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ABSTRACT

Semiconductors of reduced dimensionality have continued to attract intense in-

terest for both fundamental research and practical applications. Semiconducting col-

loidal nanocrystals (CNCs) are prime examples of such semiconductors, in which

nanometer-scale quantum confinement in all three spatial dimensions gives rise to

morphology-, surface-, and composition-tunable opto-electronic properties. CNCs

have been implemented in numerous devices such as photovoltaic cells and displays,

with many nearing or even having reached commercial maturity. However, rational

design of CNC devices and synthesis methodologies continues to be hindered by our

limited understanding of their fundamental physics.

This dissertation presents among the first applications of multi-dimensional coher-

ent spectroscopy (MDCS), a third-order nonlinear spectroscopic technique, to CNCs

at cryogenic temperatures. MDCS is capable of circumventing inhomogeneous spec-

tral broadening, the main obstacle that has impeded spectroscopic studies of CNCs,

and is thus uniquely qualified to study such systems with intricate underlying dy-

namics obscured by ensemble inhomogeneity.

We first discuss our results on CdSe CNCs, the most mature colloidal material

platform, which reveal a strong interplay between electronic dynamics and lattice

vibrations (phonons). We directly characterize the spectral density of electronic cou-

pling to low-energy vibrations, which reveals the simultaneous existence of confined

and delocalized vibrational modes for the case of nanocrystals embedded in a glass

matrix. We also observe the onset of highly non-Markovian dephasing dynamics upon

coupling to optical vibrational modes, which may indicate anharmonic coupling or

xv



breakdown of other common approximations.

We also discuss our results on CsPbI3 perovskite nanocrystals, which are an ex-

citing new class of CNCs first synthesized in 2015. We present a systematic study

of CsPbI3 nanoplatelets which, despite drastically reduced inhomogeneous broad-

ening, challenges the assertion of homogeneously broadened light-emission at room-

temperature. Polarization-resolved multi-dimensional spectra of CsPbI3 nanocubes is

performed, which probes quantum pathways traversing their unique non-degenerate

triplet exciton fine-structure. We present evidence for a mixed bright-dark level-

ordering that renders the triplet states |ψx〉, |ψy〉, and |ψz〉 only partially bright. We

also extract crucial figures of merit for quantum information processing, the ensemble-

averaged coherence times of both optical triplet coherences (T x2 = 5.68 ps, T y2 = 5.32

ps, T z2 = 0.76 ps) and terahertz inter-triplet coherences (T yz2 = 1.36 ps), to position

perovskite nanocrystals as a potential material platform for quantum information

applications via bottom-up assembly.
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CHAPTER I

Introduction

1.1 History of Colloidal Nanocrystals (CNCs)

Nanocrystals have a history that extends even before the tenth century AD. How-

ever, it was not until the end of the 20th century that semiconductor nanocrystals

began to be systematically synthesized and studied. Specifically, early efforts during

the 1980s consisted primarily of two groups in the Soviet Union and United States

respectively. In the USSR, Alexei Ekimov began synthesis and characterization of

Cu(Cl,Br) and Cd(S,Se) nanocrystals embedded in glass matrices [1], with pioneering

theoretical studies performed in parallel by Alexei and Alexander Efros [2]. Around

the same time at Bell Laboratories in the USA, Louis Brus began reporting the first

studies on colloidal nanocrystals (CNCs) [3–6].

In the following decade new titans of the field emerged to spur advances at un-

precedented speed. Most notably Bawendi’s group synthesized CNCs with <5% size

dispersion [7] and CNC superlattices [8] while Alivisatos’s group was the first to im-

plement CNCs in light-emitting diodes (LEDs) [9] and as biological markers [10].

Meanwhile, Guyot-Sionnest Philippe at the University of Chicago synthesized the

first “core-shell” [11] and U-V luminescent [12] CNCs.
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1.2 Applications of CNCs

Today, the field of CNC research has grown beyond synthesis and characterization.

Their attractive properties, examples of which include their free-standing nature (al-

lowing for straightforward integration onto various surfaces and in matrices) as well

as unparalleled size/shape/composition tunability (which change the electro-optical

properties of the CNCs themselves), have positioned CNCs as a potential material

platform for a broad range of applications. Here we list two of their most well-known

uses and direct the reader to recent reviews [13–19] for a more exhaustive discussion

of CNCs and the current state of the field.

One of the most striking properties of CNCs is their narrow, tunable emission

spectrum that depends on nanocrystal size. It was thus anticipated early on, that

CNCs possessed great potential for display technologies. Today the first commer-

cial televisions containing CNCs have been released, albeit without true CNC LED

displays. Instead, current “qLED TVs” span the color gamut via blue LEDs placed

behind layers of CNCs that down-convert blue light into red and green photolumi-

nescence. Televisions with true quantum dot LED displays have proven feasible in

laboratories [20, 21], and are expected to reach consumers within the next decade.

Another prominent application of CNCs that has generated much excitement is

their use in photovoltaics. In contrast to bulk semiconductor photovoltaics, in which

absorbed high photon energy portions of the solar spectrum are partially converted

into thermal waste due to acoustic phonon-assisted intraband transitions, CNCs

should experience a “phonon bottleneck” effect due to their discrete energy levels [22].

The longer thermalization times of hot carriers also suggests an increased importance

of impact ionization as an alternative channel for their excess energy. Following the

first experimental observations of impact ionization in CNCs by Klimov’s group in Los

Alamos [23], the phenomenon was dubbed “multiple exciton generation” or “carrier

multiplication” [24, 25].
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Spurred by more than thirty years of research in CNC synthesis, which have

resulted in bright and stable nanocrystals exhibiting high size/morphology uniformity,

the numerous proposed applications of CNCs are finally beginning to be realized.

However, widespread commercialization CNCs will rely on synthesis of heavy-metal

free nanocrystals via less expensive synthesis methods than currently available.

1.3 Optical Spectroscopy of CNCs

Due to the numerous opto-electronic applications of CNCs, understanding their

optical properties is of primary importance. We outline here the main experimental

spectroscopic techniques used in studying CNCs.

1.3.1 Linear Spectroscopies

The most basic types of optical spectroscopies are linear, which involve either a

single absorbed or single emitted field. In absorption spectroscopy the sample’s opti-

cal attenuation is measured while in luminescence (called fluorescence for molecular

systems) spectroscopy the sample is prepared in an excited state and the emitted light

is measured. These measurements are usually spectrally resolved to reveal informa-

tion such as energy level structure. In CNCs however, linear techniques are of limited

utility due to inhomogeneous broadening of spectral lineshapes. Size/shape dis-

persion and environmental fluctuations will cause every nanocrystal in an ensemble

to have varying electronic resonance energies, which “smears” absorption and flu-

orescence lineshapes into Gaussian peaks reflecting the sample inhomogeneity. Al-

though fluorescence [26], and sometimes absorption [27] (with painstaking effort) may

be performed on single nanocrystals to circumvent inhomogeneous broadening, the

ensemble-averaged homogeneous properties of CNCs that are relevant to their prac-

tical applications must be studied via more sophisticated spectroscopic techniques.
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1.3.2 Nonlinear Spectroscopies

Nonlinear spectroscopies, as their name suggests, are characterized by measure-

ment of an optical response that depends nonlinearly on excitation field. While the

order of a measured nonlinear response is determined by its excitation intensity depen-

dence, most nonlinear spectroscopic techniques integrate over one or more dimensions

of the nonlinear response due to ease of experimental implementation. Examples of

such experiments include spectral hole burning [28] and transient absorption spec-

troscopy [29], which are third-order nonlinear spectroscopies that probe saturation of

transitions in the spectral and temporal domains respectively. In the study of CNCs,

spectral hole burning has been successfully used to resolve homogeneous lineshapes of

CNC ensembles [30, 31] and transient absorption spectroscopy has become an increas-

ingly standard characterization technique of excited state dynamics [32]. However,

the most obvious drawback of the above 1-D techniques is the loss of entire dimen-

sions of information for a given system’s response. The topic of this thesis is to resolve

the nonlinear response of CNCs in all dimensions via so-called multi-dimensional

coherent spectroscopy. In doing so, we recover rich physics contained in otherwise

forfeited dimensions.

1.4 Outline of Thesis

This thesis is organized as follows. Chapter II provides a broad introduction to

the synthesis and optical properties of CNCs. The electronic energy structure is first

derived for a bulk semiconductor, and the potential barrier of the nanocrystal surface

is then included to demonstrate the effects of finite size confinement.

Chapter III then introduces multi-dimensional coherent spectroscopy (MDCS),

which is a general technique that describes most of the experiments performed in this

thesis. The theory describing multi-dimensional spectra is derived, and double-sided
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Feynman diagrams are introduced to facilitate the intuitive interpretation of spectra.

Chapters IV and V discuss our results on CdSe CNCs, which are grown by Wan

Ki Bae’s synthesis group at Sungkyunkwan University in South Korea. Chapter IV

presents one-quantum spectra, which correlate their absorption and emission dynam-

ics. We examine the most prominent feature, which is a broad pedestal arising from

coupling to low-energy acoustic vibrations. By comparison to simulations, we argue

the simultaneous existence of both acoustic modes discretized by the nanocrystal

geometry and continuum acoustic modes that propagate into the surrounding glass

lattice. Chapter V subsequently focuses on signatures of coupling to longitudinal

optical (LO) modes of CdSe. Zero-quantum spectra, which correlate intraband co-

herences with their resultant emission spectra, are used to isolate the dynamics of

vibrationally-coupled interband coherences. Coupling to LO phonon modes is then

shown to induce highly non-Markovian dephasing dynamics.

Chapters VI and VII then present results on MDCS of CsPbI3 perovskite nanocrys-

tals grown by Ana Nogueira’s group at University of Campinas in Brazil. Chapter

VI discusses CsPbI3 nanocubes, which possess a bright, non-degenerate triplet fine-

structure with orthogonally-polarized dipole moments. From the multi-dimensional

spectra, we extract the ensemble-averaged triplet coherence times, crucial figures of

merit for quantum information processing, and reveal coherence times of both optical

triplet coherences and terahertz inter-triplet coherences. We also find evidence for

a mixed bright-dark level-ordering that renders the triplet state excitons only par-

tially bright. Chapter VII then discusses CsPbI3 nanoplatelets, which possess unique

properties of their own such as drastically reduced inhomogeneous broadening due

to precise control of nanoplatelet thickness. To investigate claims of homogeneously

broadened emission at room-temperature, we apply MDCS to simultaneously de-

termine the homogeneous and inhomogeneous linewidths of platelets with varying

thickness and lateral size. Temperature- and power-dependent measurements reveal
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the dominant linewidth broadening mechanisms to be acoustic phonon coupling and

excitation induced dephasing. By extrapolating the linear linewidth temperature de-

pendence for 4-layer nanoplatelets, we expect inhomogeneous broadening to remain

dominant at room-temperature.

Finally, results on MDCS of nitrogen-vacancy centers in diamond provided by

Ronald Ulbricht at the Max Planck Institute for Polymer Research in Mainz, Ger-

many are presented in Appendix E. Though not colloidal, vacancy centers exhibit

much physics similar to that of CNCs due to their common characterization as “arti-

ficial atoms”. The multi-dimensional spectra presented reveal thermal dephasing due

to quasi-localized vibrational modes as well as ultrafast spectral diffusion on the pi-

cosecond timescale. Additional findings include direct measurement of crucial figures

of merit for the spin-polarization cycle, the inter-system crossing time and branching

ratio into the spin singlet shelving state, as well as evidence of two lattice orien-

tation families whose resonance energies shift in opposite directions with changing

temperature.
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CHAPTER II

Fundamentals of Colloidal Nanocrystals (CNCs)

Colloidal nanocrystals (CNCs), which are nanometer sized pieces of material syn-

thesized in solution, are most commonly grown from metals, dielectrics, or semicon-

ductors. In this thesis we primarily discuss those grown from semiconductors and

any mention of CNCs are understood to refer to the semiconductor variety unless

otherwise indicated.

2.1 Synthesis of CNCs

We now outline a general synthesis scheme that applies to most types of CNCs,

and use traditional CdSe core CNCs as an example.

2.1.1 Seed Nucleation and Growth

The first step in colloidal synthesis is to introduce the relevant atoms necessary for

nanocrystal growth into a solvent environment. This is done by injecting precursor

chemicals into the solvent (not necessarily at the same time) at hundreds of degrees

Celsius, during which the active atomic or molecular components break off of their

original precursors. For CdSe nanocrystals, precursors such as Cadmium Myristate

(C28H54CdO4) and Selenium Dioxide (SeO2) may be used. As the active components

(usually called monomers) supersaturate the solvent [1], nucleation of nanocrystals
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will begin spontaneously. Shells of different material may be subsequently grown by

redispersing these seed nanocrystals in new solvents to resume growth in the presence

of different precursors.

2.1.2 Growth Termination and Ligand Capping

After the nanocrystals reach a desired size, the growth process is terminated by

cooling the solution back to room temperature. However, precipitation at this point

will result in unstable nanocrystals that are susceptible to aggregation and continued

growth. Therefore it was realized by Murray et al. [2] that they must be coated in

a surfactant layer, usually in the form of long organic molecules (ligands), that

stabilize the nanocrystal surface. Common surfactants for CdSe CNCs include alkyl

phosphines, fatty acids, etc. [3].

2.1.3 Future Directions in CNC Synthesis

Since its inception, research in CNC synthesis has pushed towards CNCs that

satisfy four main criteria:

1. High nanocrystal size/shape uniformity

2. High luminescence quantum yields

3. Narrow emission linewidths

4. Minimized luminescence blinking [4]

Particularly as CNCs begin to mature in a broad range of practical applications,

these four criteria must be satisfied simultaneously. Although this has largely been

achieved in traditional CdSe-based quantum dots [5], non-toxic CNCs desired for

consumer applications have yet to meet these requirements [6].
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2.2 Electronic Properties of CNCs

Today, our exquisite control over CNC synthesis enables growth of a variety of

nanocrystal shapes (spheres, cubes, rods, etc.) and sizes. While different types

of CNCs will exhibit their own unique properties, a common characteristic shared

among all of them is quantum confinement of electronic excitations. To demonstrate

the effect of confinement on electronic dynamics, we will first examine the general

behavior of electrons in a bulk semiconductor and then include boundary conditions

imposed by the finite CNC size.

2.2.1 Electrons in a Semiconductor

A typical crystal consists of on the order of 1022 atoms/cm3, with each atom com-

posed of a nucleus and their associated core and valence electrons. Unfortunately,

attempting to solve the total many-body Hamiltonian, which consists of the elec-

tronic and nuclear kinetic energies as well as all electron-electron, electron-nucleus,

and nucleus-nucleus interactions for 1022 atoms, is clearly a computational challenge.

When dealing with intractable physical systems, our goal is always to simplify the

problem via models that preserve key phenomena necessary for explaining experimen-

tal observations while simultaneously approximating away unnecessary complexity.

Three common approximations applied are as follows:

1. Born-Oppenheimer Approximation: Because atomic nuclei are much heav-

ier than electrons, the nuclear lattice is considered to be stationary on the

timescales of electronic motion. In other words, the electronic dynamics de-

pend adiabatically on nuclear motion. The system wavefunction may then be

factorized into electronic and nuclear portions with their own equations of mo-

tion.

2. Ionic Nuclei Approximation: The core electrons of each nucleus are so
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tightly bound to their parent nuclei that we consider only interactions between

valence electrons and ionic nuclei (nucleus + core electrons).

3. Hartree-Fock Approximation: Interactions between each valence electron

and the ionic nuclei are described in terms of an effective periodic poten-

tial. Electronic correlation effects are neglected. However, phenomena such as

excitation-induced shift [7] and excitation-induced dephasing (see Chapter VII)

cannot be explained within the framework of this approximation.

The original many-body Schrodinger equation thus simplifies to that of a single va-

lence electron in a periodic potential U(r):

[
− ~2

2m0

∇2 + U(r)

]
ψ = Eψ (2.1)

which has solutions taking the form of a plane wave eik·r modulated at the same

periodicity of the potential, or the so-called Bloch states [8, 9]. Because these

Bloch states are delocalized in position space r and indexed by the quasi-momentum

wavevector k, it is useful to consider their dispersion relation (eigenenergy E as a

function of k). Consider that of CdSe for example, plotted in Fig. 2.1:

Figure 2.1: Bandstructure of CdSe (adapted from [10]). The high-symmetry points
Γ/X/W/L are as labeled.
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One of the most important features shown in Figure 2.1 is a range of energies, ap-

proximately between 0 and 1.7 eV, that are forbidden. This is the bandgap of CdSe,

and such energy gaps are a universal feature of insulators and semiconductors. The

existence of energy bands is also the reason why the electronic dispersion relation of

a material is called its bandstructure. In semiconductors, the states directly below

the bandgap (valence band) are mostly full and the states directly above (conduction

band) are mostly empty. The interaction of a semiconductor with light thus involves

exciting electrons from valence band states into conduction band states.

2.2.2 Electron, Hole, and Exciton Quasi-Particles

Recall the free-particle dispersion relation for an electron of mass m0 [8, 9]:

E =
~2k2

2m0

. (2.2)

When exciting with light of photon energy near the bandgap of a semiconductor,

transitions occur between the valence band maximum (at wavevector kv and energy

E0
v) and conduction band minimum (at wavevector kc and energy E0

c ). In these

regions, the energy dispersion is approximately parabolic:

Ec/v(k) = E0
c/v + (k − kc/v)

dEc/v
dk

∣∣∣∣
k=kc/v

+
1

2
(k − kc/v)2 d

2Ec/v
dk2

∣∣∣∣
k=kc/v

+ . . .

≈ E0
c/v +

1

2
(k − kc/v)2 d

2Ec/v
dk2

∣∣∣∣
k=kc/v

= E0
c/v +

~2(k − kc/v)2

2m∗c/v
(2.3)

where in the last line we have defined the effective mass m∗c/v:

1

m∗c/v
=

1

~2

d2Ec/v
dk2

∣∣∣∣
k=kc/v

. (2.4)
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Comparing equation (2.3) to the free-particle dispersion relation (2.2), we find that

an electron in the valence or conduction band will behave as if it were free but with

an effective mass m∗c/v. This is the concept of an electron quasi-particle. Because

our experiments all take place within condensed systems, we will refer to electron

quasi-particles simply as electrons for simplicity.

The above description of electron quasi-particles was derived for a generic band-

structure found by solving the effective potential Schrodinger equation (2.1). It does

not, however, account for Pauli blocking due to occupation of an energy band. In

the mostly unoccupied conduction band electrons may be considered electron quasi-

particles, but in the mostly occupied valence band a different picture is necessary.

There, the collective response of all valence band electrons is determined by the un-

occupied valence band states. We treat each vacant valence band state as an effective

particle with effective mass m∗v and positive charge +e, called a hole quasi-particle.

From our discussion of electron and hole quasi-particles, it is clear that above-

bandgap excitation of a semiconductor necessarily creates both an electron and hole

simultaneously. These oppositely charged quasi-particles may then experience an

attractive Coulomb potential, and their bound-state is called an exciton quasi-

particle. The exciton equation of motion is described by the following hydrogenic

Hamiltonian:

H = − ~2

2m∗e
∇2
e −

~2

2m∗h
∇2
h −

e2

ε|re − rh|
(2.5)

where ε is the dielectric constant of the semiconductor and re and rh are the electron

and hole coordinates respectively. Defining the electron-hole separation r and center

of mass coordinate R:

r = rh − re R =
m∗ere −m∗hrh
m∗e +m∗h

(2.6)
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and the reduced and combined masses:

µ =
m∗em

∗
h

m∗e +m∗h
M = m∗e +m∗h (2.7)

The Hamiltonian (2.5) may then be recast and separated by its center of mass and

internal degrees of freedom:

H = − ~2

2M
∇2
R −

[
~2

2µ
∇2
r +

e2

εr

]
(2.8)

The first term describes the exciton center of mass motion while the second bracketed

term describes internal states arising from the electron-hole Coulomb interaction. It

is then straightforward to factorize the exciton wavefunction into a plane wave due to

center of mass motion and hydrogenic bound states [9], resulting in the eigenenergies:

En(k) = −~2k2

2M
− Ry

n2
(2.9)

where we have defined the exciton Rydberg energy Ry and exciton Bohr radius aB:

Ry =
e2

2εaB
aB =

ε~2

µe2
(2.10)

In direct correspondence to hydrogenic bound states, the exciton Bohr radius may

be thought of as an exciton bound state’s spatial extent (1/e radius for the ground

state wavefunction). The total exciton wavefunction is then delocalized according to

its center of mass motion.

2.2.3 Weak Confinement Regime

We now include the finite size of a CNC, taking a spherical nanocrystal as an

example. In an ideal spherical CNC, the confinement potential U(r) is clearly spher-

ically symmetric. The most natural way to solve such problems is in a spherical
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coordinate system:

x = r sin(θ) cos(φ) y = r sin(θ) sin(φ) z = r cos(θ) (2.11)

or conversely:

r =
√
x2 + y2 + z2 φ = tan−1

(y
x

)
θ = cos−1

(
z√

x2 + y2 + z2

)
(2.12)

which recasts the Hamiltonian as:

H = − ~2

2Mr2

∂

∂r

(
r2 ∂

∂r

)
− ~2

2M sin(θ)r2

[
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin(θ)

∂2

∂φ2

]
+ U(r)

(2.13)

Here, by using the total exciton mass M in the Hamiltonian we assume that only

the exciton center of mass motion is confined. This assumption is valid if the CNC

radius a is at least a few times larger than the exciton Bohr radius, which is called

the weak confinement regime. The procedure for solving the above Hamiltonian

by separation of variables is well-known [9], and we present only the results here. The

eigenstates will assume the form:

ψn`m(r, θ, φ) =
un`(r)

r
Y`m(θ, φ) (2.14)

where Y`m are the spherical harmonics and the radial portion un`(r) is determined by

the equation:

− ~2

2M

d2u

dr2
+

[
U(r) +

~2

2Mr2
`(`+ 1)

]
u = Eu (2.15)
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The simplest way to model a confinement potential for a CNC is an infinite spherical

potential well:

U(r) =


0 for r ≤ a

∞ for r > a

(2.16)

which gives the eigenenergies:

En` =
~2χ2

n`

2Ma2
(2.17)

where χn` are the roots of the spherical Bessel functions. The exciton eigenenergies

thus have contributions from both its internal states (indexed by quantum number

n′) and size confinement (indexed by quantum numbers n and `):

En′n` = Eg −
Ry

n′2
+

~2χ2
n`

2Ma2
(2.18)

Note that in the weak confinement limit (a � aB), the confinement energy is small

compared to the Rydberg energy, which means the electron and hole dynamics are

primarily determined by their Coulomb interaction. The exciton states are commonly

labeled in spectroscopic notation (1S, 2S, 2P, . . . ), but the internal states arising from

Coulomb interaction and external states due to nanocrystal size confinement must be

distinguished. The usual procedure is thus to label the internal states indexed by n′

by capital letters (1S, 2S, 2P, . . . ) and the external states indexed by n and ` by

lowercase letters (1s, 2s, 2p, . . . ).

2.2.4 Strong Confinement Regime

We now consider the situation in which the nanocrystal radius is much smaller

than the exciton Bohr radius (a� aB). In this limit the Coulomb potential becomes
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unimportant in comparison to the individual electron and hole confinement energies,

giving the eigenenergies:

En` = Eg +
~2χ2

n`

2mea2
+

~2χ2
n`

2mha2

= Eg +
~2χ2

n`

2µa2
(2.19)

Because the energy spectrum is now determined by the nanocrystal size, CNCs in the

strong confinement regime are sometimes termed artificial atoms.

2.3 Optical Properties of CNCs

Because most applications of CNCs involve their interaction with light via ab-

sorption, emission, or both, the optical properties of CNCs are of utmost importance.

The discrete energy levels of CNCs described in the previous section would suggest

atomic-like spectra, but their absorption and emission dynamics are more complicated

in many ways.

2.3.1 Inhomogeneous Broadening

As mentioned in Chapter I, absorption and fluorescence lineshapes of CNCs are

inhomogeneously broadened. We now elaborate on the physical origin of inhomoge-

neous broadening and how this phenomenon modifies spectral lineshapes.

Generally, inhomogeneous broadening is a phenomenon that affects the optical

response from an ensemble of absorbers/emitters in which variations in resonance

energy among the ensemble broaden the overall spectral lineshapes. A spectrum is

said to be inhomogeneously broadened if the distribution in resonance frequency is

much larger than the linewidth of an individual element of the ensemble (called the

homogeneous linewidth). This situation is shown schematically in Fig. 2.2a:
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Energy

(a) (b)

Figure 2.2: (a) Schematic of inhomogeneously broadened lineshape (black) and un-
derlying homogeneous lineshapes (colored). (b) Inhomogeneously broadened fluores-
cence of an ensemble of 5 nm diameter CdSe CNCs (top). Fluorescence of single
CNCs isolated from the ensemble (bottom). Figure (b) adapted from [11].

