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Large-scale association analyses based on observational health care databases
such as electronic health records have been a topic of increasing interest in
the scientific community. However, challenges due to nonprobability sampling
and phenotype misclassification associated with the use of these data sources
are often ignored in standard analyses. The extent of the bias introduced by
ignoring these factors is not well-characterized. In this paper, we develop an ana-
lytic framework for characterizing the bias expected in disease-gene association
studies based on electronic health records when disease status misclassifica-
tion and the sampling mechanism are ignored. Through a sensitivity analysis
approach, this framework can be used to obtain plausible values for parameters
of interest given summary results from standard analysis. We develop an online
tool for performing this sensitivity analysis. Simulations demonstrate promis-
ing properties of the proposed method. We apply our approach to study bias
in disease-gene association studies using electronic health record data from the
Michigan Genomics Initiative, a longitudinal biorepository effort within The
University Michigan health system.
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1 INTRODUCTION

Genome-wide genotype data linked with electronic health records (EHRs) are becoming increasingly available through
biorepository efforts at academic medical centers, health care organizations, and population-based biobanks.1 A com-
mon use of these linked data is to explore the association between a phenotype, D, with a risk factor of interest, G, after
adjusting for potential confounders, Z. Analysis using a regression model for D|G,Z may be repeated for millions of risk
factors or genetic variants with a given D of interest (as in genome-wide association studies, or GWAS) or for thousands of
phenotypes derived from the content of the EHR with a given variant G of interest (as in phenome-wide association stud-
ies, or PheWAS). Association analyses embedded within large observational databases have gained popularity in recent
years, and the use of and interest in such analyses continues to increase.1-3 However, unlike curated and well-designed
population-based studies, large observational databases are often not originally intended for research purposes, and addi-
tional thought is needed to understand potential sources of bias and conduct principled inference. In this paper, we focus
on the particular association setting with D being a single EHR-derived phenotype and G being a single genetic marker or
a polygenic risk score, but the methods and conceptual framework developed in this paper can be applied quite broadly
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to general estimation problems using observational databases. This framework is scalable and can be applied to explore
the phoneme by genome landscape, where the basic unit of analysis is still of the form of D|G,Z.

One potential source of bias in EHR-based studies is misclassification of derived disease status variables. Large-scale
agnostic studies using EHR often define patient disease status (phenotypes) based on International Classification of Dis-
ease (ICD) codes or aggregates thereof called “PheWAS codes” or “phecodes” to define phenotypes in an automated and
reproducible way.4 In practice, EHR-derived phenotype definitions are used to represent the underlying “true” disease
status. However, these ICD-based phenotype classifications can be erroneous in capturing the “true” disease status for a
variety of reasons. For example, psychiatric diseases can be difficult to diagnose, and diagnosis can often be subjective.5
ICD code-based diagnoses may be an incomplete representation of a patient's health status, which may also be recorded
in doctor's notes and elsewhere in the EHR. In response to this problem, there exists an extensive literature on using
other structured and unstructured content of the EHR to define phenotypes more accurately.6-10 Additionally, human
validation can be used to evaluate phenotyping algorithms.11 These existing phenotyping approaches can be effective
in reducing misclassification given the information available in the EHR, but even the most sophisticated phenotyping
algorithms cannot capture diagnoses that were never recorded in any form in the EHR. Secondary conditions may not
always be entered into the EHR, and symptoms occurring between visits may not always be reported. The EHR cannot
adequately capture diseases that a patient had prior to entry into the EHR (outside the observation window). Unlike clas-
sical misclassification settings, the chance of correctly capturing a disease is inherently dependent on the length of stay in
the EHR or the observation/encounter process for a given patient. We often have a systematic source of misclassification
(that we will call “observation window bias”) due to a lack of comprehensiveness of the EHR in capturing diagnoses or
medical care obtained from outside sources (eg, at another health care center). Together, these various factors can lead to
a potentially large degree of misclassification, particularly due to underreporting of disease.

Several authors have proposed statistical methods for addressing misclassification of binary phenotypes in EHR-based
studies. The extent of misclassification can be described using quantities such as sensitivity and specificity, but these
quantities can vary from population to population and from phenotype to phenotype.12 Huang et al (2018) proposes
a likelihood-based approach that integrates over unknown sensitivity and specificity values but requires some limited
prior information about the sensitivity and specificity.13 Wang et al (2017) proposes an approach for incorporating both
human-validated labels and error-prone phenotypes into the estimation, but this approach will not account for observa-
tion window bias.14 Duffy et al (2004) and Sinnott et al (2014) expand on results in the measurement error literature to
relate parameters in the model for the true outcome with the model for the misclassified outcome, but the former focuses
on outcome misclassification with binary risk factors, and the latter focuses on the setting in which the probability of
having observed disease is explicitly modeled using a variety of information in the EHR.15,16 Additionally, all of these
methods do not directly address the sampling mechanism.

In addition to bias due to phenotype misclassification, the mechanism by which units in the population are included
in the EHR dataset can sometimes result in biased inference when not handled appropriately. Complex sampling designs
in an epidemiologic study can be addressed using survey design techniques if the sampling strategy is known. However,
the probability mechanism for inclusion of a person into a biorepository is not a priori fixed or defined. For convenience,
we will use terms such as “sampling” and “selection mechanism” to describe this patient inclusion process, but it should
be understood that this process is complicated and not well-characterized. Interactions with the health care system are
generated by the patient, and it can be difficult to understand the mechanism driving sampling as well as self-selection
for donating biosamples, which may be related to a broad spectrum of patient factors including overall health and demo-
graphic characteristics. Several authors recommend adjusting for factors such as number of health care visits or referral
patterns to better account for the sampling mechanism.17,18 Moreover, there is a belief in the literature that gene-related
association study results may be less susceptible to bias resulting from patient selection.19 This belief stems from the
assumption that an individual genetic locus is not usually appreciably related to selection. However, it has been shown
that bias due to genotype relationships with selection can still arise in certain settings.20 Additionally, a popular topic in
genetics-related research right now is the use of polygenic risk scores, which combine information from many genetic loci
to quantify a patient's overall inherited genetic risk for developing a particular disease.21,22 While it may be reasonable
to assume that a specific genetic locus may have little association with selection, this assumption becomes more tenuous
for an aggregate polygenic risk score with stronger association with the underlying disease and other factors related to
selection.

