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Abstract

Objectives: Ecological similarity between species can lead to interspecific trophic

competition. However, when ecologically similar species coexist, they may differ in

foraging strategies and habitat use, which can lead to niche partitioning. As the body

tissues of consumers contain a stable isotope signature that reflects the isotopic

composition of their diet, stable isotope analysis is a useful tool to study feeding

behavior. We measured the isotopic niche width, which is a proxy for trophic niche

width, of mantled (Alouatta palliata) and black (A. pigra) howler monkeys. Specifically,

studied populations in allopatry and sympatry to assess whether these species

showed niche partitioning.

Materials and Methods: Between 2008 and 2012, we collected hair samples from

200 subjects (113 black and 87 mantled howler monkeys) and used continuous flow

isotope ratio mass spectrometry to estimate δ13C and δ15N. We described the isoto-

pic niche width of each species in allopatry and sympatry with the Bayesian estima-

tion of the standard ellipse areas.

Results: In allopatry, isotopic niche width and isotopic variation were similar in both

species. In sympatry, black howler monkeys had a significantly broader isotopic niche,

which was mainly determined by high δ15N values, and included the majority of man-

tled howler monkeys' isotopic niche. The isotopic niche of mantled howler monkeys

did not differ between sympatry and allopatry.

Conclusions: The coexistence of these ecologically similar species may be linked to

trophic niche adjustments by one species, although the particular features of such

adjustments (e.g., dietary, spatial, or sensory partitioning) remain to be addressed.
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1 | INTRODUCTION

The interaction among individuals of different species in a community

can lead to competition for limited resources (Pianka, 1981). In gen-

eral, the more ecologically similar two species are, the more likely it is

that competition between them will be intense, although the intensity

of competition will vary according to the species involved, the size of

the interacting populations, inter-individual niche variation, and

resource abundance (Araújo, Bolnick, & Layman, 2011; Dammhahn &

Kappeler, 2014; Davies, Meiri, Barraclough, & Gittleman, 2007).
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Intense interspecific competition may lead to the exclusion of one

species (Wisheu, 1998). Still, it is common to find ecologically similar

species living together in the same community (Dayan & Simberloff,

2005), indicating that there are strategies that allow for coexistence

(Chase & Leibold, 2003).

Resource partitioning minimizes interspecific competition and

allows for species coexistence (Schoener, 1974). Resource partitioning

is usually based on segregation at one or several dimensions of spe-

cies niche (n-hypervolume sensu Hutchinson, 1957), including tempo-

ral, spatial, and trophic dimensions. Given the direct influence of food

intake on fitness parameters (e.g., Grant & Grant, 2002), it may be

expected that strategies allowing for trophic niche (i.e., the way in

which animals feed and use their habitat: Pianka, 1974) segregation

are under strong selective pressure, and therefore, their study may

contribute critical information for understanding species coexistence.

Sympatric species may segregate their trophic niches by foraging on

different food items or by foraging at diverse locations or times

(López-Bao, Mattisson, Persson, Aronsson, & Andrén, 2016; Stein-

metz, Garshelis, Chutipong, & Seuaturien, 2011; Vanak et al., 2013;

Vernes, 2003). Nevertheless, trophic segregation will be conditional

on resource availability, such that high seasonality in food abundance

or human-induced scarcity may lead to increased trophic niche over-

lap (Kuhnen et al., 2017).

The body tissues of consumers contain a stable isotope signa-

ture that reflects the isotopic composition of their diet (Hobson,

1999; Hobson & Clark, 1992). Thus, dietary variation should lead to

predictable isotopic patterns, which may be assessed with stable

isotope analysis (SIA) to investigate the trophic ecology of free-

ranging individuals (Crawford, McDonald, & Bearhop, 2008; New-

some, Martínez del Rio, Bearhop, & Phillips, 2007). The

bidimensional representation of stable carbon isotope ratio (δ13C)

