- 1 Running head: Counting niches in a Neotropical forest
- 2 Title: Counting niches: Abundance-by-trait patterns reveal niche partitioning in a Neotropical
- 3 forest
- 4 Authors: Rafael D'Andrea^{1,2,7}, John Guittar^{1,3,8}, James P. O'Dwyer², Hector Figueroa¹, S. J.
- 5 Wright^{4,9}, Richard Condit^{5,6} and Annette Ostling¹
- 6
- 7 ¹Dept. Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- 8 ²Dept. Plant Biology, University of Illinois, Urbana-Champaign, IL, USA
- 9 ³Dept. Plant Biology, Michigan State University, Hickory Corners, MI, USA
- ⁴Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Republic of Panama
- ⁵Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA
- ⁶Morton Arboretum, 4100 Illinois Rte. 53, Lisle, IL 60532, USA
- 13

⁷ Corresponding author. E-mail: <u>rdandrea@illinois.edu</u>; ORCID 0000-0001-9687-6178

- 15 ⁸ ORCID 0000-0002-8897-8841
- 16 ⁹ ORCID 0000-0003-4260-5676
- 17 Abstract

18 Tropical forests challenge us to understand biodiversity, as numerous seemingly similar species

19 persist on only a handful of shared resources. Recent ecological theory posits that biodiversity is

- 20 sustained by a combination of species differences reducing interspecific competition and species
- 21 similarities increasing time to competitive exclusion. Together, these mechanisms
- 22 counterintuitively predict that competing species should cluster by traits, in contrast with
- traditional expectations of trait overdispersion. Here, we show for the first time that trees in a
- tropical forest exhibit a clustering pattern. In a 50 ha. plot on Barro Colorado Island in Panama,
- 25 species abundances exhibit clusters in two traits connected to light capture strategy, suggesting
- that competition for light structures community composition. Notably, we find four clusters by
- 27 maximum height, quantitatively supporting the classical grouping of Neotropical woody plants
- 28 into shrubs, understory, midstory, and canopy layers.
- 29

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1002/ECY.3019

This article is protected by copyright. All rights reserved

Keywords 30

Niche differentiation, Trait-based clustering, Self-organized similarity, Emergent neutrality, 31

- 32 Competition, Tropical forests, Barro Colorado Island, Community structure.
- 33

56

Introduction 34

A basic principle of community ecology is that coexistence requires niche differentiation, i.e. 35 species differences that stabilize communities by reducing interspecific competition. However, 36 the high diversity and seemingly continuous phenotypic variation of trees in tropical forests 37 raises questions about the importance of niche differentiation as a contributor to species co-38 occurrence and patterns of diversity, relative to other community assembly processes such as 39 dispersal and ecological drift (Hubbell 2001, Levine and Murrell 2003, Mouquet and Loreau 40 2003, Chase and Myers 2011). Indeed, neutral models reflecting chance events provide a good fit 41 to the distribution of species abundances in tropical forests (Hubbell 2001, Volkov et al. 2003), 42 although other studies have found evidence of niche differentiation (Kraft and Ackerly 2010, 43 Götzenberger et al. 2012). One likely reason for these mixed results is a lack of model-validated 44 45 quantitative predictions for how niche-based competition shapes community trait structure. Classical theory posits that only species whose trait differences are large enough to 46 sufficiently lower interspecific competition will stably coexist. Hence, attempts to find evidence 47 of niche differentiation in nature typically look for greater-than-chance differences in trait values 48 49 among species (Chase and Leibold 2003, Kraft et al. 2008, Lake and Ostling 2009, Kraft and Ackerly 2010, Götzenberger et al. 2012, D'Andrea and Ostling 2016). However, competition can 50 51 produce counterintuitive patterns. If two resident species are not distant enough from each other

in trait space to allow a third species with an intermediate trait value to invade, the potential 52

53 invader has higher fitness if it is similar to one of the residents than if it is maximally different 54 from both (MacArthur and Levins 1967). This is because the increase in competition with the

close resident is more than compensated by the decrease in competition with the other resident. 55

When this phenomenon is extrapolated to multispecies communities, species are competitively excluded at rates inversely related to trait distance from the nearest trait optimum (D'Andrea and 57