The dominant source of inhomogeneous broadening in CNCs is unavoidable nanocrys-

tal size-dispersion that arises from the growth process. Variation in nanocrystal

size, and therefore quantum confinement energy, results in strongly inhomogeneously

broadened absorption and emission as shown in Fig. 2.2b. It should be noted that

atomic spectra are also inhomogeneously broadened to a lesser degree, albeit by a

different physical mechanism, Doppler broadening [12].

2.3.2 Static Lattice Coupling

The discrete energy levels of CNCs derived in the previous section are in reality

energy surfaces as a function of lattice configuration. From a static point of view, in

which the lattice deforms adiabatically in response to electronic dynamics, this gives

rise to two main phenomena.

First, the lattice constant changes with temperature. This results in resonance

energies that depend linearly on temperature.

Second, fluorescence from CNCs generally occurs at lower energy in comparison

to absorption. This energy difference is called the Stokes shift, and occurs following

initial absorption of light due to lattice relaxation towards a minimum in the electronic
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potential energy surface.

2.3.3 Dynamic Lattice Coupling

Despite their small size, a characteristic that CNCs inherit from their bulk counter-

parts is electron-phonon coupling, where phonons are lattice vibrations of a material.

Various types of phonons are possible, such as acoustic phonon modes that span a

continuum of energies and optical phonon modes that are characterized by discrete

energies. A general property of all such types of phonons is that periodic lattice

oscillations associated with various phonon modes modulate electronic dynamics and

distort spectral lineshapes of CNCs from ideal Lorentzians. We will discuss this topic

in greater detail in Chapter IV.
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CHAPTER III

Multi-Dimensional Coherent Spectroscopy

3.1 History

The history of multi-dimensional Fourier transform spectroscopy may be traced

back to a proposal by Jean Jeener at a NMR summer school in 1971 [1]. Though this

2-D Fourier transform experiment was thought even by Jeener to be too demanding for

the computing power available at the time, in the audience sat a student of Richard

Ernst who took diligent notes. Ernst’s group then proceeded to publish both the

first theoretical [2] and experimental [3] studies on 2-D NMR spectroscopy, for which

Richard Ernst won the 1991 Nobel Prize in chemistry.

In 1993, Tanimura and Mukamel proposed the application of 2-D Fourier trans-

form spectroscopy in the optical regime to study molecular vibrations [4]. In 1998

the first 2-D optical spectroscopy of electronic transitions was demonstrated by David

Jonas’ group [5] followed by extension to the infrared regime by Hochstrasser’s group

to probe vibrational transitions directly in 1999 [6]. These pioneering experiments

initiated intense activity in 2-D spectroscopy of molecular systems, and in 2005 the

Cundiff group reported the first 2-D optical spectroscopy on semiconductors [7, 8].

Since the first experiments, the term 2-D spectroscopy has predominantly been

used to describe experiments that correlate absorption and emission dynamics during

the first and third evolution periods in a so-called one-quantum spectrum. However,
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coherent time-domain Fourier transform spectroscopy also provides other types of

2-D spectra such as zero-quantum [9] and two-quantum [10] spectra, which repre-

sent different cross-sections of the frequency-domain third-order nonlinear response.

Furthermore, in 2000 Park and Cho suggested theoretically [11] the extension of 2-D

spectroscopy into a third dimension. So-called 3-D spectroscopy of a fifth-order non-

linear response was first demonstrated in 2007 by Zanni’s group [12], and that of a

third-order nonlinear response by Nelson’s group in 2009 [13]. We thus use the gen-

eral terminology multi-dimensional coherent spectroscopy (MDCS) to refer

to all spectroscopic techniques that measure a system’s complex frequency-domain

nonlinear response without integrating across any of its dimensions.

3.2 Four-Wave Mixing (FWM) Spectroscopy

In the perturbative regime, the polarization of a material induced by an incident

field may be expanded in powers of the field:

P (t′) = P (1)(t′) + P (2)(t′) + P (3)(t′) + . . . (3.1)

where P (n)(τ) represents the nth order nonlinear polarization. We ignore the spatial

dependences of the fields and polarization for clarity. By a perturbative expansion of

the system density matrix, it may be shown (see Appendix A and [14]) that the nth

order nonlinear polarization can be expressed as:

P (n)(t′) =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

S(n)(t1, . . . , tn−1, tn)

E(t′ − tn)E(t′ − tn − tn−1) . . . E(t′ − tn − tn−1 · · · − t1)dt1 . . . dtn−1dtn

=

∫ t′

−∞

∫ τn

−∞
· · ·
∫ τ2

−∞
S(n)(τ2 − τ1, . . . , τn − τn−1, t

′ − τn)

E(τn)E(τn−1) . . . E(τ1)dτ1 . . . dτn−1dτn (3.2)
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where the quantity S(n)(t1, . . . , tn−1, tn) is called the nth order optical response

function. Each term governs the respective nonlinear optical response we measure

and together they contain all of the microscopic information about our system. In

general, MDCS encompasses a broad range of techniques that measure a nonlin-

ear response function of arbitrary order. Here we restrict our focus to time-domain

four-wave mixing (FWM) experiments that probe a sample’s third-order nonlinear re-

sponse, but the concepts and theory developed in this chapter are easily generalized

to other MDCS techniques.

3.2.1 Time-Domain FWM Experiments

The most general time-domain FWM experiment consists of three laser pulses

with variable inter-pulse delays:

𝜏

time

T t

A B C

Figure 3.1: Schematic of the three pulses of a time-domain FWM experiment. The
inter-pulse delays are denoted τ and T while the evolution time t of the FWM signal
is defined after the last pulse.

To understand the relation between the polarization induced by these three pulses

and a system’s third-order nonlinear optical response function, we take the limit of

vanishingly short pulses of infinite bandwidth. In this limit, the combined electric

fields of the three pulses may be expressed as delta functions:

E(t′) = EAδ(t
′) + EBδ(t

′ − τ) + ECδ(t
′ − T − τ) (3.3)
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where we’ve neglected the complex phase of each field here for simplicity. Before

plugging this field into equation (3.2) for third-order (n = 3), we note that, due to

causality, the response function is only non-zero when all three time arguments are

positive [14, 15]. This enforces a direct correspondence between each field term in

the third-order polarization and a specific pulse in a three-pulse experiment. The

third-order polarization thus becomes:

P (3)(t′) =

∫ t′

−∞

∫ τ3

−∞

∫ τ2

−∞
S(3)(τ2 − τ1, τ3 − τ2, t

′ − τ3)

ECδ(τ3 − τ − T )EBδ(τ2 − τ)EAδ(τ1)dτ1dτ2dτ3

= S(3)(τ, T, t′ − τ − T )

= S(3)(τ, T, t) (3.4)

This equation states that three impulsive excitations directly sample S(3). By varying

the time-delays {τ, T, t} we can map out desired portions of the third-order optical

response function in the time-domain.

3.2.2 Multi-Dimensional Spectra

Upon measuring the time-domain response function in N dimensions, Fourier

transform along those axes [16] returns a N -dimensional spectrum that reflects the de-

sired frequency-domain optical response. Most commonly, a Fourier transform along

two time delays is performed to obtain a 2-D spectrum as a function of a third tempo-

ral variable. In this thesis we measure and analyze two types of spectra resulting from

transforming along the time delays {τ, t} and {T, t}, which we call one-quantum

and zero-quantum 2-D spectra respectively. Each spectrum reflects different cross-

sections of the complete three-dimensional (third-order) optical response, and reveals

unique aspects of the underlying microscopic physics. An example of each type of

2-D spectrum and its corresponding time-domain representation is shown in Fig. 3.2:
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Figure 3.2: |S(3)| within the rotating-wave approximation are related in the time-
and frequency-domains by Fourier transform. The responses are simulated with pa-
rameters γ = 1 THz, σ = 10γ, and ~ω0 = 2067 meV (500 THz). One-quantum (top
row) and zero-quantum (bottom row) spectra are obtained by measurements along
different temporal variables {τ, t} and {T, t} respectively. In the one-quantum spec-
trum the signal manifests along the plot diagonal (|~ωτ | = |~ωt|), which corresponds
to identical absorption and emission energies. Its negative absorption energy axis
reflects opposite-sign phase evolution during delays τ and t (see Section 3.4).

It is immediately apparent that the one-quantum and zero-quantum spectra shown

in the top and bottom rows of Fig. 3.2 are qualitatively different, which suggests that

they provide complementary information. We will discuss the unique aspects of each

2-D spectrum and the functional form of their underlying optical response functions

in Section 3.4.
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3.3 Experimental Implementation

Because MDCS provides the maximum amount of information about a system’s

optical response, there is a corresponding, greater complexity in its experimental

realization (compared to linear absorption/luminescence or lower-dimensional FWM

spectroscopies). We now review the main principles underlying an MDCS experiment,

and outline our particular implementation.

3.3.1 Isolating the FWM Signal

Though equation (3.4) defines the third-order polarization induced by three im-

pulsive excitations, we have neglected both higher- and lower-order polarizations.

This may seem unreasonable, especially since the linear and second-order (if present)

responses are usually stronger than that of third-order, but we isolate the emitted

four-wave mixing signal by a technique known as phase-matching1.

As its name suggests, the phase-matching technique relies on the phases of the

excitation fields, which we have neglected thus far. Each field may be explicitly

expressed in terms of its envelope and phase:

E(t) = E(t)
(
e+iωt−ik·r−iφ + e−iωt+ik·r+iφ

)
(3.5)

Neglecting the arbitrary phase φ for clarity, equation (3.4) then becomes:

P (3)(r, t′) =

∫ t′

−∞

∫ τ3

−∞

∫ τ2

−∞
S(3)(τ2 − τ1, τ3 − τ2, t

′ − τ3)

EC(τ3)
(
e+i(kC ·r−ωCτ3) + e−i(kC ·r−ωCτ3)

)
EB(τ2)

(
e+i(kB ·r−ωBτ2) + e−i(kB ·r−ωBτ2)

)
EA(τ1)

(
e+i(kA·r−ωAτ1) + e−i(kA·r−ωAτ1)

)
dτ1dτ2dτ3 (3.6)

1The term phase-matching in the present context should be distinguished from its more common
use in the context of maximizing the efficiency of nonlinear optical interactions in a medium.
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The exponential factors within the parentheses may then be multiplied to give eight

distinct terms that each radiate in a different direction defined by the wavevectors

k = ±kA ± kB ± kC . Consider the three excitation pulses arranged in the following

box geometry [17]:

A

B

Sample

C

Figure 3.3: Schematic of the box geometry.

where the FWM signal is collected in the emission direction k = −kA + kB + kC.

Only a FWM signal arising from all three pulses is emitted in this direction, while

other linear and second-order signals, as well as third-order signals arising from single

pulses acting multiple times, are directed elsewhere2. This method of isolating the

FWM signal in the spatial domain is called wave-vector phase-matching. We note that

MDCS experiments have also been implemented in collinear geometries by frequency-

domain phase-cycling, in which each pulse is shifted by a unique radio-frequency via

acousto-optic modulators [18–20].

3.3.2 Measuring the FWM Field

In most spectroscopic techniques, the intensity of an optical response is measured.

In contrast, MDCS requires simultaneous measurement of both the signal field ampli-

2This is why the box-CARS geometry is described as background-free.
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tude and phase to completely characterize the optical response of a given order. This

may be accomplished via spectral interferometry [21], in which a signal is interfered

with a so-called local-oscillator3 pulse:

Idet(ω) ∝ |F {Esig(t) + ELO(t)}|2

∝ |Esig(ω) + ELO(ω)|2

∝ Isig(ω) + ILO(ω) + 2Re {Esig(ω)E∗LO(ω)} (3.7)

By subtracting the signal and local-oscillator spectra Isig(ω) and ILO(ω) respectively,

we effectively measure the signal via the third interference term. This is known as

heterodyne detection, which has two distinct advantages:

1. The interference term is dependent on the phase difference between the signal

and local-oscillator fields, allowing for phase-sensitive measurements.

2. The interference term depends linearly on the (usually stronger) local-oscillator

field, allowing for more sensitive measurements of weak signal.

For the purposes of heterodyne-detection, box-CARS geometry experiments usually

involve another, separate pulse in addition to the three excitation pulses. This is in

contrast to self-heterodyne detection, in which one of the excitation beams travels

in the signal direction and acts as the local-oscillator.

3.3.3 Phase-Stability Criteria

After measurement of the optical response function in the time-domain, the single

step of Fourier transforming into the frequency-domain remains. Yet this represents

arguably the most challenging aspect of MDCS at optical frequencies, primarily due

to what we call the phase-stability criteria.

3Local-oscillator is terminology borrowed from radio waves.
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To understand why phase-stability is essential in MDCS experiments, consider

a material with an optical resonance of frequency ω0. As will be discussed later,

such a material’s third-order optical response will consist of oscillatory terms of the

form e±iω0τ and e±iω0t. Any experimental uncertainty in the time-delays τ and t will

therefore translate into uncertainty in the resonance frequency:

e±iω0(τ+δτ) → e±i[ω0+δω(τ)]τ e±iω0(t+δt) → e±i[ω0+δω(t)]t (3.8)

where we’ve defined the fractional uncertainties δω(τ) = ω0
δτ
τ

and δω(t) = ω0
δt
t
. This

is why time-delay uncertainty produces noise in a multi-dimensional spectrum:
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Figure 3.4: 2-D spectra obtained via Fourier transform of the time-domain optical
response in Fig. 3.2 for varying pulse delay uncertainty (in terms of λ0 = 2πc

ω0
).
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Fig. 3.4 demonstrates that, to obtain multi-dimensional spectra of acceptable sig-

nal to noise ratio, path length fluctuations must be suppressed beneath ±λ0/50. This

may be accomplished by either passively stable experimental approaches or active

path length stabilization via feedback loops [22]. We note however that the phase-

stability criteria may be circumvented if the path-length fluctuations are monitored

concurrently with signal acquisition, as is often done in frequency-domain phase-

matching MDCS experiments [18–20].

3.3.4 Multi-Dimensional Optical Nonlinear Spectrometer

To implement MDCS in this dissertation, we use a multi-dimensional optical non-

linear spectrometer (originally dubbed the JILA-MONSTR [23]). A MONSTR takes

pulses of light as input and, through sequences of mirrors, beamsplitters, and me-

chanical delay stages, generates four identical copies of each pulse that are arranged

in the box geometry with arbitrary temporal delay. A FWM signal is generated by

three of the pulses, and is then heterodyne detected with the fourth pulse inside a

grating spectrometer. To satisfy the phase-stability criteria, a continuous-wave laser

(of 532 nm wavelength in our experiment) co-propagates along the path of each pulse

and is reflected by a dichroic mirror at the output port to form nested Michelson

interferometers. These retro-reflected beams are then interfered on photo-diodes to

provide feedback for servo loops (each connected to a piezoelectric-mounted mirror

in each interferometer) that suppress path-length fluctuations beneath λ0/100 [23].

Active monitoring of each photo-diode signal during stage movement then ensures

accurate stepping of each respective time delay. A schematic representation is shown

below in Fig. 3.5.
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Pulse + CW

Figure 3.5: Schematic optical diagram of the MONSTR, which splits laser pulses
into four identical copies that each traverse a mechanical stage (labeled X, Y, U,
and Z) that provides a temporal delay. A co-propagating continuous-wave (CW)
laser is reflected by a dichroic mirror (DCM) at the output port to form nested
interferometers. Figure adapted from [23].

3.3.5 Laser Source

To perform MDCS, it is important to generate laser pulses from a source that

satisfies three criteria: (1) able to reach the wavelength of the sample absorption

resonance, (2) possesses sufficient spectral bandwidth to resolve the entire homoge-

neous lineshape, and (3) generates pulses at a repetition rate slower than the sample

population relaxation time to avoid accumulation effects.

The results presented in this dissertation were acquired with pulses sourced from

an optical parametric amplifier (Coherent OPA 9400) pumped by a Ti:Sapph regen-

erative amplifier (Coherent RegA 9000). The pulses are generated at a repetition rate

of 250 kHz, and are wavelength-tunable from approximately 570 nm to 650 nm. Note

that it is possible to generate pulses outside of this wavelength range with compro-

mised bandwidth.
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3.4 The Optical Response Function

Simply knowing that a FWM experiment samples S(3) is not useful. The real

utility of such a measurement comes from relating S(3) to the microscopic dynamics

of a studied material. To make this connection, we require a functional form for the

optical response response function, which is derived in Appendix A:

S(3)(τ2 − τ1, τ3 − τ2, t− τ3) =(
− i
~

)3

Tr
[
µe−

i
~H0(t−t0)[µI(τ3), [µI(τ2), [µI(τ1, ρ(t0)]]]e

i
~H0(t−t0)

]
(3.9)

From the three nested commutators involved, there are eight distinct terms that

contribute to the third-order response function. To gain insight into their functional

form, we focus on a single term:

S(3)(τ2 − τ1, τ3 − τ2, t− τ3) =(
− i
~

)3

Tr
[
µe−

i
~H0(t−t0)µI(τ2)ρ(t0)µI(τ1)µI(τ3)e

i
~H0(t−t0)

]
+ . . .

=

(
− i
~

)3

Tr [µI(t)µI(τ2)ρ(t0)µI(τ1)µI(τ3)] + . . . (3.10)

The argument of the trace operation may be intuitively thought of as propagation

of the initial density matrix, and is most clearly illustrated for a two-level system

composed of states |0〉 and |1〉 separated by an energy E1−E0 = ~ω01. Assuming the

initial density matrix ρ(t0) to be |0〉 〈0|:

ρ(t0) = |0〉 〈0| =

1 0

0 0

 (3.11)
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and noting that the dipole operator is off-diagonal in the {|0〉 , |1〉} basis [14]:

µ =

 0 µ01

µ01 0

 (3.12)

the action of the first dipole operator µI(τ1) is calculated explicitly to be:

ρ(t0)µI(τ1) =1 0

0 0


e i~E0(τ1−t0) 0

0 e
i
~E1(τ1−t0)


 0 µ01

µ01 0


e− i

~E0(τ1−t0) 0

0 e−
i
~E1(τ1−t0)


=

0 eiω01(τ1−t0)µ01

0 0


Adding the additional terms while preserving the operator ordering:

µI(τ2)ρ(t0)µI(τ1) =

0 0

0 µ01e
iω01(τ2−τ1)µ01


µI(τ2)ρ(t0)µI(τ1)µI(τ3) =

 0 0

µ01e
iω01(τ3−t0)µ01e

iω01(τ2−τ1)µ01 0


µI(t)µI(τ2)ρ(t0)µI(τ1)µI(τ3) =

µ01e
−iω01(t−τ3)µ01e

iω01(τ2−τ1)µ01µ01 0

0 0

 (3.13)

In words, the first dipole operator µI(τ1) converts the initial ground state on-diagonal

element (called a population) into an off-diagonal element (called a coherence).

The next dipole operator µI(τ2) converts this coherence into an excited state popula-

tion, which is then converted back into a coherence by µI(τ3) and finally back into a

ground state population µI(t). We can represent this sequence diagrammatically as

shown in Fig. 3.6:
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|1〉|1〉|1〉〈0|〈0|〈0|
|1〉|1〉|1〉〈1|〈1|〈1|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|t0

τ1

τ2

τ3

t

µ4
01e

iω01(τ2−τ1)e
− τ2−τ1

T2 e
− τ3−τ2

T1 e−iω01(t−τ3)e
− t−τ3

T2

Figure 3.6: Example double-sided Feynman diagram (left) and the equation it repre-
sents (right). The colored boxes indicate each time delay and its respective component
in the equation.

Diagrams in Fig. 3.6, called double-sided Feynman diagrams, provide an

intuitive interpretation of the various terms that compose the third-order optical

response and their functional form. First, there are four dipole moment terms µ01

that correspond to the action of the three pulses at times {τ1, τ2, τ3} plus the emission

of a FWM signal at time t. The two oscillatory terms eiω01(τ2−τ1) and e−iω01(t−τ3) reflect

the evolutions of the coherences |0〉 〈1| and |1〉 〈0| respectively. Lastly, we have added

in Fig. 3.6 the dephasing terms e
− τ2−τ1

T2 and e
− t−τ3

T2 and population relaxation term

e
− τ3−τ2

T1 in by hand. These phenomenological terms are justified in Section 3.5 and

Appendix B.

3.4.1 Double-Sided Feynman Diagrams

The above discussion frames double-sided Feynman diagrams as a visual aid for

interpreting various terms of the optical response function. Conversely, we may also

write down a complete optical response function simply from a given diagram. The

usefulness in doing so becomes apparent if we know a-priori every relevant diagram

that contributes to the nonlinear response that we measure. Here we outline a sys-

tematic procedure to generate all such diagrams, which is described in further detail

elsewhere [14, 15].

First recall the collection wavevector k = −kA +kB +kC, where pulse A is said to

be conjugated due to its negative phase-matching wavevector. We then follow the

35



rules below to generate all relevant diagrams:

1. The interaction of each pulse is represented by an arrow that points (right-

ward)leftward for a (non-)conjugate pulse.

2. An arrow pointing (out)inwards represents an (de-)excitation of the bra or ket,

depending on the side of the arrow.

3. A fourth dashed arrow is drawn pointing leftward to represent emission of the

third-order signal. The following element must be a population state |n〉 〈n|.

For the two-level system described in this section, two diagrams are possible (accord-

ing to the above rules and pulse ordering A→ B → C) and are shown in Fig. 3.7:

|1〉|1〉|1〉〈0|〈0|〈0|
|1〉|1〉|1〉〈1|〈1|〈1|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|t0

τ1

τ2

τ3

t
|0〉|0〉|0〉〈0|〈0|〈0|

|1〉|1〉|1〉〈0|〈0|〈0|
|0〉|0〉|0〉〈0|〈0|〈0|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|

Figure 3.7: The two diagrams that survive the rotating wave approximation and
contribute to the k = -kA + kB + kC FWM signal.

The sequential changes of the density matrix in each diagram are collectively

termed either quantum pathways or Liouville pathways. In Fig. 3.7, the left dia-

gram traversing an intermediate excited state population |1〉 〈1| is called a stimulated-

emission pathway while the right diagram with an intermediate ground state pop-

ulation |0〉 〈0| is called a ground-state bleach pathway. We note that in the pres-

ence of a higher-lying doubly-excited state, an additional excited-state absorption

pathway becomes possible. Additional terms generated by the nested commutator in

Equation (3.9) that are not allowed by the diagram rules are negligible in the rotating

wave approximation [14, 15].
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3.4.2 Quantum Pathways and Multi-Dimensional Spectra

The second, third, and fourth density matrix elements in each diagram dictate the

position at which its response will appear on a multi-dimensional spectrum. Taking

the left diagram in Fig. 3.7 for example, the second coherence |0〉 〈1| will oscillate

at a frequency ω0 − ω1 = −ω01 which corresponds to an absorption axis position

~ωτ = −~ω01. Likewise, the third population |1〉 〈1| oscillates at ω1 − ω1 = 0 which

corresponds to a mixing axis position ~ωT = 0 and the fourth coherence |1〉 〈0| oscil-

lates at ω1 − ω0 = ω01 which corresponds to an emission axis position ~ωt = ~ω01.

To demonstrate the utility of double-sided Feynman diagrams towards interpreting

multi-dimensional spectra, consider the more complicated V level system shown in

Fig. 3.8a. The excited states |1〉 and |2〉 are connected by dipole-allowed transitions

to a common ground state |0〉, and we thus say that the two states |1〉 and |2〉 are

coherently coupled. Figs. 3.8b-i then show the eight possible diagrams for this

system:

(a)(a)(a)

|1〉|1〉|1〉
|2〉|2〉|2〉

|0〉|0〉|0〉

µ02 µ01

(b)(b)(b)

|1〉|1〉|1〉〈0|〈0|〈0|
|1〉|1〉|1〉〈1|〈1|〈1|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|
(c)(c)(c)

|1〉|1〉|1〉〈0|〈0|〈0|
|0〉|0〉|0〉〈0|〈0|〈0|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|
(d)(d)(d)

|2〉|2〉|2〉〈0|〈0|〈0|
|2〉|2〉|2〉〈2|〈2|〈2|
|0〉|0〉|0〉〈2|〈2|〈2|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|
(e)(e)(e)

|2〉|2〉|2〉〈0|〈0|〈0|
|0〉|0〉|0〉〈0|〈0|〈0|
|0〉|0〉|0〉〈2|〈2|〈2|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|

(f)(f)(f)

|2〉|2〉|2〉〈0|〈0|〈0|
|2〉|2〉|2〉〈1|〈1|〈1|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|
(g)(g)(g)

|2〉|2〉|2〉〈0|〈0|〈0|
|0〉|0〉|0〉〈0|〈0|〈0|
|0〉|0〉|0〉〈1|〈1|〈1|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|
(h)(h)(h)

|1〉|1〉|1〉〈0|〈0|〈0|
|1〉|1〉|1〉〈2|〈2|〈2|
|0〉|0〉|0〉〈2|〈2|〈2|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|
(i)(i)(i)

|1〉|1〉|1〉〈0|〈0|〈0|
|0〉|0〉|0〉〈0|〈0|〈0|
|0〉|0〉|0〉〈2|〈2|〈2|
|0〉|0〉|0〉〈0|〈0|〈0|

|0〉|0〉|0〉〈0|〈0|〈0|

Figure 3.8: (a) V level system with a single ground state |0〉 and two excited states |1〉
and |2〉 as indicated. (b-e) Diagrams representing quantum pathways with absorp-
tion and emission from identical transitions. (f-i) Diagrams representing quantum
pathways with absorption and emission from different transitions.
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One can see that in addition to quantum pathways corresponding to absorption

and emission from identical transitions (Fig. 3.8b-e), there are also quantum path-

ways corresponding to absorption and emission from different transitions (Fig. 3.8f-i).

