. The
average cost of a data breach in the US is estimated to be $8.19 million, more than twice the global
average [3].

Firms and companies typically protect themselves from cyber attacks by using advanced and
sophisticated cyber defense technologies as well as privacy preserving algorithms [45, 88–90].
Technology based solutions have their limitations, however. For instance, Equifax was aware of
its software vulnerability at least two months prior to the 2017 data breach; similarly, two-factor
authentication, had it been implemented on its servers, could have prevented hackers from gaining
access to JP Morgan Chase’s data. In yet another example, the 2014 Target breach was caused
by a compromised HVAC contractor who was given VPN access, while Target had all the top-
of-the-line security technologies and its intrusion detection system actually triggered an alarm in
this case which was not followed up on. These examples all point to the critical human factor in
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our defenses, and point to the need to consider incentive mechanisms that may lead to better and
more judicious security investment and the adoption of better security practices and human due
diligence.

Investment in security is generally considered a non-excludable public good with positive ex-
ternalities. Its benefit is two-fold: the security investment by a firm not only improves its own
security posture but also benefits other firms in the same eco-system. This is because a compro-
mised user/entity can be used for propagating attacks against other entities, and a protected entity
decreases the chance of attack propagation. This dependency arises in different domains such as
financial networks [11], transportation systems [19], and cyber-physical systems [10].

How to incentivize the provision of public goods has a rich literature, some of which we review
later in this introduction, including those based on taxation and subsidy. This dissertation will
primarily focus on the use of cyber insurance, which has emerged in practice as an accepted risk
management and mitigation mechanism that allows purchasers of insurance policies to transfer
their risks to the insurer. In 2018, the global cyber insurance market size was $2.92 billion, and is
expected to reach $29.8 billion by the end of 2025 [1]. This growing market [26,31] has motivated
extensive literature (see e.g. [8, 29, 37, 38, 50, 55, 61, 64, 73, 76–79, 87]), which aims to understand
the unique characteristics of these emerging contracts, and their effect on the insureds’ security
expenditure.

Cyber insurance is fundamentally a method of risk transfer (from the insured to the insurer),
which in general does not reduce the overall risk; in particular, an insured may lower its effort
after purchasing coverage, a phenomenon known as moral hazard detailed in the next section. In
the context of cybersecurity, this means that while it is important for a firm to have insurance to
protect against potentially large losses from data breaches, it may also provide disincentives for
firms to strengthen their security. In other words, even though the insured enjoys a higher utility
by purchasing a policy, its state of cyber risk may now be worse, see, e.g., [58, 79].

A central theme of this dissertation then, is to explore how cyber insurance can be used not
only as a risk transfer tool, but also as an incentive mechanism for firms to increase their secu-
rity efforts/lower their cyber risks, in the presence of risk dependencies, positive externality, and
information asymmetry.

For the remainder of this introduction, we will give an overview of cyber insurance as a form
of contract followed by an overview of the dissertation and our main contributions.
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Insurer
Profit-maximizing

Agent
Risk averse

Premium + Risk transfer

Contracts

Figure 1.1: Illustration of an insurance contract as a principal-agent problem

1.2 Cyber insurance

Mathematically, the design of an insurance policy can be cast as an instance of the principal-agent
problem [17], often studied as a two-stage game with a first mover (principal) and a follower
(agent). As shown in Figure 1.1, an insurance policy is a contract between the insurer (principal)
and a risk-averse insured (agent), who pays a premium in exchange for coverage in the event of a
loss. In the first stage the insurer designs and discloses how the contract terms shall be calculated;
in the second stage the insured decides on his effort towards self-protection (against potential loss),
which is not observed by the insurer. A market for such contracts exists because of the agent’s risk
aversion: if the agent is risk neutral then he wouldn’t be seeking to transfer his risk and the insurer
will not be able to make a profit. For this reason, even though in practice the insurer is also risk-
averse (a primary reason for the existence of re-insurance), for the purpose of this dissertation, we
shall treat the insurer as risk-neutral and profit maximizing.

There exists an information asymmetry in this setting concerning the contract design: the agent
typically possesses more information about his conditions than the principal does. Two common
and well-known issues associated with this are moral hazard and adverse selection. Moral hazard
refers to unobservable actions taken by the agent; adverse selection refers to unobservable type
(e.g., the extent of risk aversion) of the agent. In the context of cyber insurance, moral hazard
translates to the fact that the insured may lower his effort after purchasing insurance, as he is now
protected from its consequences, thereby leading to a worse state of security, while adverse selec-
tion means that those with higher risk-aversion are more likely to seek insurance/risk protection.

To mitigate moral hazard, which exists in all insurance, a widely employed concept is premium

discrimination, i.e., an agent/insured who exerts higher effort pays less premium. This, however,
relies on the insurer’s ability to assess the effort exerted by the insured. There are generally two
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types of assessment: pre-screening and post-screening. Pre-screening occurs before the insured
enters into a contract and can be done at the beginning of each contract period; the result of this
process gives the insurer an estimate of risk on the insured, which then factors into the contract
terms. Post-screening involves at least two contract periods, whereby the second-period premium
is increased if a loss event occurs during the first period. Prior work shows that both pre-screening
and post-screening are generally effective in mitigating moral hazard and increasing the insured’s
effort in other more mature areas of insurance such as home, property, and auto.

The effect of premium discrimination on users’ security investments depends on the features
of the underlying environment and may improve the state of security. A number of studies focused
on a monopolistic insurance market and showed that a monopolistic market in the presence of a
profit neutral cyber insurer can improve the network security as compared to a scenario without
insurance using premium discrimination [29, 55, 67], while others studied a competitive cyber-
insurance market and showed that under certain conditions it is impossible to improve network
security using a cyber-insurance contract [67, 78].

How effective risk assessment and premium discrimination are in cyber insurance will be exam-
ined closely in this dissertation, given the additional unique characteristics and challenges detailed
below.

1. There is a lack of actuarial data and domain knowledge to accurately determine risk and
liability. This can lead to inconsistent perceptions of risk. Particularly, this is the case when
even though cyber incidents collectively have become commonplace, they remain relatively
rare for a given organization.

2. Cyber risks are heavily interdependent due to complex business and vendor relationships
among organizations; the cyber risk one faces is no longer the result of one’s own actions
but the results of all of one’s vendors’ and suppliers’ actions. A prime example is when a
service provider is attacked, its customers suffer business interruption loss.

3. Cyber risks are fast-changing compared to other of risks typically under insurance coverage.
The threat landscape can change dramatically following events ranging from vulnerability
disclosure, development of exploit kits, to geopolitical, cyber-vigilantism, and copycat ac-
tions.

The above leads us to rethink how insurance contracts have traditionally been designed and how
they should be designed meet the unique characteristics of cyber risks.
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1.3 Overview of the dissertation and main contributions

This dissertation sets out to address the challenges outlined in the previous section as we elaborate
below.

1.3.1 Overview of the chapters

Chapter 2 focuses on the first two challenges. Specifically, it considers a contract scenario involv-
ing multiple risk-dependent insureds/agents as illustrated in Figure 1.2, where the state of security
of an agent depends not only on his investment but also on the other’s, and where the insurer is
able to perform an imperfect risk assessment or pre-screening of the agents at the beginning of
each contract period. The risk dependency is modeled by assuming that the loss each agent incurs
is drawn from a normal distribution whose parameters are functions of a linear combination of
both agents’ effort levels.

Insurer
Profit-maximizing

Agent 2
Risk averse

Premium + Risk transfer

Contract to both agents

Agent 1
Risk averse

Figure 1.2: Interaction of an insurer with two interdependent agents

We shall show that security interdependency leads to a profit opportunity for the insurer, cre-
ated by the inefficient effort levels exerted by agents who do not account for the risk externalities
when insurance is not available; this is in addition to risk transfer that an insurer typically profits
from. Security pre-screening then allows the insurer to take advantage of this additional profit
opportunity by designing the appropriate contracts which incentivize agents to increase their effort
levels, effectively selling each other’s commitment to the agents in addition to insuring their risks.
We further identify conditions under which this type of contract leads to not only increased profit
for the insurer, but also an improved state of security. Chapter 2 includes work that has appeared
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in [41, 42, 44].
Chapter 3 again focuses on the first two challenges mentioned in Section 1.2 but examines the

contract design problem within a common underwriting framework used in practice. This chapter
introduces a second model where security investment affects the probability of loss events and that
loss to one agent may be attributed to another agent whom the former depends on. Specifically,
we consider a service provider (SP) and its customers; a breach to the service provider may cause
a business interruption to the customers but not the other way around. Of particular interest is the
analysis and comparison among three different policy portfolios shown in Figure 1.3. In portfolio
A, the insurer underwrites only the service provider. In portfolio B, the insurer underwrites both
the service provider and its customers. Portfolio C is a case where the insurer underwrites only the
customers and seeks compensation from the service provider’s insurer when loss can be attributed
to the latter.

SP

Customer 1
Customer 2

Customer n-1
Customer n

SP

Customer 1
Customer 2

Customer n-1
Customer n

SP

Customer 1
Customer 2

Customer n-1
Customer n

Portfolio type A Portfolio type B Portfolio type C

Figure 1.3: Three portfolio types consisting of a service provider (SP) and n customers: shaded
areas indicated entities insured.

We shall show that Portfolio B is the insurer’s best strategy in terms of profit: by incentivizing
the SP (through premium discrimination) to increase its effort in reducing risk, it also benefits from
the reduced (spill-over) risk to the customers. Moreover, Portfolio B also results in the highest
social welfare. This chapter includes work that has appeared in [39, 40, 43].

Chapter 4 focuses on the first and third challenges and proposes a viable risk assessment
method to overcome those challenges. Specifically, we examine the effectiveness of premium
discrimination in the presence of rare and extremely large cyber losses. This chapter also con-
siders the fast-changing nature of cyber risks and proposes a type of active policy using periodic
pre-screening and embedded contingencies, which is able to overcome this challenge. This chapter
includes work that has appeared in [46].
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In Chapter 5, we take a step back and consider other incentive mechanisms for risk-dependent
agents. The study of inefficient security investment and how to design incentives is commonly
formulated as an interdependent security (IDS) game with networked agents and positive exter-
nalities, where each agent chooses an effort/investment level for securing itself [14, 25, 49, 53].
One main consequence of positive externality is under-investment, i.e., agents under-invest in se-
curity to take advantage of other agents’ effort and investment. Prior work has extensively stud-
ied mechanisms to induce more socially desirable investment levels [52]; these include incentive
mechanisms that encourage security investment through taxation/subsidies and with voluntary par-
ticipation [21,24,62,85], and dictation mechanisms that are implemented by a social planner (e.g.,
government) who can dictate decisions using regulations [32, 49].

In a departure from such mechanisms, this chapter considers resource pooling as a way to
incentivize effort in a network of interdependent agents, by allowing agents to invest in themselves
as well as in other agents. We shall show that the interaction of strategic and selfish agents under
resource pooling improves the agents’ efforts as well as their utilities. This chapter includes work
that has appeared in [47, 48].

1.3.2 Main contributions of the dissertation

This dissertation contributes to the literature of the economics of information security, incentive
mechanisms and contract theory. Our main contributions are summarized as follows.

1. Cyber insurance as an incentive mechanism to improve network security (Chapter 2):
this chapter considers a profit-maximizing insurer with the voluntary participation of the
agents/clients. The following are the contributions of this chapter.

• It considers a profit-maximizing risk-neutral insurer, and it shows that the market ex-
ists for cyber insurance in the presence of risk-neutral, interdependent agents/insureds.
Specifically, it shows that interdependency among risk-neutral agents provides a profit
opportunity for the insurer, and without interdependency, there is no market for cyber
insurance.

• It shows that premium discrimination using pre-screening in the presence of a single
risk averse agent always improves the network security as compared to a contract with-
out premium discrimination. It further shows that cyber insurance in the presence of a
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single risk averse agent cannot improve the network security as compared to a scenario
without insurance.

• It shows that the premium discrimination using pre-screening may improve network
security as compared to the no insurance scenario in a network of risk-averse, inter-
dependent agents. It further provides sufficient conditions under which this type of
premium discrimination improves network security.

• It further considers risk averse insurer and identifies sufficient conditions under which
cyber insurance contracts are able to improve the security investment.

2. Controlling risk dependency through cyber insurance contracts (Chapter 3): the chapter’s
goal is to answer the following question: when faced with risk dependency (between a ser-
vice provider (SP) and its clients, is it better for an insurer to underwrite all or only the clients
and leave the SP to someone else to underwrite the dependency, with the ability to recover
all or part of the loss attributable to the SP? The followings are the main findings of the third
chapter,

• It shows that when the insurer insures both SP and its customers, she is able to incen-
tivize the SP to improve his security. As the SP provides positive externality for his
customers, all agents benefit from this security improvement, and the chance of cyber
incident decreases.

• Further, it shows that indeed there is a benefit for the insurer in insuring both SP and
customers: the insurer obtains higher profit in doing so by taking advantage of the
risk dependency, and incentivizing the SP to improve his security. Then, the security
improvement increases the insurer’s profit as she pays less coverage in a network with
a better state of security.

3. Effective premium discrimination in the presence of rare loss incidents (Chapter 4): This
chapter tries to identify the effective premium discrimination method when the cyber loss is
rare but extremely large.

• Even though post-screening and pre-screening can be effective methods for premium
discrimination and mitigating moral hazard in general, post-screening cannot be useful
at all in the presence of a rare loss incident. It further implies that the pre-screening is
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an effective method for mitigating moral hazard if the cyber loss is rare but extremely
large.

• It proposes active policies to prevent the insureds from lowering their efforts in the
middle of the policy period after pre-screening is done. It shows that pre-screening
has to be performed more often, and premium should be adjusted after each screen-
ing. This effectively means that the insurance contract should be an active policy with
contingencies on periodic screening.

4. The role of resource in an InterDependent Security (IDS) game (Chapter 5): This chapter’s
goal is to address under-investment issue through resource pooling, i.e., we allow agents to
have the ability to both invest in themselves as well as in other agents. The main findings
can be summarized as follows.

• At the unique Nash equilibrium of the game with resource pooling, every agent obtains
higher utility as compared to that under the Nash equilibrium of the game without
resource pooling.

• The social welfare (measured by total utility) at the Nash equilibrium of the game with
resource pooling is higher than that under the socially optimal outcome of the game
without resource pooling induced by Vickrey-Clarke-Groves (VCG) mechanism.

• It shows that the resource pooling satisfies voluntary participation, i.e., no agent has an
incentive to opt out of resource pooling unilaterally.

• Lastly, it shows that community-based resource pooling, where each agent is able to
pool his resources within the community that he belongs to, is able to improve the
social welfare and agents’ utilities.
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CHAPTER 2

Designing Cyber Insurance Policies: The Role of
Pre-Screening and Security Interdependence

2.1 Introduction

As mentioned in Section 1.2, in addition to moral hazard and adverse selection, there are three
challenges for a cyber insurer. This chapter focuses on the first two challenges:

• Limited data and information to determine insured’s risk.

• Interdependence of cyber risks, i.e., security standing of an entity often depends not only on
its own effort towards implementing security metrics, but also on the efforts of other entities
interacting with it within the eco-system [35, 36, 54, 59].

The first challenge can be partially addressed using recent advances in Internet measurements
combined with machine learning techniques which allow us to perform quantitative security pos-
ture assessments at a firm level [56]. This can be used as a tool to perform an initial security audit,
or pre-screening, of a prospective client to mitigate moral hazard by premium discrimination and
the design of customized policies.

The second challenge is crucial for the insurer’s contract design problem, as the insurer may
need to offer coverage to each insured for both its losses due to direct breaches, as well as indirect
losses caused by breaches of other entities.

In this chapter, we focus on pre-screening and risk dependency and design a cyber insurance
contract to incentivize insureds to improve network security. To distinguish the effect of pre-
screening and risk dependency on the cyber-insurance contract design problem, we begin by con-
sidering a single-agent; this allows us to remove the effects of risk interdependence and focus on
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the role of pre-screening. We consider both risk-neutral and risk-averse agents. We first show that
when the agent is risk-neutral, a market for cyber-insurance does not exist, this is consistent with
previous results, see e.g. [8, 57]. For the risk-averse agent on the other hand, a cyber-insurance
market exists. We show that the agent’s effort inside the contract increases as the quality of pre-
screening increases, that is, the insurer can use pre-screening to mitigate moral hazard. Neverthe-
less, we show that even with perfect pre-screening, the agent’s effort inside the contract remains
below his effort before the introduction of insurance. In other words, for a single-agent, and even in
the absence of moral hazard, the introduction of cyber-insurance deteriorates the state of network
security.

We will next analyze the effect of risk interdependence by considering the design of cyber-
insurance contracts for two interdependent agents. We again consider both risk-neutral and risk-
averse agents. Here, in contrast to the single agent case, we obtain a rather surprising result:
an insurance market exists even for two risk-neutral agents. As there is no risk-transfer between
the agents and the insurer in this scenario, we conclude that the emergence of a market is due
to the agents’ interdependence. We intuitively interpret this finding as follows. The interdepen-
dency among agents leads them to under-invest in security at the no-insurance equilibrium; this is
commonly referred to as free-riding, see e.g., [54]. The under-investment issue provides a profit
opportunity for the insurer, and she is able to encourage the agents to pay premiums by addressing
the under-investment issue and coordinating them. In particular, the insurer can use pre-screening
to offer a pair of contracts that incentivize the agents to improve their levels of effort. In return
for improving his effort level as prescribed by the contract, an insured is not only offered coverage
in case of a loss, but further the commitment of the other agent to higher effort, which will lead
to further reduction in the insured’s risks. Consequently, network security under these contracts is
higher than the no-insurance equilibrium, which further benefits the insurer by lowering the risks
of the insureds in its portfolio.

We will then consider the combined effect of risk transfer, interdependence, and security pre-
screening, by considering a network of two interdependent risk-averse agents. Similar to the risk-
neutral case, the interdependence leads to free-riding by agents in the absence of insurance. Con-
sequently, the insurer can extract profit from both fronts: risk transfer, and taking advantage of
the efficiency gap by incentivizing agents to exert higher effort. We identify a sufficient condi-
tion under which insurance leads to the improvement of network security compared to the no-
insurance scenario. We illustrate these results in both a two-heterogeneous-agents model and an
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N-homogeneous-agents model. Lastly, we discuss the effects of correlation in agents’ losses, as
well as a risk-averse insurer, on the cyber-insurance contracts, and illustrate our findings through
numerical simulations.

2.1.1 Main findings

Our main finding is that security interdependence among agents seeking cyber-insurance leads to
a profit opportunity for the insurer. A cyber-insurer profits not only from risk-transfer, but also
from coordinating interdependent agents: each agent will be required to improve its levels of
investment in security, in return for the guarantee that other agents will do so as well. Security pre-
screening allows the insurer to take advantage of this additional profit opportunity, by designing
the appropriate contracts which incentivize agents to increase their effort levels. Together, these
contracts can lead to an improvement in the state of network security.

Our analysis is primarily based on a two-agent model. While technically limited in scope, this
simple model offers substantial conceptual insights, some of which are more generally applicable.
We also use numerical examples to highlight where conclusions are expected to hold under more
relaxed assumptions.

2.1.2 Chapter organization

The remainder of this chapter is organized as follows. We review related work in Section 2.2. We
present the single agent model in Section 2.3, followed by the analysis in Section 2.4. We present
the two-agent model and analysis in Section 2.5. We discuss an N-homogeneous-agent case in
Section 2.6, present numerical results in Section 2.7, and conclude in Section 2.8.

2.2 Related work

We provide an overview of existing literature that is most closely related to this chapter. These
studies have considered either competitive or monopolistic insurers, as well as either mandatory
or voluntary adoption by the insured. The works in [64,76–79,87] consider competitive insurance
markets under compulsory insurance, and analyze the effect of insurance on agents’ security ex-
penditures. The authors of [78, 79] consider a competitive market with homogeneous agents, and
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show that insurance often deteriorates the state of network security as compared to the no-insurance
scenario. [76, 77] study a network of heterogeneous agents and show that the introduction of in-
surance cannot improve the state of network security. Ogut et al. [64] study the impact of the
degree of agents’ interdependence, and show that agents’ investments decreases as the degree of
interdependence increases. Yang et al. [87] study a competitive market under the assumption of
voluntary participation by agents, with and without moral hazard. In the absence of moral hazard,
the insurer can observe agents’ investments in security, and hence premium discriminates based
on the observed investments. They show that such a market can provide incentives for agents to
increase their investments in self protection. However, they show that under moral hazard, the
market will not provide an incentive for improving agents’ investments.

The impact of insurance on the state of network security in the presence of a monopolistic wel-
fare maximizing insurer has been studied in [9,29,37,38,67]. In these models, as the insurer’s goal
is to maximize social welfare, assuming compulsory insurance, agents are incentivized through
premium discrimination, i.e., agents with higher investments in security pay lower premiums. As
a result, these studies show that insurance can lead to improvement of network security. An in-
surance market with a monopolistic profit maximizing insurer, under the assumption of voluntary
participation, has been studied in [55], which shows that in the presence of moral hazard, insurance
cannot improve network security as compared to the no-insurance scenario.

Our assumptions on the model, namely a profit-maximizing insurer and voluntary participation,
are similar to [55]. Our work differs from [55], as well as other existing work, in that we illustrate
(i) the role of pre-screening in mitigating moral hazard, and (ii) the possibility of designing con-
tracts that leverage sufficiently accurate pre-screening and agents’ interdependence to improve the
state of network security.

2.3 Model and preliminaries: single agent

We begin by considering the single-period contract design problem between a risk-neutral insurer
and a single agent1; we refer the interested reader to [57] for an overview of contract theory. The
analysis of the single-agent case allows us to study solely the role of pre-screening by excluding the
interdependency, and later, in conjunction with the analysis of Section 2.5.2 and 2.5.3, to uncover
the role of interdependency.

1Throughout the chapter, we use she/her and he/his to refer to the insurer and agent(s), respectively.
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An agent exerts effort e ∈ [0,+∞) towards securing his system, incurring a cost of c per unit
of effort. Let Le denote the loss, a random variable, that the agent experiences given his effort
e. We assume Le has a normal distribution,2 with mean µ(e) ≥ 0 and variance λ(e) ≥ 0. For
ease of exposition, we assume that λ(e) is sufficiently small compared to µ(e), so that Pr(Le < 0)
is negligible. We assume both µ(e) and λ(e) are strictly convex, strictly decreasing, and twice
differentiable. The decreasing assumption implies that increased effort reduces the expected loss,
as well as its unpredictability. The convexity assumption suggests that while initial investment in
security leads to considerable reduction in loss, the marginal benefit decreases as effort increases.
In other words, it is not possible to reduce risk from cyber attacks to zero even if the agent exerts
very large effort [34, 53]. We further preclude the possibility of misclaims by assuming that the
realized loss is observed perfectly by both the insurer and the agent.

In general, the effort exerted by an agent is not observable by the insurer; this information
asymmetry is formally referred to as moral hazard. We assume that in order to reduce this asym-
metry and attain better information about the agent, the insurer can conduct a pre-screening of
the agent’s security standing. Through pre-screening, the insurer obtains pre-screening outcome

S e = e + W, where W is a zero mean Gaussian noise with variance σ2. We assume both agent and
insurer know the distribution of W; such assessment can be obtained through a range of possible
methods and (Internet) measurement techniques, information from initial surveys filled out by the
agent, external audits, or internal audits conducted by a third party firm. We assume S e is condi-
tionally independent of Le, given e. The pre-screening outcome S e will be used by the insurer in
determining the terms of the contract.

2.3.1 Linear contract and the insurer’s payoff

We consider the design of a set of linear contracts. Specifically, the contract offered by the insurer
consists of a base premium p, a discount factor α, and a coverage factor β. The agent pays a
premium p−α · S e, and receives β · Le as coverage in the event of a loss. We let 0 ≤ β ≤ 1, i.e.,
coverage never exceeds the actual loss. The insurer’s utility (profit) is given by:

V(p,α,β,e) = p−α ·S e−β ·Le . (2.1)

2The normal assumption on Le is to some extent justified by the fact that Le is meant to capture the sum total of
losses from a variety of sources, such as hacking, malware, insider threats, etc.
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The insurer’s expected profit is then given by V(p,α,β,e) = p−αe−βµ(e).

2.3.2 Risk-neutral agent

The utility of a risk-neutral agent without insurance is given by,

U(e) = −Le− ce

U(e) ∆
= E(U(e)) = −µ(e)− ce

(2.2)

If the agent chooses not to enter a contract, he bears the full cost of his effort as well as any
realized loss. Therefore, the optimal effort (m) of the uninsured agent is m = argmine≥0 µ(e) + ce

and his expected utility outside the contract is uo := U(m).
On the other hand, if the agent purchases a contract (p,α,β) from the insurer, then his utility,

and expected utility, are given by:

U in(p,α,β,e) = −p +αS e−Le +βLe− ce

U
in

(p,α,β,e) ∆
= E(U in(p,α,β,e)) = −p + (α− c)e + (β−1)µ(e) (2.3)

2.3.3 Risk-averse agent

For simplicity we shall use the same notation for risk-averse agents as for risk-neutral agents. The
utility of a risk-averse agent without insurance is given by:

U(e) = −exp{−γ · (−Le− ce)} , (2.4)

where γ denotes the risk attitude of the agent; a higher γ implies more risk aversion.3 We assume
γ is known to the insurer , thereby eliminating adverse selection and solely focusing on the moral
hazard aspect of the problem.

Using basic properties of the normal distribution, we have the following expected utility for the
agent:

U(e) = E(−exp{−γ · (−Le− ce)}) = −exp{γ ·µ(e) +
1
2
γ2λ(e) +γce} . (2.5)

3Exponential utility exhibits constant absolute risk aversion (CARA).
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Using (2.5), the optimal effort for an agent outside the contract is given by m :=
argmine≥0

{
µ(e) + 1

2γλ(e) + ce
}
. Again, let uo = U(m) denote the maximum expected payoff of

the agent without a contract.
If a risk-averse agent accepts a contract (p,α,β), his utility is given by:

U in(p,α,β,e) =

− exp{−γ · (−p +α ·S e−Le +β ·Le− ce)} . (2.6)

Noting that S e and Le are conditionally independent, his expected utility is

U
in

(p,α,β,e) = −exp{γ(p + (c−α)e +
1
2
α2γσ2 + (1−β)µ(e) +

1
2
γ(1−β)2λ(e))} . (2.7)

2.3.4 The insurer’s problem

The insurer designs the contract (p,α,β) to maximize her expected payoff. In doing so, the insurer
also has to satisfy two constraints: Individual Rationality (IR), and Incentive Compatibility (IC).
The first stipulates that a rational agent will not enter a contract with expected payoff less than
his outside option uo, and the second that the agent chooses an effort level maximizing his utility
given contract parameters. The interaction between the insurer and the agent is sequenced as
follows. First the insurer announces the contract parameters, and the agent commits to effort
e given the contract parameters. Then the insurer observes S e, and final premium p − αS e is
calculated. Formally, the insurer’s problem can be written as follows,

max
p,α≥0,0≤β≤1

V(p,α,β,e) = p−α · e−β ·µ(e)

s.t. (IR) U
in

(p,α,β,e) ≥ uo (2.8)

(IC) e ∈ argmaxe′≥0 U
in

(p,α,β,e′)

The above optimization problem can be simplified, for risk-neutral and risk-averse agents,
respectively. As the base premium is a constant in the contract, the (IC) constraint for a risk-
neutral agent can be rearranged as:

e ∈ argmin
e′≥0

(c−α)e′+ (1−β)µ(e′) . (2.9)
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Similarly, the (IC) constraint for a risk-averse agent can be rewritten as:

e ∈ argmin
e′≥0

(c−α)e′+ (1−β)µ(e′) +
γ

2
(1−β)2λ(e′) (2.10)

Next, we can simplify the (IR) constraint using the following lemma; proofs can be found in
the appendix.

Lemma 2.1 The (IR) constraint is binding in the optimal contract.

By lemma 2.1, the (IR) constraint of a risk-neutral agent can be written as p = −uo − (c−α) ·
e− (1−β)µ(e)

and, for a risk-averse agent,

p = wo− (c−α)e−
γ

2
α2σ2− (1−β)µ(e)−

γ

2
(1−β)2λ(e), (2.11)

where wo := ln(−uo)
γ = mine≥0{µ(e) + 1

2γλ(e) + c · e}.
Using the above expressions to substitute for the base premium p in the objective function

in (2.8), and using the simplified expressions for the (IC) constraints, we re-write the insurer’s
contract design problem as follows.

Insurer’s problem with a risk-neutral agent:

maxα≥0,0≤β≤1 −uo−µ(e)− c · e

s.t., e = argmine′≥0 (c−α)e′+ (1−β)µ(e′)
(2.12)

Insurer’s problem with a risk-averse agent:

maxα≥0,0≤β≤1,e≥0 wo−µ(e)− γ
2 (1−β)2λ(e)− ce− γ

2α
2σ2

s.t., e = argmine′≥0(c−α)e′+ (1−β)µ(e′) +
γ
2 (1−β)2λ(e′)

(2.13)

2.4 Role of pre-screening for a single agent

We now solve the optimal contract problem posed in (2.12) and (2.13), respectively.
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2.4.1 Risk-neutral agent (problem (2.12))

In this case, the objective function of the insurer is given by −uo − µ(e)− c · e. However, note
that uo = maxe≥0{−µ(e)− ce}, and therefore the insurer’s profit is at most zero. A contract with
(p = 0,α = 0,β = 0) will yield a payoff of zero, making it an optimal contract. We thus conclude
that it is optimal for the insurer to not offer a contract to a risk-neutral agent. Also note that in
this case the quality of pre-screening, or indeed the availability of pre-screening regardless of the
quality, plays no role in either the insurer’s or agent’s decisions.

2.4.2 Risk-averse agent (problem (2.13))

We start with the following theorem on the state of network security, defined as the effort exerted
by the agent, before and after the purchase of a contract.

Theorem 2.1 Assume that (α̂, β̂, ê) solves optimization problem (2.13). Then ê ≤m, where m is the

level of effort outside the contract; in other words, insurance decreases network security.

Proof. Assume that (α̂, β̂, ê) solves optimization problem (2.13), and that, by contradiction,
ê > m ≥ 0.

First, recall that the agent’s optimal effort m outside the contract is given by m :=
argmine≥0

{
µ(e) + 1

2γλ(e) + ce
}
. For m to be the minimizer, we should have c+µ′(m)+ 1

2γλ
′(m)≥ 0.

Next, consider the following two cases:
(i) α̂ = 0. Starting from the first order condition (FOC) on the (IC) constraint, we have,

(1− β̂)µ′(ê) + 1
2γ(1− β̂)2λ′(ê) + c = 0

⇒ µ′(ê) + 1
2γλ

′(ê) + c < 0
⇒ µ′(m) + 1

2γλ
′(m) + c < 0

(2.14)

Here, the second line follows from the decreasing nature of µ(·) and λ(·), and the third line
follows from their convexity. The last inequality is impossible given the optimality of the effort m

outside the contract. This contradiction shows that we cannot have ê > m.
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(ii) α̂ > 0. Given the assumption that ê > m, and µ(·) and λ(·) are strictly convex, we have,

0 ≤ c +µ′(m) + 1
2γλ

′(m)
≤ c +µ′(m) + 1

2γ(1− β̂)2λ′(m)
< c +µ′(ê) + 1

2γ(1− β̂)2λ′(ê)

(2.15)

Therefore, if the insurer decreases α̂, the agent decreases his effort (this can be seen from the
IC constraint), and consequently the insurer’s utility increases, as the objective function of the
insurer, wo−µ(e)− 1

2 (1− β̂)2λ(e)−ce− 1
2γα

2σ2, is decreasing in e and α at e = ê,α = α̂. Therefore,
(α̂, β̂, ê) is not the optimal contract. Again by contradiction, we conclude that the agent’s effort in
the optimal contract should be less than or equal to m. �

Theorem 2.1 illustrates the inefficiency of cyber insurance as a tool for improving the state
of security. Existing work [67, 78] have reached a similar conclusion when studying compet-
itive/unregulated cyber insurance markets. Note also that Theorem 2.1 holds regardless of the
pre-screening quality. We next examine the role of pre-screening in this model. We first analyze
its impact on the insurer’s profit.

Theorem 2.2 Let v(α,β,e,σ2) denote the payoff of the insurer, at a contract (α,β)
when the agent exerts effort e, and the noise of pre-screening is σ2. Let z(σ2) :=
{maxα≥0,0≤β≤1,e≥0 v(α,β,e,σ2), s.t. (IC)} be the principal’s payoff under the optimal contract as

a function of the pre-screening noise. We then have z(σ2
1) ≤ z(σ2

2), ∀σ2
1 ≥ σ

2
2. That is, z(σ2) is a

decreasing function of the pre-screening noise.

