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PREFACE

It is my hope that my twenty-four readers will forgive me if I burden them with additional

text to read before the thesis is even started. However, for this thesis to be most fruitful to

them, I deemed it worth it to spend a few words on the thesis origin and organization.

This thesis could be conveniently separated in two parts, one about reduced-order-

modeling of bladed disks, and another one about the vibration reduction of such systems.

Even though the results and topics covered in the two parts are from projects that differ

in nature, they do tackle the same issues that plague turbomachinery components. While

the first part focuses on tools to be used to achieve improvements in the design phase, the

second part focuses on additional tools and devices that can be used to mitigate excessive

vibrations once the blisk design is established. As a result, each chapter is written with the

aim of being self-contained, similar to a standalone research article, containing abstract, in-

troduction and conclusion. Thus, the reader interested in a specific topic may prefer to move

directly to the chapter of interest, skipping the other ones. While the introductory material

in each chapter could be somewhat redundant throughout the thesis, it will guarantee the

best reader experience. Enjoy!
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ABSTRACT

Integrally bladed rotors (IBRs), also known as blisks, are important turbomachinery

components at the core of gas turbine engines. In operating conditions, IBRs must withstand

large centrifugal forces, high temperatures, and blade vibrations caused by upstream flow

perturbations. The combination of the cyclic symmetric design of blisks and their inherent

mistuning, i.e. small deviations from the nominal properties and geometry, makes them prone

to vibration localization, that can lead to vibration amplification of some of the blades in the

system. Unlike traditional bladed disk assemblies, in which blades are connected to the disk

portion using frictional joints, blisks are manufactured in one piece. The lack of frictional

interfaces in blisks results in lower damping, which in turn causes even larger vibration

amplitudes. The concurrent presence of high steady stresses and vibration, combined with

the large numbers of cycles that blisks blades must withstand, can lead to blade failure due to

high cycle fatigue. As a result, the study and reduction of blisk vibrations is of paramount

importance to ensure the safety and reliability of such components. The study of blisk

vibration is currently carried out using reduced order models (ROMs), due to the prohibitive

computational cost associated with the repeated solution of large size finite element models.

Vibration reduction is commonly pursued using ring dampers, which typically present low

effectiveness.

A two-fold approach is used in this work to tackle the complex problem of vibration

characterization and mitigation in IBRs. First, a set of efficient ROM tools is introduced to

be used in the design phase. Then, novel damping mechanisms are proposed for vibration

reduction in operating conditions.

xii



A conditioning technique for projection-based ROMs is presented together with examples

of applications. Due to the need to model the effects of repairs (blends) or geometric changes

during design iterations, models often require the use of distinct meshes for the same com-

ponent. A novel method is thus developed to overcome computational issues caused by the

use of multiple meshes in ROMs for mistuned blisks. Both methods preserve the accuracy of

the ROM and at the same time reduce the overall computational cost. In addition to this, a

method is presented to efficiently capture the effects of prestress in geometrically mistuned

blisks. Different cases and blend types are examined to prove the generality of the approach,

showing excellent agreement with the full order model.

The last three chapters are entirely dedicated to novel ring dampers concepts, in which

the core idea behind tuned vibration absorbers is leveraged to substantially increase damper

effectiveness. This allows for higher levels of energy dissipation by frictional nonlinearities,

making it possible for the damper to reduce vibrations even when placed in a region with

little blisk-alone motion. First, a preliminary computational study is introduced to prove

the validity of the concept. Then, a test rig is presented to experimentally demonstrate the

effectiveness of the concept. Finally, a novel damper design is presented and studied using

state-of-the-art computational tools.

xiii



CHAPTER 1

Introduction

In this chapter, an overview of the topics covered in this thesis is presented. After intro-

ducing the overarching motivation behind this work, a review of state-of-the-art literature is

carried out to provide the reader with the necessary background and expose the literature

gaps that will be addressed. Finally, the objectives of the thesis are presented.

1.1 Motivation

Integrally bladed rotors (IBRs), also known as blisks, are structures commonly used in gas

turbine engines, and more generally in turbomachinery, due to improvements in performance

and reduction in the number of components that they provide compared to traditional rotors

[1]. The components number reduction is due to the fact that IBRs are manufactured in

one piece, unlike traditional turbomachinery rotors, where the disk and blade portions are

assembled via fir-tree or dovetail joints. IBRs are nominally cyclic symmetric, i.e. the full

system can be obtained by repetition of a basis substructure around the symmetry axis [2, 3].

However, due to manufacturing tolerances, wear, and damages, the symmetry of the nominal

structure is broken in real IBRs. Any deviation from nominal conditions is called mistuning.

Unlike traditional rotors, in which blades can be easily replaced when damaged, IBRs need

to be either repaired or replaced entirely. This poses a challenge for the maintenance of such

1



systems, as it is not economically feasible to replace the entire IBR, whose manufacturing

is lengthy and costly. For this reason, repairs called blends are typically carried out to

prevent the propagation of existing damages, e.g. cracks. The blending process consists of

material removal in the damaged area to prevent crack propagation, thus avoiding potential

component failure. In fact, turbomachinery components typically operate in very demanding

operating conditions. The blades must withstand large static and dynamic stresses, due to

centrifugal forces and aerodynamic loads caused by upstream flow perturbations, which

can vary depending on the operating conditions. The presence of flow forcing is particularly

dangerous because the combination of the cyclic symmetric design of blisks and their inherent

mistuning makes them prone to vibration localization, which results in the amplification of

blade vibration for some of the blades in the system [4, 5]. Furthermore, blisks present very

low damping due to the absence of frictional contacts and joints, that are instead typically

present in standard disks with inserted blades [3, 4]. This can result in large vibration

amplitude in one or more blades, which combined with the high levels of stress that the

material has to withstand can lead to high cycle fatigue and ultimately blade failure.

For this reason, it is extremely important to study the vibration characteristics of blisks

taking into account the effects of mistuning, the presence of repairs, and the various operating

conditions. This also includes the study of vibration damping mechanisms applied to blisks.

1.2 Background

The presence of mistuning, i.e. any deviation from nominal properties or geometry, in

turbomachinery blisks is known to cause vibration amplification of some of the blades in

the assembly [3, 4, 6]. As a result, high cycle fatigue (HCF) is a major concern for such

structures [7], and a great deal of effort has been spent investigating blisk vibrations. Over

the past decades, the increase in computational capabilities has led to an increased use of
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simulation in design. The simplistic lumped mass models initially used to understand the

overall dynamics of the system have been mostly replaced by large high-fidelity finite element

(FE) models [3, 4]. The cyclic symmetry of blisks can be exploited to significantly reduce

the computational cost associated with structural and vibrational analysis [2, 3], since a

single sector, with appropriate boundary conditions, can be used to carry out the analysis

in lieu of the full system. This technique, however, is unable to capture the presence of

mistuning, which is known to significantly alter the dynamic behavior of bladed disks with

its symmetry breaking effects. Thus, only full wheel analyses, i.e. involving a model that

includes all sectors, can capture the mistuned response when using traditional FE models.

To make things worse, due to the stochastic nature of mistuning, probabilistic analyses are

required to evaluate the possible behavior of a blisk. It is not uncommon for some of these

models to have millions of degrees of freedom (DOFs) per sector, which makes the solution

of multiple forced response problems intractable using FE model. Due to the prohibitive size

of full order FE models, the use of reduced order models (ROMs) is now very common in

structural dynamics [8–13]. This is due to the need for faster but at the same time reliable

and accurate models to predict the behavior of complex systems in a timely fashion. Several

techniques have been developed over the years, both general and problem-specific.

Among the most common reduction techniques one can recall proper orthogonal decom-

position [14], balanced truncation [15], balanced proper orthogonal decomposition [16], and

Kyrilov subspace-based techniques [17]. Good overviews of some of the methods currently

used can be found in [15, 18–20]. Several studies have been conducted over the years on the

dynamical behavior of such ROMs, with a particular focus on the stability of the reduced

order system [19, 21–23]. For example, when different sets of projection vectors are used, as

it is commonly done in parametric ROMs, the projection vectors can potentially span the

same subspace [20, 24, 25]. For this reason, conditioning is important, and several solutions

have been proposed. In [9, 24–27], conditioning is applied to the transformation matrix
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before projection, to make sure that the projection vectors are linearly independent. Such

methods require manipulation of full size matrices and vectors, thus they are not computa-

tionally efficient. Several techniques have been proposed to alleviate this issue, e.g. rank-one

update [28], and some approaches have been successfully applied to ROMs in the context

of dynamic model reduction [29]. Other techniques have been developed to work directly in

the ROM space, but they mainly focus on the stability of the system under the assumption

of well-conditioned projection matrices. In [22], a Petrov-Galerkin projection method is con-

sidered, and a convex optimization problem is solved to modify the left reduced-order basis

(ROB) and enforce system’s stability. This is done implicitly, i.e. not operating directly on

the ROB but on the ROM. One of the goals of the thesis is to tackle these numerical issues

in a more numerically efficient way.

Researchers have extensively studied in the past the effects of mistuning on the dynamics

of blisks using ROMs, focusing in particular on geometric mistuning [9, 11, 13]. An interest-

ing type of geometric mistuning is the use of blends, i.e. repairs applied to damaged sectors

via material removal, for the repair of cracked or damaged blisks. Such repairs need to be

carefully designed so that they have minimal impact on the vibration of the original blisks.

For this reason, ROMs have been created for the analysis and optimization of such repairs.

The Mode-Accelerated X-Xr (MAX) method presented in [10] is particularly adapt to model

such effects, and able to include the more common stiffness mistuning using component mode

mistuning (CMM) [30]. However, among all the techniques that have been proposed for the

study of the structural dynamics of geometrically mistuned blisks [8–13], only a few studies

focus on the issues that may arise when using multiple meshes. When geometric changes

are large, as is the case in the presence of blends, advanced mesh morphing techniques can

be used to ensure that the FE model accurately represents the blended geometry and main-

tains mesh quality (e.g., it does not result in coarsely represented surfaces). Several studies

involving mesh morphing can be found in turbomachinery [31–34]. The morphing process
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must be carried out for each geometrically mistuned blade in the assembly, resulting in a

system that potentially has as many different sector meshes as the number of sectors. When

it comes to cyclic symmetric structures, such as the ones found in turbomachinery, many

challenges arise, such as mode clocking, interface compatibility, and projection errors. The

issue of mode clocking is discussed in detail in [9], where a solution to deal with small geo-

metric mistuning is proposed. However, the small mistuning assumption does not hold for

large blends. In that case, not only the clocking might affect the results, but also the mesh

compatibility at the (disk) interface between sectors. This compatibility can be expressed as

a set of constraints on node pairs requiring them to experience the same motion [12]. This

becomes a significant challenge especially when acceleration modes are used, like in the case

of the MAX method [10]. Thus, it is not efficient to use the methods presented in [9, 12]. A

new method will be introduced in this thesis.

In addition to mesh morphing, other aspects must be considered, such as the fact that

geometric mistuning can present a significant interaction with centrifugal loading and other

sources of prestress. Turbomachinery components typically operate in very demanding con-

ditions, and the operating condition at which the system is excited has a significant impact

on the response. For example, rotational effects as well as aeroelastic effects have been

shown to have an important role on the vibration characteristics of the system [5, 35–38].

The thermo-mechanical aspects of the problem could also be taken into account, as they

are relevant to the product life cycle [39]. The introduction of centrifugal effects, a typical

source of prestress, can be easily accommodated in ROMs. In [40, 41] the general problem of

cyclic rotating structures is tackled using cyclic symmetry together with component modes

synthesis [42]. Some of the effects arising when mistuning is combined with the effects of

rotation are investigated in [43–45]. In [43] the effects of mistuning are studied using a set

of basis vectors that adequately spans the interface motion between sectors. This method

ensures the compatibility condition at the interface, but it also requires an extra set of modes
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to be computed, which can be cumbersome. The method is extended to a range of variable

rotation speeds using parametric techniques. In [44, 45] a study on cracks and coriolis effects

in rotating disks is presented, without dealing with the compatibility condition at the inter-

face that is of interest here. In [46] a study on the effect of prestress can be found, focusing

in particular on the presence of contact forces, but without dealing with geometric mistun-

ing. Results on the study of mutual influence between Coriolis forces and blade mistuning

are also available [35], but no attention is given to how to treat noncyclic prestress. When

it comes to model order reduction, another such solution is to use parametric ROMs [47],

which are known to be effective. However, many parametric ROMs are not particularly effi-

cient because they require the calculation of multiple sets of modes, and because of possible

numerical instabilities of the transformation matrix [20, 47]. The effects of rotational speed

can be captured as variations in the stiffness matrix, as suggested by previous studies for the

blade part only [36]. The inefficiencies and deficiencies of current methods in the modeling

and calculation of noncyclic prestress are tackled in this thesis.

The study and modeling of blisk vibration through the use of ROMs, as presented in

this chapter, is a necessary step for the identification of potentially damaging resonances.

Complementary to that is the reduction of vibration amplitude through the use of effective

damping mechanisms. Several damping solutions have been employed in the past, among

which we can recall the use of coatings [48, 49], order-tuned vibration absorbers [50] and

impulse mistuning [51]. Another common approach is to use frictional nonlinearities to

dissipate energy [52]. Examples include under-platform dampers [53–55], ring dampers [56,

57], and shrouds [26, 58], which add nonlinear damping to the system by means of frictional

contacts. Great efforts have been made to design and study ring dampers [56, 57, 59, 59–64].

However, the effectiveness that ring dampers provide can be limited because they rely on

the relative motion present between a damper and its groove, which can be very small when

blade to disk coupling is low [62], or in blade dominated modes. The same concept can be
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found in applications to gears [65–67], even in that case with low effectiveness [65]. Since

their effectiveness is limited and only specific modes can be targeted, studies in the past have

focused their interest in low frequency and low nodal diameters regions [59–61], because of

the fact that higher frequencies and ND would typically present small disk motion, and thus

little energy dissipation. One of the challenges associated with friction dampers is to ensure

damper effectiveness across multiple operation regimes and frequency ranges. A concept

that has been exploited in the past for the suppression of vibrations in civil and mechanical

structures is the one of tuned vibration absorber [68–70].Several studies have been carried

out in order to extend the concept to multiple tuned mass dampers [71] and multi-DOF

systems [72]. This concept does not rely on nonlinearities, and does not require large motion

at the attachment location in order for it to be effective. The effectiveness of this concept is

based on energy transfer and frequency split that is achieved through tuning. The natural

frequency split shifts the resonance of the host structure away from the area of interest,

resulting in lower amplitude response. Turbomachinery blisks are subject to narrow band

excitations with specific spatial patterns known as traveling-wave excitations [73]. This type

of excitation makes tuned mass dampers (TMDs), or tuned vibration absorbers (TVAs), good

candidates for vibration reduction in such structures. Several studies have been carried out in

the past on TMDs in applications ranging from space structures [74] to missile launchers [75].

A general overview can also be found in [76]. Some studies focused on the use of Coulomb

friction as a method to dissipate the energy that is transferred to the TMD [77, 78], and most

of these studies have been carried out only computationally [77]. However, due to modeling

challenges such as those in contact modeling, experimental validation is necessary. The study

presented by Hartung et al. [78] introduced an experimental setup for the investigation of

TMDs with contacts. The experiment is designed to replicate a 2-DOF lumped mass model,

as the elasticity in the system only comes from connecting springs. That study, however,

does not capture the effects of the position of the TMD in realistic 3D assemblies or the role
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that geometry and mode shapes could play in the effectiveness of such TMD. In this thesis,

several studies will be presented on a novel ring damper concept based on the concept of

friction-enhanced TMD.

1.3 Objectives

The first goal of this thesis is to address the potential numerical issues in ROMs intro-

duced in [9, 24–27]. In Chapter 2, a conditioning technique for projection-based ROMs for

structural dynamics is presented. Due to the nature of such systems, only Galerkin methods

are discussed, i.e. methods in which the left and the right transformation matrices are the

same. However, the approach can be extended to Petrov-Galerkin ROMs as well, with only

few changes to the proposed algorithms. The numerical issues potentially arising from the

use of a nearly singular transformation matrix are examined, and a robust solution based on

the ROM mass matrix is proposed.

Since only a few studies focus on the issues that may arise when using multiple meshes

in ROMs for blisks structural dynamics, the topic is explored in Chapter 3. Issues such as

mode clocking, interface compatibility, and projection errors are examined, and an efficient

method able to tackle both interface compatibility and clocking issues for the calculation of

pristine morphed normal modes is proposed.

Chapter 4 covers the efficient calculation of prestress effects in ROMs for geometrically

mistuned blisks, focusing in particular on the method presented in [10]. None of the studies

found in literature focus on the efficient extraction of the prestressed matrices for a mistuned

system. In this section, the focus is set on the creation of a method that can be used in the

creation of ROMs in all those cases where prestress can substantially interact with mistuning.

The second part of the dissertation is about novel damping mechanisms for IBRs. In

Chapter 5 a novel damper concept that combines the working principles of vibration ab-
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sorbers and ring dampers to overcome the limitations of traditional ring dampers is pre-

sented. A computational study is carried out to analyze and assess damper effectiveness.

Chapter 6 has two main goals. The first goal is to experimentally and computationally

assess the effectiveness of the proposed friction-enhanced TMD concept using a simple test

rig. The second goal is to experimentally validate a simulation tool based on the harmonic

balance method that is currently used to model nonlinear vibrations in the presence of

friction. The proposed setup is a simplified representation of a TMD hosted on the disk

region, far away from the blade tip, where only small motions are present. The experimental

results are used to validate the predictive ability of a high-fidelity finite-element model used

in combination with a harmonic balance solver.

Finally, a realistic damper design based on the findings from the previous chapters is

introduced in Chapter 7. The aim of this chapter is to further expand the understanding of

novel damping mechanisms for blisks, focusing in particular on realistic ring damper designs

based on the TVA concept. The blisk model used in this study was provided by The Ohio

State University (OSU) Gas Turbine Laboratory (GTL). A damper based on the design

presented herein is scheduled to be tested as a part of a study on mistuning and damping

[79].
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CHAPTER 2

A Conditioning Technique for Projection-Based

Reduced Order Models

In this chapter, the numerical issues potentially arising from the use of a nearly singular

transformation matrix are examined, and a robust solution based on the ROM mass matrix

is proposed. The proposed conditioning approach can be viewed as an implicit manipulation

of both the right and the left ROB. The manipulation is implicit because it is carried out on

the ROM itself, without prior knowledge of the transformation matrix required. Since the

proposed approach works after projection, it is referred to as post-conditioning. An insight

into the physical meaning of the approach is presented, to highlight why the technique pre-

serves the maximum amount of information included in the original transformation without

sacrificing numerical stability and accuracy. The method is first tested on a simple system.

Then, a more complex case of a ROM for an bladed disk (blisk) is presented to demon-

strate how this strategy is versatile and applicable to a wide range of problems of various

complexities.
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2.1 Introduction

The use of reduced order models (ROMs) is now very common in structural dynamics.

This is due to the need for faster but at the same time reliable and accurate models to predict

the behavior of complex systems in a timely fashion. Several techniques have been devel-

oped over the years, both general and problem-specific. Among the most common reduction

techniques one can recall proper orthogonal decomposition [14], balanced truncation [15],

balanced proper orthogonal decomposition [16], and Kyrilov subspace-based techniques [17].

Good overviews of some of the methods currently used can be found in [15, 18–20]. Several

studies have been conducted over the years on the dynamical behavior of such ROMs, with

a particular focus on the stability of the reduced order system [19, 21–23]. It is worth men-

tioning that ROMs built using a Galerkin method are in general able to preserve the system

stability for well-conditioned bases and positive definite matrices [23]. However, bases are

not always well-conditioned from a numerical standpoint. For example, when different sets

of projection vectors are used, as it is commonly done in parametric ROMs, the projection

vectors can potentially span the same subspace [20, 24, 25]. A theoretically well-conditioned

transformation matrix can become numerically ill-conditioned when its vectors are nearly

linearly dependent. As it will be shown in the following sections, this can produce erroneous

results in the ROM. For this reason, conditioning is important, and several solutions have

been proposed.

In [9, 24–27], conditioning is applied to the transformation matrix before projection,

to make sure that the projection vectors are linearly independent. This is typically done

using a singular value decomposition (SVD) of the transformation matrix. The conditioned

transformation matrix is obtained selecting a subset of left singular vectors corresponding to

the largest singular values. In this paper such an approach is referred to as pre-conditioning.

Such methods require manipulation of full size matrices and vectors, thus they are not
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computationally efficient. Furthermore, such approaches are particularly cumbersome in

applications such as parametric ROMs or adaptive ROMs, where the projection vectors can

change as the system parameters or forcing changes, requiring multiple conditioning steps.

Moreover, due to the large size of the problem, performing SVD might become cumbersome.

Hence, several techniques have been proposed to alleviate this issue, e.g. rank-one update

[28], and some approaches have been successfully applied to ROMs in the context of dynamic

model reduction [29].

Other techniques have been developed to work directly in the ROM space, but they

mainly focus on the stability of the system under the assumption of well-conditioned pro-

jection matrices. In [22], a Petrov-Galerking projection method is considered, and a convex

optimization problem is solved to modify the left reduced-order basis (ROB) and enforce

system’s stability. This is done implicitly, i.e. not operating directly on the ROB but on

the ROM, as it is done in this paper. Another strategy found in literature is to enforce

stability by reassigning the unstable eigenvalues of the system through a black-box post-

processing algorithm acting on the ROM [21]. The minimization of the objective function

requires knowledge of the system response obtained from the full order model, that may not

be available. Due to the need for a full order result for every case, the computational burden

associated with this strategy is high when multiple ROMs must be created.

A significant effort can be found in mathematical literature to solve the general issue of

numerically ill-conditioned problems. Examples can be found in papers involving the general

case of solving ill-posed linear equations [80], or generalized eigenvalue problems [81, 82].

The use of such techniques is not recommended nor required here, due to the fact that the

matrices involved in the ROM lack some of the fundamental properties of the original full

order matrices like positive (semi)definiteness, and thus would produce inaccurate results.

In this paper, the focus is on projection-based ROMs for structural dynamics. Due to the

nature of such systems, only Galerkin methods are discussed, i.e. methods in which the left

13



and the right transformation matrices are the same. However, the approach can be extended

to Petrov-Galerkin ROMs as well, with only few changes to the proposed algorithms.

2.2 Background

In this section, the procedures carried out to build a ROM are reviewed, focusing on

those steps that are more relevant to this study, i.e. the possible sources of numerical issues.