versus stable nitrogen ratio (δ15N), provides a measure of the isoto-

pic niche (Newsome et al., 2007), and offers quantitative insights

into two of the main features of trophic niches: niche width

(i.e., habitat use, for instance, in terms of diversity of consumed

resources) and trophic position (i.e., the place of the population in

the food chain or number of tropic levels occupied; Bearhop,

Adams, Waldron, Fuller, & Macleod, 2004; Layman, Arrington, Mon-

taña, & Post, 2007; Newsome et al., 2007; Turner, Collyer, &

Krabbenhoft, 2010). Inert tissues, such as hair, are particularly useful

for SIA, as their isotopic composition reveals the isotopic values of

the diet at the time of tissue synthesis (Oelze, 2016). Furthermore,

as the incorporation of isotopes in hair occurs over several days/

months and because no turnover takes place after isotope deposi-

tion, the isotopic signature of hair allows proxying information on a

subject's diet over a long timescale, and this record can be pre-

served indefinitely (Ayliffe et al., 2004; Ben-David & Flaherty,

2012). For instance, hair isotopic data suggests that sympatric

cheirogaleid lemurs (Cheirogaleus crossleyi and C. sibreei) feed on dif-

ferent canopy heights as a possible mechanism for niche differentia-

tion (i.e., variation in niche width: Crowley, Blanco, Arrigo-Nelson, &

Irwin, 2013). On the other hand, variation in δ15N levels among

chimpanzees (Pan troglodytes) suggests that individuals exploit

protein sources from different trophic levels (i.e., occupy different

trophic positions: Fahy, Richards, Riedel, Hublin, & Boesch, 2013).

Primates, both extinct and extant, are a good model for exploring

species coexistence, because primate communities usually include

several taxa and ecologically similar species are frequently found living

in sympatry (e.g., Deane, Nargolwalla, Kordos, & Begun, 2013;

Ganzhorn, Wright, & Ratsimbazafy, 1999; Peres & Janson, 1999).

Howler monkeys (genus Alouatta) are a Neotropical primate radiation

that includes 12 species (Cortés-Ortiz, Rylands, & Mittermeier, 2015).

All species are diurnal, arboreal, live in social groups, and have a

frugivorous–folivorous diet (Crockett & Eisenberg, 1987). The distri-

butions of howler monkey species are generally allopatric/parapatric,

but several contact zones have been described (Cortés-Ortiz, Agostini,

et al., 2015). In particular, mantled (A. palliata) and black (Alouatta

pigra) howler monkeys live in sympatry in southern Mexico (Cortés-

Ortiz, Agostini, et al., 2015). In allopatry, both these species have diets

that conform to typical frugivore–folivore pattern observed in the

genus, spend more time foraging on leaves than on fruits, and con-

sume approximately 20 and 50% of the same plant species and fami-

lies, respectively (Dias & Rangel-Negrín, 2015). Still, black howler

monkeys spend more time eating fruits than mantled howler monkeys

(Dias & Rangel-Negrín, 2015), and it has been speculated that they

may differ in color perception (Matsushita, Oota, Welker, Pavelka, &

Kawamura, 2014). Thus, mantled and black howler monkeys living in

sympatry represent a suitable model to explore the responses of eco-

logically similar species to interspecific trophic competition. Isotope

measurements have been conducted in howler monkeys from Central

and South America (Schoeninger, Iwaniec, & Glander, 1997; van der

Merwe & Medina, 1991), and are comparable to those reported for

other primates (e.g., great apes: Oelze, Head, Robbins, Richards, &

Boesch, 2014; lemurs: Crowley et al., 2013). This convergence is

probably related to the fact that vegetation in tropical forests

inhabited by primates mainly relies on a C3 photosynthetic pathway

(Blumenthal, Rothman, Chritz, & Cerling, 2016).

Our aim was to investigate variation in the trophic niche of man-

tled and black howler monkeys in allopatry and sympatry by measur-

ing their δ13C and δ15N isotopic niche. We examined two hypotheses.

First, we hypothesized that given their ecological similarity (i.e., similar

diets and arboreal lifestyle); trophic niche should be similar between

species in both allopatry and sympatry. We tested two predictions of

this hypothesis: (a) δ13C and δ15N ranges should be similar among spe-

cies and allopatry/sympatry conditions and (b) isotopic niche width

should be similar among species and allopatry/sympatry conditions.

Confirmation of this hypothesis would support previous contentions

that a high degree of niche overlap between species, and resulting

high potential for interspecific resource competition, is an underlying

mechanism for the maintenance of the mostly parapatric distributions

of howler monkeys (Agostini, Holzmann, & Di Bitetti, 2010). Second,

we hypothesized that, alternatively, trophic niche should diverge

between species in sympatry, indicating niche partitioning. Accord-

ingly, we predicted that in sympatry the two species should have:

(a) different δ13C and δ15N ranges and (b) different isotopic niche wid-

ths. Support for this hypothesis would provide evidence in favor of
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previous suggestions that behavioral variation between mantled and

black howler monkeys has derived in differential competitive success

(Baumgarten & Williamson, 2007; Cortés-Ortiz et al., 2003; Ford,

2006). The current geographic distribution of these species would

thus be the result of interspecific differences in competitive potential

(i.e., A. palliata displacing A. pigra: Ford, 2006).