Proof. Let v(α,β,e,σ2) be the payoff of the insurer, at a contract (α,β), when the agent exerts
effort e and the noise of pre-screening is σ2, and let z(σ2) be the insurer’s profit at the optimal
contract as a function of the pre-screening noise. We have,

z(σ2
1 +σ2

2) = max
α,0≤β≤1,e≥0,IC

v(α,β,e,σ2
1 +σ2

2)

≤ max
α,0≤β≤1,e≥0,IC

v(α,β,e,σ2
1) + max

α,0≤β≤1,e≥0,IC
{−

1
2
α2γσ2

2} (2.16)

≤ max
α,0≤β≤1,e≥0,IC

v(α,β,e, ,σ2
1) = z(σ2

1) (2.17)

Therefore, z(σ2
1 +σ2

2) ≤ z(σ2
1), ∀σ2

2. That is, z(σ2) is a decreasing function of the pre-screening
noise. �
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The above result is intuitively to be expected, as a strategic insurer can leverage improved
pre-screening to better mitigate moral hazard and attain a higher payoff. The more interesting ob-
servation is on the effect of pre-screening on the state of network security. The following theorem
presents a sufficient condition under which the availability of a pre-screening assessment improves
network security, compared to the no pre-screening scenario. Note that we use σ =∞ for evalu-
ating the no pre-screening scenario. The equivalence follows from the fact that, as shown in the
appendix, by setting σ =∞, the insurer’s optimal choice will be α = 0, which removes the effects
of pre-screening.

Theorem 2.3 Let e1,e2,e∞ denote the optimal effort of the agent in the optimal contract when

σ = σ1, σ = σ2 and σ = ∞, respectively. Let k(e,α) =
µ′(e)+

√
µ′(e)2−2γ(c−α)λ′(e)
−γλ′(e) . If k(e,α1)2λ(e)−

k(e,α2)2λ(e) is non-decreasing in e for all 0 ≤ α1 ≤ α2 ≤ c, then e1 ≥ e2 if σ1 ≤ σ2. In other words,

better pre-screening improves network security. In addition, if k(e,0)2λ(e)− k(e,α)2λ(e) is non-

decreasing in e for all 0 ≤ α ≤ c, then e1 ≥ e∞. That is, the availability of a pre-screening improves

network security over the no pre-screening scenario.

Sketch of Proof. The proof proceeds in the following steps:
•We first show that 0 ≤ αi ≤ c using the KKT conditions for the (IC) constraint of (2.13), given

by
(1−βi)µ′(ei) + 1

2γ(1−βi)2λ′(ei) + c−αi− vi = 0
vi · ei = 0, ei ≥ 0

(2.18)

• We next show that α1 ≥ α2; this follows from the inequalities determining the optimality
of the contracts at their respective pre-screening noises. In other words, as pre-screening noise
decreases, the insurer offers higher discount factor.
•We then proceed by contradiction, assuming 0 ≤ e1 < e2. As e2 > 0, by (2.18) we have,

(1−β2)µ′(e2) +
γ(1−β2)2λ′(e2)

2 + c−α2 = 0

1−β2 =
µ′(e2)+

√
µ′(e2)2−2γ(c−α2)λ′(e2)
−γλ′(e2) := k(e2,α2)

(2.19)

In addition, as e1 < e2 and α1 ≥ α2, we can show that α1 > 0 and e1 > 0. With e1 > 0, by (2.18)
we have,

(1−β1)µ′(e1) +
γ(1−β1)2λ′(e1)

2 + c−α1 = 0

1−β1 =
µ′(e1)+

√
µ′(e1)2−2γ(c−α1)λ′(e1)
−γλ′(e1) := k(e1,α1)

(2.20)
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• Lastly, we show that if (k(e,α2)2−k(e,α1)2)λ(e) is non-decreasing, then α1 and e1 are not the
maximizer of the insurer’s profit when σ2 = σ2

1. This is a contradiction. Therefore, we conclude
that e1 ≥ e2. �

Several instances of µ(e) and λ(e), e.g., (µ(e) = 1
e ,λ(e) = 1

e2 ), and (µ(e) = exp{−e},λ(e) =

exp{−2e}), satisfy the condition of Theorem 2.3.

2.4.3 Comparison

By comparing the contracts in the risk-neutral and risk-averse agent cases, we observe that a market
exists and the insurer makes profit only when offering a contract to a risk-averse agent. This is
indeed to be expected, as insurance is primarily a method for risk transfer; risk-averse agents are
willing to pay premiums that are higher than their expected loss, in order to reduce the uncertainty
in their loss, consequently allowing the risk-neutral insurer to make a profit. We further observe
that when the market exists, the introduction of pre-screening benefits the insurer (Theorem 2.2)
as well the state of network security (Theorem 2.3).

2.5 Model and analysis for two agents

We next study the contract design problem between the insurer and two agents. In particular, we
analyze the impact of interdependency and pre-screening on the optimal contract and agents’ effort,
in the case of two risk neutral and two risk averse agents, respectively, with the former allowing us
to exclude the effect of risk aversion and focus on the effect of interdependence.

2.5.1 A model of two agents

The two agents are interdependent, in that the effort exerted by one agent affects not only himself,
but also the loss that the other agent experiences. We model the interdependence between these
two agents as follows:

L(i)
e1,e2 ∼N (µ(ei + x · e−i),λ(ei + x · e−i)) . (2.21)

Here, {−i} = {1,2} − {i}, and L(i)
e1,e2 is a random variable denoting the loss that agent i experiences,

given both agents’ efforts. The interdependence factor is denoted by x ∈ [0,1). Note that this
is not a unique modeling choice and is indeed a simplification; a more general way of expressing
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correlated risks would be to model the losses as jointly distributed; more on extensions is discussed
in Section 5.9.

We assume the agents’ utilities are again given by (2.2) and (2.4) for risk-neutral and risk-
averse agents, respectively, with the loss distributions replaced by the above expression. We allow
the two agents to have different effort cost c1,c2, as well as different risk attitudes γ1,γ2.

The insurer can again conduct a pre-screening assessment, S ei = ei +Wi, on each agent i, where
Wi is a zero mean Gaussian noise with variance σ2

i . We assume that W1 and W2 are independent 4,
and that S e1 ,S e2 ,L

(1)
e1,e2 ,L

(2)
e1,e2 are conditionally independent given e1,e2.

Similar to the single agent case, we need to evaluate the agents’ outside options from pur-
chasing a contract. These will then be used to impose the individual rationality constraints in
determining the terms of the contracts. However, compared to the single agent case, the outside
option of one agent is now influenced by the participation choice of the other agent as well. Specif-
ically, we need to evaluate the agents’ utilities as well as potential contracts in the following three
scenarios:

(i) neither agent enters a contract;

(ii) one enters a contract, while the other opts out; and

(iii) both purchase contracts.

Here, Case (ii) is the outside option for agents in Case (iii), and Case (i) is the outside op-
tion for agents in Case (ii). Therefore, in order to evaluate the participation constraints of agents
when both purchase insurance contracts (Case (iii)), we first need to find the optimal contracts
and agents’ payoffs in Cases (i) and (ii). We therefore evaluate the agents’ utilities for each case,
and subsequently solve the insurer’s contract design problem, in Sections 2.5.2 and 2.5.3 for risk-
neutral and risk-averse agents, respectively.

2.5.2 Two risk-neutral agents

We first consider two risk-neutral agents. As mentioned above, in order to evaluate the agents’ opt-
out options and finding the optimal contract, the insurer’s problem and the agents’ utilities need to
be studied under three different cases. We begin by analyzing these three cases, and then proceed
to discussing the role of pre-screening and the contracts’ effect on network security.

4An example and discussion on correlated pre-screening noises can be found in the appendix.

22



2.5.2.1 Case (i): neither agent enters a contract

Let Goo denote the game between two risk-neutral agents who have purchased cyber insurance
contracts. In this game, agents’ efforts e1,e2 are their actions, and the expected payoffs of risk-
neutral agents, with unit cost of effort c1,c2 > 0, are given by:

U i(e1,e2) = −µ(ei + xe−i)− ciei . (2.22)

The best response of each agent is therefore given by

Bout
i (e−i) = argmax

ei≥0
−µ(ei + xe−i)− ciei . (2.23)

The above optimization problem is convex, and has the following solution:

mi = argmine≥0 µ(e) + cie, i = 1,2 ,
Bout

i (e−i) = (mi− xe−i)+ ,
(2.24)

where (a)+ = max{a,0}. The Nash equilibrium is given by the fixed point of the best-response
mappings Bout

1 (e2) and Bout
2 (e1):

e1 = (m1− xe2)+,and e2 = (m2− xe1)+ (2.25)

To find a fixed point, we consider three cases,
• e1 = 0,e2 ≥ 0: In this case, e2 = m2. Also, this case is valid if m1 − xm2 ≤ 0 otherwise e1

should be nonzero.
• e2 = 0,e1 ≥ 0: similar to previous case, e1 = m1. This case is valid if m2− xm1 ≤ 0 otherwise

e2 should be nonzero.
• e1 > 0,e2 > 0: In this case, we solve the following system of equations:

e1 = m1− xe2, and e2 = m2− xe1 (2.26)

The solutions of above equations is given by,

e1 =
m1−x·m2

1−x2

e2 =
m2−x·m1

1−x2

(2.27)
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Notice that this case is valid if m1−x·m2
1−x2 > 0 and m2−x·m1

1−x2 > 0. Therefore, given 0 ≤ x < 1, system
of equations (2.25) has a unique fixed point. Agent i’s effort, e∗i (mi,m−i), at the unique Nash
equilibrium is given by:

e∗i (mi,m−i) =


mi−x·m−i

1−x2 if mi ≥ x ·m−i and
m−i ≥ x ·mi

0 if mi ≤ x ·m−i

mi if m−i ≤ x ·mi

(2.28)

Therefore, uoo
i = U i(e∗1(m1,m2),e∗2(m2,m1)) is the utility of agent i in the equilibrium when agents

do not choose to enter the contract. As we will see shortly, an insurer uses her knowledge of uoo
i to

evaluate agents’ outside options when proposing optimal contracts.

2.5.2.2 Case (ii): one and only one enters a contract

Assume without loss of generality that agent 1 enters a contract, while agent 2 opts out. We use
Gio to denote the game between the insured agent 1 and uninsured agent 2. The agents’ expected
payoff in this case is:

U
in
1 (e1,e2, p1,α1,β1) = −p1− (c1−α1)e1− (1−β1)µ(e1 + xe2)

U2(e1,e2) = −µ(e2 + xe1)− c2e2
(2.29)

Let Bin
1 (e2) denote the best response of agent 1. The following optimization problem finds its best

response:
Bin

1 (e2) = argmaxe1≥0 U
in
1 (e1,e2, p1,α1,β1)

= argmaxe1≥0−p1− (c1−α1)e1− (1−β1)µ(e1 + xe2) .
(2.30)

The above optimization problem is convex, and has a solution given by,

m1(α1,β1) = argmine≥0{(c1−α1)e + (1−β1)µ(e)}
Bin

1 (e2) = (m1(α1,β1)− xe2)+
(2.31)

For the uninsured agent 2, it is easy to see that the best-response function is given by Bout
2 (e1),

the same best response function in game Goo. We can now find the Nash equilibrium as the fixed
point of the best-response mappings. Agents’ efforts at the equilibrium are e∗1(m1(α1,β1),m2) and
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e∗2(m2,m1(α1,β1)), as defined in (2.28). For notational convenience, we denote these efforts by
e∗1,e

∗
2.
Let V

io
(p1,α1,β1,e1,e2) denote the insurer’s utility, when agent 2 opts out and the insurer offers

contract (p1,α1,β1) to agent 1, and agents exert efforts e1,e2. The optimal contract offered by the
insurer to the participating agent is the solution to,

maxp1,α1,0≤β1≤1,e∗1,e
∗
2

V
io

(p1,α1,β1,e∗1,e
∗
2) = p1−α1e∗1−β1 ·µ(e∗1 + x · e∗2)

s.t., (IR) U
in
1 (e∗1,e

∗
2, p1,α1,β1) ≥ uoo

1 ,

(IC) e∗1,e
∗
2 are the agents’ efforts in NE of Gio

(2.32)

Similar to Lemma 2.1, we can show that the (IR) constraint is binding under the optimal con-
tract. Therefore, we can re-write the insurer’s problem by replacing the base premium p1, leading
to,

maxα1,0≤β1≤1,e∗1,e
∗
2
−uoo

1 −µ(e∗1 + xe∗2)− c1e∗1
s.t., (IC) e∗1,e

∗
2 are the agents’ efforts in NE of Gio (2.33)

Let uio
2 be the second agent’s utility when the insurer offers the optimal contract to the first

agent and the second agent opts out. The insurer can calculate uio
2 by finding the optimal contract

in problem (2.33) and the resulting Nash equilibrium of game Gio. Similarly, uoi
1 denotes the first

agent’s utility when he opts out and the second agent purchases the optimal contract. The insurer
uses her knowledge of uio

2 and uoi
1 in designing a pair of contracts to attract both agents.

2.5.2.3 Case (iii): both agents purchase contracts

Let Gii denote the game between the two agents when they are both in a contract. Assume the
insurer offers each agent i a contract (pi,αi,βi). The expected utility of the agents when both
purchase contracts is given by

U
in
i (e1,e2, pi,αi,βi) = −pi− (ci−αi)ei− (1−βi)µ(ei + x · e−i). (2.34)

Following steps similar to those in Section 2.5.2.2, Bin
i , the best-response function of agent i, is

given by
Bin

i (e−i) = (mi(αi,βi)− xe−i)+ , (2.35)
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where mi(αi,βi) is the solution to,

mi(αi,βi) = argmine≥0{(ci−αi)e + (1−βi)µ(e)} . (2.36)

The agents’ efforts at the Nash equilibrium are again the fixed point of the best-response mappings,
and will be given by e∗i (mi(αi,βi),m−i(α−i,β−i)), with e∗i (., .) defined in (2.28). For notational con-
venience, we will denote these as e∗i .

To write the insurer’s problem, note that the outside option of agent 1 (resp. 2) from this game
is his utility in the game Goi (resp. Gio). Then, the optimal contracts offered by the insurer to the
agents is the solution to the following optimization problem:

maxp1,α1,0≤β1≤1,p2,α2,0≤β2≤1,e∗1,e
∗
2

p1−α1e∗1−β1 ·µ(e∗1 + x · e∗2) + p2−α2e∗2−β2 ·µ(e∗2 + x · e∗1)

s.t., (IR) U
in
j (e∗1,e

∗
2, p j,α j,β j) ≥ uoi

j , j = 1,2

(IC) e∗1,e
∗
2 are the agents’ efforts in NE of Gii

(2.37)
The (IR) constraints can again be shown to be binding. Therefore, the insurer’s contract design

problem for two risk-neutral agents is given by,

vii := maxα1,0≤β1≤1,α2,0≤β2≤1,e∗1,e
∗
2
−uoi

1 −uio
2

−µ(e∗1 + x · e∗2)− c1 · e∗1−µ(e∗2 + x · e∗1)− c2 · e∗2
s.t., e∗1,e

∗
2 are the agents’ efforts in NE of Gii

(2.38)

2.5.2.4 Optimal contracts for two risk-neutral agents

We now analyze the properties of the contracts designed based on the optimization problem (2.38),
and their impact on agents’ efforts.

Theorem 2.4 Let eo
i denote the effort of agent i when insurance is not available, and ein

i denote

the effort of agent i in the solution to (2.38), i.e., when purchasing the optimal contract. Also, let ẽi

denote the effort level of agent i in the socially optimal outcome (i.e, the efforts maximizing the sum

of agents’ utilities). Then, the insurer offers contracts to both agents, with the following properties,

(i) ein
i = ẽi, for i = 1,2. That is, the agents exert socially optimal effort levels in the optimal

contract.

(ii) ein
1 + ein

2 ≥ eo
1 + eo

2. That is, when both agents purchase optimal insurance contracts, the

overall effort exerted toward security increases compared to the no-insurance scenario.
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(iii) vii ≥U1(ẽ1, ẽ2)+U2(ẽ1, ẽ2)−U1(eo
1,e

o
2)−U2(eo

1,e
o
2). That is, the principal’s profit is higher

than the gap between agents’ welfare at the socially optimal solution and the no-insurance equi-

librium.

Theorem 2.4, implies the following. Firstly, recall that, as discussed in Section 2.4.3, the insurer
cannot make profit from offering contracts to a single risk-neutral agent, as there is no risk transfer
from risk-neutral agents to an insurer. However, we observe that the insurer can make profit when
offering contracts to interdependent risk-neutral agents. This improvement is due to the agents’
interdependency, and can be interpreted as follows. Due to interdependency, agents under-invest
in security at the no-insurance equilibrium. This leads to a profit opportunity for the insurer, in
which she uses her (accurate) pre-screening assessments to offer premium discounts and (full)
coverage of losses, and in turn requires the agents to exert higher effort (in this particular case, the
socially optimal levels of effort). This increase in effort is in the insurer’s interest, as it lowers the
risks of both of its contracts. In addition, this effect can be viewed as the insurer coordinating the
agents to address the under-investment issue. That is, the insurer is also providing each agent with
the commitment of the other agent to exert higher effort, if he also commits to exerting high effort.

Secondly, Part (iii) of the theorem shows that the profit opportunity for the insurer is even
higher than the welfare gap between the socially optimal and Nash equilibrium outcomes. This
is due to the fact that the outside option from the contract for agent i is an outcome in which the
insurer offers a contract (only) to agent −i. The insurer will select this contract in a way that it
requires agent −i to exert low effort and get high coverage, effectively forcing agent i to bear the
full cost of effort, leading to a utility lower than the no-insurance Nash equilibrium for agent i.
Consequently, as agents’ (IR) constraints are also binding, it follows that the insurer’s profit is
in fact the gap between welfare attained under the optimal contract, and the welfare at these low
payoff, unilateral opt out outcomes.

Finally, note that the statements of this theorem do not depend on the pre-screening noise
σi <∞. This is because the expected utilities and consequent effort choices of risk-neutral agents
are only sensitive to the mean, but not the variances of uncertainties in the problem parameters. As
such, under the assumption of zero mean noise in the pre-screening assessments, agents’ behavior
will be independent of σ.
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2.5.3 Two risk-averse agents

We next analyze the case of two risk-averse agents. Again, as discussed in Section 2.5, in order to
evaluate the agents’ individual rationality constraints and finding the optimal contracts, we need to
account for three possible cases based on the agents’ participation alternatives.

The ensuing analysis is similar to that presented in Section 2.5.2, by replacing the agent’s utility
functions with their risk-averse versions and solving the resulting optimization problems. We thus
present the details in the appendix. Following the analysis, the simplified insurer’s optimization
problem is given by

vii = maxα1,0≤β1≤1,α2,0≤β2≤1,e∗1≥0,e∗2≥0 woi
1 + wio

2 −µ(e∗1 + x · e∗2)− 1
2γ1(1−β1)2λ(e∗1 + x · e∗2)

−c1 · e∗1−
1
2α

2
1γ1σ

2
1−µ(e∗2 + x · e∗1)− 1

2γ2(1−β2)2λ(e∗2 + x · e∗1)− c2 · e∗2−
1
2α

2
2γ2σ

2
2

s.t., e∗1,e
∗
2 are the agents’ efforts in NE of game Gii

(2.39)
where woi

1 =
ln(−uoi

1 )
γ1

and wio
2 =

ln(−uio
2 )

γ2
.

We now discuss how different problem parameters, particularly the availability of pre-
screening, affect the insurer’s profit in the optimal contracts, as well as the system’s state of se-
curity. We first consider the utility of the insurer. Note that the insurer always has the option to
not use the outcome of pre-screening by setting α = 0 in the contract. Therefore, the insurer’s
utility in the optimal contract with pre-screening is larger than that in the optimal contract without
pre-screening; i.e., the availability of pre-screening is in the insurer’s interest.

We now turn to the effect of pre-screening on the state of network security, which we shall
measure by the total effort toward security, e1 + e2.

Theorem 2.5 Let mi = argmine≥0µ(e) + 1
2γiλ(e) + cie. Let ei and eo

i denote the effort of agent i in

the optimal contract and in the no-insurance equilibrium, respectively.

(i) Assume perfect pre-screening, i.e., σ1 = σ2 = 0. Then, e1 + e2 ≥ eo
1 + eo

2, if,

1. µ′(mi) < −ci+xc−i
1−x2 , i = 1,2

2. (µ′)−1(−ci+xc−i
1−x2 ) ≥ x(µ′)−1(−c−i+xci

1−x2 ), i = 1,2
(2.40)

That is, under these conditions, insurance improves network security compared to the no-insurance

scenario.

(ii) Assume both pre-screening assessments are uninformative. i.e., σ1 = σ2 =∞. Then e1 +
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e2 ≤ eo
1 + eo

2. That is, the insurance contract without pre-screening worsens network security as

compared to the no-insurance scenario.

The results of Theorem 2.5 can be intuitively interpreted as follows. By Theorem 2.1, with
a single risk-averse agent, the insurer profits from the agent’s interest in risk transfer. However,
the introduction of insurance always reduces network security. In contrast, Theorem 2.5 shows
that with interdependent agents network security can improve, while the insurer continues to make
profit. Therefore, it is agents’ interdependency that plays a key role in the improvement of security.
To see why, note that the insurer uses pre-screening and offers premium discounts accordingly
in order to incentivize the interdependent agents to increase their effort levels. Providing such
incentives is in the insurer’s interest, as higher effort exerted by the agent decreases both agents’
risk, and consequently, the coverage required by the insurer once losses are realized. Note also
that it is the availability of (accurate) pre-screening that provides the required tools for the insurer
in designing such incentives; otherwise, as shown in part (ii) of the theorem, improving network
security is no longer possible.

The conditions of part of (i) of the theorem can also be interpreted as follows. The first condi-
tion imposes a restriction on the derivative of µ, so that the decrease in loss as a function of effort is
faster than the normalized cost of effort; as a result, the insurer will have the option to make more
profit through loss reduction (by encouraging agents to exert higher effort). The second condition
imposes a restriction on the agents’ cost of effort and guarantees that both agents exert positive
effort (see proof of Theorem 2.5). Specifically, when the two agents’ effort costs are sufficiently
similar, this condition is satisfied, and both agents exert non-zero effort.

2.6 N homogeneous agents, correlated losses, and risk-averse
insurer

In this section we show a number of extensions of our results. First, in Section 2.6.1 we study the
optimal contracts in a network of N homogeneous risk-averse agents. In Section 2.6.2, we examine
the case where the losses of these agents are not only distributionally dependent but also correlated
in their realizations; we will also consider the impact of risk aversion on the part of the insurer on
the resulting contract.
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2.6.1 N-homogeneous risk-averse agents

Consider a network of N homogeneous risk-averse agents given by γi = γ, ci = c, and σi = σ, ∀i.
The assumption of homogeneity simplifies the insurer’s problem, allowing us to obtain additional
insights about the contracts and their impact on network security. Let eee = (e1,e2, . . . ,eN) denote the
vector of efforts of all agents. The loss of agent i is given by,

L(i)
eee ∼N (µ(ei + x

∑
j 6=i

e j),λ(ei + x
∑
j 6=i

e j)) . (2.41)

The agents’ expected utility outside the contract is,

U i(eee) = E(−exp{−γ(−L(i)
eee − cei)}) = −exp{γ(µ(ei + x

∑
j 6=i e j) +

γλ(ei+x
∑

j6=i e j)
2 + cei)} (2.42)

Let m = argmine≥0µ(e) + 1
2γλ(e) + ce. Then, the best response mapping of agent i is given by,

Bout
i (eee−i) = (m− x

∑
j6=i

e j)+ , (2.43)

where (x)+ = max{0, x}. The Nash equilibrium is the fixed point of the above best response func-
tions, leading to efforts e = m

1+(N−1)x by each agent at the symmetric Nash equilibrium.
When agent i purchases a contract (p,α,β), his expected utility will be given by,

U
in
i (eee, p,α,β) = E(−exp{−γ(−p +α ·S ei −L(i)

eee +βL(i)
eee − c · ei)})

= −exp{γ(p + (c−α)ei +
1
2α

2γσ2 + (1−β)µ(ei + x
∑

j 6=i e j) +
γ(1−β)2λ(ei+x

∑
j 6=i e j)

2 )}
(2.44)

Therefore, the best response of agent i, when he enters the contract, is as follows,

Bin
i (eee−i) = (m(α,β)− x

∑
j 6=i e j)+

m(α,β) = argmine≥0(1−β)µ(e) + 1
2 (1−β)2γλ(e) + (c−α)e .

(2.45)

Similar to the two-agent case, we can write the insurer’s contract design problem as follows,

maxα,β,e N · {p−αe−βµ(e + x(N −1)e)}

s.t., (IR) U
in
i (eee, p,α,β) ≥ uout

(IC) eee = (e, · · · ,e) is the effort of the agents at the NE where all are insured

(2.46)
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Here, uout denotes the utility of an agent when he is opts out of purchasing a contract, while all
other agents purchase contracts. We can again show that the individual rationality constraints in
the above problem are binding at the optimal contract. Consequently, the insurer’s optimization
problem simplifies to:

maxα,β,m′ N · {wout −µ(m′)− (1−β)2γλ(m′)
2 − c·m′

1+(N−1)x −
γα2σ2

2 }

s.t., (IC) m′ = argmine≥0(1−β)µ(e) +
(1−β)2γλ(e)

2 + (c−α)e
(2.47)

where wout =
ln(−uout)

γ . Note also that problem (2.47) prescribes identical contracts for all agents.
We now analyze the effect of the pre-screening noise, σ, on the state of network security,

defined as the sum of all agents’ efforts; with homogeneous agents, this is equivalent to each
agent’s effort.

Theorem 2.6 Assume N homogeneous agents purchase contracts from an insurer, and let m =

argmine≥0µ(e) + 1
2γλ(e) + ce. Let eo be the effort of an agent in the no-insurance symmetric equi-

librium, e′ and ê denote the effort in the optimal contract with perfect pre-screening and no pre-

screening, respectively. Then,

(i) If pre-screening is accurate, i.e., σ = 0, and m > 0, then e′ ≥ eo if and only if µ′(m) <
− c

1+(N−1)x . That is, network security improves after the introduction of insurance with prefect

pre-screening.

(ii) If pre-screening is uninformative, i.e., σ=∞, then eo ≥ ê. That is, network security worsens

after the introduction of insurance without pre-screening.

Note that this theorem, as well as its interpretation, is similar to the statements of Theorem 2.5
for two heterogeneous agents. In particular, it is straightforward to check that the conditions of
part (i) of these theorems are equivalent when setting ci = c in Theorem 2.5 and N = 2 in Theorem
2.6.

Finally, the next theorem shows that with sufficiently accurate, yet imperfect pre-screening,
the use of pre-screening can lead to improvement of the state of network security compared to the
no-insurance equilibrium.

Theorem 2.7 Assume N homogeneous agents purchase contracts from an insurer. Let

m = argmine≥0µ(e)+ 1
2γλ(e)+ce, and assume µ′(m) < − c

1+(N−1)x . Let ê and eo be the effort level of

agents in the optimal contract and at the no-insurance equilibrium, respectively. Let m̃ be the effort
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at which µ′(m̃) = − c
1+(N−1)x . Then, if σ ≤

µ(m)+ c
1+(N−1)x m−µ(m̃)− c

1+(N−1)x m̃

0.5γc2 , ê ≥ eo. That is, introducing

pre-screening improves network security as compared to the no-insurance equilibrium.

2.6.2 The case of risk averse insurer and correlated losses

We next study the problem of designing cyber-insurance policies in a network of N homogeneous
risk-averse agents with perfect pre-screening (i.e., γi = γ and ci = c and σi =σ = 0) with correlated
losses defined as follows.

Let θ be the covariance between any two losses, that is,

Cov(Li
eee,L

j
eee) = θ, ∀i 6= j (2.48)

We further assume that the insurer is risk-averse, with risk attitude δ≥ 0 and the vector (L1
eee , · · · ,L

N
eee )

has the multivariate Gaussian distribution. The insurer can conduct a pre-screening of each agent’s
security posture and receives the pre-screening outcome S i = ei as the pre-screening is perfect.
Similar to (2.46), we can write the insurer’s problem as follows,

maxp,α,β,e E
(
−exp

{
−δ(

∑
i=1,··· ,N p−αS i−βLi

eee)
})

= −exp
{
Nδ(−p +αe +βµ(e + x(N −1)e) +

δβ2λ(e+x(N−1)e)
2 +

(N−1)
2 δβ2θ)

}
s.t., (IR) U

in
i (eee, p,α,β) ≥ uout

(IC) eee = (e,e, · · · ,e) is the effort of the agents at the NE where all are insured
(2.49)

As the (IR) constraint is binding, similar to (2.47), we have

maxα,β,e wout −µ(m′)− β2δ+(1−β)2γ
2 λ(m′)− c

1+(N−1)xm′− (N−1)
2 δβ2θ

s.t., m′ ∈ argmine≥0(1−β)µ(e) +
γ(1−β)2λ(e)

2 + (c−α)e
(2.50)

The following theorem characterizes the effect of pre-screening in the presence of a risk averse
insurer.

Theorem 2.8 Let m = argmine≥0µ(e)+
γ
2λ(e)+c and assume θ = 0 and m > 0. Then the agents ex-

erts higher effort than their effort outside the contract if and only if µ′(m)+ 1
2
δγ
γ+δλ

′(m)+ c
1+(N−1)x <

0.

32



Note that when an agent increases his effort, all agents benefit from it, and from the insurer’s
perspective the effective marginal cost of exerting an effort would be lower than c, i.e., c

1+(N−1)x

can be considered as the effective marginal effort cost in Theorem 2.8. The condition of Theorem
2.8 implies that if the marginal benefit of effort at e = m is larger than the effective marginal cost

c
1+(N−1)x , then the agents increase their effort inside the optimal contract. It is worth mentioning
that the condition of Theorem 2.8 reduces to the condition of Theorem 2.6 if we set δ = 0. Also,
notice that the condition of Theorem 2.8 is more likely to be satisfied for larger values of δ. For
instance, if δ = ∞, the condition is always satisfied, and the agents exert higher effort inside the
contract. In other words, if the insurer is more risk averse, it is more likely that she encourages
agents to exert higher effort as compared to their efforts outside of the contract.

We close this section by characterizing the effect of correlation on agents’ efforts given perfect
pre-screening.

Theorem 2.9 Assume θ ≥ 0, i.e., positive correlation between losses. Then, agents’ efforts inside

the contract increase as θ increases.

Theorem 2.9 implies that if agents’ losses are more correlated, a risk averse insurer encourages
the agents to exert more effort. This is because with correlated losses, it is more likely for losses to
happen simultaneously as compared to a scenario with independent losses. Note that when δ = 0 in
(2.50), i.e., when the insurer is risk neutral, the problem becomes independent of θ, meaning that
the covariance between any two losses does not affect the optimal contract or the agents’ efforts if
the insurer is risk neutral.

2.7 Numerical results

We next present numerical examples of the findings of Sections 2.4-2.6. Our main focus is on the
impact of pre-screening noise in various scenarios. Throughout the first part of this section we use
the following parameters:

µ(e) =
10

e + 1
, λ(e) =

10
(e + 1)2 , c = 2, γ = 1 . (2.51)
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Figure 2.1: Parameters of the optimal contract v.s. risk aversion level γ

2.7.1 Impact of agent’s risk attitude γ

Figure 2.1 illustrates the optimal contract as a function of γ. As the agent becomes more risk-
averse, the insurer can set a higher base premium p, offer a lower discount factor α, and offer
a higher coverage β. In other words, pre-screening becomes less important as the agent’s risk-
aversion increases, as more risk-averse agents are most interested in transferring more of their risk
to the insurer, making their own efforts less important.

Figure 2.2 illustrates network security (agent’s effort), both inside and outside of a contract, vs.
his risk attitude γ. First, we see that as suggested by Theorem 2.1, the agent’s effort in the contract
is less that his effort outside of the contract. In other words, insurance decreases network security.
Intuitively, as the agent transfers his risk to the insurer, he does not have the incentive to exert high
effort. We also observe that the agent’s effort in the optimal contract is a decreasing function of γ.
This is due to the fact that as shown in Fig. 2.1, as the agent becomes more risk-averse, he transfer
more risk to the insurer, and further decreases his effort. Finally, when the agent is outside of the
contract, he can only decrease his risks by exerting higher effort. Therefore, we observe that as an
agent without insurance becomes more risk-averse, he exerts higher effort.
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Figure 2.2: Effort of agent vs. risk aversion level γ
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Figure 2.3: Insurer’s profit vs. pre-screening noise σ2 with a single risk-averse agent
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2.7.2 Impact of pre-screening noise

A single risk-averse agent: Figure 2.3 illustrates the insurer’s profit as a function of the pre-
screening noise σ2. The observation is consistent with Theorem 2.2, which states that the insurer’s
profit is a decreasing function of σ2. Figure 2.4 illustrates the effort of the agent inside and outside
the contract as a function of σ2. We see that the effort outside the contract is independent of the
pre-screening noise, while it decreases inside the contract as σ2 increases. This highlights that as
the insurer becomes less accurate in her observation of the agent’s effort, she starts to place less
importance on the pre-screening outcome; as a result, it becomes less beneficial for the agent to
exert high effort without receiving sufficient discount. In other words, low quality pre-screening
dampens its effectiveness in mitigating moral hazard; consequently, network security worsens.
A second observation here is that as the participation constraint is always binding, the constant
effort outside the contract also means that the agent’s utility remains constant regardless of the
pre-screening noise. Thus, it is only the insurer who benefits from pre-screening.