58 Ostling 2017). As competition among species proceeds, a transient pattern arises characterized

by distinct clusters of species with similar traits, centered around locally optimal ecological 59

strategies (Scheffer and van Nes 2006). While competition among species in each cluster 60

eventually leads to exclusion of all but the most competitive species, the similar strategies among 61 the species renders their dynamics near-neutral; indeed, clusters can persist indefinitely under 62 restorative forces such as immigration (D'Andrea et al. 2019), environmental fluctuations 63 (Sakavara et al. 2018), and specialist enemies (Scheffer and van Nes 2006, Barabás et al. 2013). 64 In other words, while classical literature predicts that niche partitioning will lead to trait 65 overdispersion, more recent literature suggests trait clusters rather than overdispersion as 66 evidence of niche partitioning. We note that the same models that predict overdispersion in 67 stable equilibrium will predict clusters as transients (Scheffer and van Nes 2006, D'Andrea et al. 68 2019). Furthermore, it has been shown that several ecological forces can maintain the clusters 69 indefinitely as a stationary state. Those forces include immigration (D'Andrea et al. 2019), 70 periodic environments (Sakavara et al. 2018), and "hidden niches", i.e. independent niche axes 71 providing extra intraspecific regulation such as specialist enemies (Scheffer and van Nes 2006, 72 Barabás et al. 2013). Given the widespread influence of these forces in nature, we expect clusters 73 to be a more general signature of niche differentiation than the stricter circumstances under 74 which overdispersion might arise. 75

76 Clustering by organismal size has been reported in animal (Scheffer and van Nes 2006) and phytoplankton communities (Sakavara et al. 2018), but is not known to occur in tropical 77 forests – a focal point for the development and tests of coexistence theory. Furthermore, previous 78 efforts to detect species clusters have typically ignored species abundances and/or relied on 79 80 arbitrary binning of trait space (Scheffer and van Nes 2006, Yan et al. 2012) or temporal data to distinguish between occasional and permanent species (Vergnon et al. 2009). However, recent 81 82 work has proposed a parameter-free method which uses trait and abundance data to identify and count the clusters, which was validated using population dynamic models of competition with 83 84 immigration (D'Andrea et al. 2019).

Here we use this approach to test whether high abundance values tend to be clustered with respect to trait values in the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama (Condit 1998, Hubbell et al. 1999, Condit et al. 2012a) (BCI). We use four morphological traits: seed mass, maximum tree height, wood density, and leaf mass per area (LMA). Seed mass is thought to reflect strategies along a tolerance-fecundity tradeoff axis (Muller-Landau 2010), whereby large-seeded species specialize in surviving stressful environmental conditions at the cost of low fecundity and vice-versa. Maximum tree height, wood density, and LMA are associated with competition for light (Kunstler et al. 2016), and as such may reflect plant
strategies related to partitioning light availability gradients both vertically (i.e. among forest
canopy layers) and horizontally (i.e. across forest patches at different stages of succession). Such
partitioning of light access is central to the forest architecture hypothesis (Kohyama 1993) and
the related successional niche hypothesis (Grime 1979, Tilman 1988).

Trait pattern indicative of a niche mechanism will likely only become evident at a spatial 97 scale above that of any spatial heterogeneity involved in the mechanisms (Kraft and Ackerly 98 2010, D'Andrea and Ostling 2016). Therefore, we look for signatures of niche partitioning at the 99 whole plot (50 ha) scale, large enough to encompass the spatial heterogeneity in patch-age since 100 disturbance involved in these niche mechanisms (Hubbell et al. 1999). Because immigration can 101 reinforce local clustering if surrounding forests have species clustered around the same trait-102 based niche optima, or mask local clustering if surrounding forests have species clustered around 103 different trait-based niche optima, we compare results at the plot-scale with results from a 104 combined pool of 40 census plots within 30km of BCI (Condit et al. 2013, 2016) (Fig. 1). 105

106

107 Methods

The Barro Colorado Island Forest Dynamics Plot is a 1,000-by-500 meter tract of tropical forest on Barro Colorado Island in Panama (Hubbell et al. 1999, Condit et al. 2012b) (Fig. 1). The plot has been censused for stems above 1 cm diameter at breast height (DBH) in 1982, 1985 and every five years through 2015. The plot contains approximately 210,000 stems with DBH \geq 1 cm, and about 300 tree species. Results shown in the main text pertain to the 2000 census; however, results are consistent across all available censuses (Appendix S1: Table S1, Figs. S3-S6).

115 We used four traits related to plant architecture, leaf structure, and seed size. Trait data, 116 drawn from Wright et al. (2010), were based on the following protocols: 1) Maximum height was estimated as the mean height of the six largest (by DBH) individuals, measured using a 117 rangefinder. 2) Wood density (g/cm³) was measured after drying at 60°C. 3) Leaf mass per area 118 (g/m^2) was measured on leaf laminae, excluding petioles and petiolules, averaged across six 119 120 individuals. For species that reach the canopy we used leaves exposed to direct sunlight --- i.e. sun leaves. For all others we used shade leaves collected from the crowns of the tallest 121 individuals in the 50 ha plot. 4) Seed mass (g) refers to endosperm plus embryo only and was 122

measured after drying at 60°C. Traits with skewed distributions (LMA and seed mass) were log transformed to reduce the skew. Palms were excluded from wood and leaf trait analyses, due to
 their substantial differences in physiology from dicots.