Quantum pathways arising from coherent coupling between two states and those aris-

ing from single transitions are indistinguishable in most spectroscopy experiments, but

are naturally separated in a multi-dimensional spectrum.

For equal transition dipole moments µ01 and µ02, the resultant one-quantum and

zero-quantum 2-D spectra of the V level system in Fig. 3.8a are plotted in Fig. 3.9:
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Figure 3.9: One-quantum (left) and zero-quantum (right) 2-D spectra of the V level
system in Fig. 3.8a. The letters next to each peak indicate the diagrams in Fig. 3.8b-i
corresponding to their underlying quantum pathways.

The direct correspondence between peaks of the 2-D spectra in Fig. 3.9 and specific

quantum pathways in Fig. 3.8 illustrates a powerful use of double-sided Feynman

diagrams. By generating all possible diagrams for a given electronic system one may

assign physical meaning to peaks in a multi-dimensional spectrum in terms of allowed

quantum pathways, and even predict a-priori the appearance of multi-dimensional

spectra.
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3.5 Multi-Dimensional Spectra of CNCs

MDCS of CNCs may, at the most basic level, be understood in terms of transitions

between discrete energy levels in either the strong or weak confinement regime. How-

ever, examination of experimental multi-dimensional spectra of CNCs reveals many

features that point to much more intricate underlying dynamics such as strongly

non-Lorentzian lineshapes and sidebands positioned at energy-splittings which do

not correspond to that of any electronic energy levels. Most of these features arise

from electron-phonon coupling, which is simply the mutual interaction of electronic

excitations with the nuclear motion of their host lattice. A general Hamiltonian for

a system with two electronic states |g〉 and |e〉, representing the ground and excited

state respectively, which are coupled to nuclear degrees of freedom q is the following:

H = |g〉 [T (q) +Wg(q)] 〈g|+ |e〉
[
~ω0

eg + T (q) +We(q)
]
〈e|

= |g〉Hg(q) 〈g|+ |e〉He(q) 〈e| (3.14)

where T (q) is the nuclear kinetic energy, Wg(q) and We(q) are the ground and ex-

cited state adiabatic potentials for each electronic state (i.e. the dependence of the

electronic energy on the nuclear configuration), and ~ω0
eg is the energy gap in the

absence of coupling to nuclear motion. To derive equations of motion for electronic

dynamics that incorporate nuclear motion is not trivial. We defer derivation of such

equations to Appendix B and more thorough references [15, 24], and state here only

the results.

As shown above, the optical response for a single resonance involving two electronic

states |g〉 and |e〉 separated by a thermally-averaged energy-gap ~ωeg is composed of

two components:

R(3)(τ, T, t) = R
(3)
ESE +R

(3)
GSB + c.c. (3.15)
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where R
(3)
ESE and R

(3)
GSB are the “excited-state emission” and “ground-state bleach”

pathways respectively. General expressions for these two terms that incorporate cou-

pling to nuclear motion are the following:

R
(3)
ESE(τ, T, t) ∝ eiωegτ−iωegte−g

∗(t)−g∗(τ)+g∗(T )−g∗(T+t)−g(τ+T )+g(τ+T+t) (3.16)

R
(3)
GSB(τ, T, t) ∝ eiωegτ−iωegte−g(t)−g

∗(τ)+g(T )−g(T+t)−g(τ+T )+g(τ+T+t) (3.17)

which are the rephasing components of the optical response that emit into the phase-

matched direction k = -kA + kB + kC. As its name suggests, the dephasing line-

shape g(t) characterizes the irreversible dephasing of coherences induced by inter-

actions with an environment. The specific functional form of g(t) depends on the

specific material system and temperature, but in the so-called Markovian limit

simplifies to:

g(t) = γt =
t

T2

(Markovian Limit) (3.18)

which is a common approximation that the energy-gap fluctuations induced by the

environment are uncorrelated (i.e. memory-less). It is simple to recover the phe-

nomenological equation in Fig. 3.6 by plugging equation (3.18) into equation (3.16).

In the time-domain these coherences dephase exponentially in the Markovian limit

while their corresponding peaks in a linear or multi-dimensional spectrum are ideal

Lorentzians. The work presented in the next two chapters focuses on a system, col-

loidal CdSe nanocrystals, which exhibits electronic dynamics that strongly violate the

Markovian approximation.
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CHAPTER IV

CdSe CNCs: Acoustic Phonon Coupling

Reproduced in part with permission from:

A. Liu, D. B. Almeida, W. K. Bae, L. A. Padilha, and S. T. Cundiff. ”Simultane-

ous Existence of Confined and Delocalized Vibrational Modes in Colloidal Quantum

Dots”. J. Phys. Chem. Lett. 10, 20 (2019).

c© 2019 American Chemical Society.

4.1 Acoustic Phonon Coupling in CNCs

In general, one of the most important phenomena that impact quantum dot op-

toelectronics is electron-phonon coupling. Interactions between electronic excitations

and lattice vibrations facilitate energy loss through non-radiative decay processes

and play a vital role in coherent control protocols [1–3]. Acoustic vibrational modes

are of particular importance, since their low energies mediate coupling between the

fine-structure of an exciton manifold [4, 5] and comprise the primary dephasing mech-

anism of interband coherences [6, 7] in quantum dots. Though usually a continuum of

modes, acoustic vibrations can assume discrete modes [8, 9] due to size-confinement

in colloidal quantum dots [10, 11]. However, the two pictures of acoustic vibrations as

a bulk-like phonon continuum or discrete spherical harmonics are seldom considered

simultaneously.
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Vibrational coupling to excitons in quantum dots has been studied extensively,

but most spectroscopic studies have utilized linear techniques such as absorption

and photoluminescence [12–15]. Linear spectroscopies encounter two main obstacles.

First, ensembles of all types of quantum dots exhibit inhomogeneous broadening (due

to dot size dispersion) of their absorption and emission profiles. Linear techniques

only provide the inhomogeneous lineshape of a quantum dot ensemble that reflects

its size distribution, and are largely insensitive to its microscopic dynamics. Second,

single quantum dot spectroscopy studies that circumvent inhomogeneous broadening

have inherent limitations such as time-resolution and dot-to-dot structural variations.

These limitations have restricted the focus of most experimental studies to proper-

ties of discrete vibrational modes, since signatures of continuum mode coupling are

generally weak. Studies that do observe continuum modes are heavily influenced by

spectral diffusion at timescales shorter than the integration time [16], and vary greatly

between dots [14].

As described in Chapter III, a technique capable of extracting the homogeneous

response of an inhomogeneously broadened ensemble is MDCS [17]. MDCS has re-

cently been applied to a variety of quantum dot systems, including interfacial [18],

self-assembled [19, 20], and colloidal [21–23] dots, to reveal physics normally obscured

by inhomogeneous broadening and/or single-dot experiment limitations. MDCS is

ideal to investigate acoustic phonon coupling in CNCs for two main reasons. First, the

ensemble-averaged homogeneous response may be retrieved in the presence of inhomo-

geneity as a function of resonance energy (corresponding to radius in CNCs). Second,

vibrational lineshapes are enhanced by nonlinear spectroscopies such as MDCS.

4.2 Sample and Experiment

As the first type of nanocrystal to be synthesized and studied, CdSe CNCs are

the most studied and well-characterized colloidal material platform. For this reason,
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CdSe CNCs remain an important test bench for studying the numerous aspects of

colloidal nanocrystals that are still not understood.

The sample is CNCs composed of a 2 nm mean radius CdSe core and 2.5 nm mean

thickness CdZnS shell (shown in Fig. 4.1a), whose synthesis is detailed elsewhere

[24]. To study their properties at cryogenic temperatures the CNCs are dispersed

in heptamethylnonane, which forms a transparent glass at temperatures below 100

K and is liquid up to room temperature. The colloidal suspension is diluted to an

optical density of 0.3 at the room-temperature 1S exciton absorption peak.

2 nm2.5 nm CdSe

CdZnS

(a)

Energy (meV)

(b)

Figure 4.1: (a) Schematic of the CdSe/CdZnS core/shell CNCs. (b) The ensemble
sample absorption plotted with the excitation laser spectrum, which is centered on
the 1S exciton absorption peak.

To perform MDCS, we use a Multi-Dimensional Optical Nonlinear Spectrometer

(MONSTR) [25]. An excitation intensity of 4 W/cm2 generates a predominately

third-order response as verified by the power-dependence of the heterodyned signal.

All pulses are co-linearly polarized and centered at wavelength 605 nm. The laser

spectrum is compared to the sample absorption spectrum in Fig. 4.1b.

4.3 Low-Energy Vibrations in CNCs

In solids, low-energy acoustic vibrations that assume a continuum of energies

modulate the transition energies of resonances. This constitutes the classic problem
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of a discrete level system coupled to a heat bath. The finite size of the CNC geometry

then introduces discrete vibrations [8, 9]. These vibrations may be separated into the

two classes of acoustic and torsional modes, which have longitudinal and transverse

character respectively. However, acoustic modes of CNCs embedded in a matrix

depend crucially on the difference in longitudinal sound velocities of the CNC and

matrix. For a large sound velocity mismatch, confined acoustic modes are sustained

by reflections at the CNC surface [11].

In our case we were unable to find values for the low-temperature (glass phase)

sound velocity for heptamethylnonane, though from its room temperature (liquid

phase) speed [26] 1.285 × 105 cm/s it is plausible that in solid form its longitudinal

sound velocity may increase three- to four-fold and become comparable to the CNC

longitudinal sound velocity. This small sound velocity mismatch [27] gives rise to

an acoustic continuum characteristic of delocalized vibrations in bulk materials [28],

since boundary conditions at the CNC surface may be modified such that vibrations

of the combined matrix and embedded sphere must be jointly considered. Crucially,

transverse torsional modes involving no radial displacement into the surrounding ma-

trix are simultaneously supported by the dot geometry.

4.4 One-Quantum Spectra (Temperature Dependence)

Absolute-value one-quantum spectra are shown in the top row of Fig. 4.2 and have

three main features. First, a narrow zero-phonon line is present along the diagonal,

which corresponds to absorption and emission at the same energy. Second, a promi-

nent broad pedestal around the zero-phonon line [29, 30], which has the characteristic

lineshape of localized excitons coupling to an acoustic phonon continuum bath [13,

31], grows with increasing temperature. At these low temperatures, the pedestal is

asymmetric due to higher probability of emission than absorption of vibrational en-

ergy. Third, the acoustic phonon pedestal features two peaks next to the zero-phonon
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line (seen more clearly in Fig. 4.5). Although the zero-frequency cutoff of the spec-

tral density may result in a sharp feature on the Stokes-side (~ωt − ~ωτ < 0) of the

zero-phonon line, we cannot explain the anti-Stokes (~ωt − ~ωτ > 0) peak through

solely an acoustic phonon continuum.
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Figure 4.2: Experimental (top row) and simulated (bottom row) absolute-value one-
quantum spectra at temperatures 5, 10, and 16 K. All spectra are taken at waiting
time T = 1 ps. The solid black curves represent the spectra of the excitation and
local oscillator pulses for each temperature. A red dashed arrow in the bottom right
panel indicates the location of the slices shown in Fig. 4.5.

4.5 Simulation

As described above, coupling to a delocalized acoustic phonon continuum alone

cannot describe all features observed in our one-quantum spectra. We thus simulate

the acquired one-quantum spectra according to a model that simultaneously incor-

porates both confined and delocalized vibrational modes. The simulated spectra are

shown in the bottom row of Fig. 4.2 and the model is shown schematically in Fig. 4.3.
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Figure 4.3: (a) Dressing of the ground and excited exciton states by the (`, n) = (2, 0)
torsional mode results in ladders of states separated by the (2,0) mode energy. (b)
The simplified 4-level system formed from the lowest two states of the ground and
excited state ladders then couple to a harmonic bath of acoustic phonon continuum
states. The coupling strength is characterized by the spectral density function J(ω),
and the J(ω) used in the simulations below is plotted inset.

A discrete transverse torsional mode ”dresses” the ground and excited electronic

states to generate ladders of states separated by the torsional mode energy [32] (shown

in Fig. 4.3a). By calculating allowed torsional mode energies (indexed by ` and n)

according to our material parameters (shown in Fig. 4.4), we find that the (`, n) =

(2, 0) mode matches the features of our experimental spectra. We note that the higher-

frequency (`, n) = (1, 0) mode, which involves oscillations of a core and shell layer

in opposite directions, should couple weakly to excitons in the type-I CdSe/CdZnS

CNCs studied here that confine both carriers in the CdSe core [24].

48



ℓ index

M
o

d
e 

En
er

gy
 (

m
eV

)

Figure 4.4: Energies of allowed torsional confined acoustic modes at different indices
` and n are denoted by the colored dots as indicated.

The transition strengths between these states are determined by the Huang-Rhys

parameter S [33]. The energies of these states are then modulated by a continuum

bath of longitudinal acoustic phonons via elastic interactions. Assuming the bath

is harmonic, that is the coupling is taken to be linear coupling to a continuous dis-

tribution of harmonic oscillators, each transition may be modeled by the following

Hamiltonian:

H = |e〉 〈e| ~ω0 +
∑
α

~ωαa†αaα + |e〉 〈e|
∑
α

λα
(
a†α + aα

)
(4.1)

where ~ω0 is the transition energy, a
(†)
α are the creation/annihilation operators for

phonon mode α, and λα is the electron-phonon coupling strength for mode α. In

order, each term represents the energy of the electronic excitation, the energy of the

thermal bath, and the electron-phonon coupling respectively. This Hamiltonian for-

mally resembles the “spin-boson Hamiltonian” [34] and may be solved by identical
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techniques [35]. Namely, we can characterize the system-bath interaction by a spec-

tral density function J(ω) (shown in Fig. 4.3). The spectral density may be loosely

interpreted as the frequency spectrum of the energy gap modulation by a coupled

harmonic bath. For a spherical nanocrystal with identical electron and hole localiza-

tion radii (which is the case for Type-I CNCs in the strong confinement regime [36]),

the spectral density of an acoustic phonon bath

Ja(ω) = Aωpe−ω
2/ω2

c (4.2)

may be derived analytically [37], where A characterizes the coupling strength, ωc is

a cutoff frequency that determines the width of acoustic phonon spectral features,

and p is an integer that depends on the coupling mechanism (p = (1)3 for (defor-

mation potential) piezoelectric coupling) [35]. In one-quantum spectra A, ωc, and p

determine the relative amplitude, width, and steepness of the central pedestal feature

respectively, and serve as orthogonal parameters that uniquely determine the size and

shape of the pedestal. The relation between the spectral density and the lineshape

function g(t) is derived in Appendix B:

g(t) =
1

2π

∫ ∞
−∞

[1− cos(ωt)] coth(β~ω/2)Ja(ω)dω +
i

2π

∫ ∞
−∞

[sin(ωt)− ωt]Ja(ω)dω

(4.3)

which determines the dephasing dynamics according to equations (3.16) and (3.17).
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Figure 4.5: Cross-diagonal slices of the experimental (solid purple curve) and sim-
ulated (black line) absolute-value single-quantum spectra in Fig. 4.2, in which the
slice locations are indicated by a red dashed arrow. The corresponding simulated
absorption (blue) and fluorescence (orange) lineshapes are plotted inset as a function
of detuning from the thermally averaged ground state electronic energy gap Egap.

To compare experiment and simulation more closely, we plot cross-diagonal slices

centered at energy |~ωτ | = |~ωt| = 2060 meV in Fig. 4.5. Comparison of the single-

quantum spectrum slices with the simulated absorption and fluorescence lineshapes

plotted inset contrasts the difference in strength (relative to the zero-phonon line)

between linear and third-order vibrational lineshapes. The enhancement of vibra-

tional lineshapes in the third-order response is due to additional terms involving the

dephasing lineshape function which are absent in the linear response. The nonlinear

response of a system may therefore reveal vibrational couplings that are otherwise

too weak to observe via linear spectroscopies.
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4.5.1 Parameters

For the model described above, analytic expressions are not available to fit ex-

perimental lineshapes. We thus emphasize that the goal of our simulations is not to

extract numerical values for specific quantities, but rather to elucidate the nature of

the underlying microscopic dynamics. The torsional mode energy E(2,0) is calculated

[8], while accounting for the core-shell structure of our dots (see Fig. 4.4 and [38]),

to be 0.8 meV, and is the value used in our simulation. The torsional mode Huang-

Rhys parameter used is S = 0.6. We were unable to obtain good agreement between

experiment and simulation for deformation potential coupling (p = 1) with the con-

tinuum acoustic modes. Although excitons in free-standing few-nm radii CNCs are

thought to couple to acoustic vibrations predominately via the deformation potential

mechanism [8], this suggests that the delocalized acoustic vibrations considered here

couple through the long-range piezoelectric interaction (p = 3) used in our simu-

lation. Coherences between states |g〉 and |e〉 are simulated with a dephasing rate

~γ = 0.4 meV to match the zero-phonon linewidth while coherences involving the

vibrationally-excited states |g̃〉 and |ẽ〉 dephase more quickly at ~γ = 1.6 meV. The

remaining parameters used are A = 0.47 ps4 and ~ωc = 1.15 meV.

4.5.2 Finite Pulse Bandwidth Effects

Although idealized MDCS experiments that use vanishingly short pulses of infinite

bandwidth would probe the entire third-order response function of a material, real

experiments are limited to pulses of finite pulse duration and bandwidth. The most

obvious effect of finite bandwidth is that only the optical response lying within the

laser spectrum is probed. It is therefore important to account for this and any other

distortions due to finite pulse bandwidth. The most convenient way to do so is in the
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frequency domain [39]:

S(3)(ωτ , ωT , ωt) ∝ R(3)(ωτ , ωT , ωt)E1(ωτ )E2(ωT − ωτ )E3(ωt − ωT ) (4.4)

The simulated spectra in Fig. 4.2 are thus obtained after numerically including fi-

nite pulse bandwidth effects for a large inhomogeneously broadened (σ = 50 meV)

response function by using the respective experimental laser spectrum at each tem-

perature:
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Figure 4.6: (a) Simulated one-quantum spectrum with large inhomogeneous broaden-
ing that represents the full nanocrystal size distribution. (b) Simulated one-quantum
spectrum after applying finite pulse bandwidth effects to the spectrum in (a).

4.5.3 Many-Body Effects

In higher-dimensional semiconductor nanostructures, many-body effects have been

found to manifest in multi-dimensional spectra [40, 41]. It is therefore important to

characterize their role in our measurements. First, the effects of Coulomb correlation

that gives rise to the excitonic states probed in our experiment are primarily charac-

terized by a correlation energy that changes the energy gap [42] and do not modify

the spectral density functional form [35] given by equation (4.2).
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Figure 4.7: (a) Experimental and (b) simulated single-quantum spectrum quadratures
at 16 K. The experimental spectrum is phased by maximizing the real-quadrature
zero-phonon line. (c) Cross-diagonal slices of the experimental (solid lines) and sim-
ulated (dotted lines) single-quantum spectrum quadratures at 16 K. Inset shows the
corresponding phase across the slice. The slice location is the same as indicated by
the red dashed arrow in Fig. 4.2.

In terms of higher-order correlation effects, we neglect in our simulations excited

state absorption (ESA) pathways [20, 43] that involve doubly-excited states with a

binding energy ∆XX. Previous studies have determined ∆XX to be tens of meV [23,

44] and beyond our laser bandwidth, so we do not expect these pathways to con-

tribute to our single-quantum spectra. Our experimental parameters also correspond

54



to less than 0.2 excitons per nanocrystal [38], which precludes significant nonlinear

signals arising from excited initial states. Nevertheless, we verify this assumption by

examining the quadratures of the complex spectrum at 16 K plotted in Fig. 4.7a.

Although the overall phase was not retrieved in our experiment, the complex single-

quantum spectrum is phased in Fig. 4.7 by maximizing the absorptive real part. We

observe no evidence of ESA pathways, which would appear as an opposite sign side-

band located at ~ωt = |~ωτ | −∆XX in the lower left region of single-quantum spectra

[41]. The corresponding quadratures of the simulated single-quantum spectrum are

plotted in Fig. 4.7b, which agree well with experiment. To examine the quadratures

more closely, slices of the experimental and simulated spectra are taken at the same

positions as in Figs. 4.2 and 4.5 and plotted in Fig. 4.7c. As shown by the experimen-

tal and simulated phases plotted inset, no phase flip (indicative of an ESA sideband)

is observed in the pedestal region.

4.6 Summary

In conclusion, we have observed vibrational lineshapes in the third-order nonlinear

response of a core-shell CNC ensemble that indicate simultaneous existence of discrete

and continuum acoustic vibrational modes. As a primary mechanism of energy loss

and dephasing, understanding acoustic phonon coupling is crucial to the design and

implementation of CNCs in optoelectronic devices. In particular, devices based on

CNC-doped glasses [45] or superlattices [46], and even other colloidal materials such

as nanorods [47] or nanoplatelets [48], should be designed with an engineered spectral

density to minimize energy loss and other dissipative processes due to interactions

with acoustic vibrations.
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(3) Reindl, M.; Jöns, K. D.; Huber, D.; Schimpf, C.; Huo, Y.; Zwiller, V.; Rastelli,

A.; Trotta, R. Nano Lett. 2017, 17, 4090–4095.

(4) Masia, F.; Accanto, N.; Langbein, W.; Borri, P. Phys. Rev. Lett. 2012, 108,

087401.
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CHAPTER V

CdSe CNCs: Optical Phonon Coupling

Reproduced in part with permission from:

A. Liu, D. B. Almeida, W. K. Bae, L. A. Padilha, and S. T. Cundiff. ”Non-

Markovian Exciton-Phonon Interactions in Core-Shell Colloidal Quantum Dots at

Femtosecond Timescales”. Phys. Rev. Lett. 123, 5 (2019).

c© 2019 American Physical Society.

5.1 Optical Phonon Coupling in CNCs

In Chapter IV, we discussed coupling of excitons to acoustic vibrational modes

which involve in-phase motion of adjacent atoms in a lattice. In the case of a di-

atomic lattice, such as the aforementioned CdSe, optical vibrational modes that in-

volve out-of-phase motion of different atoms of the diatomic basis become possible.

Such out-of-phase optical vibrations generally occur at higher frequencies compared

to their acoustic counterparts, and thus result in distinct spectral signatures at dis-

crete energies. In particular, the concentrated spectral weight of optical phonons in

a narrow frequency range introduces periodic modulation of the exciton energy gap

which may strongly modify coherence dephasing dynamics.
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5.1.1 Markovian and Non-Markovian Dephasing

As discussed in Chapter III, the interactions of excitons with their surroundings

may be considered either Markovian (resonance energy fluctuations are instantaneous

and uncorrelated) or non-Markovian (timescales of the interactions and exciton dy-

namics are comparable, and energy fluctuations are correlated). In the Markovian

regime, coherences dephase exponentially at a rate 1/T2 and the physical origins of

the dephasing mechanisms are obscured. In the non-Markovian regime however, the

physical nature of the dephasing interactions manifests as non-exponential evolution

of coherences [1]. Though it is known that optical phonon coupling in semiconduc-

tors may induce non-Markovian dephasing [2], the µs temporal resolution limit of

spectrally-resolved single dot studies [3, 4] exceeds the correlation time of the vibra-

tional coupling in CNCs [5].

In the spectral domain, Markovian and non-Markovian dephasing are difficult to

distinguish from lineshape analysis of weak vibrational sidebands. Due to the sub-

picosecond timescales of most optical vibrations however, measuring optical phonon

coupling directly in the temporal domain (particularly in the presence of inhomoge-

neous broadening in CNCs) is often even more problematic. Indeed, without access

to exciton dynamics at timescales of the vibrational coupling itself, studies of CNCs

have thus far assumed effective homogeneous broadening in the Markovian limit [6–9].