Considering a second order structural undamped system with N degrees of freedom (DOFs)

the equations of motion (EOMs) can be written as

Mẍ + Kx = f , (2.1)

where M is the mass matrix, K is the stiffness matrix, f is the vector of generalized forces

acting on the structure, and x is the vector of generalized coordinates. The size of the

problem in Eq. 2.1 is N × N , where N can be very large, often of the order of hundreds

of millions of DOFs. To reduce the size of the problem, it is convenient to assume that the

vector x can be represented as a linear combination of a set of projection vectors as

x = Tq, (2.2)

where T is the transformation matrix, whose columns are the projection vectors, and q is a

reduced set of coordinates. By substituting Eq. 2.2 into Eq. 2.1 and pre-multiplying by TT

in a Galerkin fashion one obtains

TTMTq̈ + TTKTq = TT f , (2.3)
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which can also be written as

MROM q̈ + KROMq = fROM . (2.4)

The order reduction comes from the fact that the transformation matrix T is of size N ×m,

where m � N . The number of DOFs that are present in Eq. 2.4 after the transformation

is thus m. Note that in general, the left ROB does not necessarily have to be equal to the

right ROB, as is the case in multi-physical ROMs for example.

Let us now consider the nature of the matrices involved in Eqs. 2.1-2.4. For structural

dynamics, matrices M and K are positive definite (PD) and positive semidefinite (PSD)

respectively, and both are symmetric. When T is not singular, the resulting MROM and

KROM matrices preserve these properties. Recalling the definition of positive definiteness,

we can in fact write for a symmetric matrix A

Ar×r is PD ⇐⇒ ∀v ∈ <r vTAv > 0 if v 6= 0. (2.5)

Let us now consider the ROM matrices. MROM is PD if

vTMROMv > 0, i.e. vTTTMTv > 0. (2.6)

Since the initial matrix M is PD, MROM can only become singular if the transformation

matrix is singular, i.e.

MROM is PSD ⇐⇒ ∃ v ∈ <m ∧ v 6= 0 s.t. Tv = 0. (2.7)

Thus, if T is rank deficient, the resulting reduced order mass matrix loses its positive def-

initeness. This is the fundamental property, alongside with symmetry, that guarantees the
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eigenvalues of the system to be real and non-negative. As a result, the matrix pencil in

the ROM would lack the fundamental properties of the initial pencil, which are critical for

predicting the behavior of the system. Characteristics such as system’s stability or energy

conservation depend on these properties. Since we wish Eq. 2.4 to hold and to be rep-

resentative of the original system, the same conditions must be met by the reduced order

matrices. Both MROM and KROM are symmetric by construction, but the positive definite-

ness depends on the transformation matrix. It is in principle possible to pre-condition the

transformation matrix, but that approach is disadvantageous because the size of matrix T

can be prohibitively large. Because of this, it is desirable to condition the ROM matrices

after the transformation is applied, so that all the calculations are carried out on matrices

with a reduced size.

2.3 Post-conditioning technique

In this section, a new conditioning strategy operating in the ROM space is presented.

The working principle and the most important features are explained also.

2.3.1 Conditioning formulation

The conditioning technique is based on the reduced-order mass matrix because of its

properties. In fact, while K could be singular, e.g. when the system has rigid body modes,

M must be PD for structural systems. For this reason, it is possible to use the singular

values of MROM for conditioning. The key idea is to eliminate the smallest singular values

by means of a secondary projection. Using SVD, matrix MROM can be written as

MROM = UΣVT . (2.8)
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The diagonal matrix Σ can be used to estimate how numerically well-conditioned the reduced-

order mass matrix is. Combining Eq. 2.4 and Eq. 2.8, the new EOMs become

UΣVT q̈ + KROMq = fROM . (2.9)

The SVD matrices can be partitioned in a more insightful fashion as

MROM = UΣVT = [Ũ Uε]

Σ̃ 0

0 Σε


ṼT

VT
ε

 , (2.10)

where ˜ indicate quantities that are preserved, while the terms with subscript ε are small

quantities that have to be discarded. The size of Ũ and Ṽ is m × n, with n < m, and n

being the number of largest singular values retained. The quantities with subscript ε are the

ones associated with the smaller singular values (close to zero).

A change of coordinates q = Ṽη is introduced. One obtains:

UΣVT Ṽη̈ + KROMṼη = fROM . (2.11)

Pre-multiplying Eq. 2.11 by Ũ gives

ŨTUΣVT Ṽη̈ + ŨTKROMṼη = f̃ROM , (2.12)

where f̃ROM = ŨT fROM . Recalling the partitioning of the matrices in Eq. 2.10, one obtains

ŨT [Ũ Uε]

Σ̃ 0

0 Σε


ṼT

VT
ε

 Ṽη̈ + ŨTKROMṼη = f̃ROM . (2.13)
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Recalling the orthogonality of the SVD matrices, Eq. 2.13 simplifies to

Σ̃η̈ + ŨTKROMṼη = f̃ROM . (2.14)

The EOM presented in Eq. 2.14 are well-conditioned because the values retained in Σ̃ are

not close to zero. Notice also that U = V for the type of system considered because the

mass matrix is symmetric and PD. Finally, Eq. 2.14 can be written as

M̃η̈ + K̃η = f̃ROM , (2.15)

where the conditioned mass and stiffness matrices are n × n matrices M̃ = Σ̃ and K̃ =

ṼTKROMṼ. This process simplifies and conditions Eq. 2.4 at the same time. The size of

the new problem in Eq. 2.15 is in general smaller than the size of the initial ROM because

n < m. The approach to choose the singular values to be retained is discussed in Sections

2.3.3 and 2.4.

2.3.2 Working principle and physical interpretation

Let us consider the SVD of matrix MROM , partitioned as presented in Eq. 2.10. Since

Σε only contains the singular values that are close to zero, Vε approximates the null space of

MROM . Thus, the null space is effectively eliminated and the secondary projection prevents

the generalized coordinates q from spanning that part of the solution space. So doing, the

nearly singular matrix MROM is transformed into a positive definite matrix Σ̃. By expanding

the terms in Eq. 2.15, it can be noticed that this is equivalent to applying a transformation

matrix T̃ = TṼ to the original full order model. In fact one can write

x = TṼη = T̃η. (2.16)
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Matrix T̃ is a linear combination of the original vectors in T. This means that the new

transformation still contains the physical motions that were contained in T, but in a reduced

form; it consists of an exhaustive and linearly independent set of vectors. While this is true

theoretically, in numerical applications there is no universal distinction between very small

and zero singular values. This means that a small fraction of the information could be lost.

In Sections 2.5 and 2.6 we show that this loss of information has a negligible effect on the

overall accuracy of the ROM.

In Section 2.3.1 the focus was only on the reduced order mass matrix MROM . However,

the numerical issues arising in the stiffness matrix KROM are solved also. The secondary

projection implicitly conditions the transformation matrix, which is the same for both ma-

trices MROM and KROM , and thus removes the numerical issues from the matrix KROM as

well.

2.3.3 Conditioning procedure

Next, an example is presented to demonstrate the proposed technique for a practical case.

For the cases considered, the ROM matrices must be PD and PSD respectively. To ensure

this, one chooses the partitioning Σ̃ and Σε that results in the matrices preserving their

properties. This condition guarantees that the results are feasible and that the new ROM is

a proper representation of the initial physical system. The conditioning process is explained

in Algorithm 1. First, an SVD is carried out for MROM . Then the number of singular

values discarded is chosen according to a given threshold σth. The normalized singular

values, i.e. the singular values divided by the maximum singular value σ1, are compared

to the threshold. Only the singular values such that
σi
σ1

> σth are preserved, i.e. their

respective singular vectors are added to the transformation matrix. In practical applications

the threshold is a small number chosen based on the characteristics of the system.
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Algorithm 1 Conditioning procedure
Input: MROMm×m , KROMm×m , σth

[U,Σ,VT ]←− svd(MROM) ;

V = {v1,v2, . . . ,vm} ;

Σ = diag(σ1, σ2, . . . , σm), σi > σj ∀ i < j ;

for i = 1 to m do

if
σi
σ1

≤ σth then

break

end

Ṽ←− {v1,v2, . . . ,vi} ;

Σ̃←− diag(σ1, σ2, . . . , σi) ;

end

K̃←− ṼTKROMṼ ;

M̃←− Σ̃ ;

return M̃, K̃, Ṽ

Through the procedure presented in Algorithm 1 it is possible to preserve the relevant in-

formation included in the transformation matrix T, which is captured by Ṽ. Please note

that the truncation of the projection might result in some loss of information, depending on

the threshold chosen. To quantify the information loss, a set of error metrics is proposed in

the next section. They can be used for the formulation of a similar algorithm based on the

values of the proposed error metrics. Furthermore, they can guide the choice of the threshold

value, which is typically larger than machine precision but small enough to ensure that the

error metric is small.

20



2.4 Error metrics

In this section, numerical issues potentially associated with the proposed approach are

presented, and a solution is proposed. Often times, the transformation chosen is theoretically

well-conditioned. However, different vectors of the ROB are close to being linearly dependent,

as it will be shown in Sections 2.5 and 2.6. In such cases, the challenge is numerical, and

the threshold for conditioning different cases is not as clear. The singular values to be

discarded might not be zero, but they may be very small. The equations resulting from

a numerically ill-conditioned transformation are meaningful most of the time, but affected

by numerical issues. Consequently, an error is committed in the secondary transformation

matrix presented in Section 2.3.1. In this section an error metric is introduced to quantify

information loss.

Let us consider the secondary transformation presented in Section 2.3.1. If all vectors

from V are retained, it is possible to rewrite the transformation as

q = [Ṽ Vε]

η

ηε

 . (2.17)

After applying the transformation and simplifying, the EOM becomes

Σ̃ 0

0 Σε


 η̈

η̈ε

+

KŨ Ṽ KŨVε

KUεṼ
KUεVε


η

ηε

 =

 f̃ROM

fROMε

 , (2.18)

where KAB = ATTTKTB, with A and B being Ũ, Uε, Ũ or Vε. Equation 2.18 is equivalent

to Eq. 2.14 when all the vectors are retained in Ṽ. From a different perspective, the first

row of Eq. 2.18 is equivalent to Eq. 2.14 under the assumption that

KŨVε
ηε ∼= 0. (2.19)
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The post-conditioning approach presented in Section 2.3.1 leads to Eq. 2.14, which can

be solved for η. The value of η can then be used to evaluate ηε by imposing Eq. 2.18 to

hold. The first row of Eq. 2.18 evaluated for η obtained from Eq. 2.15 becomes simply Eq.

2.19. Thus, Eq. 2.18 becomes


KŨVε

ηε = 0

Σεη̈ε + KUεṼ
η + KUεVεηε = fROMε

. (2.20)

Once ηε is obtained, it can be used to estimate the error committed truncating the

secondary transformation. Two approaches are considered, static and dynamic. Both ap-

proaches use Eq. 2.20 to determine ηε.

2.4.1 Static approach

A first approach to solve Eq. 2.20 is to neglect Σε. This is a reasonable approximation

given the fact that the terms in the matrix Σε are very small. This approach provides a

static error because ηε is obtained by neglecting the contribution of the dynamic term in

Eq. 2.20 to obtain


KŨVε

ηε = 0

KUεṼ
η + KUεVεηε = fROMε

. (2.21)

The value of ηε can be expressed as

ηε =

KŨVε

KUεVε


†  0

−KUεṼ
η + fROMε

 , (2.22)

where † represents the pseudoinverse of the matrix. The value of η could be arbitrarily

chosen. In particular, η can be any one of the mode shapes obtained from the eigenvalue
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problem associated with Eq. 2.15, namely

−ω2
i M̃ηi + K̃ηi = 0, (2.23)

where ωi are the eigenfrequencies and ηi are the modes. A value ηεi can be obtained for

each ηi using Eq. 2.22.

2.4.2 Dynamic approach

A second approach is to include the dynamic term involving the generalized coordinates

ηε in Eq. 2.20. Equation 2.20 can be solved using a standard ODE solver for a given η(t). As

an alternative, a frequency domain solution can be found for each of the modes ηi obtained

from a modal analysis applied to Eq. 2.15. In that case, Eq. 2.20 becomes


KŨVε

ηεi = 0

−ω2
iΣεηεi + KUεṼ

ηi + KUεVεηεi = fROMε

, (2.24)

which gives

ηεi =

 KŨVε

−ω2
iΣε + KUεVε


†  0

−KUεṼ
ηi + fROMε

 . (2.25)

2.4.3 Error metric evaluation

As explained at the beginning of Section 2.4, it is necessary to obtain ηε in order to

estimate the error. This can be done using the techniques presented in Sections 2.4.1 and

2.4.2. Typically, these calculations are carried out for multiple vectors. The use of multiple

vectors is recommended so that the entire range of motion is included in the analysis. In this

section it is assumed that the n modal vectors obtained through Eq. 2.23 are used. Once
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all ηi and ηεi are obtained, the error metric e can be calculated as

e =

∑n
i=1

1
2
ηTεiKUεVεηεi∑n

j=1
1
2
ηTj KŨ Ṽ ηj

. (2.26)

For the specific case examined in Eq. 2.1, recall that the matrices U and V are the same,

and thus with the appropriate change of coordinates, the ratio presented above reduces to

e =

∑n
i=1

1
2
xTεiKxεi∑n

j=1
1
2
xTj Kxj

, (2.27)

where xεi = TVεηεi = Tεηεi is the physical displacement associated with the generalized

coordinates that have been neglected, and xj = TṼηj = T̃ηj is the physical displacement

associated with the generalized coordinates that have been kept. Thus, the numerator repre-

sents the strain energy that was neglected, and the denominator represents the strain energy

preserved in the model. The value of xε and the corresponding strain energy are expected to

be negligible. This is because Vε lies in the kernel of T. The metric in Eq. 2.26 is insightful

because it relates quantities in the ROM space to physical quantities, without the need to

expand to physical coordinates.

2.5 Example of the conditioning strategy

To demonstrate the conditioning strategy, a simple structure is considered next. The

system presented in Figure 2.1 consists of a chain of coupled oscillators. Please note that

the first and the last oscillators are connected to each other. The number of oscillators, and

thus the number of DOFs is N = 100.
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m m m
kckc kc kc kc

k1 k2 kn

Figure 2.1: Schematic of a system of coupled oscillators

The equation of motion for the ith oscillator is given by

mẍi + kixi + kc(2xi − xi+1 − xi−1) = fi, (2.28)

where m is the mass of the oscillator, ki and kc are the spring stiffnesses, fi is the forcing term

applied to the ith oscillator, and xi the respective displacement. The equations of motion

can be formulated in matrix form, as shown in Eq. 2.1. In that case it is possible to write

M = mI, with I being the N ×N identity matrix, and

K =



k1 + 2kc −kc 0 · · · 0 −kc

−kc k2 + 2kc −kc 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 −kc kN−1 + 2kc −kc

−kc 0 · · · 0 −kc kN + 2kc


. (2.29)

The system under investigation has two sets of stiffness values, depending on the position of

the springs. The first 50 oscillators have 20% larger stiffness, thus we can write ki = 1.2 ·k0

if 1 < i < 50 and ki = k0 when 51 < i < 100. The EOMs can be nondimensionalized by

dividing through by ko and introducing the ratio R = kc/ko. Thus, the normalized stiffness
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matrix K̃ becomes

K̃ =
1

k0

K =



1.2 + 2R −R 0 · · · 0 −R

−R 1.2 + 2R −R 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 −R 1 + 2R −R

−R 0 · · · 0 −R 1 + 2R


. (2.30)

Consider that this system is mistuned, i.e. contains small stiffness variations in its springs.

Thus, the ith oscillator is connected to a spring with a stiffness k̂i = ki + δi, where δi are

normally distributed random variables representing stiffness variations. Thus, the normalized

mistuned stiffness matrix becomes

K̄ =



(1.2 + δ1) + 2R −R 0 · · · 0 −R

−R (1.2 + δ2) + 2R −R 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 −R (1 + δN−1) + 2R −R

−R 0 · · · 0 −R (1 + δN) + 2R


.

(2.31)

By introducing the dimensionless natural frequency ω̄ = ω

√
m

ko
, and recalling the structure

of the matrix M, the dimensionless eigenvalue problem for the mistuned system becomes

K̄x = ω̄2x. (2.32)

A ROM to study the mistuned system is created. The first 100 nondimensionalized

eigenvalues for the mistuned system under investigation are presented in Figure 2.2a. They
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are obtained using normally distributed δi having mean µ = 0 and standard deviation

σ = 0.01, with coupling parameter R = 0.1. They are used as a reference to compare the

accuracy of the ROMs.

To prove the effectiveness of the post-conditioning technique, a numerically ill-behaved

transformation is created for the projection by an approach often used when constructing

parametric ROMs [24]. In that approach, the ROB is constructed by calculating modes of

the system at various parameter values, and adding them to the set of projection vectors. To

examine the effects of such an approach, consider that the mistuned response is expressed

as a linear combination of several sets of tuned and mistuned eigenvectors. The mistuned

eigenvalues and eigenvectors are obtained by separately applying three known mistuning

patterns, which are different from the mistuning pattern present in the system. The eigen-

vectors having lowest natural frequencies are chosen. The transformation used to obtain the

ROM can thus be written as

x = Tη =

[
Φ0 Φ1 Φ2 Φ3

]
η, (2.33)

where x is the vector of physical displacements, Φ0 is the set of tuned vectors and Φ1, Φ2

and Φ3 are the mistuned projection vectors obtained for each of the three known mistuning

pattern. Every set of modes includes 20 vectors This results in a ROM of the form of Eq.

2.4, of size m = 80. Recall that these projection vectors result in a transformation matrix

that is numerically ill-conditioned and requires conditioning.

Figure 2.2b shows the eigenvalues of the unconditioned ROM. It is important to notice

that the ROM returns negative eigenvalues, and that the eigenvalues of the unconditioned

ROM can be complex or unbounded, even if the initial system was undamped. This is due

to the fact that the transformation matrix is not full rank, and thus the ROM matrices are

ill-conditioned. Due to the fact that only the 20 lowest normal modes were included in the
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(a) Eigenvalues of the full order model

(b) Eigenvalues of the unconditioned ROM

Figure 2.2: Nondimensionalized eigenvalues of the system

transformation, we can expect accurate results only for the first 20 eigenvalues, while the

others are inaccurate due to the lack of corresponding modal information. The results are

compared using the eigenvalue error between the eigenvalues λROM of the ROM and λFOM

of the full order model, defined as

λerr =
|λROM − λFOM |

λFOM
. (2.34)

From Figure 2.3a it can be noticed that there is a large error between full order model and

unconditioned ROM due to the presence of spurious eigenvalues. When post-conditioning is

applied to the ROM the results shown in Figure 2.3b are obtained. The threshold for the
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singular values used in the application of Algorithm 1 was chosen to be σth = 10−15. It is

important to notice that the conditioned ROM (CROM) returns only positive eigenvalues.

Furthermore, the error between the first 20 eigenvalues of the full order model and the CROM

is of the order of 10−9. Thus, we can conclude that the information retained in the CROM

is the one needed to capture the system behavior. The modal assurance criterion (MAC)

[83] can be used to evaluate if the modes extracted resemble the ones of the full order

model. Figure 2.4 shows the MAC plot obtained for ROM and CROM, with the modes

ordered according to their eigenvalues. Only MAC values larger than 0.85 are plotted. It is

possible to notice that the CROM provides the correct modes in the correct order, while the

unconditioned ROM provides them in arbitrary order, with many spurious modes present.

Note that in general it is impossible to know the modes of the system a priori. Thus, the

conditioning strategy presented is important.

2.5.1 Free Response

To prove that the CROM can be effectively used to predict the dynamics of the system,

the free response is analyzed as well. The results of three models are shown and compared,

namely the full order model, the ROM, and the CROM. The results are obtained in the

time domain, and the resulting ordinary differential equations are solved numerically. The

full order results are used as a baseline to evaluate the accuracy of the other two. The

initial condition is chosen using a random combination of the first 50 modes included in

the transformation and null initial velocity. Figure 2.5 presents the results for the first two

oscillators. No difference can be noticed between the CROM and the FOM. In fact, it can be

noticed from Figure 2.5 that the full order model and the CROM solutions perfectly overlap,

whereas the difference with the unconditioned ROM increases over time. This proves that

the ROM matrices are ill-conditioned and require conditioning.
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(a) Unconditioned case

(b) Post-conditioned case

Figure 2.3: Eigenvalue errors for the conditioned and unconditioned ROM

2.5.2 Error metrics evaluation

To evaluate the loss of information due to the secondary projection, one can use the error

metrics presented in Section 2.4. For the case considered here, the size of the ROM was

reduced from m = 80 to n = 68, i.e. the algorithm discarded twelve singular values and

their respective vectors. Using the static approach where ηεi is based on Eq. 2.22 presented

in Section 2.4.1, we obtain the error es = 2.62 · 10−7. If we use the dynamic approach where

ηεi is defined in Eq. 2.25 from Section 2.4.2, the error becomes ed = 6.38 ·10−7. As expected,

both metrics return a very small error. From a practical standpoint this means that there

is no information loss.
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Figure 2.4: MAC plot for CROM and ROM showing only the modes having MAC > 0.85

2.6 ROM of a blended blisk

Let us now consider a more complex case of a ROM for a bladed disk. This structure

has cyclic symmetry, a feature that is often used to substantially reduce the computational

burden [2]. However, when slight modifications such as stiffness mistuning or blended blades

are present, the symmetry is destroyed, resulting in a substantially different response [4]. In

those cases other techniques, such as Craig-Bampton component mode synthesis, are usually

employed to create ROMs. In this section, the case of a bladed disk with two blended blades

such as the one shown in Figure 2.6 is considered. The initial EOMs are in the same form

as Eq. 2.1, and the approach used here for the ROM creation is the one proposed by Gan

et al. [10]. In this approach the concept of modal constraint modes (MCMs) is introduced.

This concept is somewhat similar to the wave-based substructuring presented in [27]. It

poses potential problems from a numerical perspective, because MCMs are not guaranteed

to be linearly independent, and thus can potentially create an ill-conditioned transformation
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(a) CROM results compared to full order model (FOM) results

(b) ROM results compared to full order model (FOM) results

Figure 2.5: Free response of the system

matrix. In addition, blend acceleration modes (BAMs) are introduced in the method to

accelerate convergence. This poses another challenge due to the very localized motion and

different scaling that these vectors have. The modal content introduced with MCMs can

also overlap with BAMs and thus introduce an additional problem. The ROM used in this

case is substantially more complicated than the one presented in Section 2.5, but it can be

summarized as

T =

[
ΦMCM ΦBAM Φ

]
, (2.35)
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Figure 2.6: Blisk with two blends

where ΦMCM represents the MCMs vectors, ΦBAM the BAMs vectors, and Φ the normal

modes.

The full size model of the blisk has 522, 666 nodes, resulting in 1, 567, 998 DOFs. The

model size can be reduced to 550 by means of substructuring and projection, considering

316 normal modes, 30 BAMs and 204 MCMs. The method is validated by comparing the

ROM natural frequencies to the ones obtained using the FOM, using the formulation of Eq.

2.34 for the error calculation.