As we will demonstrate, patient sampling can create substantial bias in estimating genetic associations using EHR
data in the presence of disease status misclassification. Existing statistical methods for dealing with phenotype misclas-
sification do not directly take into account the mechanism by which patients are sampled and vice versa. Additionally,
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F I G U R E 1 Diagram of the assumed data structure

standard association studies often do not account for either source of potential bias. It is important to understand the
implication of these sampling and observation processes on results from standard association analyses.

In this paper, we develop an analytic framework incorporating both disease misclassification and the patient selection
mechanism. We use this framework to characterize the amount of bias expected in EHR-based association study results
when misclassification and the sampling mechanism are ignored (as is the common strategy). We focus on the particular
setting in which phenotypes are underreported (naturally occurring for EHR data due to limited observation window),
but we also provide an extension allowing for bi-directional misclassification. The analytical expressions enhance our
understanding of study design and phenotype characteristics this bias may depend on. Through a sensitivity analysis
approach, this framework can also be used to obtain plausible values for parameters of interest given summary results
from simpler analysis. Simulations demonstrate promising properties of the proposed approach in capturing the true bias,
and we provide an interactive online tool for performing these sensitivity analyses.

We then apply our proposed methods to data from The Michigan Genomics Initiative (MGI), a longitudinal biorepos-
itory effort within the University of Michigan health system with linked genotype and EHR information for over 40 000
patients. The patients were recruited in the Anesthesiology clinic while waiting for a surgery/diagnostic procedure.
Using these data, we are often interested in studying the association between disease and genetic factors, adjusting for
demographics and other patient characteristics. However, our EHR-derived disease status may have substantial misclassi-
fication relative to patients' true disease status. Additionally, we are often interested in making statements about external
target populations such as the US population, and the MGI patient pool may be poorly representative of this target popu-
lation. When ignored, these factors can create a large degree of bias in our association analyses of interest. We apply our
proposed approach to explore the potential degree of bias in two example genetic association studies in MGI, which can
serve as a tutorial for how the proposed methods can inform bias exploration after standard association analysis.

2 MODEL STRUCTURE

Let the binary variable D represent a person's true disease status. Suppose we are interested in the relationship between
D and an individual's inherited genetic information, G, adjusting for additional person-level information, Z. We will call
this relationship the disease mechanism as seen in Figure 1. In genetic association studies, G may represent a single SNP
(single nucleotide polymorphism) or a polygenic risk score.21 In principle, however, G can be any risk factor of interest. Z
often contains information such as age, gender, and several principal components derived from the patient's genome-wide
data. Principal components are often included as adjustment factors as a way to adjust for patients' genetic ancestry. In
practice, we may have many diseases or genotypes of interest in an association study, but for now we will consider the
simple setting with a specific (D,G) pair.

In studying the D|G association using a large health care system-based database, we may have the goal of making
inference regarding the D|G association in some predefined target population. For example, we may want to generalize
results to the US adult population during the time period covered by our data. Let S indicate whether a particular person
in the population is selected into our dataset (eg, by going to a particular hospital and consenting to share a biosample for
research), where the probability of a person in the population being included in the current dataset may depend on the
underlying disease status, D, along with additional covariates, W , and perhaps even G. We may often expect the sampled
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and nonsampled subjects to have different rates of the disease, and other factors such as patient age, residence, access to
care and general health status may also impact whether subjects are sampled into the study dataset or not. We will call
this the sampling mechanism.

Instances of the disease are recorded in hospital or administrative records. We might expect factors X such as the
patient age, the length of follow-up, and the number of hospital visits to impact whether we actually observe/record the
disease of interest for person with the disease. Whether we incorrectly record a person as having the disease might be
related to patient factors Y (eg, age). Define the observed disease status as D∗. D∗ is a potentially misclassified version of
D. We will call the mechanism generating D∗ the observation mechanism.

The diagram in Figure 1 shows the conceptual model structure, expressed as follows:

Conceptual Model (1)
Disease Mechanism ∶ logit(P(D = 1|Z,G; 𝜃)) = 𝜃0 + 𝜃GG + 𝜃ZZ

Sampling Mechanism ∶ P(S = 1|D,W ,G,Z;𝜙)
Observation Mechanisms ∶ P(D∗ = 1|D = 1, S = 1,X ,G,Z; 𝛽) (Sensitivity)

P(D∗ = 1|D = 0, S = 1,Y ,G,Z; 𝛼) (1 – Specificity).

This framework allows for misclassification of the true disease status in either direction (patients with the disease may
be missed and patients may be listed as diseased who aren't). Moving forward, however, we will restrict our focus to the
particular setting where disease status misclassification comes through underreporting. In other words, we will assume
perfect specificity with P(D∗ = 1|D = 0, S = 1,Y,G,Z; 𝛽) = 0 for all patients. This assumption may be reasonable for some
EHR-derived phenotypes, particularly cancer, where we expect the rate of overdiagnosis of disease to be generally low.
We consider the more general setting with imperfect specificity in detail in Section S3 in Appendix S1.

Crucially, X and W may not always be fully known or measured for a given data analysis. For example, proximity
to the hospital may likely drive whether a patient is included in a given EHR, but patients' home addresses may not be
available for privacy reasons. Standard association analyses typically do not adjust for factors that may influence selection
of participants into EHR. In our subsequent analysis, we will leverage the model structure in Equation (0) along with
assumptions about X and W to explore bias without requiring X and W to be measured or known. In particular, we
assume that the following hold:

Assumption 1. S ⟂ G|D,W,Z and D∗ ⟂ G|D, S = 1,X,Z;

Assumption 2. X ⟂ W|D,G,Z, S = 1;

Assumption 3. X ⟂ G|D,Z, S = 1;

Assumption 4. W ⟂ G|D,Z;

where W and X correspond to the (theoretical) predictors driving sampling and sensitivity that are not included in Z, the
set of adjustment factors in the disease model.

