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Summary 
To facilitate the development of active distribution networks with high 
penetration of large-scale distributed generation (DG) and electric vehicles 
(EVs), active management strategies should be considered at the planning 
stage to implement the coordinated optimal allocations of DG and electric 
vehicle charging stations (EVCSs). In this paper, EV charging load curves 
are obtained by the Monte Carlo simulation method. This paper reduces 
the number of photovoltaic outputs and load scenarios by the K-means++ 
clustering algorithm to obtain a typical scenario set. Additionally,we 
propose a bi-level programming model for the coordinated DG and EVCSs 
planning problem. The maximisation of annual overall profit for the power 
supply company is taken as the objective function for the upper planning 
level. Then, each scenario is optimised at the lower level by using active 
management strategies. The improved harmonic particle swarm 
optimisation (IHPSO) algorithm is used to solve the bi-level model. The 
validation results for the IEEE-33 node, PG&E-69 node test system and 
an actual regional 30-node distribution network show that the bi-level 
programming model proposed  
in this paper can improve the planning capacity of DG and EVCSs, and 
effectively increase the annual overall profit of the power supply company, 
while improving environmental and social welfare and reducing system 
power losses and voltage shifts. The study provides a new perspective on 
the distribution network planning problem. 
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1 | INTRODUCTION 
With increasing attention on environmental pollution problems and the fossil fuel crisis, an increasing number 

of applications are being proposed for distributed generation (DG) and electric vehicles (EVs) [1][2]. 
Furthermore, the necessary infrastructure for EVs, i.e., electric vehicle charging stations (EVCSs), is being built 
with support from government and enterprise. However, the large-scale integration of DG and EVCSs will bring 
many new problems, such as increasing power losses and voltage sags during power system operation. 
Therefore, the planning problem of reasonably allocating DG and EVCSs is attracting much attention.  

The work in [3] uses multi-objective formulations that consider net revenue maximisation, load timing 
characteristics and the DG output and generates solutions with an adaptive generic algorithm. The work in [4] 
builds a multi-objective optimisation model that simultaneously consider power loss minimisation, voltage shift 
minimisation and cost minimisation, and the validity of the programming model is verified by three examples. 
The work in [5] builds an optimal allocation model for DG with constraints for reactive power optimisation and 
network re-configuration. The intelligent heuristic algorithm is used to obtain optimal solution. Some Traffic 
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flow models are used in [6] to determine the capacity of EVCSs with consideration of coupled traffic flow and 
load demand constraints. In other studies, such as [7,8] and [9], the authors formulate the EVCSs planning goal 
as a total cost minimisation problem by considering power loss costs and EVCSs investment costs together. 

The aforementioned works mainly study the planning problems of DG and EVCSs separately without 
considering the coupled coordination problem. In practice, the siting and sizing of EVCSs affects not only the 
power system stability but also the convenience of EV use. In addition, the reasonable planning of EVCSs will 
benefit local on-site consumption of DG power output. Based on these considerations, the work in [10] builds 
a joint planning model of EVCSs and renewable energy with minimum voltage fluctuations, minimum load 
fluctuations and maximum capacity for EVCS energy storage connections, and the genetic particle swarm 
algorithm is used to determine the optimal construction scheme. Other works [11,12] consider the impacts of 
increasing the load demand, dynamic electricity pricing and DG power intermittence on the EVCS and DG 
coordination planning problem.  

Large-scale access to renewable DG and the extensive use of EVs have promoted the use of clean energy and 
enhanced the sustainability of power grid development. However, at the same time, problems such as power 
quality declines, voltage overruns and an increase in system losses have emerged. The traditional distribution 
network has the problem of an outdated management mode that cannot completely solve the above problems. 
To effectively reduce the adverse effects of new grid-connected energy sources and improve the compatibility 
between these sources and the overall system, the related technologies of active distribution networks (ADNs) 
have received extensive attention in recent years. ADNs coordinate and control DG, the energy storage system, 
controllable loads and other power equipment in the distribution network by optimising the system management 
mode to promote the source absorption of green and clean energy. The planning models in [10]-[12] do not 
consider the adjustment ability of ADNs when considering the planning problem, and could not make full use 
of the positive effects of DG and EVCs on reducing network loss and improving system power flow distribution, 
which limited the development of DG and EVCS. The work in [13] takes active management measures for 
distributed generation connected to distribution network and establishes a distributed planning model of 
distributed generation based on multi-objective two-layer distribution under the active management model. The 
work in [14] is based on the master-slave logic structure, aiming at promoting the efficient use of intermittent 
DG, and established the ADN double-layer scene planning model. The location and volume of DG and EVCS 
are closely related to ADN's operation control strategy. Solving the bi-level programming model is an effective 
means of ADN planning.  

In conclusion, there are few studies on joint planning of DG and EVCS and considering active management 
measures. Therefore, a bi-level planning model of a coupled EVCS and DG system that considers the active 
management strategy of distribution network is proposed in this paper. Firstly, the daily characteristic curve of 
EV charging load is obtained through monte carlo simulation(MCS), and then the total charging load in the 
planned area is obtained. The K-means++ clustering algorithm is used to construct typical scenarios for DG and 
conventional loads. On this basis, a two-layer model of joint coordination planning including DG and EVCS is 
established. The upper planning level sets the objectives of investment cost, power loss cost and environmental 
and social welfare and the lower level proposes three active management measures to optimise the power flow 
for typical scenarios. The active management at the lower level proposes three active management measures to 
optimize the power flow for each typical scenario. The overall problem is solved by improved harmonic particle 
swarm optimisation (IHPSO) and verified on IEEE 33-node and PG&E 69-node test systems. 

2 | EV CHARGING MODEL AND DG OUTPUT MODEL 

2.1 | EV Charging Model 

There are four types of typical EVs: buses, taxis, business cars and private cars. The charging load is affected 
by the charging mode, battery capacity, initial state-of-charge (SOC) and other factors. The charging parameters 
of four types of EVs are listed in Table 1. 
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The charging time is determined by the EV parameters [15], as shown in (1). 
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where Tc indicates the charging time in minutes, β indicates the percentage of batter capacity after charging, 
SOC0 indicates the percentage of battery capacity before charging, η indicates the charging efficiency, Pc 
indicates the charging power, and Eb indicates battery capacity. 

TABLE 1 Charging Parameters of Electric Vehicles. 