2 | MATERIALS AND METHODS

2.1 | Ethical note

This study adhered to the American Society of Primatologists Princi-

ples for the Ethical Treatment of Non-Human Primates. The Univer-

sity of Michigan Committee for the Use and Care of Animals

approved the protocols used for animal restraint and sample collection

(permit #09319). Permits for collection and transport of samples were

provided by Mexican (SGPA/DGVS/03676/07, SGPA/DGVS/06116,

SGPA/DGVS/03293/10, SGPA/DGVS/10637/11, and CITES MX

74679), Guatemalan (CESA/mam/Exp.7739), and Spanish (ES-BB-

00038-15I) authorities. This study adhered to the legal requirements

of the Mexican law (NOM-059-SEMARNAT-2010).

2.2 | Study sites

The study was conducted in southeastern Mexico and Guatemala

(Figure 1). Allopatry for mantled howler monkeys was located in the

state of Veracruz (Los Tuxtlas), where we sampled two groups. Allopa-

try for black howler monkeys was located in the state of Campeche

(Mexico; eight groups) and in El Petén (Guatemala; one group). The

sympatry area was located in the state of Tabasco (Macuspana area,

Mexico), where we sampled 25 groups (12 A. palliata and 13 A. pigra;

Supplementary Table S1).

Both mean group size (range = 4–6 individuals) and mean size of

the habitat occupied by sampled groups were similar between species

in sympatry (A. palliata = 8 ha, A. pigra = 10 ha), although notably

larger for A. pigra in allopatry (16,021 ha; Supplementary Table S1).

We know that some individuals in the sympatry area are admixed due

to hybridization (Cortés-Ortiz et al., 2007, 2019). However, admixed

individuals are the product of multigenerational backcrosses (Cortés-

Ortiz et al., 2019) and their morphology (Kelaita, Dias, Aguilar-

Cucurachi, Canales-Espinosa, & Cortés-Ortiz, 2011) matches their

behavior (i.e., A. palliata-like subjects behave as mantled howler mon-

keys, A. pigra-like subjects behave as black howler monkeys: Ho et al.,

2014; Kitchen et al., 2017). Thus, for this study, we identified individ-

uals as either mantled or black howler monkeys based on their

morphology.

The climate in all conditions is tropical, with variation in annual

rainfall: 2,600 mm in Los Tuxtlas, the allopatry area for A. palliata

(Köppen Af, that is, tropical rainforest climate); 2,400 mm in Tabasco,

the sympatry area (Am, that is, tropical monsoon climate); and

1,400 mm in Campeche and northern Guatemala, the allopatry area

for A. pigra (Aw, that is, tropical wet and dry climate) (Beck et al.,

2018; Fick & Hijmans, 2017). In all areas, there is seasonality in rain-

fall, with a dry season occurring between the months of January to

May. Human disturbance has resulted in a significant replacement of

original vegetation by agricultural fields and other anthropic land-use

covers throughout southern Mexico (Sánchez Colón, Flores Martínez,

Cruz-Leyva, & Velázquez, 2009).

2.3 | Hair collection

During the dry seasons of 2008–2012, we collected hair samples from

all individuals belonging to 36 groups, in a total of 200 howler mon-

keys: 49 black howler monkeys in allopatry, 64 black howler monkeys

in sympatry, 75 mantled howler monkeys in sympatry, and 12 mantled

howler monkeys in allopatry. We followed the capturing and handling

procedures described in Canales-Espinosa et al. (2011). For each cap-

tured animal, hair collection followed a standard protocol: a patch of

hair was cut from the abdominal area as close to the skin as possible

with fine-tipped surgical scissors, taking care not to damage the skin.

Each hair sample was placed into a paper envelope, which in turn was

inserted in a plastic bag and stored in a cool, dark environment until

analysis.