The first assumption implies that G is not an independent predictor of S or D*. This seems reasonable, especially when
G represents a single SNP. This is an important assumption, and our proposed methods may often under-estimate the
bias of standard analysis when this first assumption is violated. The second assumption states that the factors related to
sampling and related to sensitivity that are not adjusted for in the disease model are independent given D, G, and Z in the
sampled subjects. Importantly, this independence assumption conditions on D, G, and Z, and Z often includes common
information such as patient age, gender, and the first few genetic principal components. Conditionally, we may expect
this assumption to be reasonable for many EHR settings. The third assumption implies that G is unassociated with the
factors related to misclassification given D and Z on the sampled subjects. X is expected to contain information relating
to a patient's observation process (eg, length of follow-up), and this will generally not be driven by a patient's genetic
information given Z and D. These first three conditional independence assumptions, therefore, may often be reasonable
in typical EHR data analysis settings.

We view the fourth assumption as the strongest, since it implies that G is independent of factors related to sampling not
included in the disease model given D and Z. Suppose, however, that sampling is related to a secondary disease, D′. This
may often be the case for EHR data. If D′ is independent of G, then this dependence will not create a problem, and the
fourth assumption will be satisfied. However, if D′ is independently related to G (given Z and D), the fourth assumption
is violated. An example of this would be the setting of pleiotropy, where a particular SNP may be related to multiple
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phenotypes, which could each contribute to the sampling mechanism. This setting has been explored extensively in the
literature on secondary analyses of case-control sampled data.23,24 Importantly, the fourth assumption will be trivially
satisfied if we include D′ and other factors related to sampling and G as adjustment factors in the simple analysis model.
Therefore, the proposed methods can be applied to characterize bias of standard analysis even in the setting with sampling
related to secondary diseases if we adjust for these secondary diseases in the simple analysis model. We discuss this issue
in more detail in Section S5 in Appendix S1.

3 APPROXIMATING BIAS RESULTING FROM STANDARD ANALYSIS

3.1 Approximating the bias

Suppose that G, Z, X , and W are observed if and only if S = 1. We further require that Assumptions 1-4 hold. In standard
analyses, we often fit a simple logistic regression for D∗|G,Z, S = 1 (analysis model) with the goal of making inference
about 𝜃 from the (assumed) true model summarized as follows:

Analysis Model ∶ logit(P(D∗ = 1|Z,G, S = 1)) = 𝜃
(simple)
0 + 𝜃

(simple)
G G + 𝜃

(simple)
Z Z (2)

True Model ∶ logit(P(D = 1|Z,G)) = 𝜃0 + 𝜃GG + 𝜃ZZ.

In general, 𝜃G and 𝜃
(simple)
G may be unequal. As shown in Section S2 in Appendix S1, we can relate the analysis model

to the conceptual model in Equation (0) as follows:

P(D∗ = 1|G,Z, S = 1; 𝜃(simple)) = P(D = 1|G,Z; 𝜃)c1(Z; 𝛽)r(Z;𝜙)
P(D = 1|G,Z; 𝜃)[1 − c1(Z; 𝛽)]r(Z;𝜙) + P(D = 0|G,Z; 𝜃)

.

Interestingly, the impact of selection and misclassification on the relationship between the target and analysis models
boils down to contributions of two functions of Z as follows:

c1(Z; 𝛽) = ∫ f (D∗ = 1|D = 1,X ,Z, S = 1; 𝛽)f (X|D = 1,Z, S = 1) dX = Sensitivity

r(Z;𝜙) =
∫ P(S = 1|D = 1,W ,Z;𝜙)f (W |D = 1,Z)dW
∫ P(S = 1|D = 0,W ,Z;𝜙)f (W |D = 0,Z) dW

= Sampling Ratio.

We can view D∗ as a noisy diagnostic for the true value of D with potentially imperfect sensitivity, where c1(Z; 𝛽) rep-
resents the sensitivity of D∗ for D in the sampled patients, averaged over the distribution of X . We consider the more
general setting with imperfect specificity in Section S3.1 in Appendix S1. r(Z;𝜙) represents the ratio of sampling proba-
bilities comparing subjects with D = 1 and D = 0, where each probability is averaged over the distribution of W . These
expressions may both depend on Z. However, c1(Z; 𝛽) and r(Z;𝜙) depend on distinct parameters, so they can vary inde-
pendently conditional on Z. These functions theoretically depend on various covariate distributions, but we will not need
to specify these distributions in practice.

We assume that covariates Z are centered so that they have mean zero and that the data are modeled as in Equation (0).
Let c1 and r be c1(Z; 𝛽) and r(Z;𝜙) evaluated at Z = 0. In Section S2.1 in Appendix S1, we use first order Taylor series
approximation to obtain expressions for the intercept and coefficient for G in the analysis model as functions of parameters
in the true model. We consider two different cases with two types of genetic variables G.

Case 1 (G is an SNP). Suppose that G represents a single genetic locus or SNP, coded 0/1/2 to represent the patient's
number of copies of the minor allele at a bi-allelic locus. Let MAF denote known minor allele frequency in the population,
which we assume is at least 0.05 (common variant). We can express the analysis model parameters as a function of the
true model parameters as follows:

𝜃
(simple)
0 ≈𝜃0 + log(c1) + log(r) − log

(
e𝜃0+2𝜃GMAF[1 − c1]r + 1

)
+ 2𝜃GMAF

[
e𝜃0+2𝜃GMAF(1 − c1)r

e𝜃0+2𝜃GMAF(1 − c1)r + 1

]

𝜃
(simple)
G ≈

[
1

e𝜃0+2𝜃GMAF(1 − c1)r + 1

]
𝜃G. (3)
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F I G U R E 2 Standard analysis log-odds ratio for G when we model D∗|G,Z, S = 1. This figure presents the analytical prediction for
𝜃
(simple)
G (y-axis) from Equation (3) for a SNP with population MAF of 0.2 as a function of true sensitivity c (x-axis). The analytical expression is

evaluated across multiple population disease rates, calculated as expit(𝜃0). Figure panels correspond to different values for the true sampling
ratio, r, and the true association between G and D, denoted 𝜃G and plotted with the horizontal dotted line. MAF, minor allele frequency; SNP,
single nucleotide polymorphism [Colour figure can be viewed at wileyonlinelibrary.com]

Here, we approximate the sample MAF with the population MAF as discussed in Section S3.1 in Appendix S1.

