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Abstract  

BACKGROUND: Inactivating mutations in the gene for cartilage-associated protein (CRTAP) 

cause osteogenesis imperfecta type VII in humans, with a phenotype that can include 

craniofacial defects.  Dental and craniofacial manifestations have not been a focus of case 

reports to date. We analyzed the craniofacial and dental phenotype of Crtap-/- mice by skull 

measurements, micro-computed tomography (micro-CT), histology, and immunohistochemistry.  

RESULTS: Crtap-/- mice exhibited a brachycephalic skull shape with fusion of the nasofrontal 

suture and facial bones, resulting in mid-face retrusion and a class III dental malocclusion. Loss 

of CRTAP also resulted in decreased dentin volume and decreased cellular cementum volume, 

though acellular cementum thickness was increased.  Periodontal dysfunction was revealed by 

decreased alveolar bone volume and mineral density, increased periodontal ligament (PDL) 

space, ectopic calcification within the PDL, bone-tooth ankylosis, altered immunostaining of 

extracellular matrix proteins in bone and PDL, increased pSMAD5, and more numerous 

osteoclasts on alveolar bone surfaces.  CONCLUSIONS: Crtap-/- mice serve as a useful model 

of the dental and craniofacial abnormalities seen in individuals with Osteogenesis Imperfecta 

type VII.  

 

Disclosure Statement: The authors report no conflicts of interest. 
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1 | INTRODUCTION 

Osteogenesis Imperfecta (OI) is a generalized connective tissue disorder that occurs in 0.3 

to 0.8 per 10,000 births (Orioli et al., 1986; Stevenson et al., 2012; Lindahl et al., 2015). 

Individuals with OI can exhibit low bone mass with increased bone fragility, blue sclera, 

scoliosis, midface deficiency, class III malocclusion, facial dysmorphism, dentinogenesis 

imperfecta and decreased life span (O'Connell and Marini, 1999; Chang et al., 2007; Foster et 

al., 2014; Folkestad et al., 2016; Forlino and Marini, 2016; Marini et al., 2017). The majority of 

patients with OI have mutations in genes for type I collagen alpha chains, COL1A1 and COL1A2 

(OMIM# 166200, 166210, 259420 and 166220). These mutations cause diminished collagen 

deposition and/or structural defects in collagen fibrils, as well as induce cell stress due to 

retention of the alpha chains in the endoplasmic reticulum (Marini et al., 2017). Other individuals 

with OI can have mutations in genes that regulate post-translational modification (Barnes et al., 

2006; Morello et al., 2006; Cabral et al., 2007; van Dijk et al., 2009), secretion (Saga et al., 

1987; Satoh et al., 1996; Christiansen et al., 2010) and processing (Canty and Kadler, 2005) of 

type I collagen. Mutations in genes that function in the collagen synthesis pathway are almost 

invariably recessive and can present with a phenotype that is equally or more severe than that 

of the dominant forms of OI. This can be explained in part by the fact that the synthesis of 

additional abnormal fibrillar collagens is affected by these mutations. Of relevance to this study, 

craniofacial dysmorphologies are more common in OI associated with structural as opposed to 

quantitative defects in collagen (Jensen and Lund, 1997; Jabbour et al., 2018).  

Cartilage-associated protein (CRTAP) is a resident protein of the rough endoplasmic 

reticulum that forms a heterotrimeric complex with prolyl-3-hydroxylase-1 (P3H1) and cyclophilin 
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B (CYPB). This complex facilitates the post-translational modification of procollagen chains and 

the folding of the triple helix (Morello et al., 2006; Baldridge et al., 2010; Barbirato et al., 2015). 

Biallelic mutations in CRTAP in humans cause osteogenesis imperfecta type VII (OMIM 

#610682), characterized by osteopenia, rib and long bone fractures, failure to thrive, 

hypermobility/joint laxity, rhizomelia (shortening of proximal limbs) and craniofacial defects 

(Ward et al., 2002; Valli et al., 2012). Mutations in genes for collagen processing proteins, 

including P4HB (Rauch et al., 2015), and CRTAP (Balasubramanian et al., 2015), can also 

cause Cole-Carpenter Syndrome. The craniofacial characteristics of this syndrome include 

frontal bossing, proptosis, maxillary hypoplasia, craniosynostosis and/or wormian bones 

(supernumerary bones that result from formation of ectopic ossification centers that develop in 

addition to those normally present, usually in conjunction with craniosynostosis) (Cole and 

Carpenter, 1987; Chang et al., 2007; Marini et al., 2010; Balasubramanian et al., 2015; Rauch 

et al., 2015).  