We restricted our analysis to reproductive individuals (adults), since population dynamic models producing emergent clusters do not consider population structure. We consider individuals to be reproductive when their DBH exceeds half the maximum DBH observed for its species, a relationship that explains over 80% of interspecific variation in reproductive size thresholds (see Visser et al. 2016: Fig. S9). Maximum DBH was estimated as the average of the six largest individuals in the BCI plot in 2005, and an additional 150 ha of mapped tree plots located within 30 km and mostly within 10 km of BCI (Visser et al. 2016).

The regional pool consists of 40 1-ha sampling sites within 30km of BCI (Condit et al. 133 134 2013, 2016). In 38 of these sites, individuals with maximum DBH > 1cm were censused in 40mby-40m internal subplots, while individuals with DBH > 10cm were censused in the entire plot. 135 136 In the remaining two plots, all individuals with maximum DBH > 10cm were censused in the entire plot. Hence, we standardized the counts by the respective sampling area to estimate 137 138 densities in these sites. Of the circa 850 species contained in these sites, trait data were available for those also found on BCI (see Table 1, caption to Fig. 1). While lack of pattern among this 139 140 subset of species in the regional pool does not rule out clustering among all species, it shows that the pattern on BCI is not simply mirroring regional-scale pattern inherited via immigration. 141

142 Our clustering metric has two foundations: the k-means clustering algorithm (MacQueen 1967), an optimization procedure which assigns species to clusters by minimizing the average 143 trait distance between individuals in the same cluster; and the gap method (Tibshirani et al. 144 2001), which compares the observed data against null distributions, and selects the number of 145 146 clusters that maximizes the difference between within-cluster trait dispersion in the observed and 147 null communities. Specifically, given a candidate number of clusters, k, the k-means algorithm finds the arrangement of species into k clusters that minimizes within-cluster trait dispersion: D_k 148 $=\frac{1}{k}\sum_{C}\sum_{i,j \in C}n_{i}n_{j}d_{ij}^{2}$, where C refers to a cluster $(1 \le C \le k)$, n_{i} is the abundance of species *i*, 149 and d_{ij} is the trait distance between species *i* and *j*. The algorithm starts with randomly chosen 150 151 trait values in the local community as possible cluster centers, then puts species into the cluster 152 whose center is the closest to them, then recalculates cluster centers, and so on until the algorithm converges or changes in D_k fall below a specified threshold. Because the result can 153

depend on the starting set of cluster centers, the procedure is repeated with different starting sets, and the final cluster arrangement with the lowest D_k across all sets is selected (note that the clusters need not be equally spaced). We use enough starting sets that larger numbers do not lower within-cluster dispersion further (typically between 1,000 and 10,000).

We then apply this k-means algorithm to 1,000 null communities, and define the gap 158 index for k clusters as $G_k = \frac{1}{1000} \sum_{\text{nulls}} \log (D_k^*) - \log (D_k)$, where D_k^* is the cluster dispersion in 159 a given null community. This index measures the degree to which trait dispersion D_k in the 160 observed community differs from its null expectation for k clusters (see Tibshirani et al. 2001, 161 D'Andrea et al. 2019 for details). Notice that tighter than expected clustering in the data for k162 clusters will lead to a positive gap G_k , and vice-versa. Finally, we find the number of clusters that 163 maximizes the gap index. We call this maximal value -- corresponding to the peak in the gap 164 curves in Figs. 2, 3 -- the gap statistic, $G = \max(G_k)$, and the value of k at which it occurs is the 165 estimated number of clusters K. We note that Tibshirani et al. 2001 refer to the gap index G_k as 166 the gap statistic, and estimate the number of clusters using a slightly different approach. Later 167 studies found deficiencies with that approach (Dudoit and Fridlyand 2002, Sugar and James 168 2003), and modifications have since been proposed (Yan and Ye 2007). Our method, designed to 169 find whether high abundances tend to cluster with respect to trait values, was benchmarked using 170 simulation tests where the number of clusters is known a priori (see D'Andrea et al. 2019). 171

We obtain a null distribution of gap statistics by performing the above routine on each of the null communities, and from this distribution we extract significance (p-value) and standardized effect size (z-score). The z-score is $Z = (G - \mu)/\sigma$, where $\mu = \frac{1}{1000} \sum_{\text{nulls}} G_{\text{null}}$ is the mean of the null gap statistics and $\sigma^2 = \frac{1}{1000} \sum_{\text{nulls}} (G_{\text{null}} - \mu)^2$ is the variance. The p-value is the proportion of null communities with a higher gap statistic than the observed community, $P = \frac{1}{1000} \sum_{\text{nulls}} I(G_{\text{null}} > G)$, where the indicator function *I* is 1 if its argument is true, and zero otherwise.