Case 2 (G is a polygenic risk score). Suppose instead that G is a continuous predictor such as a polygenic risk score (as
discussed in Dudbridge et al (2013)) and suppose G has been centered to have mean zero.25 In this setting, we can express
the analysis model parameters as follows:

𝜃
(simple)
0 ≈𝜃0 + log(c1) + log(r) − log

(
e𝜃0[1 − c1]r + 1

)
𝜃
(simple)
G ≈

[
1

e𝜃0(1 − c1)r + 1

]
𝜃G. (4)

Simulations exploring the correspondence between the approximations in Equations (3) and (4) and standard estimated
parameters can be found in Figure S2 in Appendix S1. These simulations indicate an excellent ability of these expressions
to capture bias in simulated data.

3.2 Understanding the structure of the bias

We can use expressions (3) and (4) to develop some intuition for settings in which we expect greater or less relative bias
when performing the “simple” routine analysis. Table S1 in Appendix S1 describes the general impact of the various
model parameters on the bias of 𝜃(simple)

G , the log-odds ratio parameter associated with G in the simple analysis model. As
expected under Assumptions 1-4, there is no bias in estimating 𝜃

(simple)
G when we have perfect sensitivity. This may not

be the case if one or more of these assumptions are violated. Suppose instead that c1 < 1. In this case, we expect bias in
𝜃
(simple)
G , and the absolute bias will depend on the sensitivity, the disease sampling ratio r, the population prevalence of

the disease, the magnitude of 𝜃G, and (in case 1) the MAF of the genetic locus of interest.
Suppose we assume that the sampling ratio is 1 or 5, so diseased and nondiseased people are sampled at a 5:1 or 1:1

ratio on average, respectively. Figure 2 shows the value for 𝜃(simple)
G we may obtain if we fit a model for D∗|G,Z using the

sampled data with a minor allele frequency of 0.2 and true 𝜃G either 0.5 or 0.1. As the sensitivity decreases, the “simple”
estimate of 𝜃G becomes increasingly biased (relative and absolute bias) toward the null. The level of bias depends strongly
on the population prevalence of the disease. For less common diseases (eg, less than 10% of the population), we may expect
to observe relatively low relative bias in estimating 𝜃G even with low sensitivity for observing D in the sampled patients.
Additionally, we expect the absolute bias to be generally small when we have lower true values for 𝜃G. For moderate to
large values of 𝜃G, misclassification and sampling can have a substantial impact on the absolute bias for 𝜃

(simple)
G . This

provides some support to the notion that absolute bias in GWAS studies (where the 𝜃G values are expected to be generally

http://wileyonlinelibrary.com
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small) may be less of a concern, particularly when we are studying a less common disease. However, if we are studying
a disease that has higher population prevalence or larger values for 𝜃G (eg, a highly penetrant SNP), we may be more
concerned about the potential for absolute bias induced by ignoring disease misclassification and/or sampling. As shown
in Table S2 in Appendix S1, the bias has a more complicated relationship with disease prevalence and sensitivity in the
presence of disease overreporting. We created an online RShiny tool called SAMBA-EHR (Sampling And Misclassification
Bias Analysis for EHR-based association studies) for exploring the impact of the various parameters on the bias for both
the intercept and association parameters, available at http://shiny.sph.umich.edu/SAMBA-EHR/.

3.3 Sensitivity analysis of potential bias in genetic association estimates

An alternative use of Equations (3) and (4) is in a sensitivity analysis in a reverse direction, where we can obtain reason-
able values of 𝜃G across plausible values of r and c1 based on the parameter estimates from the “simple” standard analysis.
Suppose we have an estimate for 𝜃(simple)

G and that G is a single genetic locus. This estimate can be based on direct data
analysis or can be obtained from published summary statistics. Using information from the population to obtain reason-
able values for 𝜃0, we can explore plausible values for 𝜃G by solving Equation (3) for 𝜃G. In practice, 𝜃0 itself may not be
known. In this setting, we propose performing the sensitivity analysis for a plausible window of 𝜃0 using a rough esti-
mate for the population prevalence, P(D = 1), or treating 𝜃0 as an input value. Alternatively, suppose that 𝜃(simple)

0 is also
available. In this case, we can obtain 𝜃G by solving

𝜃
(simple)
G ≈ c1 − e𝜃

(simple)
0 (1 − c1)

c1 − e𝜃
(simple)
0 (1 − c1)

[
1 − e2𝜃GMAF

]𝜃G, (5)

for 𝜃G. In this case, predicted 𝜃G will be a function of c1 and 𝜃(simple) but not r. Similar expressions for predicting 𝜃G when
G is a polygenic risk scores (PRS) can be found in Section S2.2 in Appendix S1, and the setting with imperfect specificity
is considered in Section S3.2 in Appendix S1. In some settings, these expressions may have no solution for given values
of r and c1. When this happens, it usually corresponds to a setting that is highly incompatible with the observed data.

4 SIMULATIONS EVALUATING PROPOSED SENSITIVITY ANALYSIS

In this section, we present results from a simulation study evaluating the relationship between true 𝜃G and values pre-
dicted using the sensitivity analysis approach proposed in Section 3.3. Since the method used to derive the predicted 𝜃G
depends on Taylor series approximations and relies on Assumptions 1-4 in Section 2 holding, we are particularly interested
in evaluating settings in which our sensitivity analysis approach does and does not do a good job of predicting 𝜃G.