Loss of CRTAP in mice causes decreases in collagen prolyl 3-hydroxylation, osteoid 

production, mineral apposition rate and bone formation rate and altered collagen fibrillogenesis 

(Morello et al., 2006). Crtap-/- mice develop progressive kyphoscoliosis, pre- and postnatal 

growth delay, rhizomelia, disorganization of proliferating chondrocytes and osteopenia. 

However, no studies have determined if dental and/or craniofacial skeletal defects were present 

in these mice. Treatment of Crtap-/- mice with a sclerostin neutralizing antibody improved 

vertebral and long bone cortical and trabecular parameters as well as improved mechanical 

properties (Grafe et al., 2016). The goal of this study was to analyze dental and craniofacial 

defects in the Crtap-/- mouse model of recessive osteogenesis imperfecta, to provide insights 

This article is protected by copyright. All rights reserved.



 

 5 

into functions of CRTAP in those tissues and point to potential dental and craniofacial 

manifestations in humans with OI type VII, allowing for future studies investigating potential 

treatments for these aspects of the phenotype. 

 

 

2 | RESULTS 

Altered Craniofacial Shape and Bone Mineralization in Crtap-/- Mice 

Initial qualitative analyses indicated that, compared to Crtap+/+ controls, Crtap-/- mice had 

shorter nasal bones and overall anterior/posterior skull lengths, and a wider skull with an open 

mandibular symphysis and abnormalities within nasofrontal, frontomaxillary and palatomaxillary 

sutures (Figure 1A-J). Fusion of the nasofrontal, frontomaxillary and palatomaxillary sutures was 

evident in all Crtap-/- mice but none of the Crtap+/+ mice (contingency P < 0.01). Crtap-/- mice also 

exhibited a class III malocclusion with maxillary molar teeth not anterior to the mandibular molar 

teeth and molar teeth not in a cusp to fossa relationship, when compared to Crtap+/+ littermates 

(Figure 1C, D). Linear skull measurements normalized to total skull lengths demonstrated 

significantly increased cranial width, inner canthal distance, parietal bone length, cranial vault 

lengths (two measurements) and cranial base bone lengths (presphenoid, basisphenoid and 

basioccipitus), with significantly diminished nasal bone length in Crtap-/- compared to WT mice 

(Figure 1K). Together these data indicate a brachycephalic (wide) skull shape with a longer 

(anterior-posterior) cranial vault and cranial base length but shorter midfacial length in the Crtap-

/- mice.  
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 Histologic staining of skull sections revealed thickened and dysmorphic bone within anterior 

frontal and posterior nasal bones and a fused nasofrontal suture in all Crtap-/- mice but absent in 

Crtap+/+ mice (Figure 2; contingency P < 0.01). Micro-CT analyses demonstrated significantly 

diminished (-23 to -32% reduction; P < 0.05) bone volume, bone mineral content, and tissue 

mineral content in parietal and frontal bones in Crtap-/- as compared to Crtap+/+ mice (Table 1). 

Moreover, micro-CT analyses demonstrated significantly diminished (-19 to -38% reduction; P < 

0.05) bone volume, bone volume fraction, bone mineral content, bone mineral density, and 

tissue mineral content in nasal bones (Table 1). 

 

Altered Dental and Periodontal Tissues in Crtap-/- Mice 

Initial 3D and 2D micro-CT observations of mandibles revealed short and thin molar roots and 

reduced cellular cementum in Crtap-/- vs. control mice (Figure 3A-F).  Heat maps of mineral 

density further supported reduced cellular cementum volume and suggested similar distribution 

of mineral density between genotypes, with perhaps more variability noted in Crtap-/- vs. Crtap+/+ 

dentin (Figure 3B, E). Crtap-/- mice exhibited reduced alveolar bone (# in Figure 3F) and despite 

reduced cellular cementum and bone volume, showed clear instances of ankylosis (indicated by 

arrow in Figure 3F). Quantitative micro-CT analysis confirmed, compared to controls, Crtap-/- 

mice had decreased volumes of dentin (-18%; P < 0.01), cellular cementum (-48%; P < 0.01) 

and alveolar bone (-28%; P < 0.01) (Figure 3G).  Conversely, Crtap-/- mice exhibited increased 

volumes of PDL (+15%; P < 0.01) and dental pulp (+12%; P < 0.05).  While dentin and cellular 

cementum densities were not different, alveolar bone density was decreased in Crtap-/- mice 

compared to controls (-2%; P < 0.05).  Neither enamel volume nor density was affected in Crtap-
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/- mice.  To determine whether dentin defects were localized to a specific region, dentin was 

subdivided into crown and root segments.  Volume was significantly decreased in both 

components (P < 0.01-0.05) of Crtap-/- mouse molar dentin, while mineral density was not 

altered (Figure 4).  Interestingly, both pulp and PDL densities were reduced in Crtap-/- vs. control 

mice (P < 0.01-0.001).  

Histology was performed to further explore differences revealed by micro-CT analysis.  