2.4 | Stable isotope analysis

Prior to analysis, we finely cut (ca. 1 mm in length) 10–15 hairs from

each collected hair patch with the same length (approximately 5 cm,

sufficient to assess isotopic variation over several months; Supple-

mentary Table S2). We then homogenized hair with our fingers and

placed it into Eppendorf tubes to be cleaned sequentially with ace-

tone, ethanol, and distilled water in a rotator for about 1 hr each, to

remove attached lipids or dirt. We dried all samples in an oven (60�C)

until a constant weight was reached. This method was designed fol-

lowing the cleaning procedures reported in diverse studies that used

F IGURE 1 Location of the sampled groups: mantled howler
monkeys (Alouatta palliata) in allopatry as black diamonds; black
howler monkeys (A. pigra) in allopatry as open squares; both species in
sympatry as black triangles. Primate drawings by Stephen Nash
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hair samples for isotopic analysis (e.g., Ayliffe et al., 2004; Codron

et al., 2013; Crowley, 2012; Schoeninger et al., 1997).

We weighed subsamples of hair (ca. 0.4 mg for δ13C and δ15N)

and placed them in tin capsules. Isotopic analysis was carried out by

elemental analysis-isotope ratio mass spectrometry using a Thermo

Finnigan Flash 1112 coupled to a Delta isotope ratio mass spectrome-

ter via ConFlo III interface at the Centres Científics i Tècnics of the

University of Barcelona. Stable isotope signatures were reported in

conventional δ notation (‰) relative to Peedee Belemnite for δ13C

and atmospheric nitrogen for δ15N. The δ13C standard was Vienna

PeeDee Belemnite calcium carbonate, and the δ15N standard was

atmospheric nitrogen (N2). International standards (ammonium sul-

fate, potassium nitrate, glutamic acid for δ15N and polyethylene,

sucrose, and glutamic acid for δ13C) were inserted after every 12 sam-

ples to calibrate the system and compensate for any drift over time.

Precision was ≤0.1‰ for δ13C and ≤ 0.3‰ for δ15N.

2.5 | Data analysis

Sex did not have significant effects (linear mixed models using group

identity as a random factor) on either δ13C (A. palliata: F288 = 0.03,

p = .859; A. pigra: F3112 = 3.34, p = .071) or δ15N (A. palliata:

F288 = 1.97, p = .163; A. pigra: F3112 = 0.75, p = .390) hair values.

Therefore, we did not include this factor in further analysis.

We used statistical analyses that account for the small and unbal-

anced sample sizes we had in our study. To characterize the isotopic

niche of each species in each condition (i.e., allopatry vs. sympatry),

we calculated: (a) mean isotopic values, and compared isotopic values

with Kruskal–Wallis tests followed by Mann–Whitney post-hoc tests

with significance levels corrected for multiple comparisons

(Bonferroni corrected p < .004); (b) the range of δ13C values, which is

a proxy for the diversity of consumed resources (Layman et al., 2007);

(c) the range of δ15N values, which is a proxy for the number of tro-

phic levels occupied (Layman et al., 2007); (d) the isotopic niche width

using multivariate ellipse-based metrics of δ13C × δ15N values

(Jackson, Inger, Parnell, & Bearhop, 2011). Specifically, we calculated

standard ellipse areas corrected for small sample size (SEAc), which

represent the core mean of the population's isotopic niche, regardless

of sample size (Jackson et al., 2011). We also generated Bayesian esti-

mates of standard ellipse areas (SEAb) to test for differences in isoto-

pic niche width via SEAb 95% credible interval comparisons; and

(e) pairwise overlapping of SEAc between species in sympatry and in

allopatry as the proportion of the sum of the nonoverlapping areas of

the ellipses (function “bayesianOverlap” in SIBER). We calculated

standard ellipse areas and metrics with the R package “SIBER”

(Jackson & Parnell, 2019).

3 | RESULTS

We found significant variation in δ13C (χ23 = 92.3, p < .001) and δ15N

(χ23 = 56.4, p < .001). Specifically, δ13C was the highest in black

howler monkeys in allopatry and δ15N was the highest in black howler

monkeys in sympatry (p < .004 in all pairwise comparisons; Table 1;

Figure 2). The range of δ13C was very similar across sympatry and

allopatry in both species, although marginally smaller in mantled

howler monkeys living in allopatry. In allopatry, δ15N range was the

same in black howler monkeys and mantled howler monkeys. The

range of δ15N in black howler monkeys in sympatry doubled that of

both species in allopatry, whereas mantled howler monkeys in sym-

patry had an intermediate range.