A technique capable of circumventing inhomogeneous broadening with femtosecond

time-resolution is thus necessary to reveal signatures of non-Markovian dynamics in

CNCs.

5.2 One-Quantum Spectra (T Delay Dependence)

One-quantum spectra were acquired at a temperature of 20 K for delay T in-

creasing from 0 fs to 675 fs at 25 fs intervals. All spectra were relatively phased by
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maximizing the absorptive lineshape for one quadrature. We plot in Figs. 5.1a and

5.1b the one-quantum spectrum at T = 0 and a slice perpendicular to the diagonal

line. Here, we focus on sidebands observed at energies ∆E ≈ ±26 meV (matching

the LO phonon mode energy ~ωLO of CdSe [10]), which are highlighted by the green

and yellow arrows in Fig. 5.1a and 5.1b. In Fig. 5.1c it can be seen that Fourier

transforming the evolution along time T of the complex slices at ∆E = −26 meV

reveals a clear peak indicative of quantum oscillations in time T corresponding to

allowed intraband coherences at the LO-phonon energy. Such oscillations have pre-

viously been observed in three-pulse integrated FWM experiments [11, 12], but were

not spectrally resolved and correlated in their absorption and emission dynamics.
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Figure 5.1: (a) Magnitude one-quantum spectrum at T = 0. The dashed white and
red lines indicate the diagonal (|~ωτ | = |~ωt|) and plot slice location respectively. (b)
Magnitude and quadratures of the T = 0 plot slice centered at |~ωτ | = |~ωt| = 2055
meV. (c) Fourier transforms of the (twice zero-padded) complex evolutions of the
∆E = −26 meV and its conjugate ∆E = +26 meV points. These slice positions
are marked by arrows in (a) and (b). Inset shows absolute value evolution of the
∆E = −26 meV point.
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5.3 Zero-Quantum Spectra

Fig. 5.1 reveals two main non-intuitive observations: (1) only the Stokes side-

band exhibits oscillations due to the LO-phonon coupling as a function of T and

(2) its Fourier spectrum in Fig. 5.1c is one-sided. Complicating the study of these

one-quantum data however, is the fact that the responses involving intraband coher-

ences during T appear at the same coordinates as those involving population states

during T . Overlapping pathways on a one-quantum spectrum may be separated by

spectral filtering of the excitation pulses [13–15]. Another method is to acquire zero-

quantum spectra, which spectrally separate intraband coherence pathway responses

from population state responses directly [16]. We thus acquire zero-quantum spectra

at τ spanning 0 fs to 550 fs, three of which are plotted in Fig. 5.2:

550

𝜏 = 0fs
(experiment)

𝜏 = 260fs
(experiment)

𝜏 = 550fs
(experiment)

260 0

M
ix

in
g 

En
er

gy
 ħ

ω
T

(m
eV

)

-4
0

   
-2

0
   

   
0

   
   

2
0

   
  4

0

2030    2040     2050    2060     2070     2080    2090

Emission Energy ħωt (meV)

-2
0

   
   

0
   

   
2

0
 

-2
0

   
   

0
   

   
2

0
 

Figure 5.2: Zero-quantum plots at τ = 0 fs, 260 fs, and 550 fs as indicated. Dashed
blue and red boxes indicate the integrated areas for their respective peak intensities.
The relative normalizations of each plot are indicated on the colorbar.
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As τ increases, a sideband appears at the LO-phonon energy ωT = −26 meV. The

sideband formation is also asymmetric as no peak is observed at ωT = +26 meV,

agreeing with the one-sided spectrum in Fig. 5.1c. Most interestingly, integrating the

spectrum over the blue and red dashed rectangles shown in Figs. 5.2 and 5.3b reveals

that both peaks strengthen during early τ (130 fs for the ωT = 0 peak and 250 fs

for the sideband). The full evolutions are shown in Figs. 5.3c and 5.3d. To explain

these observations, we simulate the system’s response and its resultant zero-quantum

spectra.

5.4 Simulation

We simulate the optical response in two ways. First, we model the resonant exci-

ton transition coupled to both acoustic continuum phonon and discrete LO-phonon

modes. Their spectral densities are taken to be a Lorentzian centered at the LO-

phonon energy [17] and the acoustic phonon spectral density described in Chapter IV

[18, 19] with parameters found by comparison to one-quantum spectra [20]. To gain

physical insight, we then neglect coupling to acoustic phonon modes and simulate

a system of levels consisting of Franck-Condon transitions between ground and ex-

cited state manifolds formed from ladders of states separated by the LO-phonon

energy [21]. The oscillator strengths between states are proportional to their respec-

tive Franck-Condon factors [22], which are functions of the Huang-Rhys parameter

S (characterizing the electronic-vibrational coupling strength) and the initial/final

vibrational excitation number m/n. Due to our laser bandwidth of 30 meV and

decreasing transition strength with higher m and n, it is assumed that the main tran-

sitions contributing to the signal occur between the zeroth and first vibrational states

in the ground {|g〉 , |g̃〉} and excited state manifolds {|e〉 , |ẽ〉} as shown in Fig. 5.3a

The ensemble-averaged transitions between these states then form the peaks of the

simulated zero-quantum spectrum in Fig. 5.3b. We then make two simplifications.
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First, since the sample temperature of 20 K is much lower than the LO-phonon

Boltzmann temperature of 302 K, we assume all excited CNCs begin in the ground

state |g〉. Second, we repeated the zero-quantum experiment with co- and cross-

circularly polarized excitation and observed the same peak behaviors. Because the

CNC selection rules dictate (suppression)enhancement of doubly-excited transitions

by (co-)cross-circular excitation [23], we neglect transitions into doubly-excited states

in the simulations.
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Figure 5.3: (a) Schematic of the reduced 4-level system used to interpret the data.
(b) Simulated zero-quantum spectrum at τ = 550 fs with the parameters S = 0.3,
τc = τ vibc = 1 ps, ∆ω = 15 meV, and ∆ωvib = 3 meV. Three Feynman diagrams (1),
(2), and (3) are shown and their zero-quantum response positions {Eemi, Emix} are
{Eg − ELO,−ELO}, {Eg, 0}, and {Eg + ELO,+ELO} respectively. (c),(d) Evolution
of the experimental and level system simulation Emix = 0 and Emix = −ELO peak
intensities (integrated over the colored boxed areas in (b)) respectively as a function of
delay τ . The peak intensity evolutions for spectral density simulations that include
acoustic mode coupling are plotted inset for SLO = 0.3, 0.9, and 1.5. Oscillations
at ωLO in (d) are due to polarization interference [24] between separate quantum
pathways.
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To relate the observed peaks to evolution of coherences and populations, Feynman

diagrams are used (discussed in Chapter III). We show in Fig. 5.3b three example

diagrams and the positions at which their responses will appear on the simulated

zero-quantum spectra.

The quantum pathways represented by the Feynman diagrams associate each

peak’s rise in τ with evolution of interband coherences generated by the first ex-

citation pulse, and inclusion of non-Markovian dynamics allows for a photon echo

integration [25] rise to occur. Non-Markovian dephasing lineshapes are obtained by

applying the cumulant expansion to the spectral diffusion trajectory Uij(t) of a co-

herence ρij, where i, j = {g, e, g̃, ẽ}, and truncating at second-order [1]:

ρij(t) ∝ e−iωijte−
i
~
∫ t
0 Uij(τ)dτ

≈ e−iωijte−
∫ t
0

∫ τ2
0 C(τ1)dτ1dτ2 (5.1)

where the lineshape function g(t) is determined by the correlation function C(t):

C(t) =
1

~2
TrB [Uij(t)Uij(0)ρg] (5.2)

where ρg is the equilibrium density matrix of the nuclear degrees of freedom that

modulate the resonance energy and TrB [. . .] indicates a trace over these bath states.

A detailed derivation may be found in Appendix B. Though the correlation function

may be studied by 3PEPS experiments [26, 27], reported 3PEPS data [5, 28] are

mainly dominated by a fast decrease in peak shift and suffer from ambiguities due to

coherent signals during pulse overlap.

A zero-quantum spectrum simulated for the 4-level system in Fig. 5.3a is plotted

in Fig. 5.3b, with non-Markovian dephasing lineshapes from the Kubo ansatz C(t) =

∆ω2e−
|t|
τc (where ∆ω and τc are the frequency amplitude and correlation time of the

spectral diffusion) [29]. Comparison between experimental and simulated spectra at
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τ = 550 fs shows good agreement between peak positions and intensities. Crucially, we

achieve this agreement by assigning a large spectral diffusion amplitude ∆ω = 15 meV

to “vibration-less coherences” (ρeg and ρge) and a comparatively smaller amplitude

∆ωvib = 3 meV to “coupled coherences” (all ρij involving states g̃ and ẽ). Because no

sidebands appear if ∆ω = ∆ωvib, the sideband observed in experiment indicates strong

modification of dephasing dynamics via coupling to lattice LO vibrational modes.

However, Fig. 5.3d shows that matching the decay rate at large τ in both models

result in sideband rise times much shorter than the 250 fs rise time observed from

experiment. Recently, Gellen et al. have reported broadening of the homogeneous

linewidth in CdSe CNCs due to LO-phonon coupling [9]. However, the discrepancy

between experiment and simulation for the zero-quantum sideband evolution indicates

that dynamics induced by coupling to LO modes are more complex than simply an

increase in the pure-dephasing rate. The non-Markovian signatures observed may

indicate an anharmonic phonon bath or even breakdown of the usual second-order

cumulant truncation [30]. Single-dot studies, which have found similar lineshapes for

the zero-phonon line and phonon replicas [31], are only sensitive to spectral diffusion

at > µs timescales that broaden all features uniformly.

To date, two regimes of spectral diffusion have been identified, on the seconds [32]

and sub-µs timescales [3]. Previous studies have focused on free surface charges [4, 33]

and surface ligand rearrangement [4, 32] as possible causes for the band-edge Stark

shift [34] that leads to spectral diffusion (to be contrasted with spectral diffusion

due to continuum scattering in higher-dimensional systems [35]). The above theories

are not sufficient to explain our results, which clearly point to LO-phonon coupling

as a major factor in spectral diffusion on femtosecond timescales. We propose the

random environmental perturbations that cause energy gap fluctuations become less

dominant when nuclear motion is initiated in the LO mode. The local fields induced

by nuclear motion extend over many unit cells - effectively over the entire core volume
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of our CNCs. For CNCs grown with a shell structure, such as for our sample, it is

reasonable to expect that surface charge dynamics are weak compared to Fröhlich

coupling between the exciton and local fields that synchronizes the exciton motion

with that of the CNC core lattice. The spectral diffusion dynamics then approach

timescales on the order of the LO phonon period TLO ≈ 150 fs, and non-Markovian

evolution of coupled coherences may then occur. We also found for 3 nm radius bare

core (no shell) CNCs the anomalous dephasing dynamics largely disappear, shown in

Fig. 5.4:
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Figure 5.4: Evolution of the Emix = 0 and Emix = −ELO zero-quantum peak in-
tensities, taken of the 3 nm radius bare-core nanocrystals, as a function of delay τ .
Experimental parameters are identical to those of Figs. 5.2 and 5.3.

This supports our theory, since LO phonon coupling strength has been shown

both experimentally and theoretically to vary weakly with dot size in the few-nm size

regime [36]. We reason that removal of screening by a shell layer allows surface charge

effects to take precedence over LO-phonon coupling.
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5.5 Summary

In conclusion, we have found that spectral diffusion of exciton resonances in CdSe

CNCs is strongly modified in the presence of coupled vibrational excitations. The non-

Markovian dephasing lineshapes we have observed serves as a direct probe of exciton-

phonon coupling in CNCs on their intrinsic timescales. In addition to advancing the

fundamental understanding of CNCs necessary to mitigate spectral diffusion, these

results will prove crucial in applications of systems with strong vibrational coupling

towards areas in which pure decoherence is relevant (e.g. single-photon emission [37,

38] and quantum information [39, 40]) and emphasize the largely unexplored physics

of CNCs in the femtosecond temporal regime.
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CHAPTER VI

CsPbI3 Perovskite Nanocubes (PNCs)

Cesium lead-halide perovskites were first synthesized over a century ago with a

general chemical formula CsPbX3 (where X = Cl, Br, or I). Recently, synthesis of

CsPbX3 perovskite nanocubes (PNCs) was achieved [1, 2], which combines the ad-

vantages of perovskites (e.g., efficient luminescence, long carrier diffusion length) with

that of colloidal NC materials (e.g., surface engineering, size-tunable emission). Per-

ovskite NCs exhibit luminescence with quantum yields reaching nearly unity [3], in

contrast to the optimized 80% quantum yield achieved by chalcogenide NCs coated

with a gradient shell [4]. Although all other colloidal materials suffer inhibited emis-

sion from lower energy dark states [5], the unusual brightness of perovskite NCs is

now believed to originate from an optically active, nondegenerate triplet state that

emits efficiently despite the presence of a dark singlet state [6, 7].

The unique exciton fine-structure of perovskite NCs has significantly extended the

potential applications of colloidal NCs. In particular, the three non-degenerate bright

triplet states and their orthogonally-oriented dipole moments have generated much

excitement for potential applications in quantum information processing [8, 9]. How-

ever, engineering exciton superposition states as information carriers will require an

intimate knowledge of their coherent dynamics, which are still not well-understood.

The exciton fine structure of perovskite NCs has thus far only been studied via single-

73



NC photoluminescence [6, 10, 11] and transient absorption [12, 13] techniques, which

have provided information only about their incoherent population dynamics. Fur-

thermore, inhomogeneous spectral broadening due to NC size dispersion limits the

utility of linear spectroscopic techniques in studying NC ensembles. More sophis-

ticated methods are thus required [14–17] to extract the desired ensemble-averaged

coherent properties of perovskite NCs.

6.1 Sample and Experiment

The NCs studied are cube-shaped, with side lengths of 8.7± 2.6 nm measured from

transmission electron microscopy measurements (shown in Fig. 6.1a). These sizes are

comparable to the CsPbI3 exciton Bohr diameter (12 nm) [1], and correspond to a

room temperature 1S exciton absorption peak centered around 1900 meV (shown in

Fig. 6.1b). The synthesis method is described in [18]. Just as described in Chapter IV,

we suspend the NCs in heptamethylnonane to study them at low temperatures.

In this Chapter, we acquire both one-quantum spectra (which correlate the ab-

sorption energy ~ωτ with the emission energy ~ωt) and zero-quantum spectra (which

correlate the intraband mixing energy ~ωT and the emission energy ~ωt) while addi-

tionally varying the excitation beam polarizations. Specifically, the polarization of the

second pulse (labeled B in Fig. 6.1d) is chosen to align either parallel or orthogonal to

the co-linear polarizations of the other two pulses to probe different quantum path-

ways. We denote the two polarization schemes as co-linear excitation and cross-linear

excitation respectively.
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Figure 6.1: (a) Transmission electron micrograph of representative CsPbI3 NCs. (b)
Perovskite NC absorption spectra as a function of temperature [19]. (c) Energy
level diagram of the non-degenerate bright triplet states {ψx, ψy, ψz} that form the
band-edge. The dark singlet state |ψd〉 is shown to lie between states |ψy〉 and |ψz〉,
which is argued in the main text. (d) Schematic of the MDCS experiment. Three
pulses A, B, and C arranged in the box geometry are focused onto the sample with
varying time delays as shown in the inset. Double-sided arrows in circles denote
the polarization of each pulse. Pulses A and C are horizontally polarized, which
is indicated by the horizontal arrows. Pulse B is either horizontally or vertically
polarized, which corresponds to an emitted signal of either horizontal or vertical
polarization respectively as indicated by arrows of matching color of the emitted
signal.

6.2 One-Quantum Spectra

One-quantum spectra were acquired at a temperature of 4.6 K with co-linear and

cross-linear excitation (shown in Figs. 6.2a and 6.2b). Both spectra show numerous

peaks that are elongated in the diagonal direction (|~ωτ | = |~ωt|), reflecting inhomo-
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geneous broadening [20]. By taking cross-diagonal slices (indicated by the red/white

dashed lines in Figs. 6.2a and 6.2b), the ensemble-averaged homogeneous response of

NCs with a certain resonance energy is obtained [20]. We plot cross-diagonal slices of

the one-quantum spectra in Figs. 6.2c and 6.2d. In the full slices (inset), asymmetric

peaks are observed for |∆E| & 4 meV which we attribute to electronic-vibrational

coupling. The main plots of each slice section (highlighted by the yellow boxes inset)

show symmetric peaks that, due to their polarization dependence, we attribute to

absorption and emission involving different triplet state coherences.
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Figure 6.2: Magnitude one-quantum spectrum at 4.6 K with (a) co-linear and (b)
cross-linear excitation. The white/red dashed lines and solid black lines indicate
the cross-slice locations and laser pulse spectra respectively. Cross-slice centered at
|~ωτ | = |~ωt| = 1900 meV of the (c) co-linear and (d) cross-linear excitation one-
quantum spectrum. Numbers in (c) and (d) indicate peaks arising from electronic
interband coherences and populations.

As discussed in Chapter III, the origin of observed peaks is interpreted as changes
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in the system density matrix induced by each pulse that form accessible quantum

pathways [21]. Peaks 1 and 3 in Fig. 6.2c are generated by absorption and emission

of coherences involving |g〉 and both triplet states |ψx〉 and |ψy〉. We note that our

measurements do not inform the ordering of states
∣∣ψx/y〉, so we assume the ordering

shown in Fig. 6.1c for labeling the dephasing rates discussed below. The central peak

2 is likewise generated by quantum pathways involving absorption and emission by

coherences of identical resonance energy |g〉 〈ψi| and |ψi〉 〈g| respectively. In Fig. 6.2d

peaks 1 and 3 are visible as shoulders on two new peaks 4 and 5, which are generated

by absorption and emission of coherences involving |g〉 and triplet states |ψy〉 and |ψz〉.

The polarization dependence of all five peaks reflects orthogonally-oriented linear

dipole moments of the three triplet states. Here, the peak strengths are determined

by the projection of each dipole moment onto the observation plane of each NC.

However, the absence of a clear sideband at ∆E = ±(Ω1 + Ω2), corresponding to

coupling between the transitions involving |g〉 and triplet states |ψx〉 and |ψz〉, suggests

a much stronger dipole moment for |ψy〉 compared to those of |ψx〉 and |ψz〉.

6.2.1 Cross-Diagonal Lineshape Fits

Fitting the cross-diagonal lineshapes also extracts the homogeneous linewidths γi

(see Appendix C and [20]) of triplet state transitions between |g〉 and |ψi〉. In this

context one-quantum spectra are particularly useful when compared to integrated

FWM techniques [22], since the cross-diagonal slice position |~ωt| = |~ωτ | reflects

an effective NC size. Though the peaks 1 and 4 and peaks 3 and 5 would ideally

be mirror-images, vibrational coupling distorts the lineshapes of peaks 1 and 4. We

thus fit only the ∆E ≥ 0 side. Fit of the co-linear slice lineshape (Fig. 6.2c) gives

a sideband (peaks 1 and 3) dephasing rate ~γx+γy
2

= 0.12 meV (5.49 ps) and a zero-

phonon line (peak 2) dephasing rate 0.124 meV (5.32 ps). Fit of peaks 4 and 5 in

the cross-linear slice lineshape (Fig. 6.2d) gives a dephasing rate ~γy+γz
2

= 0.496 meV
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(1.33 ps). The fitted triplet state energy splittings are likewise Ω1 = 1.82 meV and

Ω2 = 0.24 meV. If the dipole moment of state |ψy〉 is indeed much larger than those

of |ψx〉 and |ψz〉, the zero-phonon line dephasing rate will approximately equal ~γy

which in turn determines the individual triplet state dephasing rates γx = 0.116 meV

(T x2 = 5.68 ps), γy = 0.124 meV (T y2 = 5.32 ps), and γz = 0.868 meV (T z2 = 0.76 ps).

It is quite unexpected that the optical dephasing rate γz is so much faster than

those of the other two triplet states γx and γy. Although this disparity suggests

a fundamentally different dephasing mechanism for coherences involving state |ψz〉,

photoluminescence of similar orthorhombic perovskite NCs that exhibit triplet state

structure reveals similar emission linewidths for all three states of the manifold [6,

7]. We resolve this discrepancy by proposing a unique exciton fine-structure com-

prised of a dark singlet state |ψd〉 that lies above the states |ψx〉 and |ψy〉, which

form the band-edge, while remaining below the third triplet state |ψz〉 (shown in Fig.

6.1c). Rapid relaxation from |ψz〉 to |ψd〉 then significantly decreases the popula-

tion lifetime T z1 , and consequently T z2 as well [21]. Such a fine-structure has been

theoretically predicted [23] in certain ranges of NC size due to competition between

the Rashba effect and electron-hole exchange interaction. Our hypothesis is further

supported by previous photoluminescence studies of CsPbI3 NCs of nearly identical

size [10] which revealed polarized doublets corresponding to |ψx〉 and |ψy〉 but did

not detect the third triplet state |ψz〉, whose emission would be quenched by non-

radiative relaxation to |ψd〉 according to our model. In accordance with the predicted

size-dependence of the relative dark state energy [23], we also observe an abrupt in-

crease in T y2 with increasing slice position which results from a crossing in energy of

|ψy〉 and |ψd〉 (shown in Fig. 6.3). While γx does not exhibit a clear monotonic in-

crease or decrease with changing size, γy sharply increases at a slice position of around

1900 meV. This indicates that, within the size-distribution probed by our laser band-

width, |ψy〉 becomes degenerate with |ψd〉 at an energy gap of around 1900 meV and
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Figure 6.3: Extracted dephasing rates of each triplet state transition.

becomes increasingly higher in energy at larger slice positions. However, a more sta-

tistically comprehensive study is needed to draw firm quantitative conclusions about

the nanocrystal size dependence of the triplet state energies and dephasing rates.

6.3 Zero-Quantum Spectra

Many of the quantum pathways that generate the sidebands in Figs. 6.2a and 6.2b

involve inter-triplet coherences, which are quantum coherences between triplet states

that are not necessarily dipole coupled [24]. Of both fundamental and practical im-

portance is the inter-triplet coherence time, which defines the timescale during which

the superposition states involved may be coherently manipulated. Inter-triplet co-

herences are those density matrix elements of the form |ψi〉 〈ψj| where i, j = {x, y, z}

and i 6= j. To directly measure and characterize these coherences, we take zero-

quantum spectra at varying temperature and delay τ . For co-linear excitation no

inter-triplet coherences between |ψx〉 and |ψy〉 are observed. It is ambiguous whether

their corresponding peaks are weak, or are simply obscured by the linewidth of a

central ωT = 0 peak. For cross-linear excitation, we further isolate the inter-triplet

coherence pathways by passing the measured FWM signal through a vertical polar-
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Figure 6.4: (a) Magnitude zero-quantum spectrum taken at τ = 0 fs and 20 K by
passing the FWM signal through a vertical polarizer. Two sidebands due to inter-
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dashed red line in (a) at ~ωt = 1890 meV as a function of delay τ (at 20 K) and
temperatures [10, 15, 20, 25, 30, 40] K (at τ = 0 fs).

izer. We plot a resultant cross-linear zero-quantum spectrum at 20 K in Fig. 6.4a.

Sidebands are observed at mixing energies identical to the positions of peaks 4 and

5 in Fig. 6.2d, which we attribute to inter-triplet coherences between |ψy〉 and |ψz〉.

An inter-triplet coherence between |ψx〉 and |ψz〉 is observed in neither the co-linear

nor cross-linear zero-quantum spectra, which is consistent with a dominant transition

dipole of state |ψy〉 as argued above. In Fig. 6.4b, the evolutions of normalized slices

(at ~ωT = 1890 meV) as a function of delay τ and temperature are shown. The FWM

signal dephases rapidly with increasing τ and results in an equally rapid decrease of

sideband visibility, in contrast to the opposite behavior of vibrational intraband co-

herences discussed in Chapter V and [17]. No change in the amplitude ratio between

sidebands 6 and 8 is observed as temperature increases, confirming that the state

splitting observed indeed belongs to the bright-triplet excited state rather than from

thermal filling of higher-lying ground states. We note that the triplet state coherences

in one-quantum spectra broaden significantly with increasing temperature, and are

not resolved at temperatures above 15 K. In contrast, no significant broadening is

observed in Fig. 6.3b of the inter-triplet coherence linewidth up to 40 K, indicating

that inter-triplet coherences are robust against thermal dephasing [14].
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A slice at τ = 0 fs is plotted in Fig. 6.5, from which we can extract the inter-triplet

coherence time. However, the quantum pathways that generate peaks 6 and 8 involve

identical dipole moments µ2
yµ

2
z, from which we expect equal peak amplitudes contrary

to the uneven peaks observed. This difference is due to interference between the three

complex Lorentzian lineshapes underlying the overall amplitude lineshape, and the

fit to experiment is performed by shifting the phase of each sideband Lorentzian

lineshape by identical factors of −π
2

relative to the central ωT = 0 peak. From our

fit, we extract an energy splitting Ω1 = 1.61 meV and an inter-triplet coherence time

T yz2 = 1.36 ps at 20 K.