The simulation study is broken up into two parts. In part 1, we consider a simple setting where G is a genotype on
a single marker with MAF = 0.2 and where Z, W , and X are empty. We simulate 100 datasets with 5000 patients each
following Equation (0) and under different population disease rates (1%, 5%, and 10%). We then impose subsampling and
disease status misclassification with different values of c1 and r. In order to evaluate the role of relationships between G, Z,
X , and W in our sensitivity analysis predictions, we perform a second set of simulations. In simulation part 2, we consider
a more complicated simulation scenario in which G is a PRS and has different relationships with nonempty Z, W , and
X = (X1,X2). In each setting, we again simulate 100 datasets with 5000 patients each, all with an average sensitivity of
roughly 0.4 and a population disease rate of roughly 5%. We consider eight different relationships. In the first setting, G and
Z are related but independent of W and X . In settings 2-4, Z is associated with X . In settings 5-6, Z is associated with W . In
settings 1-6, key Assumptions 1-4 are satisfied. Settings 7 and 8 consider violations of Assumptions 3 and 4, respectively.
True disease status was generated assuming a 5% population disease rate, and misclassification and subsampling were
imposed given c ≈ 0.4 and r between 1 and 2. Additional details are available in Section S3.6 in Appendix S1. For each
simulated dataset, we estimate 𝜃(simple) by fitting a logistic regression model for the misclassified outcome D∗ given G and
possibly Z on the sampled patients.

Part 1a: predicting 𝜃G with available 𝜃
(simple)
0 : First, we suppose that both 𝜃

(simple)
0 and 𝜃

(simple)
G are available for each

simulated dataset. We then apply methods in Equation (5) to obtain a predicted value of 𝜃G assuming a working value
for c. Figure 3 shows predictions for 𝜃G across 100 simulated datasets, where each subplot corresponds to different true
values for c1 and 𝜃0. In each subplot, the boxplot corresponding to the true sensitivity is bolded. In all settings considered,

http://shiny.sph.umich.edu/SAMBA-EHR/
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F I G U R E 3 Predicted 𝜃G for SNP across different assumed sensitivities using available 𝜃
(simple)
0 . Each panel of this figure summarizes

the predicted 𝜃G values for a SNP obtained using expression (5) across 100 different simulated datasets. Each boxplot corresponds to the
predicted 𝜃G values (y-axis) for a different working value of c1 (x-axis). Each panel in this figure corresponds to one of nine simulation
settings corresponding to different true values for c (denoted by the bolded boxplot in each panel) and different values for
P(D = 1|G = 0,Z = 0) across the columns. In each panel, the horizontal line indicates the true value of 𝜃G, 0.5. Across all simulation settings,
data are simulated to have true r = 5 and MAF of 0.2. For these simulated datasets, Z, W , and X are empty. MAF, minor allele frequency;
SNP, single nucleotide polymorphism [Colour figure can be viewed at wileyonlinelibrary.com]

the median predicted 𝜃G is near the true value of 0.5 when c1 is correctly specified. The sensitivity of predicted 𝜃G to values
of c1 strongly depends on the population disease rate. For prevalence < 1%, only very low sensitivities far from the true
c1 produced predicted 𝜃G far from the true value of 0.5. Additionally, assuming sensitivities of 1 did not result in much
bias in estimated 𝜃G on average (<0.05). In contrast, predicted sensitivities strongly varied across assumed c1 when the
population disease rate was larger. Also, assuming sensitivities of 1 produced strong bias up to roughly 0.2 for true c1 = 0.4.

Part 1b: predicting 𝜃G with available 𝜃0: Suppose instead that 𝜃(simple)
0 is not known and instead we have some sense

of 𝜃0. In practice, we can treat 𝜃0 as an input value informed by some known population disease rate. Figures S3-S6 in
Appendix S1 show predictions for 𝜃G obtained by inverting Equation (3) with respect to 𝜃G. These predictions depend on
assumed values for c1 along with r. These simulations again demonstrate an ability of our sensitivity analysis approach
to recover the true 𝜃G on average when evaluated at the true values for r and c1.

Part 2: predicting 𝜃G with available 𝜃(simple)
0 : In this section, we obtain predictions for 𝜃G for each simulated data using

(SupEq. 2.7) in Appendix S1. Figure 4 presents boxplots of the predicted 𝜃G across 500 simulated datasets in each sim-
ulation setting and across different assumed values for c1. We focus our attention on the boxplot of predicted 𝜃G values
corresponding to the true c1 (denoted in bold) in each setting. We assume Z is not a direct driver of sampling or misclas-
sification for all simulations except setting 6. Median predicted values of 𝜃G are 0.47, 0.47, 0.44, 0.47, 0.50, 0.49, 0.63, and
0.36 for the eight simulation settings. In settings 7 and 8 where Assumptions 1-4 are violated, the predicted 𝜃G values
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(1)  G and Z correlated

G, Z independent of W and Z

(2)  G and Z correlated

Z weakly related to X

(3)  G and Z correlated

Z moderately related to X

(4)  G and Z independent

Z moderately related to X

(5)  G and Z correlated

Z moderately related to W

(6)  G and Z correlated

Z driver of selection

(7) G and Z correlated

G related to misclassification

(8) G and Z correlated

G related to selection

F I G U R E 4 Predicted 𝜃G for PRS under more complicated covariate relationships. Each panel of this figure summarizes the predicted
𝜃G values for a PRS obtained using expression (SuppEq. 2.7) across 100 different simulated datasets. Each boxplot corresponds to the
predicted 𝜃G values (y-axis) for a different working value of c1 (x-axis). Each panel in this figure corresponds to one of eight simulation
settings corresponding to different associations between simulated G, Z, X1, X2, and W . These variables are all multivariate normal with
differing pairwise correlations. Unless otherwise specified, pairwise correlations were set to zero. In all but setting 4, G and Z have a
correlation of 0.2. We assume pairwise correlations of 0.5 between Z and X1, Z and W , and G and W for settings 3/4, setting 7, and setting 8,
respectively. Setting 6 explores a strong 0.9 correlation between Z and W , and setting 2 explores a weak 0.1 correlation between Z and X1. The
final two simulation settings correspond to settings where Assumptions 3 and 4 are violated. In each panel, the horizontal line indicates the
true value of 𝜃G, 0.5. The simulated marginal disease rate was roughly 5%, and the simulated marginal sensitivity was roughly 0.4. PRS,
polygenic risk score [Colour figure can be viewed at wileyonlinelibrary.com]

