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Abstract  

Novel proteomics platforms, such as the aptamer-based SOMAscan platform, can quantify 

large numbers of proteins efficiently and cost-effectively and are rapidly growing in popularity. 

However, comparisons to conventional immunoassays remain underexplored, leaving investigators 

unsure when cross-assay comparisons are appropriate. We explored the correlation of results from 

immunoassays with relative protein quantification by SOMAscan. For 63 proteins assessed in two 

chronic obstructive pulmonary disease (COPD) cohorts, Subpopulations and Intermediate Outcome 

Measures in COPD Study (SPIROMICS) and COPDGene, using Myriad Rules Based Medicine (RBM) 

multiplex immunoassays and SOMAscan, Spearman correlation coefficients ranged from -0.13 to 

0.97, with a median correlation coefficient of ~0.5 and consistent results across cohorts. A similar 

range was observed for immunoassays in the population based Multi-Ethnic Study of Atherosclerosis 
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(MESA) and for other assays in COPDGene and SPIROMICS. Comparisons of relative quantification 

from the antibody-based Olink platform and SOMAscan in a small cohort of myocardial infarction 

patients also showed a wide correlation range. Finally, we integrated cis pQTL data, mass 

spectrometry aptamer confirmation, and other publicly available data to assess relationships with 

observed correlations . Correlation between proteomics assays shows a wide range and should be 

carefully considered when comparing and meta-analyzing proteomics data across assays and 

studies.  

SIGNIFICANCE 

This paper provides information on the comparability of antibody- and aptamer-based 

protein measures across multiple cohort studies. As new multi-cohort and multi-platform meta-

analyses and replication efforts are initiated using novel proteomics assays, our analysis suggests 

that investigators must more fully consider differences in protein concentration measurements 

obtained from different platforms and assess the level of correlation between those platforms.  In 

addition to correlation data, metrics such as mass spectrometry-based aptamer confirmation or the 

presence of cis pQTLs may help infer the specificity of different proteomics platforms when results 

differ.  

 

Introduction 

Immunoaffinity assays have long been the standard method for assessing protein 

concentrations in plasma and other tissues. Some multiplexed immunoaffinity methods are 

available, but only ~30-50 proteins can be accurately assessed at once, and cross-reactivity may 

reduce sensitivity as compared to monoplex immunoassays [1].  There is increasing interest in the use 

of novel large scale proteomics platforms to facilitate biomarker discovery for sub-phenotyping and 
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risk prediction in complex diseases [2].  Oligonucleotide aptamer-based platforms, such as the 

SOMAscan assays marketed by SomaLogic (Boulder, CO), can be used for quantification of >1,300 

proteins [3-6], with >4,000 proteins assayed in recent publications [7].  Aptamers are randomly 

generated nucleotide sequences that bind specific antigens, mimicking the function of antibodies. 

Aptamer-based assays can detect very low abundance proteins compared to immunoassays, but, as 

a discovery tool, the large SOMAscan platform provides only relative quantification, rather than 

absolute concentrations. Although the SOMAscan platform has been useful to detect reproducible 

protein quantitative trait loci (pQTLs) and epidemiological associations, problems with specificity 

have been reported for a subset of proteins [8, 9].  Relatively little information is publicly available on 

how well the protein levels assessed using the SOMAscan platform correlates with multiplex or 

individual immunoaffinity assays. In a small sample (n≤42) comparing nine proteins measured with 

both aptamer assays and other clinical assays in the Atherosclerosis Risk in Communities Study, the 

median Spearman correlation coefficient was >0.8 at two separate visits [5]. Comparisons of 20 

proteins assessed with both Luminex xMAP immunoassays and SOMAscan in a small number of 

serum samples demonstrated that nearly half had Pearson correlation coefficients <0.5 [10] when 

compared to SOMAscan relative fluorescence units (RFU).  Poor correlation across assays, like that 

reported comparing SOMAscan and Luminex immunoassays, is certainly not unique to aptamer 

based platforms, as immunoaffinity assays also often have relatively low interassay correlations [10, 

11].  However, to facilitate large genetic and epidemiological meta-analyses across traits, more 

publicly available information is necessary regarding which proteins correlate reliably across 

commercially available platforms. There is also very little information on correlation between 

SOMAscan and Olink assays; Olink is another popular high throughput platform using proximity 

extension assay technology to allow for multiplex immunoassays (92 proteins across 96 samples) 

without the extensive cross-reactivity that would occur using conventional ELISAs at this scale [12].  
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This study explores inter-platform correlations of proteomics assays using data available 

from four cohorts: Subpopulations and Intermediate Outcome Measures in COPD Study 

(SPIROMICS); COPDGene; the Multi-Ethnic Study of Atherosclerosis (MESA), and a small cohort of 

patients undergoing septal ablation for hypertrophic cardiomyopathy (inducing planned myocardial 

infarction) [3]. The first two cohorts (SPIROMICS [13] and COPDGene [14]) include current and former 

smokers with or without COPD. The MESA cohort is diverse, recruited from the general population, 

and free of cardiovascular disease at baseline [15]. Each cohort had multiple assays performed on 

multiple platforms on aliquots taken from the same plasma or serum sample. These platforms 

included the SOMAscan 1.1k or 1.3k array; a custom Myriad Rules Based Medicine (RBM) set of 

multiplexed Luminex assays [16, 17]; Meso Scale Discovery (MSD) assays; Olink panels; and ProterixBio 

assays, along with many additional individual immunoassays. The different platforms have 

overlapping proteins, allowing us to explore correlations of target proteins across platforms. Similar 

assays available in COPDGene and SPIROMICS allowed assessment of many of the same correlations 

(notably between the SOMAscan 1.3k array and Myriad RBM assays) in two independent cohorts.  