6.4 Summary

In conclusion, we have measured and characterized both optical frequency triplet

coherences and terahertz frequency inter-triplet coherences. We have also presented

evidence of an exciton bandedge whose emission is partially quenched by an inter-

mediate dark state, which contributes important insight into the controversial nature
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of exciton ground states in different perovskite NC materials [6, 7]. As a material

still in its infancy, perovskite NCs show promise for applications in opto-electronic

devices. Particularly, the minimal thermal broadening of inter-triplet coherences ob-

served here motivates study of applications above cryogenic temperatures. For ex-

ample, in a triplet-state analogue of valleytronics in two-dimensional materials [25],

superpositions of triplet states could be initialized and read-out with linearly polar-

ized light and coherently manipulated via terahertz radiation as information carriers

[26].
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CHAPTER VII

CsPbI3 Perovskite Nanoplatelets

Although perovskite nanocrystals were initially limited to nanocube geometries,

synthesis of perovskite nanoplatelets was shortly achieved [1, 2]. Perovskite nanoplatelets

share the efficient and tunable photo-physics of their nanocube counterparts while

possessing unique characteristics of their own. Their planar geometry allows for di-

rectional light absorption/emission [3] and efficient energy transfer in stacked super-

lattices [4], while precise control of the polyhedral layer thickness results in remarkable

homogeneity in the dominant out-of-plane quantum confinement [5]. Because the ab-

sorption and emission energy of nanoplatelets is predominantly determined by the

nanoplatelet thickness, variation in lateral confinement of electronic excitations is

commonly believed to be negligible.

Claims that colloidal nanoplatelet absorption/emission resonances are homoge-

neously broadened have primarily been based on comparing single nanoplatelet and

ensemble photoluminescence spectra [6–8]. However, such measurements may be

biased by exceptional nanoplatelets and do not constitute definitive proof that col-

loidal nanoplatelets are homogeneously broadened. A first integrated four-wave mix-

ing (FWM) study has also been performed on MAPbI3 nanoplatelets to extract the

average homogeneous linewidth at a single temperature and excitation density [9],

but provided no information about its dependence on temperature, excitation den-
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sity, or nanoplatelet lateral size. Elucidating the dominant homogeneous broadening

mechanisms is crucial to engineer colloidal nanoplatelets with ever narrower optical

resonances for use in applications such as low-threshold lasing [10] and to increase the

already impressive energy transfer efficiencies of nanoplatelet superlattices [4, 5]. To

properly determine the homogeneous and inhomogeneous linewidths in the presence

of a large lateral size distribution, a more advanced nonlinear spectroscopic tech-

nique such as MDCS is required to separate and characterize the two contributions

to linewidth broadening.

7.1 Sample and Experiment

(b)

Energy (meV)

Wavelength (nm)

(a)

4-Layer

3-Layer

A
b

so
rp

ti
o

n

Figure 7.1: (a) Temperature-dependent absorption spectra of nanoplatelets synthe-
sized at 170◦C. A single broad absorption peak is visible at room-temperature, which
splits into two peaks attributed to different layer thicknesses at cryogenic tempera-
tures. (b) Comparison of the 4-layer (left) and 3-layer (right) absorption peaks in (a)
at 10 K with the respective excitation laser spectra used to perform MDCS.

86



The studied CsPbI3 perovskite nanoplatelets were synthesized via a method [11]

modified from that reported by Sheng, et al. [12]. Both 3-layer and 4-layer thick

nanoplatelets were synthesized at a reaction temperature of 170◦C, as evident from

the low-temperature absorption spectra shown in Fig. 7.1. Measurements were also

performed on 4-layer nanoplatelets synthesized at a reaction temperature of 110◦C,

which yields smaller 4-layer nanoplatelets with larger resonance energies and no ob-

servable 3-layer nanoplatelets.

The spectra of the 70 fs duration pulses used to perform MDCS are centered at

each nanoplatelet absorption peak (shown in Fig. 7.1b). All pulses are co-linearly

polarized.

7.2 One-Quantum Spectra (Temperature Dependence)

In one-quantum spectra, inhomogeneous and homogeneous broadening manifest

as broadening in the diagonal (|~ωτ | = |~ωt|) and orthogonal cross-diagonal directions

respectively [13]. The cross-diagonal lineshape at a given position along the diago-

nal ~ωCD = |~ωτ | = |~ωt| reflects the ensemble-averaged homogeneous response of

nanoplatelets with a resonance energy ~ωCD. Fitting the diagonal and cross-diagonal

lineshapes simultaneously [13, 14] then provides the homogeneous and inhomogeneous

linewidths (γ = ~
T2

and σ respectively). However, because the 4-layer nanoplatelet

absorption linewidths exceed our laser bandwidth, the diagonal linewidths in our one-

quantum spectra do not necessarily represent the total inhomogeneous distribution

of resonance energies.

Absolute-value one-quantum spectra of 4-layer and 3-layer nanoplatelets are shown

in Figs. 7.2a and 7.2c respectively. The vertical and horizontal axes represent the

absorption and emission energies of the colloidal nanoplatelets as indicated, and the

negative absorption energies reflect inverse phase evolution during delays τ and t. The

diagonally-elongated lineshapes indicate that, despite dominant out-of-plane quantum
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Figure 7.2: (a,c) Absolute value one-quantum spectra of (a) 4-layer and (c) 3-layer
nanoplatelets synthesized at a reaction temperature of 170◦C and acquired with ex-
citation densities NX = 1.753× 1013 and 1.875× 1013 cm−2 respectively at the indi-
cated temperatures. The waiting time was set to T = 1 ps to avoid coherent signals
during pulse overlap. (b,d) Cross-diagonal slices of the (b) 4-layer and (d) 3-layer
one-quantum spectra centered at 2043 meV and 2113 meV respectively. The cross-
diagonal slice location for the 15 K slice in (b) is indicated by the white dashed arrow
in (a). Experimental data and lineshape fits are plotted as the shaded area plots and
dotted lines respectively.

confinement, exciton resonances in perovskite nanoplatelets still possess inhomoge-

neous broadening due to varying confinement of lateral exciton center-of-mass motion.

The degree of inhomogeneous broadening depends strongly on layer thickness, which

is evident from the difference in diagonal widths between Figs. 7.2a and 7.2c.

7.2.1 Thermal Dephasing

With increasing temperature, the lineshapes in the cross-diagonal direction broaden,

which is characteristic of thermal dephasing due to elastic exciton-phonon scattering

[15, 16]. Specifically, first-order exciton-phonon scattering processes result in broad-
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ening that may be modeled by the following expression [17]:

γ(T,NX) = γ0(NX) + AT (7.1)

where γ0(NX) is the zero-temperature linewidth at a given excitation density NX

and the second term represents coupling to low-energy acoustic phonon modes with

coupling strength A. In anticipation of the experimental linewidth temperature de-

pendence, we neglect broadening due to discrete optical phonon modes that result

in an exponential increase. To quantify thermal broadening in each system we plot

cross-diagonal slices centered at ~ωCD = 2050 meV and 2113 meV in Figs. 7.2b and

7.2d, which reflect homogeneous broadening of nanoplatelets with resonance energy

~ωCD. The lineshapes fit well to expressions derived for exponential dephasing in

the Markovian limit [13]. As the nanoplatelet bandgaps blue-shift with increasing

temperature, we adjust the slice locations by a commensurate energy.

The temperature-dependent values of the homogeneous linewidth γ (each fitted

from a one-quantum spectrum taken at its respective temperature) are plotted in

Fig. 7.3. The linewidth increases linearly with temperature, which is characteristic

of acoustic phonon coupling as described by equation (7.1). The thermal dephasing

parameters extracted from the linear fits shown in Fig. 7.3 are A = 0.032 meV/K

(3-layer) and A = 0.041 meV/K (4-layer), which indicate relatively weaker acoustic

phonon coupling in the former. Weaker vibrational coupling in 3-layer nanoplatelets

is also reflected in their smaller thermal band-gap renormalization. Both values are

comparable to that of similar two-dimensional systems such as monolayer WSe2 (0.06

meV/K) [15] and quantum wells (≈ 0.01 meV/K) [18].

Because optical phonon coupling is extremely weak in nanoplatelets, as evidenced

by the linear bandgap temperature-dependence [19] and absence of vibrational side-

bands in the experimental one-quantum spectra, it is reasonable to assume the homo-
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Figure 7.3: Dependence of the fitted homogeneous linewidths on temperature for 4-
layer (left) and 3-layer (right) nanoplatelets synthesized at a reaction temperature
of 170◦C. Experimental parameters are the same as in Fig. 7.2. The homogeneous
linewidths for both samples follow linear temperature dependences. The linear fits
shown are γ = 1.52 + (0.041)T meV (4-layer) and γ = 0.41 + (0.032)T meV (3-layer).
The values of γ and σ extrapolated to room-temperature are plotted inset. The
inhomogeneous linewidths, found by fitting the low-temperature absorption peaks to
Voigt lineshapes as described in the text, are σ = 21.32 meV (4-layer) and σ = 9.84
meV (3-layer) and plotted as horizontal dotted lines.

geneous linewidth continues increasing linearly to higher temperatures. In the insets

of Fig. 7.3, we plot the inhomogeneous linewidth (found by fitting the absorption

peaks at 10 K to Voigt profiles [20] by using our respective measured values of γ) and

extrapolate the homogeneous linewidths to room-temperature to predict the cross-

over temperature at which homogeneous broadening exceeds inhomogeneous broad-

ening. The crossover temperatures for 3-layer and 4-layer nanoplatelets are 296 K and

480 K, which indicate that thinner nanoplatelets are indeed homogeneously broad-

ened at room temperature. In 4-layer nanoplatelets the extrapolated homogeneous

linewidth at room temperature (γ(294 K) = 15.43 meV) is still significantly smaller

than the inhomogeneous linewidth (σ = 19.72 meV), suggesting that further work

is required to minimize size inhomogeneity in thick nanoplatelets for homogeneous

exciton resonances at long-wavelengths.
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Figure 7.4: Dependence of the zero-temperature linewidth on slice position. The
values γ0 are found by extrapolating the fitted linewidths to zero-temperature, as
shown in Fig. 7.3. The dependences of the fitted thermal broadening parameter A
on slice position are then plotted inset for both 4-layer samples synthesized at 110◦C
and 170◦C reaction temperatures.

7.2.2 Resonance Energy Dependence

The large inhomogeneous broadening in 4-layer nanoplatelets also invites further

resolving their temperature dependence analysis in terms of resonance energy, which

corresponds to the cross-diagonal slice position in a one-quantum spectrum. In col-

loidal nanoplatelets, the resonance energy distribution directly corresponds to vari-

ations in lateral size and quantum confinement. The extrapolated zero-temperature

homogeneous linewidth γ0 is plotted in Fig. 7.4 as a function of slice position, which

exhibits an increase with increasing slice position (resonance energy). The slice po-

sition (resonance energy) dependence of the thermal dephasing parameter A is then

plotted for both samples in Fig. 7.4. Interestingly, the 110◦C nanoplatelets exhibit

increasing thermal dephasing with increasing resonance energy before decreasing be-

yond 2070 meV. The physical origin of this inflection point at 2070 meV is not obvious,

but its energy coincides with the activation energy of excitation-induced dephasing

(shown in Fig. 7.5a and discussed in the next section). The observed trend may

thus arise from an interplay between confinement of the exciton wavefunction and
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center-of-mass motion, and the concomitant changes in vibrational coupling.

7.3 One-Quantum Spectra (Power Dependence)

Another dominant extrinsic dephasing mechanism in semiconductors is excitation-

induced dephasing (EID) [15, 21, 22], which arises from electronic many-body inter-

actions. Our narrow excitation bandwidths, well-matched to the probed exciton reso-

nances, restricts the source of EID to unbound exciton-exciton scattering [15, 23]. In

two-dimensional systems, this may be described by a linear dependence on excitation

density NX [15, 24]:

γ(T,NX) = γ(T ) +BNX (7.2)

where γ(T ) is the zero-density linewidth at temperature T and B is the exciton-

exciton interaction strength. The excitation densities are calculated from the experi-

mental laser parameters and sample optical density [15].

The homogeneous linewidth at 10 K is plotted in Fig. 7.5a as a function of excita-

tion density for both 3-layer and 4-layer nanoplatelets. We find that the linewidth in-

creases linearly with excitation density for both thicknesses and temperatures, a clear

signature of EID, as described by equation (7.2). While the fitted EID parameters B

are 1.56× 10−14 meV cm2 and 1.67× 10−14 meV cm2 for 3-layer and 4-layer (170◦C)

nanoplatelets respectively, it varies nearly an order of magnitude from 1.41 × 10−14

meV cm2 to 1.07×10−13 meV cm2 for 110◦C 4-layer nanoplatelets depending on slice

position (shown in Fig. 7.5b). These values are much smaller than the EID parameter

in, for example, monolayer WSe2 (2.7 × 10−12 meV cm2 [15]), which may be due to

differences in Coulomb screening between a glass matrix (in this study) and vacuum

[15].
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Figure 7.5: (a) Fitted values of the homogeneous linewidth as a function of excitation
density for 4-layer (top) and 3-layer (bottom) nanoplatelets at 10 K. The 4-layer
linewidths are fitted from slices taken at 2062 meV (110◦C) and 2043 meV (170◦C)
while the 3-layer linewidths are fitted from slices at 2113 meV. (b) Dependence of
the EID parameter B on slice position in 4-layer (110◦C) nanoplatelets. The EID
parameter of 170◦C 4-layer nanoplatelets does not noticeably depend on slice position.

We now discuss the relative EID strengths between the 110◦C and 170◦C 4-layer

nanoplatelets, which differ by an order-of-magnitude (shown in Fig. 7.5a). We at-

tribute this decrease in EID for larger 170◦C nanoplatelets to a corresponding de-

crease in inter-exciton separation [15]. The increase in EID with decreasing slice

position for 110◦ nanoplatelets may then be understood by considering the effect

of nanoplatelet size on multiple exciton dynamics. In large nanoplatelets (smaller

resonance energy) multiple excitons may form without forming biexciton complexes,

which may then undergo scattering events that result in EID. In small nanoplatelets

(larger resonance energy), the nanoplatelet size becomes comparable to the exciton

Bohr diameter in CsPbI3 of 12 nm [25] and favors biexciton formation (whose binding

energy lies beyond our excitation bandwidth [26]).
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7.4 Summary

In conclusion, we have directly measured and quantified both homogeneous and

inhomogeneous broadening in CsPbI3 perovskite nanoplatelets. Via temperature- and

excitation density-dependent measurements, we have revealed the dominant homoge-

neous broadening mechanisms to be acoustic phonon coupling and excitation-induced

dephasing. By informing the relevant design parameters for engineering optical res-

onances, our results are directly relevant for implementing colloidal nanoplatelets in

practical devices. For example, we find that large-area nanoplatelets offer advantages

such as narrow intrinsic homogeneous linewidths and minimal excitation-induced de-

phasing at low excitation densities and are therefore likely to be advantageous in

coherent opto-electronic devices. However, small-area nanoplatelets (that suppress

multiple free-exciton formation) may be required for narrow and stable exciton reso-

nances in high optical intensity applications.
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CHAPTER VIII

Outlook and Future Directions

This dissertation has presented our results from applying multi-dimensional co-

herent spectroscopy to colloidal nanocrystals at cryogenic temperatures. Particularly

at low temperatures, virtually every single spectrum taken contains features with new

physics ready to be teased out by careful interpretation. As such, future directions

abound and we list here only a small subset.

8.1 Novel Colloidal Heterostructures

In Chapters IV and V we discussed our results on CdSe CNCs, which were syn-

thesized in a core-shell geometry. Other novel heterostructures are possible, such as

core-shell nanoplatelets and so-called spherical quantum wells [1] consisting of a shell

active region. We have performed initial linear and nonlinear spectroscopic mea-

surements of CdSe spherical quantum wells, which have revealed greatly-enhanced

exciton-phonon coupling that is sensitive to outer capping layer thickness. Further

work is necessary to elucidate the effect of changing active-layer geometry on exciton-

phonon coupling in CNCs.
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8.2 Vibrational Coupling in Perovskite Nanocubes

In Chapter VI we presented multi-dimensional spectra of CsPbI3 perovskite nanocubes

and primarily discussed features arising from the triplet exciton fine-structure. How-

ever, the one-quantum spectra are dominated by large pedestals that reflect electronic

coupling to acoustic vibrations. Due to the complex perovskite lattice basis, many

optical vibrational modes simultaneously couple to excitons and give rise to numerous

sidebands superimposed on the acoustic phonon pedestals. Such strong signatures of

exciton-phonon coupling indicate that lattice vibrations must play a primary role

in determining the opto-electronic properties of perovskite nanocubes. A system-

atic study involving MDCS of perovskite nanocubes with varying waiting time and

temperature will help elucidate the underlying microscopic dynamics.

8.3 Broad-Bandwidth MDCS of CNCs

The results presented in this dissertation were acquired using an optical paramet-

ric amplifier (OPA) pumped by a Ti:Sapph regenerative amplifier. Such a system was

among the first to allow for wavelength-tunable femtosecond pulses with serviceable

bandwidth. Today, these systems have largely been supplanted by OPAs pumped

by fiber-based amplifiers that not only offer superior operational stability, but also

increased wavelength-tunability, broader spectral bandwidths, and larger pulse ener-

gies. In particular, broader spectral bandwidths greatly increase the capabilities of

MDCS in studying CNCs. Signatures of high-energy optical phonon modes and tri-

ons/biexcitons become accessible, and coupling to higher-lying electronic states could

be investigated. The ability to cover a greater portion of the inhomogeneous spectral

distribution also facilitates more efficient systematic size-dependence studies.
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8.4 Pre-Pulse MDCS of CNCs

As demonstrated by our group [2, 3] and others [4, 5], the addition of an incoher-

ent pre-pulse prior to each MDCS measurement introduces a host of new phenomena

that manifest in multi-dimensional spectra. While traditional MDCS measurements

assume quantum pathways that begin in an electronic ground state at thermal equi-

librium, a pre-pulse prepares a certain excited-state population that is also probed by

MDCS. In the context of CNCs, a particularly interesting experiment would involve a

high-photon energy pre-pulse (at least twice the fundamental energy gap) that excites

hot-carriers. As these hot-carriers undergo impact ionization and generate multiple

excitons, MDCS can probe this process on its intrinsic timescale. Such an experi-

ment exploits the unique capabilities of MDCS, and would constitute the first direct

measurement of the controversial carrier multiplication phenomenon [6].
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APPENDIX A

Optical Response Function - Hilbert Space

A.1 Interaction Representation - Wavefunction

In spectroscopic experiments where a material interacts with light, its Hamiltonian

may naturally be separated into two components:

H(t) = H0 +W (t) (A.1)

where H0 is a time-independent system Hamiltonian (which describes the system

under no external perturbation), and a time-dependent interaction Hamiltonian W (t)

that describes the system’s interaction with an applied electric field:

W (t) = −µE(t) (A.2)

where µ is the dipole moment of the probed transition. The Schrodinger equation for

the system wavefunction |ψ(t)〉 is defined:

d

dt
|ψ(t)〉 = − i

~
H |ψ(t)〉 (A.3)
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When analyzing a two-component Hamiltonian such as in equation (A.1), it is often

most natural to perform calculations in the so-called interaction representation.

This representation is advantageous since the dynamics of the system Hamiltonian

H0 are separated from those induced by the interaction W (t). We first introduce the

wavefunction in the interaction picture:

|ψI(t)〉 = e
i
~H0(t−t0) |ψ(t)〉 (A.4)

Plugging this definition into the Schrodinger equation, we find:

d

dt
|ψI(t)〉 = − i

~
WI(t) |ψI(t)〉 (A.5)

where we’ve defined the interaction representation of W (t):

WI(t) = e
i
~H0(t−t0)W (t)e−

i
~H0(t−t0) (A.6)

The interaction Schrodinger equation (A.4) yields the formal solution:

|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t

t0

WI(τ) |ψI(τ)〉 dτ (A.7)

By iteratively plugging this solution back into itself, we obtain a power series expan-

sion solution in WI(t):

|ψI(t)〉 = |ψI(t0)〉+
∞∑
n=1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

WI(τn)W (τn−1) . . .W (τ1) |ψI(t0)〉 dτ1 . . . dτn−1dτn

(A.8)
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A.2 Interaction Representation - Density Matrix

From the definition of the interaction wavefunction (A.1), the density matrix may

easily be recast in the interaction representation:

ρ(t) = |ψ(t)〉 〈ψ(t)|

= e−
i
~H0(t−t0) |ψI(t)〉 〈ψI(t)| e

i
~H0(t−t0)

= e−
i
~H0(t−t0)ρI(t)e

i
~H0(t−t0) (A.9)

Recalling the Heisenberg equation of motion for ρ(t):

d

dt
ρ(t) = − i

~
[H(t), ρ(t)] (A.10)

where [A,B] = AB − BA is the commutator between two operators A and B. This

may similarly be recast in the interaction representation as:

d

dt
ρI(t) = − i

~
[WI(t), ρI(t)] (A.11)

which yields a power series expansion solution analogous to (A.8):

ρI(t) = ρI(t0) +
∞∑
n=1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

[WI(τn), [WI(τn−1), . . . [WI(τ1), ρI(t0)] . . . ]] dτ1 . . . dτn−1dτn

= ρ(t0) +
∞∑
n=1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

E(τn)E(τn−1) . . . E(τ1)

[µI(τn), [µI(τn−1), . . . [µI(τ1), ρ(t0)] . . . ]] dτ1 . . . dτn−1dτn

(A.12)
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where we’ve also defined the interaction representation of the dipole operator µ:

µI(t) = e
i
~H0(t−t0)µe−

i
~H0(t−t0) (A.13)

We can easily recover the Schrodinger representation density matrix:

ρ(t) = e−
i
~H0(t−t0)ρI(t)e

i
~H0(t−t0)

= ρ(t0) +
∞∑
n=1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

E(τn)E(τn−1) . . . E(τ1)

e−
i
~H0(t−t0) [µI(τn), [µI(τn−1), . . . [µI(τ1), ρ(t0)] . . . ]] e

i
~H0(t−t0)dτ1 . . . dτn−1dτn

(A.14)

A.3 Nonlinear Polarization

The nonlinear polarization is defined by:

P (t) = Tr [µρ(t)] = P (0)(t) +
∞∑
n=1

P (n)(t) (A.15)

where we’ve defined the zeroth order polarization P (0)(t) = Tr [µρ(t0)] and the power

series expansion terms:

P (n)(t) =

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

E(τn)E(τn−1) . . . E(τ1)

Tr
[
µe−

i
~H0(t−t0) [µI(τn), [µI(τn−1), . . . [µI(τ1), ρ(t0)] . . . ]] e

i
~H0(t−t0)

]
dτ1 . . . dτn−1dτn

=

∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

S(n)(τ2 − τ1, . . . , τn − τn−1, t− τn)

E(τn)E(τn−1) . . . E(τ1)dτ1 . . . dτn−1dτn (A.16)

where S(n) is the nth order optical response function.
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APPENDIX B

Optical Response Function - Liouville Space

In this Appendix equations describing the optical response of a system that in-

corporate nuclear degrees of freedom are derived. Our treatment follows that of

Mukamel’s tome [1], but is more explicit and direct1.

B.1 Liouville Space Dynamics

Recall the time-dependent Schrodinger equation, which is the equation of motion

of our system wavefunction |ψ(t)〉:

∂ |ψ(t)〉
∂t

= − i
~
H |ψ(t)〉 ∂ 〈ψ(t)|

∂t
=
i

~
〈ψ(t)|H (B.1)

Using this equation of motion, we can calculate the density matrix equation of motion:

∂ρ

∂t
=

(
∂ |ψ(t)〉
∂t

)
〈ψ(t)|+ |ψ(t)〉

(
∂ 〈ψ(t)|
∂t

)
= − i

~
H |ψ(t)〉 〈ψ(t)|+ i

~
|ψ(t)〉 〈ψ(t)|H

= − i
~

[H, ρ] (B.2)

1In this Appendix we use the notation of Mukamel [1] to facilitate correspondence, but the results
may be translated into the notation of this thesis by the replacements t1 → τ , t2 → T , and t3 → t.
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This equation of motion for the density matrix is known as the Heisenberg equation or

quantum Liouville equation (in analogy to the classical Liouville equation). Hereafter

we will refer to it simply as the Liouville equation.