Before examining the results, it is important to study the ROM mass matrix. The singular

values of the mass matrix are shown in Figure 2.7. Two things can be noticed. First, the

singular values are spread over a large range of values. Second, some of the singular values
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Figure 2.7: Normalized singular values of the ROM mass matrix

are extremely small. The smallest singular value is in fact
σmin
σmax

= 2.5 · 10−18, and many

others are in machine precision. As explained in Section 2.3, ill-conditioned transformation

matrices cause the mass matrix to become nearly singular, as shown in this case.

If all the modes are included in the transformation T without any form of conditioning,

the results presented in Figure 2.8a are obtained. It is possible to notice that the error in

the predicted natural frequencies is extremely large. Furthermore, some of the eigenvalues

are complex. Using the post-conditioning algorithm presented in Section 2.3.3, the results

shown in Figure 2.8b are obtained. They show an almost perfect match with the full order

model.

To ensure that the error comes from the ROM approximation and not from the condi-

tioning algorithm, the results were compared with the ones obtained using pre-conditioning.

The pre-conditioned results are shown in Figure 2.8c. The differences between the two sets

of results are almost negligible, proving that post-conditioning can be used in lieu of pre-

conditioning. The difference between the results from the two conditioned ROMs stems from

the fact that the projection vectors are conditioned according to different norms, and thus

the modal information retained is slightly different.
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(a) Unconditioned ROM

(b) Post-conditioned ROM

(c) Pre-conditioned ROM

Figure 2.8: Natural frequency errors with respect to the full order model
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2.6.1 Error metrics evaluation

To examine the validity of the pre-conditioning approach, the metrics from Section 2.4

are used. The size of the ROM changed in this case from m = 550 for the unconditioned case

to n = 402 for the conditioned case. The singular values discarded were 148, more than the

case discussed in Section 2.5 due to the larger size of the ROM and due to the ill-behaved

nature of the transformation matrix. Using the error calculation strategy referred to as static

in Section 2.4.1, we obtain an error es = 9.98 ·10−13. Using the dynamic metric from Section

2.4.2 we obtain an error ed = 5.24 · 10−13.

2.7 Computational savings

One of the main advantages of the method proposed here is that the most computationally

expensive step, in this case the SVD, is carried out in the ROM space. Compared to pre-

conditioning, the cost of the projection TTMT can be higher, due to the fact that none of

the vectors are discarded before the multiplication. However, the time and memory required

for the SVD are substantially reduced. In order to compare the performances of the two

approaches, the steps necessary to form and condition a ROM are carried out for both

pre-conditioning and post-conditioning. They can be represented as follows

 Pre-conditioning T = UΣVT → T̃ = Ũ→MROM = T̃TMT̃

Post-conditioning MROM = TTMT→MROM = UΣVT → Σ̃

where the stiffness matrix multiplications are done the same way, and are omitted for the

sake of brevity, but they are still taken into account in the calculations. In both cases, the

size of the initial transformation matrix is N ×m, and the final ROM size is n × n, where

n < m.

The computational time reduction achieved for the conditioning procedure is presented
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in Figure 2.9 as a function of the number N of physical DOFs. Calculations are carried out

for a given combination of m and n, in this case 600 and 540 respectively. It is possible to

notice that the computational gains increase for larger N . The efficiency of the approach

depends on the number of linearly dependent vectors, reaching its peak when only few of

them must be discarded.

Figure 2.9: Computational savings obtained using post-conditioning for a case with m = 600
and n = 540

2.8 Conclusions

A post-conditioning approach to condition projection-based reduced order models was

developed. The SVD of the reduced mass matrix is used as a conditioning tool. This tech-

nique works in the ROM space with the aim of reducing the computational cost compared to

methods that condition the transformation matrix, i.e. pre-conditioning methods. The sin-

gular values of the reduced mass matrix are used to identify the set of vectors to be retained,

which are then implicitly chosen by means of a secondary projection based on the right sin-

gular vectors. The secondary projection removes the null-space of the transformation matrix,

and does so implicitly. By doing so, the singularity of the matrices is eliminated. Thanks

to the nature of the SVD matrices, the conditioning multiplications lead to a particularly
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simple form of the ROM, in which the conditioned mass matrix is already diagonal, further

simplifying the calculations. Error metrics are introduced to evaluate the error committed

by using the secondary projection. Both the method and the error metrics have been tested

and validated using a chain of oscillators as well as ROM for a bladed disk (blisk) model.

The proposed method presents a number of advantages:

1. The method directly acts in the ROM space, and so there is no need to condition a

priori the projection matrix, resulting in faster calculations.

2. No explicit knowledge of the transformation matrix is required. Thus, the method can

be easily applied to already existing models by adding a simple post-conditioning step.

3. The method can be applied to a variety of ROMs, built using any arbitrary choice

of reduced order bases. Most structural dynamical systems may be treated using this

approach.

4. The method preserves the physical meaning of the transformation matrix, and the

meaning of the equations of motion also. This feature allows for simplifications in the

ROM creation when specific types of vectors are used (e.g., normal modes).

Even though the formulation presented targeted Galerkin ROMs, this conditioning idea

can be extended to the general case in which Petrov-Galerkin projection is used. Further

work can also be done to extend this formulation to the more general case of nonlinear

dynamical systems.
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CHAPTER 3

On the Use of Mesh Morphing Techniques in Reduced

Order Models for the Structural Dynamics of

Geometrically Mistuned Blisks

A technique is proposed to overcome computational issues caused by the use of multiple

meshes in reduced order models (ROMs) for the structural dynamics of mistuned blisks. Due

to the need for repairs (blends) or geometric changes during design iterations, models often

require the use of distinct meshes for the same component. Most ROMs for such cases start

from pristine modal information, which must be obtained for every mesh involved. Due to

the nature of normal modes in cyclic structures, a first challenge arises with respect to their

correct clocking, or alignment. Modes have arbitrary clocking for cyclic symmetric systems,

and hence modes are potentially different for different meshes. In addition to this, imperfect

clocking and cyclic interface compatibility can strongly affect the accuracy of the predicted

response. This paper presents a method to preserve the accuracy of ROMs and at the same

time reduce the computational overhead associated with the presence of multiple morphed

meshes. Numerical issues associated with the presence of multiple meshes and sets of modes

are investigated.
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3.1 Introduction

Over the past decades, the increase in computational capabilities has led to an increased

use of simulation in design. The use of different meshes or of mesh morphing techniques is

very common in the design process. Mesh morphing in structural dynamics is particularly

useful thanks to its ability to transform existing meshes without requiring a completely new

mesh every time the design is changed. Thus, evaluating and optimizing multiple designs can

be accomplished with savings in both computational time and cost. Several studies have been

focusing on the development of mesh morphing techniques [84–89], and examples of their

use can be found across all engineering disciplines. In particular, mesh morphing techniques

are commonly used in shape parametrization and design optimization studies [85, 90–99].

Typical applications can be found in automotive studies [86, 100, 101], as well as aerodynam-

ics [92, 99] and turbomachinery [31–34]. The level of detail of computer models increased

with the improvement of computational capabilities, resulting in prohibitive computational

cost for their solution. For this reason, the use of reduced-order models (ROMs) is very

popular. Several techniques have been developed, including POD-based methods [102, 103]

and discrete empirical interpolation [104] in fluid dynamics, fluid-structural systems [105],

and general partial differential equations [106, 107]. Applications can also be found in the

study of microelectromechanical systems (MEMS) devices [108–110] and turbomachinery,

where projection-based ROMs are commonly used [8–13]. The concurrent use of ROMs and

mesh morphing can be found in design analyses where the full order solution is too expensive

computationally, and it is cumbersome to re-generate new meshes for all design iterations.

Thanks to the popularity of these two techniques, it is common to find the joint use of ROMs

and mesh morphing or shape parametrization [93, 99, 111].

When it comes to cyclic symmetric structures, such as the ones found in turbomachinery,

other challenges arise. The dynamics of cyclic structures can be substantially altered by the
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presence of mistuning [4], i.e. any noncyclic deviation from the nominal system. Perfect

symmetry is unattainable in real structures, and hence mistuning is always present. Thus,

cyclic predictions are not always accurate, and full-wheel analyses must be carried out.

This leads to a substantial increase in the required computational cost associated with the

solution of the full order model (FOM). For this reason, the use of ROMs is important. When

geometric changes are large, as is the case in the presence of blends (e.g., repairs applied to

some of the sectors), advanced mesh morphing techniques can be used to ensure that the finite

element (FE) model accurately represents the blended geometry and maintains mesh quality

(e.g., it does not result in coarsely represented surfaces). The morphing process must be

carried out for each geometrically mistuned blade in the assembly, resulting in a system that

potentially has as many different sector meshes as the number of sectors. Several techniques

have been proposed for the study of the structural dynamics of geometrically mistuned

blisks [8–13] and for the solution of the numerical issues associated with such ROMs [112].

However, only a few studies focus on the issues that may arise when using multiple meshes,

such as mode clocking, interface compatibility, and projection errors. The issue of mode

clocking is discussed in detail in [9], where a solution to deal with small geometric mistuning

is proposed. However, the small mistuning assumption does not hold for large blends, such

as the one shown in Fig. 3.1, where it can be seen that the morphed and the pristine un-

morphed sectors have substantially different FE node numbers and topologies. In that case,

not only the clocking might affect the results, but also the mesh compatibility at the (disk)

interface between sectors. This compatibility can be expressed as a set of constraints on

node pairs requiring them to experience the same motion [12]. This becomes a significant

challenge especially when acceleration modes are used, like in the case of the MAX method

[10]. Furthermore, the method used in [10] involves the calculation of multiple sets of pristine

modes, which requires significant computational time. Another drawback of the methods

mentioned above is that they only deal with meshes having the same number of nodes. This
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is not always the case, as mesh refinement might be necessary in regions that are highly

morphed. Thus, it is not efficient to use the methods presented in [9, 12]. A method able to

tackle both interface compatibility and clocking issues for the calculation of pristine morphed

normal modes is proposed in this paper. Consider an initial (pristine) mesh which has been

morphed in various ways to model various blending geometries. The proposed approach

is able to avoid the need to solve eigenvalue problems of high computational cost in the

process of calculating normal modes for each new/morphed mesh. Instead, the technique

proposed exploits the fact that most of the nodes of the new meshes maintain their original

(pristine) physical location in the blisk. This is also true of the interface nodes. These nodes

cannot be moved because mesh compatibility has to be enforced between morphed and un-

morphed parts of the model. Thus, modal information is already available for those nodes,

and need not be re-calculated. For the set of nodes that do not have a one-to-one mapping to

the original ones, the modal displacement is obtained by solving a forced response problem

that only affects that set of nodes. As a result, the computational cost is substantially

reduced, while correct clocking and compatibility are implicitly enforced. The new method

outperforms others in the literature in terms of speed and memory requirements, as it reduces

both the number of computations required and the problem dimensionality. The method is

validated by comparing ROM results with full order model results.

3.2 Background

The equations of motion (EOMs) for the structural dynamics of a mechanical structure

can be written as

M̂ẍ + K̂x = F, (3.1)
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where M̂ is the mass matrix, K̂ is the stiffness matrix, x is the vector of physical degrees of

freedom (DOFs), and F is the vector of external forces. In this paper, we focus on nominally

cyclic symmetric structures like blisks, which are composed of several sectors that can have

different morphed meshes. The presence of multiple meshes or mistuning makes the system

lose cyclic symmetry properties. As a result, particular care must be taken when handling

system modes and matrices. Let us consider the case of a cyclic symmetric system having

identical meshes in all the sectors. Due to the symmetry of the system, it is computationally

efficient and convenient to express global quantities like mass and stiffness matrices using

single sector quantities. In particular, the mass and stiffness matrices M and K of the entire

pristine structure can be conveniently written in block diagonal form, as

M =


Mj

. . .

Mj

 , K =


Kj

. . .

Kj

 (3.2)

where Mj and Mj represent the mass and stiffness matrices of the pristine sector, ob-

tained with free-interface boundary conditions at the interfaces between sectors, and dupli-

cate nodes at those interfaces. A pristine sector is a sector of the nominal physical structure.

A pristine sector can be discretized with different meshes, as shown in Figure 3.1a and Figure

3.1c. Thus, there can be multiple pristine morphed meshes, and multiple pristine modes.

They all represent the same physical structure and the same physical modes, but using dif-

ferent meshes. Superscript j indicates the mesh index. All sector level matrices are identical

when all sectors have the same mesh. Mesh j = 0 is the one that has not been morphed, and

it is used as baseline. Mesh j = 0 is referred to as the un-morphed mesh. For a mistuned

system, or a system with distinct meshes in every sector, the mass and stiffness matrices of
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the blisk can be written as

M̂ =


1M

m(1)

. . .

NMm(N)

 , K =


Kj

. . .

NKm(N)

 (3.3)

where iM
m(i) and iK

m(i) represent the sector level mass and stiffness matrices of the ith

sector, calculated on the m(i)th mesh. The mapping function m(i) maps the sector index i to

the corresponding mesh. Please note that a pristine system having multiple meshes (distinct

in distinct sectors) is not cyclic computationally because the system matrices do not have

a block circulant structure [113]. When a structure has cyclic symmetry with mesh j in all

its sectors, its modes can be grouped according to their nodal diameters, and the response

of the entire system can be obtained using a single sector [2]. In particular, modes appear

as a single mode, or as a pair of orthogonal modes depending on the nodal diameter. To

express them in terms of single sector quantities, modes Φj, Φ̄j of the entire structure can

be partitioned as

Φj =


1Φ

j

...

NΦj

 , Φ̄j =


1Φ̄

j

...

NΦ̄j

 (3.4)

where iΦ
j and iΦ̄j represent the portion of the modes corresponding to the ith sector for

mesh j. Let us now consider the case of a pristine blisk having different meshes in different

sectors. Such a system can be described using matrices M̂ and K̂ from Eqn. 3.2. The modes
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of such a system can be written as

Φ̂ =


1Φ̂

m(1)

...

NΦ̂m(N)

 , ˆ̄Φ =


1
ˆ̄Φ
m(1)

...

N
ˆ̄Φ
m(N)

 (3.5)

where iΦ̂
m(i) and i

ˆ̄Φ
m(i)

are the ith sector portion of the modes, obtained using the m(i)th

mesh. The modes Φ̂ and ˆ̄Φ differ from the ones introduced in Eqn. 3.4 because they are

composed of sector modes coming from different meshes. Please note that if the meshes are

converged and pristine, then matrices Φ̂ and Φj represent the same physical modes, but

sampled at different locations.

A ROM can be built by projecting Eqn. 3.1 onto a reduced order basis T. This can be

achieved introducing the change of coordinates

x = Tq, (3.6)

where q is the vector containing the new set of generalized coordinates, and T is the reduced

order basis. The new EOMs are obtained by introducing the change of coordinates and

pre-multiplying by TT as

TTM̂Tq̈ + TT K̂Tq = TTF, (3.7)

which can be rewritten as

µ̂q̈ + k̂q = f , (3.8)

where µ̂, k̂ and f are the reduced order mass and stiffness matrices, and force vector. Writing

the equations in the form presented in Eqns. 3.2-3.5 allows us to use single sector calculations
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when the EOMs are projected onto the reduced order space, resulting in faster calculations.

In this paper, the focus is on geometrically mistuned blisks, and in particular on those

presenting blends. For this reason, the reduction method presented in [10] is used. The

details of the method are omitted here for the sake of brevity (they can be found in [10]).

The overall structure of the transformation matrix can be expressed as

T = [Φ Ψ ΦBAM ] (3.9)

where Φ represents a set of pristine normal modes, Ψ represents constraint modes, and

ΦBAM represents blend acceleration modes (BAMs), which are typically very localized modes

used to accelerate convergence. The MAX method is able to deal with large blends like the

one shown in Figure 3.1b. When multiple blends, and thus multiple meshes, are used, the

method requires the calculation of multiple sets of pristine modes. Hence, pristine modes

need to be recalculated.

3.3 Methodology

Matrices iΦ̂
j and i

ˆ̄Φ
j

in Eqn. 3.4 can be obtained for each sector i with mesh j as a

linear combination of two matrices of basis vectors nuj and nūj as [9]

n
i Φ

j =n uj cos

(
2πn

N
(i− 1)

)
−n ūj sin

(
2πn

N
(i− 1)

)
(3.10)

n
i Φ̄

j =n uj sin

(
2πn

N
(i− 1)

)
+n ūj cos

(
2πn

N
(i− 1)

)
(3.11)

where n denotes the nodal diameter. Matrices n
i Φ

j and n
i Φ̄

j are columns of matrices iΦ
j

and iΦ̄
j. Please note that nuj and nūj are single sector quantities that differ for each mode

pair, each nodal diameter, and each mesh. Due to the symmetry of the system, a clocked
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(a) (b)

(c)

Figure 3.1: Blade meshes: a) Pristine un-morphed mesh. b) Blended mesh. c) Pristine morphed
mesh.

(spatially rotated) version of an original mode pair is still a mode. Thus, cyclic modes

computed independently for different meshes can present different clocking, as presented in

Figure 3.2.

When multiple meshes are used, each mesh is typically associated with a set of modes,

which could be clocked differently. To use such modes in the same model, consistency must

be enforced, both in terms of interface compatibility and clocking. The challenge of mode

clocking can be solved using an approach similar to [9]. Clocking issues can be addressed by

rotating the (misaligned) basis vectors nũj and n˜̄u
j

as to align them to the reference vectors,

nu0 and nū0 (computed for the reference mesh j = 0) to obtain an aligned basis nuj and
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Figure 3.2: Modes of the same blisk computed on different meshes that show different clocking

nūj. Call nΦj the rotation angle between the two sets of vectors, which is different for each

mode pair, each nodal diameter, and each mesh. The aligned vectors nuj and nūj can be

found as

n
i u

j =n ũj cos

(
2πn

N
(i− 1)

)
−n ˜̄u

j
sin

(
2πn

N
(i− 1)

)
(3.12)

n
i ū

j =n ũj sin

(
2πn

N
(i− 1)

)
+n ˜̄u

j
cos

(
2πn

N
(i− 1)

)
(3.13)

The correct rotation to be applied can be found by maximizing the projection of the

misaligned vectors onto the reference vectors as

arg max
nΦj

nū0 ·n ūj

|nū0||nūj|
(3.14)

Every mode pair included in nũj and n˜̄u
j

must be rotated by the appropriate angle. The

alignment can be carried out using only one vector from the pair. The other vector in the
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pair is rotated by the same angle (with an adjustment factor of 1). In the results, this process

is referred to as mode clocking. After clocking, the normal modes from different meshes are

aligned, as shown in Figure 3.3.

Figure 3.3: Modes of the same blisk computed on different meshes that had different clocking (as
shown in Figure 3.2) but they were re-aligned

The mode clocking method can be further refined by noticing that the modal projection

can be carried out on a subset of nodes. If the subset with the largest motion is chosen,

the dimensionality of the vector calculations in Eqns. 3.13 is reduced without sacrificing

accuracy. For example, alignment can be done neglecting the disk nodes, which usually ex-

perience much lower levels of motion compared to the blades. Incidentally, this mapping is

also useful when the node numbers are different and some of the nodes are not co-located in

different meshes. Nonetheless, the entire set of sector nodes is used in the results presented

herein to ensure maximum accuracy. The most significant drawback of the method presented

in [9] is that it only clocks the modes without ensuring correct scaling and interface com-

patibility. In fact, the method does not change the maximum amplitude of the mode, which
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could be slightly different for each mesh, or the motion at the interface. To overcome this

challenge, one can enforce the interface motion to be equal for nodes on matching surfaces

at the interfaces between sectors, as suggested in [12], under the assumption that the differ-

ences in motion at the boundaries are small. Such interface nodes are shown in Figure 3.4.

To preserve physical significance, the two sets of nodes on both sides of the interface must

experience the same motion. Typically, interface compatibility is ensured by enforcing that

the basis vectors applied to different sectors (which can be modes), present the same motion

at the cyclic interface. This is automatically ensured for the vectors presented in Eqn. 3.4,

but not for the ones presented in Eqn. 3.5. Modes in Eqn. 3.5 are obtained by stitching

together sector-level pieces of modes calculated using different meshes in Eqns. 3.11.

Let us consider the following partition of the modes of the ith sector on mesh m(i)

(expressed with duplicate nodes on the interfaces between sectors)

iΦ̂
m(i) =


α
i Φ̂

m(i)

β
i Φ̂

m(i)

γ
i Φ̂

m(i)

 (3.15)

where the partition β represents internal nodes, while partitions α and γ represent nodes

adjacent to the neighboring sectors (one on set of nodes for each side of the sector). The

boundary α is adjacent to the sector having lower index, while γ is adjacent to the sector

having higher index. Interface compatibility can be enforced by imposing

γ
i Φ̂

m(i) =α
i+1 Φ̂m(i) (3.16)

for all sectors. This method of ensuring common displacements at the interface is referred to

as interface compatibility. This method is applicable if mistuning is small, but it might not

hold for larger structural variations, resulting in significant strains at the interface region.
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Figure 3.4: Interface nodes between sectors, highlighted

3.3.1 Pristine morphed mode extraction

The approach proposed in this paper to compute pristine morphed modes is based on the

solution of a forced response problem instead of an eigen-analysis. In particular, the nodes

with a one-to-one mapping on the original mesh are treated as boundary nodes forcing the

structure motion. These nodes are forced to move along the un-morphed normal modes. The

response is calculated for the remaining nodes. The calculation is carried out only on the

morphed nodes, which in practical cases are much fewer than the total number of nodes of the

entire sector, thus saving a substantial amount of computational time. The issue of scaling

and cyclic interface matching is solved implicitly because the motion at the interface and

at the matching nodes is imposed in the forced response calculation using the un-morphed

normal modes. First, the morphed mesh is mapped onto the baseline mesh, as shown in

Figure 3.5c. In this step in the algorithm, all the nodes being co-located (overlapping between
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different meshes) are mapped. The nodes closer to the morphed region typically do not have

a one-to-one mapping. Thus, the modal information must be recalculated for that region.

The modes of the morphed mesh must be calculated to be consistent with the un-morphed

modes. They should be clocked in the same way, have identical scaling, and be compatible

at the cyclic interfaces. Furthermore, they should yield the same natural frequencies when

used with their pristine morphed meshes. Instead of recalculating the normal modes for each

mesh, it is more convenient to compute them directly based on baseline modal information.

Let us consider the EOMs for a pristine free-interface single sector with mesh j, i.e. the

pristine sector without constraints on the motion at the cyclic boundaries.

These EOMs can be expressed as

Mjẍj + Kjxj = f j, (3.17)

where f j is a forcing vector applied to the sector. The vector of (response) physical degrees

of freedom xj can be partitioned as

xj =

xjO

xjD

 (3.18)

where xjO is the vector containing the DOFs corresponding to the nodes of the morphed

mesh that are overlapping the un-morphed ones, i.e. have a one-to-one mapping to the un-

morphed baseline mesh j = 0, like the ones shown in Figure 3.5c. The vector xjD contains the

remaining DOFs from the morphed region, where the nodes are distinct from the un-morphed

ones.