Methods 

Cohorts 

SPIROMICS (ClinicalTrials.gov Identifier: NCT01969344) is a multi-center cohort study that 

recruited ever-smokers (n=2,772, ≥20 pack-years, no exacerbation for >30 days) with and without 

COPD as well as age and gender-matched never-smokers (n=202).  SPIROMICS study design has been 

previously described [13]. All subjects provided serum using a SST tube (Becton Dickinson) and fresh 

frozen plasma collected using either an 8.5 mL EDTA collection tube or a P100 tube with K2EDTA, 

which contains anti-coagulant and proprietary protease inhibitor additives (antiproteases; BD 

product number 366448) [18]. SOMAscan data (1.3k version) is available in 288 participants, of whom 

176 overlap with proteomics data available from a custom 13-panel multiplex assay (114 protein 
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measures, Myriad-RBM, Austin, TX) [16].  Additionally, data is available from a Meso Scale Discovery 

(MSD) assay assessing nine proteins (TNFα; IL-2, -6, -8, -10; interferon γ; CCL11 (eotaxin); CCL26 

(eotaxin 3); CCL17) [19] and with unpublished ProterixBio ELISA data for 23 target proteins.  

ProterixBio immunoassays were developed using commercially sourced antibodies and reagents [20]; 

detailed methods are included in the supplement.   

COPDGene (ClinicalTrials.gov Identifier: NCT00608764) is a multi-center cohort study 

designed to identify genetic factors associated with COPD. Phase 1 visits were conducted from 

January 2008 until April 2011, with a subset of participants returning for a second phase 

approximately 5 years later. COPDGene recruited 10,263 current and former smokers (≥10 pack-

years, no exacerbation >30 days) with and without COPD of non-Hispanic white and African 

American ancestry [14]. Age- and sex-matched healthy individuals (n=108) with no history of smoking 

were enrolled as controls during Phase 1, with an additional 347 never-smokers enrolled during 

Phase 2. A subset of subjects in both Phase 1 and Phase 2 provided fresh frozen plasma collected 

using an 8.5 ml p100 tube (Becton Dickinson - BD) [16, 19, 21].   SOMAscan data (1.3k version) is 

available in 1248 participants at phase 1 and 1086 participants at phase 2. Data from the same 

multiplex RBM assays as used in SPIROMICS is available in 602 individuals at phase 1, of whom 371 

overlap with SOMAscan [16]. The same participants from phase 2 also have MSD assays available at 

this timepoint (n=500 overlapping) [22]. Additionally, data from monoplex QBR assays at phase 1 is 

available for some proteins, such as C-reactive protein (n=1096 overlapping) [21].  

MESA is a community-based cohort study designed to determine the prevalence, 

determinants, and progression of subclinical cardiovascular disease (CVD). MESA recruited men and 

women aged 45-84 free of clinical CVD at baseline from four major race/ethnicity groups from six 

different locations in the United States (2000-2002) [23]. Exam 5 was conducted from 2010-2011. We 

assessed correlations for target proteins where individuals were assessed with both conventional 

ELISA assays and SOMAscan using the same blood sample. SOMAscan data was newly generated for 
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the MESA cohort by the NHLBI Trans-Omics for Precision Medicine Initiative (TOPMed). Biomarker 

assays have been previously reviewed [24] (see supplementary methods for references).  

Olink and SOMAscan 1.1k data was available in 48 samples from 10 patients undergoing 

septal ablation for hypertrophic cardiomyopathy, with 4 timepoints each (baseline, 10 minutes , 1 

hour, and 24 hours after intervention) [3]. Raw data is available in Supplemental Data Object 1. From 

the overlapping Olink and SOMAscan 1.1k results, a small number of analytes {eukaryotic translation 

initiation factor 5A-1 (eIF-5A-1), interferon gamma (IFN-γ), interleukin 13 (IL-13), interleukin 1 alpha 

(IL-1α), interleukin 20 (IL-20), interleukin 22 receptor subunit alpha 1 (IL22RA1), tumor necrosis 

factor alpha (TNF-α), and thymic stromal lymphopoietin (TSLP}. were excluded due to Olink assay 

results below the lower limit of detection  

In all cases, we compared the results of samples drawn on the same individual participants 

during the same study visit. Note that, by design, there is no overlap of study participants between 

our cohorts. Participants in all included studies provided written informed consent, and studies were 

approved by the relevant institutional review boards at all participating centers.  

Analysis Methods 

Cohorts and proteomics assays compared are summarized in Figure 1. To compare the 

protein assessment platforms, we analyzed only proteins for which ≤20% of the assay results were 

below the lower limit of detection (LLOD).  As many assessed proteins have non-normal 

distributions, we used a non-parametric method, Spearman correlation coefficients, calculated using 

R 3.5.3 or SAS 9.3. Proteins were matched wherever possible by Uniprot ID, taking into account 

additional annotation information if needed.  

Our largest set of overlapping proteins in an adequate sample size for genetic analysis (from 

Myriad RBM and SOMAscan in COPDGene and SPIROMICS) was also used for cis pQTL analysis, using 

the same set of overlapping samples used for correlation analyses. Genetic association analyses 
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were performed using R with MatrixEQTL version 2.2, biomaRt version 2.38.0, and snpStats version 

1.32.0. An additive genetic linear regression model was used, including five genotype principal 

components to control for population substructure, sex, age, and current smoking status. All protein 

concentration values were inverse normal transformed for the analysis. Genotype data in COPDGene 

was from a single version of the Illumina HumanOmniExpress Beadchip. SPIROMICS used data from 

three versions of the Illumina OmniExpress HumanExome BeadChip [16]. Variants with a minor allele 

frequency <1% were removed from the analysis. The p-value threshold for declaring a significant cis 

pQTL was p<1x10-4 within 1 Mb of the gene encoding the protein product.  

We also compiled and integrated information on non-specific aptamer binding, mass 

spectrometry validation, and pQTLs from large previous SOMAscan studies [7, 25] and a previous 

analysis of Myriad RBM data in COPDGene and SPIROMICS [16] in a large sample size. 

Results 

SOMAscan versus Myriad-RBM Immunoassays 

We first compared the results of a previously measured custom 13-panel multiplex assay 

(Myriad-RBM) [16] with SOMAscan 1.3k data (Table 1, Figure 2a).  There were overlapping data from 

371 subjects in COPDGene and 176 subjects from SPIROMICS. While all data was from blood 

collection at the same study visit, the SPIROMICS SOMAscan data used P100 fresh frozen plasma, 

but the SPIROMICS RBM data were generated from EDTA plasma or SST serum [18]. Spearman 

correlation coefficients for individual proteins had a similar range in both cohorts (-0.07≤ rs≤0.97 in 

COPDGene, -0.13≤rs≤0.97 in SPIROMICS); the median correlation coefficient was 0.57 in COPDGene 

and 0.46 in SPIROMICS (Table 1).   