Histological organization of Crtap-/- mouse molars appeared grossly normal, though cellular 

cementum was dramatically reduced (Figure 5A-D; cellular cementum indicated by red dotted 

lines). Histomorphometry indicated no significant difference in predentin/dentin ratio, suggestive 

of delayed mineralization (Figure 5E).  Acellular cementum thickness was increased in Crtap-/- 

vs. control mice (+100%; P < 0.01), while cellular cementum surface area was reduced on the 

lingual aspect (-40%; P < 0.05).  PDL width was confirmed to be increased in Crtap-/- vs. control 

mice (+15%; P < 0.01), as indicated by micro-CT 3D volume analysis (Figure 5F-H).  

 Undecalcified histology was performed to investigate differences in acellular and cellular 

cementum.  Goldner’s trichrome staining identified a thicker acellular cementum layer in Crtap-/- 

vs. control molar roots (Figure 5I, K).  Von Kossa staining showed reduced cellular cementum 

layer in Crtap-/- compared to control mice, albeit with an unusual, splayed and disorganized 

border protruding into the PDL (Figure 5J, L).  In some sections, ectopic mineral nodules were 

identified within Crtap-/- mouse PDL, which were never observed in the PDL region of Crtap+/+ 

mice (Figure 5L inset). 

Based on morphological changes observed at 2 months, a small cohort of mice were 

examined to determine longer-term changes in periodontal tissues.  Compared to controls, 
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Crtap-/- mice at 3 or 10 to 11-month-old exhibited severely disrupted periodontal structures, with 

cervical alveolar bone breakdown and invasion of the PDL with numerous bone-like or 

cementum-like nodules, while apical bone and cellular cementum showed signs of invading the 

PDL space (Figure 5M-P).  Acellular cementum of Crtap-/- mice showed increased width as well 

as a rough and irregular border protruding into the PDL, unlike the relatively smooth surfaces in 

controls.      

 To provide additional insights into morphological differences in Crtap-/- vs. control 

periodontia, immunostaining was performed for key mineralized tissue markers.  

Immunolocalizations for bone sialoprotein (BSP) and osteopontin (OPN) emphasized thicker 

acellular cementum and altered alveolar bone modeling/remodeling in in Crtap-/- vs. control 

molars (Figure 6A-D).  Immunostaining for periostin (POSTN), a marker PDL fibers, indicated 

reduced numbers of POSTN-positive Sharpey’s fibers incorporated into Crtap-/- vs. control 

alveolar bone (Figure 6E, G).  Increased TGFβ signaling has been reported in both autosomal 

dominant and recessive types of OI, including in skeletal elements of Crtap-/- mice (Grafe et al., 

2014).  IHC for the phosphorylated and active form of TGFβ receptor-regulated transcriptional 

mediator SMAD5 (pSMAD5), previously demonstrated in the PDL (Wang et al., 2014), 

suggested increased numbers of SMAD5-positive cells in the PDL of Crtap-/- vs. control mice 

(Figure 6F, H).  Because of changes in bone volume and modeling/remodeling, we quantified 

tartrate-resistant acid phosphatase positive (TRAP+) osteoclast-like cells, finding more than 2-

fold greater numbers of osteoclasts in Crtap-/- vs. control mice (p<0.01; Figure 6I-K).  

   

3 | DISCUSSION 
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 Cartilage-associated protein (CRTAP) is a rough endoplasmic reticulum protein involved in 

posttranslational modifications of fibrillar collagens.  Inactivating mutations in the CRTAP gene 

cause osteogenesis imperfecta (OI) type VII in humans, with a phenotype that can include 

craniofacial bone defects.  In the few case reports on type VII OI to date, oral health status has 

not been reported.  To provide further insights into the roles of CRTAP in the craniofacial region, 

we performed multimodal analysis of mice genetically ablated for Crtap.  Crtap-/- mice exhibited 

craniofacial abnormalities in the form of a brachycephalic skull shape, thickening of anterior 

frontal and posterior nasal bones, fusion of the nasofrontal suture, and diminished bone 

volumes and densities in nasal and craniofacial base bones.  Loss of CRTAP also resulted in 

decreased dentin volume and periodontal defects including decreased cellular cementum 

volume, decreased alveolar bone volume and mineral density, increased PDL space, ectopic 

calcification within the PDL, and bone-tooth ankylosis.  These changes were associated with 

altered localization of periodontal markers, increase in TGFβ signaling mediator pSMAD5, and 

greater numbers of osteoclasts.   This mouse phenotype represents a novel form of OI-

associated dentinogenesis imperfecta (DI) that extends beyond dentin effects. Taking into 

account how other forms of OI impact dentoalveolar tissues in affected subjects, these findings 

suggest that the oral health of individuals with type VII OI should be evaluated carefully and 

followed closely.   