clearly miss the mark, with median biases of 26% and 28% relative to the truth. We are more concerned with relationships
between Z and W and/or X , which are not directly addressed by Assumptions 1-4. When Z is related to W (even strongly)
or a direct driver of selection, the proposed methods do a good job of recovering 𝜃G in these simulations (settings 5 and 6).
A more challenging setting occurs when Z is related to X . In setting 3, we see median biases of 11% relative to the truth,
and this bias tends to increase as the association between Z and X gets stronger. When G and Z are independent, however,
the relationship between Z and misclassification does not adversely impact the performance of our proposed methods
(eg, setting 4). These results demonstrate that, unsurprisingly, our proposed methods perform poorly when Assumptions
3 and 4 are violated. Additionally, we can have some residual bias when Z is at least moderately related to misclassifi-
cation in the setting where Z and G are related. Although not seen in our simulations, there may still be a potential for
residual bias when Z is related to both selection and G.

5 BIAS EXPLORATION IN THE MICHIGAN GENOMICS INITIATIVE

MGI is a longitudinal biorepository effort linked to EHR within the University of Michigan health system, referred to
as Michigan Medicine. The present analysis contains over 40 000 unrelated patients of recent European ancestry with
matched genotype and phenotype information. Using these data, we are often interested in studying the association
between disease and genetic factors G, adjusting for demographic factors such as age and gender along with principal
components of the genotype data as a whole. Together, these factors compose Z.

Suppose we define our hypothetical “target population” as the general US population. Figure 5 provides a rough
visualization of the sampling/selection stages a patient goes through to be included in MGI. We assume that there is
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F I G U R E 5 Schematic representation of the sampling stages
and phenotype ascertainment in MGI with respect to a US target
population. MGI, Michigan Genomics Initiative [Colour figure can
be viewed at wileyonlinelibrary.com]

some unknown mechanism associated with each of these selection stages, which together form the composite “sampling
mechanism” in Equation (0). Overall, patients in MGI tend to be sicker and have a greater number of diagnoses than
the general Michigan population and even the Michigan Medicine population.1 Patient selection may likely be related
to disease status, creating a large potential for bias due to patient selection in association models. EHR-derived disease
status may also be misclassified, resulting in information bias.

Previous analyses have explored associations between single genetic markers and polygenic risk scores with cancer
phenotypes for patients in MGI using simple analysis methods involving fitting a model for D∗|G,Z, S = 1.1,21 These anal-
yses ignore the potential bias induced by the sampling and phenotype misclassification mechanisms. We are interested
in evaluating the potential impact of the sampling and misclassification mechanisms on inference. Below, we perform
the proposed sensitivity analyses to study the robustness of SNP-phenotype and PRS-phenotype associations in MGI for
different assumed sampling and phenotype misclassification mechanisms. Since we are interested in cancer phenotypes,
which may only rarely be incorrectly diagnosed, we assume perfect specificity for these analyses.

For our proposed sensitivity analysis approach, X and W do not need to be specified explicitly; rather, we consider
effects of misclassification and patient selection integrated over predictor components in X and W . Still, our analytic
derivations hinge on our ability to satisfy Assumptions 1-4, so hypothetical consideration of X and W is necessary. First,
we clarify our notation. In our analyses, we will consider six cancer phenotypes for breast, prostate, bladder, and colorectal
cancers along with melanoma and non-Hodgkins lymphoma. In each exploration, EHR-derived phenotypes are denoted
by D∗, and we let D represent the true disease status. G either represents a single SNP or a polygenic risk score, and
our analyses adjusted for patient age, gender, and the principal components of the genotype data (Z). For these data, we
believe X primarily consists of factors related to each patient's observation process such as the number of doctor's visits
and the length of the observation window. Other factors such as age and gender may also be related to misclassification.
It is difficult to assess factors related to patient selection, but we expect patient selection into MGI to be broadly related to
the patient's overall health status and demographic factors. We explore differences between MGI patients and Michigan
Medicine and the US adult population in Table S4 in Appendix S1. We believe Assumptions 1-3 are reasonably well
satisfied for these analyses, and Assumption 4 is reasonable when G represents a single genetic locus. When G represents
a PRS, the independence between G and other diseases included in W may hold conditional on true disease status and
demographic variables in Z.

5.1 Association analysis with polygenic risk scores

Previous work in Fritsche et al (2018) explored associations between PRS and their corresponding EHR-derived phe-
notypes D∗ in MGI for several cancer phenotypes.21 They fit the following analysis model: logit(P(D∗|G,Z, S = 1)) =
𝜃
(simple)
0 + 𝜃

(simple)
G PRS + 𝜃

(simple)
Z Z, where Z contained age, gender (when relevant), four principal components of the geno-

type data, and genotype batch information. D∗ indicators were defined as 1 if the patient ever had a given disease diagnosis
record in the EHR via ICD codes. We are interested in exploring the robustness of these published summary results to
different sampling and misclassification mechanisms for six different cancer diagnoses. We treat the published PRS asso-
ciation summary statistics as our 𝜃

(simple)
G values, and we use the corresponding Michigan prevalence rates reported in
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Beesley et al (2018) to approximate 𝜃0 for each of the six cancers of interest.1 These published PRS summary statistics
and prevalences values are listed in Table S3 in Appendix S1. We use the upper and lower confidence interval limits for
𝜃
(simple)
G to create an interval for 𝜃G.