In the overlapping area, represented by xjO, the modal motion obtained from the baseline

calculation can be imposed. We can thus enforce xjj = x0
O. The displacement of those nodes

is the same no matter what mesh is used as long as the mesh is converged in the sense that
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(a) (b)

(c)

Figure 3.5: Mesh nodes for different meshes. a) Pristine un-morphed. b) Pristine morphed. c)
Nodes that map (are the same) between the pristine morphed and the un-morphed meshes

the numerical discretized mode represents the physical mode. If the motion of the nodes

identified as xjO is imposed as a boundary condition, we can then solve for the remaining

DOFs contained in xjD. For that purpose, matrices Mj and Kj can be partitioned as

Mj =

Mj
OO Mj

OD

Mj
DO Mj

DD

 , Kj =

Kj
OO Kj

OD

Kj
DO Kj

DD

 (3.19)
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The EOMs in Eqn. 3.17 can be rewritten as

Mj =

Mj
OO Mj

OD

Mj
DO Mj

DD


ẍ0

O

ẍjD

+

Kj
OO Kj

OD

Kj
DO Kj

DD


x0

O

xjD

 =

f jO

f jD

 (3.20)

Note that vector f j is zero at all nodes that are not mapped (free nodes, namely f jD = 0),

and generally non-zero at all other nodes (constrained nodes). The motion of the DOFs

included in xjO is imposed and known (from the un-morphed mesh modes). Only one row of

Eqn. 3.20 must be solved. Thus, Eqn. 3.20 can be rewritten as

Mj
DDẍjD + Kj

DDxjD = fM
j + fK

j, (3.21)

where fM
j and fK

j are the forcing terms coming from the contributions of the mass and

stiffness terms due to the imposed time-dependent displacement at all mapped nodes. These

forces can be expressed as

fM
j = −Mj

DOẍ0
O, fK

j = −Kj
DOẍ0

O (3.22)

Assuming harmonic motion at the natural frequency of the un-morphed modes, Eqn. 3.21

becomes

−ω2Mj
DDxjD + Kj

DDxjD = ω2Mj
DOx0

O −Kj
DOx0

O (3.23)

Since the terms in Eqn. 3.23 are not time-dependent, the equation can be readily solved

for xjD as

xjD = (−ω2Mj
DD + Kj

DD)−1(ω2Mj
DOx0

O −Kj
DOx0

O) (3.24)

Since x0
O and ω2 are derived from the un-morphed calculations, they will remain the same
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for all morphed meshes, while xjD is re-calculated for each morphed mesh. This procedure

is presented in Eqn. 3.24 for every mode pair and for every sector. However, this can be

accomplished using sector level calculations so that the calculation does not need to be done

for each and all sectors, but only for a single sector. This is done by applying Eqn. 3.24 to

the mode pair basis nuj and nūj for all nodal diameters n which can then be expanded to

obtain the morphed modes Φj and Φ̄j in all sectors. Thus, the mode pairs are partitioned

for each mesh as

znuj =

nujO
nujD

 , nūj =

nūjO
nūjD

 (3.25)

where nujD and nūjD are calculated for every different morphed mesh, while nujO is enforced

to be equal to nu0
O (for un-morphed mesh) and nūjO is enforced to be equal to nū0

O. Thus,

iΦ
j and iΦ̄

j can be used instead of iΦ̂
m(i) and i

ˆ̄Φ
m(i)

for the creation of Φ̂ and ˆ̄Φ without

the need to clock them or to ensure interface compatibility, because both issues have been

implicitly solved through the proposed mode extraction method. In summary, the key idea

of this approach is to use the overlapping nodes, shown in Figure 3.5c, to drive the motion of

the other nodes at the natural frequency of the modes, and obtain the remaining part of the

modes. This method is based upon a simple physical assumption: coincident nodes should

have the same motion for a given mode even for different meshes, which holds when meshes

are converged. Furthermore, since the natural frequencies of the pristine morphed system

are the same as the un-morphed system, the forced response problem is solved at the natural

frequency of the un-morphed mode. Note that the proposed strategy ensures that the nodes

at the cyclic boundaries move together. Also, from a computational cost standpoint, this

technique represents a large gain, because morphing usually affects only a small portion of

the entire mesh. The size of the forced response problem to be solved is thus small compared

to the size of the entire sector.
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3.3.2 Simplification of the projection

In the ROM creation, it is usually possible to simplify the calculations by invoking some

of the properties of the basis vectors. For example, the method presented in [10] exploits

the fact that when the pristine mass and stiffness matrices are projected onto normalized

pristine modes, the projection assumes a very simple form. For a system having a single

blend (i.e., a blend in a single sector), the ROM matrices calculated using [10] can be written

as

µ̂ =

µ̂1 µ̂2

µ̂T
2 I

 , k̂ =

k̂1 k̂2

k̂T2 Λ

 (3.26)

where I is the identity matrix, and Λ is the (diagonal) eigenvalue matrix, which contains

the squared natural frequencies ω2 of the blisk. The properties of the ROM matrices can be

explained using the properties of the basis vectors in Eqn. 3.9. Recall that the modes of the

system are orthogonal. Hence, for any pristine cyclic symmetric system one can write

ΦjT MΦj =
N∑
i=1

iΦ
jT Mj

iΦ
j = I (3.27)

ΦjT KΦj =
N∑
i=1

iΦ
jT Kj

iΦ
j = Λ (3.28)

While Eqn. 3.28 holds with high accuracy for a system having a single mesh, it might not

hold when modes computed for multiple meshes are used. Let us consider the case in which

multiple pristine meshes are present. Consider that one mesh is the un-morphed one, and

several others are morphed in different ways. Recall also that the modes contain duplicate

nodes at the interfaces between sectors. This duplication allows one to use Eqn. 3.3 to
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describe the system matrices easily. Thus, one can write

Φ̂TM̂Φ̂ =
N∑
i=1

iΦ̂
m(i)T M̂m(i)

iΦ̂
m(i) (3.29)

The sum above should theoretically yield the identity matrix. However, even though all

sectors are pristine, the sum could differ when different meshes are present in different sectors.

That is because the FE representation is only an approximation of the physical blisk. This

can result in the overall sum slightly deviating from the identity matrix. Thus, the identity

matrix is not the most accurate to use in the ROM matrices in Eqn. 3.26. However, the

entire projection does not need to be recalculated every time the mesh is changed. The new

projection can be corrected. For example, let us consider for clarity a pristine system having

a single pristine morphed blade (blade index i = 1, mesh type j = 1) while all the other

blades are un-morphed, like the blisk shown in Figure 3.6. For the system with un-morphed

meshes in all sectors, the following holds with high accuracy

N∑
i=1

iΦ
jM̂j

iΦ
j = I (3.30)

For the system with a single morphed blade of blade index i = 1, the projection onto

modes can be written as

ΦTM̂Φ =
N∑
i=2

iΦ
0T M0

iΦ
0 + 1Φ̂

1T M1
1Φ̂

1 (3.31)

where M0 represents the mass matrix for the pristine un-morphed mesh, 1M
1 represents

the mass matrix for the pristine morphed mesh, and 1Φ̂
1, iΦ̂

0 represent the modes of the

pristine morphed and un-morphed mesh. Using Eqn. 3.30 with j = 0, Eqn. 3.31 can be
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re-written as

ΦTM̂Φ = I + 1Φ̂
1T M1

1Φ̂
1 − 1Φ̂

0T M0
1Φ̂

0 (3.32)

By using Eqn. 3.32 in lieu of the full wheel projection the corrected ROM matrices can be

calculated

µ̂ =

µ̂1 µ̂2

µ̂T
2 I + 1Φ̂

1T M1
1Φ̂

1 − 1Φ̂
0T M0

1Φ̂
0

 , k̂ =

k̂1 k̂2

k̂T2 Λ + 1Φ̂
1T K1

1Φ̂
1 − 1Φ̂

0T K0
1Φ̂

0


(3.33)

The corrections in Eqn. 3.33 are computationally inexpensive because the size of the

matrices is small. The sector level matrices K0 and K1 are N times smaller than the full

wheel matrix K̂. Thus, when an un-morphed sector is substituted with a morphed one, we

can simply correct the projected matrices using Eqn. 3.33.

3.4 Results and Discussion

A numerical study is carried out to demonstrate the proposed approach for the blisk

shown in Figure 3.7. The full model of this academic blisk has 516,733 nodes, and 1,550,199

DOFs. Two of the blades are blended, and one of them is morphed also. The pristine meshes

of both morphed and un-morphed blades are shown in Figure 3.1. The MAX method is used

as a benchmark to explore how mesh morphing can affect the accuracy of the ROM and to

investigate the effectiveness of the new solution proposed. The results are presented both

with and without blend acceleration modes (BAMs). The natural frequencies of the ROM

are compared to those of the full order model, with the error e being defined as

e =
|ωROM − ωFOM |

ωFOM
(3.34)
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Figure 3.6: Pristine blisk with a morphed pristine mesh in one sector (sector 1)

where ωROM and ωFOM are the natural frequencies obtained using the ROM and the full

order model. In this section, results with modes properly aligned/clocked are presented.

Modes aligned incorrectly are not examined.

Results obtained using interface compatibility techniques are presented in Figure 3.8.

When the modes are not strictly enforced to satisfy the compatibility condition at the inter-

faces between sectors, the results are inaccurate if acceleration modes are used, as shown in

Figure 3.8a. This means that the interface compatibility is not properly ensured through just

mode alignment/clocking. In fact, the presence of additional basis vectors should improve

the convergence when the correct matrices for the structure are used, but in this case they

worsen it.

Since the formulation used to create the ROM is based on Eqn. 3.3, enforcing interface
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Figure 3.7: Mistuned blisk with two blended blades, one of which is both blended and its mesh
morphed

compatibility through the projection modes is crucial to capture the full wheel matrices

correctly. Thus, it is important to ensure compatibility very accurately. If node pair com-

patibility at interfaces is imposed after alignment/clocking, as shown in Figure 3.8b, there

is a general improvement in accuracy, in particular with acceleration modes. However, the

accuracy without the acceleration modes remains compromised. This occurs because the

assumption of identical motion at the interface after alignment/clocking does not hold for

highly morphed meshes. When the meshes are substantially different, their modes can have

different scaling or different interface motion, which cannot be corrected effectively in a

post-processing analysis. The physics of the problem must be invoked in the mode extrac-

tion phase to ensure compatibility and feasibility.

60



(a)

(b)

Figure 3.8: ROM vs FOM natural frequency comparison obtained using standard mode align-
ment/clocking and interface compatibility

In contrast, the results shown in Figure 3.9 were obtained using the new method for

alignment/clocking and mode calculation on different meshes. It can immediately be noticed

that there is a substantial accuracy improvement both with and without BAMs. The new

method calculates sector and interface motion at the same time, implicitly ensuring interface

compatibility. Furthermore, the scaling of the modes is the same.

As explained in the previous section, the introduction of a new mesh makes it necessary

to correct the normal modes projection used in the ROM construction. The results obtained

without the correction of the projection are presented in Figure 3.10. The approach to

align/clock the modes and to ensure interface compatibility was used to obtain the solution
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Figure 3.9: ROM vs FOM natural frequency comparison obtained using the new modal extraction
method and correction applied to ROM matrices using Eqn. 3.33

shown in Figure 3.10a, while the new mode extraction method was used for the results shown

in Figure 3.10b. In both cases the errors are very large, and numerical errors occur, especially

when BAMs are used. That is because the ROM matrices were not adjusted. The correction

in these matrices leads to the results in Figure 3.8b and Figure 3.9.

3.5 Conclusions

A novel method able to account for the presence of multiple meshes within reduced

order models (ROMs) for cyclic structures was presented. The purpose of this method is

to calculate the normal modes of the pristine morphed meshes and to investigate the effects

that the use of multiple meshes have on the ROM. The method is based on the solution of

a forced response problem, and it acts on a reduced subset of nodes, corresponding to the

morphed area. The formulation is simple and cost effective, without sacrificing accuracy.

Furthermore, numerical issues associated with ROM creation when multiple meshes are

used were considered, and a solution was proposed. The method was applied to the case

of an academic blisk for validation, and it outperformed the methods that are currently

available. The results highlighted that the accuracy of the method presented here is superior

to the one offered by previous alignment/clocking approaches. In addition, numerical issues
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(a)

(b)

Figure 3.10: ROM vs FOM natural frequency comparison obtained without correcting the ROM
matrices (i.e. without re-projection of the normal modes) for the approach based on mode clocking
and interface compatibility as well as for the new calculation of the normal modes

associated with the ROM creation due to the presence of multiple meshes were solved by

means of a simple correction of the ROM matrices. The method could be used to reduce

the computational cost in the calculation of mistuned normal modes also. In fact, when

small geometric mistuning is present, the forced response could appropriately capture the

mistuned modes, further reducing the computational time and cost.
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CHAPTER 4

MAX+ Modeling of Integrally Bladed Rotors

Integrally bladed rotors (IBRs) are critical components of turbomachinery in the aerospace

industry. The use of IBRs has been increasing recently because they provide enhanced per-

formance and reduced weight. One of the most significant challenges posed by IBRs is their

low level of damping. The low damping leads to unwanted vibrations that increase the risk

of high-cycle fatigue. In addition, IBRs are typically mistuned in real applications, i.e. they

present deviations from the nominal geometry due to manufacturing tolerances, damages or

wear even though they are designed to be nominally cyclic structures. Mistuning can lead

to vibration localization, which further increases the risk of high cycle fatigue. Thus, the ge-

ometric design of IBRs is very important. In addition, foreign object damage can affect IBR

blades during operation. Distinct from bladed disks with inserted blades, IBRs cannot have

their blades replaced because IBRs are manufactured in one piece. As a result, other repair

strategies must be used. IBR blades can be repaired by blending, i.e. by removing material

in the damaged region to modify the local geometry as to create a smooth surface able to

lower stress concentrations while also preserving satisfactory aerodynamic, structural, and

vibration characteristics. Such repairs introduce large mistuning in IBRs, which can increase

vibration levels. For this reason, it is necessary to optimize blend shapes and locations and

to assess their impact on IBR structural dynamics. Finite element (FE) models are tradi-
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tionally used to study the structural dynamics of IBRs. It is common for industrial models

to have several millions of degrees of freedom per sector, making it challenging to obtain

results in a timely fashion. Furthermore, the stochastic nature of mistuning requires the use

of Monte Carlo simulations to evaluate the expected vibration amplitudes. For this reason,

reduced-order models have been used in lieu of FE models to reduce the computational cost

of such analyses. A Mode-Accelerated X-Xr (MAX) method was proposed by the authors

to study the effects of such blends. In this work, enhancements to the MAX method are

presented to accommodate the combined presence of blends and that of other effects, such

as blade frequency mistuning and prestress due to centrifugal forces. The use of multiple

FE meshes in a single model is also addressed, making it possible to accommodate the use

of morphed meshes to better capture the geometry of blended sectors. This enhanced MAX

method, referred to as MAX+, is presented. MAX+ is validated by comparing its predic-

tions to high-fidelity FE models, and it is shown to be efficient and effective for simulating

blended IBRs in both bench and rotating conditions. Furthermore, the MAX+ approach can

be used for the optimization of blend shapes, locations, and patterns when multiple blends

are present.

4.1 Introduction

Integrally bladed rotors (IBRs), also known as blisks, are structures commonly used in

gas turbine engines. These components are nominally cyclic symmetric, a feature that can

be exploited to significantly reduce the computational cost associated with structural and

vibration analysis [2]. However, due to manufacturing tolerances, wear, and damages, the

symmetry of the nominal structure is not found in real IBRs. Any deviation from nominal

conditions is referred to as mistuning. Due to the presence of mistuning, predictions based

on cyclic models are not accurate because localization phenomena can appear, resulting in
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substantial variations in the forced response [4]. Furthermore, IBRs have very low damping

due to the absence of frictional contacts and joints. This can result in large vibration

amplitudes in one or more blades, which can lead to high cycle fatigue and ultimately blade

failure especially because vibrations are combined with high levels of static stress due to

centrifugal forces and blade aerodynamic loading. For this reason, it is extremely important

to study the vibration characteristics of IBRs taking into account the effects of mistuning.

IBRs are commonly studied using highly refined finite element (FE) models, which can

provide an excellent level of detail but also a significant computational cost. Due to the

stochastic nature of mistuning, it is necessary to perform Monte Carlo simulations to explore

the entire range of expected responses [4]. This is unfeasible when large FE models are used.

Thus, other modeling techniques are commonly used to reduce the computational cost. The

use of reduced order models (ROMs) for the extraction of modal and structural information

is common practice both in industry and academia. Researchers have extensively studied

in the past the effects of mistuning on the dynamics of IBRs using ROMs [4]. Many of

these studies focus in particular on geometric mistuning [9, 11, 13]. An interesting type of

geometric mistuning is that created by blends [10], i.e. material removal, for the repair of

cracked or damaged IBRs. Such repairs need to be carefully designed so that they have

minimal impact on the vibration of the repaired IBRs. For this reason, ROMs [10, 114] have

been created for the analysis and optimization of such repairs. The Mode-Accelerated X-Xr

(MAX) method presented in [10] is particularly adapt to model such effects. MAX accounts

for blade frequency mistuning (caused by stiffness or mass mistuning in the blade) using

component mode mistuning (CMM) [30]. However, other aspects need to be considered, such

as the fact that geometric mistuning can present a significant interaction with centrifugal

loading and other sources of prestress. Turbomachinery components typically operate in

very demanding conditions. As such, blades must withstand significant static and dynamic

stresses, due to both aerodynamic loads and centrifugal forces, which can vary depending
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on the operating conditions. The operating conditions at which the system is excited have

a significant impact on the response. For example, rotational effects as well as aeroelastic

effects have been shown to have an important role on the vibration characteristics of the

system [5, 35–38]. In rotating conditions, the blades experience significant spin softening and

stress stiffening, which ultimately change the natural frequencies and modal characteristics.

The thermo-mechanical aspects of the system can play a significant role in the IBR life cycle

also [39]. The effects of the non-time-varying components of all these phenomena on the IBR

can be described using prestress. The introduction of centrifugal effects, a typical source of

prestress, can be accommodated in ROMs. The general problem of cyclic rotating structures

is tackled in [40, 41] using cyclic symmetry together with component modes synthesis [42].

Non-rotating mode shapes are used to project the equations of motions onto a reduced

set of coordinates. Some of the effects that arise when mistuning is combined with the

effects of rotation are investigated in [43–45]. In [43] the effects of mistuning are studied

using a set of basis vectors that adequately spans the interface motion between sectors.

That method ensures the compatibility condition at the interface, but it also requires an

extra set of modes to be computed. The method was extended also to a range of variable

rotation speeds using parametric techniques. In [44, 45] a study on cracks and Coriolis

effects in rotating disks is presented, without dealing with the compatibility condition at

the interface that is of interest here. In [46] a study on the effect of prestress can be

found, focusing in particular on the presence of contact forces, but without dealing with

geometric mistuning. The effects of rotational speed can be captured as variations in the

stiffness matrix, as suggested by previous studies for the blade part only [36]. When it

comes to model order reduction, another such solution is to use parametric ROMs [47, 112].

However, many parametric ROMs are not the most efficient for IBRs because they require

the calculation of multiple sets of modes, and because of possible numerical instabilities of

the transformation matrix [20, 47, 112]. Even more importantly, the calculation of prestress
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effects on the stiffness matrix of a mistuned IBR requires full wheel analyses, which are

often computationally cumbersome. None of the studies cited above focuses on the efficient

extraction of the prestressed matrices for a mistuned system, and little attention is given in

the literature to modeling of non-cyclic prestress. The use of FE mesh morphing has become

common because it allows for easy changes in the shape of FE models without requiring a

new meshing step. This is particularly useful for IBRs with one blended blade, where the

blend only affects a small portion of the entire full wheel model. Several studies have been

conducted on this topic to understand the implications of FE mesh morphing on ROMs

created using the MAX method [114].

In this paper, the focus is on the creation of a comprehensive method that can be used

in the creation of ROMs where blended IBRs need to be analyzed and optimized in the

concurrent presence of mistuning and prestress. MAX+ is the result of the integration of

previous work from the authors, in particular the MAX method [10], a numerical conditioning

technique [112] and a study on the use of mesh morphing in ROMs [114]. In addition, we

present a technique able to capture prestress effects that can be implemented in MAX+.

This approach only requires single sector calculations for the extraction of the free-interface

sector-level tuned and mistuned matrices at different rotational speeds. The prestress is

calculated for every type of mistuned blade at the sector level, thus capturing mistuning

effects that could potentially be greatly magnified by the action of centrifugal or steady

aeroelastic forces, without the need of a full wheel analysis. The MAX method is used to

treat the effects of large blends, and it is extended by introducing prestress effects on the

matrices and by treating rotational effects as small mistuning. For further computational

savings, MAX+ can be used together with parameterization of the stiffness variation [37] to

obtain mistuned results more readily. Numerical results are presented to demonstrate the

effectiveness of the approach.
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4.2 Background

IBRs are structures that are nominally cyclic symmetric, i.e. they are composed of

identical sectors that are repeated in space by rotation around a common axis. Figure 4.1

presents an example of such a structure.

Figure 4.1: Perfectly symmetric and tuned IBR

The mass and stiffness matrices of an entire cyclic structure assume circulant form [113].

However, for the creation of ROMs it is typically more convenient to manipulate sector level

quantities. The free-boundary sector level matrices can be used to describe the system. This

requires that the degrees of freedom (DOFs) at the interface between sectors be duplicated,

and that interface compatibility be enforced. An IBR sector is shown in Figure 4.2, with

one of the cyclic interfaces highlighted. A more detailed explanation of the concept of cyclic

interfaces is provided in Section 4.3.3.

Using a decoupled approach like the one presented in [9], it is possible to write the system
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Figure 4.2: Pristine sector with cyclic interface highlighted in blue

level mass and stiffness matrices as block diagonal, where the diagonal elements are the free-

interface matrices of each sector. The coupling is enforced through compatibility equations

on the boundary nodes. For a tuned system, the system level matrices can be expressed

using a Kronecker product where only sector level quantities are introduced. For example,

the mass matrix M̃ of the entire pristine structure can be written as

M̃ = I⊗M =


M

. . .

M

 , (4.1)

where the matrix M represents the free-interface level matrix. In a mistuned system, like

the one presented in Figure 4.3, the sectors are in general different, and thus the Kronecker

product cannot be used anymore. The full wheel matrix of a mistuned system becomes more
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Figure 4.3: Geometrically mistuned IBR

generally

M̃ =


M1

. . .

MN

 , (4.2)

where the matrices Mi of each of the N sectors could potentially be different.

To better explore the impact of this on the ROM creation it is important to recall the

concept of pristine and mistuned sectors. Pristine sectors present nominal geometry and

properties. This can also include systems subject to prestress that preserve cyclic symmetry.