Two homogeneous risk-averse agents: We next consider two homogeneous agents with in-
terdependence factor x = 0.5. Figure 2.5 shows the insurer’s utility as a function of the quality
of pre-screening, which illustrates the insurer’s profit decreases when the pre-screening accuracy
decreases. Figure 2.6 shows the network security as a function of pre-screening noise. Here, the
conditions of Theorem 2.6 is satisfied. As we can see, security under the contract is higher than
that without insurance for small values of σ; but as σ increases, security worsens and drops below
that without contract.

Two heterogeneous risk-averse agents: We next consider two heterogeneous agents with the
following parameters:

µ(e) = 10
e+1 , λ(e) = 10

(e+1)2 , c1 = 1, c2 = 1.1

γ1 = 1.2 γ2 = 1, x = 0.5 (2.52)

We assume that the pre-screening noise (σ2) is the same for both agents. These parameters
together satisfy the condition of Theorem 2.5. Figure 2.7 shows that the introduction of insurance
can indeed improve the state of network security provided the pre-screening is sufficiently accurate.
Figure 2.8 shows that the insurer’s profit decreases as pre-screening becomes less accurate.
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Figure 2.4: Agent’s effort vs. pre-screening noise σ2 with a single risk-averse agent
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Figure 2.5: Principal’s utility vs. σ2 with two homogeneous risk-averse agents
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Figure 2.6: Network security (e1 + e2) vs. σ2 with two homogeneous risk-averse agents
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Figure 2.7: Network security (e1 + e2) vs. σ2 with two heterogeneous risk-averse agents
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Figure 2.8: Principal’s profit vs. σ2 with two heterogeneous risk-averse agents
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Figure 2.9: Network security (e1 + e2) vs. σ2 with two heterogeneous risk-averse agents. In
this example, the conditions of Theorem 2.5 do not hold but network security improves after the
introduction of insurance.
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Figure 2.10: Network security (e1 + e2) vs. σ2 with two heterogeneous risk-averse agents. In this
example, the conditions of Theorem 2.5 do not hold, and network security worsens after introduc-
tion of insurance.

2.7.3 On the sufficient conditions of Theorem 2.5

The interpretation of the conditions of Theorem 2.5 was provided in Section 2.5.3, and this section
examines these conditions through numerical examples. Consider an example with parameters
similar to those given in (2.52), except that γ1 = 1.5 and c2 = 1.5. In this case, it can be verified
that the conditions of Theorem 2.5 do not hold. However, Figure 2.9 shows that network security
improves after the introduction of insurance. This example shows that the sufficient conditions in
Theorem 2.5 are not necessary.

Consider again the same parameters given in (2.52), except x = 0.15. In this case, it can again be
verified that the conditions of Theorem 2.5 do not hold. Figure 2.10 shows that the network security
worsens with the introduction of insurance and thus the sufficient conditions are meaningful.

2.7.4 Loss with exponential distribution and pre-screening with uniform
distribution: an example

Single Risk-Averse Agent: Throughout our analysis, we assumed that losses and pre-screening
outcomes are normally distributed. In this section, we provide a numerical example under the
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Figure 2.11: Agent’s effort vs. σ2 with a single risk-averse agent and exponentially distributed
loss.
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Figure 2.12: Network security (e1 + e2) vs. σ2 with two heterogeneous risk-averse agents with
exponentially distributed interdependent losses.
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assumption of exponentially distributed losses and uniformly distributed pre-screening outcomes.
We illustrate how our previous observations hold in this instance as well. Let,

γ = 0.9, c = 0.25, E(Le) = µ(e) = 1
1+e ,

Le ∼ exp( 1
µ(e) ),

S e = e + W, W ∼ Uni f (−b,b)

(2.53)

Figure 2.11 illustrates the agent’s effort when pre-screening noise W is uniformly distributed in
interval [−b,b]. This figure shows that even though the loss and pre-screening outcome are not
normally distributed, the agent’s effort inside the contract is less than outside the contract; similarly,
it remains a decreasing function of b.

Model with two risk-averse agents: We further consider a network of two risk-averse agents
with the following parameters,

γ1 = γ2 = 0.9, c1 = 0.25, c2 = 0.5, x = 0.5
E(Li

e1,e2
) = µ(ei + xe−i) = 1

1+ei+xe−i

Li
e1,e2

∼ exp( 1
µ(ei+xe−i)

),

S ei = ei + Wi, Wi ∼ Uni f (−b,b), i = 1,2

(2.54)

Where, W1 , W2 are independent and uniformly distributed in interval [−b,b].
Figure 2.12 illustrates network security in a network of two risk-averse agents with exponen-

tially distributed interdependent losses and uniformly distributed pre-screening outcomes. In this
example, when pre-screening is sufficiently accurate (b is sufficiently small), by exploiting agents’
interdependence, the insurer can design contracts in a way that network security inside the contract
is higher than prior to the introduction of insurance. In contrast, when pre-screening is not accu-
rate enough (b is large), network security inside the contract falls bellow network security outside
the contract. Again, these observations are consistent with our results under normally distributed
losses and pre-screening.

2.7.5 An example with correlated pre-screening noises

Throughout this chapter, we assumed that pre-screening noises Wi and W j are independent. Notice
that the correlation between Wi and W j will not affect our results when the insurer is risk-neutral.
This is because a risk-neutral insurer is not sensitive to the variance and covariance of the pre-

42



screening outcomes, and therefore a term of the form Cov(Wi,W j) will not appear in the insurer’s
expected utility. As a Cov(Wi,W j) 6= 0 will not alter the insurer’s behavior, and also since agents’
utilities depend directly only on their own pre-screening outcome’s noise, having correlated pre-
screening noises will not affect the analysis of agents’ incentives either. On the other hand, in
Section 2.6.2, where we study the insurance market with a risk-averse insurer, Cov(Wi,W j) can
affect the utility of the insurer. Our result in that section is established for perfect pre-screening
only, effectively removing the such covariance.

In this part, we conduct a numerical simulation for the case where the insurer is risk averse and
pre-screening is imperfect. We observe that network security decreases as the pre-screening noise
correlation increase. Figure 2.13 illustrates network security as a function of pre-screening noise
correlation. The parameters of this example are as follows,

µ(e) =
100

2e + 1
, λ(e) =

100
(2e + 1)2

c1 = c2 = 1 γ1 = γ2 = 0.5 δ = 0.1, σ2 = 2, x = 0.5
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Figure 2.13: Network security as a function of pre-screening noise correlation
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2.8 Discussion and conclusion

This chapter studied the problem of designing cyber insurance contracts by a single profit-
maximizing insurer, for both risk-neutral and risk-averse agents. While the introduction of in-
surance worsens network security in a network of independent agents, we showed that the result
could be different in a network of interdependent agents. Specifically, we showed that security
interdependency leads to a profit opportunity for the insurer, created by the inefficient effort lev-
els exerted by free-riding agents when insurance is not available but interdependency is present;
this is in addition to risk transfer that an insurer typically profits from. We showed that security
pre-screening then allows the insurer to take advantage of this additional profit opportunity by
designing the right contracts to incentivize the agents to increase their effort levels and coordi-
nating interdependent agents. We show under what conditions this type of contracts leads to not
only increased profit for the principal and utility for the agents, but also improved state of network
security.

There are a number of directions to pursue to extend the above results. As mentioned earlier,
all our results are derived under the assumption of perfect information. Studying the problem with
pre-screening under partial information assumptions would be an important direction of future re-
search; this would include imperfect knowledge of the agents’ type by the principal as well as
imperfect knowledge of the interdependence relationship by the agents and the principal. Other
modeling choices such as alternative use of pre-screening assessment (as opposed to linear dis-
counts on premiums), and more general ways of capturing correlated risks (e.g., joint distribution
of losses as opposed to average loss being a function of joint effort), would also be of great interest.
Finally, a competitive market setting and its effects on network security is also worth studying.
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CHAPTER 3

Embracing and Controlling Risk Dependency in
Cyber-insurance Policy Underwriting

3.1 Introduction

In the previous chapter, we focused on interdependent cyber risks and showed how an insurer can
use an imperfect pre-screening to control risk dependency. This chapter will again focus on the
same challenges but will examine the contract design problem in a more practical setting. Specif-
ically, we consider a scenario consisting of a service provider (SP, e.g., a cloud platform vendor)
and n customers where the security investment affects the probability of a loss incident. In this
scenario, interdependence is one-directional; an incident on the service provider’s side may cause
a business interruption for the customers but not the other way around. We will introduce a second
loss model where security investment affects the probability of loss events and that loss to the cus-
tomers may be attributed to the SP whom the customer depends on. In contrast to Chapter 2, this
chapter uses an actual cyber insurance contract and rate schedule to develop an understanding of
the cyber-insurance market in the presence of interdependent (and risk-averse) agents in a realistic
underwriting setting.

There are two main reasons that we are interested in the SP-customer model. The first is to
study simultaneous loss events in a network of interdependent agents, which would threaten the
insurer’s capital limit or other liquidity requirements. Second, in the event that a data breach or
other loss events could be attributed to a third party (i.e., service provider) who may be insured by
a different carrier, the insurer of the primary party (i.e., SP’s customer) may seek to recover some
or all of its losses from the SP’s insurer/policy, thereby reducing its own risk exposure. If, on the
other hand, the primary party’s insurer underwrites both the primary firm and its third party, then
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even if the loss to the primary could be attributed to the third party, the insurer would effectively
be “suing itself” for the losses. All this has led to a strong desire among insurance carriers to
minimize this type of risk dependency. However, a proper solution continues to elude insurance
carriers, reinsurers, and modeling firms [65].

It is thus of considerable interest to cyber-insurance underwriters to understand how to effec-
tively manage not only individual firm risk, but overall portfolio risk in the presence of interdepen-
dent systems among policy holders. One device available to them is the ability to provide incen-
tives (premium discounts) directly to firms that demonstrate improved security posture. While this
may help reduce individual firm risk, it is unclear how this may help resolve systemic risk from
interdependent business relationships.

Chapter 2 using a contract-theoretic approach showed that contrary to the common
dependency-avoidance practice mentioned above, there is an unrealized incentive for an insurer
to underwrite dependent risks. Paradoxically, the existence of risk dependency among a network
of insureds allows the insurer to jointly design polices that incentivize the insureds to (collectively)
commit to higher levels of effort, which can simultaneously result in improved state of security for
all as compared to a portfolio of independent insureds, and in improved profits for the insurer.

This chapter further examines whether these observations continue to hold when an insurer
can recover a part of the loss suffered by an insured through a third-party liability clause when
the loss can be attributed to another insured (the third party) underwritten by a different insurer.
Even with this loss recovery as an alternative, conditions exist where it is beneficial both from
a security perspective and a profit perspective for an insurer to underwrite both interdependent
insureds, precisely because this allows the insurer to control the risk dependency and incentivize
both to commit to higher security efforts. In this chapter we analyze different portfolio choices
by a underwriter and quantify their impact on the resulting profit, risk reduction, as well as social
welfare. Specifically, we use both analytic and computational techniques to model three portfolio
alternatives available to the insurance carrier: insure just the service provider, insure both the
service provider and its customers, or insure just the service provider’s customers. The strategic
decision centers on how the insurer can induce the parties to reduce their risk while maximizing its
own profits. We examine how these incentives can be used to reduce the direct risk to one party,
as well as to reduce indirect risks to dependent firms. We also examine social welfare implications
and use data from an actual cyber-insurance policy, as well as one of the only sources of insurance
claims data, to calibrate and substantiate our analysis.
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3.1.1 Main findings

Our results in this chapter show that the insurer is able to achieve higher profit by insuring all
agents (SP and its customers) provided it appropriately incentivizes the SP to improve its state of
security. This is because risk reduction by the SP leads to risk reduction for its customers, thus the
benefit has a multiplicative effect. This ultimately not only allows the insurer to be able to take on
the risk of all agents without hurting its profit, but also leads to higher social welfare.

Overall, our results suggest a novel and improved approach to cyber-insurance policy design
that presents a new way of thinking about systemic risk and cyber risk dependency: to embrace
and manage these risks, rather than avoid them. While we acknowledge the warranted caution
against concurrent and correlated loss events, the emphasis of this chapter is to highlight a clear
silver lining behind risk dependency, and an opportunity to actively work toward reducing overall
cyber risks in an ever-escalating and interconnected threat landscape.

3.1.2 Chapter organization

The remainder of this chapter is organized as follows. We provide an example of actual cyber
insurance policy underwriting in Section 3.2. We then present our model and analysis in Section
3.3, followed by numerical examples in Section 3.4. Section 3.5 discusses different aspects of the
presented model, and Section 3.6 concludes the chapter.

3.2 Computing premiums using base rates: examples from an
actual underwriter

In this section we briefly describe a common approach to calculating cyber-insurance premiums.
The calculation begins by first selecting the base premium and a base retention (deductible) from
previously defined lookup tables. The base premium is then modified through a linear product
of additional factors. While different carriers use different values and types of factors in their
premium expression, there are a number of commonly used factors.

Below, we provide an example of such a calculation using an actual cyber-insurance policy
(see the Appendix to view the full rate schedule), with methods commonly found throughout the
insurance industry. First, the base premium and retention are determined using table lookups,
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where the asset size (for financial institutions) or annual revenue (for non-financial institutions)
of the insured maps to assigned values, with both the rate and the retention amounts increasing
in asset or revenue size. For instance, a financial institution of asset value up to $100M would
be charged a base rate of $5,000 for a base retention of $25,000, while a firm of assets between
$500M and $1B would be charged a base rate of $11,000 for a base retention of $100,000, all for
a nominal coverage amount of $1M. On the other hand, a non-financial firm with annual revenue
between $5M to $10M would be charged a base rate of $7,500 for a base retention of $25,000.

This base rate is then multiplied by a number of factors, with each factor modifying the base
rate roughly between −20% and +20% with a few exceptions, as shown below.

• Industry Factor: Based on the type of business, an industry hazard is determined, with
higher-risk businesses receiving a larger multiplier. For instance, agricultural and construc-
tion businesses receive the smallest hazard value (less risky) while web service providers
receive the larger hazard value (more risky), as shown in Table 3.1.

• Retention Factor: This factor depends on the retention (deductible) that the insured selects.
Retention factor decreases as a function of the retention that the insured chooses, as shown
in Table 3.2.

• Increased Limit Factor: This is a factor driven by the limit of the coverage: it is 1.0 if
the insured accepts the default limit (corresponding to the base rate and base retention); it
exceeds 1.0 if the insured wants to increase this limit, and falls below 1.0 if the insured asks
for a lower coverage limit, as shown in Table 3.3.

• Co-insurance Factor: This factor is less than 1.0 if the insured accepts to pay a share of the
payment made against a claim. The value of this factor depends on the amount of the share
that the insured accepts to pay. Table 3.4 lists some of the co-insurance factors based on the
co-insurance percentage.

• Third-Party Modifier Factors: This factor depends on the third party service provider. If
the insured does not use any third party service, this factor is equal to 1.0. Otherwise, this
factor is set based on the third party service and the agreement between the insureds and the
service provider, but is not a function of the security posture of the third-party.

• Optional Coverage Grants: In addition to the base coverage, the policy holder may pur-
chase coverage for additional exposures, such as privacy costs or crisis management. Each
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additional coverage is calculated by multiplying the base rate by a number of factors in-
cluding an option-specific modifying factor. For instance, the option of privacy notification
expense uses a factor of 0.15, while the option of crisis management expense uses a factor
of 0.02.

Note that other carriers use similar frameworks for calculating the final premium. We refer
the interested reader to [73] for a more complete overview of current insurance policies. This
multiplicative formula described above constitutes the basic model used for our analysis in the
next section.

Industry Factor
Agriculture 0.85
Construction 0.85
Not-for-Profit Organizations 1.00
Technology Service Providers 1.2
Telecommunications 1.2

Table 3.1: Industry hazard table

Selected Base Retention ($)
Retention ($) 25,000 100,000 500,000 1000,000

25,000 1.00 1.16 1.34 1.47
100,000 0.87 1.00 1.16 1.27
500,000 0.75 0.87 1.00 1.10

1,000,000 0.68 0.79 0.91 1.00

Table 3.2: Retention Factor

Example We complete this section by providing an example of how the final premium is cal-
culated using the above tables. Consider a non-financial Technology Service Provider with annual
revenue $6M who intends to purchase an insurance policy with retention $100,000, coverage limit
$2.5M, and zero percent co-insurance. Moreover, this firm does not use any third party services;
it wishes to opt in for additional coverage for privacy notification expense and crisis management
expense. Based on the above tables, the following factors will be used in determining the total
premium for this company:
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Coverage Limit ($) Increased Limit Factor
1,000,000 1.000
2,500,000 1.865
5,000,000 2.987
10,000,000 4.786
25,000,000 8.925

Table 3.3: Increased limit factor

Co-Insurance (%) Co-insurance Factor
0 1.000

1.0 0.995
5.0 0.980
10 0.960
20 0.920
50 0.780

Table 3.4: Co-insurance factor

• Base premium: $7,500; Base Retention: $25,000

• Industry Factor: 1.2 (Table 3.1).

• Retention Factor: 0.87 (Table 3.2).

• Limit Factor: 1.865 (Table 3.3).

• Third-Party Modifier Factor: 1.

• Co-insurance Factor: 1 (Table 3.4).

• Privacy notification: 0.15.

• Crisis management: 0.02.
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Therefore, the premium for this service provider is calculated as follows,

Premium = 7500×1.2×0.87×1.865×1×1 + 7500× (0.15 + 0.02)

= 14602.95 + 1275 = $15,877.95 . (3.1)

3.3 The insurance policy model and analysis

In this section, we model three portfolio alternatives available to the insurance carrier, as depicted
in Figure 3.1: insure just the service provider and let someone else insure its customers (Portfolio

type A), insure both the service provider and its customers (Portfolio type B), or insure just the
service provider’s customers and let someone else insure the SP (Portfolio type C).

SP

Customer 1
Customer 2

Customer n-1
Customer n

SP

Customer 1
Customer 2

Customer n-1
Customer n

SP

Customer 1
Customer 2

Customer n-1
Customer n

Portfolio type A Portfolio type B Portfolio type C

Figure 3.1: Three portfolio types: shaded areas indicate entities insured by the underwriter.

In each case the question we are interested in understanding is to what extent the insurer may
be able to induce the parties to reduce their risk while maximizing its own profits. We examine how
these policy incentives can be used to reduce the direct and indirect risks to the parties involved.
To do so, over the next few subsections we develop a model that formally establishes an insurance
carrier’s profit, as a function of the insurance policy terms as well as incentives embedded in the
policy.

3.3.1 Base premium calculation

Consider an insurer and its prospective insureds (the applicants), which include a service provider
(SP, e.g. Amazon cloud services) and its n customers. The insurer charges a base premium bo to
the service provider and base premiums bi to its customers i, i = 1,2, . . . ,n.
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As described, the base premium, bi, depends on the total assets or revenue of the insureds.
The insurer then asks the applicants to fill out a questionnaire describing their information security
practices. Based on the completed questionnaire, the insurer modifies the base premiums by a
factor fi, i = 0,1, · · · ,n, as described in the previous section. The insured pays bi · fi up front, and
the insurer pays the insured max{Li − di,0} after a loss incident where Li denotes the loss amount
of agent i and di is its elected retention/deductible. For the analysis that follows we ignore all the
other factors unrelated to cybersecurity, as their inclusion (as additional multipliers) does not affect
our model or our conclusion.

This model does not yet consider dependent risks. Specifically, insured i’s premium bi fi,
i = 1, · · · ,n, is purely a function of its own security posture. While the information security ques-
tionnaire used to generate modifier factor fi may include questions on whether i has a third party
supplier, or whether it has proper procedures/policies in place in handling a third party, it does not
directly assess the security posture of these third parties. This instead is assessed separately. We
refer an interested reader to the Chubb CyberSecurity policy shown in Appendix B.

3.3.2 The security incentive modifier

We now introduce an incentive factor, f ′o, for the SP and subsequently examine its impact on the SP
as well as its n customers. Specifically, suppose the insurer is willing to offer the SP a discounted
premium in exchange for improved security posture as follows:

• The SP has an initially assessed premium bo fo, with a security modifier factor fo.

• The SP agrees to invest more in security such that it could now be assessed at f̃o = fo − f ′o,
for some f ′o ∈

[
0, fo

]
, i.e., a reduction in the modifier factor. Therefore, the insured pays bo f̃o

as the premium, reflecting a discount given the SP’s improved security posture.

Note that here for simplicity of presentation, we have assumed that the insurer is able to assess,
and willing to match exactly in discount the amount corresponding to the reduced risk. That is,
this SP now enjoys a revised premium equal to that which it would have received had it started at
a security level measured at f̃o without the incentive. In practice the two need not be equal, i.e.,
the SP may require more or less in premium discount incentive to reach f̃o. While this does not
affect our qualitative conclusions, it does raise the interesting question as to whether in practice the
incentive offered is sufficient for the SP to attain the corresponding risk reduction. In other words,
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could the SP take the discount amount bo f ′o and use it toward hiring additional personnel or pur-
chasing products to achieve this goal? We will give an example in the context of the distributions
used in our numerical analysis in Section 3.4.

Our subsequent analysis focuses on whether a desirable operating point for the insurer is such
that f ′o > 0, i.e., offering an incentive to the SP. Obviously, when there is no incentive, f̃o = fo, and
the problem reverts to the original premium calculation.

3.3.3 Mapping security incentive to probability of loss

The security modifier factor fi is tied to some underlying assumption of the probability of a cyber
incident. This modifier can increase or decrease the base premium; the larger it is, the more likely
is a loss event as estimated by the insurer. As far as we can tell by examining the rate schedules
of many actual cyber-insurance policies, this factor itself does not appear to be directly tied to the
magnitude of a loss; rather we believe the expected loss amount is factored into the base premium
which is tied to the sector/industry and the size of the insured. The use of such a factor in the
current underwriting practice would suggest that policies are risk priced in additional to being
market priced (reflected in the base premium and retention). This aspect however does not affect
our analysis since we only consider a single insurer.

To be concrete, let Po( f̃o) denote the the probability of a breach to the SP, which is decreasing
in the security incentive factor f ′o and increasing in the overall factor f̃o. Similarly, we denote by
Pi( fi), i = 1, · · · ,n, the probability of a loss incident of customer i unrelated to the SP. Both Po()
and Pi() are assumed to be increasing and differentiable. We will assume that if a breach happens
to the SP, a business interruption or similar loss event occurs to its customer with probability t, also
referred to as the level or degree of dependency. Further, we assume that a business interruption
induced by SP and the loss incident unrelated to the SP are independent events.

Putting these together, the probability of a loss event occurring to customer i is given by:

Pli( f̃o, fi) = Pi( fi) + t ·Po( f̃o)− t ·Po( f̃o) ·Pi( fi), i = 1, · · · ,n (3.2)

where the loss includes that due to the customer itself, due to business interruption brought on by
the SP’s breach, or both at the same time.
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3.3.4 The insurer’s profit function

Next, we derive expressions for the insurer’s profit under two portfolio options: when it insures
just the service provider (Portfolio A), and then when it insures both the service provider and its
customers (Portfolio B).

The insurer’s profit (Vo) and expected profit (Vo) from underwriting just the SP are defined as
follows, both shown as functions of f ′o given that our focus is on this element under the insurer’s
control,

Vo( f ′o) = bo · ( fo− f ′o)− Io · (Lo−do)+ ; (3.3)

Vo( f ′o) = E{Vo( f ′o)} = bo · ( fo− f ′o)− lo ·Po( fo− f ′o) , (3.4)

where (x)+ = max{x,0}, Lo is the loss random variable, and lo = E((Lo − do)+). Note that Io is a
Bernoulli random variable with parameter Po( fo− f ′o).

We will assume the customers’ security factors fi, i = 1, · · · ,n, are uniformly distributed over
some range

[
fmin, fmax

]
. The insurer’s profit from customer i is then given by the following, again

expressed as a function of the controllable f ′o:

Vi( f ′o) = bi fi− Ii · (Li−di)+ ; (3.5)

V i( f ′o) = bi ·
fmin + fmax

2
−E fi[Pli( fo− f ′o, fi)] · li , (3.6)

where Li is the loss random variable of customer i. Again, Ii is a Bernoulli random variable with
parameter Pli( fo− f ′o, fi) and li = E((Li−di)+).

If the insurer chooses to underwrite both the SP and its n customers then its expected total profit
is given by:

V total( f ′o) = Vo( f ′o) +

n∑
i=1

V i( f ′o) ; (3.7)

Vmax = max
f ′o

V total( f ′o) . (3.8)
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3.3.5 Analysis of the optimal incentives and carrier profits

Now that we have established expressions for the carrier’s profits as a function of security in-
centives, we next seek to answer two questions: first, what security incentives should the carrier
provide to the service provider, and secondly, which portfolio strategy yields higher profit?

We have defined Po( f̃o) to be an increasing function of f̃o, implying that Po( fo− f ′o) is a decreas-
ing function of the incentive f ′o. We assume this to be a strictly convex function of f ′o, reflecting
a decreasing marginal return on effort. Note that it is widely accepted to model loss probability
as a function of the security investment, see e.g., [34, 54, 58, 68]. Our model here is consistent
with this literature since we have assumed that the incentive factor f ′o is proportional to security
effort/investment, while allowing us to highlight and express this function in terms of the carrier’s
controllable in this underwriting framework.

Our first result compares the optimal incentive that an insurance carrier would offer the SP
when insuring just the SP (Portfolio A), and insuring both the SP and its customers (Portfolio B).
That is, we compare the optimal incentive factor f ∗o that maximizes Vo(), with the optimal incentive
factor f ∗∗o that maximizes V total().

Theorem 3.1 Under the assumption that Po( fo − f ′o) is decreasing and strictly convex in f ′o, we

have that f ∗o ≤ f ∗∗o , where f ∗o = argmax f ′o
Vo( f

′

o) and f ∗∗o = argmax f ′o
V total( f

′

o). In other words,

the underwriter offers a higher incentive to the SP when insuring all parties, compared with the

incentive offered to the SP as the only insured.

Proof The insurer’s profit of underwriting the service provider and the customers is given by:

V total( f ′o) = Vo( f ′o) +

n∑
i=1

V i( f ′o)

= bo · ( fo− f ′o)− loPo( fo− f ′o) +

n∑
i=1

bi
fmin + fmax

2

−li ·Po( fo− f ′o) · (t− tE[Pi( fi)])− li ·E[Pi( fi)] . (3.9)
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Using the first order optimality condition, we have

∂V total( f ′o)
∂ f ′o

= 0 (3.10)

⇒ f ∗∗o =

 fo− (P′o)−1

 bo[
lo +

∑n
i=1 li · (t− t ·E(Pi( fi)))

]
+

. (3.11)

Similarly, we can find the optimal value f ∗o that maximizes Vo:

∂Vo

∂ f ′o
= −bo + lo ·P′o( fo− f ′o) = 0

⇒ argmax
f ′o

Vo( f ′o) ∈
(

fo− (P′o)−1(
bo

lo
)
)+

⇒ f ∗o =

(
fo− (P′o)−1(

bo

lo
)
)+

. (3.12)

Because P
′

i() is an increasing function and bo
lo
> bo[

lo+
∑n

i=1 li·(t−t·E(Pi( fi)))
] , we have f ∗o ≤ f ∗∗o .

Theorem 3.1 suggests that if the insurer underwrites both the SP and its customers (Portfolio
B), it benefits from a better state of security (induced by higher incentive to the SP) as compared
to the optimal level if it only underwrites the SP (Portfolio A). Intuitively, as the SP’s risk directly
impacts that of its customers, when insuring both, it is in the insurer’s interest to control/reduce
the SP’s risk so the overall, systemic risk it is exposed to is reduced. This obviously means better
overall security posture for all parties. The question is whether the insurer will voluntarily choose
Portfolio B over A? The next result answers this.

Corollary 3.1 If parameter values bi and li are such that V i( f ∗o ) > 0 (i.e., there is expected profit

from any single policy when the SP is incentivized at the level f ∗o ; this need not be true if bi is too

small and li too large, in which case a rational insurer would not underwrite the policy), then we

also have the following:

V total( f ∗∗o ) ≥︸︷︷︸
by the optimality f ∗∗o

V total( f ∗o ) ≥︸︷︷︸
by the positivity of V i( f ∗o )

Vo( f ∗o ) . (3.13)
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And similarly,

V total( f ∗∗o ) ≥︸︷︷︸
by the optimality f ∗∗o

V total( f ∗o ) ≥︸︷︷︸
by the positivity of V i( f ∗o )

V i( f ∗o ) ≥ V i(0) , (3.14)

where the last inequality results from the fact that the risk sustained by customer i is lower when

the SP is incentivized at any level f ∗o > 0.

The above result suggests that at the right level of incentive for the SP, the insurer enjoys
greater profits by insuring both the SP and its customers (Portfolio B), relative to insuring just the
SP (Portfolio A), or any subset of its customers.

Note that Theorem 3.1 remains valid even when the assessment is noisy. To see this, let us
assume that the SP is assessed at f̃o = fo − f ′o, but the true value is F̃o = f̃o + N where N is a
zero-mean random variable. Then we have:

Vo( f ′o) = bo · ( fo− f ′o)−E(Po( fo− f ′o + N)) · lo . (3.15)

Then as long as the function E(Po( fo− f ′o +N)) is increasing and convex in fo, the result of Theorem
3.1 is valid. We next show that this is indeed an increasing and convex function. For simplicity of
exposition, we will denote this function as Πo( fo− f ′o) = E(Po( fo− f ′o + N)), and denote the pdf of
N by g(.).

Πo(x) =

∫
Po(x + s)g(s)ds → Π

′

o(x) =

∫
P′o(x + s)g(s)ds ≥︸︷︷︸

Po(.) is increasing

0 . (3.16)

Πo(λ · x + (1−λ) · y) =

∫
Po(λ · x + (1−λ) · y + s)g(s)ds ≤︸︷︷︸

by convexity o f Po(.)

(3.17)

∫
λ ·Po(x + s)g(s)ds +

∫
(1−λ) ·Po(y + s)g(s)ds = λΠo(x) + (1−λ)Πo(y) . (3.18)

3.3.6 Third-party liability

Next we consider third-party liability. This refers to the ability of an injured party to seek redress
for losses from an injurer, and is a coverage category commonly found in insurance policies. In
the context of our study, this implies that if a firm suffers loss due to business interruption brought
on by a breach at its SP, the firm’s insurance carrier can, on the firm’s behalf, seek redress from
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the SP’s insurer. However, if the same carrier were to underwrite both the firm and the SP, such
compensation would obviously not occur. In one of the few datasets that reports actual cyber-
insurance claims data, NetDiligence [18] shows that 13% of all data breaches and cyber incidents
can be attributed to a third party. Accordingly, we will use a parameter q to represent the probability
that a loss can be attributed to an SP.

We define U as the insurer’s profit when it underwrites only the SP’s customers (Portfolio C).
We have:

Ui( f ′o) = bi · fi− Ji · (Li−di)+;

U i( f ′o) = E[Ui( f ′o)]

= bi ·
fmin + fmax

2
− (E[Pi( fi)] + (1−q)

[
tPo( fo− f ′o)−E[Pi( fi)]tPo( fo− f ′o)

]
)li ,

(3.19)

where Ji is a Bernoulli random variable with parameter Pi( fi) + (1−q) ·
[
tPo( fo− f ′o) · (1−Pi( fi))

]
;

this is the probability that a loss incident happens to customer i and cannot be attributed to the SP.
In this case the SP is insured by another carrier, referred to as the third-party insurer, whose profit
is given by:

Uo( f ′o) = bo( fo− f ′o)− Io · (Lo−do)+−

n∑
i=1

Ki · (Li−di)+; (3.20)

Uo( f ′o) = E[Uo( f ′o)]

= bo · ( fo− f ′o)−Po( fo− f ′o) · lo−
n∑

i=1

q ·
[
tPo( fo− f ′o)

]
·
[
1−E[Pi( fi)]

]
li , (3.21)

where Ki is a Bernoulli random variable with parameter q ·
[
tPo( fo− f ′o)

]
·
[
1−Pi( fi)

]
; this is the

probability that a loss incident happens to customer i and it can be attributed to the third party
successfully. Here we have assumed that whenever losses can be attributed to the SP, the customer’s
insurer (also referred to as the primary insurer) is fully reimbursed. However, our result in Theorem
3.2 remains valid for partial or fractional compensation as well.

Next, we compare the insurer’s profit from underwriting only the SP’s customers (with the pos-
sibility of recovering losses from the SP’s insurer) (Portfolio C), with its profit from underwriting
both the SP and its customers (Portfolio B).
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We denote the insurer’s profit from underwriting only the SP’s customers as Umax =∑n
i=1 U i( f?o ), where f?o = argmax f ′o Uo( f ′o), and denote the insurer’s profit from underwriting both

the SP and its customers as Vmax from Eqn. (3.8), where the maximum is attained at f ∗∗o .

