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S1 Modeling and Assumptions

In the main paper, we propose the following conceptual model:

Conceptual Model (SuppEq. 1.1)

Disease Mechanism : logit(P (D = 1|Z,G; θ)) = θ0 + θGG+ θZZ

Sampling Mechanism : f(S|D,W,G,Z;φ)

Observation Mechanisms : f(D∗|D = 1, S = 1, X,G,Z;β) [Sensitivity Model]

f(D∗|D = 0, S = 1, Y,G, Z;α) [1-Specificity Model]

This model allows for complicated sampling and observation mechanisms. Suppose our
scientific interest is in the model for D|G,Z and, in particular, the coefficient related to G. In
practice, however, we do not fit the model in SuppEq. 1.1. We consider two general analysis
models. In the first, we suppose we fit a model for D∗|Z,G, S = 1 ignoring the potential
misclassification and selection mechanisms. In the second analysis model, we suppose we fit a
model for D∗|Z,G,W, S = 1 ignoring the misclassification but adjusting for factors related to
the sampling mechanism. Here, we clarify the various analysis and true models:

Analysis Model : logit(P (D∗ = 1|Z,G, S = 1)) = θ
(simple)
0 + θ

(simple)
G G+ θ

(simple)
Z Z

True Model : logit(P (D = 1|Z,G)) = θ0 + θGG+ θZZ (SuppEq. 1.2)

Ideally, θ
(simple)
G and θG would be the same, but in practice this may not always be the

case. Our strategy is to relate the parameters in the analysis models to the parameters in the
(assumed) true model. Here, we suppress the dependence of these distributions on parameters
θ, φ, β, α and θ(simple) in the notation. First, we consider different types of assumptions we can
make on the relationships between W , X, Y , and G.

Potential independence assumptions

Define W , X, and Y to be the predictors driving sampling, sensitivity, and specificity that are
not included as adjustment factors in the disease model. Below, we list four different assump-
tions we make on these quantities.

Assumption 1: S ⊥ G|D,W,Z and D∗ ⊥ G|D,S = 1, X, Y, Z The former assumption states that
G is not independently related to sampling given D, W , and Z, so f(S|D,W,G,Z;φ) =
f(S|D,W,Z;φ). The latter assumption states that G is not independently related to D∗ given
D, X, Y , and Z in the sampled subjects, so f(D∗|D = 1, S = 1, X,G,Z;β) = f(D∗|D = 1, S =
1, X, Z;β) and f(D∗|D = 0, S = 1, Y,G, Z;α) = f(D∗|D = 0, S = 1, Y, Z;α)

Assumption 2: X ⊥ Y ⊥W |D,G,Z, S = 1 This assumption states that different, independent
factors are related to the sensitivity and specificity mechanisms for observing D conditional on
D, G, Z, and S = 1. We further assume that these are independent of W on the sampled sub-
jects given D, G, and Z. In EHR data, we might expect factors such as the length of follow-up,
patient age, and the number of visits to be important factors in the sensitivity model. It seems
reasonable that specificity (or the true negative probability) will be related to different factors.
Factors such as age might often be related to both selection and disease misclassification, but
age would often be included in Z. Critically, this independence assumption conditions on D,
G, and Z, making this assumption much more plausible. For example, sampling may depend
on another disease related to D, Z, and G. However, conditional on these variables, it seems
plausible that W is independent of X and Y .
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Assumption 3: X,Y ⊥ G|D,Z, S = 1 This assumption states that X and Y are independent
of G given D and Z. This assumption seems reasonable as we do not expect factors related
sensitivity/specificity to be associated with G given Z, which may contain age, gender, and the
principal components of the genetic information. This assumption seems particularly reasonable
when G represents a single SNP. However, there may be some settings where this is a strong
assumption.

(Strong) Assumption 4: W ⊥ G|D,Z This assumption states that W is independent of G given
D and Z. This can be a strong assumption in some settings. Suppose, for example, that G
is a SNP that is independently related to two diseases, D and D′, and that sampling is related
to D′. In this setting, we will not have conditional independence between G and W given D
and Z. However, if G is a SNP, the dependence between G and W may be so weak as to make
the independence assumption reasonable in practice. If G is a PRS independently related to
D′, however, the conditional independence assumption bears additional thought.

Note on assumptions: Suppose that W is empty. In other words, assume all predictors
in W are included in Z. In this case, Assumption 4 is trivially satisfied. In this cases, the
analysis model would be a logistic regression including W linearly. As shown in Section S5,
this strategy is expected to have little bias in estimating θG when W is independent of G given
Z, and there may be some settings where this strategy produces little bias even when W is
associated with G given Z.
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S2 Bias and sensitivity analysis under perfect specificity

S2.1 Bias expressions

We will first assume that we fit analysis model 1 as in SuppEq. 1.2. However, we restrict our
focus to the setting where we have perfect specificity, so P (D∗ = 1|D = 0, Y, Z, S = 1;α) = 0
for all patients. This may be the most common setting when we are considering EHR data. We
can write the analysis model as follows:

f(D∗|G,Z, S = 1) ∝
∑
d

∫
f(D∗|D = d,X, Y,G,Z, S = 1)f(X,Y |D = d,G,Z, S = 1,W )

× P (S = 1|D = d,W,G,Z)f(W |D = d,G,Z)P (D = d|G,Z)dXdY dW

Under Assumptions 1-4, we have that

f(D∗|G,Z, S = 1) ∝

P (D = 1|G,Z)

[∫
f(D∗|D = 1, X, Z, S = 1)f(X|D = 1, Z, S = 1)dX

] [∫
P (S = 1|D = 1,W,Z)f(W |D = 1, Z)dW

]
+ P (D = 0|G,Z)

[∫
f(D∗|D = 0, Y, Z, S = 1)f(Y |D = 0, Z, S = 1)dY

] [∫
P (S = 1|D = 0,W,Z)f(W |D = 0, Z)dW

]

Define c1(Z;β) =

∫
f(D∗ = 1|D = 1, X, Z, S = 1)f(X|D = 1, Z, S = 1)dX

r(Z;φ) =

∫
P (S = 1|D = 1,W,Z)f(W |D = 1, Z)dW∫
P (S = 1|D = 0,W,Z)f(W |D = 0, Z)dW

Suppose we view D∗ as a noisy test for the true value of D with potentially imperfect sensitivity
and perfect specificity. We can view c1(Z) as the sensitivity of D∗ for D in the sampled subjects
averaged across the distribution of X. We can view r as the sampling ratio with respect to
D, averaged across the distribution of W . We note that c1(Z), and r(Z) are functions of
distinct parameters, so they can vary independently conditional on the observed data. Using
this notation, we can rewrite the above expressions as

P (D∗ = 1|G,Z, S = 1) ∝
[∫

P (S = 1|D = 1,W,Z)f(W |D = 0, Z)dW

]
[P (D = 1|G,Z)c1(Z)r(Z)]

P (D∗ = 0|G,Z, S = 1) ∝
[∫

P (S = 1|D = 0,W,Z)f(W |D = 0, Z)dW

]
× [P (D = 1|G,Z)(1− c1(Z))r(Z) + P (D = 0|G,Z)]

Suppose we use logistic regression to model D∗|G,Z, S = 1 as in (SuppEq. 1.1) analysis
model 1. We have

logit (P (D∗ = 1|G,Z, S = 1))

= log

(
P (D = 1|G,Z)c1(Z)r(Z)

P (D = 1|G,Z)(1− c1(Z))r(Z) + P (D = 0|G,Z)

)
= log

(
eθ0+θGG+θZZc1(Z)r(Z)

eθ0+θGG+θZZ(1− c1(Z))r(Z) + 1

)
= θ0 + θGG+ θZZ + log (c1(Z)) + log (r(Z))− log

(
eθ0+θGG+θZZ(1− c1(Z))r(Z) + 1

)
We now approximate the above expression using a first order Taylor Series approximation

with respect to Z and G, where Z̄ represents the mean of Z and Ḡ represents the mean of G
in the sample. Let c̄1 = c1(Z̄), and r̄ = r(Z̄). We can write

logit (P (D∗ = 1|G,Z, S = 1)) ≈ θ0 + θGG+ θZZ + log (c̄1) +

[
1

c̄1

]{
∂c1(Z)

∂Z

∣∣∣∣
Z=Z̄

}
(Z − Z̄)
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+ log (r̄) +

[
1

r̄

]{
∂r(Z)

∂Z

∣∣∣∣
Z=Z̄

}
(Z − Z̄)

− log
(
eθ0+θGḠ+θZ Z̄(1− c̄1)r̄ + 1

)
− eθ0+θGḠ+θZ Z̄(1− c̄1)r̄

eθ0+θGḠ+θZ Z̄(1− c̄1)r̄ + 1
θG(G− Ḡ)

−
eθ0+θGḠ+θZ Z̄(1− c̄1)r̄θZ + eθ0+θGḠ+θZ Z̄

{
∂(1−c1(Z))r(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ+θZ Z̄(1− c̄1)r̄ + 1

(Z − Z̄)

Suppose further that the covariate set Z is centered on the sample such that Z̄ = 0.
In this setting, we can rewrite the above expression as

logit (P (D∗ = 1|G,Z, S = 1)) ≈ (SuppEq. 2.3)

θ0 + log (c̄1) + log (r̄) +
eθ0+θGḠ(1− c̄1)r̄

eθ0+θGḠ(1− c̄1)r̄ + 1
θGḠ

+

[ 1

c̄1

]{
∂c1(Z)

∂Z

∣∣∣∣
Z=Z̄

}
+

[
1

r̄

]{
∂r(Z)

∂Z

∣∣∣∣
Z=Z̄

}
−
eθ0+θGḠ(1− c̄1)r̄θZ + eθ0+θGḠ

{
∂(1−c1(Z))r(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ(1− c̄1)r̄ + 1

Z
+

[
1

eθ0+θGḠ(1− c̄1)r̄ + 1
θG

]
G

We will consider two different cases for G. We will first suppose that G represents a single
genetic locus. Then, we will assume G is any continuous predictor, but we will focus on the
particular setting where G is a polygenic risk score.