Mistuned sectors show instead any deviation from the cyclically symmetric ones. For exam-

ple, let us consider an IBR composed of pristine sectors. After centrifugal loads are applied,

it is still composed of pristine sectors. That is not the case for an IBR showing mistuning
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in one of its blades. A single mistuned sector is sufficient to convert all pristine sectors into

mistuned sectors when prestress is applied. The prestress applied is non-cyclic. Thus, the

resulting equilibrium is mistuned in all sectors as well.

Typically, only few sectors are mistuned. Let us now assume that only the first sector is

mistuned, with a mistuned mass matrix Mm, while all the other sectors are pristine, with

mass matrix M. Equation 4.2 simplifies to

M̂ =



Mm

M

. . .

M


. (4.3)

The sector level matrices, as well as the mode shapes of the system can be readily obtained

using commercial FE software. Note that in the absence of prestress even the mistuned

sector matrices can be obtained using a single sector calculation, as there is no equilibrium

compatibility required.

4.3 Methods

4.3.1 Reduced order model creation

Let us consider the general case of a mistuned IBR (a tuned IBR can be seen as a

particular case with zero mistuning). The equation of motion for the structural dynamics of

the IBR can be written as

M̂ẍ + K̂x = f , (4.4)

where M̂ is the mass matrix, K̂ is the stiffness matrix, and x and f are the vectors of

generalized coordinates and forces respectively for the entire IBR. A ROM can be created

by introducing the change of coordinates x = Tq,where T is the transformation matrix and
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q is the vector of generalized coordinates. The system level matrices M̂ and K̂ presented

in Eq. 4.4 can be prohibitively large to store and to use. For this reason it is often more

convenient to use sector level matrices for the calculation of the ROM. The formulation

presented in Eq. 4.2 requires coupling between the sectors. This coupling is provided through

the basis vectors included in the transformation matrix T. Using sector level quantities

instead of system level ones results in significant savings of computational time and memory.

In this case, the system level multiplication with the transformation matrix results in a sum

over the sectors of sector level information as in

TTM̂T =
N∑
i=1

TT
i MiTi, (4.5)

where Ti is the partition of the transformation matrix corresponding to the ith sector. The

MAX transformation matrix matrix can be written as [10]

T =

[
ΦMCM ΦBAM Φ

]
, (4.6)

where, ΦMCM represents the constrained modes, ΦBAM the acceleration modes, and Φ the

normal modes. If the number of sectors is large, then it is important to implement this

calculation efficiently in the ROM creation process. In MAX+, the transformation matrix

includes tuned normal modes, and as a result the properties of cyclic structure can be invoked.

Using a technique similar to the one proposed in [13], it is possible to greatly reduce the

number of operations to be carried out. Let us now consider the multiplication of the system

level matrices with the normal modes. Equation 4.5 can be expressed as

ΦTM̂Φ =
N∑
i=1

ΦT
i MiΦi. (4.7)
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The tuned normal modes at the system level can be expressed as a linear combination of the

vectors u and ū as [9]

Φi = ufAi + ūfBi, (4.8)

where fA and fB are the coefficients of the real Fourier matrix. Introducing this notation

and plugging back into Eq. 4.8 it can immediately be noticed that only the coefficients

change over different sectors, the other quantities remain the same. This feature makes this

calculation feasible for highly refined industrial FE models, where the number of DOFs often

exceeds several million per sector and the number of blades can be very large.

4.3.2 Interaction of mistuning and prestress

The focus of this paper is set on the part of MAX+ able to capture prestress effects,

i.e. effects that encompass steady state variations in the stiffness and/or the mass matrices.

Even though the mass matrix is typically not affected, it could experience small variations

if a nonlinear analysis is carried out to obtain the new static equilibrium. The examples

presented here refer to centrifugal loads, but the prestress term could come from other

sources, such as steady thermal and aeroelastic loads. In particular, this study is concerned

with the interaction between mistuning and prestress effects, with a particular focus on

geometric mistuning. The presence of a blend is used as an example of geometric mistuning.

Let us now consider the case of the perfectly symmetric IBR shown in Figure 4.1. When

in rotating conditions, all sectors experience the same forcing, as shown in Figure 4.4, and

thus the equilibrium position still preserves its symmetry. As a result, cyclic symmetry

analysis can be employed to solve for the equilibrium and extract the sector level matrices

in rotating conditions. The system matrices can still be conveniently written in the same

74



Figure 4.4: Pristine system subject to preload

form as Eq. 4.1. In particular, the stiffness matrix can be written as

K̃Ω = I⊗KΩ =


KΩ

. . .

KΩ

 , (4.9)

where the subscript Ω is added to represent the presence of prestress. However, these as-

sumptions are not valid when geometric mistuning is present, like in the case shown in

Figure 4.5. In that case, the sectors experience different forces, as shown in Figure 4.5,

resulting in a final equilibrium position that is not cyclic symmetric. The difference between

pristine and mistuned sectors of a mistuned IBR ceases to exist when prestress is applied,

as all the sectors become mistuned to a certain extent.
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Figure 4.5: Mistuned system subject to preload

The change in stiffness due to prestress can be expressed as

δK̃Ω =


δK1

. . .

δKN

 , (4.10)

where δKi is the prestress contribution to the ith sector. A mistuned IBR composed of both

pristine and mistuned sectors in static conditions becomes instead composed of only mistuned

sectors when subject to prestress. Thus, the concept of pristine sector disappears when any

form of mistuning and preload are concurrently present. In fact, especially in proximity of

the mistuned sector, a significant deviation from cyclic symmetry can be observed. In this

paper, a calculation strategy for the extraction of the sector level matrices is presented to

re-establish the concept of pristine sector, with the aim of reducing the computational cost
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with little accuracy loss.

4.3.3 Calculation of the prestressed matrices

When a mistuned IBR like the one shown in Figure 4.5 is subject to a preload, a full wheel

analysis is required for the extraction of the new system matrices. This requires significant

computational effort and eliminates properties that are very useful for the ROM creation,

such as the existence of pristine sectors. In the method proposed here, the full wheel static

equilibrium is substituted with single sector calculations. This is based on the assumption

that pristine sectors remain pristine.

First, the static equilibrium for the pristine sector is obtained using cyclic symmetry

analysis. Then, the resulting displacements at the cyclic interface highlighted in Figure 4.2

are imposed as boundary conditions for the mistuned case. The prestress loads are then

applied to the sector and the equilibrium for the mistuned sector calculated. All these

analyses are performed using single sector calculations. The underlying assumption is that

the deviation from the cyclic prestress is localized in the blend or blade region, which is far

from the cyclic interface. Thus, a negligible error is committed by imposing an approximated

boundary condition at the cyclic interface.

4.3.4 Metrics and limitation

The effectiveness of the method is based upon the assumption that there exists a region

far enough from the geometrically mistuned area where the deviation from cyclic results is

negligible. The presence of such a region is strongly dependent on both pristine and mistuned

geometries, as well as the rotational speed or prestress level. In fact, the magnitude of the

error will depend on all these factors.

An error metric is introduced to evaluate the magnitude of the error. This metric is able

to quantify the deviation between single sector and full wheel results in the sectors adjacent
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to the blended one. A full wheel calculation must be carried out only once for a given

mistuning type (e.g., type of blend), typically at the highest level of prestress expected.

If the error is considered acceptable, it is then possible to use the matrices extracted in

the ROM. First, the pristine prestressed full wheel stiffness matrix K̃ is obtained. Then,

one of the sectors is substituted with the mistuned sector under investigation to obtain the

mistuned prestressed full wheel stiffness matrix K̂. Once the full wheel matrices are obtained,

the prestress deviation matrix Kvar can be formulated as follows

Kvar = |K̂− K̃|. (4.11)

For convenience, the results can be visualized by assigning a measure of the variation in the

stiffness matrix entries to every DOF. Recalling that the deviation matrix and the vector of

DOFs are defined as Kvar =
(
kvarij

)
, K̃ =

(
k̃ij

)
and x = (xi) respectively, one can write

xi =

∑N
j=1 kvarij∑N
j=1|k̃ij|

. (4.12)

This approach quantifies the impact that a mistuned sector has on a neighboring pristine

sector.

4.4 Results and Discussion

Let us consider the IBR shown in Figure 4.6. The first sector presents a large blend.

The MAX method [10] is used to create a ROM. The natural frequencies of the ROM are

compared to the ones obtained using the full-order model to validate the method. For each

mode, the error is defined as

e =
|ωROM − ω0|

ω0

, (4.13)

78



Figure 4.6: Validation IBR having one blended blade

where ω0 represents the frequency obtained using the full-order model, and ωROM represents

the frequency calculated using the ROM.

A baseline set of results can be obtained using a full order model for the IBR shown in

Figure 4.6 and used for validation. Results obtained using the ROM in non-rotating condi-

tions are presented in Figure 4.7a. Note that the two sets of results are in good agreement,

showing an almost negligible error. Establishing a baseline is important because the accu-

racy of the ROM in rotating conditions is expected to decrease due to the simplifications

made during ROM creation. The error will depend on the blend size and type, and on the

magnitude of the prestress. In all the results here presented, the transformation matrix from

the MAX method is modified to include the normal modes in prestressed conditions.
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(a) Baseline MAX results without prestress

(b) MAX+ results in rotating conditions at 10000 RPM

(c) MAX+ results in rotating conditions at 20000 RPM

Figure 4.7: Validation results obtained in different prestress conditions
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Figure 4.7b shows the frequency error for the case of an IBR spinning at 10000 RPM.

Note that the accuracy loss compared to the baseline results is negligible. The accuracy

loss becomes noticeable in the case of a rotor spinning at 20000 RPM, as can be seen in

Figure 4.7c. In particular, it is important to note that the blend acceleration modes (BAMs)

coming from the MAX method are not able to reduce the error. This is because the mass

and stiffness matrices are the sources of error. Nonetheless, MAX+ prediction error is still

small.

The error due to the use of single sector calculations can be visualized using the metric

presented in Section 4.3.4. Figure 4.8 shows a visualization of the stiffness variation matrix

Kvar for the 20000 RPM case. Figure 4.8a show that the largest variation is localized in

the blended sector. This is expected, and it is appropriate to obtain a deviation in the area

adjacent to the blend. Particularly relevant is Figure 4.8b, which shows the error that is

committed by neglecting the stiffness variation in the neighboring sectors, which are assumed

to remain pristine instead. In this case, the maximum deviation is 0.007%. Please note that

a small error is also committed in the blended sector due to the application of approximate

boundary conditions. This error is not represented here because it is not captured by this

metric.

The case of the IBRs with two blends on neighboring blades [112] shown in Figure 4.3 is

examined next. The presence of two neighboring blends is more challenging to capture be-

cause they can mutually influence each other when prestress is applied. The results obtained

in rotating conditions at 10000 RPM are shown in Figure 4.9b, while the baseline results

obtained in absence of prestress are shown in Figure 4.9a. Even in this case, the MAX+

method provides excellent accuracy.
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(a)

(b)

Figure 4.8: Visualization of the error metric between the prestressed pristine and mistuned
stiffness Kvar
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(a) Baseline results without prestress

(b) MAX+ results in rotating conditions at 10000 RPM

Figure 4.9: Validation results obtained in different prestress conditions for the IBR of Figure 4.3

Next, the method was applied to the case presented in [114], which consists of the blended

IBR shown in Figure 4.10a. This case presents different blends on different blades as well as

different FE meshes. The results from MAX+ are reported in Figure 4.10b, and they show

excellent agreement between the ROM and the full order model.
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(a) Validation case using a morphed mesh [114]

(b) MAX+ results in rotating conditions at 10000 RPM

Figure 4.10: Validation results obtained for an IBR with two distinct blends

Another feature of MAX+ that can be used to save time in the solution of problems

with prestress is the use of baseline mode shapes instead of the modes at given prestress

levels. The transformation matrix obtained in reference conditions can be used even for

those cases when the operating conditions are different. The only variation in that case
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is in the system matrices. Let us examine the case of Figure 4.6. The results for the case

rotating at 10000 RPM is presented in Figure 4.11, and they show that even though the error

increases significantly compared to the one shown in Figure 4.7b, the ROM still provides a

good approximation. The error increase is in this case due to a change in the mode shapes.

Figure 4.11: MAX+ results in rotating conditions using baseline modes for the case of Figure 4.6

4.5 Conclusions

In this paper, a novel method, MAX+, was introduced. This method extends the ca-

pabilities of MAX and allows the introduction of prestress, finite element mesh morphing,

and other system characteristics in a general framework for the analysis of IBR bends. One

of the enabling techniques is a method to build ROMs using only sector level matrices of

quasi-cyclic structures subject to prestress. The approximation introduced in MAX+ causes

little to no accuracy loss. The computational gains are significant, given that full wheel

calculations are difficult for large finite element models. A metric able to quantify the error

created by the approximation is proposed also. This metric addresses a significant issue in

ROMs, namely knowledge of the modeling error intorduced by model reduction. This error

metric was successfully applied to ROM presented in [10] built on the MAX method as well
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as models built using the MAX+ method. The paper summarized the capabilities of the

MAX+ method, which is a framework for the analysis of blended IBRs [112, 114]. The

MAX+ method can be applied in the design process to identify optimal repair strategies.

Results can be obtained quickly for different conditions, without requiring repetitive new

finite element studies. The ability to accommodate the use of mesh morphing is also of

paramount importance, enabling rapid creation of multiple complex geometries.
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Part II
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CHAPTER 5

Application of Tuned Vibration Absorber Concept to

Blisk Ring Dampers: A Nonlinear Study

In this chapter, a novel design for ring dampers is proposed, where the concept of tuned

vibration absorbers is leveraged to substantially increase damper effectiveness while mini-

mizing potential stresses near the blade root. Tuned absorbers have been used in the past

to reduce the forced response amplitudes of both mechanical and civil structures. The ab-

sorber natural frequency is tuned to the targeted frequency of the host structure where it is

attached. The vibration reduction mechanism relies on energy transfer from the host struc-

ture to the absorber. The novel design technique proposed here uses a vibration absorber

approach to achieve energy transfer from the blisk to the damper, which leads to larger

damper motion. This enables energy dissipation due to friction, reducing vibrations even in

blade dominated modes. An academic finite element model of a blisk with a ring damper is

used to demonstrate the novel tuned damper concept and design technique. The geometric

mistuning of the damper due to the presence of a gap in the ring structure is also taken

into account. The results demonstrate the validity of the proposed tuned damper concept,

showing a substantial vibration amplitude reduction compared to the linear baseline results,

in which the damper is not tuned or absent.
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5.1 Introduction

Turbomachinery bladed disks (blisks) are typically cyclically symmetric by design, how-

ever, due to manufacturing tolerances, damages, repairs, etc., the symmetry is broken in the

real system. Any deviation from cyclic symmetry caused by variation in geometry or prop-

erties across blades or sectors is called mistuning, and research has shown that mistuning

has a significant effect on the vibratory behavior of the system, causing vibration localiza-

tion [4, 115]. Blisks may be subjected to high levels of vibration due to low damping and

unintentional mistuning. The low damping is due to the absence of frictional joints at the

blade-disk interface, which are instead present in conventional turbomachinery rotors. The

blades of a blisk are the most vulnerable to such vibrations, which can result in high cycle

fatigue and ultimately blade failure. Hence, the reduction of vibration amplitudes through

an effective damping mechanism is of paramount importance.

Several damping solutions have been employed in the past, including the use of coatings

[48, 49], order-tuned vibration absorbers [50], and impulse mistuning [51]. Another common

approach is to use frictional contacts to dissipate energy. Typical examples are the use

of shrouds and snubbers [26, 116]. Examples also include under-platform [53–55, 117–120]

and ring dampers [56, 57, 62], which add nonlinear damping to the system by means of

frictional dissipation. The forced response of blisks with ring dampers has been studied in

the past using reduced order models (ROMs) [59–61]. The effectiveness of current damping

solutions for blisks is low for the case of blade dominated modes, which are often the ones

most critically affected by mistuning. In the case of ring dampers, energy dissipation and

amplitude reduction occur when there is relative motion at the interface between the ring

damper and the blisk. This relative motion can be difficult to obtain because the motion

is typically largest in the blades, and dampers must be placed away from the blade root to

avoid stress concentrations, typically in areas with small motions. Consequently, the damper
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effectiveness is limited, and only modes with substantial disk participation can be targeted

and damped effectively. In addition, another challenge associated with friction dampers is

to ensure damper effectiveness across multiple operation regimes and frequency ranges.

A concept that has been exploited in the past for the suppression of vibrations in civil and

mechanical structures is the one of tuned vibration absorbers [68, 70, 76]. Tuned vibration

absorbers do not typically rely on nonlinearities, and do not require large motion at the

attachment location to be effective. The effectiveness of this concept is based on the energy

transfer and the frequency split that are achieved through tuning. The split in natural

frequency shifts the resonance of the host structure away from the area of interest, resulting

in lower amplitude response at the original frequency. Several studies have been carried

out to extend the concept to multiple tuned vibration absorbers [71, 121] and multi-DOF

systems [72, 73]. A good overview can also be found in [69]. Nonlinear tuned vibration

absorbers systems have been studied also, and the introduction of Coulomb friction in tuned

vibration absorbers has been investigated [77, 122–124]. A linear analysis on the application

of this concept to cyclic structures like the one studied in this paper can be found in [73].

In this paper a novel ring damper concept for vibration reduction in bladed disks is

proposed. The concept presented here combines the working principles of vibration absorbers

and ring dampers to increase damper effectiveness. Nonlinear dissipation is enabled by the

increase in damper motion due to tuning. This reduces the need to position the damper

in a location with high relative motion between the damper and the blisk, i.e. the damper

groove, because a large damper motion is ensured by damper tuning. As a result, the damper

is effective for higher mode families and nodal diameters, which are characterized by blade

dominated motion and are traditionally more difficult to dampen using ring dampers.

A realistic geometrically mistuned damper is used in the case study presented here to

introduce the effects of mistuning in addition to nonlinearities. The ring damper geometry

and material are chosen such that the structure presents the same natural frequency of the
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targeted blisk mode that is damped. The forced response obtained using a tuned vibration

absorber is compared to the response obtained when an equivalent non-tuned damper is used,

which is used as a baseline for comparison. A substantial amplitude reduction is achieved by

means of frictional dissipation by introducing the tuning concept. The effects of variations in

tuned vibration absorber frequencies and nonlinear energy dissipation are investigated also.

It is found that energy dissipation can change based on whether there is a perfect match

between the blisk and the damper frequencies or there is a small difference. However, in all

the examined cases, the damper effectiveness is increased compared to the baseline.

5.2 Methodology

In this section, the concepts used in this study are presented. First, the working principle

and expected outcome of the application of the method are presented. Frictional nonlinear-

ities and contact conditions are then introduced. Finally, the procedure used to ensure a

match between the natural frequencies of the blisk targeted modes and the damper modes

is presented. The blisk considered in this study is tuned.

A simple lumped-mass representation of the tuned vibration absorber concept is presented

in Fig. 5.1, where a single-DOF vibration absorber is attached to a single-DOF main system.

A comparatively small mass m is attached to the main mass M by means of a spring k to

reduce the vibration amplitude of the original mass M . The qualitative trends shown in Fig.

5.2 represent the behavior of a single-DOF system in the presence of a vibration absorber.

In general, the added mass m does not substantially affect the behavior of the system, as

described by the blue line. In [68] it was shown that for the simple case of an undamped

oscillator it is possible to significantly reduce the vibration response of the mass M at its

natural frequency by adding a tuned vibration absorber having the same natural frequency,

i.e. satisfying

√
K

M
=

√
k

m
. With a tuned vibration absorber the response in yellow is
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obtained, where a shift in the natural frequencies of the system can be observed. It is

important to mention that the amplitude of motion of the damper increases as a result of

tuning. Energy can be dissipated by introducing a Coulomb friction elements between the

two masses, with a result qualitatively similar to the orange line of Fig. 5.2, where the

vibration amplitude is reduced. This concept is extended to a realistic multi-DOF system

with a multi-DOF damper in the following section.

Figure 5.1: Schematic of a simple spring-mass system (K,M) representing the blisk with a smaller
tuned vibration absorber attached (k,m)

Figure 5.2: Conceptual representation of the forced response of the main mass shown in Fig. 5.1

5.2.1 Blisk EOMs and contact nonlinearities

The equations of motion (EOMs) for a blisk hosting a ring damper can be written in

general form as

Mẍ + Cẋ + Kx = fe + fn(ẋ,x), (5.1)

where M, C and K are the mass, damping, and stiffness matrices obtained in the absence

of contacts, fe is the vector of external periodic forces acting on the structure, and x is the
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vector of generalized coordinates. The vector fn represents the nonlinear forces, which are

due to the contacts between the damper and the blisk. Proportional damping is used, and

the damping matrix can be written as C = βK. The mass and stiffness matrices can be

written as

M =

Mb 0

0 Md

 , K =

Kb 0

0 Kd

 , (5.2)

where the subscripts b and d refer to the blisk and the damper components respectively. Hav-

ing obtained the matrices K and M without considering contacts, the connectivity between

the two bodies is enforced through the forcing term fn.

A relative coordinate formulation is used to describe the displacement at the contact

interface, similar to [26, 125]. Thus, the DOFs must be reordered, and a coordinate trans-

formation x = Txr between the original coordinates in x and the relative coordinates in xr

be applied. The relative coordinates can be partitioned as

xr =


x2 − x1

x1

x0

 , (5.3)

where x1 contains the contact DOFs on the blisk groove, x2 contains the contact DOFs on

the damper, and x0 contains all the remaining DOFs. The DOFs in x0 are not directly

affected by nonlinearities, thus the displacement vector xr and the corresponding forcing

vector fnr can be partitioned as

xr =

xn

x0

 , fnr =

fnr,c

0

 , (5.4)

where xn and fnr,c contain all the DOFs affected by nonlinearities, i.e. the ones belonging to
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x1 and x2. A node-to-node contact model is used, where all pairs of nodes having coincident

location form a contact pair. The sets of DOFs x1 and x2 presented in Eq. 5.3 contain such

contact pairs. The 1D contact model presented in [26, 61] is used to model the interaction

between disk and damper.

Let us define a local coordinate system at each contact node pair, in which z represents the

normal direction, and x,y represent the tangential directions. For the node i the tangential

contact stiffness ki,x,ki,y and normal contact stiffness ki,z are represented by 1D springs.