Theorem 3.2 At the right level of incentive for the SP, the insurer enjoys greater profit by insuring

both the SP and its customers (Portfolio B), rather than just the SP’s customers (Portfolio C). That

is, Vmax ≥ Umax, where Vmax = Uo( f ∗∗o ) +
∑n

i=1 U i( f ∗∗o ), and Umax =
∑n

i=1 U i( f?o ). Moreover, given

that Po( fo − f ′o) is decreasing and convex in f ′o, we have f?o ≤ f ∗∗o , which implies that the state of

security improves for both the SP and its customers when the insurer underwrites both.

The first part of the above result is rather trivial: if the primary insurer is compensated by the
third-party insurer, it must therefore be profitable to underwrite the SP (otherwise the SP would
not be able to obtain a policy in the first place). Thus the insurer of the SP’s customers can only
gain by insuring the SP itself.

The second part of the result is more interesting and less straightforward. The intuition is
that when the insurer underwrites both the SP and its customers (Portfolio B), it is in its best
interest to provide stronger incentive to the SP in an attempt to reap the multiplicative effect of risk
reduction of the SP on its customers, i.e., the positive externality. In summary, by embracing the
risk dependency, the insurer not only gains but also contributes to social welfare.

As in the case of Theorem 3.1, the result of Theorem 3.2 remains valid even when the SP’s
assessment is noisy, by following the same argument.

3.3.7 Summary of the findings

The findings suggested by the analysis shown in this section are summarized as follows.

• Given the choice between insuring just the SP (Portfolio A), or the SP and all its customers
(Portfolio B), an insurance carrier should choose Portfolio B. The reason is that the insurer
can incentivize the SP to improve its security posture in exchange for discounted premium.
While this reduces the insurer’s revenue from the SP, it improves the security posture of the
SP and its customers, leading to fewer claims from business interruptions. Collectively this
leads to lower overall risk, higher profits for the insurer.

• Given the choice between insuring both the SP and its customers (Portfolio B), or just the
SP’s customers (Portfolio C) and attributing losses to the SP, an insurance carrier should
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choose Portfolio B. This is because with Portfolio C the insurer is unable to effectively
induce the SP to improve its security posture, which negatively affects all of the provider’s
customers.

• If an insurer chooses to underwrite only the SP’s customers (Portfolio C), it should incor-
porate the risk condition of the SP into the service provider’s customers’ premiums. By
contrast, current practice often ignores the security posture of the SP (or any third parties)
when pricing the customer’s policy.

Next, we use data from an actual cyber-insurance policy, as well as insurance claims data
provided in [18], to calibrate and substantiate our analysis through numerical examples.

3.4 Numerical examples

In this section we examine closely a number of numerical examples that put the preceding analyt-
ical results into context. To do so, we will need to substantiate two elements of our model: the
relationship between the security modifying factor, i.e., the function P( f ), and the loss distribution
governing L. We will also use base premium and retention values found in Section 3.2.

3.4.1 Examples of the loss probability function

We present three examples of Po( fo− f ′o) as a function of f ′o while fixing fo = 1.2 and bo = 52000;
these are illustrated in Figure 3.2 and used later in this section to perform numerical analysis.

Po( fo− f ′o) =
0.05

bo(1.2−( fo− f ′o))
1000 + 1

(3.22)

Po( fo− f ′o) =
0.05

(1 + exp(bo·(1.2−( fo− f ′o))
1000 −20))

(3.23)

Po( fo− f ′o) =
5

1000
+ 0.05 · exp(−

bo · (1.2− ( fo− f ′o))
1000

) (3.24)

The choice of these functions are somewhat arbitrary: the main intent is to capture a few
families of decreasing functions with subtle yet significant differences as explained below, while
noting that our conclusion and results hold more generally. More specifically:
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Figure 3.2: Po(1.2− f ′o), the probability of a loss event to the SP

• The loss given in Eqn (3.22) (the blue curve) is simply a decreasing, convex function which
indicates that initial effort in risk reduction results in larger marginal benefits in loss reduc-
tion, but that the loss probability will continue to decrease at a diminishing rate. This would
apply to a typical firm whose initial investment (say in firewall) is very effective, after which
more expensive products (e.g., intrusion detection) continue to reduce risk but at a decreasing
rate.

• The loss in Eqn (3.23) (the red curve) suggests the initial effort has to be significant enough
(exceeding a threshold) to have any appreciable effect on loss reduction. Equivalently, this
may be viewed as modeling a type of firm that only respond to incentives when they are
substantial or when they reach a tipping point. Beyond this, the curve similarly exhibits
diminishing returns. Note that this loss function is not convex but we show in the appendix
the result of theorem 3.1 holds in this case as well.

• Finally, the loss in Eqn (3.24) (the yellow curve) illustrates a scenario where the reduction
in loss initially behaves similarly to the first case, but reaches a maximum at a point beyond
which no amount of effort can further reduce. This is captures the situation where external
factors beyond the insured’s control is at significant play, contributing to a non-zero “floor”
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in the probability of a loss event. This could apply to the case where there is persistent
susceptibility to social engineering that no amount of investment or training can completely
remove; or, where the firm is simply not able to address all security challenges.

It should be noted that the above examples serve to illustrate the different ways loss probabil-
ities may change as incentives/security investments increase. The actual values used may or may
not accurately reflect reality. For instance, in reality the scale of the loss probability could be orders
of magnitude larger (0.1 instead of 0.01) or smaller (0.001 instead of 0.1). Unfortunately there is
no publicly available data that would allow us to calibrate. As already mentioned, it is unclear how
these factor values were derived by an underwriter in the first place.

3.4.2 Examples of the loss distribution

We will use data reported in the cyber-insurance claims study by NetDiligence [18] to obtain
breach loss distributions, summarized in Table 3.5. The “Mid Revenue” range contains somewhat
unexpected small median and mean values. This appears to be an anomaly: since the sample sizes
(number of cases) are small, an oversized or undersized breach can significantly throw off the
average.

Cases Median ($) Mean ($)
Nano Revenue (¡ $50M) 52 49,000 215,297

Micro Revenue ($50M - $300M ) 31 88,154 487,411
Small Revenue ($300M - $2B) 15 118,671 599,907

Mid Revenue ($2B - $10B) 9 91,457 173,851
Large-Revenue ($10B - $100B) 8 3,326,313 5,965,571

Table 3.5: Cost of data breach between 2016-17 organized based on the breached firm’s revenue

3.4.3 Example 1: a service provider and a customer with large revenue

In this example, we consider a SP and a single customer, both of large revenue (e.g., a major web
hosting provider and a large corporate customer). Using the rate schedule provided in Section 3.2,
we will set the base premium and base retention for the SP and its customer to be bo = b1 = $52,000
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and do = d1 = $250,000, respectively. We consider the following loss function for the customer:
P1( f1) = 0.05

b1·(1.2− f1)
1000 +1

. Moreover, factor f1 is uniformly distributed over [0.6,1.2] with E( f1) = 0.9

and as mentioned this depends on the outcome of its information security questionnaire.
Using the NetDiligence data, we will assume that both Lo and L1 are log-normally distributed

with a mean of $5,965,571 and median $3,326,313. Moreover, as mentioned earlier NetDiligence
reports that 13% of data breaches can be attributed to a third party; we will accordingly set q = 0.13.
We will assume that the SP was assessed with fo = 1.2.

We will first consider Po( fo− f ′o) = 0.05
52000·(1.2−( fo− f ′o))

1000 +1
, with results shown in Figure 3.3.

Figure 3.3a plots the optimal incentive factor in different portfolios as a function of the depen-
dency factor t:

Portfolio A: f ∗o = argmax
f ′o

Vo( f ′o),

Portfolio B: f ∗∗o = argmax
f ′o

Vtotal( f ′o),

Portfolio C: f?o = argmax
f ′o

Uo( f ′o) .

Figure 3.3b illustrates the probability of a loss event to the SP and its customers at optimal incentive
factor ( f ∗o , f ∗∗o , f?o ) as a function of dependency t.

These figures imply that, if the insurer underwrites only the SP (Portfolio A, blue line), t does
not factor into the policy decision and thus the insurer will not offer any incentive to the SP. On
the other hand, if the insurer underwrites both, then offering incentive to the SP is now in its
interest, and the incentives increases as t increases (Portfolio B, orange line). Finally, if an insurer
underwrites only the SP and pays the third-party compensation for its customer’s loss (yellow
line), the incentive factor is also increasing as a function of t but it increases slower than f ∗∗o .
Figure 3.3c shows how much can be gained by taking risk dependency into account, and the higher
the dependency the more the insurer gains by jointly designing contracts for both the SP and its
customer.

The case Po( fo− f ′o) = 0.05

(1+exp( bo(1.2−( fo− f ′o))
1000 −20))

and Po( fo− f ′o) = 5
1000 + 0.05exp(−bo(1.2−( fo− f ′o))

1000 )

are shown in Figure 3.4 and 3.5, respectively. We see the similar result as figure 3.3 in these figures
as well.
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(c) Profit gain as a function of t

Figure 3.3: Optimal incentive factor and probability of a loss incident and profit gain under loss
model (3.22).
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(c) Profit gain as function of t

Figure 3.4: Optimal incentive factor and probability of a loss incident and profit gain under loss
model (3.23)
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(c) Profit gain as function of t

Figure 3.5: Optimal incentive factor and probability of a loss incident and profit gain under loss
model (3.24).
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3.4.4 Example 2: an SP and multiple customers with smaller revenue

In this example, we consider an SP and n customers with relatively small revenue and study the
impact of n on the optimal policy and insurer’s utility. Using the rate schedule provided in 3.2,
we will set the base rate and retention for the customers at bi = $5,000, di = $25,000, i = 1, . . . ,n.
The factors fi, i = 1, . . . ,n are drawn uniformly from [0.6 , 1.2]. Using Table 3.5, the loss random
variable Li, i = 1, . . . ,n has a mean and median of $599,907 and $118,671, respectively. Similar
as in the previous example, the mean and median of loss Lo are set at $5,965,571 and $3,326,313,
respectively. We again assume that Li follows a log-normal distribution. In addition, we set fo =

1.2, t = 0.5, and q = 0.13. Compared to the previous example, in this example we shall examine the
effect of the number of customers (n) on the optimal policy. Moreover, we consider the following
loss function for customer i: Pi( fi) = 0.05

5000(1.2− fi)
1000 +1

. The results are shown in Figure 3.6.

Figure 3.6a illustrates the optimal incentive factors f ∗o , f ∗∗o , f?o as a function of n. This plot
implies that as the number of customers increases, the SP’s insurer would incentivize the SP more
in both portfolio B and C. The reasons behind this is obvious: as the risk spillover impacts more
customers, the more the SP can reduce its risk, the greater the benefit to the SP’s insurer (e.g.,
fewer business interruptions). Specifically, given that a breach occurred to the SP, the probability
of no upstream business interruption is given by 1− (1− t)n, which an increasing function of n.
Thus it is in the insurer’s interest to reduce the likelihood of loss on the part of the SP. As a result,
both f ∗∗o and f?o are increasing in n, while f ∗o is independent of n as it maximizes only Vo without
considering dependency. Figure 3.6b implies that if the insurer does not gain by underwriting the
customers and attributing all or a part of the loss to the SP as compared to the profit by underwriting
all of them; we see in some cases the third party’s insurer has negative expected profit, in which
case a policy is not viable. Figures 3.7 and 3.8 shows similar results for the other two loss functions
Po( fo− f ′o) = 0.05

(1+exp( bo(1.2−( fo− f ′o))
1000 −20))

and Po( fo− f ′o) = 5
1000 + 0.05 · exp(−bo·(1.2−( fo− f ′o))

1000 ).

We now comment on Figures 3.6c, 3.7c, and 3.8c, which illustrate the insurer’s payout distri-
bution when the SP has n = 10 customers. All three show that portfolios B and C are faced with the
same payout distributions regardless of the loss model being used. This is in contrast to the earlier
comparison when there is only a single customer. This is because more customers leads the insurer
to increase its incentive for the SP in order to lower its risk and its customers’ risk; this is absent
under portfolio C. As a result of this, the two portfolios actually experience the same amount of
risk in payout; so again in this case portfolio B is uniformly better than C.
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(b) Insurer’s profit as function of n. The insurer does
not gain by underwriting the SP’s customers and at-
tributing the loss to the SP.
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Figure 3.6: Optimal incentive factor and insurer’s profit and pdf of the coverage paid by insurer
under loss model (3.22)
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(b) Insurer’s profit as function of n. The insurer does
not gain by underwriting the SP’s customers and at-
tributing the loss to the SP.
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Figure 3.7: Optimal incentive factor and insurer’s profit and pdf of the coverage paid by insurer
under loss model (3.23)
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(b) Insurer’s profit as function of n. The insurer does
not gain by underwriting the SP’s customers and at-
tributing the loss to the SP.
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Figure 3.8: Optimal incentive factor and insurer’s profit and pdf of the coverage paid by insurer
under loss model (3.24)
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3.5 Discussion

We now discuss further three aspects of the model studied in this chapter.

3.5.1 Is the premium discount sufficient?

Consider a non-financial technology service provider firm with annual revenue between $5M and
$10M. In this case, the base premium bo = $7,500. We will assume the firm is assessed with
fo = 1.2. Now assume that the insurer sets the incentive factor f ′o to be 0.35. Therefore, the firm
pays bo · ( fo − f ′o) = $6375 as the premium, after receiving bo · f ′o = $2625 in discount. Using
salary surveys such as [2], consider an IT security personnel with a bachelor’s degree, 5 years of
experience, and commands annual salary W = $85K for N = 50 working weeks. The premium
discount the firm receives can be translated into a fraction of this person’s compensation:

bo · f ′o
W
×N =

$2625
$85000

×50 = 1.5 weeks. (3.25)

Therefore, the incentive provided by the underwriter is just enough to hire an experienced person
for 10 days. It is debatable whether this amount of investment in security is adequate to reduce
the firm’s cyber risk (by 10−9 according to Model (3.23), or by 0.05 according to Model (3.24),
by setting bo = $7,500 in each, respectively). A potential mismatch between what this analysis
suggests and reality may be attributed to two factors. Firstly, as already mentioned, the loss values
shown in Fig 3.2 could be orders of magnitude different from reality; in other words, if the risk
reduction is from a breach probability of 0.1% to 0.07%, then perhaps 10 days’ worth of work (say
in deploying software patches) is sufficient. Secondly, it may also be argued that the current level
of base premium is inconsistent with the underlying cyber risk (and what it takes to reduce the
risk) to begin with.

3.5.2 Social welfare

Our study so far has focused on whether it is in the interest of an underwriter to insure risk-
dependent insureds, and if so how best to do so. We now turn to the issue of social welfare, i.e.,
whether by embracing risk dependency the underwriter can also help improve the total utility. We
have shown that underwriting both SP and its customers and giving SP more discount on premium

71



improves the insurer profit and decreases the probability of data breach. As a consequence of the
latter, the utility of the insureds improves; thus underwriting both SP and its customers improves
the social welfare (total utility) in general.

Let Co( f ′o) and Ci( f ′o) be the total expected cost paid by the SP and its customer, respectively.
We have,

Co( f ′o) = bo · fo︸︷︷︸
Premium

+ E{Do} ·Po( fo− f ′o)︸ ︷︷ ︸
Expcted uncovered loss

Ci( f ′o) = bi · fi︸︷︷︸
premium

+ E{Di} ·Pli( fo− f ′o)︸ ︷︷ ︸
Expected uncovered loss

, (3.26)

where Di =

 Li if Li ≤ di

di o.w
is the amount of deductible that insured i pays. Note that we do not

consider discount bo · f ′o in the SP’s costs because this is assumed to be used toward its security
investment. We define social welfare SW( f ′o) to be the insurer’s profit less its costs:

SW( f ′o) = Vtotal( f ′o)−Co( f ′o)−
n∑

i=1

Ci( f ′o) (3.27)

Below we use an example similar to that provided in Section 3.4.3 to illustrate the impact of
insurance policy on social welfare.

Consider an SP and a single customer, and assume that both have a large annual revenue ($10B-
$100B), with a base rate bo = b1 = $52,000 and base retention do = d1 = $250,000. We assume
that fo = 1.2, f1 = 1 and Po( f ) = P1( f ) = 0.05

1+
bo(1.2− f )

1000
and t = 0.5. Based on Table 3.5, we assume

both Lo and L1 have log-normal distribution with mean $5,965,571 and median $3,326,313.
We now compare two cases. In the first case the insurer ignores the risk dependency and

attempts to separately maximize its profit from the SP and its customer, respectively. In the second
case the insurer jointly optimizes the two policies.

In the first case, the insurer obtains the discount to the SP as follows:

lo = l1 = E((Lo−do)+) = $5,715,600
Vo( f ′o) = bo · ( fo− f ′o)− loPo( fo− f ′o)⇒ f ∗o = 0.3057

(3.28)

The insurer’s profit and the insureds’ costs are as follows:
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• Insurer’s total expected revenue:

Vtotal( f ∗o ) = bo · ( fo− f ∗o )− loPo( fo− f ∗o ) + b1 · f1−Pl1( fo− f ∗o )l1

= 52000∗ (1.2−0.3057)−5715600∗0.003 + 52000−5715600∗0.0059 = $47,635

• SP’s expected cost:

Co( f ∗o ) = bo · f ∗o + E{Do}Po( fo− f ∗o ) = +52000×1.2 + 28753×0.003 = $62,486

• SP’s customer’s expected cost:

C1( f ∗o ) = b1 · f1 + E{D1} ·Pl1( fo− f ∗o ) = 52000×1 + 28753×0.0059 = $52,170

• Total utility /Social Welfare (revenue less cost):

SW( f ∗o ) = Vtotal( f ∗o )−Co( f ∗o )−C1( f ∗o ) = $47,635−$62,486−$52,170 = −$67021

In the second case the insurer jointly maximizes the profit from the SP and its customer. It
obtains the optimal incentive factor as follows:

V total( f ′o) = bo · ( fo− f ′o)− loPo( fo− f ′o) + b1 · f1−Pl1( fo− f ′o)l1⇒ f ∗∗o = 0.3785

The insurer’s profit and the insureds’ costs are given by:

• Insurer total expected revenue:

• Insurer’s total expected revenue:

Vtotal( f ∗∗o ) = bo · ( fo− f ∗∗o )− loPo( fo− f ∗∗o ) + b1 · f1−Pl1( fo− f ∗∗o )l1

= 52000∗ (1.2−0.3785)−5715600∗0.0024 + 52000−5715600∗0.0056 = $48,993

• SP’s expected cost:

Co( f ∗∗o ) = bo · f ∗∗o + E{Do}Po( fo− f ∗∗o ) = 52000×1.2 + 28753×0.0024 = $62,469
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• SP’s customer expected cost:

C1( f ∗∗o ) = b1 · f1 + E{D1} ·Pl1( fo− f ∗∗o ) = 52000×1 + 28753×0.0056 = $52,161

• Total utility/Social Welfare (revenue less cost):

SW( f ∗∗o ) = Vtotal( f ∗∗o )−Co( f ∗∗o )−C1( f ∗∗o ) = $48,993−$62469−$52161 = −$65,637

We see that the total utility or social welfare is higher in the second case, when the insurer
takes risk dependency into account and jointly optimizes the two policies. It is interesting to note
that the values used in this example lead to negative social welfare, i.e., the total cost born by the
insureds exceeds the total profit made by the insurer. The negative total utility is a reflection of the
damage inflicted by attackers behind data breaches.

3.5.3 Modeling third party liability

We have assumed that the probability that the insurer can attribute a part of the loss to the third
party is a constant (q) and is independent of Po and Pi and t. An alternative model is to find
probability q using Po,Pi and t. Let qi be the probability that the insurer of insured i can attribute
a part of the loss to its third party. Moreover, define events Ai and Bi as follows:

• Ai: a business interruption occurs to insured i due to a data breach/loss incident on the SP’s
side.

• Bi: a loss incident occurs to insured i.

We then have:

Pr{Ai∩Bi} = Po( fo− f ′o) · (1−Pi( fi))
P{Bi} = Pli( fo− f ′o, fi) = Pi( fi) + t ·Po( fo− f ′o)− t ·Po( fo− f ′o) ·Pi( fi)

qi = Pr {Ai|Bi} =
Pr{Ai∩Bi}

Pr{Bi}
=

Po( fo− f ′o)·(1−Pi( fi))
Pi( fi)+t·Po( fo− f ′o)−t·Po( fo− f ′o)·Pi( fi)

(3.29)

The above equation implies the assumption that the insurer is always able to attribute the loss
of insured i to the SP if the latter is the cause of the loss. Under this assumption, Equations (3.19)
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and (3.20) can be written as follows:

U i( f ′o) = bi ·
fmin + fmax

2
−E[Pi( fi)] · li . (3.30)

Uo( f ′o) = bo · ( fo− f ′o)−Po( fo− f ′o) ·

lo + t ·
n∑

i=1

(1−E[Pi( fi)]) · li

 . (3.31)

These two equations are equivalent to Equation (3.19) and (3.20), respectively, by setting q = 1 in
(3.19) and (3.20). Therefore, all the theorems continue to hold for qi = Pr {Ai|Bi}.

Note that the third party liability t ·
∑n

i=1(1−E[Pi( fi)]) · li may be large, in which case bo would
also be large, for otherwise insuring SP alone is not profitable for the insurer. If insuring the SP
alone is not viable due to high third party liability, then neither portfolio A nor C is viable, and
portfolio B becomes the only choice.

3.5.4 Non-monopolistic insurer

Our study has assumed a monopolistic insurer. The modeling choice is aimed at focusing rather sin-
gularly on the issue of risk dependency without the interference of competition. Without monopoly
the insurer will have to consider giving up its profit, but it does not change the main message of
the study. Our analysis simply points to the fact that if the insurer recognizes the risk dependency
among the insureds, then with the right incentive it can extract more profit; without monopoly it
might have to give up all of this profit. Nonetheless, if there is competition, which often drives
profit down to zero depending on the model, it may not be in the interest of the insurer to recognize
this risk dependency or incentivize the SP. On the other hand, if one insurer is competing with
another who is ignorant of the risk dependency among its prospective clients, then the first insurer
now has an advantage in recognizing this and can effectively lower its cost of providing insurance
and be able to offer more competitive contracts (with lower premium, i.e., returning a share of the
profit to the insureds).

3.6 Conclusion

In this chapter, we applied a principal-agent modeling approach to understanding how an insurance
carrier can best manage its portfolio risk of cyber-insurance policies, given interdependent risks
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across its policy holders. We calibrate our model using a common base rate approach to pricing
premiums, and incorporate actual field data. We believe our results are significant because they
suggest an alternative and preferred decision strategy for the carrier.

First, we found that insuring interdependent agents (an SP and its customer, Portfolio B) can
lead to higher profit, compared with not insuring them simultaneously, the reason being that the
insurer can incentivize the SP to increase its security level by offering a discount on its premium.
When the SP provides more secure services for its customers, the chance of business interruption
for the customers decreases, and the insurer’s profit improves. In other words, receiving premiums
from all interdependent agents and paying less in coverage due to improved security drives the
profit opportunity not present when insuring interdependent agents.

In addition, we considered a scenario where the insurer underwrites only the SP’s customers
(Portfolio C) and is able to attribute a part of the loss to the SP and receive compensation from
SP’s insurer due to the third party liability. In this case, the insurer’s profit decreases compared
with the scenario of insuring both the SP and its customers (Portfolio B). The reason is that the
insurer loses the SP’s premium and the insurer cannot incentivize the SP to decrease the chance of
business interruption for SP’s customers. These results identify a countervailing factor against the
current practice which avoids insuring interdependent agents.

Finally, we validate our results and theorems by providing numerical examples using real data.
We showed the effect of interdependency (t) on the insurer’s decision. As the SP and its customers
become more interdependent, the insurer must incentivize the SP more in order to use the profit
opportunity.

In conclusion, we believe that these results will help insurers and reinsurers better understand
and manage systemic risk, while also demonstrating to policy makers how market-based insurance
can improve social welfare.

One future direction is to perform various sensitivity analyses of incentive decisions made by
an insurer, such as those derived in this chapter, against the actual costs of obtaining accurate in-
formation that enables the decisions, including the cost of performing security assessment/audit or
continued monitoring to ensure actions by an insured commensurate with the discount it received.
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CHAPTER 4

Effective Premium Discrimination with Rare Losses:
Periodic Pre-screening and Active Policy

4.1 Introduction

As we mentioned in section 1.2, there are three challenges for a cyber insurer to underwrite enti-
ties. Chapter 2 and Chapter 3 focused on the following two challenges: limited data and lack of
knowledge for risk assessment, and risk dependency. In this chapter, our goal is to focus on the
third challenge, i.e., the fast-changing nature of cyber risks. In this chapter, we assume that data
breach and loss incidents are rare for an agent but the amount of loss from a breach is extremely
large.1 Moreover, we assume that there is asymmetry in loss perception between the insurer and
insured. We then consider two types of risk assessment: pre-screening and post-screening. As we
mentioned before, pre-screening occurs before the agent purchases insurance and is done through
internet measurements and available data. Pre-screening gives the insurer an estimate of cyber risk
associated with the agent to determine the premium. On the other hand, post-screening implies that
the premium in each period depends on past policy periods, and any loss incident in the history of
the insured may increase the premium.

It is worth mentioning that rare cyber incidents are different from natural disasters that have
been studied in the literature [72, 81]; the latter are also rare incidents with high losses but differ
from a cyber incident in the following sense. The agents/insureds cannot prevent natural disasters
by exerting effort or their ability to mitigate damages can be limited. The authors in [72,81] do not

1This model is reasonably borne out by recent events such as the Equifax data breach, which affected 143 mil-
lion American consumers and incurred $68.6 billion in loss for the company [15]; most of these events have been
unprecedented in the respective victim’s company history.
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consider the agent’s effort in their models as it does not affect the probability of natural disaster
occurrence. On the other hand, an agent can actively and proactively work toward decreasing his
chance of being attacked or an attack being successful by investing in security and addressing the
vulnerability.

In previous chapters, we showed that pre-screening is an effective method to mitigate moral
hazard in cyber insurance market. It has been shown that post-screening also can be effective
in general: since an agent faces (potentially significantly) higher payments in the future, there
is an incentive for the agent to act responsibly (exert high effort) in the present time to avoid
a loss event, see, e.g., Rubinstein et. al [74]. The analysis in this study shows, however, that
the conclusion becomes more nuanced when loss events are rare, and there is asymmetry in loss
perception between the insurer and insured. Specifically, we show that only pre-screening can be
effective in such a scenario. We further propose an active policy using periodic pre-screening to
overcome the ever-changing nature of cyber risks and prevent the insureds from lowering their
effort in the middle of the policy period after the first pre-screening is done.

4.1.1 Main findings

Our main finding in this chapter is that post-screening (which involves at least two contract periods)
is not effective at all with rare loss incidents. On the other hand, pre-screening can be an effective
method if the agent perceives loss incidents as rarer than the insurer does; in this case sufficiently

accurate pre-screening can be effective and improves the state of security as well as the insurer’s
profit as compared to not using premium discrimination.

Moreover, we propose active policies to prevent the insureds from lowering their efforts in the
middle of the policy period after pre-screening. We show that pre-screening has to be performed
more often in the policy period, and premium should be adjusted after each screening, i.e., the
insurance contract should be an active policy with contingencies based on periodic screening.

4.1.2 Chapter organization

The organization of this chapter is as follows. Section 4.2 provides an overview of dynamic con-
tract literature. In Section 4.3 we introduce the model and the contract design problem. Section 4.4
summarizes prior results (but recast under our model) on designing cyber insurance policies when
incidents are not rare. In Section 4.5 we examine the effect of pre-screening and post-screening
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on both the state of security and the insurer’s profit with rare losses. Section 4.6 studies the active
policy using periodic pre-screening, and Section 4.7 discusses the impact of risk dependency on
our results. Section 4.8 presents numerical results and Section 4.9 concludes the chapter.

4.2 Related work

Dynamic contract as a form of multi-period contract has been studied in the literature [5–7,33,69,
71]. Baron and Besanko [5] study a two-period contract design problem where a regulator specifies
quantities of the product based on the reported marginal production cost by the firm. The authors
show that if the marginal cost in the second period is independent of the first-period marginal cost,
then the two-period contract design problem is equivalent to a single-period problem. This work
is extended by [7] and [6] to a scenario with an infinite time horizon and an agent whose type is
a Markov process. Dynamic insurance contract is studied in [33, 69]. Janssen and Karamychev
[33] consider a multi-period insurance contract (dynamic contract), and show that if the contract
parameters at each time step depend on the past performance of the insured, then the insurance
improves social welfare. Similarly, Palfrey and Spatt [69] consider repeated insurance contracts
and show that long-term repeated contracting solves the under-investment issue associated with
moral hazard.

This chapter also considers dynamic insurance contract in the form of multi-period insurance
(i.e., premium discrimination using post-screening) and demonstrates that it can be effective in
mitigating moral hazard, but this fails if loss incidents are rare. On the other hand, we show that
single-period contract using pre-screening is able to mitigate moral hazard even if loss incidents
are rare. Furthermore, we propose an active contract using repeated screening during a single
contract period to prevent the insured from lowering his effort over the contract period. In this
sense, the proposed active contract is different from the concept of dynamic contracts studied in
the literature (cited above) as the latter only applies to multi-period contracts.

4.3 Model

We consider the cyber insurance design, a principal-agent problem, between a profit-maximizing,
risk-neutral insurer/principal and a risk-averse insured/agent. The agent exerts effort e toward
securing himself, incurring linear cost c · e.
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Let p(e) denote the probability of a loss incident, assumed to be strictly decreasing and strictly
convex. Decreasing and convexity imply that the initial effort toward security leads to a consider-
able reduction in probability of a loss incident, and strict convexity implies that the probability of a
loss cannot be zero even if the agent exerts high effort [34], i.e., it is impossible to achieve perfect
protection in reality. Specifically, we assume that probability of a loss incident has the following
form,2

p(e) = t · exp{−α · e}, (4.1)

where t is the nominal probability of a successful attack to the agent if he exerts zero effort (e = 0)
and α is a constant. Larger α implies that investment in security is more effective and p(.) converges
to zero faster. Note that t and α both are constants and cannot be modified by the agent or the
insurer.

When a loss occurs, the agent suffers the amount of loss l, also a constant. This is obviously a
simplification; however, our qualitative conclusions remain the same for a random loss given by a
known distribution. The expected utility of the agent without any insurance contract is given by:

U(e) = p(e) f (−l− ce) + (1− p(e)) f (−ce), (4.2)

where f (.) is a concave function that captures the agent’s risk aversion. To make the analysis
concrete, we will further assume f (.) is an exponential function with constant absolute risk aversion
γ:

f (y) = 1− exp{−γ · y} , (4.3)

where γ is referred to as the agent’s risk attitude; the higher the risk attitude the more risk averse
the agent.

4.3.1 Agent’s effort & utility without insurance

Without insurance, the agent exerts an effort level eo to maximize his utility:

eo = argmax
e≥0

U(e) . (4.4)

2 p(e) can be written as t · (exp{−α})e which is a function consistent with the exponential probability function
introduced in [20].
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By the first order condition, it is easy to see that if γc ≥ α, then eo = 0. If α > γc, then eo is given
by,

U(e) = 1− t · exp{γ · l} · exp{(γc−α) · e}− exp{γce}+ t exp{(γc−α)e}
dU(e)

de
= exp{γce}

(
−γc + t · (α−γc) · exp{−α · e} · (exp{γl}−1)

)
=⇒

eo =

 0 if γc ≥ α

( 1
α ln t · (α−γc)(exp{γl}−1)

γc )+ if γc < α
(4.5)

where (a)+ = max{0,a}. As a result, the maximum utility of the agent outside the contract is given
by,

uo = U(eo) =

 1− α
α−γc (t · α−γc

γc (exp{γl}−1))
γc
α if eo > 0

t · (1− exp{γl}) if eo = 0 .
(4.6)

4.3.2 Contract design

We will assume that in the event of a loss, a contract covers the full amount l. This is again
a simplification but it allows us to get to the essence of our analysis in a more straightforward
manner without affecting the main qualitative conclusions. Because a loss is covered in full, the
agent will exert zero effort after entering an insurance contract. Thus the insurer will have to use
premium discrimination to incentivize the insured to exert a higher effort in exchange for lower
premium. We next describe in detail the resulting contract design problem under two different
methods of premium discrimination: post-screening and pre-screening.

4.3.2.1 Post-screening

In this case the contract design problem is framed in a two-period setting where the insurer is able
to assess premium in the second period based on what happens in the first period. Such a contract
is given by three parameters (π1,π2,π3): π1 is the first-period premium; in the second period, the
agent pays premium π2 if a loss happened (and was covered in full) during the first period and pays
π3 otherwise. Obviously π3 ≤ π2.