B.1.1 Liouville Space Notation

Hilbert space is spanned by wavefunctions, whose dynamics we calculate using the

Schrodinger equation. The density matrix, on the other hand, spans a different space

called Liouville space and we calculate the dynamics using the Liouville equation.

It will thus be beneficial to recast our equations into a notation more amenable to

manipulating the density matrix.

Consider the system density matrix ρ expressed in an arbitrary basis |j〉 〈k|:

ρ =
∑
j,k

ρjk |j〉 〈k| (B.3)

We now introduce the notation |j〉 〈k| → |jk〉〉 and ρ→ |ρ〉〉:

ρ =
∑
j,k

ρjk |j〉 〈k| → |ρ〉〉 =
∑
j,k

ρjk |jk〉〉 (B.4)

where the double-ket (and also double-bra later on) will in general represent Liouville

space vectors, which are equivalent to operators in Hilbert space. For example, an

operator A will be written in Liouville space notation as:

A =
∑
j,k

Ajk |j〉 〈k| → |A〉〉 =
∑
j,k

Ajk |jk〉〉 (B.5)

The double-bra is defined as the Hermitian conjugate of a double-ket:

〈〈jk| = (|jk〉〉)† = (|j〉 〈k|)† = |k〉 〈j| (B.6)
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Just as in Hilbert space, we define inner products of Liouville space vectors. Their

equivalent operations in Hilbert space are defined by a trace operation:

〈〈B|A〉〉 = Tr
[
B†A

]
To take the analogy further, Liouville space vectors obey two very important proper-

ties shared by Hilbert space vectors:

1. Orthonormality:

〈〈jk|mn〉〉 = Tr [|k〉 〈j |m〉 〈n|] = δknδjm (B.7)

2. Completeness:

〈〈jk|A〉〉 = Tr [|k〉 〈j|A] = 〈j |A | k〉 = Ajk

→ |A〉〉 =
∑
j,k

|jk〉〉Ajk =
∑
j,k

|jk〉〉〈〈jk|A〉〉 (B.8)

The above equation thus gives the completeness condition:

1 =
∑
j,k

|jk〉〉〈〈jk| (B.9)

Lastly, we define operators in Liouville space (which are often referred to as su-

peroperators or tetradic operators). An arbitrary operator F is defined by:

F =
∑
j,k,m,n

|jk〉〉〈〈jk| F |mn〉〉〈〈mn|

=
∑
j,k,m,n

Fjk,mn |jk〉〉〈〈mn| (B.10)
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where its matrix elements are defined by four indices:

Fjk,mn = 〈〈jk| F |mn〉〉 (B.11)

B.1.2 The Liouville Operator

Now that we’ve defined superoperators, we now add one more layer of abstraction

to the Liouville equation:

∂ρ

∂t
= − i

~
[H, ρ] = − i

~
Lρ

where we’ve defined the superoperator L, which we call the Liouville operator. In

general, it acts on an arbitrary Liouville space vector |A〉〉 (Hilbert space operator A)

with the commutator operation involving the Hamiltonian:

L |A〉〉 = LA = [H,A] (B.12)

As good practice, we can calculate its matrix elements:

Ljk,mn = 〈〈jk|L|mn〉〉

= Tr [|k〉 〈j| L |m〉 〈n|]

= Tr [|k〉 〈j |H |m〉 〈n| − |k〉 〈j |m〉 〈n|H]

= Hjmδkn −Hnkδjm (B.13)

From its role in the Liouville equation, it is no surprise that the Liouville operator

will be central to calculating dynamics in Liouville space.
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B.1.3 Propagators in Liouville Space

Now recall the propagator for a wavefunction U(t, t0):

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (B.14)

which is defined perturbatively for a time-dependent Hamiltonian:

U(t, t0) = 1 +
∞∑
n=1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

H(τn)H(τn−1) . . . H(τ1)dτ1 . . . dτn−1dτn

= exp+

[
− i
~

∫ t

t0

H(τ)dτ

]
(B.15)

We may likewise define a Liouville space propagator U(t, t0), which like its Hilbert

space counterpart evolves the density matrix in time:

ρ(t) = U(t, t0)ρ(t0) (B.16)

Plugging this expression into the Liouville equation gives its equation of motion:

∂

∂t
U(t, t0)ρ(t0) = − i

~
L(t)U(t, t0)ρ(t0)

→ ∂U(t, t0)

∂t
= − i

~
L(t)U(t, t0) (B.17)

By inspection, we can immediately write down the action of U(t, t0) as:

U(t, t0)ρ(t0) = U(t, t0)ρ(t0)U †(t, t0) (B.18)
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However, we often require a more abstract form of U(t, t0) by itself. To that end, we

can write down a formal solution to its equation of motion:

U(t, t0) = 1− i

~

∫ t

t0

L(τ)U(τ, t0)dτ (B.19)

By the same procedure as for the Hilbert space propagator, we can expand this

expression perturbatively as a time-ordered exponential:

U(t, t0) = 1 +
∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

L(τn)L(τn−1) . . .L(τ1)dτ1 . . . dτn−1dτn

(B.20)

It’s action on ρ(t0) is given by:

U(t, t0)ρ(t0) = ρ(t0) +
∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

[H(τn), . . . [H(τ2), [H(τ1), ρ(t0)]] . . . ] dτ1 . . . dτn−1dτn (B.21)

B.1.4 Interaction Picture

In the context of spectroscopy, the physical problem usually boils down to a system

(atom, molecule, crystal etc.) interacting with an incident light field. Usually, the

system itself has a well-defined Hamiltonian, while the total Hamiltonian consisting

of the system coupled to the incident light is intractable. We therefore often work in

the interaction picture, which partitions the Hamiltonian into two parts:

H = H0(t) +Hint(t) (B.22)
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where H0(t) is some system and Hint(t) is its interaction with an external force. It is

straightforward to see that the Liouville operator is similarly partitioned:

L = L0(t) + Lint(t) (B.23)

L0(t)A = [H0(t), A] Lint(t)A = [Hint(t), A] (B.24)

Certain quantities will be convenient to redefine in the interaction picture:

U0(t, t0) = exp+

[
− i
~

∫ t

t0

L0(τ)dτ

]
(B.25)

|ψ(t)〉〉 = U0(t, t0) |ψI(t)〉〉 (B.26)

|ψI(t)〉〉 = UI(t, t0) |ψI(t0)〉〉 (B.27)

Plugging in the above definition of |ψ(t)〉〉 into the Liouville equation, we can derive

an equivalent equation of motion for |ψI(t)〉〉:

∂ |ψ(t)〉〉
∂t

= − i
~

[L0(t) + Lint(t)] |ψ(t)〉〉

→ ∂U0(t, t0)

∂t
|ψI(t)〉〉+ U0(t, t0)

∂ |ψI(t)〉〉
∂t

= − i
~

[L0(t) + Lint(t)]U0(t, t0) |ψI(t)〉〉

→ U0(t, t0)
∂ |ψI(t)〉〉

∂t
= − i

~
Lint(t)U0(t, t0) |ψI(t)〉〉

→ ∂ |ψI(t)〉〉
∂t

= − i
~
LIint(t) |ψI(t)〉〉 (B.28)

with the solution:

|ψI(t)〉〉 = exp+

[
− i
~

∫ t

t0

LIint(τ)dτ

]
|ψI(t)〉〉

= U I(t, t0) |ψI(t)〉〉 (B.29)
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where we’ve defined the interaction picture Liouville operator:

LIint(τ) = U †0(τ, t0)Lint(τ)U0(τ, t0) (B.30)

Explicitly, the interaction propagator can be calculated as:

UI(t, t0) = exp+

[
− i
~

∫ t

t0

LIint(τ)dτ

]
= 1 +

∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

..

∫ τ2

t0

LIint(τn)LIint(τn−1)..LIint(τ1)dτ1..dτn−1dτn

= 1 +
∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

..

∫ τ2

t0

U †0(τn, t0)Lint(τn)U0(τn, t0)U †0(τn−1, t0)Lint(τn−1)U0(τn−1, t0)..LIint(τ1)

dτ1 . . . dτn−1dτn

= 1 +
∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

..

∫ τ2

t0

U †0(τn, t0)Lint(τn)U0(τn, τn−1)Lint(τn−1)..Lint(τ1)U0(τ1, t0)dτ1..dτn−1dτn

Finally, we combine the propagator expressions of |ψ(t)〉〉 and |ψI(t)〉〉 to find:

|ψ(t)〉〉 = U0(t, t0) |ψI(t)〉〉 = U0(t, t0)UI(t, t0) |ψ(t0)〉〉 (B.31)

where the total propagator may now be expressed as:

U(t, t0) = U0(t, t0)UI(t, t0)

= U0(t, t0) +
∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

..

∫ τ2

t0

U0(t, τn)Lint(τn)U0(τn, τn−1)Lint(τn−1)..Lint(τ1)U0(τ1, t0)dτ1..dτn−1dτn

(B.32)
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If this pattern of alternating propagators and interaction Liouville operators seems

familiar, that is because applying this expression for U(t, t0) to ρ(t0) recovers the

Schrodinger representation of ρ(t) given by equation (A.14). Each perturbation term

thus retains the intuitive interpretation of alternating interaction and free-propagation

of the system density matrix described in Chapter III.

B.2 Nonlinear Polarization

Our goal is now to re-derive the nonlinear polarization from a Liouville space

approach. The resultant equations are more general, and, most importantly, more

amenable to incorporating nuclear degrees of freedom.

B.2.1 Perturbative Expansion of the Polarization

Consider the following Hamiltonian of a system:

HT (t) = H +Hint(t) (B.33)

where the total Hamiltonian HT (t) is partitioned into the system Hamiltonian H and

a perturbation Hint(t) that defines the system’s interaction with an incident light field

E(r, t):

Hint(t) = −E(r, t)V (B.34)

where V is the dipole operator. Note that because we seldom consider HT (t), we

now denote the system Hamiltonian H (which we called H0 in the previous section).

Hereafter we also assume a time-independent system Hamiltonian, which is why we
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drop the time argument of H. We define the Liouville space operators:

LA = [H,A] (B.35)

Lint(t)A = [Hint(t), A]

= −E(r, t)VA (B.36)

VA = [V,A] (B.37)

The propagators in the equations above are often replaced by Green functions, which

differ by a Heaviside step function:

G(τ) = θ(τ) exp

(
− i
~
Lτ
)

= θ(τ)U(τ, 0) (B.38)

The step function enforces a specific direction of time-propagation, and thus there is

also a set of opposite time-propagation Green functions which we need not consider

here.

Using the total propagator derived above, we can express the density matrix as

the following:

ρ(t) = ρ(t0) +
∞∑
n−1

(
− i
~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

G(t− τn)Lint(τn)G(τn − τn−1)Lint(τn−1) . . .Lint(τ1)G(τ1 − t0)ρ(t0)

dτ1 . . . dτn−1dτn

= ρ(t0) +
∞∑
n−1

(
i

~

)n ∫ t

t0

∫ τn

t0

· · ·
∫ τ2

t0

G(t− τn)VG(τn − τn−1)V . . .G(τ2 − τ1)Vρ(t0)E(r, τn)E(r), τn−1) . . . E(r, τ1)

dτ1 . . . dτn−1dτn

(B.39)
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In going from the first to second line, we have made one assumption about the nature

of the initial density matrix that has not yet been mentioned. The assumption is

that the initial density matrix is at thermal equilibrium, which corresponds to the

equilibrium canonical density matrix:

ρ(t0) =
exp(−βH)

Tr [exp(−βH)]
(B.40)

Because this density matrix is a function of the Hamiltonian, it does not change

after being acted upon by G. This is simply a consequence of commuting with the

propagator, which is also a function of the Hamiltonian.

For time-resolved spectroscopy, it is convenient to make a change in time variables:

t1 = τ2 − τ1, t2 = τ3 − τ2, . . . tn = t− τn (B.41)

which recasts the density matrix as:

ρ(t) = ρ(t0) +
∞∑
i=1

(
i

~

)n ∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

G(tn)VG(tn−1)V . . .G(t1)Vρ(-∞)

E(r, t− tn)E(r, t− tn − tn−1) . . . E(r, t− tn − tn−1 · · · − t1)dt1 . . . dtn−1dtn

(B.42)

The system polarization, which is the observable we detect via emitted radiation, is

given by the expectation value of the dipole operator:

P (r, t) = Tr [V ρ(t)] = 〈〈V |ρ(t)〉〉 (B.43)

By plugging in the above perturbative expansion of the density matrix, we obtain a
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similar perturbative expansion of the polarization:

P (r, t) = 〈〈V |ρ(t)〉〉

= 〈〈V |ρ(t0)〉〉+
∞∑
i=1

(
i

~

)n ∫ ∞
0

∫ ∞
0

..

∫ ∞
0

〈〈V |G(tn)VG(tn−1)..G(t1)V|ρ(-∞)〉〉

E(r, t− tn)E(r, t− tn − tn−1) . . . E(r, t− tn − tn−1 · · · − t1)dt1..dtn−1dtn

= 〈〈V |ρ(t0)〉〉+
∞∑
i=1

∫ ∞
0

∫ ∞
0

..

∫ ∞
0

S(n)(tn, tn−1, .., t1)

E(r, t− tn)E(r, t− tn − tn−1) . . . E(r, t− tn − tn−1 · · · − t1)dt1..dtn−1dtn

(B.44)

To emphasize, we have defined the nth order response function as:

S(n)(tn, tn−1, . . . , t1) =

(
i

~

)n
〈〈V |G(tn)VG(tn−1)V . . .G(t1)V|ρ(-∞)〉〉 (B.45)

B.2.2 Linear Response

The linear response function is given by:

S(1)(t1) =
i

~
〈〈V |G(t1)V|ρ(-∞)〉〉 (B.46)

or in Hilbert space:

S(1)(t1) =
i

~
Tr [V G(t1)Vρ(-∞)]

=
i

~
θ(t1)Tr [V U(t1) (V ρ(-∞)− ρ(-∞)V )]

=
i

~
θ(t1)Tr

[
V
(
U(t1)V ρ(-∞)U †(t1)− U(t1)ρ(-∞)V U †(t1)

)]
=
i

~
θ(t1)Tr [V (t1)V (0)ρ(-∞)− V (0)V (t1)ρ(-∞)]

=
i

~
θ(t1)[J(t1)− J∗(t1)] (B.47)
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where we’ve defined the two quantum pathways:

J(t1) = Tr [V (t1)V (0)ρ(-∞)] (B.48a)

J∗(t1) = Tr [V (0)V (t1)ρ(-∞)] (B.48b)

B.2.3 Third-Order Response

The third-order response function is given by:

S(3)(t1, t2, t3) =

(
i

~

)3

〈〈V |G(t3)VG(t2)VG(t1)V|ρ(-∞)〉〉 (B.49)

or in Hilbert space:

S(3)(t1, t2, t3) =

(
i

~

)3

Tr [V G(t3)VG(t2)VG(t1)Vρ(-∞)]

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)Tr [V U(t3)VU(t2)VU(t1)Vρ(-∞)]

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)Tr [V U(t3)VU(t2)VU(t1)(V ρ(-∞)− ρ(-∞)V )]

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)

Tr [[[[V (t3 + t2 + t1), V (t2 + t1)] , V (t1)] , V (0)] ρ(-∞)]

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)
4∑

α=1

[Rα(t1, t2, t3)−R∗α(t1, t2, t3)] (B.50)

where there are 8 third-order pathways defined by:

R1(t1, t2, t3) = Tr [V (t1)V (t1 + t2)V (t1 + t2)V (t1 + t2 + t3)V (0)ρ(-∞)] (B.51)

R2(t1, t2, t3) = Tr [V (0)V (t1 + t2)V (t1 + t2)V (t1 + t2 + t3)V (t1)ρ(-∞)] (B.52)

R3(t1, t2, t3) = Tr [V (0)V (t1)V (t1 + t2 + t3)V (t1 + t2)V (t1 + t2)ρ(-∞)] (B.53)

R4(t1, t2, t3) = Tr [V (t1 + t2 + t3)V (t1 + t2)V (t1 + t2)V (t1)V (0)ρ(-∞)] (B.54)
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B.3 Incorporating Nuclear Degrees of Freedom

In reality the electronic excitations that we probe often cannot be considered

isolated level systems. The nuclei these electrons originate from have dynamics of

their own, which often modulate the electronic dynamics in a non-negligible manner.

Consider a system with two electronic states |g〉 and |e〉, representing the ground

and excited state respectively, which are coupled to nuclear degrees of freedom q.

The system Hamiltonian may be written:

H = |g〉 [T (q) +Wg(q)] 〈g|+ |e〉
[
~ω0

eg + T (q) +We(q)
]
〈e|

= |g〉Hg(q) 〈g|+ |e〉He(q) 〈e| (B.55)

where T (q) is the nuclear kinetic energy, Wg(q) and We(q) are the ground and ex-

cited state adiabatic potentials for each electronic state (i.e. the dependence of the

electronic energy on the nuclear configuration), and ~ω0
eg is the energy gap in the

absence of coupling to nuclear motion.

The transition dipole operator is:

V = Vge(q) |g〉 〈e|+ Veg(q) |e〉 〈g| (B.56)

We will make the Condon approximation, which assumes the nuclear dependence of

the dipole operator is negligible2:

V ≈ Vge |g〉 〈e|+ Veg |e〉 〈g| (Condon Approximation) (B.57)

2This corresponds to expanding Veg(q) and Vge(q) as Taylor series and retaining only the first
term.
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Recalling the linear response function:

S(1)(t1) =
i

~
〈〈V |G(t1)V|ρ(-∞)〉〉 (B.58)

We can project the equation into the {|g〉 , |e〉} basis:

S(1)(t1) =
i

~
∑
i,j,m,n

〈〈V |ij〉〉〈〈ij|G(t1)|mn〉〉〈〈mn|V|ρ(-∞)〉〉

=
i

~
∑
m,n

(〈〈V |eg〉〉〈〈eg|G(t1)|mn〉〉+ 〈〈V |ge〉〉〈〈ge|G(t1)|mn〉〉)〈〈mn|V|ρ(-∞)〉〉

(B.59)

where to get from the first to second line, we used the fact that 〈〈V |ij〉〉 is non-zero

only if i 6= j. We then reach our final result:

S(1)(t1) =
i

~
∑
m,n

〈〈V |eg〉〉〈〈eg|G(t1)|mn〉〉〈〈mn|V|ρ(-∞)〉〉 . . .

+ 〈〈V |ge〉〉〈〈ge|G(t1)|mn〉〉〈〈mn|V|ρ(-∞)〉〉

=
i

~
∑
m

〈〈V |eg〉〉〈〈eg|G(t1)|mg〉〉〈〈mg|V|ρ(-∞)〉〉 . . .

+ 〈〈V |ge〉〉〈〈ge|G(t1)|me〉〉〈〈me|V|ρ(-∞)〉〉

=
i

~
[〈〈V |eg〉〉〈〈eg|G(t1)|eg〉〉〈〈eg|V|ρ(-∞)〉〉 . . .

+ 〈〈V |ge〉〉〈〈ge|G(t1)|ge〉〉〈〈ge|V|ρ(-∞)〉〉]

=
i

~
〈〈Veg|Geg(t1)|Vegρg〉〉 −

i

~
〈〈Vge|Gge(t1)|ρgVge〉〉 (B.60)

where we go from the first to second line by using that 〈〈ij|G(t1)|mn〉〉 vanishes for

n 6= j and go from the second to third line by using that 〈〈ij|V|ρ(-∞)〉〉 vanishes

for i = j (since ρ(-∞) = |g〉 ρg 〈g|). These relations can be verified by explicitly

calculating the traces involved in each term. We also note that Gij(t) is shorthand

notation for Gij,ij(t), which is called the coherence Green function.
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And now a subtle point. Notice that although we took the matrix elements Gij(t)

by projecting with the electronic Liouville vectors |ij〉〉〈〈ij|, at no point did we project

out the nuclear degrees of freedom. Gij(t) is therefore still a superoperator in the

nuclear Liouville space. Let us calculate its action on a nuclear operator A:

Gij(t1)A = 〈〈ij|G(t1)A|ij〉〉

= θ(t1)Tr
[
|j〉 〈i|U(t1, 0)A |i〉 〈j|U †(t1, 0)

]
= θ(t1)Tr

[
|j〉 〈i| e

− i
~

(∑
m
|m〉Hm〈m|

)
t1 |i〉A 〈j| e

i
~

(∑
m
|m〉Hm〈m|

)
t1

]

= θ(t1)e−
i
~Hit1Ae

i
~Hjt1 (B.61)

The linear response terms may thus be recast as:

S(1)(t1) =
i

~
〈〈Veg|Geg(t1)|Vegρg〉〉 −

i

~
〈〈Vge|Gge(t1)|ρgVge〉〉

=
i

~
θ(t1)Tr

[
Vgee

− i
~Het1Vegρge

i
~Hgt1

]
− i

~
θ(t1)Tr

[
Vege

− i
~Hgt1ρgVgee

i
~Het1

]
=
i

~
θ(t1)

(
TrB

[
e
i
~Hgt1Vgee

− i
~Het1Vegρg

]
− TrB

[
Vgee

i
~Het1Vege

− i
~Hgt1ρg

])
(B.62)

Note that because everything inside the trace operations are either constants or op-

erators in nuclear space, the trace over electronic states vanishes which leaves a trace

over the bath states. They are, here:

J(t1) = 〈〈Veg|Ueg(t1)|Vegρ(-∞)〉〉

= TrB

[
e
i
~Hgt1Vgee

− i
~Het1Vegρg

]
(B.63)
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B.3.1 Coherence Green Function

Again, the coherence Green function acts upon a nuclear operator A by:

Gnm(t)A = exp

(
− i
~
Hnt

)
A exp

(
i

~
Hmt

)
(B.64)

Our goal is to factorize this Green function into one of a reference system and a

separate part treated perturbatively. We split the Hamiltonian Hn into:

Hn = Hj +W j (B.65)

Here we adopt the interaction picture, where W j reads in the interaction picture with

the associated propagators:

W j(τ) = e
i
~HjτW je

− i
~Hjτ (B.66)

U0(t, t0) = e−
i
~Hj(t−t0) (B.67)

UI(t, t0) = exp+

[
− i
~
W j(τ)dτ

]
(B.68)

Un(t, t0) = e−
i
~Hn(t−t0)

= U0(t, t0)UI(t, t0)

= e−
i
~Hj(t−t0) exp+

[
− i
~
W j(τ)dτ

]
(B.69)

We split the Hm Hamiltonian in the same way:

Hm = Hj +W ′
j (B.70)

which gives the propagator:

U †m(t, t0) = e
i
~Hm(t−t0) = exp−

[
i

~

∫ t

t0

W ′
j(τ)dτ

]
e
i
~Hj(t−t0)
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The action of the coherence Green function may now be factorized as:

Gnm(t)A = exp

(
− i
~
Hnt

)
A exp

(
i

~
Hmt

)
= e−

i
~Hj(t−t0) exp+

[
− i
~
W j(τ)dτ

]
A exp−

[
i

~

∫ t

t0

W ′
j(τ)dτ

]
e
i
~Hj(t−t0)

= Gjj(t) exp+

[
− i
~
W j(τ)dτ

]
A exp−

[
i

~

∫ t

t0

W ′
j(τ)dτ

]
(B.71)

Practically, we choose a reference Hamiltonian Hj that is convenient and makes phys-

ical sense. We give here two examples:

1. Hj = Hm:

Gnm(t)A = Gmm(t) exp+

[
− i
~

∫ t

0

Wm(τ)dτ

]
A

where Wm = Hn −Hm.

2. Hj = Hn:

Gnm(t)A = Gnn(t)A exp−

[
i

~

∫ t

0

W ′
n(τ)dτ

]

where W ′
n = Hm −Hn.