Case 1: G is a SNP Suppose first that G represents a single SNP (single nucleotide poly-
morphism) or genetic locus and that G is coded 0/1/2, where 0 represents no copies of the
minor allele, 1 represents one copy of the minor allele, and 2 represents two copies of the minor
allele. We assume there are only two non-negligible alleles for the SNP of interest.

First, we replace Ḡ in the above derivation with E(G|S = 1). Let MAF represent the
minor allele frequency in the population of interest and MAF (sam) represent the minor allele
frequency in the sample. Since these are quantities are averaged across D, MAF and MAF (sam)

may be different when sampling depends on D, which in turn depends on G. In practice, we
usually don’t expect MAF to be too different from MAF (sam), so we will automatically replace

MAF (sam) with MAF in the approximation equations for θ
(simple)
0 and θ

(simple)
G derived below.

Assuming that the two alleles for any given person are independent and assuming Hardy-
Weinberg Equilibrium, we can approximate Ḡ roughly with

E(G|S = 1) =
∑

g=0,1,2

gP (G = g|S = 1) = P (G = 1|S = 1) + 2 ∗ P (G = 2|S = 1)

≈ 2 ∗MAF ∗ (1−MAF ) + 2 ∗MAF 2 = 2 ∗MAF

Substituting this expression for Ḡ in (SuppEq. 2.3), we can approximate θ
(simple)
0 and

θ
(simple)
G as follows:

Under Assumptions 1-4,

θ
(simple)
0 ≈θ0 + log(c̄1) + log(r̄)− log

(
eθ0+2θGMAF [1− c̄1]r̄ + 1

)
+ 2θGMAF

[
eθ0+2θGMAF (1− c̄1)r̄

eθ0+2θGMAF (1− c̄1)r̄ + 1

]
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θ
(simple)
G ≈

[
1

eθ0+2θGMAF (1− c̄1)r̄ + 1

]
θG

where
c̄1 =

∫
f(D∗ = 1|D = 1, X, Z = 0, S = 1)f(X|D = 1, Z = 0, S = 1)dX = Sensitivity

r̄ =
∫
P (S=1|D=1,W,Z=0)f(W |D=1,Z=0)dW∫
P (S=1|D=0,W,Z=0)f(W |D=0,Z=0)dW

= Sampling Ratio with respect to D

and we assume Z has been mean-centered, so Z̄ = 0.

Suppose we are in a setting in which MAF (sam) and MAF may be somewhat different.
In particular, suppose that sampling is somewhat strongly dependent on D (so the sampling
ratio is extreme) and D is strongly related to G. In this setting, we may expect the sampling
to impact the minor allele frequency in the sample compared to the entire population. In this

setting, we may want to use MAF (sam) in the approximation equations for θ
(simple)
0 and θ

(simple)
G

in (SuppEq. 2.3) instead of MAF . In this case, we can approximate MAF (sam) in terms of
MAF as follows (replacing Z with its mean, Z̄ = 0):

MAF (sam) ≈MAF
1 + (r − 1) [MAF ∗ P (D = 1|G = 2, Z = 0) + (1−MAF )P (D = 1|G = 1, Z = 0)]

1 + (r − 1)P (D = 1)

The derivation of this equation uses the decomposition,

MAF (sam) = P (M = 1|S = 1)

≈
∑

d,g P (S = 1|D = d,W )P (D = d|G = g, Z = 0)P (G = g|M = 1, Z = 0)P (M = 1|Z = 0)f(W )

P (S = 1)

=
MAF

P (S = 1)
MAF

∑
d

[∫
P (S = 1|D = d,W )f(W )dW

]
P (D = d|G = 2, Z = 0)

+
MAF

P (S = 1)
(1−MAF )

∑
d

[∫
P (S = 1|D = d,W )f(W )dW

]
P (D = d|G = 1, Z = 0)

where M is in indicator whether the first allele for a given subject is the minor allele, and we
replace P (M = 1|Z = 0) with MAF . We also assume that P (G = g|Z = 0,M = 1) ≈ P (G =
g|M = 1).

The equation for MAF (sam) also depends on P (D = 1). We can roughly express P (D = 1)
as follows

P (D = 1) =

∫ ∑
g=0,1,2

P (D = 1|G = g, Z)f(G = g, Z)dZ

≈
∑

g=0,1,2

P (D = 1|G = g, Z = Z̄ = 0)P (G = g|Z = 0)

=
eθ0

1 + eθ0
(1−MAF )2 +

eθ0+θG

1 + eθ0+θG
2 ∗MAF (1−MAF ) +

eθ0+2θG

1 + eθ0+2θG
MAF 2

Even when MAF 6= MAF (sam), we note that there is little impact of using MAF over
MAF (sam) in the bias expression derived above, so this difference may not matter much in
practice. We note that MAF = MAF (sam) when θG = 0 or r = 1.

Case 2: G is a polygenic risk score Now, we assume that G is a polygenic risk score (PRS)
or some other continuous predictor. Suppose further that we have centered the polygenic risk
score such that Ḡ = 0 in the sampled datasets. In this case, we can directly use (SuppEq. 2.3)
to obtain
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Under Assumptions 1-4,

θ
(simple)
0 ≈θ0 + log(c̄1) + log(r̄)− log

(
eθ0 [1− c̄1]r̄ + 1

)
θ

(simple)
G ≈

[
1

eθ0(1− c̄1)r̄ + 1

]
θG

where
c̄1 =

∫
f(D∗ = 1|D = 1, X, Z = 0, S = 1)f(X|D = 1, Z = 0, S = 1)dX = Sensitivity

r̄ =
∫
P (S=1|D=1,W,Z=0)f(W |D=1,Z=0)dW∫
P (S=1|D=0,W,Z=0)f(W |D=0,Z=0)dW

= Sampling Ratio with respect to D

and we assume Z and the PRS have both been mean-centered.

General properties of bias

We are interested to see what will happen to θ
(simple)
G relative to θG. We have that

θ
(simple)
G ≈

[
1

eθ0+θGḠ(1− c̄1)r̄ + 1

]
θG

This expression is exactly zero if c̄1 = 1, corresponding to perfect sensitivity. As c̄1 goes to 0,
the parameter estimate is increasingly biased toward the null. The same is also true as r̄ goes
to infinity. Table S1 presents more detailed relationships between bias and the various model
parameters.
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S2.2 Sensitivity analysis expressions

Suppose θG represents the association (log-odds ratio) between a particular genetic locus or
PRS and the disease of interest. Rather than estimating θG directly, we most often fit a model

for D∗|G,Z, S = 1 to obtain the estimate θ
(simple)
G . We may be interested in exploring plausible

values of θG given already known θ
(simple)
G and reasonable values of r̄ and c̄1. Below, we describe

how we can back out values for θG given r̄, c̄1, θ
(simple)
G , and either θ

(simple)
0 or θ0.

Case 1: G is a SNP Suppose first that we only know θ
(simple)
G but not θ

(simple)
0 and that

we have a plausible value for θ0 based on known population prevalence P (D = 1) or P (D =
1|G = 0, Z = Z̄). In practice, we can perform the following exploration using an interval of
values for θ0. We can obtain a prediction for θG by numerically solving

θ
(simple)
G ≈

[
1

eθ0+2θGMAF (1− c̄1)r̄ + 1

]
θG (SuppEq. 2.4)

for θG. We note that this expression may have multiple solutions or no solutions for given

values of r and c̄1. Suppose instead that θ
(simple)
G and θ

(simple)
0 are both available. In this case

(assuming θG is not too far from 0, which may be reasonable when G is a SNP), we approximate
θ0 with

eθ0 ≈ 1

r

[
eθ

(simple)
0

c̄1 − eθ
(simple)
0 (1− c̄1)

]

We obtain the above expression by solving the bias expression for θ
(simple)
0 and setting θG = 0.

We can plug the above approximation into expression (SuppEq. 2.4). Based on this and
assuming θG is somewhat near zero, we can obtain a plausible value for θG by solving the
following:

θ
(simple)
G ≈ c̄1 − eθ

(simple)
0 (1− c̄1)

c̄1 − eθ
(simple)
0 (1− c̄1) [1− e2θGMAF ]

θG (SuppEq. 2.5)

for θG. We note that this expression does not depend on r̄. This is due to the approximations

made and the fact that both θ
(simple)
G and θ

(simple)
0 are provided.

Case 2: G is a PRS This case is simpler, where we can directly express θG as

θG ≈ θ(simple)
G

[
eθ0(1− c̄1)r̄ + 1

]
(SuppEq. 2.6)

and replace θ0 with an assumed value. When θ
(simple)
0 is also available, we can alternatively use

the expression

θG ≈ θ(simple)
G

[
c̄1

c̄1 − eθ
(simple)
0 (1− c̄1)

]
(SuppEq. 2.7)

to predict θG given c̄1 and θ(simple)
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S3 Bias and sensitivity analysis under imperfect specificity

S3.1 Bias expressions

We will first assume that we fit analysis model 1 as in SuppEq. 1.2 and allow specificity to be
less than 1. Define

c0(Z;α) =

∫
f(D∗ = 1|D = 0, Y, Z, S = 1)f(Y |D = 0, Z, S = 1)dY

We can view c0(Z) as one minus the specificity of D∗ for D in the sampled subjects averaged
across the distribution of Y . c1(Z) and r(Z) are defined as before.