 

3.1 | Role of CRTAP in Craniofacial Morphogenesis 

OI type VII classification was initially created to report the effect of a recessive, moderate to 

severe form of OI, which occurred in a large, consanguineous Quebec family (an isolated First 
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Nations community) due to a hypomorphic mutation in CRTAP (Ward et al., 2002; Valli et al., 

2012). While the reported craniofacial defects of this population were limited to evidence of 

wormian bones, case reports of more severely affected individuals with CRTAP null mutations 

(eg: those with Cole-Carpenter Syndrome) include craniofacial features such as 

craniosynostosis, midface hypoplasia, doming forehead/frontal bossing and wormian bones 

(Cole and Carpenter, 1987; Balasubramanian et al., 2015). We did not find evidence of cranial 

bone fusions or extracranial sutures (wormian bones) in Crtap-/- mice, but facial bone fusions, 

including fusion of the nasofrontal suture, were evident. The mice also exhibited an open 

mandibular symphysis suggestive of joint laxity, frontal bossing, midface hypoplasia and a class 

III malocclusion, in addition to abnormalities in bone mineral content, density and volume in 

cranial and nasal bones. The brachycephalic head shape with frontal bossing and class III 

malocclusion were likely caused by the facial bone fusions, leading to midface retrusion. In 

combination with previous case reports, these data indicate that OI type VII individuals should 

be referred to a craniofacial team for assessment, regardless of the presence of overt 

craniosynostosis, because surgical treatment for correction of facial bone fusions and 

malocclusion may be needed (Aizenbud et al., 2008; Rosen et al., 2011). It is also worth noting 

that we found a highly consistent craniofacial phenotype in Crtap-/- mice on a mixed 

C57BL6/J;129/SvEv genetic background. This signifies that phenotype severity is unlikely to be 

genetic background-dependent. It is therefore possible that CRTAP homozygous null mutations 

cause a less severe phenotype in mice than in humans, as was previously suggested by others 

(Marini et al., 2010). Overall, our craniofacial findings in Crtap-/- mice represent a more 
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moderate craniofacial phenotype than that seen in individuals with Cole-Carpenter Syndrome, 

that appears to phenocopy humans with OI type VII. 

 

3.2 | Importance of CRTAP in Dental and Periodontal Development and Function 

The more common forms of OI arising from mutations in COL1A1 and COL1A2 (types I-IV) 

can be accompanied by a well characterized dental phenotype sometimes called OI-related DI, 

distinct from DI caused by mutations in the dentin sialophosphoprotein (DSPP) gene.  OI-

affected teeth have been described in many case reports, with the phenotype including smaller 

tooth size, altered crown and/or root morphology, ultrastructural abnormalities in dentin, 

discoloration of dentin, and pulp calcifications leading to obliteration [summarized in (Foster et 

al., 2014)].  The description of periodontal phenotypes associated with OI is exceedingly rare, 

which is surprising considering that cementum, PDL, and alveolar bone extracellular matrices 

are approximately 90% type I collagen and would be expected to manifest direct effects of OI-

associated mutations.  A single report of type IV OI due to mutations in COL1A2 describes by 

scanning electron microscopy, “bush-like” ectopic calcifications on cementum surfaces of 

primary teeth of the affected child, the first such observation (Kantaputra et al., 2018).   

 Several mouse models of OI have been developed.  Oim mice featuring a Col1a2 frameshift 

mutation, exhibit thin dentin, wide pulp chambers, and fragile teeth.  Brtl mice, a model for 

moderately severe type IV OI due to a knock-in Col1a1 mutation, feature reduced dentin, wide 

pulp chambers, delayed dentin mineralization, and qualitative micro-CT findings revealed 

reduced and disorganized alveolar bone (Boskey et al., 2013). CypB (or Ppib) null mice, a 

model for OI type IX, were described with thin dentin, irregular predentin/dentin border, and 
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smaller dentin collagen fibrils (Terajima et al., 2017).  Detailed and quantitative analyses of 

periodontal tissues were lacking in those studies.  The report here is the first to examine the 

dental phenotypes of Crtap null mice, a model for autosomal recessive OI type VII.  Our dental 

analyses agree with and extend previous mouse OI findings on many points.  Ablation of Crtap 

in mice reduced both dentin volume (crown and root) and alveolar bone volume.  While dentin 

density was not grossly abnormal, increased variation in mineral density distribution was 

observed, and bone displayed significantly reduced mineralization. Pulp volume increased in 

Crtap-/- mice in association with dramatically thinner dentin. Importantly, no major alterations 

were observed in tooth enamel.         