In this case, the agent may exert non-zero effort in the first period to decrease the chance of
a loss in order to reduce the likelihood of paying a higher premium in the second period. In the
second period, on the other hand, the agent will always exert zero effort as the loss is fully covered
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and he faces no more future punishment.3

We assume that when an agent enters such a contract he commits to both periods. The agent’s
utility inside a contract (π1,π2,π3) with post-screening is thus the summation of his utility in each
period:

U in(e,π1,π2,π3) = f (−π1− ce) + p(e) f (−π2) + (1− p(e)) f (−π3), (4.7)

where e is the effort in the first period.
The insurer’s problem is to maximize her profit subject to the Individual Rationality (IR) con-

straint and Incentive Compatibility (IC) constraint:

V = max
{π1,π2,π3,e}

π1− p(e)l + p(e)(π2− p(0)l) + (1− p(e))(π3− p(0)l)

s.t. (IR) U in(e,π1,π2,π3) ≥ 2 ·uo

(IC) e ∈ argmax
e′≥0

U in(e,π1,π2,π3). (4.8)

The (IR) constraint ensures that the agent enters the contract only if he gets no lower utility
than his outside option. Note that since the contract covers two periods, the comparison here is
between his utility inside the contract over two periods and outside the contracts over two periods.
The (IC) constraint suggests that the agent acts in self-interest: his effort level in the first period
maximizes his utility given the policy parameters.

Under the contract (π1,π2,π3), by the first order condition, the agent’s optimal effort ein in the
first period is given by:

ein(π1,π2,π3) =


(

1
α+γc ln(t · αγc

exp{γπ2}−exp{γπ3}
exp{γπ1}

)
)+

if π2 > π3

0 if π2 ≤ π3
. (4.9)

For notational convenience, we use ein instead of ein(π1,π2,π3), while noting the dependency. We
have the following lemma on the (IR) constraint.

Lemma 4.1 The (IR) constraint in the optimization problem (4.8) is binding.

3Our analysis can be extended to a multi-period/infinite-time horizon setting where the premium of each period
depends on the agent’s history of losses, i.e., the agent’s third-period premium depends on his loss events in the first
and second periods and so on.
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The above lemma implies that at the optimal solution, the agent is indifferent between entering
v.s. not entering the contract, as expected.

4.3.2.2 Pre-screening

We now turn to the case of pre-screening. We assume the insurer can conduct a risk assessment
prior to determining the contract terms; the determination mechanism is known to the agent so this
is again a game of perfect information. We assume the outcome of the pre-screening is given by
an assessment S = e + N, where N is a zero-mean Gaussian noise with variance σ2.4 There are
various ways to achieve pre-screening in practice, using surveys, penetration tests, or advanced
Internet measurement techniques, see e.g., [56].

The interaction between the agent and the insurer happens in the following order. The insurer
offers the agent a contract given by two parameters (π,β), where π is the base premium and β is
the assessment-dependent discount factor. After announcing contract parameters (π,β), the agent
chooses effort level e, and then the insurer performs an initial security audit and observes pre-
screening outcome S . Based on the result of pre-screening, the insurer pays π−βS in exchange for
full coverage in the event of a loss. The agent’s total cost inside the contract (π,β) while exerting
effort e is:

Xin = π−β ·S + c · e . (4.10)

As Xin follows a Gaussian distribution, using the moment-generating function the agent’s expected

utility under the contract is given by:

U in(π,β,e) = E( f (−Xin)) = 1− exp{γπ+γ(c−β)e +
γ2β2σ2

2 }. (4.11)

Therefore, the insurer’s design problem using pre-screening is as follows:

max
π,β,e

E{π−βS }− p(e) · l

s.t. (IR) U in(π,β,e) ≥ uo,

(IC) e ∈ argmax
e′≥0

U in(π,β,e′) (4.12)

4The analysis can be extended to other noise distributions.
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Similar as in Lemma 4.1, we can show that the (IR) constraint is binding in this case. Thus we
have the following relation between optimal contract parameters (wo = 1

γ ln(1−uo)):

π = wo +βe− ce−
γβ2σ2

2
. (4.13)

Using (4.13), the insurer’s problem can be simplified as follows:

V(σ) = max
β,e

wo− ce−
γβ2σ2

2
− p(e)l

s.t. (IC) e ∈ argmin
e′≥0

(c−β)e′+
γβ2σ2

2
, (4.14)

We next summarize (known) results on these two types of premium discrimination in terms of
their effectiveness in incentivizing efforts.

4.4 State of security and optimal contract when losses are not
rare

Post-screening: Post-screening has been studied in the literature. Rubinstein et.al. in [74] showed
that post-screening can improve the agent’s effort inside the contract compared to the one-period
contract without post-screening.

This can be similarly observed in our model. In particular, in Theorem 4.1 below we introduce
a sufficient condition under which the agent exerts non-zero effort in the first period of a contract
with post-screening. In Section 4.8, we also provide an example where the agent inside a contract
with post-screening exerts higher effort as compared to the no-insurance scenario.

Theorem 4.1 Let (π̂1, π̂2, π̂3, ê) be the solution of the optimization problem (4.8). Suppose that

t = 1 and
[ (α−γc)(exp{γl}−1)

γc

]
> 1, then ê > 0.

Theorem 4.1 suggests that post-screening can be an effective mechanism to incentivize non-
zero effort. Note that the condition

[ (α−γc)(exp{γl}−1)
γc

]
> 1 in theorem 4.1 can be satisfied if loss l is

sufficiently large.
Pre-screening: Chapter 2 shows that pre-screening can simultaneously incentivize the agent to
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exert non-zero effort and improve the insurer’s utility. This is characterized for the present model
in the following theorem.

Theorem 4.2 Pre-screening incentivizes non-zero effort if and only if

c
α · t · l

< 1 (4.15)

σ2 ≤
− c
α −

c
α ln c

α·t·l + t · l

0.5 · c2γ
. (4.16)

Theorem 4.2 suggests pre-screening is effective if and only if it is sufficiently accurate (Eqn (4.16))
and the expected loss t · l is sufficiently large (Eqn (4.15)). Further, the next theorem identifies the
relation between insurer’s profit and pre-screening accuracy.

Theorem 4.3 Let V(σ) be the insurer’s maximum utility. That is,

V(σ) = max
β,e

wo− ce−
γβ2σ2

2
− p(e)l s.t. IC constraint (4.17)

Then, V(σ) is decreasing in σ.

4.5 State of security and optimal contract when losses are rare

We next consider the case when loss events are rare, by assuming its likelihood diminishes (i.e.,
t→ 0) but that the loss amount is high in such an event (i.e., l→∞)5. This model is motivated by
recent data breaches that result in extremely high losses and damages but remain relatively rare for
a single organization as mentioned earlier.

Furthermore, we would like to explicitly capture a common asymmetry in perception between
the insurer and the agent, i.e., the latter tends to think of loss as rarer than the former does. Specif-
ically, let ta and tp denote the nominal attack probability from the agent and the insurer’s per-
spective, respectively. By our assumption, both ta and tp go to zero and l goes to infinity. For
tractability, we adopt the following assumptions on ta and tp and l,

lim{ta→0,l→∞} ta · exp{γl} = exp{γla}

lim{tp→0,l→∞} tp · l = lp,
(4.18)

5By assuming that t goes to zero, the entire probability of a loss incident (i.e., p(e) = t exp(α(e)) goes to zero.
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where la and lp are the perceived expected loss from the agent and the insurer’s perspective when
the agent exerts zero effort, respectively.6 It is worth noting that Eqn (4.18) implies that the ex-
pected loss is always limited. Otherwise the cyber insurance market may not exist. Moreover,
(4.18) implies that ta =

exp{γla}
exp{γl} goes to zero exponentially while tp =

lp
l goes to zero slower than

ta as l goes to infinity, i.e, ta > tp as l→∞. Therefore, the agent thinks the loss is rarer than the
insurer does.

4.5.1 Post-screening

With the above rare loss assumptions, we have the following theorem on post-screening.

Theorem 4.4 Using post-screening and given t→ 0,

1. the agent always exerts zero effort inside the contract, and

2. at the optimal contract we have,

π1 = π3 =
1
γ

ln
[
1−uo] , π2 ∈R+

.

Theorem 4.4 implies that premium discrimination in the second period based on the first period
is not at all effective and the insurer is not able to improve the agent’s effort or her utility by
post-screening as compared to a contract without premium discrimination.

4.5.2 Pre-screening

For pre-screening, it turns out perception asymmetry makes a difference. The following theorem
characterizes the optimal contract and introduces a sufficient condition under which pre-screening
can incentivize the agents to exert non-zero effort inside the optimal contract.

6If the agent exert effort e, then la exp{−α · e} and lp exp{−α · e} are the perceived expected loss from the agent and
the insurer’s perspective.
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Theorem 4.5 Pre-screening can incentivize non-zero effort under the rare loss model, if and only

if

c
αlp

< 1 (4.19)

σ2 ≤

− c
α −

c
α ln

[
c
α·lp

]
+ lp

0.5 · c2γ
. (4.20)

Note that conditions in Theorem 4.2 reduce to those in Theorem 4.5 if we substitute tl with lp

in (4.15) and (4.16). Theorem 4.5 implies that pre-screening incentivizes effort if and only if the
pre-screening is sufficiently accurate and insurer’s perceived loss lp is sufficiently large.

4.6 Contingencies on periodic pre-screening: active policy

So far we have assumed that the agent exerts a one-shot effort level, which applies to the entire
policy period. Under this assumption, pre-screening helps incentivize non-zero effort. In reality,
keeping risk at a certain level typically requires sustained effort throughout the period, and it is
conceivable that the insured may choose to lower his effort after the initial risk assessment (yet
another form of moral hazard). If so then our results on pre-screening suggests that it has to
be performed more often, whereby premium adjustment is made following each screening. This
effectively means that the initial contract is an active policy with built-in contingencies, and the
actual premium payable is realized over time dependent on the screening results. We illustrate this
idea using the following example with one additional, mid-term, screening.

Let’s assume that the agent exerts effort e before the first screening, resulting in assessment
outcome S = e+N as before, and then he lowers the effort to e′. Accordingly, let S ′ = e′+N′ be the
outcome of the second, mid-term screening, where N′ is a zero-mean Gaussian noise with variance
σ2. We assume that N, N′ are independent random variables. Below we show that the insurer is
able to incentivize the agent not to decrease the effort level through the second screening, i.e., to
ensure e′ = e. The interaction between the agent and the insurer under an active policy consists
of the following steps. First, the insurer offers the agent an active contract with three parameters
(π,β,β′), where β′ is a penalty factor, β a discount factor, and π the base premium. Then, the
agent chooses effort level e before the first pre-screening. The insurer then observes pre-screening
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outcome S and charges the agent π−βS . After the first pre-screening, the insured may choose to
lower his effort to e′. In the middle of the contact period, the insurer conducts another screening
and observes S ′, and charges the agent β′(S −S ′). Effectively, the insured pays π−β ·S +β′(S −S ′)
as the final premium, and the total cost of the agent is given by,

Xin = π−β ·S + ce +β′(S −S ′)−b(e− e′), (4.21)

where 0 ≤ b ≤ c and b is the benefit of lowering the effort, and β′(S − S ′) is the penalty that the
insured would pay after the second risk assessment.7

Similar to (4.11), the agent’s expected utility under contract (π,β,β′) is:

U in(π,β,e,β′,e′) = E( f (−Xin)) =

1− exp{γπ+γ(c−b +β′−β)e +γ(−β′+ b)e′+γ2σ2 (β−β′)2 + (β′)2

2
}.

(4.22)

The insurer’s problem can be written as follows:

R(σ) = max
{π,β,e,β′,e′}

[
E{π−βS +β′(S −S ′)}− p(e′)l

]
(4.23)

s.t. (IR) U in(π,β,e,β′,e′) ≥ uo

(IC) (e,e′) ∈ arg max
ẽ,ẽ′≥0

U in(π,β, ẽ,β′, ẽ′), e′ ≤ e

The following theorem shows that the second risk assessment is effective in preventing the
agent from lowering his effort.

Theorem 4.6 Let ê and ê′ be the agent’s effort level at the solution to (4.23), and e be the optimal

effort level in optimization problem (4.14). Then, we have ê = ê′, and the optimal contract param-

eters are β = c and β′ = b if ê > 0 otherwise they are β = β′ = 0. Moreover, if e > 0, then ê = e.

Lastly, we have V(σ) ≤ R(σ), where V(σ) is obtained from (4.14) by assuming there is only one

pre-screening and the agent does not lower his effort afterward, with equality achieved if b = c.

The last part of the theorem above suggests that performing the second screening helps the insurer
7Note that equation (4.21) is valid if e′ ≤ e. If e′ > e, then the total cost is given by Xin = π−β ·S +ce+β′(S −S ′)−

c · (e− e′). We do not consider the case where e′ > e, but similar to the proof of Theorem 4.6, we can show that e′ is
not larger than e in the optimal contract.
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to improve profit even when the agent may be assumed not to lower his effort. This is because sec-
ond pre-screening decreases the variance and uncertainty in agent’s utility. Therefore, a risk averse
agent is willing to pay more premium when the uncertainty and variance on his side decreases.

4.7 Discussion

So far we have assumed that the probability of a loss incident is solely determined by the effort
of the agent. On the other hand, risk dependency is a unique feature of cyber risks: the incident
probability for an agent may depend on the effort levels of other agents (the former’s vendors or
service providers, etc.). In Chapter 2, we considered a cyber insurance market in the presence of
risk dependency, and showed that the insurer can achieve higher profit as compared to a network
of independent agents; moreover, pre-screening in such a case increases the agents’ efforts as
compared to the no insurance scenario. If we introduce security dependency into our rare loss
model (i.e., the probability of a loss incident for agent i ∈ {1,2} depends on ei + xe−i where ei is the
effort of agent i and x is the interdependence factor), similar to the analysis of this chapter, it can be
shown that post-screening is not able to incentivize non-zero effort while pre-screening can. Table
4.1 summarizes the role of dependency and rare loss on the agents’ effort, where (∗) indicates the
associated result holds under certain conditions.

Pre-screening Post-screening
Rare Loss, dependent agents ein > eo (∗) ein = 0

Rare Loss, independent agents ein > eo (∗) ein = 0
Frequent loss, dependent agents ein > eo (∗) ein > eo (∗)

Frequent loss, independent agents eo ≥ ein ≥ 0 ein > eo (∗)

Table 4.1: Comparing agent’s effort inside (ein) and outside (eo) a contract

4.8 Numerical result

We show a number of numerical examples with the following parameters γ = c = 1, α = 1.5.
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Figure 4.1: Post-screening: agent’s effort v.s. loss (l)

4.8.1 Frequent losses: post-screening

Our first example shows when post-screening may be effective in incentivizing the agent to exert
higher effort as compared to the no-insurance scenario.

Consider a scenario where the nominal probability of attack t = 1. Figure 4.1 illustrates the
agent’s effort in the first period as a function of loss l. We note that post-screening can be an
effective mechanism to incentivize the agents to exert non-zero effort inside a contract with full
coverage. In this example, the agent exerts higher effort as compared to the no insurance scenario
when l ≤ 0.7. This is because since the loss is relatively low, even without insurance the agent is
not willing to exert substantial effort as the cost of effort is higher than the actual loss. Within
a contract, the insurer is able to incentivize the agent to exert higher effort by imposing a large
penalty (a much higher premium in the second period).

4.8.2 Rare losses: pre-screening

Our second example examines the effect of pre-screening on the agent’s effort. Consider a scenario
where ta, tp go to zero and l goes to infinity. Moreover, assume la = 5 and σ = 0.1. Figure 4.2
illustrates the agent’s effort inside and outside the insurance contract with pre-screening. We see
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Figure 4.2: Pre-screening: agent’s effort v.s. loss (lp)

that the agent exerts non-zero effort inside the insurance contract and the effort increases as lp

increases. Note that outside a contract the agent’s effort is a function of his perceived loss la and
does not change with lp. On the other hand, inside the contract, as the insurer’s perceived loss lp

increases, the insurer incentivizes the agent to increase his efforts using premium discrimination
(high premium for low pre-screening outcomes).

Figure 4.3 illustrates the insurer’s utility as a function of lp. This figure implies that the insurer’s
utility is negative for lp ≥ 85. Therefore, she does not insure the agent if lp ≥ 85. Also, as expected,
the insurer’s utility decreases as the perceived expected loss lp increases. The reason is that as the
perceived expected loss increases, the insurer expects to pay more coverage and make less profit.

4.9 Discussion and conclusion

We studied the problem of designing cyber-insurance contracts between a single profit-maximizing
insurer and two risk-averse agents. First, we showed that multi-period contract is an effective
method of premium discrimination if the loss incidents are not rare. Second, we studied cyber
insurance contracts in the presence of very rare loss incident which is the common feature of
the cybersecurity. In this case, we showed that multi-period contract is not effective to improve
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Figure 4.3: Insurer’s utility v.s. loss (lp)

the agent’s effort and the agent exerts zero effort inside a contract with full coverage. Then, we
proposed pre-screening which allows insurer to predict the agent’s state of security and premium
discriminates properly. We showed that premium discrimination by the use of pre-screening is an
effective method to improve agents’ efforts in the presence of rare loss incidents.

To continue this work, we are interested in generalizing our results, specially evaluating the
multi-period/infinite-time horizon contract (more than two periods).
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CHAPTER 5

Resource Pooling for Shared Fate: Incentivizing
Effort in Interdependent Security Games through

Cross-investments

5.1 Introduction

In Chapter 2 and Chapter 3, we studied interdependent cyber risks and showed how an insurer can
control risk dependency through cyber insurance contracts. In this chapter, we take a step back and
focus on the under-investment issue by considering other incentive mechanisms for risk-dependent
agents. Specifically, in a network of interdependent entities, the attempt toward improving the state
of security by an agent provides positive externality for other entities as the probability of attack
propagation from protected entities reduces significantly. Decision making in such a scenario has
often been modeled as an interdependent security (IDS) game [53]. The free-riding issue (i.e., the
under-investment) arises when an entity tries to take advantage of others’ efforts by under-investing
in security. As a result, the Nash equilibrium (NE) in IDS games is inefficient, and individuals’
investment in security is below the optimum [85].

To address the free-riding issue, various incentive mechanism has been proposed [24, 32, 62].
In particular, Naghizadeh and Liu [62] propose the Pivotal (VCG) and Externality mechanisms
(both are in the form of a taxation/subsidy mechanism) to induce socially optimal outcome in IDS
games. This type of mechanism design turns out to be more challenging than in other resource
allocation contexts because security is a non-excludable public good and individuals continue to
benefit from others’ effort even if they unilaterally opt out of the mechanism. Indeed, whether one
can find a taxation mechanism that can simultaneously achieve social optimality and satisfy both
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weak budget balance and voluntary participation constraints depends on the choice of the utility
function. They show that this is in general impossible for a strictly concave utility function. We
provide an example in Appendix D which shows that their result can be extended to the quadratic
utility model considered in this chapter.

In contrast to the existing literature, in this chapter we are interested in finding a mechanism
which improves social welfare and security investment without the existence of a social planner. In
order to do so, absent of such a central entity, we instead model the presence of resource pooling
(RP) by allowing agents to have the ability to both invest in themselves as well as in other agents,
so that they can choose to not only improve their own but also others’ state of security. This
modeling choice leads to a different IDS game, referred to as the RP-augmented IDS game, or
simply RP-IDS game. In addition, we will focus on a quadratic utility function, which has been
commonly used in the literature, see e.g., [12, 13, 16, 66, 68].

In practice, exerting efforts on other agents’ behalf has context dependent interpretations, such
as providing product/service discounts to customers by a service provider, as well as funding open
source development. Note that both IDS game and RP-IDS are non-cooperative games where
agents selfishly choose their action to maximize their own utility. Our model is different from the
existing literature considering a cooperative game [82–84] where the players form coalitions and
choose an action to maximize the utility of the coalition that they belong to. A cooperative game is
able to improve network security as compared to a non-cooperative scenario if the cost of forming
coalition is low enough, but forming coalition is not always possible due to cultural, economical,
or social reasons [75].

We study the IDS game with a weighted total effort and quadratic cost model under two sce-
narios: (i) no RP (the original IDS game), where each agent exerts effort only to improve his own
security; and (ii) with RP (RP-IDS), where selfish agents pool their resources. We then compare
these two scenarios to understand the effect of resource pooling on agents’ utilities, agents’ efforts,
and social welfare.

5.1.1 Main findings

Our main findings are summarized as follows.

1. Both games have a unique NE. At the NE of the RP-IDS game, every agent obtains higher
utility as compared to that under the NE of the IDS game.

94



2. The social welfare (measured by total utility) at the NE of the RP-IDS game is higher than
that under the socially optimal outcome of the IDS game, induced by mechanisms such as
VCG and externality mechanisms [62]. In other words, as a mechanism, RP outperforms
these tax-based mechanisms.

3. While the VCG and externality mechanisms cannot guarantee voluntary participation while
imposing budget balance [62], we show that in the RP-IDS game no agent will unilaterally
opt out of resource pooling (while continues to be part of the IDS game), thereby ensuring
voluntary participation.

4. We further consider community-based resource pooling, where each agent is able to pool his
resources within the community that he belongs to. We show that community based resource
pooling is able to improve the social welfare and agents’ utilities.

5.1.2 Chapter organization

In the remainder of this chapter, Section 5.2 reviews the related work to this chapter. Then, we
present the IDS game model without RP, and the RP-IDS game model, and their associated anal-
ysis, in Section 5.3 and 5.4, respectively. Section 5.5 discusses the best response dynamics for
both game IDS and RP-IDS game. We study the voluntary participation property of RP-IDS game
in Section 5.6, and present the community-based resource pooling in Section 5.7. A number of
discussions are given in Sec. 5.8. Sec. 5.9 concludes the chapter.

5.2 Related literature

5.2.1 Distributed mechanism design

Distributed mechanism framework has been proposed to induce socially optimal outcome in a
distributed manner, i.e., message transmission is performed locally, and mechanism/tax functions
depend on messages from neighboring agents [27, 28, 80]. Even though distributed mechanisms
are viable options to implement socially optimal outcome without a central planner, they cannot
be used in IDS games because they are in the form of taxation mechanism and not able to satisfy
the notion of voluntary participation [62]. Moreover, they rely on message passing among agents
and result in communication overhead.
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5.2.2 IDS games

Outside the incentives context, IDS games have been extensively studied in the literature [4, 22,
23, 30, 34, 51, 60]; we reference some of the more relevant ones below. Miura-Ko et al. [60]
consider a linear influence network and find a condition on the dependence matrix to guarantee
the existence and uniqueness of the NE. Hota and Sundaram in [30] consider IDS games under
behavioral probability weighting and show that security risk can be reduced by such weighting
strategies. Jiang et al. in [34] show that the price of anarchy in an IDS game can increase with
the network size regardless of security technology improvement, while a repeated security game
can decrease the price of anarchy and make the resulting NE more efficient. Amin et al. [4] show
that the under-investment issue similarly exists in a two-stage game model. La in [51] examines
the relationship between risk exposure and agents’ degrees in the dependence graph. Finally, the
effect of network structure on the existence and uniqueness of an NE has been studied in the more
general context of network games, of which IDS games are a special case, see e.g., [12, 63, 70].

5.3 Interdependent security game without resource pooling
(IDS)

Consider n agents on a directed, weighted graph denoted by G = (V ,E ,X), where V = {1,2, · · · ,n} is
the set of n agents, E ⊆ {(i, j)|i, j ∈ V} the set of edges between them, and X = [xi j]n×n the adjacency
weight matrix of this graph, where xi j > 0, i 6= j, (i, j) ∈ E is the edge weight, xi j = 0, (i, j) 6∈ E , and
xii = 0, i ∈ V . An edge (i, j) ∈ E indicates that agent i depends on agent j (or agent j influences i)
with the degree of dependence given by edge weight xi j. Dependence need not be symmetrical,
i.e., xi j 6= x ji in general. Agent i exerts effort ei ≥ 0 towards securing himself, incurring cost bi · e2

i

(bi > 0 a constant). Given effort profile eee = [e1,e2, · · · ,en]T , agent i has utility

ui(ei,e−i) = −li + ai · ei + ei ·

 n∑
j=1

xi je j

−bi · e2
i , (5.1)

where e−i denotes all elements in eee excluding ei, −li a nominal loss agent i suffers without any
effort, ai · ei, ai ≥ 0, the benefit it derives from effort ei, and ei · xi j · e j the benefit it derives from
other agents’ efforts. This last term indicates a case of positive externality between agents i and j;
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see e.g., [22] for IDS games with negative externalities. Second and third terms together in (5.1)
imply that with zero effort, agent i cannot benefit from other agents’ efforts, i.e., it cannot solely
rely on the others. This is a form of the quadratic utility function widely used in the literature of
network games [12, 16] and IDS games [13, 66, 68]; it provides a second-order approximation to
higher order concave utility functions while preserving the properties of them [68].

The interaction of agents induces a game, denoted as
G = {V , {ui(.)}i∈V ,A = [0,+∞)n}, where A is the action space. In the rest of the chapter, we
shall use the terms exerted effort, actions and security investments interchangeably. For con-
venience of notation, when comparing two games given by the same V ,E but different weight
matrices X1 and X2, we will denote the resulting games as G(X1) and G(X2), respectively. Next
we analyze the equilibrium of game G.

5.3.1 Equilibrium Analysis

Let Bri(e−i) denote the best response function of agent i. Using the first order condition we have

Bri(e−i) = argmax
e≥0

ui(e,e−i)

= max

 ai

2bi
+

1
2bi

n∑
j=1

xi je j, 0


=

ai

2bi
+

1
2bi

n∑
j=1

xi je j . (5.2)

We will primarily focus on pure strategy Nash equilibrium (NE), and for simplicity of exposi-
tions for the rest of the chapter Nash equilibrium refers to a pure strategy NE. An NE is the fixed
point of the best response mapping. Let ê̂êe denote the agents’ effort at the NE of game G; then ê̂êe

satisfies the following equations:

2biêi−

n∑
j=1

xi jê j = ai, i = 1,2 · · · ,n

or (2 ·B−X) · ê̂êe = aaa, (5.3)

where B is a matrix with bi’s on its main diagonal and zeros everywhere else, and aaa =
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[a1,a2, · · · ,an]T .
We make the following assumption on cost bi to ensure that the effort levels are bounded at the

NE. More discussion on this assumption is provided in Section 5.8.1.

Assumption 5.1 2bi >
∑n

j=1 xi j, ∀i ∈ V .

Under Assumption 5.1, we have the following lemma on the best response mapping and the
NE of game G.

Theorem 5.1 Under Assumption 5.1, matrix (2B− X) is invertible and ê̂êe = (2 · B− X)−1 ·aaa is the

unique NE of game G.

It is worth mentioning that under assumption 5.1, 1
2 B−1X is sub-stochastic, and (2 · B− X)−1

can be written as follows:

(2 ·B−X)−1 =
1
2
·B−1(I−

1
2

B−1X)−1 =
1
2
·B−1

∞∑
i=0

(
1
2

B−1X)i. (5.4)

As all entries of B−1X are non-negative, (2 · B− X)−1 is a non-negative matrix too, and ê̂êe =

(2 ·B−X)−1 ·aaa is a non-negative vector.
Theorem 5.1 and the fact that (2B−X)−1 is a non-negative matrix lead to the following corol-

lary.

Corollary 5.1 Let X and X̃ be two adjacency matrices over the same V and E . Consider the games

G(X) and G(X + X̃), and their respective NE ê̂êe and ẽ̃ẽe. If 2bi >
∑n

j=1

[
xi j + x̃i j

]
, then ẽ̃ẽe � ê̂êe.1 In other

words, agents exert higher effort at the NE given stronger externality.

5.3.2 Socially optimal outcome

We now consider the socially optimal effort levels for the IDS game. Denote by eee∗ = [e∗1,e
∗
2, · · · ,e

∗
n],

the socially optimal effort profile maximizes the total utility:

eee∗ ∈ argmax
eee∈A

n∑
i=1

ui(ei,e−i) . (5.5)

1ννν = [ν1 · · ·νn]T � θθθ = [θ1 · · ·θn]T means that νi ≥ θi, ∀i.
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To ensure the existence of a socially optimal strategy, we make the following assumption (see
Section 5.8.1 for more discussion).

Assumption 5.2 2bi >
∑n

j=1

[
xi j + x ji

]
, ∀i ∈ V .

Theorem 5.2 Let ê̂êe be the effort level at the NE of game G and eee∗ be the socially optimal effort

level. Then under Assumption 5.2 we have:

1. eee∗ = (2B−X−XT )−1 ·aaa;

2. e∗i ≥ êi, ∀i.

That is, every agent exerts higher effort at the socially optimal solution compared to the NE.

Remark: The above shows that the socially optimal effort profile of game G(X), given by
eee∗ = (2B−X −XT )−1 ·aaa, also happens to be the NE of game G(X + XT ). Also note that for game
G(X), while the total utility under eee∗ is higher than that under the NE ê̂êe, this may or may not be
true for agents’ individual utility, as the following example shows.

Example 5.1 Consider the following IDS game:

n = 2, b1 = b2 = 1, a1 = a2 = 1

x12 = 0.1, x21 = 0.9, l1 = l2 = 1

ê̂êe = (2B−X)−1 ·aaa = [0.5371 0.7417]T

u1(ê̂êe) = −0.7115, u2(ê̂êe) = −0.4499

eee∗ = (2B−X−XT )−1 ·aaa = [1 1]T

u1(eee∗) = −0.9000, u2(eee∗) = −0.1000 (5.6)

In this example, agent 1 has higher influence on agent 2 (x21 > x12); agent 2 benefits from socially

optimal effort (u2(eee∗) > u2(ê̂êe)), while agent 1’s utility worsens even though it exerts higher effort

under eee∗.
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Example 5.2 Consider the following IDS game where both agents benefit from the socially optimal

outcome:

n = 2, b1 = b2 = 1, a1 = a2 = 1

x12 = x21 = 0.5, l1 = l2 = 1

ê̂êe = (2B−X)−1 ·aaa = [
2
3
,

2
3

]T

u1(ê̂êe) = u2(ê̂êe) = −
5
9

= −0.5555

eee∗ = (2B−X−XT )−1 ·aaa = [1 1]T

u1(eee∗) = u2(eee∗) = −0.5 (5.7)

These examples show that socially optimal outcome is not necessarily desirable to all agents.
Mechanism design in the context of IDS games aims to incentivize agents to exert higher effort
than that under the NE. In the next section, we will examine the impact of introducing resource
pooling as a mechanism to improve agents’ effort and social welfare.

5.4 Interdependent security game with resource pooling (RP-
IDS)

Consider the same IDS game setting. Let eeei = [ei1,ei2, · · · ,ein]T be the action of agent i where
ei j ≥ 0 denotes the effort exerted by agent i on behalf of agent j. Moreover, agent i incurs cost
b j · e2

i j by exerting effort ei j on behalf of agent j. Let E = [eee1,eee2, · · · ,eeen]T be an n× n matrix that
denotes the effort profile, and let Ei =

∑n
j=1 e ji denote the total effort exerted on behalf of agent i.

Agent i’s utility given profile E is:

vi(eeei,eee−i) = −li + ai(
n∑

j=1

e ji)−
n∑

k=1

bk · e2
ik

+ (
n∑

j=1

e ji) ·

 n∑
k=1

xik · (
n∑

r=1

erk)


= −li + aiEi + Ei ·

n∑
j=1

xi jE j−

n∑
k=1

bk · e2
ik.
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The interaction of agents induces the RP-IDS game
Grp =

{
V , {vi}i∈V ,Arp = [0,+∞)n2}

, where Arp is the action space under resource pooling.
By the first order condition, the best response function of agent i satisfies the following:

eeei = Bri(eee−i)

eii =
ai

2bi
+

∑n
k=1 xik ·Ek

2bi

ei j =
xi j ·Ei

2b j
, ∀ j 6= i (5.8)

Let Ê = [êi j]n×n be the NE of game Grp and Êi =
∑n

j=1 ê ji the total effort exerted on behalf of
agent i at the NE. We have the following lemma on effort profile Ê.

Lemma 5.1 Assume that game Grp has at least one Nash equilibrium. The effort profile Ê at the

NE satisfies the following system of equations,

(2B−X−XT ) ·


Ê1
...

Ên

 = aaa .

Proof As Ê is the fixed point of the best response mapping, we have,

êii =
ai

2bi
+

∑n
k=1 xik · Êk

2bi

ê ji =
x ji · Ê j

2bi
∀ j 6= i =⇒

by adding above equations:

2bi · Êi = ai +

n∑
j=1

(xi j + x ji)Ê j ∀i ∈ V

=⇒ aaa = (2B−X−XT ) ·


Ê1
...

Ên

 (5.9)

Theorem 5.3 Under Assumption 5.2, (2B−X −XT ) is invertible and game Grp has a unique NE
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given as follows: 
Ê1
...

Ên

 = (2B−X−XT )−1 ·aaa

êii =
ai

2bi
+

∑n
k=1 xik · Êk

2bi

êi j =
xi j · Êi

2b j
, ∀ j 6= i (5.10)

Proof Similar to the proof of Theorem 5.1, we can show that if 2bi >
∑n

j=1 xi j + x ji,∀i, then all

eigenvalues of matrix (2B− X − XT ) are non-zero. Therefore, matrix (2B− X − XT ) is invertible.