Vehicle type Battery capacity/ 

(kW·h) 

Conventional charging 

power /(kW) 

  Fast charging power 

/(kW) 

bus 200 21 135 

taxi 64 14 90 

official car 32 7 45 

private car 32 7 45 
 
The charging behaviours of the four types of EVs are listed in Table 2 [16]. Buses and taxis need to charge 

more than two times due to their longer daily driving distances. The operating time of buses is usually 5:30-
23:00. To ensure sufficient driving power, it is assumed that buses need to be charged twice a day. In the daytime, 
to avoid the rush hours of 6:30-9:00 and 16:30-18:00, the charging time is 10:00-16:30. During daytime 
operation, the time for buses to stop and charge is limited, so fast charging is adopted. During the night, 
according to the bus operation time, the night charging time can be assumed to be 23:00-5:30, and because the 
charging time in the night is longer, the conventional charging method can be used. Taxis are in operation for 
most of the day. To ensure sufficient driving power, taxis need to be charged twice a day. In the daytime, they 
need to be charged from 11:30-14:00 and from 2:00-5:00 during break time. The fast charging mode is chosen 
for the limited charging time. Because government departments or enterprises usually perform their official 
duties in the daytime, the official vehicles will be in the driving state only during the day. The charging time is 
long from 18:00 to 7:00, so conventional charging is adopted. The charging period of private cars can be divided 
into a night rest period at home and a daytime work period, i.e., 18:00-7:00 and 8:00-17:00. The charging time 
is long and can be 19:00-22:00 at places such as supermarkets and shopping malls. Considering the shopping 
and entertainment needs of private EV users, short-term charging time should be applied. 
 
TABLE 2 Charging Behaviour of EVs. 

Type 
Charge time 

period 

Charge 

probability 

Initial SOC 

distribution 

Initial charging time 

distribution 

Charge 

method 

bus 

10:00-16:30 1 N(0.5, 0.12) evenly distributed fast charge 

23:00-5:30 1 N(0.5, 0.12) evenly distributed regular charge 

taxi 11:30-14:00 1 N(0.3, 0.12) evenly distributed fast charge 
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2:00-5:00 1 N(0.3, 0.12) evenly distributed fast charge 

official car 18:00-7:00 1 N(0.4, 0.12) evenly distributed regular charge 

private car 

8:00-17:00 0.2 N(0.6, 0.12) N(9, 0.52) regular charge 

18:00-7:00 0.7 N(0.6, 0.12) N(19, 1.52) regular charge 

19:00-22:00 0.1 N(0.6, 0.12) evenly distributed regular charge 

 
This paper estimates the EV charging loads based on MCS. MCS is used to obtain the daily charging load 

curve of EVs. The MCS is a method used to study the distribution characteristics of time series by setting up 
random processes, repeatedly generating time series, and calculating parameter estimators and statistics. The 
prediction accuracy depends on the number of simulations, with more simulations resulting in more accurate 
predictions, and the error method has nothing to do with the dimension of the problem because the dimension 
error of the problem does not increase with the size of the problem. The method can be used directly to determine 
the statistical properties of a problem, and it does not need to handle discretisation or continuity problems. The 
solution process is simple and direct, and the error in the result is the error probability, which can be effectively 
reduced by increasing the number of simulations. Thus, this method is the most effective way or the only way 
to resolve some problems. 

 Based on MCS, the calculation process of EV charging loads is as follows: 
1) Randomly select the beginning charging time and initial SOC of a single EV;  
2) Calculate the charging limit time Tlim based on the time period of EV charging behaviour;  
3) Calculate the required charging time Tf  according to the fully charged expectation;  
4) Obtain the practical charging time Tcd=min(Tlim,Tf);  
5) Repeat steps 1-4 for all other EVs considered;  
6) Aggregate the total EV charging load in a certain region. 

2.2 | Intermittent DG Output Model 

If an EV is fully charged by power generation from conventional energy sources, then the indirectly produced 
CO2 emissions will not be less than those of conventional vehicles. To date, the most common renewable energy 
resources are distributed wind generation (DWG) and photovoltaic generation (PVG), which have strong 
characteristics of intermittence due to the effects of solar irradiance, wind speed and other environmental 
factors. To choose optimal EVCS locations, we should consider the weather conditions in certain areas. 

The PV power output model is 

PVGS s
sPVG

PVGS s

 ≤= 
 >

gP g g
gP

P g g

                                      (2) 

where PPVG denotes the output power of PV, PPVGS indicates the rated output power of PV, g indicates the actual 
solar irradiance, and gs indicates the rated solar irradiance. 

Wind power is closely correlated with wind speed, and the relationship can be described as follows: 
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where PDWG indicates the wind output power, PDWGS indicates the rated wind output power, v indicates the 
actual wind speed, vi indicates the cut-in wind speed, vo indicates the cut-off wind speed, and vs indicates the 
rated wind speed.  

2.3 | Selection of Typical Scenarios 

The PV, wind output power and load demand have characteristics of periodicity and uncertainty. Therefore, 
selecting the typical scenarios according to historical data in certain areas is very important for describing the 
PV output power, wind output power and demand load. This paper uses the K-means++ clustering algorithm 
[17] for scenario reduction. The K-means++ algorithm has the advantages of simple implementation and good 
clustering, and compared with other methods, such as the k-means algorithm, this algorithm possesses a 
selection process of initial clustering centres by the distance maximisation principle that is conducive to 
improving the clustering effect. We can use 8760 hours of historical data as the original data-set for the PV, 
wind power and load demand and then divide these 365 daily curves into k scenarios according to the PFS 
metric [18]. The k scenarios selected are denoted as ξ1, ξ2, …, ξk. The DG output is calculated according to these 
k scenarios. The clustering process is as follows: 

(1) Normalisation of PV, wind power and load demand based on the data standardisation method; 
(2) Based on the maximum distance between initial clustering centres, K clustering centres are initialised. 

The steps are as follows: 
1) A scene from the original scene set Ni,i=1, 2, 3,…, 365 is randomly selected as the first cluster ξ1 . 
2) The shortest Euclidean distance d(Ni, ξj) between each original scene and the existing clustering centres 

is calculated, and d(Ni, ξj) of each original scene is accumulated to get the accumulated value sum (d). 
3) The random value rand, rand < sum (d) is generated, and the rand value is updated to rand d(Ni, ξj). 