 Two studies on mouse models of OI have examined periodontal tissues.  Conditional 

deletion of both Bmp1 and Tll1 in mice was proposed to model a form of autosomal recessive 

OI (type XIII is caused by BMP1 mutations), and these mice showed short molars with thin root 

dentin (Muir et al., 2014).  Periodontal involvement included reduced cellular cementum, 

derangement of PDL, and periodontal breakdown including alveolar bone resorption.  Mice 

featuring an induced mutation in the Col1a1 gene (Col1a1Jrt/+) were proposed to replicate effects 

of OI and Ehlers Danlos syndrome (Eimar et al., 2016).  Their incisors featured defective dentin 

mineralization and surrounding alveolar bone had smaller collagen fibrils.   

 Our analyses provide further insight into the effects of OI on periodontal tissues.  Ablation of 

Crtap led to increased acellular cementum with an irregular surface topology at older ages, 

decreased cellular cementum, and dramatically decreased volume and mineral density of 

alveolar bone, and increased PDL space.  The altered acellular cementum formation is 

consistent with electron microscopy findings in a human patient with type IV OI (Kantaputra et 
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al., 2018), suggesting that multiple forms of OI may have parallel effects on periodontal tissues, 

a hypothesis that deserves further analysis.  We observed numerous instances of ectopic 

calcification in the PDL and evidence of ankylosis in Crtap-/- mice, and alveolar bone showed 

signs of increased modeling/remodeling including altered localization of BSP, OPN, and POSTN 

and increased numbers of TRAP+ osteoclasts on alveolar bone surfaces.  Increased numbers of 

pSMAD5-positive cells indicated increased TGFβ signaling, similar to findings in calvaria and 

long bones of Crtap-/- mice and other OI models (Grafe et al., 2014).  Notably, increased 

pSMAD5 was found in periodontal tissues of mice dually ablated for proteoglycans fibromodulin 

and biglycan, in association with elevated numbers of osteoclasts and increased bone 

remodeling (Wang et al., 2014).  Increased TGFβ signaling was also linked to compression-

induced osteogenic differentiation of PDL cells in vitro (Manokawinchoke et al., 2019).  The 

relationship between altered remodeling, ectopic nodules in the PDL, and tooth-bone ankylosis 

remains unclear, though all are suspected to be linked.  The PDL is remarkably resistant to 

ectopic calcification and ankylosis, as demonstrated in several genetically engineered mouse 

models, however the carefully maintained homeostasis can be disrupted by substantial 

disruption of matrix production, mineralization, and/or resorption activities(Wesselink and 

Beertsen, 1994a; Wesselink and Beertsen, 1994b; Schatzle et al., 2005; Zweifler et al., 2015; 

Foster et al., 2018; Thumbigere-Math et al., 2018; Wolf et al., 2018).      

 None of the case reports on OI type VII that have been published to date have included 

dental observations.  Based on data collected from Crtap-/- mice, we propose a novel form of OI-

associated DI that deserves further study and suggests the oral health of individuals with type 

VII OI should be evaluated carefully and followed closely. 

This article is protected by copyright. All rights reserved.



 

 14 

 

4 | CONCLUSION 

The findings presented here represent the first qualitative and quantitative analysis of the 

functional importance of CRTAP in craniofacial, dental and periodontal tissues, providing new 

insights into effects of OI on these tissues.  Overall the results are consistent with craniofacial 

and dental phenotypes of Col1a1 (Col1a1Jrt/+) mutant mice, which are characterized by short 

skull length, malocclusion, widened periodontal space, and defects in the dentin matrix and 

mineralization(Eimar et al., 2016). Limitations of this study include a relatively small sample 

size; while dramatic differences were detected in a number of craniofacial and dentoalveolar 

measurements, more subtle differences may not reach significance.  While n=5 mice per 

genotype at age 2 months were used for the quantitative analyses, additional mice at 1, 3, and 

10-11 months manifested similar phenotypes.  While our analysis was multimodal, additional 

studies may include electron microscopy or atomic force microscopy, Raman spectroscopy, or 

other approaches to reveal novel differences in craniofacial tissues in the absence of CRTAP.  

Challenge models such as bone defect healing and orthodontic tooth movement can also 

provide important insights in addition to developmental studies and should be considered as 

future steps.    