Similar to (5.4), we can show that all entries of (2B−X−XT )−1 are non-negative and
[
Ê1 · · · Ên

]T
=

(2B−X−XT )−1 ·aaa is a non-negative vector. Moreover, by best response mapping provided in (5.8),
we know that êi j can be calculated by the following,

êii =
ai

2bi
+

∑n
k=1 xik · Êk

2bi
≥ 0

êi j =
xi j · Êi

2b j
≥ 0, ∀ j 6= i (5.11)

Therefore, the fixed point of the best response mapping is non-negative and unique, implying

the NE of game Grp is unique and can be found by (5.10).

Remark: It is worth pointing out that for the same weight matrix X, the total effort exerted by
each agent, [Ê1, Ê2, · · · , Ên], at the NE of the RP-IDS game Grp is the same as the socially optimal
effort of the IDS game G. That is,

Ê1
...

Ên

 = (2B−X−XT )−1 ·aaa = eee∗ �︸︷︷︸
By Theorem 5.2

ê̂êe . (5.12)

In other words, the introduction of resource pooling incentivizes agents to boost their effort to the
socially optimal levels for game G. Note that the game Grp has its own socially optimal solution
as we discuss in Section 5.8.2.
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Next we show that every agent at the NE of game Grp obtains a higher utility than that attained
at the NE of game G, i.e., resource pooling improves the utility for all agents.

Theorem 5.4 Let Ê = [êi j]n×n be the NE of Grp and ê̂êe be the effort profile at the NE of game G.

Under Assumption 5.2, we have:

vi(Ê) ≥ ui(ê̂êe), ∀i ∈ V . (5.13)

Proof Let ẽ̃ẽei be a vector with length n and all its elements are zero except entry i which is equal to

êi (effort level of agent i at NE of game G). By definition of Nash equilibrium we have,

vi(Ê) ≥ vi(ẽ̃ẽei, ê̂êe−i). (5.14)

As Êi ≥ êi, ∀i, by (5.10) and (5.3) we have êii ≥ êi. Moreover,

vi(ẽ̃ẽei, ê̂êe−i) = −li + ai · êi + ai

∑
k 6=i

êki−bi · (êi)2

+(êi +
∑
k 6=i

êki) ·
n∑

j=1

xi j · (
∑
k 6=i

êk j)

 ≥
−li + ai · êi−bi · (êi)2 + êi ·

n∑
j=1

xi j · ê j = ui(êi, ê−i)

(5.15)

By (C.14) and (C.15), vi(Ê) ≥ ui(ê̂êe) ∀i ∈ V .

The following theorem shows that social welfare at the NE of game Grp is higher than the
maximum social welfare of game G, even though the total effort exerted by each agent is the same
under both as noted earlier.

Theorem 5.5 Let Ê be the effort profile at the NE of game Grp and eee∗ be the socially optimal effort

profile in game G. Under Assumption 5.2 we have,

n∑
i=1

vi(Ê) ≥
n∑

i=1

ui(eee∗) .

103



Proof

n∑
i=1

vi(Ê) =

n∑
i=1

−li + aiÊi−bi ·

 n∑
j=1

ê2
ji

+ Êi ·

 n∑
j=1

xi j · Ê j




By (5.12), (e∗i )2 = Ê2
i = (

∑n
j=1 ê ji)2 ≥

∑n
j=1(ê ji)2, and Êi = e∗i . Therefore,

n∑
i=1

vi(Ê) ≥
n∑

i=1

−li + aiÊi−bi · Ê2
i + Êi ·

 n∑
j=1

xi j · Ê j




=

n∑
i=1

ui(eee∗).

We conclude this section by highlighting the role of resource pooling in the IDS game.

• At the NE, with resource pooling (game Grp) agents exert higher effort (for themselves and
on others) and experience higher utility than without (game G); e.g., Êi ≥ êi, and vi(Ê)≥ ui(ê̂êe).

• Resource pooling induces agents to exert socially optimal levels of effort (under game G),
while improving the social welfare as it allows more judicious spreading of efforts; e.g.,
Ê = eee∗ and

∑n
i=1 vi(Ê) ≥

∑n
i=1 ui(eee∗).

5.5 Best response dynamics for IDS game (game G) and RP-
IDS game (game Grp)

Based on Theorem 5.1 and 5.3, we have to calculate an inverse of a matrix to find the Nash equi-
librium of game G and Grp. In this section, we develop an iterative best response dynamic which
converges to the Nash equilibrium without calculating an inverse of a matrix.

5.5.1 Best response dynamics for IDS game (game G)

As game G is a game with quadratic utility functions, the best response dynamic shown in Al-
gorithm 1 converges to the Nash equilibrium. In the next theorem we prove the convergence of
Algorithm 1.

104



Theorem 5.6 Under assumption 5.1, Algorithm 1 converges to ê̂êe, the Nash equilibrium of game

G.

Proof Let ê̂êe(t) = [e(t)
1 ,e

(t)
2 , · · · ,e

(t)
n ]T . First we show that e(1)

k ≤ e(0)
k ,∀k.

e(1)
k − e(0)

k =

ak

2bk
−

max
i

ai

2bi−
∑n

j=1 xi j

 2bk −
∑n

j=1 xk j

ak

ak

2bk

≤
ak

2bk
−

ak

2bk
= 0 (5.16)

Next we show that if ê̂êe(t) � ê̂êe(t−1), then ê̂êe(t+1) � ê̂êe(t).

ê̂êe(t) � ê̂êe(t−1)

e(t+1)
k =

ak

2bk
+

1
2bk

n∑
j=1

xk je
(t)
j

≤
ak

2bk
+

1
2bk

n∑
j=1

xk je
(t−1)
j = e(t)

k (5.17)

By equations (5.16) and (5.17), we conclude that ê̂êe(t) is a decreasing sequence. Moreover, ê̂êe(t) is a

positive sequence and bounded below. Therefore, ê̂êe(t) converges. Notice that the convergence point

has to be the fixed point of the best response mapping and has to be the Nash equilibrium.

Algorithm 1 Finding Nash equilibrium for game G using best response dynamics

Initialization: set e(0)
k = maxi

ai
2bi−

∑n
j=1 xi j

, ∀ k ∈ V

for t= 1,2,· · · , T do
e(t)

i =
ai
2bi

+ 1
2bi

∑n
j=1 xi je

(t−1)
j ,∀ i ∈ V

end
Output: [e(T )

1 ,e(T )
2 , · · · ,e(T )

n ]
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5.5.2 Modified best response dynamics for RP-IDS game (game Grp)

Best response dynamics for Game Grp can be computationally expensive. At each iteration, we
have to calculate the best response function given by a system of linear equations defined in (5.8).
In order to avoid solving a system of equation for each agent every iteration, we try to find the
total effort exerted on behalf of each agent iteratively. Algorithm 2 is the modified best response
dynamics for game Grp.

Theorem 5.7 Under assumption 5.2, the output of algorithm 2 is the effort profile of the agents at

the NE of game Grp.

Proof Based on Theorem 5.6, we know that E(t)
i , t = 0,1, · · · , defined in Algorithm (2), converges to

the effort of agent i at the Nash equilibrium of game G(X + XT ). Moreover, we know that the total

effort exerted on behalf of agent i at the NE of game Grp is equal to the effort of agent i at the Nash

equilibrium of game G(X + XT ). Therefore, E(t)i , t = 0,1, · · · converges to the total effort exerted on

behalf of agent i at the NE of game Grp. By theorem 5.3, the output of Algorithm 2 would be the

equilibrium of game Grp.

Algorithm 2 Finding Nash equilibrium for game Grp using modified best response dynamics

Initialization: set E(0)
k = maxi

ai
2bi−

∑n
j=1 xi j+x ji

, ∀ k ∈ V

for t= 1,2,· · · , T do
E(t)

i =
ai
2bi

+ 1
2bi

∑n
j=1(xi j + x ji)E

(t−1)
j ,∀ i ∈ V

end

êkk =
ak
2bk

+

∑n
j=1 xk j·E

(T )
j

2bk
,∀k ∈ V

êkk′ =
xkk′ ·E

T
k

2b′k
, ∀k 6= k′

Output: Ê = [êi j]n×n

5.6 Voluntary participation in RP

As investment in security is a non-excludable public good, an agent can benefit even if it chooses
not to participate in an incentive mechanism. As a result, designing a mechanism which incen-
tivizes the agents to voluntarily participate and exert socially optimal effort levels is not straight-
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forward, and it is important to check whether agents will voluntarily participate in resource pool-
ing. In [62] and Appendix D, it was shown that no taxation mechanism is able to implement the
socially optimal solution while guaranteeing both weak budget balance and voluntary participa-
tion. For this reason, in what follows, we first define this notion and then show that under resource
pooling the voluntary participation property is satisfied.

Definition 5.1 (Voluntary Participation (VP)) Consider game Gk
rp where agent k opts out of RP

and only invests in himself and nobody else invest in agent k (ek j = e jk = 0, ∀ j 6= k), while other

agents participate in RP. Let E̊ = [e̊i j]n×n be the NE of game Gk
rp and vi(E̊) be the utility of agent

i at the NE. We say that resource pooling has the voluntary participation property with respect to

agent k, if

vk(E̊) ≤ vk(Ê), (5.18)

where Ê is the effort profile at the NE of game Grp.2 If the above is true for all k ∈ V , then we say

that resource pooling has the voluntary participation property.

The following theorem suggests that resource pooling always satisfies the VP property.

Theorem 5.8 If Assumption 5.2 holds, then agent i achieves higher utility at the NE of game Grp,

than his utility at the NE of game Gi
rp for all i ∈ V . That is, resource pooling always satisfies the

VP property.

It is worth noting that resource pooling is able to satisfy a stronger notion of voluntary partici-
pation defined as follows.

Definition 5.2 (Stronger Notion of Voluntary Participation (SVP)) Consider game G
k
rp where

agent k opts out of RP and only invests in himself (ek j = 0, ∀ j 6= k), while the other agents partici-

pate in RP and may choose to invest in agent k. In other words, while agent k chooses not to exert

any effort on behalf of other agents, he may receive resources from other agents in game G
k
rp if it

is in the other agents’ self interest to do so.

Let É = [éi j]n×n be the NE of game G
k
rp and vi(É) be the utility of agent i at the NE. We say that

resource pooling has the strong voluntary participation property with respect to agent k, if

vk(É) ≤ vk(Ê), (5.19)
2Under Assumption 5.2, both Grp and Gk

rp have an NE.
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where Ê is the effort profile at the NE of game Grp. If the above is true for all k ∈ V , then we say

that resource pooling has the strong voluntary participation property.

It is worth noting a crucial difference between the definition of an NE and the VP property. An
NE in game Grp implies that vk(ê̂êek, ê̂êe−k) ≥ vk(eeek, ê̂êe−k), ∀eeek ∈ Rn. In words, this definition says that at
the NE, agent k cannot improve his utility by changing his action while other agents do not change
their effort and keep the same action. On the other hand, Equations (5.18) and (5.19) imply that
agent k is not able to improve his utility if he chooses not to pool his resources and the other agents
best respond to his decision and choose their actions accordingly.

The following theorem shows that resource pooling is able to satisfy the SVP property defined
in Definition 5.2.

Theorem 5.9 If Assumption 5.2 holds, resource pooling always satisfies the SVP property defined

in Definition 5.2.

5.7 Community based resource pooling

So far we have assumed that each agent can pool his resources with all other agents in the network.
We next consider a more realistic setting where each agent is able to pool resources within a
community that he belongs to. Specifically, we assume that agents form m disjoint communities
and they are allowed to pool their resources within the communities they belong to. Let C1, · · · ,Cm

denote the m communities, where ∪m
k=1Ck = V and Ck ∩Ck′ = ∅,∀k,k′. Moreover, let I(i) be the

index of the community that agent i belongs to, i.e., i ∈ CI(i). Let Gc
rp denote the game induced by

the interaction of the agents who are allowed to pool their resource within their communities. Let
eeei = [ei j], j ∈ CI(i) be the action of agent i and Ei =

∑
j∈CI(i) e ji be the total effort exerted on behalf

of agent i in game Gc
rp. The utility of agent i is given by:

vi(eeei,eee−i) = −li + aiEi + Ei

 n∑
j=1

xi jE j


−

∑
j∈CI(i)

b je2
i j . (5.20)

Let ě̌ěei = [ěi j], j ∈CI(i) be the effort profile of agent i at the NE of game Gc
rp and Ěi =

∑
j∈CI(i) ě ji.

We have the following result.
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Theorem 5.10 Under Assumption 5.2, game Gc
rp has a unique Nash equilibrium and the effort

profile of agents at the equilibrium is given by:
Ě1
...

Ěn

 = (2B−X−XT
c )−1aaa,

ěii =
ai

2bi
+

∑n
j=1 xi jĚ j

2bi
,

ěi j =
xi j · Ěi

2b j
,∀ j 6= i, j ∈CI(i) (5.21)

where entry (i, j) of matrix Xc is equal to xi j if j ∈CI(i), otherwise it is zero.

Thus both games G and Gc
rp have a unique Nash equilibrium under Assumption 5.2. The next

theorem compares the NE of games G and Gc
rp.

Theorem 5.11 Under Assumption 5.2 we have the following results.

• Community based resource pooling improves the effort and utility of each agent as compared

to those at the NE of game G. That is,

Ěi ≥ êi,∀i,

vi(ě̌ěei, ě̌ěe−i) ≥ ui(êi, ê−i),∀i.

• Ěi ≤ e∗i ,∀i. That is, the total effort exerted on behalf of each agent is less than the socially

optimal effort level in game G.

Next theorem characterizes the effect of merging communities on agents’ efforts and utilities.

Theorem 5.12 Consider game G
c
rp a community based resource pooling game with the following

communities:

C1,C2, · · · ,Cm−2,Cm−1∪Cm

Moreover, let ě̌ěei be the strategy of agent i at the NE of game G
c
rp. Moreover, let I(i) be the index of

the community that agent i belongs to in game G
c
rp.
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We have,

Ěi ≥ Ěi,∀i,

vi(ě̌ěei, ě̌ěe−i) ≥ vi(ě̌ěei, ě̌ěe−i),∀i,

where, Ěi =
∑

j∈CI(i)
ě ji. In other words, merging two communities improves agents’ utilities as well

as agents’ efforts.

While the social welfare at the NE of game Gc
rp is higher than that at the NE of game G, it may

or may not be higher than the maximum social welfare of game G. Next we provide a numerical
example to highlight the impact of community based resource pooling.

Consider a network with n = 10 agents and the following parameters:

ai = 1,∀i, bi = 2,∀i

xi j =


1 if j = i + 1 and i is odd.
1 if j = i−1 and i is even.
0 if i = j

0.1 o.w.

Without loss of generality, we will set li = 0,∀i; as li is a constant, this will not affect agents’
decision. Given this set of parameters, we divide the agents to m,m = 1, · · · ,10 communities using
spectral clustering method [86] as follows.

m = 1, C1 = V

m = 2, C1 = {1,2,3,4,9,10}, C2 = {5,6,7,8}

m = 3, C1 = {1,2,3,4,7,8}, C2 = {5,6,7,8},

C3 = {9,10}

m = 4, C1 = {1,2},C2 = {3,4},C3 = {5,6,9,10},

C4 = {7,8}
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Figure 5.1: The total utility at the NE of game Gc
rp with m communities. Resource pooling within

fewer and large size communities is more effective in improving social welfare.

m = 5, C1 = {1,2},C2 = {3,4},C3 = {5,6},

C4 = {7,8},C5 = {9,10}

m = 6, C1 = {1},C2 = {2},C3 = {3,4},C4 = {5,6},

C5 = {7,8},C6 = {9,10}

m = 7, C1 = {1,2},C2 = {3},C3 = {4},

C4 = {5,6},C5 = {7,8},C6 = {9},C7 = {10}

m = 8, C1 = {1},C2 = {2},C3 = {3},C4 = {4}

C5 = {5,6},C6 = {7},C7 = {8},C8 = {9,10}

m = 9, C1 = {1},C2 = {2},C3 = {3},C4 = {4},

C5 = {5,6},C6 = {7},C7 = {8},C8 = {9},

C9 = {10}

m = 10, Ck = {k}, ∀k

It is easy to see that m = 1 corresponds to the case without community as studied earlier in the
chapter, whereas m = 10 corresponds to the case where resource pooling is not allowed.
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Figure 5.2: The total effort at the NE of game Gc
rp with m communities. Resource pooling within

fewer and large size communities is more effective in incetivizing agents to invest more in security.

Figure 5.1 illustrates the total utility at the NE using community based resource pooling as the
number of communities m increases. These results verifies our theoretical finding that resource
pooling even limited within communities always leads to higher total utility. Furthermore, we see
that when m ≥ 6, the total utility at the NE of game Gc

rp falls below the maximum social welfare
in game G, suggesting that resource pooling is more effective with fewer and larger communities
(m ≤ 5).

Figure 5.2 illustrates the total effort at the NE of Gc
rp as a function of the number of communi-

ties (m). First, we note that the total effort at the socially optimal outcome of game G is the same
as the total effort at game Grp (m = 1), as expected. Also, consistent with the previous figure, we
see that the total investment decreases as a function of the number of communities m.

5.8 Discussion

5.8.1 On assumption 2bi >
∑n

j=1 xi j

Throughout the analysis we have used the following assumptions:
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• Existence and uniqueness of NE for game G: 2bi >
∑n

j=1 xi j,∀i

• Existence and uniqueness of socially optimal strategy profile in game G:
2bi >

∑n
j=1 xi j + x ji,∀i

• Existence and uniqueness of NE profile in game Grp: 2bi >
∑n

j=1 xi j + x ji,∀i

The reason behind these assumptions is to prevent the model from becoming pathological: if the
cost of effort is sufficiently low, then there may not exist NE or socially optimal strategy, and it
may be beneficial for the agents to exert very high effort with unbounded utility.

Example 5.3 Consider a network with xii = 0, xi j = 1
n−1 ∀i, j ∈ V, i 6= j and bi = 1. Under these

parameters Assumption 5.2 does not hold. Moreover, set ei = r, ∀i ∈ V . We have:

n∑
i=1

ui(eee) =

n∑
i=1

−li + (r)ai−bi · r2 + r2
n∑

j=1

xi j


=

− n∑
i=1

li

+ r ·

 n∑
i=1

ai

 ,
which is a linear function in r and is unbounded. In this case the socially optimal effort does not

exist.

5.8.2 On the socially optimal outcome of game Grp

While the NE of the RP-IDS game Grp achieves socially optimal levels of effort defined for the
IDS game G, the introduction of resource pooling means that each agent now has a bigger action
space, thereby giving rise to a different social optimum for this new game. We next show how this
new optimum can be computed.

Let E∗ = [e∗i j]n×n be the socially optimal effort profile for the RP-IDS game:

E∗ = arg max
E∈Rn×n

+

n∑
i=1

vi(E)

= arg max
E∈Rn×n

+

n∑
i=1

−li + aiEi−bi(
n∑

j=1

e2
ji) + Ei

n∑
j=1

xi jE j

 .
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The assumption below ensures the existence of a solution.

Assumption 5.3 2bi > n ·
∑n

j=1(xi j + x ji), ∀i ∈ V

Under Assumption 5.3, it is easy to check that g(E) =
∑n

i=1 vi(E) is strictly concave in E. By
the first order condition, E∗ satisfies the following:

∂g(E)
∂eii

|E=E∗ = ai−2bie∗ii +
n∑

j=1

(xi j + x ji) ·E∗j = 0

∂g(E)
∂eki

|E=E∗ = ai−2bie∗ki +

n∑
j=1

(xi j + x ji) ·E∗j = 0

=⇒ n ·ai−2biE∗i + n ·
n∑

j=1

(xi j + x ji) ·E∗j = 0, ∀i ∈ V ,

=⇒ (2B−n · (X + XT )) ·


E∗1
...

E∗n

 = n ·aaa . (5.22)

Similar as before, we can show that under Assumption 5.3, (2B− n · (X + XT )) is invertible. Thus
the optimal outcome E∗ is given by:

E∗1
...

E∗n

 = n · (2B−n · (X + XT ))−1 ·aaa

e∗ki =
ai

2bi
+

∑n
j=1(xi j + x ji) ·E∗j

2bi
, ∀k, i ∈ V (5.23)

By Corollary 5.1, we have E∗i � Êi, ∀i, i.e., the total effort exerted on behalf of agent i improves
under the social optimum compared to that under the NE of game Grp. As before, not all agents
may attain higher individual utility under E∗ as compared to their utility under NE effort profile Ê.
Following examples show the effect of socially optimal effort level on agents’ utility in game Grp,
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Example 5.4

n = 2, b1 = 1.5, b2 = 1, a1 = a2 = 1

x12 = 0.1, x21 = 0.8, l1 = l2 = 1Ê1

Ê2

 = (2B−X−XT )−1 ·aaa =

0.5588
0.7514


Ê =

0.3520 0.0279
0.2004 0.8006


v1(Ê) = −0.5858 v2(Ê) = −0.6138E∗1E∗2

 = 2∗ (2B−2X−2XT )−1 ·aaa =

2.7536
3.4783


E∗ =

1.3768 1.7391
1.3768 1.7391


v1(E∗) = −3.1566, v2(E∗) = 4.2725 (5.24)

In this example, we can see that E∗ � Ê, but the first agent experiences lower utility in the

socially optimal outcome of game Grp compared to its NE.

Example 5.5

n = 2, b1 = 1, b2 = 1, a1 = a2 = 1

x12 = x21 = 0.25, l1 = l2 = 1Ê1

Ê2

 = (2B−X−XT )−1 ·aaa =

2
3
2
3


Ê =

0.5833 0.0833
0.0833 0.5833


v1(Ê) = v2(Ê) = −0.5694E∗1E∗2

 = 2∗ (2B−2X−2XT )−1 ·aaa =

22


E∗ =

1 1
1 1


v1(E∗) = v2(E∗) = 0 (5.25)
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In this example, both agents experience higher utility in the socially optimal outcome of game

Grp as compared to the NE.

5.9 Conclusion

This chapter considered an IDS game with positive externality, and introduced a resource pool-
ing augmented IDS game, the RP-IDS game, to examine the effect of using resource pooling as a
mechanism to incentivize higher effort levels by interdependent agents. It showed that (1) resource
pooling increases the total effort exerted on behalf of each agent as compere to no resource pool-
ing, (2) each agent experiences higher utility under resource pooling as compared to no resource
pooling, (3) social welfare at the NE of the RP-IDS game is higher than the optimal social welfare
under the IDS game, and (4) agents voluntarily participate in resource pooling.
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CHAPTER 6

Conclusion

6.1 A brief review

In this thesis, we studied the impact of cyber insurance contracts on network security. Specifically,
we considered a profit-maximizing insurer with the voluntary participation of the insureds/agents.
We showed that positive externalities among insureds provide a profit opportunity for the insurer,
created by the inefficient effort levels exerted by the insureds who want to take advantage of others’
investments and efforts when insurance is not available. Then we showed that the insurer is able
to use this profit opportunity through premium discrimination based on pre-screening. As a result
of the premium discrimination, the agents exert higher effort in the presence of cyber insurance as
compared to a scenario without insurance.

We then investigated the following question: when faced with risk dependency (say between a
vendor/service provider (SP) and its customers/clients), is it better for an insurer to underwrite all
or only the SP’s clients and leave the SP to be insured by someone else, with the ability to recover
all or part of the loss attributable to the SP from the latter’s policy? The conventional wisdom in
the underwriting industry is that dependency is to be avoided as it could lead to simultaneous loss
events, which could threaten one’s capital limit and liquidity. However, we showed that there is a
benefit in insuring both, whereby the insurer obtains higher profit in doing so by taking advantage
of the risk dependency: when the insurer underwrites the SP and its clients, she can incentivize the
SP to improve its security. Because of the positive externality, the clients benefit from this security
improvement, and the risk decreases for both the SP and its customers. This security improvement
increases the insurer’s profit as she pays less coverage in a network with a better state of security.

Next, we considered a scenario of rare cyber incidents in the presence of a profit-maximizing
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insurer and a single risk-averse agent. In this scenario, we identified an effective method of pre-
mium discrimination. Specifically, we considered two methods of assessing risk in order to imple-
ment premium discrimination. Pre-screening occurs before the insured enters into a contract and
gives the insurer an estimate of the security posture of the insured, which then determines the pre-
mium and other contract parameters. On the other hand, the post-screening mechanism includes at
least two policy periods whereby the second-period premium is determined based on the first pe-
riod, i.e., the premium goes up in the second period if there is a loss incident in the first period. We
showed in the presence of rare and extremely large cyber losses, post-screening is not an effective
method of risk assessment. Moreover, we demonstrated that pre-screening is indeed effective to
incentivize the insured to improve its security investment and increase the insurer’s profit.

Lastly, we addressed the under-investment issue in interdependent security (IDS) games. Due
to the positive externality among the players in an IDS game, they under-invest, leading to a poorer
state of security. In order to incentivize effort and investment in these games, we proposed resource
pooling, i.e., we considered the possibility of allowing agents/players to invest in their security as
well as in other agents’ security. We showed that the interaction of strategic and selfish agents under
resource pooling improves the agents’ security investments as well as their utility. Moreover, we
showed that resource pooling satisfies voluntary participation, i.e., no one can enhance his utility
by unilaterally opting out of resource pooling.

6.2 Future directions

We first discuss additional directions for studying the cyber insurance market. As we mentioned
in Chapter 2, our results are derived under the assumption of perfect information and positive
externality. Looking at the contract design problem with pre-screening under partial information
is an important future direction; this would include imperfect knowledge of the agents’ type by
the principal as well as imperfect knowledge of the interdependence relationship by the agents and
principal. Other modeling choices such as considering negative externality among insureds instead
of positive externality, alternative use of pre-screening assessment (as opposed to linear discounts
on premiums), and more general ways of capturing correlated risks (e.g., joint distribution of losses
as opposed to average loss being a function of joint effort), and a competitive market setting would
also be of great interest.

In Chapter 3, we showed how interdependency could be taken into account in designing cyber
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insurance contracts to manage and mitigate cyber risks and increase the insurer’s profit. As we
mentioned earlier, we did not consider the cost of performing an accurate risk assessment, which
enables the insurer to monitor the insured to ensure the insured’s security posture is commensurate
with the discount he received. Therefore, one of the possible future direction is to study the contract
design problem when the cost of risk assessment is proportional to its accuracy. Another possible
future direction is to consider the cost of security improvement in our model. Chapter 3 assumes
that any amount of discount on the premium can be used directly for security improvement and
decreasing the chance of a loss incident. On the other hand, it is possible that the discount is
either not sufficient or cannot be used directly toward improving security. Therefore, designing a
cyber insurance contract by taking the actual security cost into account is also an interesting future
direction.

We further studied the insurance contract design problem in the presence of rare loss incidents
in Chapter 4 and showed that pre-screening is an effective method of risk assessment when loss
incidents are rare and extremely large. In this chapter, we assumed that the accuracy of the risk
assessment through pre-screening is time-invariant, which may not always be valid. Therefore,
considering pre-screening with time-variant accuracy is a possible future direction for this study.
Moreover, in this study, we removed the effects of risk interdependence from our model and purely
focused on the rare loss incidents by considering a single risk-averse insured. Therefore, another
possible extension of this study is to analyze the cyber insurance market in the presence of multiple
interdependent insured and correlated cyber risks.

In Chapter 4, we proposed resource pooling in interdependent security games to overcome
the under-investment and free-riding issue. We considered interdependent agents with quadratic
utility functions and an unlimited investment budget. Studying resource pooling in an IDS game
with non-quadratic utility functions as well as players with limited investment budget would be
possible extensions of this study.

Finally, we are keenly aware that regulatory institutions (e.g., governments) can and have from
time to time imposed new regulations and established security standards. Such regulatory moves
can have significant impact on the behavior of both the insurer and the insured. The models pro-
posed and studied in this dissertation do not necessarily capture the existence of a regulator or
emergent behavior on the part of firms. As an example, the EU’s General Data Protection Reg-
ulation (GDPR) implemented in May 2018 applies to any company processing personal data of
European customers. This regulation is updated annually and affects data collection and data use
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processes and give users an authority to access, modify, and delete their personal information
stored by any organization. Under this regulation, if a European citizen complains about an inter-
national company who is subsequently found liable, the company has to pay up to 4% of its annual
revenue. GDPR is such a cybersecurity regulatory example, whose potentially substantial impact
on insurance policy underwriting has yet to be carefully analyzed and understood. Modeling user
behavior under these regulations and designing an insurance contract that is compatible with these
emergent regulations could be challenging and needs further investigation.
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APPENDIX A

Designing Cyber Insurance Policies: The Role of
Pre-Screening and Security Interdependence

Proofs

Proof (Lemma 2.1) Proof by contradiction. Assume that in the optimal contract (p,α,β), the IR

constraint (2.8) holds with strict inequality. If this is the case, the insurer can increase her payoff

by increasing p; this increase will not violate the (IR) constraint, or impact the (IC) constraint as

the (IC) constraint in (2.8) is independent of p. This means that (p,α,β) is not an optimal contract.

Hence, the (IR) constraint should be binding in the optimal contract.

Proof (Theorem 2.1) Assume that (α̂, β̂, ê) solves optimization problem (2.13), and that, by con-

tradiction, ê > m ≥ 0.

First, recall that the agent’s optimal effort m outside the contract is given by

m := argmin
e≥0

{
µ(e) +

1
2
γλ(e) + ce

}
.

For m to be the minimizer, we should have c +µ′(m) + 1
2γλ

′(m) ≥ 0.

Next, consider the following two cases:

(i) α̂ = 0. Starting from the FOC on the (IC) constraint, we have,

(1− β̂)µ′(ê) + 1
2γ(1− β̂)2λ′(ê) + c = 0

⇒ µ′(ê) + 1
2γλ

′(ê) + c < 0
⇒ µ′(m) + 1

2γλ
′(m) + c < 0
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Here, the second line follows from the decreasing nature of µ(·) and λ(·), and the third line

follows from their convexity. The last inequality is impossible given the optimality of the effort m

outside the contract. This contradiction shows that we cannot have ê > m.

(ii) α̂ > 0. Given the assumption that ê > m, and µ(·) and λ(·) are strictly convex, we have,

0 ≤ c +µ′(m) + 1
2γλ

′(m)
≤ c +µ′(m) + 1

2γ(1− β̂)2λ′(m)
< c +µ′(ê) + 1

2γ(1− β̂)2λ′(ê)

Therefore, if the insurer decreases α̂, the agent decreases his effort (this can be seen from the

IC constraint), and consequently the insurer’s utility increases, as the objective function of the

insurer, wo−µ(e)− 1
2 (1− β̂)2λ(e)−ce− 1

2γα
2σ2, is decreasing in e and α at e = ê,α = α̂. Therefore,

(α̂, β̂, ê) is not the optimal contract. Again by contradiction, we conclude that the agent’s effort in

the optimal contract should be less than or equal to m.

Proof (Theorem 2.2) Let v(α,β,e,σ2) be the payoff of the principal, at a contract (α,β), when the

agent exerts effort e and the noise of pre-screening is σ2, and let z(σ2) be the insurer’s profit at the

optimal contract as a function of the pre-screening noise. We have,

z(σ2
1 +σ2

2) = maxα,0≤β≤1,e≥0,IC v(α,β,e,σ2
1 +σ2

2)
≤maxα,0≤β≤1,e≥0,IC v(α,β,e,σ2

1)+
maxα,0≤β≤1,e≥0,IC{−

1
2α

2γσ2
2} ≤

maxα,0≤β≤1,e≥0,IC v(α,β,e, ,σ2
1) =

z(σ2
1)

Therefore, z(σ2
1 +σ2

2) ≤ z(σ2
1), ∀σ2

2. That is, z(σ2) is a decreasing function of the pre-screening

noise.

The following lemma will be used in the proof of Theorem 2.3.

Lemma A.1 In an optimal contract, α is nonnegative and less then or equal to c.

Proof Assume (α,β,e) is the optimal solution of (2.13).

The KKT condition for the (IC) constraint is as follows,

(1−β)µ′(e) + 1
2γ(1−β)2λ′(e)− v = α− c,

v · e = 0,v,e ≥ 0 .
(A.1)
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In the above equation, the left hand side is negative, as both µ(·) and λ(·) are decreasing, and the

slack variable is v ≥ 0. Therefore, we need α ≤ c to make the right hand side positive as well.

Next, assume that α < 0. In this case, we must have v = 0. To see why, note that otherwise,

if v > 0, we can decrease v and increase α by the same amount (while still keeping α < 0) in the

KKT condition (A.1), without changing β and e. This would increase the objective function of the

insurer (note that we have decreased α2), contradicting the optimality of the solution. Therefore,

if α < 0, we have v = 0.

Setting v = 0 in (A.1), we have,

c + (1−β)µ′(e) +
1
2
γ(1−β)2λ′(e) = α < 0 (A.2)

From this, we get

−µ′(e)−
1
2
γ(1−β)2λ′(e)− c ≥ −c− (1−β)µ′(e)−

1
2
γ(1−β)2λ′(e) > 0

That is, −µ(e)− 1
2γ(1−β)2λ(e)− ce is an increasing function of e.