Figure 6 shows the predicted interval for 𝜃G assuming different sampling ratios and sensitivities for each of the six
selected cancers, where the vertical bars correspond to transformations of the 95% confidence intervals for standard anal-
ysis under different assumed values for r and c1. Estimates for cancer of the bladder, non-Hodgkins lymphoma, and
colorectal cancer are all very robust to different values for the sampling ratio and sensitivity, where the predicted PRS
log-odds ratios were never beyond the 95% confidence intervals for the standard analysis. There are two primary reasons
for this phenomenon. First, the population prevalences of these three cancers are all low (less than 5%). As shown previ-
ously, we expect to see less relative bias in this setting. Second, the estimated association between the PRS and the disease
is small in all of these cases (log-odds ratio values less than 0.35). While the relative bias will not appreciably change as
𝜃G changes, the absolute bias will be small for small 𝜃G. For evaluated settings in these three cancers, absolute bias was
always less than 0.10. In contrast, breast and prostate cancer have high prevalences (>10%), and the corresponding PRS
associations are strong (log-odds ratios of 0.83 and 1.19, respectively). For these two PRS associations, our results suggest
we may have appreciable relative bias if the sampling ratio is moderate to large and the disease outcome is at least mod-
erately misclassified. In an extreme setting where the sensitivity is very low (eg, 0.1) and the sampling fraction is fairly
high (eg, 10), we see predicted 𝜃G nearly doubles the observed 𝜃

(simple)
G for both breast and prostate cancers. Notably, this

corresponds to absolute biases of up to 1.35 on the log-odds ratio scale. In reality, we do not know the sampling ratio, and
we explore plausible values for the sampling ratio for these cancers in MGI in Figure S10 in Appendix S1.

In all cases in Figure 6, the confidence interval for the PRS-phenotype association is far from zero, and adjustment
for misclassification and sampling under our model would move estimated 𝜃G even farther from zero. Therefore, our
general conclusions of a moderate or strong association between the PRS and the phenotype of interest remain robust
across scenarios. However, we expect decreases in power for a test for 𝜃(simple)

G being nonzero when we have bias toward
the null. We will evaluate properties of resulting tests and decision rules in future work exploring corrected estimation
and inference techniques for 𝜃G.

5.2 Genetic association analysis using individual markers

We perform a breast cancer GWAS using a cohort of over 40 000 unrelated patients in MGI of recent European descent.
We fit the following logistic mixed model using the method in Zhou et al (2018):26 logit(P(D∗|G,Z, S = 1, 𝜔)) = 𝜃

(simple)
0 +

𝜃
(simple)
G SNP + 𝜃

(simple)
Z Z + 𝜔, where Z contained age, four principal components of the genotype data, and genotype batch

information. Here, 𝜔 is a random effect term accounting for potential residual sample relatedness. Although not strictly
the analysis model in Equation (3.1), we will treat the resulting 𝜃

(simple)
G as if it were from a standard logistic regression.

This analysis was performed on a 10:1 matched subset of patients based on age and the first four principal components of
the genome-wide data. The breast cancer phenotype D∗ indicated whether the patient ever had a ICD-based breast cancer
diagnosis recorded at Michigan Medicine, defined using phecodes based on ICD codes using the R package PheWAS.4

We first compare GWAS results in MGI (𝜃(simple)
G ) with 563 reported associations from the NHGRI-EBI GWAS catalog

(𝜃G), which combines results from meta-analysis of the largest and highest quality studies (https://www.ebi.ac.uk/gwas/).
We treat NHGRI-EBI GWAS catalog as a comparative gold standard. As shown in Figure S7 in Appendix S1, the association
results using MGI data are generally similar to GWAS catalog results, but there are some specific SNPs for which the results
differ. Overall, MGI results appear attenuated relative to the GWAS catalog results, with Lin's concordance correlation
coefficient of 0.59 (95% CI: 0.52, 0.63). We focus on six individual loci for which the GWAS catalog estimate (𝜃G) differs
appreciably from the MGI estimate (𝜃(simple)

G ). For this exploration, we fix 𝜃0 = logit(0.124), using the US female population
lifetime rate of breast cancer.1

In Figure S8 in Appendix S1, we explore plausible values of 𝜃G in MGI across different potential sampling ratios
and sensitivities. We obtain rough intervals for 𝜃G for fixed values of r and c1 by transforming the upper and lower 95%
confidence interval limits of the standard MGI GWAS estimate for each locus. In Section S8 in Appendix S1, we describe
one approach for getting a sense of plausible values for the sampling ratio. As either the sensitivity or sampling ratio goes
to 1, the interval shown in the figure gets closer to the 95% confidence interval for the corresponding GWAS estimate in
MGI. We note that, in principle, we expect some bias in 𝜃

(simple)
G when we have imperfect sensitivity, but we see very little

absolute bias (eg, < 0.03) when r is small (eg, < 2). This is primarily due to the small estimates for 𝜃(simple)
G . Bias in 𝜃

(simple)
G

is expected to be proportional to the true value of 𝜃G, and for small 𝜃G, we may not see much absolute bias (eg, < 0.02)

https://www.ebi.ac.uk/gwas/
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F I G U R E 6 Sensitivity analysis for PRS-phenotype associations for six different cancers. This figure presents predicted confidence
intervals for 𝜃G (y-axis) obtained by transforming the published standard PRS-disease odds ratio and upper/lower 95% interval limits using

𝜃G ≈
[

1
e𝜃0 (1−c1)r+1

]−1
𝜃
(simple)
G . This expression is a function of c1 and r, and we plot the predicted intervals across different working values for c1

and r along the x-axis of each panel. Vertical bars correspond to the transformed interval for 𝜃G assuming the corresponding value for r and
c1. This transformation is a function of 𝜃0, which was determined by transforming population disease rates as shown in Table S3 in Appendix
S1. Each panel corresponds to the PRS-disease association for a different cancer of interest as reported in Fritsche et al (2018). Horizontal
lines correspond to the standard point estimate and 95% confidence intervals [Colour figure can be viewed at wileyonlinelibrary.com]

even for very low sensitivity when the sampling ratio is near 1. As the sampling ratio increases, however, the relative
and absolute biases increase, and the predicted 𝜃G becomes more extreme. For example, r = 20 and c1 = 0.1 results in a
predicted 𝜃G of 0.66 from a standard analysis value of 0.13 (95% CI: 0.07, 0.20). For the sake of comparison, we present an
example for which the association in MGI and the GWAS catalog are nearly identical in Figure S9 in Appendix S1. These
results suggest that even GWAS results can potentially be impacted by sampling and misclassification.