 

5 | EXPERIMENTAL PROCEDURES 

5.1 | Animals 

Five 2-month-old male Crtap-/- mice and five 2-month-old male wild type littermates on a 

mixed C57BL6/J;129/SvEv background were analyzed in random order, with the dental 
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phenotype additionally qualitatively observed in a small cohort of mice at 3 and 10-11 months 

(n=2 per genotype). Mice were housed in a pathogen-free facility, with unlimited access to 

water, standard rodent chow and a 12-hour light/dark cycle.  Genotyping was performed by 

PCR using the primers: Forward 5’-TGACCGCTTCCTCGTGC-3’ and Reverse 5’-

CCCGCCTATCACCAACC-3’ for detecting the mutant allele, and Forward 5’-

GGCCAATGACCTCCCGAAG-3’ and Reverse 5’-AACTTCGGGGTAAAGCCAGAG-3’ for the 

wild type allele. Sample sizes were based upon previous long bone and connective tissue 

analyses showing high consistency of phenotype in Crtap-/- mice (Morello et al., 2006; Baldridge 

et al., 2010). Mice were euthanized to harvest relevant tissues according to the 

recommendations of the Guide for Care and Use of Laboratory Animals 8th Edition. All mice 

were healthy with no noted adverse effects in mutant mice. Mice were euthanized and tissues 

were fixed in 10% neutral buffered formalin.  For initial phenotypic analysis, whole skulls of 

Crtap-/- mice and wild type littermates were dissected and stained with Alizarin Red.  All animal 

work performed in this study was conducted under approval of the University of Arkansas 

animal use ethics committee and conforms to ARRIVE guidelines. Primary outcomes measures 

included skull morphology, craniofacial bone fusions, tooth and alveolar bone mineral volume 

and density, plus periodontal ligament structure. Secondary outcomes measures were 

craniofacial bone volume/density/mineral content. 

 

5.2 | Micro-Computed Tomography 

 Mouse skulls were scanned at an 18 µm isotropic voxel resolution using the eXplore Locus 

SP micro-computed tomography (micro-CT) imaging system (GE Healthcare Pre-Clinical 
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Imaging). Regions of interest (ROI’s) for parietal and frontal bones were established as previously 

described (Liu et al., 2013; Liu et al., 2014). A region of interest (ROI) for the nasal bone included 

the entire nasal bone as outlined by custom spline. Density, volume and mineral content of cranial 

bones, nasal bones and cranial base bones from mice were measured using Microview version 

2.2 software and established algorithms (Meganck et al., 2009; Umoh et al., 2009).  Micro-CT 

bone data were analyzed and are reported in accordance with the recommendations of Bouxsein 

et al (Bouxsein et al., 2010).   

 Mandibles were scanned in a µCT 50 (Scanco Medical, Bassersdorf, Switzerland) at 70 kVp, 

76 µA, 0.5 Al filter, 900 ms integration time, and 6 µm voxel dimension and analyzed using 

AnalyzePro (version 1.0; AnalyzeDirect, Overland Park, KS), as previously described 

(Thumbigere-Math et al., 2018). For isolation of cementum from dentin, images were first filtered 

using a median filter, 7 kernel size in all three axes, and a cementum “mask” was segmented from 

450-1050 mg/cm³ HA. This “mask” was then loaded onto the original calibrated image and 

cementum was traced under the “mask” for any mineralized tissue above 650 mg/cm³ HA.  Crown 

and root dentin were subdivided: “crown dentin” was designated as dentin coronal to the 

cementoenamel junction (CEJ), and “root dentin” was defined as dentin apical to the CEJ.  

Reconstructed images were analyzed using AnalyzePro (version 1.0; AnalyzeDirect, Overland 

Park, KS), as previously described (Thumbigere-Math et al., 2018).   

 

5.3 | Linear Skull Measurements 

 Craniofacial linear skeletal measurements were taken by placing landmarks on micro CT skull 

scans using Dolphing Imaging 11.0 software (Dolphin Imaging and Management Solutions, 
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Catsworth, CA) using previously established landmarks (Figure 7) (Liu et al., 2013; Liu et al., 

2014).  This software displays scans in axial, sagittal and coronal slices for landmark verification 

in all views simultaneously. Linear measurements were normalized to total skull length (measured 

from nasale to paro) to account for size differences between Crtap+/+ and Crtap-/- mice. 

Measurements were performed twice and an average of the two measurements was utilized for 

statistical comparison by genotype.  

 

5.4 | Histological Analyses 

Histologic sections from adult mice were taken to examine craniofacial bones, sutures and 

synchondroses of the cranial base. Dissected skulls were fixed, decalcified, incubated in xylene 

then embedded in paraffin. Paraffin blocks were cut in 4 uM sagittal sections using a Leica 

RM2255 microtome equipped with a tungsten carbide blade (Leica Microsystems Inc.). Sections 

were transferred to slides and dried at 42 °C in a slide press overnight, then stained with 

Masson’s trichrome stain. 

 Hemi-mandibles prepared for histology were decalcified in acetic acid/formalin/sodium 

chloride solution, and paraffin embedded for 6 um coronal sectioning and hematoxylin and eosin 

(H&E) staining (Thumbigere-Math et al., 2018).  Histomorphometry was performed on H&E 

stained sections chosen from the center of the first molar mesial root.  Measurements were 

performed on buccal and lingual aspects of the root at a distance 300 um apical to the CEJ: 

Predentin and dentin thickness, acellular cementum thickness, and periodontal ligament (PDL) 

thickness.  Cellular cementum area was measured on buccal and lingual aspects of the apical 

root.  Histomorphometric measurements were made using ImageJ software (version 1.49d; 

This article is protected by copyright. All rights reserved.