Our null communities contain the same set of observed trait values and abundances, with abundances randomized across the traits. We therefore test for a nonrandom association between traits and abundances, as opposed to a nonrandom set of traits or abundances. While a nonrandom trait distribution has interest in its own merit, it could be arguably caused by forces beyond local competitive interactions. Local abundances reflect the outcome of local competitive
interactions and environmental filtering to a higher degree than a presence-absence list of locally
occurring species, as the latter is strongly influenced by dispersal from the regional species pool.
Therefore, trait clustering among local species without regard for abundance could simply reflect
the clustered trait distribution of the regional pool, leaving it unclear whether local competition is
the cause rather than evolutionary history.

189

190 **Results**

We found significant clustering of species abundances by trait values on BCI based on species 191 maximum height (Fig. 2A; Fig. 2E), with the gap statistic exceeding null expectations by 2.3 192 standard deviations (Table 1). There were four height-based clusters, falling at approximately 193 194 eight-meter intervals. Intriguingly, the pattern aligns well with the historical division of humid Neotropical forests into four strata of about ten meters each: shrubs, understory, midstory, and 195 canopy (Paul W Richards 1952, Terborgh 1985, Condit et al. 1995) (Fig. 3, Appendix S1: Fig. 196 S1). We also found a significant pattern of five abundance-by-trait clusters based on wood 197 198 density on BCI (Fig. 2F), exceeding null expectations by 2.1 standard deviations (Table 1). Notably, all species on BCI were also significantly clustered around a single wood density 199 optimum. This occurred because species with intermediate wood densities were more common 200 than those with extremely low or high wood densities (Fig. 2B), potentially indicating 201 202 physiological costs or environmental filters against extreme trait values. We found no evidence for clustering based on LMA or seed mass. 203

The similar number of clusters by maximum height and wood density led us to ask if the two trait-based patterns reflected the same underlying niche axis. Even though maximum height and wood density did not correlate significantly (Pearson's $\rho = -0.10$, p-value = 0.06), maximum height clusters correlated with wood density clusters (χ^2 -test p-value = 0.02, Cramér's V = 0.20), supporting this tentative hypothesis.

We found significant abundance-by-trait clustering by maximum height at the regional scale, with the highest gap index occurring at K = 1 cluster, and a secondary but still significant peak at K = 4 clusters (Appendix S1: Fig. S2A, B). The existence of four height-based clusters at both local and regional scales suggests a consistent organization of species into the same four niches across many tropical forest communities. However, a key difference between local and regional height-based patterns is the presence of a significant single cluster at the regional scale.

- 215 This single regional peak reflects a unimodal abundance trend along the maximum height axis,
- with trees in the second height cluster being consistently the most abundant in their communities.
- 217 This abundance trend may result from an interplay of higher light incidence at larger heights and
- the potential for a larger number of smaller-sized trees in a given area.
- As for lack of clustering by wood density in the regional pool, we hypothesize that
- 220 differences in environmental or ecological conditions across the region may have created
- different trait optima (cluster centroid values) in different communities, leading to the erosion ofcluster structure when the communities are combined.
- 223

224 Discussion

Our results underscore competitive partitioning of light as a major driver of tropical forest community structure. Specifically, we found cluster-based evidence for niche partitioning by maximum height, a trait associated with light capture, and wood density, a trait associated with shade tolerance (Wright et al. 2010). Conventional descriptions of tropical forest structure have long included references to different strata (sub-canopy, canopy, etc.), but to our knowledge there has never been any quantitative empirical support for their existence.

Testing for trait-based clustering is an appealing approach for the detection of niche partitioning because it conceptually unites the notions of stable species coexistence via differences and transient species coexistence via similarity (Holt 2006). Perhaps counterintuitively, it is precisely because species with similar strategies compete more strongly, and experience similar competitive effects from the rest of the community, that clusters emerge (D'Andrea et al. 2018). In other words, clusters reflect the simultaneous advantages of differing from others while being similar to those favored strategies.

We note there are special cases where competition could allow for coexistence of species with any trait value (Leimar et al. 2013). Specifically, the function specifying the relationship between competition and species traits (often referred to as the competition kernel) must have a strictly positive Fourier transform, which is not a general property of competition based on trait differences. For example, in the family of exponential kernels, only those with exponent ≤ 2 will satisfy the condition, and small perturbations of these kernels will break the property and lead to cluster formation. However, in the absence of empirical evidence that the competition kernels on

This article is protected by copyright. All rights reserved

BCI possess those special properties, a more general expectation is for cluster formation ratherthan a continuum of traits.