B.3.2 Factorizing the Two-Level Coherence Green Function

We now return to two electronic levels |g〉 and |e〉 coupled to a bath of nuclear

vibrations. We choose Hg as the reference Hamiltonian, which gives:

Geg(t)A = Ggg(t) exp+

[
− i
~

(He(τ)−Hg(τ))dτ

]
A

= e−iωegtGgg(t) exp+

[
− i
~

(He(τ)−Hg(τ)− ~ωeg)dτ
]
A

= e−iωegtGgg(t) exp+

[
− i
~
U(τ)dτ

]
A (B.72)
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where we’ve introduced the important quantity U :

U = He −Hg − ~ωeg (B.73)

U(t) = e
i
~HgtUe−

i
~Hgt (B.74)

which represents the electronic energy gap. ~ωeg may be chosen arbitrarily, but as

the notation suggests we usually choose it to be the thermally averaged energy gap

so that U represents the fluctuations from average. The linear pathways become:

J(t1) = 〈〈Veg|Ueg(t1)|Vegρg〉〉

= e−iωegt1〈〈Veg|Ugg(t1) exp+

[
− i
~

∫ t1

0

U(τ)dτ

]
|Vegρg〉〉

= e−iωegt1Tr

[
Vgee

− i
~Hgt1 exp+

[
− i
~

∫ t1

0

U(τ)dτ

]
Vegρge

i
~Hgt1

]
= e−iωegt1TrB

[
Vge(t1) exp+

[
− i
~

∫ t1

0

U(τ)dτ

]
Vegρg

]
(B.75)

B.3.3 Cumulant Expansion of the Linear Response

We now explicitly write the factorized linear response pathway:

J(t1) = e−iωegt1TrB

[
Vge(t1) exp+

[
− i
~

∫ t1

0

U(τ)dτ

]
Vegρg

]
= e−iωegt1

[
1− i

~

∫ t1

0

TrB [U(τ)ρg] dτ . . .

+

(
− i
~

)2 ∫ t1

0

∫ t2

0

TrB [U(τ2)U(τ1)ρg] dτ1dτ2 + . . .

]
(B.76)

We note here that the term linear in U = He−Hg−~ωeg is not only time-independent,

but also vanishes upon correct choice of ~ωeg. We can see this by calculating:

TrB [U(τ)ρg] = TrB

[
Ue−

i
~Hgτρge

i
~Hgτ

]
= TrB [Uρg] = TrB [(He −Hg)ρg]− ~ωeg
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where the ground state propagators e±
i
~Hgτ vanish since they commute with ρg =

e−βHg

Tr[e−βHg ]
. It is now clear that the linear term vanishes if we choose:

~ωeg = TrB [(He −Hg)ρg] (B.77)

which corresponds to the thermally averaged electronic energy gap, as we mentioned

previously. We will make this choice for all calculations hereafter.

Now we apply the cumulant expansion technique to the linear response pathway.

Postulating a solution for J(t1) of the form:

J(t1) = J0e
−F (t1) (B.78)

We expand both J(t1) and F (t1) as power series in powers of U(t), which we call λ

here for clarity:

J(t1) = J0(1 + λJ1(t1) + λ2J2(t1) + . . . ) (B.79)

F (t1) = λF1(t1) + λ2F2(t1) + . . . (B.80)

Plugging this expression for F (t1) into the Ansatz, we find:

J(t1) = J0e
−F (t1) = J0

[
1− F (t1) +

1

2!
F (t1)2 + . . .

]
= J0

[
1− λF1(t1)− λ2F2(t1) +

1

2!

(
λ2F1(t1)2 + . . .

)
+ . . .

]
= J0

[
1− λF1(t1) + λ2

(
−F2(t1) +

1

2!
F1(t1)2

)
+ . . .

]
(B.81)

Comparing this expression with the Taylor expansion of J(t1), we find:

F1(t1) = −J1(t1) F2(t1) =
1

2
J1(t1)2 − J2(t1) (B.82)
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The explicit expression (B.76) for J(t1) directly gives J2(t1) (since the linear term

vanishes as we showed above):

J2(t1) = e−iωegt1
1

~2

∫ t1

0

∫ t2

0

TrB [U(τ2)U(τ1)ρg] dτ1dτ2 (B.83)

Because F2(t1) = −J2(t1) (again, because the linear term J1(t1) vanishes), the linear

pathway truncated at second order via the cumulant expansion is:

J(t1) = e−F (t1)

= e−iωegt1 exp

[
− 1

~2

∫ t1

0

∫ t2

0

TrB [U(τ2)U(τ1)ρg] dτ1dτ2

]
= e−iωegt1−g(t1) (B.84)

where the lineshape function g(t) and the two-point correlation function C(t) are

defined:

g(t) =

∫ t

0

∫ τ2

0

C(τ1)dτ1dτ2 (B.85)

C(t) =
1

~2
TrB [U(t)U(0)ρg] (B.86)

We have accomplished something very useful. The linear response is now separated

into two parts - a factor e−iωegt1 that oscillates at the thermally averaged energy gap

and another factor e−g(t1) that is simply the correlation between two different times

of fluctuations in the energy gap.

B.3.4 Cumulant Expansion of the Third-Order Response

The third-order response function is given by:

S(3)(t1, t2, t3) =

(
i

~

)3

〈〈V |G(t3)VG(t2)VG(t1)V|ρ(-∞)〉〉 (B.87)
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Again, projecting into the electronic basis {|g〉 , |e〉}:

S(3)(t1, t2, t3) =
∑

i,j,m,n,o,p
q,r,s,t,u,v

(
i

~

)3

〈〈V |ij〉〉〈〈ij|G(t3)|mn〉〉〈〈mn|V|op〉〉〈〈op|G(t2)|qr〉〉

〈〈qr|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉

=
∑
o,p,q,r
s,t,u,v

(
i

~

)3

[VgeGeg(t3)〈〈eg|V|op〉〉〈〈op|G(t2)|qr〉〉

〈〈qr|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉

+ VegGge(t3)〈〈ge|V|op〉〉〈〈op|G(t2)|qr〉〉

〈〈qr|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉]

=
∑
s,t,u,v

(
i

~

)3

[VgeGeg(t3)VegGgg(t2)〈〈gg|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉

− VgeGeg(t3)VegGee(t2)〈〈ee|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉

+ VegGge(t3)VgeGee(t2)〈〈ee|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉

− VegGge(t3)VgeGgg(t2)〈〈gg|V|st〉〉〈〈st|G(t1)|uv〉〉〈〈uv|V|ρ(-∞)〉〉]

=

(
i

~

)3

[VgeGeg(t3)VegGgg(t2)VgeGeg(t1)〈〈eg|V|ρ(-∞)〉〉

− VgeGeg(t3)VegGgg(t2)VegGge(t1)〈〈ge|V|ρ(-∞)〉〉

− VgeGeg(t3)VegGee(t2)VegGge(t1)〈〈ge|V|ρ(-∞)〉〉

+ VgeGeg(t3)VegGee(t2)VgeGeg(t1)〈〈eg|V|ρ(-∞)〉〉

+ VegGge(t3)VgeGee(t2)VegGge(t1)〈〈ge|V|ρ(-∞)〉〉

− VegGge(t3)VgeGee(t2)VgeGeg(t1)〈〈eg|V|ρ(-∞)〉〉

− VegGge(t3)VgeGgg(t2)VgeGeg(t1)〈〈eg|V|ρ(-∞)〉〉

+ VegGge(t3)VgeGgg(t2)VegGge(t1)〈〈ge|V|ρ(-∞)〉〉]
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We can rewrite the above terms as inner products:

S(3)(t1, t2, t3) =

(
i

~

)3

[〈〈Veg|Geg(t3)VegGgg(t2)VgeGeg(t1)|Vegρg〉〉

− 〈〈Veg|Geg(t3)VegGgg(t2)VegGge(t1)|ρgVge〉〉

− 〈〈Veg|Geg(t3)VegGee(t2)VegGge(t1)|ρgVge〉〉

+ 〈〈Veg|Geg(t3)VegGee(t2)VgeGeg(t1)|Vegρg〉〉

+ 〈〈Vge|Gge(t3)VgeGee(t2)VegGge(t1)|ρgVge〉〉

− 〈〈Vge|Gge(t3)VgeGee(t2)VgeGeg(t1)|Vegρg〉〉

− 〈〈Vge|Gge(t3)VgeGgg(t2)VgeGeg(t1)|Vegρg〉〉

+ 〈〈Vge|Gge(t3)VgeGgg(t2)VegGge(t1)|ρgVge〉〉]

=

(
i

~

)3 4∑
α=1

[Rα(t1, t2, t3)−R∗α(t1, t2, t3)] (B.88)

where the 8 third-order pathways are defined:

R1(t1, t2, t3) = 〈〈Veg|Geg(t3)VegGee(t2)VgeGeg(t1)|Vegρg〉〉

R2(t1, t2, t3) = 〈〈Vge|Gge(t3)VgeGee(t2)VegGge(t1)|ρgVge〉〉

R3(t1, t2, t3) = 〈〈Vge|Gge(t3)VgeGgg(t2)VegGge(t1)|ρgVge〉〉

R4(t1, t2, t3) = 〈〈Veg|Geg(t3)VegGgg(t2)VgeGeg(t1)|Vegρg〉〉 (B.89)

All of the algebraic steps above were performed by using:

〈〈ij|V|mn〉〉 = Tr [|j〉 〈i|V |m〉 〈n|]− Tr [|j〉 〈i |m〉 〈n|V ]

= Vimδjn − Vnjδim (B.90)

and that 〈〈ij|G(t)|mn〉〉 is nonzero only if i = m and j = n.

We can apply the cumulant expansion to the third-order pathways via the same
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procedure shown above. Here we state only the final result:

R1(t1, t2, t3) = e−iωegt1−iωegt3e−g
∗(t3)−g(t1)−g∗(t2)+g∗(t2+t3)+g(t1+t2)−g(t1+t2+t3)

R2(t1, t2, t3) = eiωegt1−iωegt3e−g
∗(t3)−g∗(t1)+g∗(t2)−g∗(t2+t3)−g(t1+t2)+g(t1+t2+t3)

R3(t1, t2, t3) = eiωegt1−iωegt3e−g(t3)−g∗(t1)+g(t2)−g(t2+t3)−g(t1+t2)+g(t1+t2+t3)

R4(t1, t2, t3) = e−iωegt1−iωegt3e−g(t3)−g(t1)−g(t2)+g(t2+t3)+g(t1+t2)−g(t1+t2+t3) (B.91)

where as defined above, the lineshape function g(t) and the two-point correlation

function C(t) are given by:

g(t) =

∫ t

0

∫ τ2

0

C(τ1)dτ1dτ2 C(t) =
1

~2
TrB [U(t)U(0)ρg]

B.3.5 The Spectral Density

In general, the correlation function C(t) is complex:

C(t) = Re [C(t)] + iIm [C(t)]

= C ′(t) + iC ′′(t) (B.92)

where the real and imaginary parts can easily be shown to be:

C ′(t) =
1

2~2
(TrB [U(t)U(0)ρg] + TrB [U(0)U(t)ρg]) (B.93)

C ′′(t) = − i

2~2
(TrB [U(t)U(0)ρg]− TrB [U(0)U(t)ρg]) (B.94)

Often it is more convenient to work in the frequency domain. To this end, the

frequency domain correlation function is given by the Fourier transform of C(t):

C(ω) =

∫ ∞
−∞

C(t)eiωtdt (B.95)
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Separating the real and imaginary parts of C(t):

C(ω) =

∫ ∞
−∞

[C ′(t) + iC ′′(t)]eiωtdt

= C ′(ω) + C ′′(ω) (B.96)

where we’ve defined:

C ′(ω) =

∫ ∞
−∞

C ′(t)eiωtdt (B.97)

C ′′(ω) = i

∫ ∞
−∞

C ′′(t)eiωtdt (B.98)

B.3.5.1 Detailed Balance

We now project the correlation function via the eigenstates of Hg:

C(t) =
1

~2
TrB [U(t)U(0)ρg]

=
1

~2

∑
i,j,k

TrB [|i〉 〈i|U(t) |j〉 〈j|U(0) |k〉 〈k| ρg]

=
1

~2

∑
i,j,k

〈i |U(t) | j〉 〈j |U(0) | k〉 〈k | ρg | i〉

=
1

~2

∑
i,j,k

〈i |U(t) | j〉 〈j |U(0) | k〉 δki
e−βEk∑̀
e−βE`

=
1

~2

∑
i,j

〈i |U(t) | j〉 〈j |U(0) | i〉 e−βEi∑̀
e−βE`

=
1

~2

∑
i,j

e−
i
~ (Ej−Ei)t 〈i |U | j〉 〈j |U | i〉P (i)

=
1

~2

∑
i,j

e−iωjit|Uij|2P (i) (B.99)
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Its real and imaginary parts are then:

C ′(t) =
1

2
[C(t) + C∗(t)] =

∑
i,j

P (j) + P (i)

2~2
|Uij|2 cos(ωjit) (B.100)

C ′′(t) = − i
2

[C(t)− C∗(t)] =
∑
i,j

P (j)− P (i)

2~2
|Uij|2 sin(ωjit) (B.101)

which gives the even and odd symmetry frequency domain components:

C ′(ω) =

∫ ∞
−∞

C ′(t)eiωtdt = π
∑
i,j

P (j) + P (i)

2~2
|Uij|2 [δ(ω − ωji) + δ(ω + ωji)]

(B.102)

C ′′(ω) =

∫ ∞
−∞

C ′′(t)eiωtdt = π
∑
i,j

P (i)− P (j)

2~2
|Uij|2 [δ(ω − ωji)− δ(ω + ωji)]

(B.103)

Integrating C ′(ω) in frequency:

∫ ∞
0

C ′(ω)dω = π
∑
i,j

P (j) + P (i)

2~2
|Uij|2

= π
∑
i,j

P (j) + P (i)

P (i)− P (j)

P (i)− P (j)

2~2
|Uij|2

= π
∑
i,j

e−β~ωj + e−β~ωi

e−β~ωi − e−β~ωj
P (i)− P (j)

2~2
|Uij|2

= π
∑
i,j

eβ~ωji + 1

eβ~ωji − 1

P (i)− P (j)

2~2
|Uij|2

= π
∑
i,j

coth(β~ωji/2)
P (i)− P (j)

2~2
|Uij|2

=

∫ ∞
0

coth(β~ω/2)C ′′(ω)dω
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and by a similar procedure:

∫ 0

−∞
C ′(ω)dω =

∫ 0

−∞
coth(β~ω/2)C ′′(ω)dω

Comparing the kernels of each integral, we thus derive the detailed balance relation

between C ′(ω) and C ′′(ω):

C ′(ω) = coth(β~ω/2)C ′′(ω) (B.104)

Now is a good time to finally name C ′′(ω) as the spectral density. It can be shown

that for a harmonic bath, the spectral density is independent of temperature. For

this reason, the spectral density is the simplest quantity to characterize system-bath

coupling, so we can use the detailed balance relation to write:

C(ω) = C ′(ω) + C ′′(ω) = [coth(β~ω/2) + 1]C ′′(ω) (B.105)

B.3.5.2 Recasting the Lineshape Function

We now recast the lineshape function as a frequency domain integral:

g(t) =

∫ t

0

∫ τ2

0

C(τ1)dτ1dτ2

=
1

2π

∫ ∞
−∞

C(ω)

∫ t

0

∫ τ2

0

e−iωτ1dτ1dτ2dω

=
1

2π

∫ ∞
−∞

C(ω)

∫ t

0

i

ω

(
e−iωτ2 − 1

)
dτ2dω

=
1

2π

∫ ∞
−∞

C(ω)
i

ω

[
i

ω
e−iωτ2 − τ2

∣∣∣∣t
0

]
dω

=
1

2π

∫ ∞
−∞

C(ω)

ω2

(
1− e−iωt − iωt

)
dω

=
1

2π

∫ ∞
−∞

C(ω)

ω2
[(1− cos(ωt)) + i (sin(ωt)− ωt)] dω (B.106)
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and via the detailed balance relation, we find:

g(t) =
1

2π

∫ ∞
−∞

C ′′(ω)
coth(β~ω/2) + 1

ω2
[(1− cos(ωt)) + i (sin(ωt)− ωt)] dω

=
1

2π

∫ ∞
−∞

1− cos(ωt)

ω2
coth(β~ω/2)C ′′(ω)dω +

i

2π

∫ ∞
−∞

sin(ωt)− ωt
ω2

C ′′(ω)dω

(B.107)

where some terms vanish by inspection due to even/odd symmetry.

We have now derived a representation of the dephasing lineshape function g(t) in

terms of the spectral density C ′′(ω), which has the benefit of separating temperature

dependence in a single coth(β~ω/2) factor. Strictly speaking, the spectral density

characterizes the system-bath coupling and not the bath degrees of freedom alone.

For an identical system different transitions may have different corresponding spectral

densities due to different frequency-dependent coupling strengths. In the literature,

spectral densities have been derived for different model systems, but these calculations

are out of the scope of our discussion.

B.3.5.3 The Spectral Density and the Spectral Density

A point of caution: some references define the spectral density as J(ω):

J(ω) =
πD(ω)c2(ω)

2ω
(B.108)

where D(ω) is the density of states of the harmonic reservoir and c2(ω) represents

the system-reservoir coupling strength. Others define it as C ′′(ω), which is the anti-

symmetric component of F{C(t)}. The two are related by:

C ′′(ω) = ω2J(ω) (B.109)
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Care must be taken to distinguish between C ′′(ω) (which has units of frequency) and

J(ω) (which has units of inverse frequency). The spectral density used in this thesis,

that of a spherical quantum dot, is derived as J(ω).

References

(1) Mukamel, S., Principles of Nonlinear Optical Spectroscopy, 1st ed.; Oxford Uni-

versity Press: 1999.
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APPENDIX C

Sideband Lineshapes in Multi-Dimensional Spectra

In this Appendix we show straightforward extensions of the procedure outlined

by Siemens et al. [1] to fit lineshapes of sidebands in one-quantum and zero-quantum

spectra.

C.1 One-Quantum Spectra

Time-Domain Signal

We consider the case of a rephasing signal resulting from excitation and emission

frequencies ω1 and ω2 respectively (ignoring dynamics during T ), and assume perfectly

correlated inhomogeneous broadening between the two transitions with dephasing

rates γ1 and γ2:

s(t, τ) = Θ(t)Θ(τ)e−γ1τe−γ2t

∫
e−i[(ω1+∆ω)τ−(ω2+∆ω)t]e−

∆ω2

2σ2 d∆ω

= Θ(t)Θ(τ)e−γ1τe−γ2te−iω1τe+iω2t F
{
e−

∆ω2

2σ2

}∣∣∣∣
t−τ

∝ Θ(t)Θ(τ)e−γ1τe−γ2te−iω1τe+iω2te−
σ2

2
(t−τ)2

(C.1)
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Defining the new time variables:

t′ =
1

2
(t+ τ) τ ′ =

1

2
(t− τ) (C.2)

We recast the time-domain signal:

s(t′, τ ′) = Θ(t′ + τ ′)Θ(t′ − τ ′)e−γ1(t′−τ ′)e−γ2(t′+τ ′)e−iω1(t′−τ ′)e+iω2(t′+τ ′)e−2σ2τ ′2 (C.3)

New Transform Axes

It is important to determine the specific axes that the new time-variables result

in after Fourier transform. Writing out the original transform:

f(t, τ) =

∫∫
e−i(ωtt+ωτ τ)f(ωt, ωτ )dωτdωt (C.4)

In terms of the new time variables:

f(t′, τ ′) =

∫∫
e−i[ωt(t

′+τ ′)+ωτ (t′−τ ′)]f(ωt, ωτ )dωτdωt

=

∫∫
e−i[(ωt+ωτ )t′+(ωt−ωτ )τ ′]f(ωt, ωτ )dωτdωt

We see that the natural conjugate variables for t′ and τ ′ are:

ωt′ = ωt + ωτ ωτ ′ = ωt − ωτ (C.5)

or equivalently:

ωt = ωt′ + ωτ ′ ωτ = ωt′ − ωτ ′ (C.6)

NOTE: In the rephasing pulse sequence, ωτ is negative.
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Using the Jacobian of our variable transformation:

J =

∣∣∣∣∣∣∣
dωt
dωt′

dωt
dωτ ′

dωτ
dωt′

dωτ
dωτ ′

∣∣∣∣∣∣∣ = −1− 1 = −2 (C.7)

We change the variables of integration:

f(t′, τ ′) = 2

∫∫
e−i(ωt′ t

′+ωτ ′τ
′)f(ωt′ , ωτ ′)dωτ ′dωt′ (C.8)

Shift and Projection

We now shift the signal to the origin in our τ ′ and t′ coordinates via multiplication

by e+iω1(t′−τ ′)τ ′e−iω2(t′+τ ′):

sorigin(t′, τ ′) = Θ(t′ + τ ′)Θ(t′ − τ ′)e−γ1(t′−τ ′)e−γ2(t′+τ ′)e−2σ2τ ′2 (C.9)

The projections along t′ and τ ′ are then:

sproj,t′ =

∫ ∞
−∞

sorigin(t′, τ ′)dτ ′ = e−(γ1+γ2)t′
∫ t′

−t′
e(γ1−γ2)τ ′e−2σ2τ ′2dτ ′ (C.10)

sproj,τ ′ =

∫ ∞
−∞

sorigin(t′, τ ′)dt′ = e(γ1−γ2)τ ′e−2σ2τ ′2
∫ ∞
|τ ′|

e−(γ1+γ2)t′dt′ (C.11)

where the Heaviside functions are accounted for by change of integration limits.

Inhomogeneous Limit

In the inhomogeneous limit (σ � γ1, γ2) the signal decays along τ ′ much faster

than along t′. In the integral along τ ′ we can approximate the Gaussian portion of

the kernel as a delta function. In the integral along t′, we can approximate the lower
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limit as 0. These two limits give:

sproj,t′ = e−(γ1+γ2)t′
∫ t′

−t′
e(γ1−γ2)τ ′δ(τ ′)dτ ′ = e−(γ1+γ2)t′Θ(t′) (C.12)

sproj,τ ′ = e(γ1−γ2)τ ′e−2σ2τ ′2
∫ ∞

0

e−(γ1−γ2)t′dt′ = e(γ1−γ2)τ ′e−2σ2τ ′2 (C.13)

which then give the frequency domain lineshapes in the inhomogeneous limit:

Sslice(ωt′) ∝
1

(γ1 + γ2) + iωt′
(Cross-Diagonal) (C.14)

Sslice(ωτ ′) ∝ e−
ω2
τ ′

8σ2 (Diagonal) (C.15)

where we’ve assumed γ1 − γ2 � σ.

C.2 Zero-Quantum Lineshapes

The lineshapes of zero-quantum spectra can be derived by the same method, with

inclusion of an intermediate zero-quantum coherence with a dephasing rate of γT :

s(t, T, τ) = Θ(t)Θ(T )Θ(τ)e−γ1τe−γ2te−γTT
∫
e−i[(ω1+∆ω)τ−(ω2+∆ω)t]ei(ω2−ω1)T e−

∆ω2

2σ2 d∆ω

= Θ(t)Θ(T )Θ(τ)e−γ1τe−γ2te−γTT ei(ω2−ω1)T e−iω1τe+iω2t

∫
ei∆ω(t−τ)e−

∆ω2

2σ2 d∆ω

= Θ(t)Θ(T )Θ(τ)e−γ1τe−γ2te−γTT ei(ω2−ω1)T e−iω1τeiω2t F
{
e−

∆ω2

2σ2

}∣∣∣∣
t−τ

= Θ(t)Θ(T )Θ(τ)e−γ1τe−γ2te−γTT ei(ω2−ω1)T e−iω1τeiω2t
[
e−

σ2

2
t′2
]
t′=t−τ

= Θ(t)Θ(T )Θ(τ)e−γ1τe−γ2te−γTT ei(ω2−ω1)T e−iω1τeiω2te−
σ2

2
(t−τ)2

(C.16)
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Shift frequency domain peak to origin:

sorigin(t, T, τ) = s(t, T, τ)e−i(ω2−ω1)T e−iω2t

= Θ(t)Θ(T )Θ(τ)e−γ1τe−γ2te−γTT e−iω1τe−
σ2

2
(t−τ)2

(C.17)

Project onto T axis:

sproj(T ) =

∫ ∞
−∞

sorigin(t, T, τ)dt

= Θ(t)Θ(T )Θ(τ)e−γ1τe−γTT e−iω1τ

∫ ∞
0

e−γ2te−
σ2

2
(t−τ)2

dt

= Θ(t)Θ(T )Θ(τ)e−(γ1+γ2)τe−γTT e−iω1τ

∫ ∞
−τ

e−γ2t′e−
σ2

2
t′2dt′ (C.18)

In the inhomogeneous limit:

sproj(T ) = Θ(t)Θ(T )Θ(τ)e−(γ1+γ2)τe−γTT e−iω1τ (C.19)

which gives the lineshape:

Sslice(ωT ) = Θ(t)Θ(τ)e−(γ1+γ2)τe−iω1τF
{
e−γTTΘ(T )

}
(C.20)

∝ Θ(t)Θ(τ)e−(γ1+γ2)τe−iω1τ
1

γT − iωT
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APPENDIX D

Absorption Characteristics of Perovskite

Nanocrystals

Reproduced in part with permission from:

A. Liu, L. G. Bonato, F. Sessa, D. B. Almeida, E. Isele, G. Nagamine, L. F.

Zagonel, A. F. Nogueira, L. A. Padilha, and S. T. Cundiff. ”Communication: Ef-

fect of Dimensionality on the Optical Absorption Properties of CsPbI3 Perovskite

Nanocrystals”. J. Chem. Phys. 151, 19 (2019).

c© 2019 AIP Publishing.