When rand < 0, Niis the new cluster centre, which ensures that the original scene farther from the existing cluster 
centre is selected as the new cluster centre. 

4) Steps 2 –3 are repeated until the selection of k clustering centres ξ1, ξ2, …, ξk is completed. 
(3) The Euclidean distance from the remaining original scene to k clustering centres is calculated, and the 

original scene is divided into the nearest clustering cluster. 
(4) The centres of k clusters are calculated, and the k centres to the new generation of clustering centres 

ofξ1, ξ2, …, ξk  are updated. 
(5) Steps 3 – 4are updated until the clustering results do not change. 

3 | MATHEMATICAL FORMULATION WITH BI-LEVEL PROGRAMMING 
A bi-level programming model is a hierarchical system optimisation model in which the upper and lower 

levels have their own mathematical models [19,20]. The lower-level programming problem is based on the 
scheme given by the upper-level decision-making process. The optimal value of the lower-level decision-
making process is fed back to the upper level, and the upper-level decision-making process conforms to the 
global optimal benefit according to the optimal value response of lower-level decision-making process. Bi-level 
programming is characterised by considering the entire situation from a holistic point of view, which is 
conducive to achieving the global optimum.  

3.1 | The Planning Level Model 

It is assumed that the investment in intermittent DG and EVCSs comes from a power supply company. The 
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decision variables of the upper planning level will be location and capacity, and the objective is the 
maximisation of annual revenue with considerations for the annual rate of return, power loss and environmental 
and social welfare. The objective function is shown in (4). 

pro loss envmax += −F C C C                                          (4) 

where Cpro indicates the annual rate of return for the power supply company, Closs indicates the power loss, and 
Cenv indicates the environmental and social welfare. The three cost structures are listed as follows: 
1) The annual rate of return for the power supply company Cpro is given by 

pro S B inv OM= + − −C C C C C                                        (5) 

where Cs indicates the profit of the power supply company, CB indicates government subsidies for renewable 
energy sources, Cinv indicates the investment in intermittent DG and EVCSs, and COM indicates the maintenance 
fee for DG and EVCSs. 
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where k indicates the number of typical scenarios; pl indicates the probability of the lth typical scenario; ci and 
co indicate the purchasing and selling prices for the power supply company; ce indicates the unit selling price 
for EVCSs; and Pl,t,L, Pl,t,DWG, Pl,t,PVG and Pl,t,EV represent the load demand, DWG output power, PVG active 
power and EVCS charging load, respectively, at time interval t. 

24

B b,DWG , ,DWG b,PVG , ,PVG
1 1

365 ( + )
= =
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k

l l t l t
l t

C p c P c P                             (7) 

where cb,DWG and cb,PVG represent units of government subsidies for DWG and PVG. 

𝐶𝐶inv = (∑ 𝑐𝑐t1𝑃𝑃𝑗𝑗,DWG + ∑ 𝑐𝑐t2𝑃𝑃𝑗𝑗,PVG
𝑛𝑛PVG
𝑗𝑗=1

𝑛𝑛DWG
𝑗𝑗=1 + ∑ (𝑐𝑐𝑔𝑔 + 𝑐𝑐𝑡𝑡3𝑃𝑃𝑗𝑗,𝐸𝐸𝐸𝐸)𝑛𝑛EV

𝑗𝑗=1 ) 𝑟𝑟(1+𝑟𝑟)𝑛𝑛1

(1+𝑟𝑟)𝑛𝑛1−1
                (8) 

where Cinv indicates the investment and building costs of DG and EVCSs; nDWG, nPVG and nEV indicate the 
number of candidate nodes for DWG, PVG and EVCSs, respectively; Pj,DWG, Pj,PVG and Pj,EV indicate the 
capacity for DWG, PVG and EVCSs, respectively, at node j; ct1,ct2 and ct3 indicate the unit capacity construction 
costs of DWG, PVG and EVCSs, respectively; cg indicates the fixed investment cost of EVCSs; r indicates the 
discount rate; and n1 indicates the service life of the equipment. 

𝐶𝐶OM = 365∑ 𝑝𝑝𝑙𝑙 ∑ (𝑐𝑐om1𝑃𝑃𝑙𝑙,𝑡𝑡,DWG + 𝑐𝑐om2𝑃𝑃𝑙𝑙,𝑡𝑡,PVG)24
𝑡𝑡=1

𝑘𝑘
𝑙𝑙=1 +  ∑ (𝑐𝑐om3𝑃𝑃𝑗𝑗,𝐸𝐸𝐸𝐸)𝑛𝑛EV

𝑗𝑗=1                   (9) 

where com1 and com2 indicate the unit maintenance fees for DWG and PVG, respectively, and com3 indicates the 

amortised unit maintenance fee for EVCSs. 

2) The power loss cost Closs is given by 

24

loss o , ,loss
1 1

365
= =
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k

l l t
l t

C p c P                                      (10) 

where Pl,t,loss indicates the system loss at time interval t. 

3) The environmental and social welfare Cenv is given by 
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where Es indicates the output power for renewable energy; Cenv indicates the social welfare of renewable energy 
sources and reduced emissions from EVs; Nenv indicates the types of pollution gases; xs, as and bs denote the 
emission levels of the sth kind of pollution gas; eEV indicates the energy consumed by an EV in 100 miles; cco2 
indicates the CO2 trading tax fee in the international market; and xEV indicates the difference between EVs and 
conventional vehicles. 

The constraints in the upper-level optimisation model are 

DG ,min DG DG ,max≤ ≤i i iP P P                                       (13) 

DG

DG DG,max
1=

≤∑
n

i
i

P P                                          (14) 

EV ,min EVi EV ,max≤ ≤i iP P P                                      (15) 

3.2 | The Active Management Level Model 

The lower active management level is based on the upper-level planning decisions, and three active 
management strategies are proposed for power flow optimisation in typical scenarios, including transformer 
adjustment, DG output curtailment and reactive power compensation. The curtailment rate of DG is 0-30%, the 
transformer adjustments are 1±1.25%*8 and are installed at the system header node, and the reactive power 
compensation is 50 kvar for a unit capacity with 0-10 units. Power flow optimisation based on active 
management measures impacts network losses, voltage levels, transmission power and other constraints of 
system operation and thus affects the ability of a system to accept DG and EVCSs. The above effects are 
ultimately reflected in the objective function. The objective function of the lower-level optimisation model is 

,S ,B ,OM ,loss ,envmax +l l l l lf C C C C C= + − −                              (16) 

where Cl,S, Cl,B, Cl,OM, Cl,loss and Cl,env denote the profit of the power supply company, the government subsidy 
for renewable energy sources, the maintenance fee for DG and EVCSs, the power loss fee and the environmental 
and social welfare in scenario l, respectively. 