Black howler monkeys living in allopatry and mantled howler

monkeys living in both allopatry and sympatry had similar isotopic

niche widths, as attested by SEAc and SEAb values (Table 1; Figure 3).

Black howler monkeys in sympatry had the widest isotopic niche

(Figure 4).

The area of overlap was the highest between the isotopic niches

of both species living in sympatry, which was twice the overlap area

between black howler monkeys in allopatry and mantled howler mon-

keys in sympatry (Figure 5). SEAc of both species in sympatry and of

mantled howler monkeys in allopatry overlapped more than SEAc of

black howler monkeys in allopatry and both black howler monkeys in

sympatry and mantled howler monkeys in allopatry.

4 | DISCUSSION

We took advantage of a natural area of sympatry between two spe-

cies of howler monkeys to examine if the coexistence of ecologically

similar species is associated with trophic niche partitioning, assessed

through isotopic niche measurements. In allopatry, isotopic niche

width and isotopic variation were similar in mantled and black howler

monkeys, confirming their ecological similarity at the trophic level. In

sympatry, we found evidence of trophic niche partitioning between

these two species, supporting the second hypothesis. This partitioning

was not linked to isotopic niche segregation, as defined by a high pro-

portion of nonoverlapping isotopic niches. Rather, black howler mon-

keys had a significantly broader isotopic niche in sympatry, which was

mainly determined by high δ15N values, and included the majority of

mantled howler monkeys' isotopic niche. Additionally, the isotopic

niche of mantled howler monkeys did not differ between sympatry

and allopatry. Therefore, the coexistence of these two species may be

linked to trophic adjustments by black howler monkeys, supporting

previous contentions that they may differ in adaptive choices

(Ford, 2006).

The isotopic values that we found are consistent with those

reported in previous studies of howler monkeys from Central and

South America (Schoeninger et al., 1997; van der Merwe & Medina,

1991), but also with values reported for other primates (e.g., Crowley

et al., 2013; Oelze et al., 2014). This consistency is likely because

howler monkeys, as most other primates (Harcourt, 2006), inhabit

tropical forests dominated by vegetation with a C3 photosynthetic

pathway (Blumenthal et al., 2016). Still, black howler monkeys showed

a wider isotopic range than that reported in previous studies for the

genus, especially in δ15N values. In addition to its possible relationship
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with a high degree of trophic flexibility by this species when in sym-

patry (discussed below), it is important to note that our results are

based on a sample size (N = 200 subjects) considerably larger than

that of previous studies (N = 12 in Schoeninger et al., 1997; N = 1 in

van der Merwe & Medina, 1991).

Black howler monkeys living in sympatry with mantled howler

monkeys had the widest isotopic niche. There was, however, exten-

sive niche overlap between species in sympatry. Niche overlap among

species basically defines species exclusion or coexistence when com-

petition takes place (De Roos, Schellekens, van Kooten, & Persson,

2008). Niche overlap can cause adjustments in habitat use and trophic

niche (e.g., Lush, Ward, & Wheeler, 2017; Merkle, Polfus, Derbridge, &

Heinemeyer, 2017; Oelze et al., 2014), but also species marginaliza-

tion and disappearance (e.g., Beaudrot et al., 2013; Simon &

Townsend, 2003; Steinmetz et al., 2011). In contrast, niche diversifica-

tion, in which competing species focus on different resources or

exploit the same resources at diverse places or moments (i.e., spatial

or temporal niche partitioning), favors species coexistence (Chesson,

2000; Tilman, 1982). Our results suggest that the coexistence of man-

tled and black howler monkeys in sympatry is probably favored by iso-

topic niche diversification by the latter. Long-term observations on

patterns of species distribution in sympatry will confirm whether

coexistence or exclusion is occurring (Agostini et al., 2010;

Baumgarten & Williamson, 2007; Cortés-Ortiz et al., 2003; Ford,

2006), although habitat disturbance in the area is critically threatening

the viability of both populations (Dias, Alvarado, Rangel-Negrín,

Canales-Espinosa, & Cortés-Ortiz, 2013).

In the absence of behavioral observations and of isotope quantifi-

cation in the foods consumed by howler monkeys, we can only specu-

late on the causes of the observed variation in isotopic values.