In this Appendix, we present the absorption characteristics of CsPbI3 perovskite

nanocrystals discussed in Chapters VI and VII.

D.1 CsPbI3 Nanocube Absorption

CsPbI3 nanocube absorption spectra normalized to the lowest-energy 1S exciton

absorption peak at temperatures ranging from 4 K to 140 K are plotted in Fig. D.1.
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Figure D.1: Absorption spectra of CsPbI3 nanocrystals at temperatures ranging from
4 K to 140 K as indicated. The full-range spectra are plotted inset, while the 1S
exciton peak outlined by the dashed box is shown in the main plot. The specific
temperatures plotted are indicated by the data in Fig. D.2(b).

Although multiple peaks are observed that correspond to distinct exciton transi-

tions, here we focus on the 1S exciton absorption peak that reflects the fundamental

electronic band-gap (energy-gap) of the nanocrystals. As temperature increases the

band-gap exhibits a pronounced blue-shift to higher energies, which is contrary to

the red-shift observed in most solids. In the literature, this phenomenon has been

referred to as an anomalous band-gap shift [1–4].

To quantify the band-gap shift, we fit the peaks with Gaussian lineshapes that

reflect the size distribution of the nanocrystals. As shown in Fig. D.2(a), we fit only

the top of each peak due to absorption tails present at lower temperatures. The

widths σ of each Gaussian fit, allowed to vary freely, do not change significantly with

temperature (mean width 41.81 meV and standard deviation 3.37 meV). The fitted

Gaussian center energies (which agree closely with center energies found from a fourth-

order polynomial fit) are plotted in Fig. D.2(b), which reveals interesting behavior at

temperatures below 50 K. Specifically, two clear inflection points at 20 and 30 K are

observed that reveal more complicated band-gap behavior than previously reported

for photoluminescence measurements of similar perovskite nanocubes [4].
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D.1.1 Vibrational Band-Gap Renormalization

The dependence of the electronic band-gap on temperature T may be expressed

as [3, 5]:

Eg(T ) = E0 + AT +
∑
n

Bn

(
1

e~ωn/kBT − 1
+

1

2

)
. (D.1)

The first term E0 is the intrinsic material band-gap at T = 0, and the coefficient

A in the second term characterizes the change in band-gap due to lattice unit cell

expansion/contraction (in the so-called quasi-harmonic approximation [5]). Here the

change in quantum confinement energy due to expansion/contraction of nanocrystal

volume, which we expect to be negligible at low temperatures [6], is ignored. The

third term then represents renormalization of the band-gap due to electron-phonon

interactions, where n is summed over all phonon branches and all wave-vectors within

the Brillouin zone for each branch. Bn and ~ωn are the electron-phonon coupling

strength and vibrational energy respectively for mode n. Whether Bn is positive or

negative, resulting in an increase or decrease of the band-gap respectively, arises from

a complex interplay of microscopic dynamics and cannot be predicted easily from

the properties of a given phonon branch [1, 7]. However, accounting for all possible

phonon branches throughout the Brillouin zone is often unnecessary in modeling the

behavior of real systems. Instead, one [8] or two [1] vibrational modes are usually

assumed dominant (referred to as one-oscillator and two-oscillator models) which

reduces the summation to either one or two terms respectively.

Here, we find both the one-oscillator and two-oscillator models to be insufficient

in modeling the band-gap temperature dependence observed for CsPbI3 nanocubes.

As mentioned above, two inflection points are observed that necessitate at least three

dominant vibrational modes that independently renormalize the band-gap. A least-

squares fit of the band-gap temperature dependence to this three-oscillator model
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Figure D.2: (a) Gaussian peak fits of CsPbI3 absorption spectra at three representa-
tive temperatures 4, 90, and 140 K. A low-energy absorption tail, indicated by the
shaded gray region, forms at low temperature. (b) Dark-blue dots show fitted Gaus-
sian center energy as a function of temperature, which reflects the material band-gap.
A two-oscillator (2-O) model using the fitted parameters from Saran et al. [4] and a
fit to the three-oscillator (3-O) model described in the text are then plotted as the
dashed black curve and solid light-blue curve respectively. The fitted Gaussian widths
σ are plotted inset.

is plotted in Fig. D.2(b), where good agreement is observed at both high and low

temperatures. The fitted parameters are E0 = 1916.9 meV, A = 0.3 meV/K, ~ω1 =

5.38 meV, ~ω2 = 5.91 meV, ~ω3 = 17.02 meV, B1 = −698.01 meV, B2 = 821.67

meV, and B3 = −217.39 meV. Instead of the acoustic and optical phonon categories

that are usually invoked for two-oscillator models [3, 4], a three-oscillator model in

perovskite materials align more naturally to the bending, stretching, and rocking

perovskite vibrational modes that possess distinct ranges of vibrational energies [9].

We note that although the two-oscillator model was recently invoked by Saran

et al. to model the temperature dependence of photoluminescence center energy in

perovskite nanocrystals [4], the data points taken at low temperatures (below 50

K) were too sparse to resolve the two inflection points we observe. Their resultant

fitted band-gap dependence is plotted in Fig. D.2b for comparison. In contrast to

features in absorption spectra, which are simply proportional to the oscillator strength

of each optical transition, features in photoluminescence spectra depend on many
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other temperature-dependent factors such as the equilibrium fine-structure carrier

distribution [10, 11] and emission Stokes shifts [12]. It is therefore unclear whether

the apparent two-oscillator behavior of their measurements on CsPbI3 nanocubes

was due to coarse-graining effects or the above confounding factors in temperature-

dependent photoluminescence.

D.1.2 Band-Tailing in Absorption Spectra

Lower-energy absorption tails are observed. For ideal nanocubes, the exciton

density of states are comprised of delta functions that result in roughly Gaussian

absorption peaks (reflecting the nanocrystal size distribution). Absorption tails at

lower-energy are therefore indicative of corresponding tails of the electronic density

of states, often attributed to impurities [13] or surface states [14]. As shown in

Fig. D.2(a), the absorption peak is Gaussian at 140 K and develops a lower-energy

tail with decreasing temperature. We attribute this tail to shallow defect states

surrounding the valence band-edge that have been shown to arise from lattice point

defects [15]. At high temperatures valence band electrons populate the band-edge

in a thermal equilibrium distribution. At low temperatures those electrons then

fill the defect states from lowest energy upwards, which comprise a Halperin-Lax

type distribution [16] with a exp(
√
E) dependence [17, 18]. The disappearance of

the tail at 140 K thus suggests a few-meV (comparable to the 140 K Boltzmann

energy of 12 meV) defect state energy distribution. Although in principle such defect

state absorption should manifest in photoluminescence spectra as well, no clear band-

tailing was observed in low-temperature photoluminescence measurements [4]. This

is unsurprising, since above-gap excitation results in competing band-edge and defect

state relaxation pathways and emission Stokes shifts (on the order of tens of meV

in perovskite nanocrystals [4, 19]) likely differ for defect transitions. For additional

comparison, absorption measurements were also performed on CsPbBr3 nanocubes
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[20]. Although a large anomalous band-gap shift was observed (approximately 40

meV from 6 to 140 K), no absorption tail forms at low temperatures.

D.2 CsPbI3 Nanoplatelet Absorption

Electron-phonon coupling that renormalizes the CsPbI3 bandgap should depend

strongly on dimensionality in nanocrystals. In particular, lowering dimensionality

should reduce electron-phonon coupling by restricting certain vibrational modes. To

investigate the effect of lattice dimensionality on electron-phonon coupling, we repeat

the same temperature-dependent absorption measurements on CsPbI3 nanoplatelets.

At room-temperature, a single nanoplatelet absorption peak is observed that is blue-

shifted relative to the nanocube band-gap due to strong quantum confinement in the

out-of-plane direction. At cryogenic temperatures, shown in Fig. D.3, the absorption

spectrum changes in two surprising ways. First, the nanoplatelet absorption peak con-

tinues narrowing below 140 K (with no absorption tail), in contrast to the nanocube

absorption peak width that remains constant at low temperatures. Second, an ad-

ditional lower-energy peak also appears with decreasing temperature (see Fig. D.3a)

which, due to its center energy, we attribute to co-synthesized CsPbI3 nanocubes.

Again fitting the nanoplatelet absorption peaks to Gaussian lineshapes, the fitted

center energies are plotted in Fig. D.3b. The nearly-linear anomalous band-gap shift

indicates weakened electron-phonon interactions and greater importance of band-

gap renormalization due to unit cell expansion/contraction with temperature. To

quantify these changes, we perform a linear fit of the center energy temperature-

dependence. The fitted parameters are E0 = 2055.4 meV and A = 0.2 meV/K,

where A is comparable to its corresponding nanocube value. Therefore, decreasing

dimensionality greatly reduces vibrational band-gap renormalization without strongly

affecting that due to changes in unit cell size.
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Figure D.3: (a) Absorption spectra of CsPbI3 nanoplatelets at three representative
temperatures 6, 80, and 140 K. In addition to the main nanoplatelet absorption
peak, a weak nanocube absorption peak at lower energy appears at low temperatures.
Inset shows comparison between 6 K and room-temperature absorption spectra. (b)
Nanoplatelet center energies obtained from the absorption peak fits as a function
of temperature, which reflects the material band-gap. A linear fit is plotted as the
solid blue curve. The fitted Gaussian widths are plotted inset, which monotonically
decrease with decreasing temperature.
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APPENDIX E

Nitrogen-Vacancy Centers in Diamond

In this Appendix, we present results on nitrogen-vacancy centers in diamond.

Vacancy centers in diamond [1, 2] have attracted sustained interest due to their ex-

ceptional optical properties. In particular, nitrogen-vacancy (NV) centers [3], the

most well-studied of all defects in diamond, has found a variety of potential applica-

tions such as nanoscale sensors [4], solid-state qubits [5], and single-photon emitters

[6].

However, an obstacle to practical implementation of NV centers in devices is

their non-zero electric dipole moment that leads to spectral instability and linewidth

broadening [7]. Other defects with inversion symmetry, most notably silicon-vacancy

(SiV) centers, have proven less sensitive to their environment but possess their own

disadvantages such as low internal quantum efficiencies (i.e. up to around 10% for

SiV centers [8] compared to over 70% for NV centers [9]). There has thus been much

recent effort towards engineering environmentally insensitive NV centers [10, 11], but

doing so systematically and rationally will require a greater understanding of the

fundamental interactions between NV centers and their environment.

Specifically, the dynamics of NV centers at both ultrafast timescales (≤ ps) and

low temperatures remains largely unexplored. In this regime, the physical processes
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that lead to environmental perturbations of NV centers may be characterized by

observing broadening of their optical transition linewidth. We further desire their

ensemble-averaged properties, which inform us about the underlying physics without

being biased by single exceptional centers. Unfortunately, the homogeneous properties

of NV centers are obscured in ensemble measurements by inhomogeneous broadening

that arises from locally varying electric field and strain.

E.1 Sample

Nitrogen

Carbon

Vacancy

(a) (b)

Figure E.1: (a) Diagram of a nitrogen vacancy center in diamond. (b) Absorption
spectrum of the studied sample at 20 K. A narrow zero-phonon line is observed at 1946
meV (637 nm) on top of a broad phonon sideband that extends to higher energies.
The spectrum of our MDCS excitation pulses is shown by the dashed orange line.

The sample studied is type Ib bulk diamond with a high density of single-substitutional

nitrogen defects. Vacancy centers were introduced by irradiation with 1 MeV electrons

and subsequent annealing, resulting in an ambient charged vacancy center (NV−) den-

sity of 1-2 ppm. The atomic structure of such a center is shown in Fig. E.1a, which

consists of a vacancy point-defect and an adjacent nitrogen substitution. This gives

rise to a cryogenic absorption spectrum as shown in Fig. E.1b, consisting of a narrow

zero-phonon line (ZPL) and an adjacent phonon sideband. We center our excitation

laser spectrum on the ZPL as shown, and our narrow pulse bandwidth (compared to

the known discrete vibrational modes [12, 13]) means that we predominantly mea-
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sure the ZPL resonance of NV− without other phonon-assisted transitions. The ZPL

center energy is known to shift with temperature [14, 15] due to lattice interactions

[16], but is relatively stationary in our measurements performed below 150 K. NV

centers in their neutral charge state (NV0) have a higher energy transition energy of

2156 meV (575 nm) and are not excited in our experiment.

E.2 Thermal Dephasing

One-quantum spectra at temperatures 15 K and 120 K are shown in Fig. E.2a and

E.2b. The vertical ~ωτ is opposite in sign to the horizontal ~ωt axis due to inverse

phase-evolution during delays τ and t. Strong inhomogeneous broadening of the ZPL

transition manifests as peak elongation along the diagonal (|~ωτ | = |~ωt|) direction

[17], while lineshapes in the orthogonal cross-diagonal direction reflect homogeneous

broadening. However, homogeneous (γ = 1/T2) and inhomogeneous (standard devi-

ation σ of a Gaussian transition frequency distribution) broadening are completely

separated in each direction only for systems dominated by inhomogeneous broadening

(σ � γ). To extract γ and σ in the presence of moderate inhomogeneous broadening,

as in NV centers, lineshapes in the diagonal and cross-diagonal directions must be

simultaneously fit [17]. The experimental and fitted cross-diagonal lineshapes for each

temperature are shown in Fig. E.2c and E.2d, with the resultant fitted one-quantum

spectra plotted inset.

The temperature dependence of γ is plotted in Fig. E.2e, where the observed

exponential increase in dephasing rate γ with temperature is characteristic of pure

dephasing due to elastic interactions with discrete phonons. The thermal dephasing

may be modeled by a linear dependence on the phonon mode occupation [18]:

γ(Ts) = γ0 +
γ∗

eEph/kBTs − 1
(E.1)
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where γ0 is the intrinsic zero-temperature dephasing rate, γ∗ is the thermal dephasing

amplitude, Ts is the sample temperature, and Eph is the phonon energy of the optical

phonon responsible. A least-squares fit to the data is plotted as a solid line in Fig.

E.2e, with fitted parameters γ0 = 5.94 GHz, γ∗ = 1255 GHz, and Eph = 34.4 meV.
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Figure E.2: One-quantum spectra taken at T = 200 fs and temperatures (a) 15 K
and (b) 120 K. The solid black line indicates the respective excitation laser spectrum
at each temperature. Elongation along the diagonal direction reflects inhomogeneous
broadening of the ZPL transition. (c-d) Experimental and fitted cross-diagonal line-
shapes are plotted at each temperature, with the resultant fitted one-quantum spectra
inset. The slice positions at |~ωτ | = |~ωt| = 1945 meV are indicated by the dashed
red arrow in (b). (e) Fitted values of γ at temperatures increasing from 6 K to 140 K.
The exponential increase in γ is fitted to a localized phonon dephasing model and
plotted as the solid orange curve. (f) Fitted values of γ, taken at two different sam-
ple locations and 10 K, as a function of waiting time T . A monotonic increase in
linewidth is observed as T increases from 1 ps to 2 ns, which is fitted as shown to
linear spectral diffusion rates of 0.32 MHz/ps and 0.25 MHz/ps at each location.

It is known that the presence of an NV center modifies the vibrational spectrum

of bulk diamond by introducing localized vibrational modes [19], whose vibrational

amplitude decreases exponentially away from the center. In addition, these localized
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modes may hybridize with various vibrational modes of the bulk diamond lattice

and give rise to so-called quasi-localized vibrations [20] that are known to modify

electronic dynamics [12]. The vibrational mode that matches the activation energy

34.4 meV most closely is a quasi-localized mode of (calculated) measured energy

(31.62) 32.11 meV [12, 20–22], which involves vibrations of carbon atoms almost

exclusively.

E.3 Ultrafast Spectral Diffusion

MDCS also enables the powerful capability to probe ultrafast spectral diffusion.

While pulses A and C probe absorption and emission dynamics of the sample, the

second pulse may be thought to induce a population state whose energy will vary

in time. As the waiting time T between pulses B and C increases, absorption and

emission energies of a resonance become less correlated and broadening in the cross-

diagonal direction occurs. For systems with strong spectral diffusion, simultaneous

broadening and distortion of the cross-diagonal lineshape occurs which allows extrac-

tion of the frequency-frequency correlation function [23] that quantifies the resonance

energy fluctuations. However, we find that broadening of NV center lineshapes is too

weak (within our experimental T delay limit) to perform such an analysis. We there-

fore plot a dependence of γ on waiting time T in Fig. E.2f, which provides an effective

measure of spectral diffusion at ultrafast timescales. From measurements taken at

two different locations on our sample, as T is increased from 1 ps to 2 ns the fitted

effective dephasing rate γ increases at 0.32 MHz/ps and 0.25 MHz/ps. In a previous

photon correlation study of NV centers in nanodiamonds [24] ultrafast spectral diffu-

sion was found to occur only with simultaneous 532 nm excitation, which implicated

impurity photo-ionization and subsequent charge trapping as the underlying mecha-

nism. Our measurements of spectral diffusion, which involve only resonant excitation

of the ZPL, indicate that spectral diffusion of NV centers in bulk diamond may occur
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due to other mechanisms such as reorganization of the surrounding diamond lattice

following optical excitation.

E.4 Picosecond-Timescale Population Relaxation
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Figure E.3: (a) Simplified electronic level diagram consisting of the ground and excited
states spin triplet manifolds 3A2 and 3E respectively as well as the spin singlet shelving
state 1A1. (b) Dependence of the integrated FWM signal on population time T at
10 K, which exhibits a fast exponential decrease due to the intersystem crossing.
(c) Dependences of the branching ratio AISC and intersystem crossing time τISC as a
function of temperature.

We now examine the waiting time dependence of the total integrated FWM signal,

which measures ultrafast population relaxation dynamics. A simplified electronic level

diagram of NV centers is shown in Fig. E.3a, consisting of the ground and excited

spin triplet manifolds 3A2 and 3E respectively and the spin singlet shelving state

1A1. Upon optical excitation into 3E, an electron may relax either radiatively into

3A2 by emitting 637 nm luminescence or non-radiatively via intersystem crossing

(ISC) into 1A1. While the radiative recombination time of the optical 3E to 3A2

transition is known to be 10 ns [25, 26], the timescale of the ISC has been known to
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involve sub-nanosecond dynamics [27]. However, the ISC has only been investigated

via time-resolved fluorescence measurements that are only sensitive to dynamics on

the nanosecond timescale [28] and the branching ratio between the two relaxation

pathways, crucial information for the spin-polarization cycle, has remained unknown.

To measure the population relaxation dynamics on the sub-nanosecond timescale,

the T dependence of the integrated FWM signal at 10 K is plotted in Fig. E.3b,

which reveals a fast exponential decay that directly reflects the ISC relaxation time.

We thus fit the measured T dependence to a decaying exponential and include an

offset that corresponds to the 10 ns radiative relaxation timescale that is beyond our

experimental T delay limit (equation shown in Fig. E.3b). For the T dependence

at 10 K, the fitted branching ratio and ISC relaxation time are AISC = 1.61 and

τISC = 99.5 ps respectively. We then repeated the same measurements at temperatures

up to 25 K, and plot the fitted values of AISC and τISC in Fig. E.3c. A marked

increase in branching ratio with temperature is apparent which indicates, from the

low Boltzmann energies in this temperature range, that the intersystem crossing arises

from coupling to low-energy acoustic vibrational modes.

E.5 Temperature-Dependent Level Shifts

Curiously, as shown in Fig. E.4a the fitted inhomogeneous linewidth σ shrinks as

temperature increases to 50 K before increasing monotonically afterwards. To exam-

ine this behavior more closely the diagonal slices are plotted in Fig. E.4b as a function

of temperature. As indicated by the dashed arrows, increasing temperature results in

the formation of two distinct lobes in the diagonal slice lineshape due to two families

of NV centers that possess different temperature-shifts of the optical resonance. We

tentatively propose that these two families physically originate from the four different

orientations NV centers adopt in their diamond host lattice. Temperature-dependent

anisotropic strain would shift the energy levels of different orientations in different
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directions, which has recently been demonstrated in SiV centers [29]. We modeled

this system as two independent Gaussian distributions with temperature-dependent

parameters, which reproduced the data well (shown inset in Fig. E.4b). An absence

of sidebands in the one-quantum spectra also indicates that the two families observed

are not coherently coupled in any significant way.
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Figure E.4: (a) Fitted values of σ at temperatures increasing from 6 K to 140 K. (b)
Respective diagonal slices at the temperatures in (a). Fits to a two-Gaussian model
are shown inset. The energy shifts of the two fitted Gaussians are indicated by the
dashed arrows in the main plot. The fitted two-Gaussian lineshapes are plotted inset.

We note that this energy splitting between two families has not been measured in

single NV center studies due to spectral diffusion and would also be obscured in en-

semble absorption and luminescence measurements, since the homogeneous linewidth

is similar to the splitting energy. However, because homogeneous and inhomogeneous

broadening are largely decoupled in a one-quantum spectrum along their respective

orthogonal directions, the diagonal lineshape directly reflects the resonance frequency
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distribution and reveals the temperature-dependent splitting.
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Letters 2013, 110, 027401.

158



(25) Collins, A. T.; Thomaz, M. F.; Jorge, M. I. B. 1983, 16, 2177–2181.

(26) Ulbricht, R.; Loh, Z.-H. Physical Review B 2018, 98, 094309.

(27) Acosta, V. M.; Jarmola, A.; Bauch, E.; Budker, D. Physical Review B 2010,

82, 201202.

(28) Goldman, M. L.; Sipahigil, A.; Doherty, M. W.; Yao, N. Y.; Bennett, S. D.;

Markham, M.; Twitchen, D. J.; Manson, N. B.; Kubanek, A.; Lukin, M. D.

Physical Review Letters 2015, 114, 145502.

(29) Meesala, S. et al. Physical Review B 2018, 97, 205444.

159



APPENDIX F

Sample Preparation

F.1 Resuspension of Nanocrystals

We receive samples of nanocrystals suspended in various solvents such as toluene

or hexane. However, for low-temperature measurements we resuspend the nanocrys-

tals in heptamethylnonane (Sigma Aldrich 128511), a branched alkane that forms a

transparent glass at cryogenic temperatures.

1. Measure mass of separate vial. Pipette 1-2 mL of the sample into vial.

2. Blow nitrogen gas over sample to evaporate original solvent.

3. Measure vial mass again to calculate mass of nanocrystals.

4. Pipette appropriate volume of heptamethylnonane into vial to reach desired

optical density (typically 0.3 at 1S exciton peak).

F.2 Sample Holder

To study colloidal nanocrystals at cryogenic temperatures, we hold each colloidal

suspension in a custom copper sample holder that is mounted to a cold-finger cryostat
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(Janis ST-100). The sample holder is composed of an inner and outer component.

A schematic of the inner component is shown in Fig. F.1, which is composed of

two outer copper rings that clamp together two wedged sapphire discs (Meller Optics

SCD2506-01B) spaced 0.5 mm apart.

Figure F.1: Isometric (left) and projection (right) views of the inner component.

A schematic of the outer component is shown in Fig. F.2, which clamps the inner

component in a cryostat mount.

Figure F.2: Isometric (left) and front (right) views of the outer component.

F.3 Inner Component Loading Procedure

1. Agitate nanocrystals in vial by stirring in vortex mixer or sonicator.
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2. If unloading sample: Unscrew inner component on kimwipes to absorb excess

nanocrystals. Use polymer tweezers to remove kevlar ring and push on sides

of sapphire disks to remove from copper. Clean copper with methanol and

kimwipes. Remove indium rings from sapphire disks. To clean sapphire disks,

add 2 drops of methanol on one side of disk. Put that side face down on lens

tissue. Add 2 more drops on other side. Fold tissue on top and drag over with

finger to clean both sides. If too dirty, use toluene.

3. Push indium rings (0.1” thickness) into copper holders.

4. Locate thick side of each sapphire disk. Align each disk to opposite sides of the

marked holes on each copper ring such that when the sample is screwed together,

the thick side of each sapphire disk aligns to each other. After aligning, push

sapphire disks into copper.

5. Using tweezers, close them and dip into cement. Put cement on edge of copper

and sapphire. Do at 3 points opposite each hole.

6. Apply rubber cement to kevlar ring with foam q-tip until shiny. Put ring in the

middle of the sapphire disk of the bottom half.

7. Pipette 45 µL of nanocrystals into kevlar ring. With other half ready with

screws inside, attach sandwich using alignment tool.

F.4 Outer Component Mounting Procedure

1. Apply N-grease to inner sides of the cryostat mount until shiny.

2. Push indium rings (0.11-0.12” thickness) into inner sides.

3. Clamp the inner component by tightening screws gradually in succession.

4. Apply N-grease to temperature sensor until shiny and clamp onto long screw.
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