 

 18 

Bethesda, MD).  Non-decalcified hemi-mandibles were embedded in methyl methacrylate for 

von Kossa and Goldner’s trichrome staining, as described previously (Foster et al., 2015).    

 Immunohistochemistry (IHC) was performed on deparaffinized tissue sections using an 

avidin-biotinylated peroxidase-based kit with a 3-amino-9-ethylcarbazole substrate (Vector 

Labs, Burlingame, CA) to produce a red-brown product (n = 3-4 mice/genotype).  Primary 

antibodies included: rabbit polyclonal anti-bone sialoprotein (BSP; courtesy of Dr. Renny 

Franceschi, University of Michigan, Ann Arbor, MA) (Foster et al., 2013); rabbit polyclonal anti-

mouse osteopontin (LF-175; OPN, courtesy of Dr. Larry Fisher, NIDCR, Bethesda, MD) (Foster 

et al., 2018); rabbit polyclonal anti-periostin (POSTN; Abcam, Cambridge, MA); and rabbit 

monoclonal anti-phospho-SMAD5 (phospho-S463 and S465; Abcam) (Wang et al., 2014).  

Tartrate-resistant acid phosphatase (TRAP) staining was performed to identify by a red-purple 

stain multinucleated osteoclast-like cells on alveolar bone surfaces (Foster et al., 2018). 

Enumeration of TRAP+ osteoclasts and measurement of bone surfaces, was performed using 

ImageJ software.    

 

5.5 | Statistical Analyses 

Comparisons of craniofacial parameters between genotypes were performed using Fisher’s 

exact test and two-way Student’s t-test. Micro-CT data analyses of teeth between genotypes were 

performed using ANOVA and post-hoc Tukey test for multiple comparisons.  Statistical tests were 

performed using GraphPad Prism version 8.0. Groups were considered to be significantly different 

at P < 0.05, though actual P values as low as P < 0.001 are reported. For consistency throughout 

the manuscript, statistical abbreviations are: a indicates statistical significance between 
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genotypes at P < 0.001, b indicates statistical significance between genotypes at P < 0.005, c 

indicates statistical significance between genotypes at P < 0.01, d indicates statistical significance 

between genotypes at P < 0.05. 
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Figure Legends 

 

Figure 1. Altered Craniofacial Skeletal Phenotype of Crtap-/- mice. (A, B) Alizarin red 

staining of whole skulls reveals shorter nasal bones and overall skull length, as well as an open 

mandibular symphysis in Crtap-/- vs. Crtap+/+ mice. (C,D) Micro-CT lateral isosurface images 

including the mandible reveals a shorter nose length (nasale to bregma) and a class III 

malocclusion (pink vertical lines show maxillary molars to be anterior of mandibular molars in  

Crtap+/+ mice but not in Crtap-/- mice). (E-F) Micro-CT axial isosurface images from above reveal 

abnormalities within and surrounding the frontonasal and the frontomaxillary sutures (pink arrow 

in F). (G,H) Micro-CT axial isosurface images from below with mandible removed reveal 

abnormalities within and surrounding the palatomaxillary sutures (pink arrow in H). (I,J) Lateral 
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slice micro-CT images again reveal abnormalities in the frontonasal suture (pink arrow in J). No 

evidence of craniosynostosis or wormian bones is evident. (K) Linear craniofacial 

measurements were taken using landmarks placed on micro-CT scans. Skulls of adult Crtap-/- 

mice are smaller than those of Crtap+/+ littermates, therefore measurements are presented as 

normalized to the total skull length. Normalized measurements show increased cranial width, 

increased infraorbital width, increased parietal bone length, increased cranial vault lengths and 

increased cranial base bone lengths (presphenoid, basisphenoid, basioccipitus), with decreased 

total skull length and nasal bone length when compared to Crtap+/+ littermates (n=5 per 

genotype at 2 months). Please note that two measurements of cranial vault length were taken 

(see landmarks and measurements shown in Figure 6). Results are shown as mean +/- 

standard deviation. *p < 0.05 between genotypes. 

 

Figure 2. Crtap-/- Mice Exhibit Fusion of Frontal and Nasal Bones. Histologic Masson’s 

trichrome stain on decalcified tissue sections reveals thickened and dysmorphic anterior frontal 

and posterior nasal bone in addition to fusion of the nasofrontal suture (black arrow). These 

defects were seen in all Crtap-/- mice (5/5) but no Crtap+/+ mice at 2 months. 