Let us call Ni(t) the normal contact force at the node pair i, and vi the normal relative

displacement, which is positive when the surfaces penetrate each other. The contact force

Ni(t) can be defined as

Ni(t) = max(ki,z · vi(t), 0), (5.5)

which is thus positive when there is contact and zero in separation. The prestress Ni,z0

that is applied to the contact node pairs to ensure contact in static condition is implicitly

included in Eq. 5.5 because the term vi(t) contains the static solution. Let us define wi,x

and wi,y as the tangential slip between the contact surfaces and ui,x and ui,y as the relative

displacements in the tangential directions. The tangential force Ti,x(t) is defined as


Ti,x(t) = ki,x · (ui,x(t)− wi,x(t)), stick

Ti,x(t) = µNi(t) · sign(ẇi,x(t)), slip

Ti,x(t) = 0, separation

(5.6)

where µ is the friction coefficient. Ti,y(t) is similarly defined by changing the subscript x

to y. A more detailed explanation of this contact model can be found in [26, 126]. The

contact status can be slip, stick or separation. The contact condition must be calculated

at every time t and for every node location. Separation occurs when the two nodes are not

in contact, i.e. there is a gap between the two surfaces. Both slip and stick conditions
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occur when there is contact between the contact surfaces. If Ni(t) is positive, there are two

possible states for the contact. If the tangential force Ti,x(t) or Ti,y(t) calculated for the stuck

case is larger than the product µNi(t), where µ is the coefficient of friction, the contact is

in slip condition, otherwise it is stuck. This may happen in any direction x or y. Stuck

conditions do not imply that there is no relative motion x2 − x1, but rather that wi,x(t) or

wi,y(t) remain constant. As a result, the node pair is effectively connected by a linear spring

in the corresponding direction. At any time t, the contact condition must be evaluated, and

the corresponding forcing term fn must be applied. This makes Eq. 5.1 highly nonlinear,

resulting in a significant computational cost associated with its solution. It is important to

notice that the contact condition only depends on the relative motion x2 − x1 between the

damper and the blisk.

To increase computational efficiency, Craig-Bampton component mode synthesis (CB-

CMS) [42] is used to reduce the number of linear DOFs. Only the contact nodes on the blisk

and the entire set of damper nodes are preserved as master nodes, and the corresponding set

of slave modes is calculated. This ROM is used to assess the effectiveness of the proposed

damper concept. Equation 5.1 is solved using the harmonic balance method (HBM) [127] to

obtain the steady state response to a traveling wave excitation. The combination of CB-CMS

and HBM is used to substantially reduce the time required for the solution of the EOMs.

5.2.2 Damper tuning

The damper used in this study is shown in Fig. 5.3. Note that it presents a gap that

makes it non-axisymmetric. The presence of the gap serves two purposes. The first one is

to ensure preload at the contact interface. Centrifugal forces cause the damper to deform

substantially in the radial direction, which is possible thanks to the gap. As a result contact

at the interface between the damper and the blisk groove is ensured. The static equilibrium

would be different if the damper was perfectly axisymmetric, with possible loss of contact
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or inadequate preload. Secondly, the damper becomes mistuned, i.e. non-axisymmetric, due

Figure 5.3: Geometry of the ring damper used in the analysis

to the presence of the gap. This results in its normal modes being mistuned. If a spatial

Fourier analysis is carried out for any damper mode it would be possible to observe multiple

spatial harmonics, or nodal diameter contributions. This is particularly convenient, because

it allows the damper to couple with multiple blisk modes with various nodal diameters.

Previous studies showed that the coupling is not possible if the system is tuned, where only

few nodal diameters can be used [73]. Damper mistuning is thus beneficial because it allows

to tune damper modes for multiple blisk nodal diameters. The damper position in the blisk

groove is shown in Fig. 5.4. For this study, it is assumed that there is clearance between the

sides of the damper and of the groove. Thus, the side nodes are always in separation. The
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contact condition of the nodes at the top is instead determined at every time t based on the

relative motion between the damper and the blisk groove x2 − x1.

Figure 5.4: View of the damper and the blisk groove

The damper matrices presented in Eq. 5.2 are obtained for the free damper, i.e. a damper

that is not constrained to the groove, because the contacts and constraints are introduced

using the nonlinear forcing term. To apply the concept of a tuned vibration absorber, it

is necessary to tune the damper, i.e. to ensure that one of its natural frequencies matches

the blisk frequency to be damped. For the tuning of the damper, appropriate boundary

conditions and contact conditions must be enforced. The stuck natural frequencies of the

damper are used for tuning. The reason why stuck contact conditions were chosen is that

the nonlinear response is expected to lie close to the linear stuck response until microslip

phenomena appear. Based on previous literature, a small shift in peak frequency of the

response could also occur [26, 128]. The stuck natural frequencies are obtained by considering
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the contact node pairs in stuck conditions, i.e. connected by linear springs in all three

directions. To calculate such frequencies, the blisk nodes are assumed to be fixed. Once the

blisk alone natural frequencies are known, an undamped modal analysis is carried out on

the constrained damper. The constrained damper mass matrix Md does not change based

on contact conditions. The stuck stiffness matrix Kd,c used for tuning purposes is instead

dependent on the contact conditions, and it can be written as

Kd,c = Kd + ∆Kd, (5.7)

where ∆Kd is the matrix that enforces the presence of linear springs between the contact

pairs to simulate a stuck contact and Kd is the matrix obtained without contacts. ∆Kd has

simple diagonal form because a relative co-ordinate system is used, as shown in Eq. 5.3.

Thus,

∆Kd = diag(k1,x, k1,y, k1,z, . . . , ki,x, ki,y, ki,z, 0, 0, 0, . . . ), (5.8)

which is populated with the nodal contact stiffnesses ki,x, ki,y, ki,z in the contact DOFs, and

zeros elsewhere. Once the stiffness matrix Kd,c is obtained, it is possible to study the natural

frequencies and normal modes of the damper. The eigenvalue problem can be written as

Kd,cΦ = MdΦΛd,c, (5.9)

where Φ is a matrix whose columns represent the normal modes of the system, and Λd,c =

diag(ω2
1, . . . , ω

2
n) is a diagonal matrix containing the eigenvalues. Please note that the contact

parameters have a significant impact on the tuned damper frequencies and their estimation

can be particularly challenging. Studies on the identification of contact stiffness parameters

can be found in [118–120].

Once the targeted mode of the blisk is chosen, its frequency Ωt is known. The blisk
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natural frequency Ωt is obtained considering the blisk alone without the damper attached,

similar to what is done in [68] for the lumped mass example shown in Fig. 5.1. In order

for this damper to behave as a tuned vibration absorber, the frequency ωi = Ωt must be

identified. If there is no such frequency ωi, the frequency match can be obtained by means

of geometric design and material changes. As a proof of concept, in this study the material

properties of the damper were changed to ensure that there exists a value of i for which

ωi = Ωt. In particular, the stiffness of the constrained damper was increased by 78.7%. The

necessary material property change is large because the damper geometry analyzed here is

very simple, but this change is small enough that it may be achievable by means of a more

complex geometry also.

5.3 Results

The methods presented in the previous section are applied to the case of an academic

blisk with N = 24 blades. The blisk used in the simulation is presented in Fig. 5.5. The full

wheel finite element model of the blisk comprises 51, 240 nodes and 44, 424 elements. The

damper is comprised of 1, 008 nodes and 334 elements. Due to the fact that only the contact

nodes at the interface between blisk and damper present nonlinearity, CB-CMS can be used

to reduce the other DOFs of the system. All 1, 008 nodes of the damper finite element

model were preserved. This resulted in a damper model having 3, 024 DOFs. For the blisk,

only the interface nodes and two nodes per blade located at the blade tip were preserved.

The blade tip nodes are used to apply the traveling wave excitation to the blades and to

measure their response, and they are shown in Fig. 5.5. There are 840 interface nodes, and

48 blade nodes. There were 500 slave modes retained in the CB-CMS analysis, resulting in

a blisk model with 3, 164 DOFs. The number of DOFs of the entire assembly is thus 6, 188.

There are 504 interface nodes affected by the frictional nonlinearities, the others being side
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nodes considered to be always in separation in this study. The same contact preload Ni,z0 is

uniformly applied at all nodes. Parameter µ

∑
iNi,z0

F
(where F is the forcing amplitude) is

of interest because it was used in previous studies [26] and it captures the level of microslip

present in the system. For the results shown in this paper, we used µ

∑
iNi,z0

F
= 104.

In this study, the blisk is tuned, and the only source of mistuning is the damper gap. The

lowest natural frequencies of the damper before tuning are presented in Fig. 5.6. Note the

high modal density of the damper. Figure 5.7 shows the frequency-nodal diameter plot of the

blisk and the tuned damper frequencies ordered by mode index. The blisk mode targeted

in this study belongs to the 1st family, ND = 5. Such a mode was chosen to validate

the concept proposed here because previous studies showed that traditional ring dampers

effectiveness is low for blade dominated modes having low disk motion [63]. In contrast, the

ring damper concept proposed here is effective in those conditions. The frequency of the

blisk targeted mode is f = 2, 112.8 Hz, and the 10th damper mode is chosen to damp it.

The damper is tuned by adjusting its material properties. Note the frequency overlap at

the crossing between the two series of results shown in Fig. 5.7. The purpose of choosing

the 10th mode is to highlight that the proposed concept is robust and effective even in cases

where the blisk nodal diameter to be damped is not dominant in the correspondent damper

mode. The 10th mode contains all nodal diameters, but ND = 5 of the mode to be damped

is not dominant. There is no need to match the nodal diameter with the one of the targeted

blisk mode because the damper is mistuned. However, it is important to ensure that the

corresponding nodal diameter content of the damper mode is sufficiently large. First, a

spatial Fourier Transform of the nodal displacements of a set of given nodes (one per each

sector) along a chosen direction is carried out. The coefficients obtained from such analysis

represent the participation factors of different spatial harmonics, which constitute the nodal

diameter content of the mistuned mode. The nodal diameter content of the damper mode

used for tuning purposes is shown in Fig. 5.8. Note that the chosen mode does not have its
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Figure 5.5: Academic blisk having N = 24 blades used for the study. Forcing and response data
nodes are marked with a square and a circle respectively.
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maximum nodal diameter component at ND = 5. However, the chosen mode has a relatively

large ND = 5 component.

Figure 5.6: Frequency versus mode index plot for the non-tuned damper

Figure 5.7: Frequency versus nodal diameter plot for the blisk and frequency versus mode index
plot for the tuned damper

5.3.1 Forced response

To evaluate the effectiveness of the proposed damper concept, a forced response analysis

is carried out. An EO = 5 traveling wave excitation is applied to the blisk. Forcing is
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Figure 5.8: Nodal diameter content of the damper mode used to damp a blisk mode having
ND = 5

applied on a blade node for each sector of the blisk in the axial direction. The location of

the forcing and response nodes are shown in Fig. 5.5. The forcing level and the prestress

forces are kept constant in this study. Only the type of ring damper used is varied.

First, the linear response is calculated for both the blisk with a tuned damper and the

blisk with a non-tuned damper. The non-tuned damper is defined as a damper that does not

have at least a natural frequency matching the natural frequency of the targeted blisk mode.

The linear response is calculated in stuck conditions because that is the typical condition

that can be found when frictional nonlinearities are not activated. Then, a nonlinear analysis

is carried out to investigate the effects of the tuned damper and of the non-tuned damper.

The tuned damper is expected to operate in the microslip regime, i.e. a contact condition in

which contact nodes exist in both stuck and slip conditions. The results are presented in Figs.

5.9 and 5.10. Four sets of data are presented, two linear and two nonlinear. The response is

calculated by taking the maximum amplitude over all blades in the axial direction.

The linear response in stuck conditions for the non-tuned damper is presented in Fig.
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5.9. Note that the nonlinear results almost perfectly overlap with the linear response, which

means that nonlinearities are not activated and the system is in stuck conditions and not in

microslip. Activation or lack of activation of nonlinearities depends on the preload, friction

and forcing conditions. Limited to the case we studied, we can conclude that in the simulated

conditions of preload, friction, and forcing, a traditional ring damper is ineffective, providing

no amplitude reduction. When the damper is non-tuned, the frictional nonlinearities are

not activated due to the low motion amplitude at the contact, and thus there is no energy

dissipation.

Figure 5.9: Linear and nonlinear analyses of the forced response of a system employing a non-
tuned ring damper

The results obtained with a tuned damper are presented in Fig. 5.10. Note that in the

tuned case there is a substantial frequency split and that many peaks are present even in

the linear case. The presence of multiple peaks is due to the presence of mistuning in the

damper. Several small resonance peaks that were not present for the non-tuned damper can

be observed within the frequency range, due to the high modal density of the damper, as

it can be seen from Fig. 5.6. Even though there is an amplitude change compared to the
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linear results obtained with a non-tuned damper, this change is not substantial, as there is

no significant variation of linear damping due to the use of a tuned absorber. The nonlinear

results obtained using a tuned damper show instead a significant variation compared to

both linear cases. Due to the simultaneous effects of friction nonlinearity and tuned damper

absorber, the vibration amplitude of the blades is significantly reduced. Significant amplitude

reduction can be seen in the areas corresponding to the linear resonance. Close to the linear

resonance the damper motion is increased, and this results in large relative motion. As a

result, slip occurs at some of the contact node pairs and energy dissipation is enabled.

Figure 5.10: Linear and nonlinear analyses of the forced response of a system employing a tuned
ring damper

The maximum blade vibration amplitude obtained with the tuned damper is 0.14. When

a traditional damper is used, the blade vibration amplitude is 1.27, which means that a 90%

reduction can be achieved using this damper concept. Figures 5.9 and 5.10 were obtained

by using the maximum vibration amplitude over all the blades. More information about

mistuning effects may be obtained by studying individual blade responses. In Fig. 5.11,

the nonlinear results presented in Fig. 5.10 are plotted for each blade. The blades present
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different vibration amplitudes. In general, multiple peaks appear in the response because the

peak amplitudes of each blade are at distinct frequencies. This effect is mitigated by non-

linearities. Note in Fig. 5.11 that the simultaneous presence of nonlinearities and mistuning

causes only relatively small amplitude variation between blades near the main peaks.

Figure 5.11: Individual blade responses for the nonlinear case shown in Fig. 5.10

5.3.2 Analysis of damper motion

To analyze the origin of energy dissipation, the motion of the damper is examined. Figures

5.12 and 5.13 show the amplitude of the damper motion at the contact interface for both the

tuned and the non-tuned dampers. It is possible to observe that the motion of the damper is

much larger in the tuned case, even though the blade amplitude is lower. This confirms the

expected increased motion due to energy transfer. Furthermore, the peaks of the response

shown in Fig. 5.12 are cut by the effects of nonlinearities, i.e. the damper shows the same

behavior of the blisk blades, and both of them show signs of microslip in the same frequency

range. The increased motion is shown for the axial direction because a damper mode with

dominant motion along that direction was chosen and because of the presence of clearance
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between the damper sides and the blisk groove.

Figure 5.12: Damper response for the tuned damper corresponding to Fig. 5.10

5.3.3 Effects of detuning and damping variations

In the previous section, the effects of frictional nonlinearities were examined by comparing

linear and nonlinear results for the case of a perfectly tuned damper. However, in real

applications it is impossible to achieve a perfect match between damper and blisk frequencies

due to geometric and material tolerances. In this section, a sensitivity analysis based on the

variation of natural frequency of the damper is carried out to examine the effects of detuning

on damper effectiveness. The analysis is carried out to shed light onto the energy transfer

and dissipation mechanisms in the system. The targeted mode frequency is the same as

before, i.e. 2, 112.8 Hz, but the damper mode that is improperly tuned has a frequency

that is 21.0 Hz or 52.2 Hz above the original target frequency, which is equivalent to a 1.0%

or 2.5% frequency variation. The damper frequencies are now outside the frequency range

examined in the forced responses in Figs. 5.9-5.13. However, the improperly tuned damper

is expected to have a diminished but non-zero effect on the blisk response due to the fact
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Figure 5.13: Damper response for the non-tuned damper corresponding to Fig. 5.9

that its frequencies are relatively close to those of the blisk. A larger damper motion is

expected for the tuned damper compared to the non-tuned damper. This results in larger

relative motion at the interface between blisk and damper, which in turn, causes more energy

dissipation and thus lower blade vibration amplitudes.

Figure 5.14: Effect of damper detuning on the response of the blisk (nonlinear)
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From Fig. 5.14 it is possible to notice that the nonlinear results present a significant

deviation from the ones obtained in the perfectly tuned case of Fig. 5.10. The frequency

split that was observed before is not present anymore. Even if the frequency split and the

mistuning are now not as visible as before, the nonlinear calculations showed a significant

amplitude reduction, as well as a minor frequency shift. Both the frequency shift and the

amplitude reduction are consistent with what was expected. This confirms the robustness

of the approach.

5.4 Conclusions

A novel ring damper concept able to effectively damp vibration in blisks was proposed

based on the tuned vibration absorber idea. A tuning method for the vibration reduction

of a multi-DOF system based on the addition of a multi-DOF damper was introduced and

validated. This method requires the use of a mistuned damper to preserve the ability to

target any blisk modes independent of nodal diameter. The effectiveness of the proposed

design was studied by calculating the forced response of the system. Linear and nonlinear

results were obtained to compare the effectiveness of the proposed tuned vibration absorber

to a traditional non-tuned ring damper. A significant amplitude reduction was achieved using

the proposed concept. This reduction was made possible by enabling frictional nonlinearities

to dissipate energy by means of increased damper motion. Damper motion was also studied

to gain insight into the energy dissipation mechanism. The robustness of the approach

was assessed by evaluating the response in case of an improperly tuned damper. Damper

effectiveness showed a decrease compared to the case of perfect tuning. However, greater

effectiveness was observed compared to the non-tuned case. The proposed concept is able to

reduce the vibration level of multiple blisk modes. Even the modes that show little motion at

the damper-blisk interface can be damped by using the proposed tuned vibration absorbers.
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This paper demonstrated the effectiveness of a novel damper concept using a traditional

damper geometry. Future work could be carried out on the exploration of different damper

geometries capable of further increasing the effectiveness of such dampers. The response at

different engine orders and for different mode families could be analyzed. A study on the

interaction between the damper modes and the blisk modes may also be beneficial. In the

design of a vibration absorption based damper for a realistic blisk, several other parameters

will need to be studied, such as blisk mistuning, and the effects of prestress conditions on

the nonlinear dynamics. Experimental and numerical results using airfoils and blisks with

more realistic geometries could also be used for validation.
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CHAPTER 6

An Experimental and Computational Study on a

Tuned Mass Damper With Frictional Contacts

Turbomachinery blisks have very low damping, and for this reason, they require devices

such as ring dampers to mitigate excessive vibrations. Ring dampers rely on the relative

motion between a ring-like component and the blisk to dissipate energy by means of friction.

Damper effectiveness is typically low due to the absence of relative motion between the

damper and the blisk. Tuned mass dampers can mitigate the low relative motion and can

be particularly effective when the forcing is narrow-band. Tuned mass dampers transfer

vibration energy from the host structure to the damper, where this energy can be dissipated

by friction. These two features are particularly useful when the host structure has very

low damping and when there are stringent constraints on the position of the damper, as

is the case for turbomachinery blisks. In this paper, a tuned vibration damper concept is

explored. A cantilever beam is used to represent a blisk blade. The vibration reduction

provided by the use of a tuned mass damper with contacts is studied both computationally

and experimentally. Numerical and experimental results are compared to validate the model

and to gain insight into the energy dissipation phenomena and the working principles of such

dampers.

111



6.1 Introduction

Vibration reduction is of paramount importance in several applications in aeronautics and

astronautics to ensure durability and reliability of structural components. This is particularly

important for components that have to withstand a large number of cycles and could fail due

to fatigue. Such examples can be found in fasteners [129] and turbomachinery blisks [4, 116].

Turbomachinery blisks are very sensitive to mistuning, i.e. any deviation from nominal

properties or geometry, which can lead to vibration amplification of some of the blades in the

assembly. As a result, high cycle fatigue (HCF) is a major concern for such structures [116],

which makes the study of blisk vibrations particularly important. For this reason, several

studies have been conducted to predict blisk vibration through the use of simulations [3, 4].

Blisks also present very low mechanical damping, which results in high levels of vibration.

Hence, great efforts have been made to design and study various forms of dampers, including

ring dampers [56, 57, 59–61]. Ring dampers are typically positioned in a groove manufac-

tured in the disk portion of the blisk, and are shaped like a ring with a cut [130]. Ring

dampers rely on the relative motion between the damper and the groove surface to dissipate

energy. As a result, the effectiveness of ring dampers is limited because the disk region

typically shows little motion, especially for blade dominated modes. Unlike other aerospace

structures which are subject to random vibrations [129], turbomachinery blisks are subject

to narrow band excitations with specific spatial patterns known as traveling-wave excita-

tions [73]. This type of excitation makes tuned mass dampers (TMDs), or tuned vibration

absorbers (TVAs), good candidates for vibration reduction in such structures. Several studies

have been carried out in the past on TMDs in applications ranging from space structures [74]

to missile launchers [75]. A general overview can also be found in [76]. Some studies focused

on the use of Coulomb friction as a method to dissipate the energy that is transferred to

the TMD [77, 78, 130], and most of these studies have been carried out only computation-
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ally [77, 130]. A study on the application of TMDs to blisks that includes Coulomb friction

and a complex geometry is presented in [130], with a focus on numerical simulations rather

than experimental validation. However, due to modeling challenges such as those in contact

modeling, experimental validation is necessary. The study presented by Hartung et al. [78]

introduced an experimental setup for the investigation of TMDs with contacts. The exper-

iment is designed to replicate a 2-DOF lumped mass model, as the elasticity in the system

only comes from connecting springs. That study, however, does not capture the effects of the

position of the TMD in realistic 3D assemblies or the role that geometry and mode shapes

could play in the effectiveness of such TMD.

This paper has two main goals. The first goal is to experimentally and computationally

assess the effectiveness of a friction-enhanced TMD applied to a 3D structure. The second

goal is to experimentally validate a simulation tool based on the harmonic balance method

that is currently used to model nonlinear vibrations in the presence of friction. A steel

cantilevered beam is used to mimic the behavior of a blisk blade (Fig. 6.1). An aluminum

TMD with a frictional contact is attached to its root to absorb vibration energy and reduce

the overall beam vibration amplitude. This setup is proposed as a simplified representation of

a TMD hosted on the disk region, far away from the blade tip, where only small motions are

present. The experimental results are used to validate the predictive ability of a high-fidelity

finite-element model used in combination with a harmonic balance solver.

6.2 Methodology

Experimental and computational studies are carried out using the assembly presented in

Fig. 6.1. The first bending mode of the main beam is targeted. Even though the first mode

shape is geometrically relatively simple, it is a useful representation of the first bending

cantilevered blade mode of a blisk. The TMD is attached to the beam near its root, in
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a region of low motion amplitude for the mode being targeted, to simulate the working

conditions of such a TMD applied to a blisk.