Suppose we use logistic regression to model D∗|G,Z, S = 1 as in (SuppEq. 1.1) analysis
model 1. We have

logit (P (D∗ = 1|G,Z, S = 1))

= log

(
P (D = 1|G,Z)c1(Z)r(Z) + P (D = 0|G,Z)c0(Z)

P (D = 1|G,Z)(1− c1(Z))r(Z) + P (D = 0|G,Z)(1− c0(Z))

)
= log

(
eθ0+θGG+θZZc1(Z)r(Z) + c0(Z)

eθ0+θGG+θZZ(1− c1(Z))r(Z) + (1− c0(Z))

)
= log

(
c0(Z)

1− c0(Z)

)
+ log

(
eθ0+θGG+θZZ

c1(Z)r(Z)

c0(Z)
+ 1

)
− log

(
eθ0+θGG+θZZ

(1− c1(Z))r(Z)

1− c0(Z)
+ 1

)
We now approximate the above expression using a first order Taylor Series approximation

with respect to Z and G, where Z̄ represents the mean of Z and Ḡ represents the mean of G
in the sample. Let c̄1 = c1(Z̄), c̄0 = c0(Z̄), and r̄ = r(Z̄). We can write

logit (P (D∗ = 1|G,Z, S = 1)) ≈ log

(
c̄0

1− c̄0

)
+

{
1

c̄0
+

1

1− c̄0

}{
∂c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
(Z − Z̄)

+ log

(
eθ0+θGḠ+θZ Z̄

c̄1r̄

c̄0
+ 1

)
+

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0

+ 1
θG(G− Ḡ)

+

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0
θZ + eθ0+θGḠ+θZ Z̄

{
∂
c1(Z)r(Z)
c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ+θZ Z̄ c̄1r̄

c̄0
+ 1

(Z − Z̄)

− log

(
eθ0+θGḠ+θZ Z̄

(1− c̄1)r̄

1− c̄0
+ 1

)
−

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0 + 1

θG(G− Ḡ)

−
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 θZ + eθ0+θGḠ+θZ Z̄

{
∂

(1−c1(Z))r(Z)
1−c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 + 1
(Z − Z̄)

Suppose further that the covariate set Z is centered on the sample such that Z̄ = 0.
In this setting, we can rewrite the above expression as

logit (P (D∗ = 1|G,Z, S = 1)) ≈ (SuppEq. 3.8)

log

(
eθ0+θGḠc̄1r̄ + c̄0

eθ0+θGḠ[1− c̄1]r̄ + [1− c̄0]

)
−

eθ0+θGḠ c̄1r̄
c̄0

eθ0+θGḠ c̄1r̄
c̄0

+ 1
θGḠ+

eθ0+θGḠ (1−c̄1)r̄
1−c̄0

eθ0+θGḠ (1−c̄1)r̄
1−c̄0 + 1

θGḠ

+


{

1

c̄0
+

1

1− c̄0

}{
∂c0(Z)

∂Z

∣∣∣∣
Z=0

}
−
eθ0+θGḠ (1−c̄1)r̄

1−c̄0 θZ + eθ0+θGḠ

{
∂

(1−c1(Z))r(Z)
1−c0(Z)

∂Z

∣∣∣∣
Z=0

}
eθ0+θGḠ (1−c̄1)r̄

1−c̄0 + 1

9



+

eθ0+θGḠ c̄1r̄
c̄0
θZ + eθ0+θGḠ

{
∂
c1(Z)r(Z)
c0(Z)

∂Z

∣∣∣∣
Z=0

}
eθ0+θGḠ c̄1r̄

c̄0
+ 1

Z +

[
eθ0+θGḠ c̄1r̄

c̄0

eθ0+θGḠ c̄1r̄
c̄0

+ 1
θG −

eθ0+θGḠ (1−c̄1)r̄
1−c̄0

eθ0+θGḠ (1−c̄1)r̄
1−c̄0 + 1

θG

]
G

As before, we will consider two different cases for G. We will first suppose that G represents
a single genetic locus. Then, we will assume G is any continuous predictor, but we will focus
on the particular setting where G is a polygenic risk score.

Case 1: Bias expressions assuming G is a SNP Suppose first that G represents a single SNP
(single nucleotide polymorphism) or genetic locus and that G is coded 0/1/2, where 0 represents
no copies of the minor allele, 1 represents one copy of the minor allele, and 2 represents two
copies of the minor allele. We assume there are only two non-negligible alleles for the SNP of
interest. Let MAF and MAF (sam) be as in Section S2. Substituting this expression for Ḡ in

(SuppEq. 3.8), we can approximate θ
(simple)
0 and θ

(simple)
G as follows:

Under Assumptions 1-4,

θ
(simple)
0 ≈log

(
eθ0+2θGMAF c̄1r̄ + c̄0

eθ0+2θGMAF [1− c̄1]r̄ + [1− c̄0]

)
− 2θGMAF

[
eθ0+2θGMAF c̄1r̄

c̄0

eθ0+2θGMAF c̄1r̄
c̄0

+ 1
−

eθ0+2θGMAF (1−c̄1)r̄
1−c̄0

eθ0+2θGMAF (1−c̄1)r̄
1−c̄0 + 1

]

θ
(simple)
G ≈

[
eθ0+2θGMAF c̄1r̄

c̄0

eθ0+2θGMAF c̄1r̄
c̄0

+ 1
−

eθ0+2θGMAF (1−c̄1)r̄
1−c̄0

eθ0+2θGMAF (1−c̄1)r̄
1−c̄0 + 1

]
θG (SuppEq. 3.9)

where
c̄1 =

∫
f(D∗ = 1|D = 1, X, Z = 0, S = 1)f(X|D = 1, Z = 0, S = 1)dX = Sensitivity

c̄0 =
∫
f(D∗ = 1|D = 0, Y, Z = 0, S = 1)f(Y |D = 0, Z = 0, S = 1)dY = 1- Specificity

r̄ =
∫
P (S=1|D=1,W,Z=0)f(W |D=1,Z=0)dW∫
P (S=1|D=0,W,Z=0)f(W |D=0,Z=0)dW

= Sampling Ratio with respect to D

and we assume Z has been mean-centered, so Z̄ = 0.

Case 2: Bias expressions assuming G is a polygenic risk score Now, we assume that G is a
polygenic risk score (PRS) or some other continuous predictor. Suppose further that we have
centered the polygenic risk score such that Ḡ = 0 in the sampled datasets. In this case, we can
directly use (SuppEq. 3.8) to obtain

Under Assumptions 1-4,

θ
(simple)
0 ≈log

(
eθ0 c̄1r̄ + c̄0

eθ0 [1− c̄1]r̄ + [1− c̄0]

)
θ

(simple)
G ≈

[
eθ0 c̄1r̄c̄0

eθ0 c̄1r̄c̄0 + 1
−

eθ0 (1−c̄1)r̄
1−c̄0

eθ0 (1−c̄1)r̄
1−c̄0 + 1

]
θG (SuppEq. 3.10)

where
c̄1 =

∫
f(D∗ = 1|D = 1, X, Z = 0, S = 1)f(X|D = 1, Z = 0, S = 1)dX = Sensitivity

c̄0 =
∫
f(D∗ = 1|D = 0, Y, Z = 0, S = 1)f(Y |D = 0, Z = 0, S = 1)dY = 1- Specificity

r̄ =
∫
P (S=1|D=1,W,Z=0)f(W |D=1,Z=0)dW∫
P (S=1|D=0,W,Z=0)f(W |D=0,Z=0)dW

= Sampling Ratio with respect to D

and we assume Z and the PRS have both been mean-centered.

General properties of bias We are interested to see what will happen to θ
(simple)
G relative to
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θG in various settings. First, we rewrite the above expression as follows:

θ
(simple)
G ≈

 c̄1
c̄0
− (1−c̄1)

1−c̄0[
eθ0+θGḠ c̄1r̄

c̄0
+ 1
] [
eθ0+θGḠ (1−c̄1)r̄

1−c̄0 + 1
]
 θGeθ0+θGḠr̄

This expression is exactly zero if c̄1 = c̄0. This corresponds to the setting where the probability
of diagnosing a subject with a disease is equal among diseased and non-diseased subjects. This
is a setting we do not expect to encounter in practice. We will therefore assume c̄1 > c̄0.

A particularly concerning setting is when θ
(simple)
G is in the opposite direction as θG. This

occurs when c̄1(1− c̄0) < (1− c̄1)c̄0 or equivalently when sens ∗ spec < (1− sens) ∗ (1− spec)
where sens represents the sensitivity and spec represents the specificity. Suppose that we have
either a specificity or a sensitivity of 1. In that case, this expression is never satisfied, and we
will never have direction switching. Suppose, however, that both are not equal to 1. In this case,
it is possible to have direction switching. While we do not expect specificity to be below 0.5, it
is theoretically possible to have very low sensitivity for observing disease status for EHR-based
observations. In settings in which sensitivity is below 0.5, we can have direction switching,
which may be particular troubling when the goal is to study the direction and strength of an
association.

Suppose that c̄1 = 1 − c̄0. This is the setting of non-differential outcome misclassification.
In this setting, we could have direction switching if sens2 < (1− sens)2, so if sens is less than
0.5.