247 The mechanistic origin of clustering may involve environmental selection favoring certain traits over others. For example, according to Terborgh's sunfleck model (Terborgh 1985), 248 light availability below the canopy may peak at various vertical strata due to intersection of light 249 250 cones originating from gaps in the canopy. Latitudinal parameters which affect the angle of incidence, combined with the shape of tree canopies in tropical forests, predict three such strata 251 below the canopy, for a total of four optimal tree heights based on light availability. 252 Alternatively, the height-based clusters we identified may arise through tradeoffs between the 253 light-related advantages of being tall and shading others, and the budgetary constraints that 254 investment in height impinges on reproductive growth, such as through losses in recruitment or 255 256 shade tolerance (Kohyama 1993, Kohyama and Takada 2009). These tradeoffs may result in an effective relationship between interspecific competition and height similarity. In such a case, the 257 258 number of clusters would relate to how quickly competition drops with increasing separation in maximum height. Regardless of the mechanism, the height-based clusters reflect the existence of 259 260 multiple light-related niches, as well as stabilization via light-related niche partitioning.

The existence of four clusters by height suggests that only four species can coexist on 261 BCI based on differences in height alone, but it does not mean that only four species can stably 262 coexist on BCI. Additional niche axes may support higher coexistence, and in fact may be 263 264 responsible for the maintenance of the observed clusters. Barabás et al. (2013) pointed out that additional niche axes, such as susceptibility to different herbivores and pathogens, are required 265 266 for the permanence of clusters in a closed community subject to no temporal variation in the environment. Though recent empirical studies report a good deal of overlap in enemy host use, 267 268 models suggest that small differences in susceptibility to enemies between tree species may still 269 contribute significantly to diversity maintenance (Sedio and Ostling 2013). Hence, they likely also contribute to the permanence of clusters along the trait axes we report in our study. Another 270 example additional niche axis is the successional niche (Tilman 1988): trees sharing the same 271 272 height niche may niche-differentiate by shade tolerance. This could be reflected in the 273 distribution of wood density values and/or other traits related to successional strategy. Wood density in Barro Colorado Island tree species has been found to be a good 274 predictor of species niche strategies along a tradeoff axis between survival under stressful 275

conditions and rapid growth under optimal conditions (Wright et al. 2010). Therefore, the 276 clustering we found in wood density suggests niche partitioning along a growth-mortality 277 278 tradeoff axis, i.e. the successional niche (Tilman 1988). The precise positions of the clusters could have many interacting causes: the available pool of traits, external filtering from the 279 environment, resource availability, and the shape of the competition kernel. In the case of wood 280 281 density, given its connection to the successional niche, the distribution of light gaps in the forest may possibly determine the positions of the niches. The number of clusters may also be 282 influenced by the rate at which competition drops between species of disparate wood density: the 283 faster the drop, the more niches are allowed. 284

The wood density results are not fully independent from our maximum height results, as 285 indicated by the correlation between height and wood density clusters. To fully delineate the 286 287 niche space driving pattern on BCI, a multivariate trait treatment would be required. However, such an approach raises questions of how to best convert trait values along different trait axis 288 289 into a good predictor of competition. Moreover, traits could combine in different ways to form multidimensional niche space (D'Andrea et al. 2018); for example, Euclidean distance may be a 290 291 poor predictor of competition, and therefore not be useful for detecting clustering. Determining how competition maps to multivariate trait space requires mechanistic niche models going 292 293 beyond the existing theoretical literature, which typically focuses on contributions of individual traits. 294

295 The absence of clustering in LMA and seed mass does not preclude a role for these traits in niche partitioning on BCI. D'Andrea et al. (2019) showed that a loose connection between 296 297 trait value and niche strategy can mask clustering along the relevant niche axis. Seed mass is linked to dispersal and recruitment ability (Muller-Landau et al. 2008), and is therefore a 298 299 candidate for clustering along a niche axis characterizing a competition-colonization tradeoff -300 hence its inclusion in our study. However, seed mass alone may be a poor predictor of a species' strategy along this niche axis, due for example to the effects of other traits such as drought 301 tolerance and dispersal mode. LMA is theoretically connected to niche strategies (Wright et al. 302 303 2010), but there is substantial ontogenetic variation in its predictive ability of growth, with the 304 relationship being stronger in the seedling stage. Eventually, other aspects of physiology become limiting as the plant grows. Hence, LMA may be a noisy predictor of the niche strategy (Wright 305

et al. 2010). We conclude that the lack of clustering in these traits may be due to their looseconnection to niche strategies rather than no involvement in niche partitioning.

Our study provides a new line of evidence that niche differentiation shapes tropical forests, notwithstanding neutral theory's success at fitting species abundance distributions (Rosindell et al. 2012). Yet, our results go further by identifying specific numbers of niches and their associated trait optima. Future extensions of clustering analysis could look at other traits related to defense chemistry or abiotic preferences, further delineating the niches contributing to coexistence in tropical forests.