Next, note that as µ(·) and λ(·) are convex, the LHS of (A.2) . Therefore, we can find 0 > α′ > α
and e′ > e such that

c + (1−β)µ′(e′) +
1
2
γ(1−β)2λ′(e′) = α′ . (A.3)

As −µ(e)− 1
2γ(1− β)2λ(e)− ce is an increasing function of the effort, and e′ > e, and also as

0 > α′ > α, the new solution (α′,β,e′) improves the objective function of the insurer in comparison

with (α,β,e). From this contradiction, we conclude that α cannot be negative.

Proof (Theorem 2.3) Assume σ2
1 ≤ σ

2
2. Let (αi,βi) and ei be the parameters of optimal contract

and the optimal effort of the agent in that contract, respectively, when the pre-screening noise is

σ2 = σ2
i .

First we show that α2 ≤α1. In contradiction, assume α2 >α1. First note that from the optimality

of (α1,β1) when σ = σ1, we have

−µ(e1)− 1
2γ(1−β1)2λ(e1)− ce1−

1
2γσ

2
1α

2
1

≥

−µ(e2)− 1
2γ(1−β2)2λ(e2)− ce2−

1
2γσ

2
1α

2
2 .
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In addition, if α2 > α1, we have

1
2
γα2

1(σ2
1−σ

2
2) >

1
2
γα2

2(σ2
1−σ

2
2) .

Summing the two inequalities, we get

−µ(e1)− 1
2γ(1−β1)2λ(e1)− ce1−

1
2γσ

2
1α

2
1 + 1

2γα
2
1(σ2

1−σ
2
2)

>

−µ(e2)− 1
2γ(1−β2)2λ(e2)− ce2−

1
2γσ

2
1α

2
2 + 1

2γα
2
2(σ2

1−σ
2
2)

The expressions on both sides of the inequality simplify to the objective function of the insurer

when σ2 = σ2
2, and imply that (α1,β1) outperforms the optimal contract (α2,β2) when σ2 = σ2

2.

From the contradiction, we conclude that we must have α2 ≤ α1.

Next, by the KKT condition for the (IC) constraints we have,

(1−βi)µ′(ei) + 1
2 (1−βi)2γλ′(ei) + c−αi = vi,

eivi = 0 , vi,ei ≥ 0 .
(A.4)

We proceed by contradiction. Assume that 0 ≤ e1 < e2. As e2 is strictly positive, we can set

v2 = 0 in equation (A.4), leading to

(1−β2)µ′(e2) +
1
2

(1−β2)2γλ′(e2) + c−α2 = 0 . (A.5)

We can use the above to solve for β2 as a function of α2 and e2 as follows:

1−β2 =
µ′(e2)+

√
µ′(e2)2−2γ(c−α2)λ′(e2)
−γλ′(e2) := k(e2,α2)

Therefore, e2 solves the following optimization problem:

max
e≥0,k(e,α2)≤1

wo−µ(e)−
1
2
γk(e,α2)2λ(e)− ce−

1
2
α2

2γσ
2
2

By the optimality of e2, we conclude that,

−µ(e2)− 1
2γk(e2,α2)2λ(e2)− ce2 ≥ −µ(e1)− 1

2γk(e1,α2)2λ(e1)− ce1 (A.6)
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Now consider three cases, based on whether α1, e1, or both, are non-zero.

• α1 = 0.

We know that α2 ≤ α1. Therefore, α2 = 0. In this case, it follows from the insurer’s optimization

problem that β2 = β1 and e2 = e1. This is however a contradiction, as we assumed that e1 < e2. We

therefore must have α1 > 0.

• α1 > 0 and e1 = 0.

Take the (IC) constraint of the agent.

(1−β1)µ′(e1) + 1
2 (1−β1)2γλ′(e1) + c = v1 +α1,

e1v1 = 0

If α1 is non-zero, then insurer can decrease α1 = 0, instead increasing v1; increasing v1 is

possible as when e1 = 0, v1 can be strictly positive. Decreasing α1 in this way increases the

insurer’s payoff without affecting β1,e1, contradicting the optimality of the contract. Therefore,

this case is not possible either.

• α1 > 0 and e1 > 0.

From the (IC) constraint at σ2 = σ2
1, we have,

(1−β1)µ′(e1) +
1
2

(1−β1)2γλ′(e1) + c−α1 = 0 . (A.7)

From this, we find β1 as a function of α1 and e1,

1−β1 =
µ′(e1) +

√
µ′(e1)2−2γ(c−α1)λ′(e1)
−γλ′(e1)

.

Therefore, e1 solves the following optimization problem,

maxe≥0,k(e,α1)≤1 h(e) := wo−µ(e)− 1
2γk(e,α1)2λ(e)− ce− 1

2σ
2
1γα

2
1 (A.8)

Re-write h(e1) as follows:

h(e1) = wo−µ(e1)−
1
2
γk(e1,α2)2λ(e1)− ce1−

1
2
σ2

1γα
2
1 +

1
2
γ(k(e1,α2)2− k(e1,α1)2)λ(e1)
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Then h(e2)−h(e1) is given by,

h(e2)−h(e1) =

(−µ(e2)−
1
2
γk(e2,α2)2λ(e2)− ce2)− (−µ(e1)−

1
2
γk(e1,α2)2λ(e1)− ce1) (A.9)

+
1
2
γ[(k(e2,α2)2− k(e2,α1)2)λ(e2)− (k(e1,α2)2− k(e1,α1)2)λ(e1)] (A.10)

First, note that (A.9) is non-negative by (A.6). Next, take 0 ≤ α2 ≤ α1 ≤ c; α2 ≤ α1 follows from

the proof at the beginning of this theorem, and the lower and upper bounds follow from Lemma

A.1. Assume (k(e,α2)2 − k(e,α1)2)λ(e) is non-decreasing. Then, (A.10) is non-negative as well.

Therefore, h(e2) ≥ h(e1), which is a contradiction, as e1 is the maximizer of h(e) in the optimization

problem (A.8). Therefore, we conclude that e1 ≥ e2.

For the second part, we compare the presence of any pre-screening quality σ = σ1, to the case

of σ =∞ of uninformative pre-screening. We want to show that when k(e,0)2λ(e)− k(e,α)2λ(e) is

non-decreasing, then e∞ ≤ e1. Note that when σ is infinity, then the optimal discount factor is zero.

As a result, the proof follows the proof of the first part of the theorem, with α2 = 0.

Proof (Theorem 2.4) First, recall that the principal’s contract design problem is as follows,

maxα,β,eα,β,eα,β,e −uoi
1 −uio

2 −µ(e1 + xe2)−µ(e2 + xe1)− c1e1− c2e2

s.t.,

mi(αi,βi) = argmine≥0(1−βi)µ(e) + (ci−αi)e i = 1,2
ei = e∗i (mi(αi,βi),m−i(α−i,β−i)) i = 1,2

(A.11)

We first observe that αi and βi do not appear in the objective function of optimization problem

(A.11). Therefore, by choosing αi = ci and βi = 1, any non negative number will satisfy the con-

straint argmine≥0(1−βi)µ(e)+ (ci−αi)e. As a result, the principal can incentivize agents to choose

her desired level of effort by offering such contract. Consequently, the insurer’s problem simplifies

to,

maxe1≥0,e2≥0−uoi
1 −uio

2 −µ(e1 + xe2)−µ(e2 + xe1)− c1e1− c2e2

This is equivalent to maximizing U1(e1,e2) + U2(e1,e2) with constraints e1 ≥ 0,e2 ≥ 0. Conse-

quently, the socially optimal strategies maximize the principal’s profit in the optimal contract. In
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other words, ein
i = ẽi, i = 1,2. This establishes part (i) of the theorem.

We now prove part (ii) of the theorem. The socially optimal efforts of agents are given by the

solution to,

(ẽ1, ẽ2) = argmaxe1≥0,e2≥0 U1(e1,e2) + U2(e1,e2)
= argmaxe1≥0,e2≥0−µ(e1 + xe2)− c1e1−µ(e2 + xe1)− c2e2

(A.12)

Let gi(e−i) be the effort level ei maximizing the objective function above, as a function of the other

agent’s effort e−i. Recall that from the viewpoint of agent i, the optimal value of ei maximizing U i,

as a function of e−i, is given by (mi− xe−i)+, where mi = argmine≥0µ(e) + cie.

We next show that gi(e−i) ≥ (mi − xe−i)+. We proceed by contradiction. Assume that gi(e′−i) <
(mi − xe′

−i)
+ for a given value of e′

−i. Note that U−i is an increasing function in ei. Also, U i is

maximized at ei = (mi− xe′
−i)

+. As a result, with ei = (mi− xe′
−i)

+ instead of gi(e′−i), both U1(ei,e′−i)
and U2(ei,e′−i) increase, which would in turn imply that gi(e′−i) is suboptimal. Therefore, gi(e−i) ≥
(mi− xe−i)+.

Next, assume that (ẽ1, ẽ2) solves the optimization problem (A.12). We know that gi(ẽ−i) = ẽi ≥

(mi− xẽ−i)+ ≥ mi− xẽ−i. Therefore, we have,

ẽi ≥ mi− xẽ−i ⇒ ẽi + xẽ−i ≥ mi

⇒ ẽi + ẽ−i ≥ mi

In other words, network security in the socially optimal solution is higher that both m1 and m2.

In addition, we have,
ẽ1 ≥ m1− xẽ2, and, ẽ2 ≥ m2− xẽ1

⇒ ẽ1 + ẽ2 ≥
m1+m2

1+x

That is, network security in the socially optimal solution is higher than m1+m2
1+x .

Let eo
1,e

o
2 denote that efforts of the agents in the Nash equilibrium when both are outside of the

contract. By (2.28), we know that

eo
1 + eo

2 =


m1 if xm1 ≥ m2

m2 if xm2 ≥ m1
m1+m2

1+x o.w

We have shown that ẽ1 + ẽ2 ≥max{m1,m2,
m1+m2

1+x }. Therefore, ẽ1 + ẽ2 ≥ eo
1 +eo

2. This establishes
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part (ii) of the theorem, as we have shown that efforts inside the contract (which are at the socially

optimal level), are higher than the Nash equilibrium efforts prior to the introduction of insurance.

Lastly, we prove part (iii) of the theorem. First we show that uio
2 is lower then uoo

2 ; recall that

uio
2 denotes the utility of agent 2 when agent 2 is outside of the contract and agent 1 purchases an

optimal contract, and uoo
2 is the utility of the second agent when both agents opt out.

Consider the case where agent 1 is inside the contract while agent 2 opts out. The principal’s

problem is as follows,

maxα1,β1,e1,e2 −uoo
1 −µ(e1 + xe2)− c1e1

s.t.,

m1(α1,β1) = argmine≥0(1−β1)µ(e) + (c1−α1)e
m2 = argmine≥0µ(e) + c2e

e1 = e∗1(m1(α1,β1),m2)
e2 = e∗2(m2,m1(α1,β1))

(A.13)

where uoo
1 is the utility of the first agent when both agents opt out.

We note that the objective function of the principal’s problem is independent of α1,β1. As a

result, an optimal contract for the principal is to select α1 = c1 and β1 = 1, in which case, any

non negative effort level satisfies the agent 1’s (IC) constraint. We therefore substitute the first

constraint in (A.13) with m1(c1,1) ≥ 0.

We next note that under (α1 = c1,β1 = 1), any effort level e1, and the corresponding best re-

sponse of the second agent to e1, will constitute a Nash equilibrium. We therefore re-write the

principal’s problem as,

maxm1(c1,1)≥0 −uoo
1 −µ(max{m1(c1,1), xm2})− c1(min{m1(c1,1)−xm2

1−x2 ,m1(c1,1)})+

s.t.,

m1(c1,1) ≥ 0
m2 = argmine≥0µ(e) + c2e

(A.14)

Let m1 = argmine≥0µ(e) + c1e. We show that m∗1, the solution to the optimization problem

(A.14), is lower than m1. In other words, the first agent exerts lower effort when he enters the

contract, as e∗1(m1,m2) is decreasing in m1. Consequently, we conclude that uio
2 ≤ uoo

2 .

We proceed by contradiction. Assume that the first agent exerts strictly higher effort than his
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effort in the no-insurance equilibrium when he enters the contract (game Gio). That is, assume

m∗1 > m1. We consider three cases,

Case i: m∗1 >
m2
x

In this case, the objective function of the principal’s problem in (A.14) is given by, −uoo
1 −

µ(m∗1)− c1m∗1. The first derivative of this function is −µ′(m∗1)− c1 which is negative as,

m1 = argmine≥0µ(e) + c1e ⇒ µ′(m1) + c1 ≥ 0
⇒ µ′(m∗1) + c1 > 0 (by strictly convexity of µ)

Therefore, m∗1 is not optimal in this case, as its decrease would improve the principal’s objective

function. By the contradiction, we conclude that under the assumption of this case, we should have

m∗1 ≤ m1.

Case ii: m2
x ≥ m∗1 > x ·m2

In this case, the objective function of principal’s problem in (A.14) is, −uoo
1 −µ(m∗1)−c1

m∗1−xm2

1−x2 .

The first derivative is given by −µ′(m∗1)− c
1−x2 , which is negative as,

m1 = argmine≥0µ(e) + c1e ⇒ µ′(m1) + c1 ≥ 0
⇒−µ′(m∗1)− c

1−x2 < 0(by strictly convexity of µ)

Therefore, m∗1 is not optimal in this case and the decrease in m∗1 improves principal’s objective

function. Therefore, we contradict the assumption of m∗1 > m1 in this case as well.

Case iii: x ·m2 ≥ m∗1
In this case, the first agent exerts zero effort in both the no-insurance equilibrium and in the

game Gio. This again contradicts m∗1 > m1.

We therefore conclude that m∗1 ≤ m1. That is, we have shown that the first agent exerts less

effort than the no-insurance equilibrium, when only agent 1 enters the contract. This in turn leads

to less utility for the second agent, as compared to the case when both agents are outside of the

contract. Therefore, we have,

uoo
2 ≥ uio

2

Similarly, we can show that,

uoo
1 ≥ uoi

1

Next, we show that the principal can obtain positive profit when offering the optimal contracts.
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Notice that we have established uoi
1 + uio

2 ≤ uoo
1 + uoo

2 . In the optimal contract, when both agents

purchase contracts, the principal’s objective value is

v∗ii = max −uoi
1 −uio

2 −µ(e1 + xe2)−µ(e2 + xe1)− c1e1− c2e2

= −uoi
1 −uio

2 + U1(ẽ1, ẽ2) + U2(ẽ1, ẽ2)
≥ U1(ẽ1, ẽ2) + U2(ẽ1, ẽ2)−U1(eo

1,e
o
2)−U2(eo

1,e
o
2) .

This establishes the lower bound on the profit of the insurer (part (iii) of the theorem), and

concludes our proof.

We will use the following lemma in the proof of Theorem 2.5.

Lemma A.2 Assume perfect pre-screening (σ1 = σ2 = 0). Then, the optimal effort level of agents

satisfies,

e1 =
(µ′)−1(−(c1−v1)+x(c2−v2)

1−x2 )−x(µ′)−1(−(c2−v2)+x(c1−v1)
1−x2 )

1−x2

e2 =
(µ′)−1(−(c2−v2)+x(c1−v1)

1−x2 )−x(µ′)−1(−(c1−v1)+x(c2−v2)
1−x2 )

1−x2

e1v1 = 0,e2v2 = 0, e1 ≥ 0,e2 ≥ 0, v1 ≥ 0,v2 ≥ 0 .

(A.15)

Proof When pre-screening is perfect, then insurer’s problem is as follows,

maxααα,βββ,eee woi
1 + wio

2 −
∑

i=1,2µ(ei + xe−i) +
γi(1−βi)2

2 λ(ei + xe−i) + ciei

s.t.,

mi(αi,βi) = argmine≥0(1−βi)µ(e) + 1
2γi(1−βi)2λ(e) + (ci−αi)e

ei = e∗i (mi(αi,βi),m−i(α−i,β−i)) for i = 1,2

(A.16)

where e∗i (., .) is defined in (2.28). When σ1 = σ2 = 0, the optimal contract is (αi,βi) = (ci,1).
This is because αi does not appear in the objective function of (A.16), and on the other hand,

by setting (αi,βi) = (ci,1), the term −1
2γi(1−βi)2λ(ei + xe−i) vanishes from the objective function,

improving the insurer’s objective function. By setting (αi,βi) = (ci,1), any non negative effort level

is the minimizer of the agents’ (IC) constraints. In other words, when (αi,βi) = (ci,1), the utility

functions of agents are independent of their effort, and agents will be (weakly) incentivized to exert

a level of effort desired by the insurer. In order to find this optimal effort level, the insurer solves
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the following optimization problem,

max
e1≥0,e2≥0

−µ(e1 + xe2)−µ(e2 + xe1)− c1e1− c2e2

As the above optimization problem is convex, we can find a solution by using the KKT conditions,

µ′(e1 + xe2) + xµ′(e2 + xe1) + c1− v1 = 0
xµ′(e1 + xe2) +µ′(e2 + xe1) + c2− v2 = 0
e1 ≥ 0,e2 ≥ 0, v1 ≥ 0,v2 ≥ 0

We rewrite the above conditions as,

µ′(e1 + xe2) =
−(c1−v1)+x(c2−v2)

1−x2

µ′(e2 + xe1) =
−(c2−v2)+x(c1−v1)

1−x2

v1e1 = 0,v2e2 = 0,e1 ≥ 0,e2 ≥ 0,v1 ≥ 0,v2 ≥ 0

The solution of the above system of equations is given by (A.15).

Proof (theorem 2.5) (i) Under the second condition of the Theorem ((µ′)−1(−ci+xc−i
1−x2 ) ≥

x(µ′)−1(−c−i+xci
1−x2 ) i = 1,2) we conclude that the solution to (A.15) is as follows,

e1 =
(µ′)−1(−c1+xc2

1−x2 )−x(µ′)−1(−c2+xc1
1−x2 )

1−x2

e2 =
(µ′)−1(−c2+xc1

1−x2 )−x(µ′)−1(−c1+xc2
1−x2 )

1−x2

v1 = v2 = 0

The first condition of the theorem (µ′(mi) <
−ci+xc−i

1−x2 ), on the other hand, guarantees that ei + xe−i ≥

mi. Therefore,

e1 + xe2 ≥ m1⇒ e1 + e2 ≥ m1

e2 + xe1 ≥ m2⇒ e1 + e2 ≥ m2

e1 + xe2 ≥ m1,e2 + xe1 ≥ m2⇒ e1 + e2 ≥
m1+m2

1+x
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In the absence of insurance, network security is given by,

S (m1,m2) =


m1+m2

1+x if m1 ≥ x ·m2, m2 ≥ x ·m1

m2 if m1 ≤ x ·m2

m1 if m2 ≤ x ·m1

By comparing the two, we conclude that e1 + e2 ≥ S (m1,m2). Therefore, network security

improves under insurance.

(ii) Recall that the insurer’s problem is given by,

maxα1,0≤β1≤1,α2,0≤β2≤1,e1≥0,e2≥0 woi
1 + wio

2

−µ(e∗1 + x · e∗2)− 1
2γ1(1−β1)2λ(e1 + x · e2)

−c1 · e1−
1
2α

2
1γ1σ

2
1

−µ(e2 + x · e1)− 1
2γ2(1−β2)2λ(e2 + x · e1)

−c2 · e2−
1
2α

2
2γ2σ

2
2

s.t.,

(IC) e1,e2 are the agents’ effort in the NE of game Gii

When setting σ1 = σ2 =∞, we have α1 = α2 = 0. Therefore, we modify the insurer’s problem

as follows,

max0≤β1≤1,0≤β2≤1,e∗1≥0,e∗2≥0 woi
1 + wio

2

−µ(e∗1 + x · e∗2)− 1
2γ1(1−β1)2λ(e∗1 + x · e∗2)− c1 · e∗1

−µ(e∗2 + x · e∗1)− 1
2γ2(1−β2)2λ(e∗2 + x · e∗1)− c2 · e∗2

s.t.,

(IC) m′i = argmine≥0(1−βi)µ(e) + 1
2 (1−βi)2λ(e) + cie

ei = e∗i (m′i ,m
′
−i)

Note that if m′1,m
′
2 solve the above optimization problem, then m′i ≤ mi. This is because m′i =

argmine≥0(1−βi)µ(e)+ 1
2 (1−βi)2λ(e)+cie, and µ(·),λ(·) are strictly decreasing and strictly convex.
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If e1,e2 solves the insurer’s problem, we have,

eo
1 = (m1− xeo

2)+ ≥ (m′1− xeo
2)+ ≥ m′1− xeo

2⇒ eo
1 + eo

2 ≥ m′1
eo

2 = (m2− xeo
1)+ ≥ (m′2− xeo

1)+ ≥ m′1− xeo
1⇒ eo

1 + eo
2 ≥ m′2

eo
1 ≥ m′1− xeo

2,e
o
2 ≥ m′1− xeo

1⇒ eo
1 + eo

2 ≥
m′1+m′2

1+x

In the absence of pre-screening, network security is given by,

S (m′1,m
′
2) =


m′1+m′2

1+x if m′1 ≥ x ·m′2, m′2 ≥ x ·m′1
m′2 if m′1 ≤ x ·m′2
m′1 if m′2 ≤ x ·m′1

By comparing the two expressions, we conclude that eo
1 + eo

2 ≥ S (m′1,m
′
2). Therefore, network

security worsens under insurance without pre-screening.

Proof (Theorem 2.6) (i) Consider N symmetric agents, with γi = γ, ∀i, and ci = c, ∀i, and assume

that insurer offers these agents identical contracts. At equilibrium, each agent exerts effort e′ =
m′

1+(N−1)x in the Nash equilibrium, where,

m′ = argmine≥0(1−β)µ(e) + 1
2 (1−β)2γλ(e) + (c−α)e

Therefore, the insurer’s problem, when she offers identical contracts to the agents, and σ = 0,

is as follows,

maxα,0≤β≤1,m′ N · {wout −µ(m′)− 1
2γ(1−β)2λ(m′)− c

1+(N−1)xm′}

s.t.,

(IC) m′ = argmine≥0(1−β)µ(e) + 1
2 (1−β)2γλ(e) + (c−α)e

In the above optimization problem, as α does not appear in the objective function, then insurer can

choose her desired α; one choice is to set α = c, in which case the insurer can encourage users

to exert her desired choice of level of effort. In addition, note that setting β = 1 will improve the

objective function. Therefore, when σ = 0, the optimal contract is (α = c,β = 1). In this contract,

any non-negative effort level satisfies the agents’ (IC) constraints. Therefore, the optimum effort in
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the contract can be found as follows,

m′ = argmaxe≥0 wout
1 −µ(e)− c · e

1+(N−1)x , (A.17)

and it will be given by e′ = m′
1+(N−1)x .

Furthermore, when none of the agents enter a contract, their equilibrium efforts are given by

m = argmine≥0µ(e) + 1
2γλ(e) + ce

eo = m
1+(N−1)x

(A.18)

We will next show that m′ ≥ m if and only if µ′(m) < − c
1+(N−1)x .

We assume m > 0. Then, by (A.18), we have,

f (e) = µ′(e) + 1
2γλ

′(e) + c

f (m) = 0

Let l(e) = µ′(e) + c
1+(N−1)x . Notice that f (e) and l(e) both are strictly increasing, and have a

single root. We know that m is the roof of f (·). Therefore, the root of l(e) is larger than that of f (e)
if and only if f (m) > l(m), or equivalently µ′(m) + c

1+(N−1)x < 0. Therefore, the optimal value of m′

in (A.17) is larger than m, if and only if µ′(m) + c
1+(N−1)x < 0.

(ii) Next, we show that when pre-screening is uninformative, i.e., σ =∞, then network security

worsens as compared to the no-insurance scenario. We again proceed by contradiction. Assume

(α̂, β̂, m̂) solves the insurer’s optimization problem and ê = m̂
1+(N−1)xand m̂ > m ≥ 0. Note that

σ =∞ implies that α̂ = 0. We show that (α̂, β̂, m̂) cannot be the optimal contract for the insruer if

m̂ > m ≥ 0.

By the agents’ (IC) constraints and the fact that µ(·) is a decreasing and convex function, we

have (notice that m̂ > 0),

(1− β̂)µ′(m̂) + 1
2 (1− β̂)2γλ′(m̂) + c = 0⇒

µ′(m) + 1
2γλ

′(m) + c < 0 .

This is a contradiction because from (A.18) we have,

µ′(m) +
1
2
γλ′(m) + c ≥ 0 .
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Therefore, we conclude that m̂ ≤ m, i.e., network security worsens as compared to the no-

insurance scenario when pre-screening is uninformative.

Proof (Theorem 2.7) When agents are homogeneous and the insurer offers them identical con-

tracts, it is straightforward to show that they exert effort e = m′
1+(N−1)x in the Nash equilibrium,

where,

m′ = argmine≥0(1−β)µ(e) + 1
2 (1−β)2γλ(e) + (c−α)e

The insurer’s problem is as follows,

maxα,0≤β≤1,m′ N · {wout −µ(m′)− 1
2γ(1−β)2λ(m′)− c

1+(N−1)xm′− 1
2α

2γσ2
1}

s.t.,

(IC) m′ = argmine≥0(1−β)µ(e) + 1
2 (1−β)2γλ(e) + (c−α)e

(A.19)

Notice that if argmine≥0µ
′(e) + 1

2γλ
′(e) + c = 0, then agents exert zero effort outside of the

contract, in which case insurance cannot worsen the network security as compared to the no-

insurance equilibrium. Therefore, we assume that m > 0. Let µ′(m̃) = − c
1+(N−1)x , and assume

µ′(m) + 1
2γλ

′(m) + c = 0.

Now assume that the pre-screening noise is such that σ2 ≤
µ(m)+ c

1+(N−1)x m−µ(m̃)− c
1+(N−1)x m̃

0.5γc2 , and

that given this pre-screening accuracy, (α̂, β̂, m̂) solves the optimization problem (A.19), with ê =
m̂

1+(N−1)x .

We show that network security improves under the optimal contract, i.e., m̂ ≥m. We proceed by

contradiction. Assume that m̂ < m. If this is true, then a contract with (α = c,β = 1,m′ = m̃) would

provides better utility for the insurer. To see why, first notice that (β = 1,α = c,m′ = m̃) satisfies the

(IC) constraint.

Next, by optimality of (α̂, β̂, m̂) at σ2 we have,

µ(m̂) + 1
2 (1− β̂)γλ(m̂) + c

1+(N−1)xm̂ + 1
2γσ

2α̂2 ≤ µ(m̃) + c
1+(N−1)xm̃ + 1

2γσ
2c2 (A.20)

Also, by the assumption that σ2 ≤
µ(m)+ c

1+(N−1)x m−µ(m̃)− c
1+(N−1)x m̃

0.5γc2 , we have,

µ(m̃) + c
1+(N−1)xm̃ + 1

2γσ
2c2 ≤ µ(m) + c

1+(N−1)xm (A.21)

From (A.20) and (A.21), we get,
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µ(m̂) + 1
2 (1− β̂)γλ(m̂) + c

1+(N−1)xm̂ + 1
2γσ

2α̂2 ≤ µ(m) + c
1+(N−1)xm .

The last inequality can not hold, due to the fact that µ(e)+ c
1+(N−1)xe is strictly decreasing at e = m

(recall that µ′(e) < − c
1+(N−1)x ) and m̂ < m. This contradiction implies that m̂ ≥ m and network

security increases if σ2 ≤
µ(m)+ c

1+(N−1)x m−µ(m̃)− c
1+(N−1)x m̃

0.5γc2 .

Proof (Theorem 2.8) Let a(β) = δβ2 + γ(1− β)2. For choosing optimal value of β, the insurer

first minimizes a(β). Notice that the minimizer of a(β) is γ
γ+δ and the minimum of the a(β) is γδ

γ+δ .

Therefore, the insurer’s choose α such that it encourages the agents to exert the effort m′
1+(N−1)x

maximizing following function,

wout −µ(m′)−
1
2
γδ

γ+δ
λ(m′)−

c
1 + (N −1)x

m′ (A.22)

By the first order condition we have,

µ′(m′) + 1
2
γδ
γ+δλ

′(m′) + c
1+(N−1)x = 0 (A.23)

Because b(m′) = µ′(m′)+ 1
2
γδ
γ+δλ

′(m′)+ c
1+(N−1)x is an increasing function, m′ >m if and only if

b(m) < 0. In other words,

µ′(m) +
1
2
γδ

γ+δ
λ′(m′) +

c
1 + (N −1)x

< 0 (A.24)

Proof (Theorem 2.9) Let (αi,βi,mi) are the solution of the optimization problem (2.50) when the

covariance between the losses is θi. Let’s assume θ1 ≥ θ2 ≥ 0. First we show that β1 ≤ β2.

By the optimality (αi,βi,mi) at θi we have,

wout −µ(m1)−
β2

1δ+(1−β1)2γ

2 λ(m1)− c
1+xm1−

δ+γ
2 α2

1σ
2−

(N−1)
2 δβ2

1θ1

≥

wout −µ(m2)−
β2

2δ+(1−β2)2γ

2 λ(m2)− c
1+xm2−

δ+γ
2 α2

2σ
2−

(N−1)
2 δβ2

2θ1

(A.25)

wout −µ(m2)−
β2

2δ+(1−β2)2γ

2 λ(m2)− c
1+xm2−

δ+γ
2 α2

2σ
2−

(N−1)
2 δβ2

2θ2

≥

wout −µ(m1)−
β2

1δ+(1−β1)2γ

2 λ(m1)− c
1+xm1−

δ+γ
2 α2

1σ
2−

(N−1)
2 δβ2

1θ2

(A.26)

136



If we add the above equations we get,

(β2
2−β

2
1)(θ1− θ2) ≥ 0⇒ β2 ≥ β1 (A.27)

Now we should show that m1 ≥ m2. We proceed by contradiction. Let’s assume m1 < m2.

Because β1 ≤ β2 and m1 < m2, then α1 < α2 by (IC) constraint.

Because increase or decrease in α2 does not improve the insurer’s objective function, we con-

clude that the first derivative of insurer objective function at (α2,β2,m2, θ2) is zero. Also, in the

proof of the theorem 2.8 we showed that the optimal coverage factor for θ = 0 is β =
γ
γ+δ . Notice

that a(β) = β2
1δ+ (1−β1)2γ is decreasing for β ≤ γ

γ+δ . We have,

−µ′(m2)−
β2

2δ+(1−β2)2γ

2 λ′(m2)− c
1+x = 0⇒

−µ′(m1)−
β2

1δ+(1−β1)2γ

2 λ′(m1)− c
1+x > 0

(A.28)

The last equation implies that the insurer can improve her profit at (α1,β1,m1, θ1) by increasing

α1. This is the contradiction. Therefore, m1 ≥ m2.

�

Outside Options for Two Risk-Averse Agents

Case (i): Neither agent enters a contract
Let Goo be the game between two agents, neither of which have purchased cyber insurance

contracts. In this game, their actions are their effort level, and the expected payoffs of these agents,
with unit costs of effort c1,c2 > 0, are given by,

Ūi(e1,e2) = −exp{γiµ(ei + x · e−i) + 1
2γ

2
i λ(ei + x · e−i) +γi · ci · ei}

The best-response of each agent, when both opt out, can be found by solving the following
optimization problem,

Bout
i (e−i) = argmaxei≥0−exp{γiµ(ei + x · e−i) + 1

2γ
2
i λ(ei + x · e−i) +γi · ci · ei}

= argminei≥0µ(ei + x · e−i) + 1
2γiλ(ei + x · e−i) + ci · ei .

(A.29)

The above optimization problem is a convex optimization problem and has a unique solution.
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The solution to (A.29) is given by

mi := argmine≥0{µ(e) + 1
2γiλ(e) + ci · e}

Bout
i = (mi− xe−i)+

The Nash equilibrium is given by the fixed point of the best-response mappings Bout
1 (e2) and

Bout
2 (e1). Similar to section 2.5.2.1, e∗i (mi,m−i), the effort of agent i at the unique Nash equilibrium

can be calculated by (2.28).
Therefore, uoo

i = U i(e∗1(m1,m2),e∗2(m2,m1)) is the utility of agent i in the equilibrium when
agents do not choose to enter the contract.

Case (ii): One of the agents enters a contract
Consider the game Gio between the insured agent 1 and uninsured agent 2. The expected

payoffs of agents in this game are as follows,

U
in
1 (e1,e2, p1,α1,β1) = E(−exp{−γ1 · (−p1 +α1S e1 + (β1−1)L(1)

e1,e2 − c1e1)}) =

−exp{γ1 · (p1 + (c1−α1) · e1 + 1
2α

2
1 ·γ1σ

2
1 + (1−β1)µ(e1 + xe2) + 1

2γ1(1−β1)2λ(e1 + xe2))}
U2(e1,e2) = E(−exp{−γ2(−L(2)

e1,e2 − c2e2)}) = −exp{γ2µ(e2 + xe1) + 1
2γ

2
2λ(e2 + xe1) +γ2c2e2}

(A.30)
Let Bin

i (e−i) denote the best response of agent i. We have,

Bin
1 (e2) = argmaxe1≥0−exp{γ1(p1 + (c1−α1)e1

+1
2α

2
1γ1σ

2
1 + (1−β1)µ(e1 + xe2) + 1

2γ1(1−β1)2λ(e1 + xe2))}
= argmine1≥0(c1−α1) · e1 + (1−β1)µ(e1 + x · e2) + 1

2γ1(1−β1)2λ(e1 + x · e2)

Similar to section 2.5.2.2, Bin
1 (e2) can be calculated as follows,

m1(α1,β1) = argmine≥0(c1−α1)e + (1−β1)µ(e) + 1
2γ1(1−β1)2λ(e)

Bin
1 (e2) = (m1(α1,β1)− xe2)+

For the uninsured agent 2, it is easy to see that the best-response function is exactly the best
response function Bout

2 (e1) in game Goo.
We can now find the Nash equilibrium as the fixed point of the best-response mappings.