We are also interested in determining when θ
(simple)
G will be biased toward or away from

the null value of zero. It is difficult to specify general rules, and this should be evaluated on
a case-by-case basis for plausible values of r̄, c̄1, and c̄0. To the extent possible, Table S2

provides intuition regarding the bias for θ
(simple)
G under perfect and imperfect specificity.
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S3.2 Sensitivity analysis expressions

Case 1: G is a SNP Suppose that G is a SNP as described in Section S2. Suppose first that

we only know θ
(simple)
G but not θ

(simple)
0 . This would be the case if we were exploring bias using

published GWAS results or using GWAS pipelines that do not routinely save θ
(simple)
0 . Suppose

instead that we have a plausible value for θ0 based on known population prevalence P (D = 1)
or P (D = 1|G = 0, Z = Z̄). In practice, we can perform the following exploration using an
interval of values for θ0. We can obtain a prediction for θG by numerically solving

θ
(simple)
G ≈

[
eθ0+2θGMAF c̄1r̄

c̄0

eθ0+2θGMAF c̄1r̄
c̄0

+ 1
−

eθ0+2θGMAF (1−c̄1)r̄
1−c̄0

eθ0+2θGMAF (1−c̄1)r̄
1−c̄0 + 1

]
θG

for θG. We note that this expression may have multiple solutions or no solutions for given
values of r, c̄1 and c̄0. When there are multiple solutions, we will choose the solution closest to

θ
(simple)
G . Simulations exploring the compatibility of these expressions with simulated data can

be found later on in Section S6 and in the main paper.

Suppose instead that θ
(simple)
G and θ

(simple)
0 are both available. In this case (assuming θG is

not too far from 0, which may be reasonable when G is a SNP), we approximate θ0 with

eθ0 ≈ 1

r̄

[
eθ

(simple)
0 (1− c̄0)− c̄0

c̄1 − eθ
(simple)
0 (1− c̄1)

]

We obtain the above expression by solving the bias expression for θ
(simple)
0 setting θG = 0.

Based on this and assuming θG is somewhat near zero, we can obtain a plausible value for θG
by solving the following:

θ
(simple)
G ≈



[
eθ

(simple)
0

(1−c̄0)
c̄0
−1

1−eθ
(simple)
0

(1−c̄1)
c̄1

]
e2θGMAF

[
eθ

(simple)
0

(1−c̄0)
c̄0
−1

1−eθ
(simple)
0

(1−c̄1)
c̄1

]
e2θGMAF + 1

−

[
eθ

(simple)
0 − c̄0

1−c̄0
c̄1

1−c̄1
−eθ

(simple)
0

]
e2θGMAF

[
eθ

(simple)
0 − c̄0

1−c̄0
c̄1

1−c̄1
−eθ

(simple)
0

]
e2θGMAF + 1

 θG

for θG. We note that this expression does not depend on r̄. This is due to the approximations

made and the fact that both θ
(simple)
G and θ

(simple)
0 are provided.

Case 2: G is a PRS This case is simpler, where we can directly express θG as

θG ≈ θ(simple)
G

[
eθ0 c̄1r̄c̄0

eθ0 c̄1r̄c̄0 + 1
−

eθ0 (1−c̄1)r̄
1−c̄0

eθ0 (1−c̄1)r̄
1−c̄0 + 1

]−1

and replace θ0 with an assumed value. When θ
(simple)
0 is also available, we can alternatively use

the expression

θG ≈ θ(simple)
G



[
eθ

(simple)
0

(1−c̄0)
c̄0
−1

1−eθ
(simple)
0

(1−c̄1)
c̄1

]
[
eθ

(simple)
0

(1−c̄0)
c̄0
−1

1−eθ
(simple)
0

(1−c̄1)
c̄1

]
+ 1

−

[
eθ

(simple)
0 − c̄0

1−c̄0
c̄1

1−c̄1
−eθ

(simple)
0

]
[
eθ

(simple)
0 − c̄0

1−c̄0
c̄1

1−c̄1
−eθ

(simple)
0

]
+ 1


−1

12



to predict θG given c̄1, c̄0, and θ(simple)
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S4 Second stage sampling based only on observed phenotypes

In Section S2, we considered sampling into the large observational dataset (such as the EHR)
and allowed sampling to depend on patient characteristics W and on the underlying disease
status D. In practice, researchers often obtain their analytical sample from the larger dataset
(e.g. all subjects with available EHR information) based on the observed disease status, D∗ (e.g
whether subjects are diagnosed with diabetes). We can view this is case-control sampling with
respect to the outcome of the analysis model, D∗.

Here, we will make a distinction between the mechanism in which we select people from the
target population into the large dataset (e.g. the set of patients visiting a particular hospital)
and the mechanism in which we sample patients from this larger dataset into our analytical
sample (e.g. a subset of subjects visiting a particular hospital). We will assume the case-control
sampling is based on the disease of interest. If the case-control sampling is based on the observed
status for a different disease, additional thinking will be required.

We define S1 to be an indicator for sampling into the large dataset (e.g into the hospital)
and S2 to represent sampling into our analytical sample. S1 = 0 automatically implies S2 = 0.
S1 is sometimes defined by non-probability sampling in which we do not know the true sampling
mechanism, but we will place some assumptions on the structure of this model as before (that it
depends on covariates W and possibly on D). We assume S2 depends only on D∗ given S1 = 1.
Figure S1 shows the assumed data structure.

We are interested in exploring the bias of parameters in the analysis model, but this time
the model we are actually fitting is for D∗|G,Z, S2 = 1. We can show that

f(D∗|G,Z, S2 = 1) =
P (S2 = 1|D∗, S1 = 1)f(D∗|S1, G, Z)P (S1 = 1|G,Z)

P (S2 = 1|G,Z)

and

logit(P (D∗ = 1|G,Z, S2 = 1)) = log(rcc) + log

(
P (D∗ = 1|S1, G, Z)

P (D∗ = 0|S1, G, Z)

)
where rcc = P (S2=1|D∗=1,S1=1)

P (S2=1|D∗=0,S1=1) is the case-control sampling ratio among the large dataset (with

S1 = 1). Since rcc is a constant with respect to θG, it will not impact the derivation of the

approximated formula for θ
(simple)
G . The approximation for θ

(simple)
0 will be the same except with

an additional offset term log(rcc). Therefore, a final stage of case-control sampling dependent on

D∗ will not induce additional bias in the estimation of θ
(simple)
G beyond bias due to the sampling

mechanism related to S1 and the observation/misclassification mechanisms for D.

14



S5 Secondary analysis of case-control data and sampling on
other diseases

Suppose that we have no misclassification of the outcome data. In this section, we will
explore the impact of different sampling mechanisms and how they fit into our independence
assumptions and work done in the literature for secondary analyses for case-control data.

Suppose we have the following sampling mechanism: P (S = 1|W,D,Z;φ), where we again
assume that G is not independently related to the sampling mechanism. Using properties of
logistic regression, can write the distribution of D in the sampled subjects as

logit(P (D = 1|G,Z, S = 1)) = θ0 + θGG+ θZZ + log

[∫
P (S = 1|D = 1,W,Z)f(W |D = 1, G, Z)dW∫
P (S = 1|D = 0,W,Z)f(W |D = 0, G, Z)dW

]
= θ0 + θGG+ θZZ + log [r(Z,G)]

S5.1 W included in Z

Suppose first that W is empty, so we include all additional factors driving sampling in Z. In
this case, we have

logit(P (D = 1|G,Z, S = 1)) = θ0 + θGG+ θZZ + log

[
P (S = 1|D = 1, Z)

P (S = 1|D = 0, Z)

]
Suppose first that D is not independently related to the sampling mechanism given W ∈ Z. In
this setting, we will not expect any bias in estimating θG because r(Z,G) = 1 in that setting.

We are more interested in the setting in which D is independently related to sampling given
W , so r(Z,G) is not uniformly equal to 1. Suppose we fit a logistic regression model incorrectly
adjusting linearly for G and Z (which includes W ). Adjustment for W in the analysis model
is one strategy for handling sampling dependent on another disease status in the case-control
sampling literature. This can reduce bias in some cases, but not always [5, 7]. This strategy

may not completely remove the bias in θ
(simple)
G , but it may often have improved performance

over ignoring sampling dependence on W . We note that our bias expressions are derived using
first order Taylor series approximations. A first order Taylor series approximation of the above
equation is

logit(P (D = 1|G,Z, S = 1)) ≈ θ0 + θGG+ θZZ + log(P (S = 1|D = 1, Z̄)) +
∂P (S=1|D=1,Z̄)

∂Z

P (S = 1|D = 1, Z̄)

− log(P (S = 1|D = 0, Z̄))−
∂P (S=1|D=0,Z̄)

∂Z

P (S = 1|D = 0, Z̄)

=
[
θ0 + log(P (S = 1|D = 1, Z̄))− log(P (S = 1|D = 0, Z̄))

]
+ θGG

+

[
θZZ +

∂P (S=1|D=1,Z̄)
∂Z

P (S = 1|D = 1, Z̄)
−

∂P (S=1|D=0,Z̄)
∂Z

P (S = 1|D = 0, Z̄)

]
In the first order Taylor series approximation, the coefficient for G does not change. This

suggests that θ
(simple)
G might be a reasonable approximation for θG. While existing literature

suggests that this may not always be a good approximation, this analysis approach still gives
us some rough idea of the ballpark of θG, which is the goal of this paper.

In all settings in which W is included in Z explored in this paper, we do not make any
assumptions on the relationship between W and G (assumption 4 in Section S2 is trivial since
W is empty in that case). Instead, we rely on the above results and focus instead on the impact
of the dependence between sampling and D, adjusting for W . This strategy is expected to
have good performance except when W is strongly related to G given D and Z, the standard

adjustment factors. In this setting, we may have appreciably biased estimates of θ
(simple)
G even
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after adjusting for W .