For the 63 proteins assessed, the correspondence between the intra-study correlation 

coefficients was high between the COPDGene and SPIROMICS studies (rs= 0.88) (Supplementary 

Figure 1). There are a few notable outliers, such as angiopoietin-1, with rs=0.26 in SPIROMICS and 
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rs=0.75 in COPDGene and superoxide dismutase [Cu-Zn], with rs=0.21 in SPIROMICS and rs=0.6 in 

COPDGene. We investigated if those disparities might result from use of serum for some RBM assays 

in SPIROMICS [16], instead of plasma (as used in COPDGene). However, five of the six proteins with 

the greatest difference in correlation between cohorts had assays performed using plasma in 

SPIROMICS, arguing against that explanation (though differences between the p100 plasma used in 

COPDGene and EDTA plasma used in SPIROMICS for Myriad RBM assays [16], particularly in terms of 

protease digestion, may play a role). In total, 17 proteins (27%) had rs≥0.7 in both cohorts (high 

correlation), and 13 proteins (21%) had rs<0.3 in both cohorts (low correlation) (Supplementary 

Figure 1). We next assessed the presence/absence of cis pQTLs with reference to the SOMAscan and 

Myriad-RBM assays in the same samples used for evaluation of Spearman correlation coefficients 

(Table 1, Supplementary Table 1). The presence of a cis pQTL can provide a measure of aptamer 

validation, suggesting robust binding to the target protein (though not excluding off-target binding). 

Of the 63 proteins assessed, 31 had evidence of a cis pQTL in at least one study for at least one 

assay. For proteins with cis pQTL evidence in at least one study for both assays, the median 

correlation was 0.505, similar to the overall median. Discordant cis pQTL evidence was also 

evaluated. Five proteins had cis pQTL evidence with Myriad-RBM assays in both COPDGene and 

SPIROMICS and did not have cis pQTL evidence from SOMAscan data in either cohort. These five 

proteins (CCL24, CXCL5, IL2RA, SFTPD, MMP3) had a low median correlation coefficient across the 

two cohorts (rs=0.1).  ICAM1 had a cis pQTL in both cohorts for SOMAscan data only and also has a 

low correlation coefficient between assays (rs≤0.13). Based on this data, presence of concordant cis 

pQTLs does not ensure high correlation across assays, but discordant cis pQTLs are generally found 

only for low correlation assays, with the assay with the cis pQTL likely having higher binding 

specificity for the target protein. 

We additionally compiled publicly available datawhich might be informative for antibody 

and aptamer binding specificity to evaluate if this information was predictive of protein assay 
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correlations. Of the 63 Myriad RBM target proteins , 42 (67%) have had reported cis pQTLs in either 

the AGES[7] or INTERVAL[25]  studies (median rs=0.48, similar to all tested proteins), with 21 having a 

reported cis pQTL in a previously published COPDGene/SPIROMICS Myriad RBM pQTL study (in a 

larger sample size than the samples used here with overlapping SOMAscan data) [16] (Supplementary 

Table 2). Proteins with a cis pQTL for both assays in these previous studies had a median rs of 0.40.  

Details on post-translational modifications and isoforms from UniProtKB and on common coding 

SNPs (from gnomAD server), which could impact antibody/aptamer binding, on proteins with 

discordant pQTL evidence or with rs <0.3 in SPIROMICS and COPDGene are also listed in 

Supplementary Table 3, with high correlation proteins also listed for comparison. Few clear patterns 

are observed. Many SOMAscan aptamers have also been tested for cross-reactivity against 

homologous proteins (at least 40% sequence homology) [25]. Of the forty-nine tested, seven have 

comparable binding with at least one protein (median Spearman correlation coefficient of 0.46 with 

RBM assays, versus median correlation of 0.56 for all 49 aptamers tested). Finally, Emilsson et al. 

additionally examined evidence of aptamer binding to target protein using a subset of aptamers by 

multiple reaction monitoring or data dependent analysis mass spectrometry from AGES [7].  Proteins 

with mass spectrometry confirmation were quite clearly enriched in the high correlation group 

(12/17) versus the low correlation group (0/14, see Table 1, Figure 2a). Confirmation of aptamers by 

mass spectrometry was associated with higher correlation of SOMAscan with immunoassays, but 

few clear patterns were seen for other factors, such as known aptamer cross-reactivity with 

homologous proteins, that might also have been hypothesized to systematically interfere with 

accurate quantification. 

SOMAscan versus MSD, ELISAs and ProterixBio and other assays. 

We also assessed Spearman correlation coefficients between SOMAscan data and other 

antibody-based platforms, including MSD (SPIROMICS/COPDGene), individual ELISAs (COPDGene, 

MESA), and ProterixBio (SPIROMICS). Median correlation values were similar for immunoassays in 
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MESA (rs=0.41 for 18 unique proteins at Exam 1 (Supplementary Table 4)), ProterixBio assays in 

SPIROMICS (median rs=0.63 for 14 unique proteins (Supplementary Table 5)), and Quotient Bio 

Research (QBR) assays in COPDGene (median rs=0.49 for 3 unique proteins (Supplementary Table 

6)).  Correlations were lower for the nine unique proteins in the inflammation-focused MSD platform 

(rs=0.38 in SPIROMICS, rs=0.28 in COPDGene) (Supplementary Table 7). Comparisons between 

antibody-based platforms were not the central focus of our analyses, as this topic has been assessed 

in a number of previous efforts [11, 26], but are presented for SPIROMICS  (Supplementary Table 8), 

with a median rs of 0.76 for Myriad RBM and ProterixBio, higher than for antibody vs. SOMAscan 

comparisons (n=323 individuals, 8 proteins compared, 3 not assessed due to >20% of samples below 

the LLOD).  