314

315 Acknowledgments

RD and AO conceptualized the study; SJW and RC provided the data; RD, JG, HF, and AO 316 analyzed the data; RD and JG wrote the manuscript; RD, JG, and AO contributed to revisions of 317 the manuscript. RD and JG contributed equally to the execution of this manuscript. We thank C. 318 Klausmeier for helpful discussions. BCI data were from the forest dynamics research project, 319 founded by S.P. Hubbell and R.B. Foster and now managed by R. Condit, S. Lao, and R. Perez 320 321 under CTFS and the Smithsonian Tropical Research in Panama. Hundreds of field workers also contributed. Many organizations provided funding, principally the U.S. National Science 322 323 Foundation (NSF). J.OD. acknowledges the Simons Foundation Grant #376199 and McDonnell Foundation Grant #220020439. A.O. acknowledges the NSF Grant #1038678, Niche versus 324 325 neutral structure in populations and communities funded by Advancing Theory in Biology. 326

327 Literature cited

- Barabás, G., R. D'Andrea, R. Rael, G. Meszéna, and A. M. Ostling. 2013. Emergent Neutrality
 or Hidden Niches? Oikos 122:1565–1572.
- Chase, J. M., and M. Leibold. 2003. Ecological Niches: Linking Classical and Contemporary
 Approaches. The University of Chicago Press.
- Chase, J. M., and J. a. Myers. 2011. Disentangling the importance of ecological niches from
- stochastic processes across scales. Philosophical Transactions of the Royal Society B:
 Biological Sciences 366:2351–2363.
- 335 Condit, R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island,
- Panama and a comparison with other plots. Springer Science & Business Media.

- Condit, R., R. A. Chisholm, and M. O. Hunter. 2012a. Thirty Years of Forest Census at Barro
 Colorado and the Importance of Immigration in Maintaining Diversity. PLoS ONE 7:1–6.
- 339 Condit, R., B. M. J. Engelbrecht, D. Pino, R. Pérez, and B. L. Turner. 2013. Species distributions

in response to individual soil nutrients and seasonal drought across a community of tropical

- trees. Proceedings of the National Academy of Sciences of the United States of America
 110:5064–8.
- Condit, R., S. Lao, R. Perez, S. B. Dolins, R. Foster, and S. Hubbell. 2012b. [Dataset:] Barro
 Colorado Forest Census Plot Data (Version 2012).
- Condit, R. S., S. P. Hubbell, and R. B. Foster. 1995. Mortality rates of 205 Neotropical tree and
 shrub species and the impact of a severe drought. Ecological Monographs 65:419–439.
- Condit, R. S., R. Pérez, S. Aguilar, and S. Lao. 2016. Data from Tree Censuses and Inventories
 in Panama. repository.si.edu/handle/10088/28866.
- D'Andrea, R., and A. Ostling. 2017. Biodiversity maintenance may be lower under partial niche
 differentiation than under neutrality. Ecology 98:3211–3218.
- D'Andrea, R., and A. M. Ostling. 2016. Challenges in linking trait patterns to niche
 differentiation. Oikos 125:1369–1385.
- D'Andrea, R., A. Ostling, and J. P. O'Dwyer. 2018. Translucent windows: How uncertainty in
 competitive interactions impacts detection of community pattern. Ecology Letters:826–835.
- D'Andrea, R., M. Riolo, and A. M. Ostling. 2019. Generalizing clusters of similar species as a
 signature of coexistence under competition. PLoS Computational Biology 15:1–19.
- Dudoit, S., and J. Fridlyand. 2002. A prediction-based resampling method for estimating the
 number of clusters in a dataset. Genome biology 3:1–21.
- 359 Götzenberger, L., F. de Bello, K. A. Bråthen, J. Davison, A. Dubuis, A. Guisan, J. Lepš, R.
- 360 Lindborg, M. Moora, M. Pärtel, L. Pellissier, J. Pottier, P. Vittoz, K. Zobel, and M. Zobel.
- 2012. Ecological assembly rules in plant communities-approaches, patterns and prospects.
 Biological Reviews 87:111–127.
- Grime, J. P. 1979. Plant strategies and vegetation processes. Page Plant strategies and vegetation
 processes. John Wiley and Sons.
- Holt, R. D. 2006. Emergent neutrality. Trends in Ecology & Evolution 21:531–3.
- Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Page
- 367 Monographs in Population Biology. Princeton University Press, Princeton, NJ.