 

( cos sin ) 0

( sin cos ) 0

θ θ

θ θ
∈

∈

 − + =



− − =


∑

∑

i i j ij ij ij ij
j i

i i j ij ij ij ij
j i

P U U G B

Q U U G B
                               (17) 
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max≤ij ijS S                                              (19) 
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OLTC≤ ≤U U U                                      (20) 
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max
cut cut≤i iP P                                             (21) 

max
c c≤i iQ Q                                             (22) 

where Pi and Qi indicate active power and reactive power injections; Ui and Uj indicate the voltages at nodes i 
and j, respectively; Gij and Bij indicate conductance and admittance, respectively; θij indicates the angle shift 
between i and j; Uimax and Uimin indicate the upper and lower voltage bounds, respectively, at node i; Sij and 
Sijmax indicate the transmission power and transmission power limit, respectively; UOLTC indicates the secondary 
voltage at the transformer; Umax 

OLTC and Umin 
OLTC indicate the upper and lower limits of secondary voltage at the 

transformer, respectively; Pcuti indicates the curtailment for DG at node i; Pmax 
cuti  indicates the allowed curtailment 

at node i; and Qci indicates the reactive power compensation at node i with an allowed upper limit of Qmax 
ci . 

4 | THE OPTIMAL SOLUTION OF THE PROPOSED BI-LEVEL 
PROGRAMMING METHOD 

4.1 | The Solution Algorithm for the Two-layer Model 

Particle Swarm Optimisation (PSO) simulates the principle of bird swarm foraging. It has the advantages of 
simple calculation and strong direction of optimisation. However, the PSO algorithm has poor global search 
ability and easily falls into local optima in the later stage of the algorithm. Harmony search (HS) expands the 
search range in the later stage of the algorithm, but its directivity is not strong. The new harmony combination 
principle of the HS algorithm is introduced in the particle optimisation process of the PSO algorithm. In each 
iteration of the process, the search space is searched for the optimal particle with a certain probability to improve 
the global search performance of the algorithm. The computational steps of IHPSO algorithm are as follows: 

(1) Chaotic initialisation of PSO based on formula (23) is used to improve the ergodicity of the initial 
particle in the search space: 

  min max min
, ,( )i j j j j i jx x x x χ= + −                                     (23) 

, 1 , ,(1 )i j i j i jχ λ χ χ+ = ⋅ −                                        (24) 

where xi,j indicates the j-dimension of particle i; xmax 
j  and xmin 

j  indicate the upper and lower limit values, 
respectively, of variable j; and χi,j indicates the sequences of chaotic variables generated by logistic mode 1, 
and the chaotic parameters λ are set to 4. 

(2) The fitness value f(xi) of each particle is calculated, and the individual extreme value Pi of each particle 
and the global extreme value Pg of the population are obtained. 

(3) The inertia coefficient, learning coefficient and particle position and velocity are updated. 
(4) The fitness value of the new generation particle swarm is calculated, the individual extreme value is 

updated, and the global extreme value is removed. 
(5) New particles hmnew are generated based on HMCR (memory base value probability), PAR (fine-tuning 

probability) and BW (fine-tuning bandwidth). 
a) If HMCR is larger than the random variable, new particle variables are randomly obtained from PSO; 

otherwise, they are randomly generated from the range of variables. 
b) If PAR is greater than the random variable, then the bandwidth of the new particle variable is adjusted; 

otherwise, no adjustment is made. 
c) Steps b~c are repeated until all new variables are constructed to generate new particles. 
(6) The global extremum Pg is updated. If the fitness value of the new harmony f(hmnew) is better than the 

fitness value of the global extremum f(Pg), then the new harmony hmnew is the new global extremum Pg. 
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(7) Whether the algorithm satisfies the conditions for achieving the number of iterations is determined; 
otherwise, return to step 3. 

4.2 | The Flowchart of the Solution Process 

The coordinated bi-level programming framework for DG and EVCSs is presented in Figure 1. The planning 
level determines the siting and sizing of DG and EVCSs, and the active management level determines the 
three active management strategies by using transformer adjustment, DG output curtailment and reactive 
power compensation. The planning layer transfers the optimal allocation scheme of DG and EVCSs to the 
active management level. On this basis, the active management level optimises the power flow of four 
scenarios under the optimal allocation scheme by adjusting the OLTC gear, reducing DG active power and 
switching reactive power compensation devices. By satisfying the reliability of system operation, the 
optimal solutions maxf1~maxf4 of four scenarios is obtained and fed back to the planning level. Combining 
the optimal solutions maxf1~maxf4 and the investment and construction costs of the DG and charging 
stations, the planning level calculates the optimal solution maxF and optimises the decision scheme. By 
analogy, the optimal joint planning scheme of DG-charging station is determined through multiple 
information transmissions and feedback between the planning level and the active management level. 

5 | CASE STUDY 

5.1 | Case Study of the IEEE33-Node Test System 
This paper considers the coordinated planning problem for DG and EVCSs on an IEEE-33node test system, 

which is shown in Figure 2, using the system parameters described in [21]. 
It is assumed that the number of EVs is 600 in the studied region, the running time for the MCS is 

50,000, and the parameters of the probability model are shown in Table 2. The ratio of electric buses, 
electric taxis, electric buses and electric private cars is 1:2.4:10.2:63.5, as in [16]. The average charging 
load of 60 minutes in the hour is used as the charging load of an hour. According to the calculation 
presented in section A, the total charging load is shown in Figure 3. 

The 365*24 -hour daily profiles of wind speed, solar irradiance, and conventional load demand are 
presented in Figure 4 in [22]-[23]. 

According to the PFS metric (Figure 5) of the clustering results, the number of clusters is set to be 4. The 
four typical scenarios of wind speed, solar irradiance and conventional load demand are shown in Figure 6, in 
which normalisation has been completed. 