Finally, we assessed correlations between the SOMAscan platform (1.1k version) and 

overlapping assays from Olink in a small cohort of myocardial infarction patients (10 patients, up to 

48 samples due to multiple timepoints per patient) (Table 2, Supplementary Table 9); the median rs 

of 0.36 was similar to the comparisons between SOMAscan and conventional immunoassays. Similar 

enrichment of mass spectrometry confirmed aptamers [7] in the high correlation group was 

observed, as well as enrichment for proteins with a SOMAscan cis pQTL (Figure 2b). 

Summary 

Correlation between immunoassays and SOMAscan varied widely by protein. Approximately 

27% of the proteins, e.g., C-reactive protein (CRP), were well correlated in both studies (rs≥0.7) for 

the RBM platform. Similarly, a CRP immunoassay compared to SOMAscan in MESA (rs=0.96, n=976) 

(Supplementary Table 4) and a QBR CRP immunoassay to SOMAscan in COPDGene (rs=0.94, n=1096) 

(Supplementary Table 6) had high correlations, suggesting good consistency across cohorts and 

platforms for this biomarker. However, other target proteins measured in both COPDGene and 

SPIROMICS were essentially uncorrelated between SOMAscan and the RBM platform (rs<0.3, 
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representing 20% of all compared proteins), for example, tumor necrosis factor receptor superfamily 

member 11B (TNFRSF11B), C-C motif chemokine 24 (CCL24), stromelysin-1 (MMP3), vascular 

endothelial growth factor A (VEGFA), pulmonary surfactant-associated protein D (SFTPD), C-C motif 

chemokine 13 (CCL13), and platelet endothelial cell adhesion molecule (PECAM1).  This wide range 

in correlation coefficients is broadly consistent comparing other platforms, such as MSD and Olink, 

with SOMAscan. For example, for Olink, correlation coefficients range from -0.58 to 0.93 for the 425 

tested proteins, with 13% of proteins with rs≥0.7 (well correlated) and 42% with a rs<0.3 (poorly 

correlated). For proteins present in the reference HUPO plasma dataset, protein abundance in 

reference plasma samples was not correlated with reported Spearman correlation coefficients 

across platforms in our analyses (rs=0.082), suggesting low and high abundance proteins were 

equally likely to have poor correlation across platforms (Supplementary Table 10). However, we do 

note that for the 43 proteins included in both our Myriad RBM/SOMAscan comparisons in 

COPDGene and SPIROMICS (Table 1) and Olink/SOMAscan comparisons in the planned MI cohort 

(Table 2, Supplementary Table 9), there was a strong relationship between the correlation 

coefficients (rs= 0.63), showing some consistency for SOMAscan comparisons with two different 

antibody-based platforms (Supplementary Figure 2).  

Discussion  

In four cohorts (SPIROMICS, COPDGene, MESA, and a small cohort of planned myocardial 

infarction patients) comprising both adult participants in good health and those with cardiovascular 

and smoking-related diseases, we identified a wide range of correlations between SOMAscan 

aptamer results and data from multiple antibody-based assays.  Assay correlations ranged from very 

high (e.g., CRP) to non-existent (SFTPD, PECAM1). We found that cis pQTLs and mass spectrometry 

confirmation of aptamers are more often observed with well correlated assay pairs than poorly 

correlated assay pairs, suggesting that these are valuable measures of aptamer/antibody specificity 
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for target proteins. Availability of many of the same assays in COPDGene and SPIROMICS dem-

onstrated the similarity in assay correlations across two cohorts.  Epitope availability, cross-

reactivity, and negative cooperative binding could all contribute to lack of concordance between 

methods. Some non-specificity has previously been reported for the SOMAscan platform, e.g., the 

known binding of an aptamer for GDF11 to GDF8 [8] (though this has been addressed on the current 

version of the platform [27]). Specificity problems and lack of correlation between immunoassay 

platforms have also been reported, however [10, 11]. A careful examination of platform concordance is 

essential for proteomics analyses, and the data presented here should be useful in the design of 

studies which combine proteomics data across platforms.   

Our results support the general feasibility of meta-analysis with immunoassays for some 

proteins assessed by the novel SOMAscan platform, while highlighting a subset of proteins that may 

be problematic to compare across platforms. Many analyses have been performed to determine the 

most likely protein biomarkers for a disease or trait using large-scale proteomics platforms, for 

example [28] [29, 30], but few include replication analyses across many cohorts, with a few recent 

exceptions (such as [29]), or effectively utilize multiple proteomics platforms. Although pQTLs often 

have larger effect sizes than are seen in other complex trait genetics analyses [25, 31], increasing power 

through meta-analysis will also be essential to pQTL discovery, particularly for trans variants with 

more modest effect sizes or for analyses of gene x gene and gene x environment interactions. It is 

important to utilize alternate protein assessment platforms to validate pQTLs (as done for a subset 

in [25]) or disease association results.  Despite differing scales (as both Olink and SOMAscan provide 

only relative, not absolute, quantification), meta-analysis with traditional ELISAs or other 

technologies should be appropriate for well-correlated assays but would be meaningless for 

essentially uncorrelated assays.  

We argue that the presence or absence of cis pQTLs and reproducibility of pQTLs across 

platforms may provide clues to assay specificity. The high reproducibility (74.6% replicated) of 
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previously published non-aptamer identified pQTL associations in the recent AGES study [7] points to 

reasonable consistency of aptamer and non-aptamer methods for many proteins, while not 

excluding problematic quantification for a subset of assays.  Sun et al. also found that, of 74 tested 

cis pQTLs from SOMAscan, 60 replicated with the Olink platform, again pointing to reasonable 

platform concordance [25]. Preliminary results released by Olink suggest that 90% of biomarkers on 

their CVD I-panel (80 of 90 tested proteins) have a genome-wide significant cis pQTL in a sample of 

n=22,000, suggesting high specificity for their paired antibody-based system. However, further 

follow-up of an increased number of Olink assays using both pQTLs and other analysis techniques is 

needed in future work [32], as are better powered meta-analyses of SOMAscan assays to definitively 

confirm the presence or absence of cis pQTLs.  Our analyses of cis pQTLs in SPIROMICS and 