- 368 Hubbell, S. P., R. B. Foster, S. T. O'Brien, K. E. Harms, R. Condit, B. Wechsler, S. J. Wright,
- and S. Loo de Lao. 1999. Light-gap disturbances, recruitment limitation, and tree diversity
 in a Neotropical forest. Science 283:554–557.
- Kohyama, T. 1993. Size-Structured Tree Populations in Gap-Dynamic Forest-The Forest
 Architecture Hypothesis for the Stable Coexistence of Species. Journal of Ecology 81:131–
 143.
- Kohyama, T., and T. Takada. 2009. The stratification theory for plant coexistence promoted by
 one-sided competition. Journal of Ecology 97:463–471.
- Kraft, N. J. B., and D. D. Ackerly. 2010. Functional trait and phylogenetic tests of community
 assembly across spatial scales in an Amazonian forest. Ecological Monographs 80:401–422.

378 Kraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. Functional traits and niche-based tree

community assembly in an Amazonian forest. Science (New York, N.Y.) 322:580–2.

380 Kunstler, G., D. Falster, D. A. Coomes, F. Hui, M. Kooyman, Robert, D. C. Laughlin, L. Poorter,

381 M. Vanderwel, G. Vieilledent, S. J. Wright, M. Aiba, C. Baraloto, J. Caspersen, J. H. C.

382 Cornelissen, S. Gourlet-Fleury, M. Hanewinkel, B. Herault, J. Kattge, H. Kurokawa, Y.

Onoda, J. Penuelas, H. Poorter, M. Uriarte, S. Richardson, and P. Ruiz-Benito. 2016. Plant

functional traits have globally consistent effects on competition. Nature 529:1–15.

- Lake, J. K., and A. M. Ostling. 2009. Comment on "Functional traits and niche-based tree
 community assembly in an Amazonian forest". Science (New York, N.Y.) 324:1015; author
 reply 1015.
- Leimar, O., A. Sasaki, M. Doebeli, and U. Dieckmann. 2013. Limiting similarity, species
 packing, and the shape of competition kernels. Journal of Theoretical Biology 339:3–13.
- Levine, J. M., and D. J. Murrell. 2003. The Community-Level Consequences of Seed Dispersal
 Patterns. Annual Review of Ecology, Evolution, and Systematics 34:549–574.
- MacArthur, R. H., and R. Levins. 1967. The Limiting Similarity, Convergence, and Divergence
 of Coexisting Species. The American Naturalist 101:377–385.
- MacQueen, J. B. 1967. Some Methods for classification and Analysis of Multivariate
- 395 Observations. 5th Berkeley Symposium on Mathematical Statistics and Probability 1967
 396 1:281–297.
- Mouquet, N., and M. Loreau. 2003. Community Patterns in Source-Sink Metacommunities. The
 American Naturalist 162:544–557.

Muller-Landau, H. C. 2010. The tolerance-fecundity trade-off and the maintenance of diversity
in seed size. Proceedings of the National Academy of Sciences of the United States of

401 America 107:4242–7.

402 Muller-Landau, H. C., S. J. Wright, O. Calderón, R. Condit, and M. O. Hunter. 2008.

403 Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology
404 96:653–667.

405 Paul W Richards. 1952. The Tropical Rain Forest. The University Press, Cambridge.

Rosindell, J., S. P. Hubbell, F. He, L. J. Harmon, and R. S. Etienne. 2012. The case for
ecological neutral theory. Trends in Ecology & Evolution 27:204–209.

408 Sakavara, A., G. Tsirtsis, D. L. Roelke, R. Mancy, and S. Spatharis. 2018. Lumpy species

409 coexistence arises robustly in fluctuating resource environments. Proceedings of the410 National Academy of Sciences.

411 Scheffer, M., and E. H. van Nes. 2006. Self-organized similarity, the evolutionary emergence of

- groups of similar species. Proceedings of the National Academy of Sciences of the United
 States of America 103:6230–6235.
- Sedio, B. E., and A. M. Ostling. 2013. How specialised must natural enemies be to facilitate
 coexistence among plants? Ecology Letters 16:995–1003.

416 Sugar, C. A., and G. M. James. 2003. Finding the Number of Clusters in a Dataset: An

- Information-Theoretic Approach. Journal of the American Statistical Association 98:750–
 763. _____
- Terborgh, J. 1985. The Vertical Component of Plant Species Diversity in Temperate and
 Tropical Forests. The American Naturalist 126:760–776.

Tibshirani, R., G. Walther, and T. Hastie. 2001. Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

423 Methodology) 63:411–423.

- Tilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton
 University Press.
- Vergnon, R., N. K. Dulvy, and R. P. Freckleton. 2009. Niches versus neutrality: uncovering the
 drivers of diversity in a species-rich community. Ecology letters 12:1079–90.