Figure 6.1: Schematic of the experimental setup

6.2.1 Experimental setup

The uniform steel cantilever beam used in the study is connected to a plate bolted on

an optical table via a solid steel column. The bolted connections between the beam and

the support column, as well as between the plate and the optical table, were designed to

reduce frictional dissipation at the interfaces, resulting in a final assembly that shows very

little damping, similar to the case of blisks. An electrodynamic shaker is used to excite the

structure through a stinger connected to the beam. A view of the experimental setup can be

observed in Fig. 6.2. A load cell is placed between the stinger and the beam to measure the

input force, and a strain gauge is added to the damper beam to measure the contact normal

force, as it can be observed in Fig. 6.4.
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Figure 6.2: Experimental setup

The TMD was designed to have the shape of a cantilever beam (referred to as damper

arm) with a tip mass (referred to as damper head), as shown in Fig. 6.4. This design allows

to independently adjust the two damper parameters that regulate its natural frequency,

namely the bending stiffness and the mass. The damper arm is connected to the beam (i.e.,

the host structure) using clamp-like mechanisms. This allows easy adjustment of the damper

attachment location along the beam, as well as the adjustment of the length of the damper

arm, which modulates the bending stiffness and the natural frequencies of the damper. The

added mass on the damper head is connected to the damper to allow the targeting of the

first bending mode of the host structure, which is close to 30 Hz. The damper head houses a

contact element which is threaded onto the damper head. The contact normal load is varied

by tightening or loosening the contact element, which is then locked in position by the added
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mass, which is also threaded. The contact element consists of a hemispherical surface which

realizes an approximate point contact. The contact element rubs against a flat clamp-like

structure that can be easily positioned at different points along the beam. To demonstrate

the effectiveness of this concept, the damper was clamped near the root of the beam, where

there is little motion compared to the tip, with a ratio between tip motion to attachment

location motion approximately equal to 70. This ensures that the damper effectiveness is

driven by the tuning of the damper rather than just the motion of the beam.

Figure 6.3: View of the 3LDV setup

The vibration amplitude is measured using three Laser Doppler Vibrometers (LDVs),

positioned as shown in Fig. 6.3. As it is possible to see from Fig. 6.3, several measurement

points, marked with reflective tape, are available along the beam and the damper. For

simplicity, the vibration of the beam is measured at point A, which is close to the tip of the

beam, in the direction orthogonal to the beam surface. The motion of the damper head is

measured at point B, and the motion of the contact contact element is measured at point C,

as shown in Fig. 6.4.

A sweep in the excitation frequency is typically applied to obtain the frequency response

function of the assembly. Due to the very low damping of the system, the response at each

frequency takes a long time to reach steady state. For this reason, a stepped sweep in
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frequency is used, i.e. the forcing is kept at a constant frequency until the vibration reaches

steady state, then a sample is recorded, and then the frequency is incremented. This method

guarantees that the steady state response is captured in the absence of transient effects. The

frequency resolution of the curve is up to 0.01 Hz in the proximity of the resonance.

Figure 6.4: Damper showing the points used for measurement

The damper was designed to be adjustable in its length to coarsely adjust its frequency,

while the mass on top of the damper head is used as to finely adjust its frequency to match

the one of the beam. This is achieved through the use of a mass calibrated for that purpose.

6.2.2 Simulation model

The computational study of the experimental setup was carried out using a high-fidelity

finite-element model, presented in Fig. 6.1. The assembly is modeled using bonded contacts

at the interfaces between different components, with the exception of the contact interface

between the damper contact element and the contact surface. The nonlinear contact, located

just between point B and C in Fig. 6.4, is modeled using a Coulomb friction model, and the

solution is obtained using the harmonic balance method [126, 127]. To reduce the number of

DoFs and the computational cost associated with the solution of the system, Craig-Bampton

component mode synthesis (CB-CMS) [42] is used. Only a few selected nodes are preserved
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as master nodes, namely the contact pair, the node at the measurement location, and the

forcing node, which is located where the stinger connects to the beam. The number of

master DoFs retained is thus 12, and the number of slave modes is 50. As a result, the size

of the model is reduced from the initial 409, 278 DoFs, and 136, 426 nodes, to only 62 DoFs.

Similar to the case presented in [130], the equations of motion (EOMs) for the system can

be written as

Mẍ + Cẋ + Kx = fe + fn(ẋ,x), (6.1)

where M, C and K are the mass, damping, and stiffness matrices obtained in the absence

of contacts, fe is the vector of external periodic forces acting on the structure, and x is the

vector of generalized coordinates. The vector fn represents the nonlinear forces, which are

due to the contact between the two components. The damping matrix C is assumed to

be proportional to the stiffness matrix with a proportionality factor β, as C = βK, where

β = 2ζ
ω

.

6.2.2.1 Simulation model tuning

Some of the model parameters must be identified to match the experimental conditions.

As it is possible to notice from Fig. 6.1 and Fig. 6.2, some of the experimental features are

not present in the model. For example, the compliance of the metal plate that is used to

attach the beam support to the optical table is assumed to be negligible. Some of the features

of the experimental beam as well as the bolts are not modeled. Furthermore, the mass of

the damper contact element and the damper tuning mass are not experimentally measured.

As a result, the finite-element model initially presented a small deviation in the natural

frequencies compared to the experimental measurements. To overcome this discrepancy, two

model parameters are adjusted, namely the mass mdm of the damper tuning mass located on

the damper head, and the beam stiffness multiplier α, which effectively lowers or increases
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the stiffness of the entire assembly. In addition, the damping ratio ζ must be identified. The

parameter identification is carried out by comparing the computational and experimental

results obtained for the two linear cases: damper completely free and damper completely

stuck. The damper is said to be free when there is no contact engaged. The damper is said

to be stuck when the contact is engaged and the normal load F0 is large enough to prevent

the relative motion between the contact element and the contact surface.

To minimize the effects of nonlinearities coming from the beam clamp, which could arise

in the case of large vibration amplitudes, the tuning of the model was carried out at low

vibration amplitudes, obtained with F = 3.4 N. The beam frequency response is shown

in Fig. 6.5b and highlights the good agreement between computational and experimental

results after the model has been tuned. Please note that the difference between the two

sets of results is larger for the free case. This is likely because the interaction between

host structure and the TMD is very sensitive to the tuning quality, i.e. the match between

damper and host structure frequencies. In particular, the frequency split between the two

peaks present in the free case is not perfectly captured. The same is observed for the damper

response (point B in Fig. 6.4), which is shown in Fig. 6.5a. Because the curve fit was achieved

with only two parameters, the agreement between the two curves is considered satisfactory.

The parameters that were used to tune the model are presented in Table 6.1.

mdm 18 g

α 0.936

ζ 0.09%

Table 6.1: Simulation parameters used to tune the model
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(a) Damper response

(b) Beam response

Figure 6.5: Comparison between numerical and experimental solution for the linear cases

6.3 Results and discussion

Several sets of results are presented in this section. The simulation results are ordered

based on the contact normal load value F0 used, while all other quantities are kept constant.
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The Coulomb friction coefficient is assumed to be µ = 0.2. The nondimensionalized vibration

amplitude
|x|
F

, where F is the amplitude of the forcing, is used to compare the results

obtained experimentally to the ones obtained through simulation.

Figure 6.6: Beam response: nonlinear comparison between numerical and experimental solution

A detailed comparison between different beam responses is shown in Fig. 6.6, where it is

possible to notice that the results in the presence of contact show a substantial vibration re-

duction compared to both the stuck and the free results. Several experiments were conducted

with different normal load values. The results reported as Experiment 1 and Experiment

2 in Fig. 6.6 showed the most significant vibration reduction in the beam. The maximum

amplitude reduction observed experimentally is 67.5% and 56.7% compared to the stuck

and free results, respectively. The damper response is shown in Fig. 6.7. It can be noticed
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Figure 6.7: Damper response: nonlinear comparison between numerical and experimental solution

that as the contact normal load becomes smaller, the vibration amplitude of the damper

increases significantly, by an order of magnitude. It is possible to notice that the simulation

results are obtained for a broad range of normal load values, ranging from F0 = 0.005 N to

F0 = 1 N, and that the nonlinear response calculated using harmonic balance tends to match

the linear response as F0 approaches zero or becomes large. The value F0 was not measured

in experiments. Thus, a direct comparison cannot be made yet. What can be observed,

however, is that there is a qualitative agreement between experimental and numerical data.
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6.3.1 Contact analysis

The use of two vibrometers to measure the contact and target locations (points B and

C in Fig. 6.4) is necessary to capture the contact behavior. By taking the difference of the

two signals it is in fact possible to examine the relative displacement and relative velocity of

the contact points. This is particularly interesting especially in those cases where irregular

contact appears due to wear. The hemispherical screw head is made of steel, while the

contact element is made of aluminum. This results in significant wear visible on the flat

surface, as it can be seen in Fig. 6.9. The creation of ridges on the contact surface create

the presence of irregularities in the relative displacement and velocity. This can be seen

in Fig. 6.8a, that shows the state plot for the contact, i.e. the relative displacement and

velocity xr, ẋr. To limit the effect of noise, the state plot was obtained by taking the sample

average over several periods of the time domain signal. The presence of an irregularity at a

constant position indicates the presence of a surface defect. The time domain velocity for a

period is shown in Fig. 6.8b.
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(a) State plot of the contact displacement and velocity

(b) Velocity signal

Figure 6.8: Contact analysis: relative motion and relative velocity

6.3.2 Effectiveness

Through the use of simulation, it is possible to investigate more in depth the effectiveness

of the damper as a function of contact parameters, namely as a function of the nondimen-

sional microslip parameter ρ = µF0/F , which governs the behavior of the nondimensional
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Figure 6.9: Flat contact element before use and after two days of testing

response x/F [26].

It is possible to notice from Fig. 6.10a that the minimum vibration amplitude that can be

achieved is 8.1× 10−5 m/N, which is very close to the minimum value of 8.3× 10−5 m/N that

was found experimentally. This is a very good indication of the fact that even though the

contact behavior is only qualitatively captured, as it can be seen in Fig. 6.7, the predicted

energy dissipation is very close to the one obtained in the experiment, as well as the beam

behavior, shown in Fig. 6.6. Another interesting insight into this phenomenon is provided

by examining the energy dissipation distribution, which can be divided between linear and

nonlinear. As shown in Eq. 6.1, the energy dissipated per cycle by nonlinearities can be

calculated as Enl =
∫ T

0
fn(ẋ,x)T ·ẋ dt, and it is caused by the presence of the frictional contact.

The linear component is provided by the viscous damping term El =
∫ T

0
ẋTCẋ dt. The two

components of the total energy dissipated are plotted as a function of the parameter F0/F in

Fig. 6.10b-c respectively. Interestingly, the maximum amplitude reduction is achieved when

the ratio between Enl and El is largest, as it can be seen from Fig. 6.10d.
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Figure 6.10: Parametric study of the maximum amplitude reduction as a function of the parameter
F0

F

6.4 Conclusions

In this paper, an experimental and numerical study was presented to assess the effec-

tiveness of a tuned mass damper with friction contacts for damping blade-like structures.

Experimental results were compared to numerical results obtained using the harmonic bal-

ance method for the solution of the nonlinear vibration problem. The experimental results

obtained demonstrate that such a tuned mass damper concept could be used to effectively
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lower the vibration of a lightly damped structure even if the attachment location shows little

motion. Simulation results showed good qualitative agreement with experimental results,

validating the simulation models and techniques used.

In future studies, the normal load F0 present at the contact in the experiment could also

be measured, with the aim of introducing a quantitative comparison between simulation and

experimental results. A study on the effect of damper positioning on its effectiveness could

also be carried out, to identify the minimum vibration amplitude at the attachment location

that is required to obtain a significant amplitude reduction. Furthermore, more complex

modes, as well as higher frequencies could be targeted to explore the range of effectiveness of

the proposed damper. These studies will help clarify the direct applicability of this damper

concept to blisks and other lightly damped structures in which dampers are constrained to

be situated in regions of low motion.
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CHAPTER 7

A Friction-Enhanced Tuned Ring Damper for Bladed

Disks

This chapter introduces a new type of damper for turbomachinery blisks. The major

pitfalls of the damper concepts currently employed are two: the low level of relative motion

that is available at the damper attachment location, and the inability to control the preload at

the frictional interface. To address these issues, the proposed damper is designed as a tuned

vibration absorber, which allows energy transfer from the blades to the damper provided that

the natural frequency of the damper is close to that of the host structure. Thanks to the

enhanced energy transfer, the damper can experience increased relative motion. Frictional

contacts are then included to dissipate the energy transferred to the damper. The control

of the contact preload is also important, as the centrifugal loads acting on the damper are

extremely large and could result in the damper being stuck in its groove and not dissipating

energy. These two requirements result in competing priorities. The damper structure must

be stiff enough to withstand centrifugal loading without affecting the preload too much.

However, it also must be compliant to make sure that its natural frequencies can match the

ones of the host structure. For this reason, the proposed damper involves a complex geometry

that is stiff in the radial direction and softer in the circumferential direction, which is the

direction of the relative motion. A model of the damper is created to damp the vibration of
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a realistic blisk based on the NASA Rotor 67. The effectiveness of the damper is investigated

using high fidelity finite element models. Due to the nonlinear nature of the contact, the

equations of motion are solved using harmonic balance, and the size of the (linear part of the)

system is reduced using Craig- Bampton component mode synthesis. The frequency response

of the system is obtained to analyze the effectiveness of the proposed design. Preliminary

results show the potential of this technology for structures with such low damping.

7.1 Introduction

The adoption of integrally bladed rotors, or blisks, in turbomachinery has been increasing

due to improvements in performance and reduction in the number of components compared to

traditional rotors [1]. In operating conditions, bladed disks must withstand large centrifugal

forces, high temperatures, and blade vibrations caused by upstream flow perturbations. The

presence of flow forcing is particularly dangerous because the combination of the cyclic

symmetric design of blisks and their inherent mistuning (i.e., small deviations from the

nominal design) makes them prone to vibration localization[4, 5]. Unlike traditional bladed

disk assemblies, in which blades are connected to the disk portion using frictional joints,

blisks are manufactured in one piece. The lack of frictional interfaces in blisks results in

lower damping, which in turn causes larger vibration amplitudes[1, 4]. The presence of high

steady stresses and vibration, combined with the large numbers of cycles that blisks blades

must withstand, can lead to blade failure due to high cycle fatigue[7]. As a result, a great

deal of effort has been made to study and mitigate blisk vibrations. Many studies focused

on improving simulation tools to study mistuned blisks vibration response [3, 4, 112, 114].

Other studies focused on the development of different damping mechanisms for bladed disks,

many of them involving friction and contacts[3, 52]. Examples include ring-like dampers[56,

57, 59, 62–64] and shrouds[26, 58], both of which dissipate energy via friction. However,

129



the effectiveness that ring dampers provide can be limited because they rely on the relative

motion present between a damper and its groove, which can be very small when blade to disk

coupling is low[62], or in blade dominated modes. As an example, the maximum vibration

reduction obtained for EO = 3 in the study presented in [59] was 13%, much smaller than

the 37.9% observed in the same study for EO = 1. The same concept can be found in

applications involving gears [65–67]. In a recent study [65], an assessment of the effectiveness

of such damper was carried out, resulting in a maximum reduction approximately equal to

9%.

To increase the relative motion present at the damper location, recent studies proposed

the use of a tuned vibration absorber (TVA) concept[73, 130] to transfer energy from the

blades to the damper region. TVAs are typically used in narrow-band forcing applications

to shift the resonance of the structure away from the forcing frequency. TVAs effectiveness

depends on the accuracy of their tuning, i.e. how close their natural frequency is to the

target frequency to be damped.

In [73], the application of a tuned vibration absorber to a cyclic structure is investigated,

highlighting the impact of correct nodal diameter targeting, damper location and material

damping on the overall effectiveness. However, that study provides limited insight into the

feasibility of the concept, because it only uses a lumped mass model. In [130], an academic

blisk’s finite element model is used to simulate the effect of a tuned ring damper concept

on the blisk response in the presence of contact nonlinearities. That study, however, utilizes

tuning obtained by artificially modifying physical parameters of the damper material, which

may not be feasible. The impact of the contact preload, which varies with the rotational

speed, is also not explored. The same authors also experimentally investigated the effec-

tiveness of the friction-enhanced TVA concept using a mock-up test rig with a cantilevered

beam, showing promising results[131].

The aim of this paper is to further expand the understanding of novel damping mech-
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anisms for blisks, focusing in particular on dampers based on the TVA concept. First, the

constraints present in the design of such dampers are explored, to lay the foundation for the

design choices. Second, the blisk considered in the study is presented, to highlight its main

features and the targeted modes. Finally, the simulation techniques used and the simulation

results are discussed.

The blisk model used in this study was provided by The Ohio State University (OSU)

Gas Turbine Laboratory (GTL). A damper based on the design presented herein is scheduled

to be tested as a part of a study on mistuning and damping[79].

7.2 Methodology

In this section, the concepts used in design, as well as in simulation, are introduced and

explained.

To achieve a significant level of vibration reduction through friction, it is necessary to

observe the relative motion between the damper groove and the damper. However, in typical

blisks, the ratio between the motion at the blade and the motion at the damper location for

any given mode is very large, especially for blade dominated modes. A possible solution can

be found through the use of the TVA concept, which transfers energy from the host structure

to the damper, or vibration absorber. For this reason, the damper presented in this paper

is designed to have one of its natural frequencies close to the ones of the blisk, which will

result in high vibration amplitude levels in the damper region. The free damper natural

frequencies, i.e. obtained in the case where the contact is not engaged, are used for tuning

because those frequencies are more precisely measurable and allow for an easier targeting of

the modes that require damping. In fact, the free frequencies are typically lower than the

stuck frequencies, making it possible to target low frequency families. High frequency families

can still be targeted by adopting a stiffer design. Furthermore, the estimation of contact
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stiffness parameters can be challenging, and they potentially affect the natural frequencies

of the stuck case, i.e. the case in which the contact is engaged and no slip is permitted,

making it difficult to obtain a precise tuning. As a result, the free natural frequencies were

chosen for tuning.

The effectiveness of friction based damping mechanisms is typically presented as a func-

tion of the nondimensional microslip parameter ρ = µ
|F0|
F

, where µ is the coefficient of fric-

tion, |F0| is a representative normal load magnitude defined as the sum of the magnitudes

of all the contact normal forces, and F is the forcing amplitude[58]. The two parameters

that exhibit the largest variation in operating conditions are F and |F0|, due to changes in

the amplitude of the forcing and in the rotational speed. Traditional ring dampers, like the

one shown in Fig. 7.1, present a cut, which allows them to expand radially as the centrifugal

forces increase due to rotation. Since in operating conditions the ring would be hosted in the

blisk groove and the damper is compliant, the contact forces at their interface increase with

the rotational speed, leaving little to no control to the designer over the contact preload. For

this reason, the damper presented here was designed in such a way that could allow preload

control, as well as frequency control.

Figure 7.1: Geometry of a traditional cut ring damper
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7.2.1 Design constraints and proposed solution

The damper for this study was designed for the NASA Rotor 67 model presented in[79].

A sector of the model is shown in Fig. 7.2. Note that this blisk design has large disk

stiffness, provided by the presence of an arm-like protrusion on the right side, which makes

it challenging for traditional ring dampers to be effective. The damper radial extension, as

well as its axial dimension, are both limited by the position of the groove. The full wheel

representation of the assembly can be observed in Figs. 7.4-7.5.

Figure 7.2: Sector level representation of the blisk considered in this study, with the damper
highlighted in red

Another challenge is to preserve damper effectiveness across different operation regimes

and frequency ranges, as well as nodal diameters. To ensure effectiveness at different ro-
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tational speeds, the preload, which is the quantity most affected, should be kept relatively

constant, or it should be changed in a controlled fashion. To target multiple nodal diameters

at similar frequencies, the damper should have high modal density and show mistuning or a

non-cyclic symmetric structure. It can also be useful for the damper to have a flat family,

so that it can target multiple nodal diameters (ND) in blade dominated families.

A sector level view of the proposed damper is presented in Fig. 7.3. It is composed of a

casing, used to hold the system in place, and a slender oscillator that rubs against its casing.

The periodicity of damper oscillators and the number of blades do not have to be the same

for the concept to work, but in this study we examine the case of a blisk and damper with

identical number of sectors. Each oscillator is shaped as a thin beam connected to a tip mass.

This design was introduced to lower as much as possible the damper frequencies so that the

broadest possible range of blisk modes, and thus natural frequencies, could be targeted.

The frequency of the damper can be lowered further by increasing the tip mass or lowering

the thickness, and increased doing the opposite. The tip mass is also the rubbing element.

The two contact surfaces, namely the oscillator and casing surfaces shown in Fig. 7.3, have

been designed to maintain the preload approximately constant during the vibration of the

oscillator.

The advantages that this design presents compared to traditional ring dampers are the

following:

1. The design with oscillator beams makes it easy to tune the free frequencies of the

damper to match the frequencies of the blisk. The tuning is possible by changing tip

mass and beam length and thickness.

2. Preload variation due to change in centrifugal load, or RPM, is mitigated by the

presence of the supporting oscillator beam, which is stiff in the radial direction. The

preload is thus a designer choice and could be controlled by adjusting the clearance
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and/or deformation due to centrifugal loads.

3. Once energy is transferred to the damper, alternative solutions could be explored to

dissipate it, e.g damping coatings and impacts.

4. Contact interface wear, if present, is expected to be confined to the damper, in particu-

lar at the casing and oscillator contact interface, leaving the blisk groove in its original

condition. As a result, the entire damper can be substituted once its effectiveness is

lowered due to wear.

The tuning is achieved by separately tuning the damper structure shown in Fig. 7.3 to

match the frequencies of the blisk. The damper interface contacting the blisk groove is

considered to be fixed, i.e. with no motion, for tuning purposes.

The results after tuning are presented in Figs. 7.4-7.5. The blisk dominated mode being

targeted is shown in Fig. 7.4, and the damper dominated mode is presented in Fig. 7.5.

By looking at the modal analysis of the entire assembly, it is possible to notice that there

is a small frequency difference ∆fn = 1.8Hz between the two modes. The presence of a

frequency split between the two is in part caused by the fact that the damper is tuned. In

fact, based on the theory of the tuned vibration absorber [68, 73], it is expected to obtain

two modes in lieu of the single one that was previously found in the host structure. However,

it can be noticed that the mode in Fig. 7.4 shows very little motion in the damper, which

potentially indicates non optimal tuning. This is due to the fact that blisk and damper

natural frequencies experience a small variation once the blisk and damper are assembled

together. The presence of imperfect tuning is having to do with the fact that the damper

tuning was done separately without the blisk. By using a coupled approach for the tuning,

it could be possible to achieve a better and more balance tuning, in which the damper

participation factor is maximized.
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Figure 7.3: Sector level representation of the damper used in this study

7.2.2 Simulation model

In this section, the details of the simulation model used for forced response calculations is

presented. The blisk is based on NASA Rotor 67, and it has N = 22 blades. The simulation

approach is similar to the one shown in [3, 130]. A high-fidelity finite element (FE) model

is created to represent the blisk-damper assembly. All calculations are carried out using the

full wheel model in order to capture the effects of mistuning where presents. Due to high

computational cost associated with the solution of the nonlinear simulations, the Craig-

Bampton component mode synthesis (CB-CMS) [42] and the harmonic balance method [3]

are used. The initial FE model with full damper and blisk has 4, 297, 416 DoFs, which are

significantly reduced preserving a single forcing and response nodes at the blade tip for each

blade, 55 contact and target nodes for each sector, and 200 slave modes.