       

B

W

tr( ) ( 1)PFS
tr( ) ( )

N K
N S K

−
=

−                        （25）
 

where K is the number of clusters; S is the number of original scene samples; and tr (NB) and tr (NW) are the 
traces of the inter-class and intra-class scatter matrices, respectively. After clustering, if the distance between 
different clusters is larger and the distance between samples in the same cluster is smaller, then the PFS index 
is larger, which indicates that the clustering effect is better. 

The particle swarm size is 40, the number of iterations time is 100, theinertia coefficients ωmax = 0.95 and 
ωmin=0.4, learning coefficient c1max=2.75, c1min=1.25, c2max=2.25, and c2min=0.5. In harmony algorithm part, 
the memory library value probability HMCR=0.9, the fine-tuning probabilities PARmax=0.4, and PARmin=0.9, 
and the fine-tuning bandwidths bwmax=1 and bwmin=0.0001. The wind turbines are installed at nodes 13, 23 and 
31; the PV panels are installed at 7, 21, 28; and the EVCS candidate nodes are nodes 20, 4, 8, 14, and 29. The 
rated power for DG is 100 kW, with a rated solar irradiance of 1 kW/m2, and a cut-in wind speed, rated wind 
speed and cut-off wind speed of 3 m/s, 13.5 m/s and 20 m/s respectively. The purchasing and selling prices of 
the power supply company are 0.4 RMB/kW*h and 0.5 RMB/kW*h. The unit price of a charging station is 1 
RMB/kW*h. The government subsidy price Cb,DWG is 0.1 RMB/ kW*h, and Cb,PVG is 0.36 RMB/ kW*h.  
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The building costs are ct1=5381 RMB/kW, ct2=4375 RMB/kW, ct3=6000 RMB/kW, and cg=3000000 RMB. 
The discount rate is 8%, and the equipment life is 20 years. The cost parameters for operation and 
maintenance are com1=0.0296 RMB/kW*h, com2=0.0096 RMB/kW*h, and com3=100000 RMB/MW in [23]. 

The pollution costs of thermal power generation are shown in Table 3, as in [24]. 

TABLE 3 Cost Parameters of Environmental Pollution. 

Contaminant 
xs/ 

(kg/MW·h) 

as/ 

(RMB/kg) 

bs/ 

(RMB/kg) 

CO2 639.2 0.01 0.02 

SO2 3.587 1.00 6.00 

NOx 1.544 2.00 8.00 
 

Three strategies are employed for optimal allocation. 
Strategy 1: Use the active management strategy for the coordinated planning of DG and EVCSs. 
Strategy 2: Do not use the active management strategy for the coordinated planning of DG and EVCSs. 
Strategy 3: Use the optimal allocation for DG and then for EVCSs. 

The results from using these three strategies are shown in Table 4. 

TABLE 4 Optimal Allocation Results of Different Strategies. 

Strategy             Optimised configuration results Capacity/kW 

Strategy 1 
DG 13(8).23(10).31(10).7(7).21(2).28(6) 4300 

EVCS 20(237).4(194).8(223).14(309).29(203) 1166 

Strategy 2 
DG 13(10).23(5).31(8).7(7)  3000 

EVCS 20(252).4(197).8(186).14(173).29(208) 1016 

Strategy 3 
DG 13(9).23(4).31(10). 21(3).28(1) 2700 

EVCS 20(185).4(186).8(185).14(184).29(185) 925 
 
In the DG planning scheme, 13 (8) indicates that 8 distributed generators are installed in nodes 13, and in 

the EVCSs planning scheme, 20(237) indicates that the capacity of the charging station in node 20 is 237 kW. 
The active management measures of Strategy 1 are shown in Table 5. 

TABLE 5 The active management measures of Strategy 1. 

Scenarios Curtailment rate of DG 
Reactive power 

compensation 

Transformer 

adjustments 

Scenarios 1 
13(0%).23(0%).31(0%).7(0%). 

21(0%).28(0%) 

13(400).23(50).31(100).7(0). 

21(250).28(250) 
-3 

Scenarios 2 

13(23%).23(29%).31(30%).7(23%

). 

21(28%).28(30%) 

13(200).23(50).31(200).7(0). 

21(50).28(50) 
1 

Scenarios 3 13(25%).23(10%).31(0%).7(2%). 13(300).23(50).31(50).7(0). -1 
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21(8%).28(7%) 21(500).28(0) 

Scenarios 4 
13(0%).23(0%).31(0%).7(0%). 

21(0%).28(0%) 

13(250).23(250).31(300).7(0)

. 

21(150).28(200) 

1 

 
In the curtailment rate of DG, 13(23%) indicates that the active outputs of DG on node 13 are reduced by 

23%. In the reactive power compensation, 13(400) indicates that 400 kvar of reactive power are compensated 
in node 13. In the transformer adjustments, -3 indicates that the transformer tap is connected at -3×1.25%. 
 
1) Result analysis of optimal allocation 

Strategy 2 considers coordinated planning for DG and EVCSs, and strategy 3 considers DG planning first 
and then allocates EVCSs based on the DG planning result. Comparing strategy 2 to strategy 3, strategy 2 
increases the DG capacity to 300 kW because it considers mutual support for the DG and EV charging loads.  
The integration of EVs into the distribution network can help to increase system flexibility by integrating DG 
and to reduce the possibility of voltage violations caused by DG integration. However, strategy 3 is individual 
planning strategy, which is limited by the designed capacity. 

By comparing strategy 1 to strategy 2, we find that the introduction of an active management strategy 
increases the DG capacity by 1300 kW and the EVCS capacity by 150 kW. It is believed that the use of active 
management strategies for DG and EVCS operation can effectively control the allocation of power flow by 
increasing system flexibility to integrate DG and EVCSs while satisfying various constraints in the distribution 
network. In traditional methods, the system could easily present some voltage or power violations for the 
integration of large-scale DG and EVCSs. 

 
2) Revenue analysis of distribution network 

The revenues from the distribution network using different strategies are summarised in Table 6. Comparing 
strategy 1 to strategy 2, strategy 1 increases the annual revenue by 654,100 RMB, with annual profit increases 
of 445,900 RMB, power loss decreases of 94,300 RMB and environmental and social welfare increases of 
113,900 RMB. 