COPDGene suggest that discordant cis pQTLs may be helpful for determining which assay is likely 

more specific for the target protein for poorly correlated assay pairs. For example, SFTPD has a cis 

pQTL in Myriad RBM based analyses from COPDGene and SPIROMICS (lead pQTL rs2146192) [16], 

which coincided with previous associations for COPD phenotypes.  However, this protein had no 

reported cis pQTLs in SOMAscan pQTL results from COPDGene and SPIROMICS or in two other 

previous studies [7, 25].  One potential reason for this lack of replication is differences in assay 

specificity and performance, with the antibody for SFTPD for Myriad RBM likely having higher affinity 

or less off-target binding than the SOMAscan aptamer for this protein, allowing detection of this cis 

pQTL. Conversely, for analytes with a strong cis pQTL for SOMAscan data but not for antibody-based 

assays, there may be an issue with the specificity of antibody-based assays. However, concordant cis 

pQTLs do not ensure that assays will be well correlated. For poorly correlated analyte C-C motif 

chemokine 8, a cis pQTL signal is found both for SOMAscan data and Myriad RBM data, suggesting at 

least some binding to the target protein for both these assays, but likely with variable specificity or 

binding properties. Finally, for cis pQTL missense variants, such as lead variant rs5498 with 

SOMAscan measured ICAM1 (Supplementary Table 1), it is important to note that differences in 
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antibody or aptamer binding to different isoforms may drive missense variant cis pQTLs, as opposed 

to true differences in protein levels. For example, differences in antibody binding causing spurious 

pQTLs was found for VDBP (not assessed here) in prior work using the Myriad RBM platform[16] and 

for other ELISAs in past efforts (such as [33]). Missense variants impacted levels of >32% of proteins 

assessed in INTERVAL, in some cases likely due to artefactual differences in aptamer binding 

unrelated to biologically relevant changes in protein abundance [25]. Future studies should also 

consider common missense variants which may cause assay interference and decrease biomarker 

correlations in only some ancestry groups, particularly those common only in non-European ancestry 

populations (and therefore not assessed in existing pQTL studies[7, 25]).  In cases where missense 

variants do impact aptamer or antibody binding, stratifying by genotype may improve correlation 

across assays[16]. While we did not see a systematic pattern for presence/absence of common 

missense variants among well- and poorly-correlated proteins in our analysis (Supplementary Table 

3), careful consideration of missense variants which may interfere with appropriate 

antibody/aptamer binding to target epitopes is necessary. Along with these known concerns for 

coding cis pQTLs, cis genetic variants that alter protein oligomerization and posttranslational 

modifications through their regulatory roles could also impact antibody or aptamer-based 

quantification without truly influencing protein abundance.  

Along with cis pQTLs, we also explored other potential explanatory factors for observed 

correlation coefficients for assessed proteins. As explored in Supplementary Table 3, for proteins 

from SPIROMICS and COPDGene compared across the Myriad RBM and SOMAscan platforms, we did 

not see systematic differences in post-translational modifications or number of isoforms between 

highly correlated and poorly correlated (or pQTL discordant) proteins. However, more high 

correlation proteins versus low correlation proteins had aptamers confirmed by mass spectrometry 

in [7], for both Myriad RBM and Olink comparisons (Figure 2).  Other studies prior to Emilsson et al. 

also validated SOMAscan aptamers with mass spectrometry, providing important validation of 
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cardiovascular disease related findings for proteins such as epidermal growth factor receptor [3] and 

adenylosuccinate synthase 1 [34], among others; data from these studies could additionally provide 

validation for some aptamers of interest. Cumulatively these studies provide convincing evidence of 

the utility of mass spectrometry-based aptamer confirmation. Cross-reactivity for aptamers or 

antibodies might also be hypothesized to lead to low correlation between assays. Recent work by 

Sun et al. [25] extensively tested cross-reactivity of 920 SOMAmers against homologous proteins (at 

least 40% sequence homology), and found that 126 SOMAmers (14%) showed comparable binding 

with a homologous protein.  However, nearly half of these were binding to alternative forms of the 

same protein; the likelihood of cross-reactivity also increased with increasing amino acid homology 

(the median was 70% for those with comparable binding).  While we observed few systematic 

differences in cross-reactivity between low and high correlation assays, cross-reactivity could be a 

cause for low correlations for a few of the assays examined here. For example, the D-dimer aptamer 

had comparable binding to fibrinogen and fibrinogen γ chain (but no appreciable binding to 

fibrinogen β chain) in the analyses by Sun et al., suggesting a cause for the modest observed 

correlation for D-dimer immunoassays with SOMAscan (rs = 0.14 in MESA).  

A central strength of our analysis is concurrent assessment of correlations with an 

immunoassay platform in four independent cohorts, two of which (COPDGene and SPIROMICS) have 

very similar proteomics datasets. This helped us obtain a more consistent picture of the true 

correlations between platforms. Our study has important limitations as well.  As is standard for most 

cohort studies, data sharing is based upon participant informed consent; thus, not all underlying 

data can be freely shared. All data are available through data access procedures as described in the 

Associated Data. There are many novel options for proteomics analysis (such as high throughput 

mass spectrometry pipelines) which are not considered here. We also cannot comment on which 

assays (SOMAscan, MSD, QBR, etc.) most accurately reflect the true levels of protein biomarkers 

without comparing them to fully validated immunoassays that have been vetted for specificity, 
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linearity and possible interference (which for the majority of measured analytes do not exist). In the 

COPDGene cohort, data for four well-vetted immunoassays in clinical use were available; 

concordance with SOMAscan data was ~0.6 or higher for three of these (but not for alpha-1-

antitrypsin, which was also poorly correlated with RBM values) (Supplementary Figure 3). However, 

in most cases there is no clinical assay available, increasing the utility of data on mass spectrometry 

confirmation or on cis pQTLs. Presence of a cis pQTLs for both platforms does not guarantee high 

correlation (as evidenced by similar median correlation for proteins with/without a cis pQTL for 

Myriad RBM comparisons for example), but presence of a cis pQTL suggests an antibody/aptamer 

has at least some binding with its target protein. Discordant cis pQTLs can be helpful in interpreting 

low correlation between assays, with the assay with a cis pQTL likely more accurately assessing 

abundance of the target protein. We do note as a limitation of our analyses the different genotyping 

platforms and use of genotyped variants only in comparing pQTL analyses between COPDGene and 

SPIROMICS, but our purpose was simply to evaluate the presence or absence of cis pQTLs. 