 

Figure 3.  Altered Dental Development in Crtap-/- Mice.  (A-F) 3D renders and 2D sagittal 

sections from micro-CT scans of Crtap+/+ and Crtap-/- mouse mandibles show first molar (M1), 

surrounding alveolar bone (AB; brown, transparent), acellular and cellular cementum (AC and 

CC; yellow, transparent), enamel (EN; white, opaque), and dentin (DE; gray, opaque). Heat map 

2D images in panels B and E correspond to HA mineral densities (mg/cm3) defined by the color 
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bar on righthand edge of E.  (G) Quantification of micro-CT reveals that compared to Crtap+/+ 

controls (n=3 per genotype at 2 months).  Crtap-/- mice feature significantly decreased volumes 

of DE, AB, and CC, and significantly increased PDL and dental pulp volumes.  AB density is 

significantly decreased in Crtap-/- mice compared to Crtap+/+ controls.  Results are shown as 

mean +/- standard deviation. *p < 0.05; ** p < 0.01 between genotypes. 

 

Figure 4.  Altered Dentin, Pulp, and PDL in Crtap-/- Mice.  Quantification of micro-CT reveals 

that compared to Crtap+/+ controls (n=3 per genotype at 2 months).  Crtap-/- mice feature 

significantly decreased crown and root molar dentin volumes, while mineral density was different 

in neither.  Both pulp and PDL densities were reduced in Crtap-/- vs. control mice.  *p < 0.05; ** p 

< 0.01, ***p<.005 between genotypes. 

 

Figure 5. Disrupted Periodontal Structure and Maintenance in Crtap-/- Mice. (A-D) H&E 

stained histological sections show Crtap+/+ and Crtap-/- mouse first mandibular molars (M1), 

acellular cementum (AC), cellular cementum (CC), periodontal ligament (PDL), and surrounding 

alveolar bone (AB).  AC appears thicker while CC (outlined in red dotted lines in panels A and 

C) appears reduced in Crtap-/- mice. (E-H) Histomorphometric analyses reveal no significant 

difference in predentin/dentin ratio, but significant increases in AC and PDL thicknesses, and 

significantly reduced CC area in Crtap-/- vs. Crtap+/+ mice (n=3-4 per genotype at 2 months). 

Results are shown as mean +/- standard deviation. *p < 0.05; ** p < 0.01 between genotypes. (I, 

K) Goldner trichrome staining on undecalcified sections confirms presence of thicker AC (light 

green layer on darker green DE) in Crtap-/- mice. (J, L) Von Kossa staining on undecalcified 
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sections reveals irregular borders on smaller CC, as well as evidence for ectopic calcification 

within the PDL (yellow arrow in inset). (M-P) Observation of dental tissues in a small number of 

older Crtap+/+ and Crtap-/- mice (n=2 per genotype at 3 and 10-11 months; 10-11 months shown 

here) reveals more severely disrupted periodontium in Crtap-/- mice featuring invasion of the 

cervical PDL space with extensive bone/cementum-like nodules (red * in O) and inappropriate 

ingrowth of both AB and CC into the apical PDL (red # in P). Panels I, J, M and N are from 

Crtap+/+ mice while panels K, L, O, and P are from Crtap-/- mice.  

 

Figure 6.  Altered Periodontal Markers in in Crtap-/- Mice.  Immunohistochemistry reveals 

altered (A, C) bone sialoprotein (BSP) and (B, D) osteopontin (OPN) in Crap-/- vs. control 

alveolar bone (AB) adjacent to periodontal ligament (PDL) (indicated by yellow arrows), as well 

as a thicker acellular cementum (AC) layer.  DE=dentin.  (E, G) While periostin (POSTN) 

localizes to PDL and embedded Sharpey’s fibers (indicated by yellow dotted line) in AB of 

control mice, reduced numbers of POSTN-positive Sharpey’s fibers are included in Crtap-/- AB.  

(F, H) Increased numbers of cells positive for phosphorylated SMAD5 (pSMAD5) are present in 

the PDL of Crtap-/- vs. control mice.  (I, J) Increased numbers of tartrate-resistant acid 

phosphatase positive (TRAP+) osteoclast-like cells are observed on Crtap-/- vs. control AB 

surfaces.  (K) Quantification reveals more than 2-fold greater numbers of osteoclast-like cells in 

Crtap-/- vs. control mice (**p<0.01).  

 

Figure 7.  Craniofacial Landmarks and Linear Distances. 3D landmarks placed on micro CT 

images of skulls to compare the craniofacial shape of Crtap-/- mice and wild type littermates. 
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Micro-CT regions of interest for the parietal bone is outlined in black on axial image; Regions of 

interest for the frontal bone is outlined in blue on axial image; Regions of interest for the nasal 

bone is outlined in green on axial image. These regions of interest are custom splined to extend 

only enough to include the entire bone thickness, as described in experimental procedures. 
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