S5.2 W not included in Z

More commonly, however, we may not adjust for all factors in W in our simple analysis model.
Consider the setting where W represents a single secondary disease, D′, which may be related
G and/or D given Z. In this case, we can rewrite the overall sampling mechanism as P (S =
1|D,D′, Z) and express the correct model as

logit(P (D = 1|G,Z, S = 1)) = θ0 + θGG+ θZZ + log

[∫
P (S = 1|D = 1, D′, Z)f(D′|D = 1, G, Z)dD′∫
P (S = 1|D = 0, D′, Z)f(D′|D = 0, G, Z)dD′

]
= θ0 + θGG+ θZZ + log [r(Z,G)]

If we assume that D′ = W is independent of G given Z and D (assumption 4 in Section S2),
then we can rewrite the above expression as

logit(P (D = 1|G,Z, S = 1)) = θ0 + θGG+ θZZ + log

[∫
P (S = 1|D = 1, D′, Z)f(D′|D = 1, Z)dD′∫
P (S = 1|D = 0, D′, Z)f(D′|D = 0, Z)dD′

]
= θ0 + θGG+ θZZ + log [r(Z)]

Under logic from Section S5.1, we do not expect too much bias in estimating θG in this case,
although there may still be some [6]. We note that this independence assumption conditions on
D. Therefore, we will be okay if the relationship between D′ and G is through D.

Suppose, however, that we have a disease D′ that is independently related to G given D. An
example of this would be the setting of pleiotropy. This may also be the case if G represents a
PRS. In this case, the offset term r is a function of G, and failure to account for the missingness
mechanism by fitting the simple analysis model can result in biased estimates. We consider this
setting in more detail in Section S9.
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S6 Comparison of approximations with simulated values

S6.1 Simulation part 1: a simple setting with empty X, W , and Z

Simulation set-up: We consider two simulation scenarios– in the first, G represents a SNP, coded
0/1/2 to reflect the number of minor alleles. In the second, G represents a PRS. For each simula-
tion scenario, we simulate data under many different rates of misclassification, selection models,
and population disease rates. Here, we describe how we generate our simulated datasets for
each simulation setting.

In each setting, we simulate 100 (SNP) or 50 (PRS) datasets with 5,000 patients each under
the conceptual model in (SuppEq. 1.1). For each dataset, we either simulate SNP G from
a multinomial distribution with probabilities [(1 −MAF )2, 2 ∗MAF (1 −MAF ),MAF 2] for
[0, 1, 2] respectively with MAF equal to 0.2 or we simulate PRS G from a N(0, 1) distribution.
Given G, we simulate true disease status D following P (D = 1|G) = expit(θ0 + 0.5G), where θ0

takes one of the following values: logit(0.01), logit(0.05), logit(0.10), logit(0.25). Here, there are
no additional covariates Z included in the model.

We then generate S using P (S = 1|D) = 0.1(1 −D) + 0.1r̄D where r̄ takes values 1, 2, 5,
or 10. For simulated patients with S = 1 and D = 1, we generate D∗ using P (D∗ = 1|S =
1, D = 1) = c̄1 where c̄1 takes values 0.1, 0.4, 0.7, or 0.9. For simulated patients with S = 1
and D = 0, we generate D∗ using P (D∗ = 1|S = 1, D = 1) = c̄0 where c̄0 takes values 0 or 0.05.
This results in a total of 128 simulation settings for each G structure (SNP or PRS).

Comparing estimated θ
(simple)
G with Taylor series approximations For each simulated dataset,

we estimate θ(simple) by fitting a logistic regression for D∗|G on the S = 1 patients. We also
calculate our equation-predicted θ(simple) using the expressions in Section S3.1 (if c̄0 > 0) or
Section S2.1 (if c̄0 = 0) and assuming the true r̄, c̄1, and c̄0 are known. In each of the 128
simulation settings, we plot the average estimated and equation-predicted θ(simple) values.

Figure S2 shows the results. We can see that there is generally excellent correspondence
between the simulation-estimated θ(simple) and the values obtained using the proposed meth-

ods, particularly for θ
(simple)
0 . An improved approximation of θ

(simple)
G may be obtained by using

second order Taylor Series approximations to obtain the approximation formulas. An exception
is the setting in which we have very low sensitivity and low population prevalence of disease.

In this setting, we sometimes see deviation between the approximation-predicted θ
(simple)
G and

the estimated value, particularly when r̄ is not very large (e.g. less than 2). In this setting, we
may have very small numbers of subjects with D∗ = 1, resulting in numerical challenges with
fitting the logistic regression. These deviations result from difficulty in obtaining the simulation
estimates rather than deficiencies of the proposed approximation formulas.

In the main paper, we propose using the Taylor series approximations to guide a sensitivity

analysis approach, where we obtain predictions of θG given estimated θ
(simple)
G . Here, we eval-

uate this inverted approach in the setting where G is a SNP and where we assume perfect
specificity (c̄0 = 0). In this setting, we propose two sensitivity analysis strategies based on

whether or not the estimated intercept from the simple analysis, θ
(simple)
0 is available (see Sup-

pEq. 2.4 and SuppEq. 2.5 for details).

Comparing true and predicted θG given estimated θ
(simple)
G and θ

(simple)
0 In this section, we pre-

dict θG assuming estimated θ
(simple)
G and θ

(simple)
0 are both available and given different working

values for c̄1. In this setting, the predictions can be based on (SuppEq. 2.5), which does not
vary with r̄. We present the results of this comparison in the main paper.

Comparing true and predicted θG given estimated θ
(simple)
G and θ0 In this section, we predict
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θG assuming estimated θ
(simple)
G and θ0 are both available and given different working values

for c̄1 and r̄. In this setting, the predictions can be based on (SuppEq. 2.4). Figures S3,
S4, and S5 provide simulation results for settings in which we have 1%, 5%, and 10% disease
rates respectively. In settings where the disease is rare (e.g. less than 1%) we can expect there
to be little difference in the predictions across different values of the sensitivity and sampling
ratio. Greater differences can be seen when we have larger population disease rates. In all three
figures, the median prediction is near the true value of 0.5. This indicates that our expressions
have reasonable performance at recovering the true θG through the proposed sensitivity analysis
approach.

In practice, we will have a single estimate of θ
(simple)
G rather than 100 values. In Figure S6,

we demonstrate a sensitivity analysis taking θ
(simple)
G to be the median value of θ

(simple)
G across

the 100 simulated datasets. We might expect some additional variability if we use θ
(simple)
G from

a single fit. The plotted triangle in this figure indicates the true sampling ratio and θG, and the
color of the triangle indicates the true sensitivity value. We can see generally good concordance
with predicted values of θG and the true value of θG for the true value of c̄1.

S6.2 Simulation part 2: non-empty X, W , and Z with different relationships

The previous set of simulated data assumes X, W , and Z are empty. In reality, we expect
patient-level factors to drive both selection and misclassification and to be used as adjustment
factors in the disease model. In a second set of simulations, we simulate data using more
complicated covariate relationships. In particular, we simulate G N(0, 1) to represent a PRS.
Covariates G, Z, W , X1, and X2 were simulated using a multivariate normal distribution with
8 different correlation structures. The correlations are described as follows, where correlations
not listed are 0:

(1) Cor(G, Z) = 0.2
(2) Cor(G, Z) = 0.2, Cor(Z, X1) = 0.1
(3) Cor(G, Z) = 0.2, Cor(Z, X1) = 0.5
(4) Cor(G, Z) = 0, Cor(Z, X1) = 0.5
(5) Cor(G, Z) = 0.2, Cor(Z, W ) = 0.5
(6) Cor(G, Z) = 0.2, Cor(Z, W ) = 1 (Z is the driver of selection)
(7) Cor(G, Z) = 0.2, Cor(G, X1) = 0.5
(8) Cor(G, Z) = 0.2, Cor(G, W ) = 0.5

After covariates have been generated, we generate D = 1 with probability expit(−2.94 +
0.5G + 0.5Z), S = 1 with probability expit(0.5W + 0.5D), and D∗ = 1|D = 1 with proba-
bility expit(−0.4 + 0.5X1 + 0.5X2). These simulation settings correspond to true c̄1 of roughly
0.4 and true r̄ between 1 and 2. This data generation process is repeated to generate 500
datasets with 5000 patients each in the population. For each simulated dataset, we estimate
θ(simple) by fitting a logistic regression model for D∗ given G and Z on the sampled patients.
We then use the proposed sensitivity analysis approach to obtain predictions for θG for each
simulated dataset under each of the 8 simulation settings. Results are shown in the main paper.
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S7 Additional materials for MGI data analysis

In the main paper, we perform a sensitivity analysis using Michigan Genomics Initiative (MGI)
data and exploring phenotype associations with individual genetic loci along with polygenic
risk scores. Here, we provide some additional information. Note that we assume c̄0 = 0 since
we believe very few subjects will be incorrectly diagnosed with cancer. We provide descriptives
comparing an updated cohort of 40101 patients in MGI to patients in Michigan Medicine and
the US adult population in Table S4.

In Beesley et al. [2], we compare GWAS results for an EHR-derived breast cancer phenotype
in MGI with 563 genotype associations published in the NHGRI-EBI GWAS catalog, which is
viewed as a comparative gold standard. We demonstrated that the GWAS results using MGI
data are generally similar to results in the GWAS catalog, but there are many specific SNPs
for which the results differ, as shown in Figure S7.