 (a) Regarding the annual profit from the selling price, strategy 1 effectively increases the capacity of DG 
and EVCSs. Although increasing the capacity increases the investment and system maintenance fees, more DG 
output can also be consumed. The lower level power supply company will reduce the cost of purchasing 
electricity from the upper-level power supply company. Furthermore, EVCSs can be more effectively integrated 
into the power system, with increasing profits for the charging stations. Therefore, strategy 1 will have better 
annual profits. 

TABLE 6 Comprehensive Income of Different Strategies. 

 Strategy 1 Strategy 2 Strategy 3 

Investment and construction cost/ten thousand 

RMB 
449.83 374.68 354.65 

Operation and maintenance cost/ten thousand RMB 44.52 39.44 38.13 

Government subsidy fee/ten thousand RMB 174.35 130.28 115.50 

Distribution network sales revenue/ten thousand 

RMB 
696.09 621.29 694.87 

Charging station sales revenue/ten thousand RMB 258.46 252.50 248.03 

This article is protected by copyright. All rights reserved.



 12 of 20 

 

Annual comprehensive sales revenue/ten thousand 

RMB 
634.54 589.95 575.62 

System network loss cost/ten thousand RMB 9.16 18.59 19.53 

Environmental benefits/ten thousand RMB 83.72 72.33 69.71 

Annual comprehensive income/ten thousand RMB 709.11 643.69 625.81 
 

(b) The annual power losses caused by these three strategies are presented in Figure 7, in which strategy 1 
decreases the power loss by 50.72% and 53.09% compared to strategy 2 and strategy 3, respectively. Because 
strategy 1 uses active management for optimising power flow allocation, the power losses in the distribution 
network are effectively controlled. 

(c) Regarding clean energy utilisation, strategy 1 consumes 1870 MW·h more DG output power and 
integrates 85.14 MW·h more EV charging loads than strategy 2, which encourages the consumption of clean 
energy while reducing the environmental pollution caused by fossil fuels. The emissions of SO2, NOx, and CO2 
are reduced by 6707 kg, 2887 kg, and 1.20*106 kg, respectively, which satisfies the requirements of the Chinese 
government. The integration capability of clean energy and the pollution reduction ability of different strategies 
are presented in Table 7. 

TABLE 7 Clean Energy Acceptance and Pollutant Reduction. 

 Strategy 1 Strategy 2 Strategy 3 

DG total consumption/MW·h 12407 10537 10127 

EV charging load total acceptance/MW·h 3692 3607 3543 

SO2 emission reduction/kg 44506 37799 36326 

NOx emission reduction/kg 19157 16270 15636 

Carbon emission reduction/×106 kg 8.03 6.83 6.57 

As seen by comparing strategy 2 to strategy 3, strategy 2 considers the integration capability of EVCSs 
for DG. Therefore, the DG output power consumption is increased by 410.47 MW·h in strategy 2, with an 
annual profit increase of 178,900 RMB. The emissions of SO2, NOx, and CO2 are reduced by 1472 kg, 633 
kg, and 0.26*106 kg, respectively. 

3) Voltage shift analysis 
For the analysis of voltage shift in the active management strategy, strategy 1 for the optimal 

allocation of DG and EVCSs has two results, which correspond to the cases of considering active 
management (case a) and not considering active management (case b). The absolute values of the 
maximum voltage shift are presented in Figure 8. 

Using ±5% as the limit for node voltage shifts, without the active management strategy, nodes 9~17 and 
28~32 will have voltage limit violations, with a maximum voltage shift of 6.47%. The maximum voltage 
deviation occurs at node 17 for the 4 typical scenarios, and its 24-hour voltage is shown in Figure 9. 
Voltage overshoot occurs at 9:00, 10:00, 19:00, 20:00, 21:00 and 22:00. If active management is utilised, 
the voltage shifts of all nodes are below 5%, with a maximum value of 2.88%. The results demonstrate 
that, in the scenario of high penetration of DG and EVCSs, the active management strategy can help to 
reduce the possibility of voltage violations and increase system reliability. 

In conclusion, the comparison between strategy 2 and strategy 3 shows that the joint planning of DG and 
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EVCSs is beneficial to the mutual absorption of DG output and EV charging loads and the development of 
new energy sources. Thus, strategy 2 is superior to strategy 3. By comparing strategy 1 and strategy 2, it can 
be concluded that in the joint planning of DG and EVCSs, considering active management measures can 
effectively improve the system's DG and electricity performance. The acceptance capacity of electric vehicle 
charging loads can meet the needs of distribution companies while reducing environmental pollution and 
achieving a win-win situation between enterprise interests and environmental protection. Therefore, strategy 1 
is superior to strategy 2, and strategy 1 is the best of the three strategies. 

5.2 | Case Study of the PG&E-69 Node Test System 
To validate the optimised configuration model proposed in this paper, the PG&E-69 node test system shown 

in FIG. 10 and the real 30-node distribution system shown in FIG. 11 are verified and analysed. The parameters 
of the two systems are shown in [25] and [26]. 

For the PG&E-69 node test system, the wind turbines are installed at nodes 10, 33 and 38, the PV panels 
are installed at 21, 50, 66, and the EVCS candidate nodes are nodes 14, 32, 40, 45, and 61. The planning 
results and the active management measures of Strategy 1 are shown in Table 8 and Table 9. The revenues 
from the distribution network using different strategies are shown in Table 10. 

For the real 30-node system, the wind turbines are installed at nodes 8~14, the PV panels are installed 
at nodes 23~29, and EVCS candidate nodes are set as nodes 5, 8, 16, 22, and 25. The planning results and 
the active management measures of Strategy 1 are shown in Table 11 and Table 12. The revenues from 
the distribution network by using different strategies are shown in Table 13. 

To analyse the voltage shift in the active management strategy, strategy 1 for the optimal allocation of 
DG and EVCSs has two results, which correspond to the cases of considering active management (case a) 
and not considering active management (case b).The absolute values of the maximum voltage shift are 
presented in Figure 12 and 13. 

TABLE 8 Optimal Allocation Results of Different Strategies for the PG&E-69 node System. 

Strategy              Optimise configuration results capacity/kW 

Strategy1 
DG 10(9).33(2).38(10).21(3).50(10).66(10) 4400 

EVCS 14(186).32(273).40(190).45(266).61(339) 1254 

Strategy2 
DG 10(2).33(5).38(10).21(4).50(10).66(10) 4100 

EVCS 14(185).32(294).40(238).45(224).61(214) 1155 

Strategy3 
DG 10(5).33(2).38(10).21(2).50(9).66(9) 3700 

EVCS 14(190).32(181).40(193).45(188).61(191) 943 

TABLE 9 The active management measures of Strategy 1 in the PG&E-69 node System. 