Comparison of serum and plasma protein quantification is also an issue for some assays (notably 

some of the SPIROMICS Myriad RBM/SOMAscan comparisons in Table 1, as annotated in 

Supplementary Table 2), as there may be differences in protein stability, the formation of 

aggregates, and other attributes for some proteins between serum and plasma (though previous 

work [18] from SPIROMICS has shown high correspondence between serum and plasma results for the 

Myriad RBM platform). Our Olink/SOMAscan comparison dataset is small (n=48) and thus could not 

be used for cis pQTL analysis. It also uses an older (1.1k) version of the SOMAscan platform (a small 

subset of the aptamers have been retired in more recent versions).  

Our results provide an important starting point for proteomics investigators, but differences 

between platforms still need to be more fully explored. High-throughput proteomics technologies 

such as the SOMAscan platform [12] can assess a very large number of proteins in a single assay at 

relatively low per analyte cost and low sample volume.  However, it is evident that some proteins 
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examined do not correlate well with antibody-based assays, including novel Olink proximity 

extension assays, potentially due to lack of specificity for some aptamers or antibodies or differences 

in signal to noise ratios. Different assays may have varying benefits and drawbacks. For example, in 

Olink proximity extension assays, binding of a pair of antibodies to each protein [12] might be 

hypothesized to increase specificity. However, the real-time PCR quantification may differ in signal 

to noise ratio compared to other quantification approaches. Additional validation for top results 

with any novel discovery platform (using mass spectrometry, ELISAs, etc.) is important, especially if 

there is evidence of lack of correspondence between platforms and a lack of cis pQTL evidence for 

the target protein with the novel assay. The use of relative quantification for SOMAscan and Olink 

also leads to some uncertainty about which proteins may indeed be below reasonable detection 

limits in a large portion of individuals, with again orthogonal methods required for some 

applications. However, we do note that protein abundance in reference data from HUPO was not 

significantly correlated with Spearman correlation coefficients across platforms, so low protein 

abundance is unlikely to be the main reason for discrepant quantification. Still, we feel a 

comprehensive study of many available platforms (including mass spectrometry-based platforms) in 

a reasonably sized set of overlapping samples (~100), with comparison to serum and plasma 

reference standards, would be a precious asset for future research. Complete understanding of the 

comparability of results from aptamer technology to other protein biomarker or proteomics 

platforms is still lacking and is vital for interpretation of research findings.   

To conclude, more analysis is needed to assess the potential to integrate data across 

proteomics platforms fully. Olink and SOMAscan do not provide exact quantification and are not 

designed to correspond perfectly to exact quantification methods. However, sample ranking (as 

assessed here using Spearman correlation coefficients) should be quite similar if both the novel 

assay (Olink or SOMAscan) and existing immunoassays perform well. Ideally, all novel assays should 

be confirmed by multiple orthogonal methods (e.g., both MRM and well-validated immunoassays) in 
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a well-powered sample, as well as using well-characterized reference samples in relevant tissue 

types (such as serum, plasma, and urine). Investigators should be careful to treat discovery platforms 

like Olink and SOMAscan appropriately, confirming key results with additional methods, and using 

comparisons to reference standards to obtain exact protein quantification. However, the correlation 

information presented here provides a starting point for evaluating the comparability of antibody- 

and aptamer-based protein measures, similar to previous efforts publicly compiling the coefficients 

of variation and stability measurements for SOMAmers [35].  As new multi-cohort meta-analyses and 

replication efforts are initiated, our analysis suggests that investigators must be aware of differences 

in biomarkers obtained from different platforms and can use metrics such as the presence of cis 

pQTLs or orthogonal assays like mass spectrometry to infer the specificity of different proteomics 

platforms.  

ASSOCIATED DATA 

Data is available through dbGaP or other secure access mechanisms to approved researchers. Full 

data is available from MESA (https://www.mesa-nhlbi.org/), SPIROMICS 

(https://www.spiromics.org/spiromics/), and COPDGene (http://www.copdgene.org/) by approved 

manuscript proposal and data use agreement at the respective study websites. The Multi-Ethnic 

Study of Atherosclerosis (MESA) proteomics data is available at dbGaP phs000209; SOMAscan data 

will soon be posted to phs001416. Genetic Epidemiology of COPD (COPDGene) data is available at 

dbGaP phs000179. Subpopulations and Intermediate Outcome Measures in COPD Study 

(SPIROMICS) data (genetic data only) is available at phs001119.  Data from the small cohort of 

patients undergoing septal ablation for hypertrophic cardiomyopathy (inducing planned myocardial 

infarction) is included as a supplemental data object.      
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Table 1: Correlation coefficients for the 63 proteins assessed between the SOMAscan and Myriad 

RBM platform in both COPDGene and SPIROMICS. Presence or absence of a cis pQTL variant (p<1 x 

10-4 within 1 megabase of the gene encoding the protein product) is also listed. rs, estimated 

Spearman’s rho. We have separated out low correlation (rs <0.3 in both cohorts) and high correlation 

(rs ≥0.7 in both cohorts) proteins, with all other proteins listed in the moderate correlation category. 

We also list whether aptamers have cis pQTLs found in genetic analyses from either of the larger 

AGES [7] and INTERVAL [25] studies using SOMAscan data or from previous analysis of the full 
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published sample size in SPIROMICS and COPDGene cohorts with Myriad RBM data [16]. Finally, we 

list if an aptamer has been validated as having at least some binding to its target by mass 

spectrometry in AGES [7], and whether an aptamer has comparable binding in cross-reactivity testing 

against homologous proteins (at least 40% sequence homology) in [25]. UniProt ID, gene name, and 

aptamer SomaId are listed in Supplementary Table 2.  

 

SPIROMICS COPDGene Evidence from prior publications 

Protein N rs 

Myria

d 

pQTL 

SO

MA

sca

n 

pQ

TL 

N rs 

Myria

d 

pQTL 

SOM

Asca

n 

pQTL 

Any 

evidence 

of 

SomaSca

n pQTL 

Myria

d 

RBM 

pQTL 

AGES 

Mass 

Spec. 