The equations of motion (EOMs) for the system can be written as

Mẍ + Cẋ + Kx = fe + fn(ẋ,x), (7.1)

where M, C and K are the mass, damping, and stiffness matrices, fe is the vector of external
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Figure 7.4: Targeted blisk mode with the damper shown in Fig. 7.13, having natural frequency
fn = 1551.3 Hz

periodic forces acting on the structure, and x is the vector of generalized coordinates. The

vector fn represents the nonlinear forces, which are due to the contacts. Proportional damp-

ing is used, and the damping matrix can be written as C = βK, where β = 2ζ
ω

, ζ being the

damping ratio. Since the forcing frequency ω varies in the range [ωmin ωmax], β is defined

using the average frequency over the excitation range, as β = 4ζ
ωmax+ωmin

.

A relative coordinate formulation is used to describe the displacement at the contact

interface, similar to [26, 125], and the 1D node-to-node contact model presented in [26, 61] is

used, where all pairs of nodes having coincident location form a contact pair. Each contact

pair i is assigned tangential contact stiffnes ki,x,ki,y and normal contact stiffness ki,z, which

are essentially 1D springs in the local coordinate system. Based on normal and tangential

relative displacements, the contact condition is established.

There are two linear limit cases for the contact status. The linear contact status can be

stuck or free. As a reference for comparison for the nonlinear simulation results, the stuck
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Figure 7.5: Damper mode of the damper shown in Fig. 7.13, having natural frequency fn =
1553.1Hz

and free results are used. In the free case, the two contact interfaces presented in Fig. 7.3 are

completely disconnected and do not interact. In the stuck case, each node pair on the contact

surface is always connected by the springs ki,x,ki,y,, ki,z. The damper interface contacting

the blisk groove, shown in Fig. 7.3, is considered to be always stuck, i.e. connected to the

groove by means of linear contact springs. This implies that there is no energy dissipation

at the blisk groove, which is based on the assumption that most of the energy dissipation

will happen between the oscillator and casing, also shown in Fig. 7.3, rather than at the

blisk-damper interface. For a more in-depth explanation of the contact modeling please refer

to [3].

The damper presented in Fig. 7.3 shows a gap between the two contact surfaces, which
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Figure 7.6: Frequency vs. nodal diameter plot for the blisk with a tuned damper

would not be present in operating condition, due to either centrifugal deformation or prestress

applied in the manufacturing or assembly phase. In the computational model the gap is

assumed to be absent, and the preload is then applied at each node pair in local relative

coordinates in the direction normal to the contact surface. The local coordinate system

varies at every node pair, and it is defined according to the contact surface geometry.

7.3 Results

To evaluate the effectiveness of the proposed damper, the model previously created is

used to simulate the response of the blisk to traveling-wave excitations[3]. One node per

blade is excited, and the response amplitude is calculated for the same node. The effect of

nonlinearities is captured using harmonic balance (HB) [3]. Only one harmonic was preserved

in the HB calculations. The mode targeted, shown in Fig. 7.4, has ND = 2, and it belongs

to the 3rd family. An excitation with EO = 2 is applied to the blade tips. The force applied

at each node is F = 10 N, and the coefficient of friction used is µ = 0.2. The baseline
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damping considered is ζ = 0.03%. First, the case of a tuned blisk with the damper shown

in Fig. 7.7 will be introduced. Such damper was obtained by removing a sector from the

full ring damper that was tuned to the blisk targeted frequency, as presented in the previous

section and in Figs. 7.4-7.5. The removal of a sector is necessary to allow the installation

of the damper in the blisk groove. However, the absence of such sector is a source of large

geometric mistuning, as will be shown by the results. Then, a study of the effect of overall

damping on damper effectiveness will be introduced. It is particularly important for the

proposed damper to be effective in those cases where other damping mechanisms, such as

aerodynamic damping, are absent, which could be due for example, to flutter [132, 133].

A brief study will be carried out with the aim of quantifying the equivalent damping ζeq

provided by friction in the proposed damper. Lastly, a study with a full damper without

a missing sector will be presented to isolate the effects of the damper from the ones of

mistuning.

7.3.1 Forced response results

The nonlinear blisk response is shown in Fig. 7.8, and it includes both linear limit cases

in which the contact surfaces are stuck or completely free. Only the response envelope is

shown, i.e. the maximum vibration level across all blades. The response in the proximity

of the resonance is magnified to highlight the amplitude variation due to the change in the

microslip parameter ρ. The variation of the microslip parameter ρ is obtained by varying

the preload.

It is important to notice that there is a difference, or split, between the free and stuck

curves, both in terms of overall shape and damped natural frequency, where the maximum

response occurs. Previous studies highlighted the correlation between the difference in nat-

ural frequency and the effectiveness of the damper [64]. The presence of the split is crucial

for the damper to be effective, as maximum vibration reduction is typically achieved as the
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Figure 7.7: Damper with large mistuning caused by the absence of a sector

nonlinear results transition between one curve (e.g. the stuck response) to the other (e.g. the

free response). This transition can be observed in the magnified response region of Fig. 7.8

as a function of the microslip parameter ρ. The maximum amplitude reduction that can

be observed is 24.4% and 32.7% with respect to the free and stuck cases, respectively. The

presence of mistuning is caused by the absence of an entire damper sector, as the damper

used in the simulation is the one shown in Fig. 7.7. It can also be noticed that even for small

values of the microslip parameter ρ, which are obtained with small preload, the nonlinear

results do not trace the free curve. This is due to the imperfect contact kinematics, as the

damper head increasingly engages the contact when its vibration amplitude is large, which

is true when a low preload is present. For the preload to be kept constant across a range of

oscillator vibration amplitudes, the relative motion of the contact surfaces should be always

tangential to themselves. In fact, due to the presence of a normal contact stiffness at the

contact, a relative motion orthogonal to the contact surface would increase, or decrease, the

preload. Let us consider the oscillator first bending mode, which is the one used in this

study to target the blisk mode, shown in Fig. 7.5 for ND = 2. As the beam deflects, the

oscillator contact surface moves relative to its casing. It is possible to notice from Fig. 7.3
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Figure 7.8: Blisk forced response for different values of the microslip parameter ρ using the
mistuned damper shown in Fig. 7.7

that the contacting surfaces were designed with a hemicylindrical shape, the center of the

cylinder being located at the base of the supporting beam, to minimize the motion in the

direction orthogonal to the contact. However, as it can be noted from the magnified view

presented in Fig. 7.5, the oscillator motion still presents a component orthogonal to the

contact surface in the areas closer to the corners. Since in the simulation there is no gap

between the contact interfaces, this motion creates an increase in contact pressure between

the two contact interfaces, especially in the corner areas, to avoid penetration. Therefore,

the nonlinear results in the presence of frictional contact will never trace the free curve,

in which there is no constraint on the relative motion of the two surfaces, when no gap is

present. This phenomenon, however, is potentially beneficial, because even for low levels of

preload it is possible to observe energy dissipation and damper effectiveness, which would

not be possible with a traditional damper.

142



Damper effectiveness is evaluated by comparing the maximum vibration amplitude across

all blades over the frequency range studied. Since the microslip parameter ρ is a function

of the forcing amplitude F , the normalized amplitude is used, i.e. |x|/F . The variation of

damper effectiveness as a function of the microslip parameter ρ is shown in Fig. 7.9. Please

note that the vibration amplitudes obtained for linear cases are reported as horizontal lines

because they do not depend on the microslip parameter ρ. It is interesting to notice that

the free case typically shows a smaller vibration amplitude compared to the stuck case. This

is because in free conditions the tuned oscillators act as a tuned vibration absorber and

thus absorb some of the energy. It is possible to notice that the curves exhibit a V-shaped

valley, where the depth indicates the effectiveness magnitude, and the width indicates the

range of effectiveness. It is desirable for the damper effectiveness curve shown in Fig. 7.9 to

be both deep and wide, which would indicate large vibration reduction and robustness to ρ

variations. Variations in ρ can be due to changes in the preload, for example.

Figure 7.9: Normalized blade maximum response from the results presented in Fig. 7.8 as a
function of the microslip parameter ρ

143



To better understand the contact behavior, the vibration amplitude envelope of the

oscillators contact interface is plotted in Fig. 7.10. The free and stuck curves are plotted as

references. It is possible to notice that there is a significant difference between the free and

stuck cases for the oscillators, the former being almost two orders of magnitude larger than

the latter. The free case presents an amplitude comparable to the one observed in the blade

response in Fig. 7.8. For convenience, the stuck and nonlinear responses are magnified in

Fig. 7.10. The envelope of the nonlinear response, shown for different values of the microslip

parameter ρ, is very close to the stuck case, and does not trace the free curve even for very

low values of ρ, in this case obtained for low values of the preload. This confirms the fact

that due to the geometry of the contact surface and the contact kinematics, the damper

oscillator cannot achieve large motion in the absence of a gap between the two surfaces.

Figure 7.10: Oscillators forced response for different values of the microslip parameter ρ for the
mistuned damper shown in Fig. 7.7
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7.3.2 Effects of blisk damping on damper effectiveness

In this section, the effect of linear damping of the blisk on the overall effectiveness is

presented. The forced response results are calculated for two different values of the damping

ratio, namely ζ = 10−5 and ζ = 10−6. These two values were used to simulate the extremely

low values of damping which could occur, for example, in the presence of negative aero-

dynamic damping. The forced response results are presented in Fig. 7.11. The amplitude

achieved in the linear case for ζ = 10−6, presented with a dashed line, shows a different

order of magnitude compared to the nonlinear cases. The nonlinear results are presented as

a function of ρ and ζ. It is possible to notice that the results for ζ = 10−6, marked with

a circle, almost match the ones obtained for ζ = 10−5, marked with a star. This can be

observed for all ρ values examined. This is due to the fact that the energy dissipated via

friction is much larger than the one dissipated by viscous damping. Once the value of ζ is

low enough, it does not have much effect on the vibration amplitude when the damper is

operating in a high effectiveness range. The damping due to the damper can be estimated

through the use of an equivalent linear damping ζeq that gives a similar vibration amplitude.

In this case, ζeq = 8.5 · 10−5 qualitatively match the amplitude obtained with the damper,

as it can be seen by observing the solid lines in Fig. 7.11.

7.3.3 Effects of damper mistuning

In this section, the case in which large damper mistuning is not present is analyzed. The

results shown in Figs. 7.8-7.12 are obtained for the case of a damper with a whole sector

missing, as shown in Fig. 7.7. In order to show the mistuning caused by the missing sector

for that case, all the blade amplitudes are shown in Fig. 7.12. For the sake of clarity, only

the linear results are reported. Both in the stuck and the free cases, mistuning is clearly

present, and blades in different sectors show very different amplitudes.

In contrast to the results in Figs. 7.8-7.12, the results discussed in this section are obtained
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Figure 7.11: Blisk forced response as a function of the the microslip parameter ρ for ζ = 10−5

and ζ = 10−6 using the mistuned damper shown in Fig. 7.7

with a full ring damper, shown in Fig. 7.13. The blisk response obtained with a full ring

damper that has no cut, and thus does not introduce mistuning, is presented in Fig. 7.14. It

is possible to notice that even in this case the overall effectiveness is preserved. However, the

maximum observed amplitude reduction is lower compared to the case involving the damper

with a missing sector presented in Fig.7.7. With the full ring damper, we observed a 16.6%

and 21.1% reduction compared to the free and stuck curves, respectively. It is also important

to notice that the baseline linear response of Fig. 7.14 is lower in amplitude compared to

the one of Fig. 7.8. This is due to the fact that a full ring damper does not introduce large

mistuning, as it can also be seen from the results in the frequency range 1558 Hz− 1568 Hz,

which do not show any peaks when the full ring damper is used.

The effectiveness curve, obtained by plotting the maximum normalized blade amplitude

across the frequency range as a function of the microslip parameter ρ, is shown in Fig. 7.15.
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Even in this case it can be noticed that the free case shows a smaller vibration amplitude

compared to the stuck case. The nonlinear results trace a V-shaped curve, and the amplitude

reduction obtained is evident.

Figure 7.12: Forced response results (linear) showing the presence of mistuning using the damper
shown in Fig. 7.7

Figure 7.13: Proposed damper without cut
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Figure 7.14: Forced response results obtained using the full ring damper shown in Fig. 7.13

Figure 7.15: Normalized blade maximum response as a function of the microslip parameter ρ for
the full ring damper shown in Fig. 7.13
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7.4 Structural durability considerations

In this chapter, the focus was set on the vibration reduction offered by the proposed

design. However, when designing a system that undergoes a large number of vibration cycles,

its structural durability should also be taken into account. In fact, the high alternating

stresses could cause the inception and propagation of a crack, that could ultimately lead to

the failure of the oscillator. In this section, the areas of potential concerns are highlighted

by calculating the fatigue life of a single oscillator subject to repeated 1st bending modal

displacement. The shape of the modal displacement scaled by a factor of 10−3 is shown

in Fig. 7.16. The large amplitude is chosen to better illustrate the expected motion. The

fatigue life calculation was carried out using a scaling factor of the modal displacement equal

to 5 · 10−5, i.e. with a motion 20 times smaller than the one shown in Fig. 7.16. The fatigue

life achieved considering a high yield strength steel is presented in Fig. 7.17. It can be noticed

that the predicted life in the areas highlighted in red is lower than 5000 cycles, which means

that future design iterations should aim at reducing the magnitude of alternating stresses to

ensure reliability of the component.

Figure 7.16: Modal displacement used for the calculation of fatigue life (10−3 scaling factor)
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Figure 7.17: Fatigue life in number of cycles obtained using a 5 · 10−5 scaling factor

7.5 Conclusions

In this study, a novel design for a tuned ring damper was proposed and analyzed using a

high fidelity FE model based on the geometry of NASA Rotor 67. The results showed good

effectiveness across a range of parameters, and the best amplitude reduction was observed

in the presence of large geometric mistuning in the damper, caused by the absence of one

of its sectors. Furthermore, the damper presented good effectiveness even if the tuning

was not perfect, i.e. the damper and blisk frequencies were not exactly the same. This is a

further proof of the fact that this design is robust to small frequency variations. The analysis

presented in this study involved the use of a damper having the same number of sectors as

the host blisk structure. Future work could be carried out on the quantitative analysis of the

relationship between number of damper sectors and amplitude reduction, to establish the

most suitable number of sectors to be used. The analysis was carried out at different values of
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linear damping, showing that the effectiveness of the damper significantly increase for lower

values of blisk damping ζ, becoming independent of ζ once the energy dissipated through

nonlinearities becomes significantly larger than the one dissipated via viscous damping. It is

also important to note that the damper proposed is not limited to working through frictional

dissipation. It could be coupled, for example, with impact damping, or damping coatings,

to dissipate the energy that has been transferred to the damper via tuning.
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CHAPTER 8

Conclusion

A summary of the contributions of this work is presented in this chapter, along with their

relevance. The final section is devoted to discussing the limitations of the presented results

as well as future work.

8.1 Summary of contributions

Due to the nature of the work presented in this thesis, the contributions of this thesis to

the field of turbomachinery can be conveniently split in two parts. The first part is about

modeling, and in particular about reduced-order-modeling, and the other one about novel

damping mechanisms. The main contributions to the field of turbomachinery ROMs can be

summarized as follows:

� An inexpensive and flexible conditioning technique for projection-based ROMs [112].

� A computationally efficient method to accommodate mesh morphing in ROMs [114].

� A technique for quick calculation of prestress effects to be included in existing ROMs

where geometric mistuning interacts with prestress [134].

� A comprehensive tool (MAX+) for the analysis of blended blisks in which the previous

methods are integrated [112, 114, 134].

152



The contributions to the field of vibration damping mechanisms for IBRs are instead the

following:

� Development and validation of a damper concept based on ring damper design and

TVA concept [130].

� Experimental and computational validation of the proposed damping mechanism [131].

� Design and computational validation of a feasible design for the novel ring damper

concept [135].

The detailed chapter by chapter contributions are presented below.

8.1.1 Conditioning technique for ROMs

In Chapter 2, a post-conditioning approach to condition projection-based reduced order

models was developed. The conditioning multiplications lead to a particularly simple form

of the ROM, in which the conditioned mass matrix is already diagonal, further simplifying

the calculations. Both the method and the error metrics have been tested and validated

using a chain of oscillators as well as ROM for a bladed disk (blisk) model. The proposed

method presents a number of advantages:

1. The method directly acts in the ROM space, and so there is no need to condition a

priori the projection matrix, resulting in faster calculations.

2. No explicit knowledge of the transformation matrix is required. Thus, the method can

be easily applied to already existing models by adding a simple post-conditioning step.

3. The method can be applied to a variety of ROMs, built using any arbitrary choice

of reduced order bases. Most structural dynamical systems may be treated using this

approach.
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4. The method preserves the physical meaning of the transformation matrix, and the

meaning of the equations of motion also. This feature allows for simplifications in the

ROM creation when specific types of vectors are used (e.g., normal modes).

The findings have been published in [112].

8.1.2 Integration of mesh morphing and prestress effects in ROMs

In Chapters 3-4, two methods were introduced to improve ROM efficiency and accuracy

in the field of ROMs for geometrically mistuned blisks. First, a novel method able to account

for the presence of multiple meshes within reduced order models for cyclic structures was

presented. The formulation is simple and cost effective, without sacrificing accuracy. The

method was applied to the case of an academic blisk for validation, and it outperformed the

methods that are currently available. The results highlighted that the accuracy of the method

presented here is superior to the one offered by previous alignment/clocking approaches. In

addition, numerical issues associated with the ROM creation due to the presence of multiple

meshes were solved by means of a simple correction of the ROM matrices.

Then, a comprehensive method for the study of blended blisks, MAX+, was introduced.

This method extends the capabilities of MAX [10] and allows the introduction of prestress,

finite element mesh morphing, and other system characteristics in a general framework for

the analysis of IBR bends. One of the enabling techniques is a method to build ROMs using

only sector level matrices of quasi-cyclic structures subject to prestress. The approximation

introduced in MAX+ causes little to no accuracy loss. The computational gains are signifi-

cant, given that full wheel calculations are cumbersome for large finite element models. The

MAX+ method can be applied in the design process to identify optimal repair strategies.

Results can be obtained quickly for different conditions, without requiring repetitive new

finite element studies. The ability to accommodate the use of mesh morphing is also of

paramount importance, enabling rapid creation of multiple complex geometries.
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These findings have been published in [114, 134].

8.1.3 Novel damping mechanisms for blisks

Chapters 5-7 are entirely dedicated to the study and creation of novel damping devices

to be used to mitigate excessive vibration in blisks.

As a starting point, a novel ring damper concept able to effectively damp vibration in

blisks was proposed based on the tuned vibration absorber idea. The effectiveness of the

proposed design was studied by calculating the forced response of the system. Linear and

nonlinear results were obtained to compare the effectiveness of the proposed tuned vibra-

tion absorber to a traditional non-tuned ring damper. A significant amplitude reduction

was achieved using the proposed concept. This reduction was made possible by enabling

frictional nonlinearities to dissipate energy by means of increased damper motion. The ro-

bustness of the approach was assessed by evaluating the response in case of an improperly

tuned damper. Damper effectiveness showed a decrease compared to the case of perfect

tuning. However, greater effectiveness was observed compared to the non-tuned case. This

preliminary study demonstrated the effectiveness of a novel damper concept using a tradi-

tional damper geometry.

Then, an experimental and numerical study was presented to assess the effectiveness

of a tuned mass damper with frictional contacts for damping blade-like structures. The

experimental results obtained demonstrate that such a tuned mass damper concept could be

used to effectively lower the vibration of a lightly damped structure even if the attachment

location shows little motion. Simulation results showed good qualitative agreement with

experimental results, validating the simulation models and techniques used.

Finally, a novel design for a tuned ring damper was proposed and analyzed using a

high fidelity FE model based on the geometry of NASA Rotor 67. The results showed

good effectiveness across a large range of parameters, and the best amplitude reduction was
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observed in the presence of large geometric mistuning in the damper, caused by the absence

of one of its sectors. Furthermore, the damper presented good effectiveness even if the tuning

was not perfect, i.e. the damper and blisk frequencies were not exactly the same. This is a

further proof of the fact that this design is robust to small frequency variations. The analysis

was carried out at different values of linear damping, showing that the effectiveness of the

damper significantly increase for lower values of blisk damping ζ, becoming independent of ζ

once the energy dissipated through nonlinearities becomes significantly larger than the one

dissipated via viscous damping. It is also important to note that the damper proposed is

not limited to working through frictional dissipation. It could be coupled, for example, with

impact damping, or damping coatings, to dissipate the energy that has been transferred to

the damper via tuning.

The findings presented in this section have been published in [73, 130, 131, 135].

8.2 Future work

The work presented in this thesis could be further extended in the future to answer some

of the questions that arose during the research process.

The conditioning technique introduced in Chapter 2 was only tested on ROMs for struc-

tural dynamics. However, its formulation is so general and broad that in the future it could

be applied to completely different systems. In fact, even though the formulation presented

targeted Galerkin ROMs, this conditioning idea can be extended to the general case in which

Petrov-Galerkin projection is used. Further work can also be done to extend this formulation

to the more general case of nonlinear dynamical systems.

The mesh morphing method presented in Chapter 3 could be used to reduce the compu-

tational cost in the calculation of mistuned normal modes also. In fact, when small geometric

mistuning is present, the forced response could appropriately capture the mistuned modes,
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further reducing the computational time and cost. The MAX+ method, from Chapter 4,

could be directly compared against other ROMs to quantify the gains introduced by the

simplified prestress calculations as well as treatment of mesh morphing. The method could

be implemented in an toolbox for the optimization of blend shape and location to better

inform designers in the repair and maintenance phase.

The effectiveness of the proposed ring damper mechanism was demonstrated using a single

example in Chapter 5. Future work could be carried out on the exploration of different

damper geometries capable of further increasing the effectiveness of such dampers. The

response at different engine orders and for different mode families could be analyzed, as well

as the interaction between the damper modes and the blisk modes.

The experiment introduced in Chapter 6 could be further improved by measuring the

normal load F0 present at the contact in the experiment, with the aim of introducing a

quantitative comparison between simulation and experimental results. A study on the effect

of damper positioning on its effectiveness could also be carried out, to identify the minimum

vibration amplitude at the attachment location that is required to obtain a significant am-

plitude reduction. Furthermore, more complex modes, as well as higher frequencies could

be targeted to explore the range of effectiveness of the proposed damper. These studies will

help clarify the direct applicability of this damper concept to blisks and other lightly damped

structures in which dampers are constrained to be situated in regions of low motion.

Finally, the damper design presented in Chapter 7, which was analyzed only in terms of

vibration reduction offered, should be studied in depth both in terms of structural durability

and machining. The complex contact surface geometry could be optimized to achieve the

optimal contact condition, potentially further improving damper effectiveness. Future work

could also be carried out on the quantitative analysis of the relationship between number of

damper sectors and amplitude reduction, to establish the most suitable number of sectors

to be used.
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