Scenarios Curtailment rate of DG Reactive power compensation 
Transformer 

adjustments 

Scenarios 1 
10(0%).33(3%).38(0%).21(0%). 

50(0%).66(0%) 

10(100).33(300).38(0).21(0). 

50(200).66(50) 
-1 

Scenarios 2 

10(25%).33(29%).38(0%).21(30%

). 

50(0%).66(0%) 

10(50).33(0).38(100).21(300). 

50(450).66(200) 
-4 
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Scenarios 3 
10(23%).33(0%).38(0%).21(12%). 

50(0%).66(0%) 

10(50).33(300).38(400).21(50). 

50(250).66(250) 
-4 

Scenarios 4 
10(0%).33(0%).38(0%).21(0%). 

50(0%).66(0%) 

10(50).33(0).38(300).21(300). 

50(500).66(200) 
-5 

TABLE 10 Comprehensive Income of Different Strategies for the PG&E-69 node System. 

 Strategy 1 Strategy 2 Strategy 3 

Investment and construction cost/ten thousand 

RMB 
455.43 432.28 400.03 

Operation and maintenance cost/ten thousand RMB 39.83 35.66 33.02 

Government subsidy fee/ten thousand RMB 194.31 189.02 169.32 

Distribution network sales revenue/ten thousand 

RMB 
652.76 614.36 592.47 

Charging station sales revenue/ten thousand RMB 260.75 258.63 248.98 

Annual comprehensive sales revenue/ten thousand 

RMB 
612.57 594.08 577.73 

System network loss cost/ten thousand RMB 2.73 4.57 4.30 

Environmental benefits/ten thousand RMB 77.34 71.53 67.90 

Annual comprehensive income/ten thousand RMB 687.17 661.04 641.33 

TABLE 11 Optimal Allocation Results of Different Strategies for the 30-node System. 

Strategy              Optimise configuration results capacity/kW 

Strategy1 
DG 

8(13).9(12).10(15).11(15).12(10).13(11) .14(15) 

.23(8) .24(12) .25(11) .26(11) .27(14) .28(15) .29(6) 
16800 

EVCS 5(470).8(494).16(562).22(372).25(660) 2258 

Strategy2 
DG 

8(15).9(15).10(15).11(12).12(7).13(13) .14(15) 

.23(8) .24(12) .25(1) .27(7) .28(12) .29(3) 
13500 

EVCS 5(454).8(537).16(316).22(482).25(203) 1992 

Strategy3 
DG 

8(14).9(14).10(14).11(7).12(13).13(14) .14(14) 

.23(2) .24(6) .25(7) .26(3) .27(8) .28(3) .29(7) 
12600 

EVCS 5(375).8(369).16(364).22(371).25(371) 1850 

TABLE 12 The active management measures of Strategy 1 in the 30-node System.  

Scenarios Curtailment rate of DG Reactive power compensation 
Transformer 

adjustments 

Scenarios 1 8(0%).9(0%).10(0%).11(0%). 8(0).9(0).10(450).11(200). -3 
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12(0%).13(0%).14(0%).23(0%). 

24(0%).25(0%).26(0%).27(0%). 

28(0%).29(0%) 

12(200).13(100).14(350).23(0). 

24(100).25(250).26(200).27(0). 

28(350).29(50) 

Scenarios 2 

8(30%).9(0%).10(0%).11(0%). 

12(0%).13(28%).14(0%).23(30%). 

24(11%).25(30%).26(30%).27(30%). 

28(25%).29(30%) 

8(0).9(100).10(350).11(0). 

12(500).13(50).14(150).23(150). 

24(0).25(300).26(500).27(450). 

28(100).29(150) 

0 

Scenarios 3 

8(0%).9(0%).10(0%).11(0%). 

12(0%).13(0%).14(0%).23(16%). 

24(0%).25(0%).26(30%).27(0%). 

28(30%).29(0%) 

8(0).9(0).10(300).11(250). 

12(200).13(0).14(0).23(400). 

24(0).25(500).26(500).27(0). 

28(0).29(0) 

1 

Scenarios 4 

8(0%).9(0%).10(0%).11(0%). 

12(8%).13(0%).14(0%).23(0%). 

24(0%).25(0%).26(0%).27(0%). 

28(0%).29(0%) 

8(400).9(300).10(50).11(500). 

12(0).13(250).14(0).23(0). 

24(250).25(400).26(0).27(0). 

28(350).29(0) 

-5 

 

TABLE 13 Comprehensive Income of Different Strategy for the 30-node System. 

 Strategy 1 Strategy 2 Strategy 3 

Investment and construction cost/ten thousand 

RMB 
1179.19  986.11  932.71  

Operation and maintenance cost/ten thousand RMB 144.66  139.00  134.19  

Government subsidy fee/ten thousand RMB 725.77  595.00  552.19  

Distribution network sales revenue/ten thousand 

RMB 
2782.24  2674.26  2602.63  

Charging station sales revenue/ten thousand RMB 525.06  491.60  496.00  

Annual comprehensive sales revenue/ten thousand 

RMB 
2709.21  2635.76  2583.92  

System network loss cost/ten thousand RMB 27.75  44.65  46.48  

Environmental benefits/ten thousand RMB 299.66  282.30  271.77  

Annual comprehensive income/ten thousand RMB 2981.13  2873.41  2809.21  

As seen by comparing the optimal allocation results of the three strategies and the annual comprehensive 
benefits of the distribution network, strategy 1 has the highest level of clean energy acceptance and the 
best annual comprehensive benefits. A comparison of the advantages and disadvantages of the three 
strategies is similar to the simulation results of the IEEE-33 node test system. The proposed model is 
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verified again based on the optimal configuration results of the PG&E-69 node system and a real 30-node 
distribution system. 

5.3 | Performance Comparison of Algorithms 
In this paper, the IHPSO algorithm and the PSO algorithm are tested by the test functions f1(x)~f4(x). 
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The search parameters of the functions f1(x)~f4(x) are shown in Table 14. 

TABLE 14 Function Search Parameters. 