INTER

VAL 

Comp

arable 

Bindin

g to 

Other 

protei

ns 

Low correlation 

Alpha-1-

antitrypsin 

17

5 

0.2

6 
yes yes 

37

1 

0.2

4 
yes   yes yes   

not 

tested 

Cadherin-1 
17

6 

0.2

1 
    

37

1 

0.1

4 
yes   yes     no 

C-C motif 

chemokine 

13 

17

1 

-

0.0

2 

    
36

4 

0.1

2 
          no 

C-C motif 

chemokine 

24 

17

5 
0.1 yes   

37

0 

-

0.0

2 

yes     yes   no 

C-C motif 

chemokine 

8 

17

6 
0.2 yes   

36

9 

0.1

8 
yes yes yes yes   no 

Haptoglobi

n 

17

5 
0.2 yes yes 

36

7 

0.2

6 
yes yes yes yes   yes 

Hepatocyte 

growth 

factor 

17

5 
0     

36

8 

0.1

5 
  yes yes     no 

Intercellula

r adhesion 

molecule 1 

17

4 

0.0

4 
  yes 

36

9 

0.1

3 
  yes yes     

not 

tested 

Interleukin

-2 receptor 

subunit 

alpha 

17

6 

0.0

8 
yes   

37

0 

0.1

2 
yes     yes   

not 

tested 
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Platelet 

endothelial 

cell 

adhesion 

molecule 

17

5 

0.0

4 
    

37

0 

-

0.0

7 

      yes   
not 

tested 

Pulmonary 

surfactant-

associated 

protein D 

17

5 

-

0.1

3 

yes   
37

0 

0.0

2 
yes     yes   

not 

tested 

Tumor 

necrosis 

factor 

receptor 

superfamil

y member 

11B 

17

6 

-

0.1

1 

    
37

0 

-

0.0

3 

    yes     no 

Vascular 

endothelial 

growth 

factor A 

17

5 

0.0

3 
yes yes 

36

4 

0.0

8 
yes yes yes yes   no 

Moderate correlation 

Alpha-2-

macroglob

ulin 

17

5 

0.4

5 
yes   

37

1 
0.7         yes no 

Angiopoieti

n-1 

17

5 

0.2

6 
    

37

0 

0.7

5 
    yes   yes no 

Antileukop

roteinase 

17

6 

0.4

1 
    

37

1 

0.6

2 
    yes   yes no 

Beta-2-

microglobu

lin 

17

6 

0.6

6 
    

37

1 

0.4

9 
        yes no 

Brain-

derived 

neurotroph

ic factor 

17

5 

0.4

8 
    

36

8 

0.8

2 
    yes     no 

C-C motif 

chemokine 

2 

17

5 

0.4

2 
    

37

0 

0.4

6 
          no 

C-C motif 

chemokine 

22 

17

5 

0.6

2 
    

37

0 

0.7

4 
    yes     yes 

C-C motif 

chemokine 

23 

17

5 

0.6

9 
yes yes 
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1 

0.5

9 
yes   yes yes   yes 

C-C motif 

chemokine 

5 

17

5 

0.5

6 
    

37

1 

0.9

1 
    yes     no 
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Coagulatio

n factor VII 

17

6 

0.4

5 
yes yes 

36

9 

0.5

6 
yes yes yes yes yes no 

Compleme

nt C3 

17

5 

0.3

5 
    

37

1 

0.4

5 
yes   yes yes yes yes 

Creatine 

kinase M-

type:Creati

ne kinase 

B-type 

heterodim

er 

17

4 

0.4

6 
    

37

0 

0.4

4 
    yes   yes yes 

C-X-C motif 

chemokine 

5 

17

5 

0.3

1 
yes   

36

9 

0.3

9 
yes   yes yes yes no 

C-X-C motif 

chemokine 

9 

17

5 

0.6

6 
    

37

1 

0.5

6 
          no 

Decorin 
17

4 

0.3

8 
    

37

0 

0.5

4 
          no 

Fibrinogen 
17

3 

0.1

2 
    

37

0 

0.3

2 
        yes yes 

Interleukin

-16 

17

5 

0.3

2 
yes yes 

37

0 

0.3

3 
yes yes yes yes   

not 

tested 

Interleukin

-18-binding 

protein 

17

5 

0.6

9 
    

37

0 

0.5

7 
        yes 

not 

tested 

Interleukin

-8 

17

5 

0.5

2 
    

36

6 

0.5

5 
          no 

Lactotransf

errin 

17

4 

0.3

4 
    

35

8 

0.4

8 
yes   yes yes   no 

Mast/stem 

cell growth 

factor 

receptor 

Kit 

17

5 

0.6

2 
    

37

1 

0.6

5 
        yes no 

Matrix 

metallopro

teinase-9 

16

7 

0.4

6 
    

36

8 

0.6

3 
  yes yes   yes no 

Metallopro

teinase 

inhibitor 1 

17

6 

0.5

4 
    

37

1 

0.2

5 
          

not 

tested 

Metallopro

teinase 

inhibitor 2 

17

6 

0.4

5 
    

37

1 

0.1

3 
yes yes yes   yes no 

Myoglobin 
17 0.6

    
37 0.5

        yes no 
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5 2 1 7 

Neuronal 

cell 

adhesion 

molecule 

17

3 

0.3

8 
    

37

0 
0.4 yes   yes yes   no 

Plasminoge

n activator 

inhibitor 1 

17

4 

0.6

9 
    

36

7 

0.8

9 
    yes     no 

Stromelysi

n-1 

17

6 

0.3

4 
yes   

36

9 
0.1 yes   yes yes   no 

Superoxide 

dismutase 

[Cu-Zn] 