In Figure S8, we explore breast cancer GWAS associations for the 6 particular loci in which
(1) the GWAS catalog estimate does not fall into the MGI estimate’s confidence interval and
(2) the GWAS catalog effect is stronger than the MGI effect in the same direction. We may be
interested in performing a similar exploration when the MGI GWAS estimate is very similar to
the gold standard. Figure S9 shows the upper and lower limits of predicted θG for one such
SNP. In this example, the MGI estimate and the GWAS catalog estimate are nearly identical.

In the main paper, we also explore PRS-phenotype associations using phenotypes and pop-
ulation prevalences reported in Fritsche et al. [4] and Beesley et al. [2]. Table S3 reproduces
these published values.
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S8 Obtaining an educated guess for a sampling ratio

The sensitivity analysis explored previously relies on having a rough idea of plausible values for
the sampling ratio. However, we often have weak intuition of what this value might be. In this
section, we use population disease prevalence estimates to obtain crude values for r.

We define “true” r(Z, φ) =
∫
P (S=1|D=1,W,Z)f(W |D=1,Z)dW∫
P (S=1|D=0,W,Z)f(W |D=0,Z)dW

. This value is difficult to pinpoint

when f(W |D,Z) and P (S = 1|D,W,Z) are unknown. However, we may be able to get a rough

sense of crude r̃ = P (S=1|D=1)
P (S=1|D=0) as follows:

r̃ =
P (S = 1|D = 1)

P (S = 1|D = 0)
=

P (D = 1|S = 1)

1− P (D = 1|S = 1)

1− P (D = 1)

P (D = 1)

Suppose we have a rough sense of the population disease rate, P (D = 1) (seen in Table S3
for selected cancers in MGI). We also know P (D∗ = 1|S = 1) as the prevalence of the disease
in our sampled dataset using the potentially misclassified outcome. We can write

P (D∗ = 1|S = 1) = P (D∗ = 1|D = 1, S = 1)P (D = 1|S = 1) + P (D∗ = 1|D = 0, S = 1)P (D = 0|S = 1)

P (D = 1|S = 1) =
P (D∗ = 1|S = 1)− P (D∗ = 1|S = 1, D = 0)

P (D∗ = 1|S = 1, D = 1)− P (D∗ = 1|S = 1, D = 0)

Let c̃1 = P (D∗ = 1|D = 1, S = 1) be a crude value for the sensitivity c1(Z, β) =
∫
P (D∗ =

1|D = 1, X, Z, S = 1)f(X|D = 1, Z)dX and c̃0 = P (D∗ = 1|D = 0, S = 1) be a crude value for
the false positive rate c0(Z,α) =

∫
P (D∗ = 1|D = 0, Y, Z, S = 1)f(Y |D = 0, Z)dY .

Then we can write

r̃ =
P (D∗ = 1|S = 1)− c̃0

c̃1 − P (D∗ = 1|S = 1)

1− P (D = 1)

P (D = 1)
(SuppEq. 8.11)

We can use this expression to obtain a crude value for r using the population prevalence P (D =
1) and the sample phenotype prevalence P (D∗ = 1|S = 1) across different c̃1 and c̃0. Under
perfect specificity, we can use the above expression, setting c̃0 = 0.

S8.1 Demonstration in MGI and UKB

We consider the disease prevalence rates and MGI sample phenotype prevalences for various
cancers as reported in Beesley et al. [2] and reproduced in part in Table S3. We can use these
values to obtain a crude sampling ratio for our dataset. Since we believe the crude sensitivity
will be at least 0.5 for these cancers, we restrict our focus to c̃1 >= 0.5. For this analysis, we
assume c̃0 = 0 since we believe very few subjects will be incorrectly diagnosed with cancer.

The left panel in Figure S10 shows the results for MGI. Melanoma is predicted to have
the largest corresponding sampling ratio among the cancers considered. This is unsurprising
as Michigan Medicine is known for its skin cancer treatment center, and many patients come
from the surrounding areas for treatment. Overall, the crude sampling ratios in MGI tend to be
greater than 1, reflecting the disease enrichment seen in MGI due to the sampling mechanism
of recruiting surgical patients within Michigan Medicine.

As a comparison, we perform this same analysis for the UK Biobank, a large population-
based biobank with nearly 500,000 participants, many of whom have matched EHR and genetic
information. We expect the sampling ratio to be less extreme for UK Biobank than for Michigan
Genomics Initiative due to their very different sampling strategies. The right panel in Figure
S10 shows the results for UK Biobank. As expected, the crude sampling ratio values are
generally smaller than in MGI. Indeed, the crude sampling ratio values are usually less than 1.
This is intuitive– the UK Biobank restricts recruitment to subjects aged 40-69. Since cancer
is primarily a disease of older age, many older patients are excluded from entry. Therefore, we
might expect UK Biobank to have undersampling of diseased subjects in the population, which
we find reflected in our crude estimates for the sampling ratio. These explorations should not

20



be taken as proof of the “true” value for r̄. Instead, these explorations are intended to be used
as a way to find a reasonable benchmark guiding subsequent sensitivity analyses.
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S9 Allowing for dependence between G and W (avoiding as-
sumption 4)

S9.1 Assuming imperfect specificity

Suppose instead we do not make assumption 4, so we allow W to be associated with G given D
and Z. In this case and assuming imperfect specificity, under assumptions 1-3, we have that

logit (P (D∗ = 1|G,Z, S = 1))

= log

(
c0(Z)

1− c0(Z)

)
+ log

(
eθ0+θGG+θZZ

c1(Z)r(Z,G)

c0(Z)
+ 1

)
− log

(
eθ0+θGG+θZZ

(1− c1(Z))r(Z,G)

1− c0(Z)
+ 1

)
where

r(Z,G;φ) =

∫
P (S = 1|D = 1,W,Z)f(W |D = 1, Z,G)dW∫
P (S = 1|D = 0,W,Z)f(W |D = 0, Z,G)dW

We now approximate the above expression using a first order Taylor Series approximation
with respect to Z and G, where Z̄ represents the mean of Z and Ḡ represents the mean of G
in the sample. Let c̄1 = c1(Z̄), c̄0 = c0(Z̄), and r̄ = r(Z̄, Ḡ). We can write

logit (P (D∗ = 1|G,Z, S = 1)) ≈ log

(
c̄0

1− c̄0

)
+

{
1

c̄0
+

1

1− c̄0

}{
∂c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
(Z − Z̄)

+ log

(
eθ0+θGḠ+θZ Z̄

c̄1r̄

c̄0
+ 1

)
+

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0
θG + eθ0+θGḠ+θZ Z̄ c̄1

c̄0

{
∂r(Z̄,G)
∂G

}∣∣∣∣
G=Ḡ

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0

+ 1
(G− Ḡ)

+

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0
θZ + eθ0+θGḠ+θZ Z̄

{
∂
c1(Z)r(Z,Ḡ)

c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ+θZ Z̄ c̄1r̄

c̄0
+ 1

(Z − Z̄)

− log

(
eθ0+θGḠ+θZ Z̄

(1− c̄1)r̄

1− c̄0
+ 1

)
−
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 θG + eθ0+θGḠ+θZ Z̄ 1−c̄1
1−c̄0

{
∂r(Z̄,G)
∂G

}∣∣∣∣
G=Ḡ

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0 + 1

(G− Ḡ)

−
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 θZ + eθ0+θGḠ+θZ Z̄

{
∂

(1−c1(Z))r(Z,Ḡ)
1−c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 + 1
(Z − Z̄)

Suppose further that the covariate set Z is centered on the sample such that Z̄ = 0.
In this setting, we have that

θ
(simple)
G ≈

[
eθ0+θGḠ+θZ Z̄ c̄1r̄

c̄0

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0

+ 1
−

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0 + 1

]
θG

+

[
eθ0+θGḠ+θZ Z̄ c̄1

c̄0

eθ0+θGḠ+θZ Z̄ c̄1r̄
c̄0

+ 1
−

eθ0+θGḠ+θZ Z̄ (1−c̄1)
1−c̄0

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0 + 1

]{
∂r(Z̄, G)

∂G

}∣∣∣∣
G=Ḡ

The first term in the above sum is the same as appears in SuppEq. 2.3. The second term
expresses the relationships between the sampling ratio and G. When G is weakly associated

with W , the final term
{
∂r(Z̄,G)
∂G

}∣∣∣∣
G=Ḡ

may be small, so small violations of Assumption 4

may not strongly impact results. However, when this derivative is larger, results may be more
strongly impacted by the relationship between G and W .
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We have that

∂r(Z̄, G;φ)

∂G
=
∂
[∫

P (S=1|D=1,W,Z)f(W |D=1,Z,G)dW∫
P (S=1|D=0,W,Z)f(W |D=0,Z,G)dW

]
∂G

assuming we can reverse the order of integration and differentiation, we have that

∂r(Z̄, G;φ)

∂G
=

[∫
P (S = 1|D = 1,W,Z)∂f(W |D=1,Z,G)

∂G dW
]

[∫
P (S = 1|D = 0,W,Z)f(W |D = 0, Z,G)dW

]
+ r(Z,G)

[∫
P (S = 1|D = 0,W,Z)∂f(W |D=0,Z,G)

∂G dW
]

[∫
P (S = 1|D = 0,W,Z)f(W |D = 0, Z,G)dW

]
S9.2 Assuming perfect specificity

Suppose instead that we assume c̄0 = 0. We have

logit (P (D∗ = 1|G,Z, S = 1))

= log

(
P (D = 1|G,Z)c1(Z)r(Z)

P (D = 1|G,Z)(1− c1(Z))r(Z) + P (D = 0|G,Z)

)
= log

(
eθ0+θGG+θZZc1(Z)r(Z)

eθ0+θGG+θZZ(1− c1(Z))r(Z)