Function Dimension Search scope 
Theoretical 

optimum 

f1 10 [-100,100] 0 

f2 10 [-100,100] 0 

f3 10 [-100,100] 0 

f4 10 [-100,100] 0 
 

Using MATLAB programming, the particle swarm size of the algorithm is 50, the number of iterations is 
1000, and each algorithm runs 100 times independently. The test results of the two algorithms are shown in 
Table 15. 

TABLE 15 Algorithm Simulation Results. 

Function Algorithm Best value Worst value Mean value 

f1 PSO 5.117e-20 3.017e-04 3.246e-06 

 IHPSO 1.687e-20 1.660e-07 4.1975e-09 

f2 PSO 0.053 47.321 7.126 

 IHPSO 7.310e-04 1.830e-01 2.316e-02 

f3 PSO 3.965e-04 469.222 29.459 

 IHPSO 7.685e-05 18.008 3.242 

f4 PSO 0.995 46.763 15.900 

 IHPSO 0.995 16.914 6.779 
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According to the simulation results of the f1(x) function, the IHPSO algorithm is superior to the PSO 
algorithm in searching for single-peak convex functions. Compared with the PSO algorithm, the IHPSO 
algorithm has a stronger global searching ability for functions with local extrema such as f2(x) and f3(x). 
Therefore, the indexes of simulation results have been greatly improved. For functions such as f4(x), for which 
it is difficult to search for global extrema, the simulation results again verify the IHPSO search. It can be verified 
that the IHPSO algorithm proposed in this paper substantially improves the performance of the algorithm. 

6  CONCLUSION 
This paper proposes a bi-level optimal allocation model for DG and EVCSs with consideration of the 

variability and stochasticity of the EV charging load, the DG output power and the conventional load. The 
model is solved by the IHPSO algorithm. Some conclusions can be summarised as follows: 

(1) Under the assumption that countries attach importance to the development of clean energy DG and EVs, 
compared to the independent planning of DG, the coordination and complementarity between the charging load 
and DG should be considered when optimising the allocation of DG, which is conducive to promoting the 
absorption of clean energy in the system. 

(2) The use of an active management strategy can result in more reasonable plans for optimal DG and EVCS 
allocation, which increases the capacity of DG and EVCSs over that the reliable system already in operation, 
increases the profit of the power supply company and reduces power loss while making better use of clean 
energy for emission reductions under the encouragement of the national energy policy. 

(3) Compared with the traditional PSO algorithm, the IHPSO algorithm established in this paper has a strong 
global optimisation ability, does not easily fall into local optima, and results in improved performance of the 
algorithm. 
 

NOMENCLATURE 
Abbreviations 

DG Distributed Generation 
EVs Electric Vehicles 
EVCSs Electric Vehicle Charging Station 
IHPSO Improved Harmonic Particle Swarm Optimisation 
DWG Distributed Wind Generation 
PVG Photovoltaic Generation 

 
Variables and Parameters  

Tc Charging time in minutes 
Β Percentage of batter capacity after charging 
SOC0 Percentage of battery capacity before charging 
η Charging efficiency 
Pc Charging power 
Eb Battery capacity 
PPVG Output power of PV 
PPVGS Rated output power of PV 
g/gs Actual/Rated solar irradiance 
PDWG Wind output power 
PDWGS Rated wind output power 
v Actual wind speed 
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vi/vo Cut-in/ Cut-off wind speed 
vs Rated wind speed 
Cpro Annual rate of return for the power supply company 
Closs Power loss 
Cenv Environmental and social welfare 
Cs Profit of the power supply company 
CB Government subsidies for renewable energy sources 
Cinv Investment in intermittent DG and EVCSs 
COM Maintenance fee for DG and EVCSs 
k Number of typical scenarios 
pl Probability of the lth typical scenario 
ci/co Purchasing/ Selling prices for the power supply company 
ce Unit selling price for EVCSs 
Pl,t,L Load demand at time interval t 
Pl,t,DWG DWG output power at time interval t 
Pl,t,PVG PVG active power at time interval t 
Pl,t,EV EVCS charging load at time interval t 
cb,DWG Units of government subsidies for DWG 
cb,PVG Units of government subsidies for PVG 
Cinv Investment and building costs of DG and EVCSs 
nDWG Number of candidate nodes for DWG 
nPVG Number of candidate nodes for PVG 
nEV Number of candidate nodes for EVCSs 
Pj,DWG / Pj,PVG / Pj,EV Capacity for DWG/ PVG/ EVCSs at node j 
ct1/ ct2/ ct3 Unit capacity construction costs of DWG/ PVG/ EVCSs 
cg Fixed investment cost of EVCSs 
r Discount rate 
n1 Service life of the equipment 
com1/com2 Unit maintenance fees for DWG/ PVG 
com3 Amortised unit maintenance fee for EVCSs 
Pl,t,loss System loss at time interval t 
Es Output power for renewable energy 
Cenv Social welfare of renewable energy sources and reduced emissions from EVs 
Nenv Types of pollution gases 
xs/as / bs Emission levels of the sth kind of pollution gas 
eEV Energy consumed by an EV in 100 miles 
cco2 CO2 trading tax fee in the international market 
xEV Difference between EVs and conventional vehicles 
Cl,S Profit of the power supply company in scenario l 
Cl,B Government subsidy for renewable energy sources in scenario l 
Cl,OM Maintenance fee for DG and EVCSs in scenario l 
Cl,loss Power loss fee in scenario l 
Cl,env Social welfare in scenario l 
Pi/Qi Active/reactive power injections 
Ui/Uj Voltages at nodes i and j 
Gij/Bij Conductance and admittance 
θij Angle shift between i and j 
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Uimax/Uimin Upper/lower voltage bounds at node i 
Sij Transmission power 
Sijmax Transmission power limit 
UOLTC Secondary voltage at the transformer 
Umax 

OLTC/Umin 
OLTC Upper/lower limits of secondary voltage at the transformer 

Pcuti Curtailment for DG at node i 
Pmax 

cuti  Allowed curtailment at node i 
Qci Reactive power compensation at node i 
Qmax 

ci  Allowed upper limit of reactive power compensation at node i 
xi,j j-dimension of particle i 
xmax 

j /xmin 
j  Upper and lower limit values of variable j 

χi,j Sequences of chaotic variables generated by logistic mode 1 
λ Chaotic parameters 
K Number of clusters 
S Number of original scene samples 
tr (NB) /tr (NW) Traces of the inter-class and intra-class scatter matrices 
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