Agents’ efforts at the equilibrium are e∗1(m1(α1,β1),m2) and e∗2(m2,m1(α1,β1)) which are defined
in (2.28). For notational convenience, we denote these efforts by e∗1,e

∗
2.
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Let V
io

(p1,α1,β1,e1,e2) denote the insurer’s utility, when she offers contract (p1,α1,β1) to
agent 1, and agents exert efforts e1,e2. The optimal contract offered by the insurer is the solution
to the following optimization problem:

vio = maxp1,α1,β,e∗1,e
∗
2

V
io

(p1,α1,β1,e∗1,e
∗
2) = p1−α1e∗1−β1 ·µ(e∗1 + x · e∗2)

s.t.,

(IR)U
in
1 (e∗1,e

∗
2, p1,α1,β1) ≥ uoo

1 ,

(IC) e∗1,e
∗
2 are the agetn’s effort in NE of game Gio

Notice that, if insurer wants to ensure that the contract is not profitable for second agent, it is
sufficient to set p2 (premium of second contract) large enough.

We first re-write the (IR) constraint for agent 1 as follows,

p1 + (c1−α1) · e∗1 + 1
2α

2
1γ1σ

2
1(1−β1)µ(e∗1 + xe∗2) + 1

2γ1(1−β1)2λ(e∗1 + xe∗2) ≤ woo
1 ,

where woo
1 =

ln(−uoo
1 )

γ1
.

Similar to Lemma 2.1, we can conclude that (IR) constraint is binding in the optimal contract.
Therefore, we can re-write the insurer’s problem by replacing for the base premium p, and we get
following optimization problem,

maxp1,α1,β,e∗1,e
∗
2

woo
1 −µ(e∗1 + xe∗2)− 1

2γ1(1−β1)2λ(e∗1 + xe∗2)− c1e∗1−
1
2α

2
1γσ

2
1

s.t.,

(IC) e∗1,e
∗
2 are agent’s effort in NE of game Gio

(A.31)

Now, let uio
2 , the expected payoff of agent 2 when he opts out while agent 1 purchased the optimal

contract, and it can be calculated by (A.30) and (A.31).
Similarly, uoi

1 denotes expected payoff of agent 1 when he opts out while agent 2 purchased the
optimal contract.

Case (iii): Both agents purchase contracts
Assume the insurer offers each agent i a contract (pi,αi,βi). The expected utility of agents
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when both purchase contracts is given by,

U
in
i (e1,e2, pi,αi,βi) = E(−exp{−γi(−pi +αiS ei + (−1 +βi)L

(i)
e1,e2 − ciei)})

= −exp{γi · (pi + (ci−αi) · ei +
1
2α

2
i ·γiσ

2
i + (1−βi)µ(ei + xe−i) + 1

2γi(1−βi)2λ(ei + xe−i))}

Similar to Section 2.5.2.3, the best-response function of player i, is Bin
i , is given by,

mi(αi,βi) = argmine≥0(1−βi)µ(e) + 1
2γi(1−βi)2λ(e) + (ci−αi) · e .

Bin
i = (mi(αi,βi)− xe−i)+

Agents’ efforts at the unique Nash equilibrium are
e∗i (mi(αi,βi),m−i(α−i,β−i)), with e∗i (., .) defined in (2.28). For notational convenience, we
simply denote these by e∗i .

To write the insurer’s problem, note that the outside option of agent 1 (resp. 2) from this game
is the game Goi (resp. Gio). The IR constraints can again be shown to be binding, simplifying the
insurer’s problem to,

vii = maxα1,0≤β1≤1,α2,0≤β2≤1,e∗1≥0,e∗2≥0 woi
1 + wio

2

−µ(e∗1 + x · e∗2)− 1
2γ1(1−β1)2λ(e∗1 + x · e∗2)

−c1 · e∗1−
1
2α

2
1γ1σ

2
1

−µ(e∗2 + x · e∗1)− 1
2γ2(1−β2)2λ(e∗2 + x · e∗1)

−c2 · e∗2−
1
2α

2
2γ2σ

2
2

s.t.,

e∗1,e
∗
2 are the agents’ effort in NE of game Gii

where woi
1 =

ln(−uoi
1 )

γ1
and wio

2 =
ln(−uio

2 )
γ2

.
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APPENDIX B

Embracing and Controlling Risk Dependency in
Cyber-insurance Policy Underwriting

Proof of Theorem 3.2

Proof (Theorem 3.2) Notice that Uo( f ′o) +
∑n

i=1 U i( f ′o) = Vo( f ′o) +
∑n

i=1 V i( f ′o) = V total( f ′o). We

assume that Uo( f?o ) ≥ 0, otherwise no insurer underwrites the SP. By the optimality of f ∗∗o for

V total( f ′o) we have,

Vmax = V total( f ∗∗o ) ≥ V total( f?o ) = Uo( f?o ) +
∑n

i=1 U i( f?o ) ≥
∑n

i=1 U i( f?o ) = Umax (B.1)

Moreover, similar to the proof of theorem 3.1, by the first order condition we can show that,

f?o =

(
fo− (P′o)−1

(
bo[

lo+q·
∑n

i=1 li·(t−t·E(Pi( fi)))
]))+

(B.2)

Also, from the proof of theorem 3.1, we have,

f ∗∗o =

(
fo− (P′o)−1

(
bo[

lo+
∑n

i=1 li·(t−t·E(Pi( fi)))
]))+

(B.3)

Because P
′

i(.) is an increasing function and b0[
l0+q·

∑n
i=1 li·(t−t·E(Pi( fi)))

] > b0[
l0+

∑n
i=1 li·(t−t·E(Pi( fi)))

] , we have

f ∗o ≤ f ∗∗o .
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Examples of the Loss Probability Function and Optimal Incen-
tive Factors

Let’s assume that Pi( fi) =
qi

bi·(ai− fi)
ri

+1
, where qi,ai,ri are constants and qi < 1 and ai > fmax. Then

we have,

E{Pi( fi)} =
qi·ri

bi·( fmax− fmin) ln bi·(ai− fmin)+ri
bi(ai− fmax)+ri

(B.4)

Now we find f ∗o and f ∗∗o for the following examples,

• Po( fo− f ′o) =
p

bo·(a−( fo− f ′o))
r +1

, where p,a,r are constant.

The optimal incentive factor f ∗o is given by,

f ∗o = ( fo−a + r
bo

(
√

p·lo
r −1))+ (B.5)

Moreover, we can calculate f ∗∗o as follows,

f ∗∗o = ( fo−a + r
bo

(

√
p·
[
lo+

∑n
i=1 li·(t−t·E(pi( fi)))

]
r −1))+ (B.6)

Notice that f ∗∗o ≥ f ∗o .

• po( fo − f ′o) =
p

(1+exp( bo·(a−( fo− f ′o))
r ))

where p,a,r are constants. Notice that this faction is not

convex but we will show that f ∗∗o ≥ f ∗o in this case as well.

The optimal incentive factor f ∗o is given by,

– If p·lo
r < 4, then f ∗o = 0

– If p·lo
r > 4 and

p·lo
r −2+

√
(2− p·lo

r )2−4
2 < exp(bo·(a− fo)

r ) , then f ∗o = 0.

– Otherwise, f ∗o satisfies following equation:

exp(
bo · (a− ( fo− f ∗o ))

r
) =

p·lo
r −2 +

√
(2− p·lo

r )2−4

2
(B.7)

If the insurer underwrites the service provider and customers, then optimal incentive factor
f ∗∗o is given by,
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– If
p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

]
r < 4, then f ∗∗o = 0

– If
p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

]
r > 4 and

p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

]
r −2+

√
(2−

p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

]
r )2−4

2 <

exp(bo·(a− fo)
r ) , then f ∗∗o = 0

– Otherwise, f ∗∗o satisfies following equation:

exp(bo·(a−( fo− f ∗∗o ))
r ) =

p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

]
r −2+

√
(2−

p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

]
r )2−4

2

(B.8)

Because
[
lo +

∑n
i=1 li · (t− t ·E(Pi( fi)))

]
≥ lo, then f ∗∗o ≥ f ∗o in this case as well.

• po( fo− f ′o) = q + pexp(−bo·(a−( fo− f ′o))
r ), where p,q,r,a are constant and p + q < 1 and fo < a.

By the first order condition we have,

f ∗o =
(

fo−a− r
bo

ln r
p·lo

)+
(B.9)

Moreover, f ∗∗o is given by,

f ∗∗o =

(
fo−a− r

bo
ln r

p·
[
lo+

∑n
i=1 li·(t−t·E(Pi( fi)))

])+

(B.10)

All of the above examples imply that the insurer should offer higher discount factor when she
underwrites the SP and the customers as compared to the optimal incentive factor which maximizes
Vo( f ′o).

A Cyber-insurance policy: CyberSecurity by Chubb
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APPENDIX C

Effective Premium Discrimination with Rare Losses:
Periodic Pre-screening and Active Policy

Proofs

Proof (Lemma 4.1) Proof by contradiction. Let (π̂1, π̂2, π̂3) be the solution of optimization prob-

lem (4.8), and assume that the (IR) constraint is not binding at the optimal contract (π̂1, π̂2, π̂3).
Because the (IR) constraint is not binding, the insurer can increase her utility by increasing π̂2, π̂3

while she keeps exp{γπ̂2} − exp{γπ̂3} fixed. Therefore, based on (4.9) the agent’s effort inside the

contract does not change, but the insurer’s profit increases. As a result, (π̂1, π̂2, π̂3) is not an optimal

contract. This is the contradiction implying that the (IR) constraint is binding.

�

Proof (Theorem 4.1) Proof by contradiction: Assume that ê = 0 and t = 1 and
[ (α−γc)(exp{γl}−1)

γc

]
>

1. First we show that under these assumptions, π̂1 = π̂2 = 1
γ ln(1− uo) := wo. Because ê = 0 and

t = 1, the optimization problem for finding (π̂1, π̂2, π̂3) is as follows,

max{π1,π2,π3}π1 +π2−2l

s.t.,

(IR) 1− exp{γπ1}+ 1− exp{γπ2} = 2uo

(IC) 0 = ein(π1,π2,π3)

(C.1)

By (IR) constraint we have,

1
γ

ln(2−2uo− exp{γπ1}) = π2 (C.2)
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Therefore, we re-write the optimization problem (C.1) as follows,

max{π1,π2,π3}π1 + 1
γ ln(2−2uo− exp{γπ1})−2l

s.t.,

(IC) 0 = ein(π1,π2,π3)
1
γ ln(2−2uo− exp{γπ1}) = π2

(C.3)

Because π3 does not appear in the objective function, we first find π1 and π2 such that they

maximize the objective function. Then, we pick π3 such that (IC) constraint is satisfied. By the first

order optimality condition for the objective function, we have,

π̂1 = π̂2 =
1
γ

ln(1−uo) (C.4)

Without loss of generality, we set π̂3 = 1
γ ln(α−γc

α (1 − uo)). By (4.9), ê = 0 (Notice that
α
γc

exp{γπ̂2}−exp{γπ̂3}
exp{γπ̂1}

= 1 and a slight decrease in π̂3, increases the agent’s effort based on (4.9)).
Now we show that the decrease in π̂3 increases the insurer’s payoff. Notice that a slight de-

crease in π̂3, increases the agent’s effort (based on (4.9)) and improves agents’ utility and the (IR)

constraint is not violated. We write the insurer’s objective function as a function of π3. Therefore,

we have (derivatives in the following equation are left derivatives),

h(π3) = π̂1− p(ein(π̂1, π̂2,π3))(l− π̂2) + (1− p(ein(π̂1, π̂2,π3)))π3− l
∂h
∂π3
|π3=π̂3 =

∂p(ein(π̂1, π̂2,π3))
∂π3

· (π̂2− l)

−
∂p(ein(π̂1, π̂2,π3))

∂π3
·π3 + (1− p(ein(π̂1, π̂2,π3)))

=

(
∂p(ein(π̂1, π̂2,π3))

∂π3
|π3=π̂3 · (−l + π̂2− π̂3)− (1− p(ein

1 (π̂1, π̂2, π̂3)))
)

Because
[ (α−γc)(exp{γl}−1)

γc

]
> 1, (4.5) implies that eo is not zero and π̂2 = 1

γ ln(1−uo) < l. More-

over, ∂p(ein(π̂1,π̂2,π3))
∂π3

|π3=π̂3 > 0 implies that ∂h
∂π3
|π3=π̂3 < 0. Therefore, the decrease in π̂3 increases the

insurer’s payoff. This is a contradiction and the agent exerts non-zero effort in the optimal contract

under given assumptions.

�
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Proof (Theorem 4.2) By (4.14), the agent exerts non-zero effort in a contract if β = c. If the

discount factor β = c, then any positive number satisfies the (IC) constraint. Therefore, if β = c,

then the desired effort maximizes the insurer’s utility. By (4.14), we have,

e = argmax
e

wo− ce− tlexp{−α · e}−γc2σ2 (C.5)

By the first order condition of optimality, the solution of above optimization problem is e =

( 1
α ln(α·t·lc ))+. Moreover, if e > 0, then the maximum insurer’s profit using pre-screening (i.e., β = c)

is given by, {
wo− c

α ln(αtl
c )− c

α −
γc2σ2

2

}
(C.6)

Without pre-screening (i.e., β = 0), the agent exerts zero effort and the insurer’s profit is given

by,

wo− t · l (C.7)

Therefore, the insurer uses pre-screening if and only if,

1
α ln(α·t·lc ) > 0

wo− c
α ln(αtl

c )− c
α −

γc2σ2

2 ≥ wo− tl
(C.8)

In other words, the insurer uses pre-screening and the agent exerts non-zero effort if and only

if,

α · t · l
c

> 1

σ2 ≤
2
γc2 (tl−

c
α

(1 + ln(
αtl
c

)) (C.9)

�

Proof (Theorem 4.3) Assume σ < σ′.

Let g(β,e,σ) =

[
wo− ce− γβ2σ2

2 − p(e)l
]
. It is easy to see that g(β,e,σ′) ≤ g(β,e,σ). Therefore,
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we have,

max
β,e,IC constraint

g(β,e,σ′) ≤ max
β,e,IC constraint

g(β,e,σ)

Therefore, V(σ′) ≤ V(σ).
�

Proof (Theorem 4.4) • By (4.9), the agent exerts zero effort if ta α
γc

exp{γπ2}−exp{γπ3}
exp{γπ1}

≤ 1. Be-

cause ta goes to zero, ta α
γc

exp{γπ2}−exp{γπ3}
exp{γπ1}

also goes to zero. Therefore, the agent exerts zero

effort under any insurance contract.

• Because the agent exerts zero effort inside the optimal contract, his utility is given by,

U in(0,π1,π2,π3) = −exp{γπ}− ta exp{γπ2}− (1− ta)exp{γπ3}

(IR) is binding and ta→ 0⇒ 1− exp{γπ1}+ 1− exp{γπ3} = 2uo (C.10)

Therefore, the insurer’s problem (4.8) can be written as follows,

maxπ1,π2,π3 π1 +π3−2 · lp

s.t.,exp{γπ1}+ exp{γπ3} = 2−2uo (C.11)

or

maxπ1 π1 + 1
γ ln(2−2uo− exp{γπ1})−2lp (C.12)

The optimal solution for the above optimization problem is π1 = π3 = 1
γ ln(1− uo) and also

the value of π2 does not affect insurer’s or agent’s utility and can be any positive value.

�

Proof (Theorem 4.5) The proof is similar to the proof of theorem 4.2 except that we should sub-

stitute lp for t · l.

�

Proof (Theorem 4.6) As the (IR) constraint is binding in (4.23), similar to (4.14) we can re-write

optimization problem (4.23) as follows,
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R(σ) = max{β,e,β′,e′}
[
wo− ce + b(e− e′)−γ (β−β′)2σ2+(β′)2σ2

2 − p(e′)l
]

s.t., (IC)(e,e′) ∈ argmin(ẽ≥ẽ′)γ(c−b +β′−β)ẽ +γ(−β′+ b)ẽ′
(C.13)

First we show that ê = ê′. Proof by contradiction. Assume ê > ê′ ≥ 0. Then, β′ − β = b− c

since otherwise ê =∞ or ê = 0. As b ≤ c, then the objective function of (C.13) can be improved by

decreasing ê without violating (IC) constraint. This contradiction shows that ê = ê′.

By IC constraint, it is easy to see that if ê = ê′ > 0, then β = c, and β′ = b.

Let β = β̄,e = ē be the solution to (4.14). According to the IC constraint of (4.14), two cases

can happen:

i) β = 0 and e = 0. Then, (β = β′ = e = e′ = 0) satisfies the IC constraint in (C.13) and is a

feasible point. We have,

wo− ce−
γβ

2
σ2

2
− p(e)l =

wo− ce + b(e− e)−γ
(β−β

′
)2 + (β

′
)2

2
σ2− p(e)l (C.14)

ii) β = c. Then (β = c,β′ = b,e = e′ = e) is a feasible point for (C.13) and satisfies the IC

constraint. We have,

wo− ce−
γc2σ2

2
− p(e)l ≤

wo− c · e + b(e− e)−γ
(c−b)2 + b2

2
σ2− p(e)l (C.15)

Note that in this case (β = c,β′ = b,e = e′ = e) is the solution to (C.13).
By (C.14) and (C.15) we have, V(σ) ≤ R(σ). Notice that if b = c, then (C.13) and (4.14) are

equivalent and V(σ) = R(σ) as ê = ê′.

�
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APPENDIX D

Resource Pooling for Shared Fate: Incentivizing
Effort in Interdependent Security Games through

Cross-investments

On the voluntary participation and budget balance constraints
for taxation mechanisms

Neghizadeh and Liu [62] consider a model with a strictly concave utility function and show that
the taxation mechanisms may not be able to satisfy the voluntary participation and budget balance
constraints simultaneously. In this part, we provide an example to show that their result can be
extended to the quadratic utility model. Consider an example with the following parameters,

n = 30, xi j = 1 ∀i, j, i 6= j, bi = 30, ai = 1, li = 0 ∀i. (D.1)

In this example, the social welfare at the socially optimal outcome of game G is given by,

eee∗ = (2B−X−XT )−1 ·a = [0.5 . . .0.5]T ,

ui(eee∗) = 0.25 ∀i,
n∑

i=1

ui(eee∗) = 7.5. (D.2)

By the notion of exit equilibrium defined in [62], the agents’ effort when agent i unilaterally
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opts out of the taxation mechanism is given by,

ê(i)
i = argmax

ei≥0
ui(ei, ê

(i)
−i),

ê(i)
−i = arg max

e−i�0

∑
j 6=i

u j(ê
(i)
i ,e−i), (D.3)

where, ê(i)
i is the effort of agent i, and ê(i)

−i is a (n− 1)-dimensional vector denoting effort of the
agents excluding agent i at the exit equilibrium. Using the first order condition, the solution to
(D.3) satisfies the following system of linear equations,

ai−2 ·bi · ê
(i)
i +

n∑
k=1

xikê(i)
k = 0,

a j−2 ·b j · ê
(i)
j +

n∑
k=1

x jkê(i)
k +

∑
k 6=i

xk jê
(i)
k = 0 ∀ j 6= i, (D.4)

or equivalently,

(2B−X−XT
[i]) · ê̂êe

(i) = a, (D.5)

where ê̂êe(i) = [ê(i)
1 , . . . , ê

(i)
n ]T , and entry (r, s) of X[i] is equal to xrs if r 6= i and s 6= i. Otherwise, it is

zero.
In our example, the utility of agent i when he is the outlier, and the other agents are participating

in the taxation mechanism is given by,

ê̂êe(i) = (2B−X−XT
[i])
−1 ·a,

ê(i)
i = 0.1564,

ê(i)
j = 0.2891 ∀ j 6= i,

ui(ê̂êe(i)) = 0.7338,

u j(ê̂êe(i)) = 0.1672. (D.6)
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By symmetry, it is easy to see that ui(ê̂êe(i)) = 0.7338,∀i.
By [62], if

∑n
i=1 ui(eee∗)−

∑n
i=1 ui(ê̂êe(i)) < 0, then there is no taxation mechanism which induces

the socially optimal outcome and satisfies both week budget balance and voluntary participation
constraints. In our example, we have

∑n
i=1 ui(eee∗)−

∑n
i=1 ui(ê̂êe(i)) = −14.5143 < 0 which shows that

the result in [62] can be extended to the quadratic utility model.

proofs

Proof (Theorem 5.1) • Let ννν be the eigenvector of matrix 2B−X and λ be its eigenvalue cor-

responding eigenvector ννν. Without loss of generality, we can assume that νi is the maximum

element of ννν in absolute value (|νi| ≥ |ν j|,∀ j). Note that |νi| > 0 as the zero vector cannot be

an eigenvector by the definition of eigenvector. We have,

(2B−X) ·ννν = λ ·ννν =⇒

|λ · νi| = |2bi · νi−

n∑
j=1

xi jν j|

≥ |2bi · νi| − |

n∑
j=1

xi jνi ≥ 2bi · |νi| −

n∑
j=1

xi j|ν j|

≥ (2bi−

n∑
j=1

xi j)︸ ︷︷ ︸
>0

|νi| > 0 =⇒ |λ| > 0 (D.7)

Therefore, eigenvalues of 2B−X are non-zero and 2B−X is invertible.

• Let e be a constant such that e>maxi
ai

2bi−
∑n

j=1 xi j
. Consider game G′ =

{
V , {ui}i∈V ,A = [0,e]n

}
.

Note that A (the action space of game G′) is convex and compact and utility ui(ei,e−i) is

concave in ei. Therefore, by Brouwer fixed-point theorem, the best response mapping of

game G′ has at least one fixed point (Nash equilibrium). Let ê̂êe′ be the Nash equilibrium of

game G′, and ê′i be the maximum element in ê̂êe′. By (5.2), we know that ê′j 6= 0, ∀ j. We have,
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d ui(eee)
d ei

|eee=ê̂êe′ ≥ 0 (equality holds if ê′i < e)

ai−2biê′i +

n∑
j=1

xi jê′j ≥ 0 =⇒

(2bi−

n∑
j=1

xi j) · ê′i ≤ ai =⇒

ê′i ≤
ai

2bi−
∑n

j=1 xi j
< e. (D.8)

Therefore, ê′i < e which implies that ê̂êe′ is an interior point of set A and it should be an NE for

game G as well. Therefore, game G has at least one Nash equilibrium.

By (5.3), the fixed point of best response mapping of game G(X) satisfies the following,

(2B−X) · ê̂êe = aaa

As (2B−X) is invertible, the best response mapping has a unique fixed point ê̂êe = (2B−X)−1 ·aaa.

As game G(X) has at least one Nash equilibrium, and fixed point (2B−X)−1 ·aaa is the only
candidate for NE, (2B−X)−1 ·aaa should be a non-negative vector and a unique NE for G(X).

Proof (Corollary 5.1) Let 000 ∈Rn be a zero vector. By Theorem 5.1, we know that (2 ·B−X)−1 · ã̃ãa �

000 for any non-negative vector ã̃ãa. Set ãi = 1 and ã j = 0, ∀ j 6= i and ã̃ãa = [ã1, · · · , ãn]T . Then, (2 ·B−
X)−1 · ã̃ãa � 000 is the ith column of (2 ·B−X)−1. Because i is arbitrary, all columns of (2 ·B−X)−1 are

non-negative. Moreover, we have,

(2B−X) · ê̂êe = aaa

(2B−X− X̃) · ẽ̃ẽe = aaa =⇒

ẽ̃ẽe = (2B−X)−1 ·aaa + (2B−X)−1 · X̃ · ẽ̃ẽe

= ê̂êe + (2B−X)−1 · X̃ · ẽ̃ẽe︸ ︷︷ ︸
�000

� ê̂êe
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Proof (Theorem 5.2) Define f (eee) as follows:

f (eee) =

n∑
i=1

ui(eee)

=

n∑
i=1

−li + ai · ei−bie2
i + ei ·

n∑
j=1

xi je j

 (D.9)

First, notice that the Hessian of f (.) is H = −2B + X + XT , and H is a symmetric matrix with

real eigenvalues. Similar to the proof of Theorem 5.1, we can show that if 2bi ≥
∑n

j=1 xi j + x ji, ∀i,

then all eigenvalues of H are negative implying that f (.) is strictly concave and H is invertible.

Therefore, we can use the first order condition to find eee∗:

5 f (eee∗) = aaa− (2B−X−XT ) ·eee∗ = 0 =⇒

eee∗ = (2B−X−XT )−1 ·aaa . (D.10)

Note that eee∗ = (2B−X−XT )−1 ·aaa is the NE of game G(X + XT ), which implies that (2B−X−XT )−1 ·

aaa � 0. The result then follows from Corollary 5.1.

Proof (Theorem 5.8) Consider game G1
rp. In this game e1 j = e j1 = 0 for all j ∈ V − {1}. Let

E̊ = [e̊i j]n×n be the NE of G1
rp with e̊1 j = e̊ j1 = 0, ∀ j ∈ V −{1}. Moreover, let E̊i =

∑n
j=1 e̊ ji.

By the first order condition, best response of agent 1 is given by,

2b1e̊11−

n∑
j=1

x1 jE̊ j = a1 (D.11)

Moreover, by best response function of agent i > 1, we have,

2bie̊ii−

n∑
j=1

xi jE̊ j = ai

2b je̊i j− xi jE̊i = 0, j 6= i (D.12)
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Similar to (5.9) and by equation (D.11) and (D.12),


E̊1
...

E̊n

 satisfies the following,

(2B−XT
[1]−X)


E̊1
...

E̊n

 = aaa, (D.13)

where, all the elements of X[1] are equal to X except its first row and column which are zero vectors.

Similar to Theorem 5.3, if 2bi >
∑n

j=1

[
xi j + x ji

]
, ∀i, then game G1

rp has a unique Nash equilib-

rium, and we have,


E̊1
...

E̊n

 = (2B−XT
[1]−X)−1aaa

e̊11 =
a1

2b1
+

∑n
k=1 x1k · E̊k

2b1

e̊ii =
ai

2bi
+

∑n
k=1 xik · E̊k

2bi
∀i > 1

e̊ ji =
x ji · E̊ j

2bi
∀ j 6= i, i > 1, j > 1 (D.14)

By Corollary 5.1 and equation (D.14) and (5.10), it is easy to see that E̊i ≤ Êi and e̊i j ≤ êi j, ∀i, j.
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v1(E̊) = −l1 + a1e̊11−b1(e̊11)2 + (e̊11)
n∑

j=1

x1 jE̊ j

≤ −l1 + a1(e̊11 +

n∑
j=2

ê j1)−b1e̊2
11

+ (ê11 +

n∑
j=2

ê j1)
n∑

j=1

x1 j(
∑
k 6=1

êk j)


≤︸︷︷︸

by definiton of NE for Grp

− l1 + a1(ê11 +

n∑
j=2

ê j1)

−

n∑
j=1

b jê2
1 j + (ê11 +

n∑
j=2

ê j1)
n∑

j=1

x1 jÊ j

= vi(Ê) (D.15)

Therefore, the resource pooling satisfies the voluntary participation with respect to agent 1.

Similarly, we can show that it satisfies the voluntary participation with respect to any agent.

Proof (Theorem 5.9) The proof is similar to the proof of theorem 5.8. Consider game G
1
rp. With

the same argument we have, 
É1
...

Én

 = (2B−XT
[r1]−X)−1aaa

é11 =
a1

2b1
+

∑n
k=1 x1k · Ék

2b1

éii =
ai

2bi
+

∑n
k=1 xik · Ék

2bi
∀i > 1

é ji =
x ji · É j

2bi
∀ j 6= i, j > 1 (D.16)

where all the elements of X[r1] are equal to X except its first row which is a zero vector. By
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Corollary 5.1 and equation (D.16) and (5.10), it is easy to see that Éi ≤ Êi and éi j ≤ êi j, ∀i, j. With

the similar procedure as equation (D.15), we can conclude that the resource pooling satisfies the

strong voluntary participation defined in Definition 5.2 with respect to agent 1. Similarly, resource

pooling satisfies the strong voluntary participation with respect to all agents.

Proof (Theorem 5.10) Proof is similar to the proof of Theorem 5.3. We use the first order condi-

tion to find the best response functions.

∂vi(eeei,eee−i)
∂eii

= 0 =⇒

ěii =
ai

2bi
+

∑n
k=1 xik · Ěk

2bi
∀i

∂v j(eee j,eee− j)
∂e ji

= 0 =⇒

ě ji =
x ji · Ě j

2bi
∀ j 6= i, j ∈CI(i) =⇒

by adding above equations:

2bi · Ěi = ai +

 n∑
j=1

xi jĚ j


+

 ∑
j∈CI(i)

x jiĚ j

 ∀i ∈ V

=⇒ aaa = (2B−X−XT
c ) ·


Ě1
...

Ěn

 (D.17)

Under assumption 5.2, (2B−X−XT
c ) is invertible. We have,

(2B−X−XT
c )−1aaa =


Ě1
...

Ěn

 (D.18)
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Moreover, by best response mapping we have,

ěii =
ai

2bi
+

∑n
j=1 xi jĚ j

2bi
,

ěi j =
xi j · Ěi

2b j
,∀ j 6= i, j ∈CI(i) (D.19)

Therefore, the bast response mapping has a unique fixed point implying uniqueness of NE.

Proof (Theorem 5.11)

eee∗ = (2B−X−XT )−1 ·aaa

ê̂êe = (2B−X)−1 ·aaa
Ě1
...

Ěn

 = (2B−X−XT
c )−1 ·aaa

(2B−X) � (2B−X−XT
c )

� (2B−X−XT )

Corollary 1 =⇒ eee∗ �


Ě1
...

Ěn

 � ê̂êe (D.20)

Next we show that vi(ě̌ěei, ě̌ěe−i)≥ ui(êi, ê−i). Let ẽ̃ẽei be a vector with length |CI(i)| and all its elements

are zero except eii which is equal to êi (effort level of agent i at NE of game G). By definition of

NE, we have,

vi(ě̌ěei, ě̌ěe−i) ≥ vi(ẽ̃ẽei, ě̌ěe−i). (D.21)

As Ěi ≥ êi, ∀i, by (D.19) and (5.3) we have ěii ≥ êi. Moreover,
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vi(ẽ̃ẽei, ě̌ěe−i) = −li + ai · êi + ai

∑
k 6=i,k∈CI(i)

ěki−bi · (êi)2

+(êi +
∑

k 6=i,k∈CI(i)

ěki) ·
n∑

j=1

xi j · (
∑

k 6=i,k∈CI( j)

ěk j)

 ≥
−li + ai · êi−bi · (êi)2 + êi ·

n∑
j=1

xi j · ê j = ui(êi, ê−i)

(D.22)

By (D.21) and (D.22), vi(Ê) ≥ ui(ê̂êe) ∀i ∈ V .

Proof (Theorem 5.12) We first show Ěi ≥ Ěi. Note that


Ě1
...

Ěn

 = (2B− X − XT
c )−1 ·aaa and


Ě1
...

Ěn

 =

(2B− X − X
T
c )−1 ·aaa, where, entry (i, j) of Xc is equal to xi j if agent i and j belong to the same

community after merging community Cm and Cm−1. Otherwise, it is zero. We have,

(2B−X−XT
c ) � (2B−X−X

T
c )

Corollary 1 =⇒


Ě1
...

Ěn

 �

Ě1
...

Ěn

 (D.23)
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As Ěi ≥ Ěi, ∀i, by (D.19), we have ěi j ≥ ěi j, ∀i, j.

vi(ě̌ěei, ě̌ěe−i) = −li + ai · ěii + ai

∑
k 6=i,k∈CI(i)

ěki−

n∑
j=1

b j · (ěi j)2

+(ěii +
∑

k 6=i,k∈CI(i)

ěki) ·
n∑

j=1

xi j · (ěi j +
∑

k 6=i,k∈CI( j)

ěk j)

 ≥
−li + ai · Ěi−

n∑
j=1

b j · (ěi j)2 + Ěi ·

n∑
j=1

xi j · Ě j = vi(ě̌ěei, ě̌ěe−i)

(D.24)

Moreover, by the definition of Nash equilibrium for game G
c
rp, we have vi(ě̌ěei, ě̌ěe−i) ≥ vi(ě̌ěei, ě̌ěe−i).

Therefore, vi(ě̌ěei, ě̌ěe−i) ≥ vi(ě̌ěei, ě̌ěe−i).
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