)
= θ0 + θGG+ θZZ + log (c1(Z)) + log (r(Z))− log

(
eθ0+θGG+θZZ(1− c1(Z))r(Z) + 1

)
We now approximate the above expression using a first order Taylor Series approximation

with respect to Z and G, where Z̄ represents the mean of Z and Ḡ represents the mean of G
in the sample. We can write

logit (P (D∗ = 1|G,Z, S = 1)) ≈ θ0 + θGG+ θZZ + log (c̄1) +

[
1

c̄1

]{
∂c1(Z)

∂Z

∣∣∣∣
Z=Z̄

}
(Z − Z̄)

+ log (r̄) +

[
1

r̄

]{
∂r(Z, Ḡ)

∂Z

∣∣∣∣
Z=Z̄

}
(Z − Z̄) +

[
1

r̄

]{
∂r(Z̄, G)

∂G

∣∣∣∣
G=Ḡ

}
(G− Ḡ)

− log
(
eθ0+θGḠ+θZ Z̄(1− c̄1)r̄ + 1

)
−
eθ0+θGḠ+θZ Z̄(1− c̄1)r̄θG + eθ0+θGḠ+θZ Z̄(1− c̄1)

{
∂r(Z̄,G)
∂G

}∣∣∣∣
G=Ḡ

eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄
1−c̄0 + 1

(G− Ḡ)

−
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 θZ + eθ0+θGḠ+θZ Z̄

{
∂

(1−c1(Z))r(Z,Ḡ)
1−c0(Z)

∂Z

∣∣∣∣
Z=Z̄

}
eθ0+θGḠ+θZ Z̄ (1−c̄1)r̄

1−c̄0 + 1
(Z − Z̄)

Suppose further that the covariate set Z is centered on the sample such that Z̄ = 0.
In this setting, we have that

θ
(simple)
G ≈ 1

eθ0+θGḠ(1− c̄1)r̄ + 1

[
θG +

1

r̄

{
∂r(Z̄, G)

∂G

∣∣∣∣
G=Ḡ

}]
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S9.3 Allowing G to drive selection under perfect specificity

We now consider an extension where sampling directly depends on G. This may be the case for
general G, but may be less common in the setting where G is a SNP or a PRS. In this case, we

have the same expression for θ
(simple)
G except this time we have

r(Z,G;φ) =

∫
P (S = 1|D = 1,W,Z,G)f(W |D = 1, Z,G)dW∫
P (S = 1|D = 0,W,Z,G)f(W |D = 0, Z,G)dW

Suppose for simplicity that W is empty or contained in Z, so either G and D are the only
factors related to sampling or the remaining factors in W are included in Z. Then we have

r(Z,G;φ) =
P (S = 1|D = 1, Z,G)

P (S = 1|D = 0, Z,G)

Suppose we model sampling using a logistic regression, where logit(P (S = 1|D,Z,G)) = φ0 +
φDD + φZZ + φGG. Assuming Z̄ = 0, we have

r(Z,G;φ) = eφD
1 + eφ0+φZZ+φGG

1 + eφ0+φD+φZZ+φGG

∂r(Z̄, G)

∂G

∣∣∣∣
G=Ḡ

=
φGe

φ0+φZ Z̄+φGḠ
[
1− eφD

]
(1 + eφ0+φD+φZ Z̄+φGḠ)2

=
φGe

φ0+φGḠ
[
1− eφD

]
(1 + eφ0+φD+φGḠ)2

and

θ
(simple)
G ≈ 1

eθ0+θGḠ(1− c̄1)r̄ + 1

[
θG +

eφ0+φGḠ

1 + eφ0+φGḠ

φG
[
e−φD − 1

]
1 + eφ0+φD+φGḠ

]
We note that the second term of the above expression is exactly zero if φD = 0. However, if
φD 6= 0, φ0, φD, and φG all contribute to the bias.
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S10 Bias for rare diseases

Suppose we are interested in a disease that is very rare in the target population, e.g. a disease
rate of 1/2000 patients. We are interested in understanding the expected relative biases in these
settings.

Suppose first that we have perfect specificity. In this case, we have that

θ
(simple)
G ≈

[
1

eθ0+θGḠ(1− c̄1)r̄ + 1

]
θG

Unless θG is very large, we have that eθ0+θGḠ ≈ 0. We have that θ
(simple)
G → θG as θ0 → −∞.

Therefore, we expect very little relative bias in θ
(simple)
G in the perfect-specificity rare disease

setting unless θG is very large for fixed values of c̄1 and r̄. That being said, we could still have
large absolute bias even with small relative bias if θG is very large. This may be the case for
some rare, highly penetrant SNPs.

Suppose, however, that we have imperfect specificity strictly less than 1. We also assume
that sensitivity is strictly less than 1, which we expect to be the case for EHR data. In this
case, we have

θ
(simple)
G ≈

 c̄1
c̄0
− (1−c̄1)

1−c̄0[
eθ0+θGḠ c̄1r̄

c̄0
+ 1
] [
eθ0+θGḠ (1−c̄1)r̄

1−c̄0 + 1
]
 θGeθ0+θGḠr̄

and θ
(simple)
G → 0 as θ0 → −∞ for fixed values of r̄, c̄0, and c̄1. This implies that our simple

analysis will tend to produce null results when we have imperfect sensitivity and specificity for
rare diseases given r̄, c̄0, and c̄1.

We note that with rare diseases, we might expect r̄ to be large, particularly if we are using
case-control sampling based on that rare disease. Suppose instead we consider very large values
of r̄. Suppose we have θ0 ≈ logit(1/2000) ≈ −7.6. Figure S11 shows the degree of shrinkage
toward the null for different combinations of r̄, c̄0, and c̄1. This plot demonstrates that, even
for a very small fixed θ0 and imperfect specificity, we may not expect perfect shrinkage to the
null if the sampling ratio is very large. In contrast, under perfect specificity (where we might
expect little relative bias for rare diseases) we see increased relative (and absolute) bias for very
large sampling ratios. This strange phenomenon is a function of the disease rate in the sample.
If we have a very large sampling ratio, then even for a rare disease the disease may be very
well-represented in the sample. Imperfect specificity will, therefore, have a weaker impact on
the amount of outcome misclassification than if the sampling ratio were 1.
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Table S1: Bias (relative and absolute) in true model parameter θG in the simple analysis
assuming perfect specificity*

G is a PRS* G is a PRS or SNP

Variable Value Bias of θ
(simple)
0 Bias of θ

(simple)
G

Sensitivity (c̄1) Decreases toward 0 Bias increases Bias increases

• No underreporting (c̄1 = 1) Biased if r̄ 6= 1 or rcc 6= 1† No bias
• Underreporting (c̄1 < 1) Biased Biased

Sampling ratio (r) Increases toward ∞ Bias depends on θ0, c̄1 Bias increases if c̄1 < 1
• Sampling independent of D (r̄ = 1) Biased if c̄1 < 1 Biased if c̄1 < 1

• Sampling dependent on D (r̄ 6= 1)† Biased Biased if c̄1 < 1

Disease prevalence Increases toward 1 Bias depends on r̄, c̄1 Bias increases if c̄1 < 1

Absolute effect of G Increases toward ∞ Little or no added bias Bias increases if c̄1 < 1

*Direction of bias of θ
(simple)
0 under case 1 (G is a SNP) depends on other parameters

† We consider sampling dependent on observed case-control status, D∗, in Section S4.

Table S2: Bias (relative and absolute) in true model parameter θG in the simple analysis
allowing for imperfect specificity

Variable Value Specificity = 1 (c̄0 = 0) Specificity < 1 (c̄0 > 0)

Sensitivity (c̄1) Decreases toward 0 Bias increases Bias increases
• No Underreporting (c̄1 = 1) No Bias Biased
• Underreporting (c̄1 < 1) Biased Biased

Sampling Ratio (r̄) Increases toward ∞ Bias increases if c̄1 < 1 Bias may increase or decrease
• Sampling Independent of D (r̄ = 1) Biased if c̄1 < 1 Biased

• Sampling Dependent on D (r̄ 6= 1)† Biased if c̄1 < 1 Biased

Disease Prevalence Increases toward 1 Bias increases if c̄1 < 1 Bias may increase or decrease

Absolute Effect of G Increases toward ∞ Bias increases if c̄1 < 1 Bias may increase or decrease
† We consider sampling dependent on observed case-control status, D∗, in Section S4

Table S3: Standard analysis PRS-phenotype associations along with MGI and US prevalences
for selected cancers from Beesley et al. [2] and Fritsche et al. [4], based on 30,702 unrelated
patients of recent European ancestry in MGI

Cancer Type PRS OR PRS log-OR MGI Lifetime Disease
(95% CI) (95% CI) Prevalence Rate in US*

Colorectal 1.3 (1.1, 1.6) 0.26 (0.10, 0.47) 2.6% 4.2%
Breast (female) 2.3 (2.0, 2.7) 0.83 (0.69, 0.99) 12.4% 12.4%

Melanoma of skin 2.4 (2.0, 2.8) 0.87 (0.69, 1.03) 6.2% 2.3%
Prostate (male) 3.3 (2.7, 3.9) 1.19 (0.99, 1.36) 12.4% 11.2%

Bladder 1.4 (1.2, 1.7) 0.34 (0.18, 0.53) 3.7% 2.3%
Non-Hodgkins Lymphoma 1.3 (1.1, 1.6) 0.26 (0.10, 0.47) 3.1% 2.1%

* Proportion of US population diagnosed with disease in their lifetime. Reported by SEER, the Surveillance,
Epidemiology, and End Results program.
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Table S4: Comparison of MGI, Michigan Medicine, and the general US adult population based
on an updated cohort of 40,101 unrelated patients of recent European ancestry in MGI*

Characteristic MGI Michigan Medicine US

N 40,101 >4 million >300 million
Female, % 52.4 52.9 50.8
Median age in years** 59.0 53.0 38.2
Median number of EHR visits per year of follow-up 9.8 13 NA
Median years of follow-up 5.71 1.11*** NA
Body Mass Index

Normal or underweight (<25.0) 25.4 31.5 29.8
Overweight (25.0-29.9) 32.0 29.0 32.5
Obese (30.0-39.9) 33.3 26.8 30.0
Morbidly obese (40.0+) 8.5 7.1 7.7

Current smoker, % 10.6 10.1 14.0

* US age-adjusted BMI rates obtained from NHANES 2013-2014 data at https://www.niddk.
nih.gov/health-information/health-statistics/overweight-obesity. Gender and me-
dian age in US obtained from census.gov. Prevalence of current smoking in US from 2017
obtained from cdc.gov.
** For MGI, we report age at last follow-up in EHR.
***3.98 if we exclude patients with only a single encounter

Figure S1: Structure of data with two sampling steps*

* Sampling mechanism 1 corresponds to selection into the EHR, and sampling mechanism 2
corresponds to selection into the analytical dataset among patients in the EHR database.