Whereas it is plausible to suggest that the high δ13C of black howler

monkeys in allopatry, the driest condition in our sample, could be

associated with a negative relationship between rainfall levels and

δ13C that has been consistently reported (e.g., Schoeninger, Most,

Moore, & Somerville, 2016), it is more difficult to explain the high

δ15N of this species in sympatry. Mean δ15N values of black howler

monkeys in sympatry were similar to those of omnivorous chimpan-

zees (P. troglodytes: Oelze et al., 2014), insectivorous–frugivorous

mouse lemurs (Microcebus spp.: Crowley et al., 2013), or frugivorous

spider monkeys (Ateles geoffroyi: Schoeninger et al., 1997). Therefore,

it is possible that black howler monkeys are consuming more nitrogen

enriched foods than mantled howler monkeys, such as legumes

(Schoeninger et al., 1997) or animal prey (Crowley et al., 2013; Fahy

TABLE 1 Hair stable isotopic values from two howler monkey species living in allopatry and in sympatry in southern Mexico and Guatemala

Isotopic niche attributes

A. pigra A. palliata

Allopatry N = 49 Sympatry N = 64 Sympatry N = 75 Allopatry N = 12

Mean δ13C (‰) −24.5 −25.5 −25.5 −25.3

δ13C range (‰) −25.9–(−23.8) −26.4–(−24.2) −26.4–(−24.7) −25.9–(−24.7)

Mean δ15N (‰) 3.7 5.4 4.0 3.9

δ15N range (‰) 2.6–5.0 3.4–8.0 2.6–5.9 2.5–4.9

SEAc
a 0.76 1.46 0.86 0.70

SEAbb
a 0.75 1.44 0.85 0.67

95% C.I.a 0.55–0.97 1.11–1.84 0.66–1.06 0.42–1.01

aStandard ellipse areas corrected for small sample size (SEAc), Bayesian standard ellipse areas (SEAb), and SEAb 95% credible intervals were calculated with

SIBER (see Jackson et al., 2011 for more details on these metrics).

(a)

(b)

F IGURE 2 Variation in δ13C (a) and δ15N (b) values among two
species of howler monkeys living in allopatry and sympatry. Thick
lines inside the boxes are the medians; black diamonds are the means;
box limits are the 25th and 75th percentiles; whiskers indicate
1.5*interquartile ranges; data points are plotted as red circles.
Pairwise comparisons performed with Mann–Whitney univariate
tests: n.s., nonsignificant; ***, p < .004
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et al., 2013; Oelze et al., 2011). Still, mean differences in δ15N

between black howler monkeys and mantled howler monkeys did not

reach the 3‰ threshold, which is usually considered to reflect a

change in trophic position (Ben-David & Flaherty, 2012; Blumenthal

et al., 2016; Crowley, 2012; DeNiro & Epstein, 1981; Post, 2002),

suggesting that the consumption of animal protein, if it occurs at all,

may be infrequent or restricted to particular contexts (e.g., animals

that have access to eggs: Bicca-Marques, Muhle, Prates, de Oliveira, &

Calegaro-Marques, 2009).

If isotopic niche variation between howler monkey species living

in sympatry is actually linked to trophic niche variation, its underlying

mechanisms remain to be determined. Variation in the feeding habits

of howler monkeys has been linked to rainfall, group size, and habitat

size (Dias & Rangel-Negrín, 2015). Given that these factors did not

vary between groups of the two species in the sympatry area, it is

unlikely that they explain the observed differences in isotopic niches.

Still, we know that, compared to mantled howler monkeys, black

howler monkeys on average devote more time to consuming fruits

than leaves (Dias & Rangel-Negrín, 2015) and that there may be varia-

tion between species in color vision (Matsushita et al., 2014). Small-

scale variation in the proportions of consumed foods and sensory vari-

ation could facilitate species coexistence (Falk et al., 2015; Lush et al.,

−27.0 −26.5 −26.0 −25.5 −25.0 −24.5 −24.0 −23.5
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2017), even in the absence of spatial or temporal niche partitioning

(Carothers & Jaksic, 1984; Schoener, 1974), so future research into

the mechanisms of niche partitioning could focus on these factors.

In sum, we found evidence that the isotopic niche of two howler

monkey species varies from allopatry to sympatry via the broadening

of the niche by one of the species when in sympatry. Therefore, we

suggest that the coexistence of black and mantled howler monkeys is

linked to trophic niche adjustments, although the particular features

of such adjustments (e.g., dietary, spatial, or sensory partitioning)

remain to be addressed by future investigation.
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