428 Visser, M. D., M. Bruijning, S. J. Wright, H. C. Muller-Landau, E. Jongejans, L. S. Comita, and

H. de Kroon. 2016. Functional traits as predictors of vital rates across the life cycle of

- 430 tropical trees. Functional Ecology 30:168–180.
- Volkov, I., J. R. Banavar, M. O. Hunter, and A. Maritan. 2003. Neutral theory and relative
 species abundance in ecology. Nature 424:1035–7.
- 433 Wright, S. J., K. Kitajima, N. J. B. Kraft, P. B. Reich, I. J. Wright, D. E. Bunker, R. Condit, J. W.

434Dalling, S. J. Davies, S. Díaz, B. M. J. Engelbrecht, K. E. Harms, M. O. Hunter, C. O.

- Marks, M. C. Ruiz-Jaen, C. M. Salvador, and A. E. Zanne. 2010. Functional traits and the
 growth-mortality trade-off in tropical trees. Ecology 91:3664–74.
- Yan, B., J. Zhang, Y. Liu, Z. Li, X. Huang, W. Yang, and A. Prinzing. 2012. Trait assembly of
 woody plants in communities across sub-alpine gradients: Identifying the role of limiting
 similarity. Journal of Vegetation Science 23:698–708.
- Yan, M., and K. Ye. 2007. Determining the number of clusters using the weighted gap statistic.
 Biometrics 63:1031–1037.
- 442

443 Tables

Table 1: Clustering results for the 50-ha plot and regional pool. For each header, the left 444 column refers to the 50-ha BCI plot ("50 ha."), and the right column refers to the regional pool 445 ("Region"). The total number of species for which trait data were available is listed under 446 447 "Species", and the total number of individuals represented is listed under "Individuals." The number of clusters K is the value at which the gap index peaks. z-scores and p-values were 448 obtained by comparing the gap statistic against 1,000 null communities. In the case of maximum 449 height, in addition to the peak at K = 1 listed below, the regional pool also had a significant 450 subpeak at K = 4 (Z = 2.0, P = 0.03). Significant results (P < 0.05) are marked with an 451 asterisk. 452

+	Species		Individuals		Clusters (K)		z-score (Z)		p-value (P)	
	50	Regio	50 ha.	Regio	50	Regio	50	Regio	50	Regio
	ha.	n		n	ha.	n	ha.	n	ha.	n
Maximum	259	242	20,62	13,743	4*	1*	2.3*	3.4*	0.01	0.02*
height			0						*	
Wood	229	219	17,13	9,273	5*	20	2.1*	1.6	0.02	0.06
density			9						*	

This article is protected by copyright. All rights reserved

Leaf	250	234	18,36	9,528	3	3	0.2	1.5	0.40	0.07
mass/area			8							
Dry seed	185	177	18,25	10,667	15	3	0.2	1.0	0.38	0.16
mass			9							

453

454 **Figure Legends**

Figure 1. Field site. Intact tropical forest covers 20% of Panama. Our regional pool is an
aggregate of 40 sampling sites within 30km of BCI. Combined, these sites comprise
approximately 850 species, of which trait data were available for 242 species (max height), 219
(wood density), 234 (leaf mass per area), 177 (seed mass), comprising between 9,528 and 13,743
adult trees. Barro Colorado Island, spanning roughly 16 km², sits in an artificial lake in the
Panama Canal. The 50-ha Forest Dynamics Plot, located near its center, is a 1,000m by 500m
patch of forest containing 300 tree species and 21,000 adult trees.

462

Figure 2. Results. Stem plots show trait distribution in the 50-ha plot on BCI for maximum 463 height (A), wood density (B), leaf mass per area (C), and seed mass (D). Each stem represents a 464 species, with its trait value plotted on the abscissa and abundance on the ordinate. Data shown 465 for the 2000 census. The corresponding gap curves (E-H) plot the gap index against the potential 466 number of clusters. The gap statistic is the highest point on the curve, with the red line indicating 467 the 95th quantile of the expected gap statistic under no pattern, obtained from 1,000 null sets. The 468 peaks above the red line in (E) and (F) reveal clustering by maximum height, with four clusters, 469 and wood density, with five. The alternating colors in the respective stem plots show cluster 470 membership of each species. 471

472

473 Figure 3. Height layers. Visual representation of the forest on Barro Colorado Island,

highlighting the four height-based groups identified by our metric: shrubs $(61 \pm 2 \text{ species}; 8,071)$

475 \pm 712 adult individuals), understory treelets (71 \pm 3; 7,308 \pm 165), midstory trees (61 \pm 1;

476 2,957 \pm 114), and canopy trees (64 \pm 1; 2,836 \pm 82), where the numbers represent mean and

477 standard deviation across the 7 censuses. Horizontal lines show maximum height of the dominant

478 (most abundant) species in each group.

479