17

6 

0.2

1 
    

37

0 
0.6           

not 

tested 

Thyroxine-

binding 

globulin 

17

5 

0.6

4 
    

37

1 

0.6

5 
        yes no 

Transformi

ng growth 

factor 

beta-1 

17

6 

0.2

1 
    

37

0 

0.3

8 
    yes     no 

Tumor 

necrosis 

factor 

receptor 

superfamil

y member 

6 

17

5 

0.4

4 
    

35

8 

0.6

1 
  yes yes     

not 

tested 

von 

Willebrand 

factor 

17

5 

0.4

8 
    

36

5 

0.4

5 
    yes   yes 

not 

tested 

High correlation 

Adiponecti

n 

17

5 

0.9

4 
    

37

1 

0.9

1 
    yes   yes no 

Advanced 

glycosylati

on end 

product-

specific 

receptor, 

soluble 

17

2 
0.7     

36

6 
0.7 yes yes yes yes   no 

C-C motif 

chemokine 

16 

17

5 

0.7

7 
yes yes 

37

1 

0.7

9 
yes yes yes yes yes no 

C-C motif 

chemokine 

18 

17

5 

0.8

1 
yes yes 

37

1 

0.9

4 
yes yes yes yes yes no 
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Chromogra

nin-A 

17

6 

0.9

2 
    

37

0 

0.8

9 
  yes yes   yes 

not 

tested 

C-reactive 

protein 

17

4 

0.9

7 
yes   

37

1 

0.9

6 
    yes   yes no 

C-X-C motif 

chemokine 

10 

17

5 

0.7

6 
    

37

1 

0.7

8 
yes yes yes     no 

E-selectin 
17

5 

0.8

4 
    

37

1 

0.8

7 
    yes   yes no 

Ferritin 
17

5 

0.9

7 
    

37

1 

0.9

7 
        yes yes 

Immunoglo

bulin A 

17

5 

0.8

8 
    

37

0 

0.8

5 
        yes no 

Immunoglo

bulin M 

17

5 

0.7

2 
    

37

1 

0.7

3 
          no 

Interleukin

-6 receptor 

subunit 

alpha 

17

6 

0.7

6 
yes yes 

36

8 

0.7

3 
yes yes yes yes yes 

not 

tested 

Serum 

amyloid P-

component 

17

5 
0.8     

37

1 

0.8

6 
    yes   yes no 

Sex 

hormone-

binding 

globulin 

17

5 

0.9

2 
yes   

37

1 

0.9

7 
    yes yes yes 

not 

tested 

Tumor 

necrosis 

factor 

receptor 

superfamil

y member 

1A 

17

6 
0.7     

37

0 

0.7

3 
          no 

Tumor 

necrosis 

factor 

receptor 

superfamil

y member 

1B 

17

6 
0.8   yes 

37

1 

0.8

3 
    yes     no 

Vascular 

cell 

adhesion 

protein 1 

17

6 

0.7

8 
    

37

1 

0.7

2 
        yes no 

Of the 114 analytes on the RBM platform, 18 do not have a corresponding protein on the SOMAscan 

panel, and missingness was high (>20% of samples were below the lower limit of detection (LLOD)) 
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in an additional 33 analytes [COPDGene (n=30) and SPIROMICS (n=32)].  A few proteins had low 

missingness in only one study, three in COPDGene (SL000248/Alpha-1-antichymotrypsin, rs=0.33, n= 

370, SL001802/IFN-g, rs=0.11, n= 339, SL002621/midkine, rs=0.23, n= 369) and one in SPIROMICS 

(SL002785/N-terminal pro-BNP, rs=0.94, n= 172).  

 

Table 2: Distribution of Spearman correlation coefficients for comparison of Olink analytes which 

overlap with SOMAscan 1.1k array in a small cohort of hypertrophic cardiomyopathy patients 

undergoing septal ablation (n=48). Full results in Supplementary Table 9. rs, estimated Spearman’s 

rho. 

 Correlation range Count Example Proteins 

Low Correlation 

<0.10 110 Brain-derived neurotrophic factor, C-C motif 

chemokine 24, Cathepsin D, Interleukin-27  

0.10≤ rs<0.20 40 Cadherin-3, Cystatin-C, Ficolin-2, Tissue Factor 

0.20≤ rs<0.30 29 CD40 ligand, L-Selectin, Stromelysin-1, Tumor 

necrosis factor receptor superfamily member 19 

Moderate 

Correlation 

0.30≤ rs<0.40 55 Angiogenin, Eotaxin, Granzyme B, Wnt inhibitory 

factor 1 

0.40≤ rs<0.50 40 Endostatin, Resistin, Tissue-type plasminogen 

activator, von Willebrand factor 

0.50≤ rs<0.60 56 Cathepsin S, Glucagon, Myoglobin, P-Selectin 

0.60≤ rs<0.70 40 C-C motif chemokine 22, Granulysin, Leptin, 

Vitamin K-dependent protein C 

Well-Correlated 

0.70≤ rs<0.8 31 Angiopoietin-1, E-Selectin, Myeloperoxidase, 

Platelet-derived growth factor subunit B 

0.8≤ rs<0.9 20 Angiopoietin-2, Interleukin-6, Renin, Tissue factor 

pathway inhibitor 
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0.9≤ rs<1.0 6 C-C motif chemokine 21, Insulin-like growth factor-

binding protein 1, Interleukin-1 receptor-like 1, 

Spondin-1 

 

 

Figure 1:: Flowchart of proteomics assays compared, by cohort. We also have listed total numbers of 

low correlation (rs <0.3 in all included cohorts), moderate correlation, and high correlation (rs >0.7 in 

all included cohorts) proteins in each results table. 
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Figure 2: Summary of correlations in datasets with the greatest number of proteins tested. We have 

separated out low correlation (rs <0.3 in both cohorts) and high correlation (rs ≥0.7 in both cohorts) 

proteins, with all other proteins listed in the moderate correlation category. 

a. Comparisons between SOMAscan 1.3k and Myriad RBM assays in SPIROMICS and COPDGene. 

Concordance of pQTLs (i.e. presence of a cis pQTL for both assays) is evaluated for Myriad RBM cis 

pQTLs in any dataset (SPIROMICS samples with SOMAscan, COPDGene samples with SOMAscan, or 

previously published meta-analysis[16]) versus SOMAscan pQTLs detected in any dataset (including 

published data from [7, 25]). Mass spectrometry (MS) confirmation of aptamers is from [7].  

b. Comparisons between SOMAscan 1.1k and Olink panels in planned myocardial infarction patients. 

pQTL data is from previously published SOMAscan meta-analyses[7, 25]. Most Olink analytes are not 

available in currently published genetic analyses.  
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