28

https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity
https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity


Figure S2: Correspondence between estimated and approximated values of θ(simple)*

(a) θ
(simple)
0 when G is a SNP (b) θ

(simple)
G when G is a SNP
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*This figure shows the predicted θ(simple) values obtained using expressions in Supplementary Section S3.1
applied to simulated data. In each panel, each point corresponds to a single simulation setting, and the location
of the point corresponds to the average predicted θ(simple) value (y-axis) plotted against the average estimated

θ(simple) value obtained from fitting a logistic regression model to the simulated data, where averages are taken
across 50 (bottom; PRS) or 100 (top; SNP) simulated datasets in each simulation setting. Each simulation setting
corresponds to different values of c̄1, r̄, and θ0 used to generate the simulated data.
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Figure S3: Predicting θG for SNP across different assumed sensitivities and sampling ratios
with known 1% disease rate in population*

FIGURE NOT USING INTERCEPT, prev = 0.01 
 
 
 

 True Sampling Ratio = 1 True Sampling Ratio = 2 True Sampling Ratio = 5 True Sampling Ratio = 10 

True 
Sens = 0.4 

 

True 
Sens = 0.7 

True 
Sens = 0.9 

 
 
 
 
 
 
 
 

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9
0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity
θ G

0.1 0.3 0.5 0.7 0.9
0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity
θ G

0.1 0.3 0.5 0.7 0.9
0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity
θ G

0.1 0.3 0.5 0.7 0.9
0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity
θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

Sampling Ratio
1
2
5
10

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Sensitivity

θ G

* Each panel of this figure summarizes the predicted θG values for a SNP obtained using expression (SuppEq.
2.4) across 100 different simulated datasets. Each box corresponds to the inter-quartile range for predicted θG
values (y-axis) for a different working value of c̄1 (x-axis). The box color corresponds to different working values
for r̄. Each panel in this figure corresponds to one of 12 simulation settings corresponding to different true values
for c̄ and r̄ (denoted by the bolded box in each panel). In each panel, the horizontal line indicates the true value
of θG, 0.5. Across all simulation settings, data are simulated to have a MAF of 0.2, and we assume true θ0 is
known. For these simulated datasets, Z, W , and X are empty. In this figure, true θ0 = logit(0.01), corresponding
to a roughly 1% population disease rate.
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Figure S4: Predicting θG for SNP across different assumed sensitivities and sampling ratios
with known 5% disease rate in population*
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* Each panel of this figure summarizes the predicted θG values for a SNP obtained using expression (SuppEq.
2.4) across 100 different simulated datasets. Each box corresponds to the inter-quartile range for predicted θG
values (y-axis) for a different working value of c̄1 (x-axis). The box color corresponds to different working values
for r̄. Each panel in this figure corresponds to one of 12 simulation settings corresponding to different true values
for c̄ and r̄ (denoted by the bolded box in each panel). In each panel, the horizontal line indicates the true value
of θG, 0.5. Across all simulation settings, data are simulated to have a MAF of 0.2, and we assume true θ0 is
known. For these simulated datasets, Z, W , and X are empty. In this figure, true θ0 = logit(0.05), corresponding
to a roughly 5% population disease rate.
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Figure S5: Predicting θG for SNP across different assumed sensitivities and sampling ratios
with known 10% disease rate in population*
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* Each panel of this figure summarizes the predicted θG values for a SNP obtained using expression (SuppEq.
2.4) across 100 different simulated datasets. Each box corresponds to the inter-quartile range for predicted θG
values (y-axis) for a different working value of c̄1 (x-axis). The box color corresponds to different working values
for r̄. Each panel in this figure corresponds to one of 12 simulation settings corresponding to different true values
for c̄ and r̄ (denoted by the bolded box in each panel). In each panel, the horizontal line indicates the true value
of θG, 0.5. Across all simulation settings, data are simulated to have a MAF of 0.2, and we assume true θ0 is
known. For these simulated datasets, Z, W , and X are empty. In this figure, true θ0 = logit(0.10), corresponding
to a roughly 10% population disease rate.
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Figure S6: Predicting θG for different sensitivities and sampling ratios using a single θ
(simple)
G *

FIGURE NOT USING INTERCEPT 
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* Each panel in this figure corresponds to one of six simulation settings for combinations of
c̄1 equal to 0.4, 0.7, or 0.9 and for P (D = 1|G = 0, Z = 0) equal to 0.05 or 0.10. In a given
simulation setting, we suppose G is a SNP with MAF = 0.2 and we have a true sampling ratio of

r̄ = 5. Using 100 simulated datasets for each panel, we calculate the median estimated θ
(simple)
G

value from fitting logistic regression models to the simulated data and taking the median of the

100 estimates. The value of θ
(simple)
G is shown by the horizontal yellow line in each panel. Fixing

θ
(simple)
G , we then obtain predictions for θG (y-axis) using (SuppEq. 2.4) and different working

values for r̄ (x-axis) and c̄1 (color). The true values of r̄ and c̄1 in each setting are denoted by
the color and x-location of the triangle. Horizontal dotted lines correspond to the true value
for θG, 0.5.
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Figure S7: NHGRI-EBI GWAS catalog breast cancer GWAS results (θG) compared to GWAS

results based on over 40,000 unrelated patients of recent European ancestry in MGI (θ
(simple)
G ).*
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* This figure shows the standard MGI GWAS estimates (log-odds ratios and 95% confidence intervals along
the y-axis) across 563 SNPs shown to be related to breast cancer in the NHGRI-EBI GWAS catalog. These
estimates are plotted against published NHGRI-EBI GWAS catalog log-odds ratios (x-axis). MGI log-odds
ratios were calculated using a matched subset of patients based on age and the first four principal components of
the genotype data data, and our results also adjusted for age and the principal components (Z). The phenotype
generation, locus pruning, and GWAS analysis were performed following Beesley et al. (2018).[1] The breast
cancer phenotype D∗ was defined using phecode 174.1 using the R package PheWAS.[3] The red line corresponds
to a line of best fit through the paired MGI and GWAS catalog log-odds ratios. The gray diagonal line corresponds
to equality between the point estimates.
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Figure S8: Plausible breast cancer log-odds ratios (θG) in MGI for six SNPs known to be
associated with breast cancer. *
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* This figure shows the predicted MGI breast cancer log-odds ratio values (θG; y-axis) obtained as discussed in
Supplementary Section S2.2 for different assumed values of c̄1 (color) and r̄ (x-axis). Each panel corresponds
to these predictors for a different SNP known to be associated with breast cancer. Predictions were calculated
using θ0 = logit(0.124). The original MGI estimate and corresponding 95% confidence interval are shown in gray.
Estimates and intervals from the NHGRI-EBI GWAS catalog are shown in black.

Figure S9: Plausible values for θG in MGI for a breast cancer association in which MGI and
the GWAS catalog agree. *
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* This figure shows the predicted MGI breast cancer log-odds ratio values (θG; y-axis) obtained as discussed in
Supplementary Section S2.2 for different assumed values of c̄1 (color) and r̄ (x-axis). This figure corresponds
to a single SNP known to be associated with breast cancer. Predictions were calculated using θ0 = logit(0.124).
The original MGI estimate and corresponding 95% confidence interval are shown in gray. Estimates and intervals
from the NHGRI-EBI GWAS catalog are shown in black.35



Figure S10: Obtaining plausible values for the sampling ratio.*
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* This figure shows predicted values for the sampling ratio (y-axis) from (SuppEq. 8.11). This prediction is
a function of the data (left; MGI, right; UK Biobank), the population disease rate, and a rough value for the
sensitivity (x-axis). Population disease rates follow Table S3. Calculations assume perfect specificity. The
horizontal dotted line corresponds to a sampling ratio of 1.

Figure S11: Degree of relative bias for rare disease with prevalence = 1/2000*
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* This figure shows the degree of shrinkage toward the null (y-axis; 0 = no shrinkage toward the null and 1 =
strong shrinkage resulting in null association) for a standard analysis relative to the true value of θG. This is shown
for a rare disease (prevalence = 1/2000) and it calculated as a function of the sampling ratio (x-axis), sensitivity,
and specificity. The three solid lines show the predicted shrinkage for three pairs of c̄1 and c̄0. Horizontal dotted
lines correspond to no bias, bias of 50% toward the null, and complete shrinkage toward the null.
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