6 DISCUSSION

The proposed conceptual and sensitivity analysis framework allows us to explore the amount of bias we might expect
in large association study results when we ignore issues of disease status misclassification and sampling related to dis-
ease and patient characteristics, as is often done in association studies using EHR-derived outcomes. Previous literature
generally suggests that we may usually expect little bias in genotype-phenotype associations, and our statistical results
lend credence to this belief when the disease of interest has low prevalence, say less than 10%, and sampling does not
depend on the underlying disease status. When the disease of interest has higher prevalence in the population or the
phenotype misclassification rates are higher, however, the sampling mechanism can have a substantial impact in biasing
association results. Without any misclassification of the outcome, we do not expect much bias in log-odds ratio associa-
tion parameters unless sampling is associated with both the underlying disease status and the covariate of interest given
the adjustment factors. This is a property of the logistic regression modeling assumptions as has been explored in detail in
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the literature on secondary analysis of case-control sampled data and in Section S5 in Appendix S1, and modeling disease
using different link functions may produce slightly different results.23,24

We consider settings in which misclassification has perfect or imperfect specificity. Assuming perfect specificity (no
overreporting of disease), we observe a higher potential for bias toward the null in the simple analysis for diseases with
higher population disease prevalence. This assumption may be reasonable for many EHR-derived phenotypes, where the
large part of misclassification is expected to be a result of underreporting of disease. In the setting of imperfect specificity,
which may occasionally arise for diseases that are difficult to diagnose such as psychiatric disorders, we may have bias
either toward or away from the null, and the general relationship between disease prevalence and bias is much less clear.
The current exploration focuses on bias in effect estimates, but we may also be interested in p-values and hypothesis
testing. We expect effect estimates biased toward the null to result in a loss of statistical power. We will explore the issues
of Type I error and power in detail in a follow-up paper focused on estimation under the proposed model.

One advantage of the proposed modeling framework is that it does not require parametric modeling assumptions to be
made for the sampling mechanism or the observation mechanisms (related to sensitivity and specificity). Additionally, we
do not require factors driving misclassification and patient selection to be entirely understood or even observed. Instead,
our results are guided by independence assumptions made on the relationships between drivers of these various mecha-
nisms, and our proposed analysis approach involves terms integrating over these unknown factors driving selection and
misclassification. A strong assumption made in the course of this paper is that the predictors related to sampling that
are not included in the simple analysis model are independent of the genetic information of interest, conditional on the
true disease status and adjustment factors Z. Since Z often contains age, gender, and several principal components of the
genotype information, this may often be a reasonable assumption for EHR data. A challenging setting, however, is one in
which sampling is related to a secondary disease D′ that is independently related to G even adjusting for D and Z (perhaps
due to pleiotropy). Our results can only be applied in this setting when simple analysis adjusts for any secondary diseases
that are independently related to G. Secondary diseases independent of G, however, do not need to be adjusted for.

When our model assumptions are satisfied, the proposed methods can often recover the true relationship between
genetic factors G and disease status D for known sensitivity and sampling mechanisms. One setting in which the proposed
methods may struggle is when genetic factors G and adjustment factors Z are associated, and Z is associated with factors
driving phenotype misclassification, X . In this case, the first order Taylor series approximations used to derive the bias
expressions may be inadequate, resulting in residual bias in the predicted parameter of interest. For example, suppose
that body mass index (BMI) is included as an adjustment factor in Z and is also at least moderately related to whether the
disease is observed. If BMI is also related to the genetic factor G, the proposed methods can run into trouble. However,
the relationship between Z and X only causes complications when G and Z are associated. When Z contains age, gender,
and the principal components of the genotype data, it may be reasonable to assume that G is independent or only very
weakly related to Z, particularly when analysis focuses on patients of recent European descent as in the MGI example.
For many EHR-based data analyses, therefore, we do not expect this potential for residual bias to be of much concern.
In the course of our statistical development, we also assume that Z is mean-centered, but we could equivalently assume
Z is median-centered for highly skewed data. A challenging setting occurs when Z is highly variable. In this case, we
hypothesize that the first order Taylor series approximations used in our statistical development may be insufficient, and
additional orders of approximation may be needed.

In this paper, we focus on exploring the potential impact of selection and information biases on a single
genotype-phenotype association, but we are often interested in studying many genotype-phenotype associations. A nat-
ural question is the extent at which this bias impacts comparison across naíve parameter estimates in a large association
study. In the case of GWAS, we perform association tests across many genotypes for a single phenotype. Here, the sam-
pling ratio, sensitivity, and specificity are primarily properties of the particular disease we are interested in, and we do not
expect these values to change much across the various association tests. In contrast, association tests in a PheWAS con-
sider many different disease phenotypes. In this setting, we expect the sensitivity, specificity, and sampling ratios to differ
across phenotypes, and accounting for differential bias toward the null across the various association tests may be of par-
ticular importance. There may be an opportunity to incorporate additional information such as the genetic architecture
and disease heritability into the assessment of comparative bias.

The proposed analytic framework can be useful for guiding analyses exploring sensitivity to violations of the com-
mon implicit assumptions of no outcome misclassification and ignorable sampling in EHR-based association studies
using summary results. Individual-level data are not required for our method to be applied. Our proposed approach is not
intended for parameter estimation or to correct for bias; rather, it is meant to be used as a tool for evaluating model robust-
ness to these various biases. In future work, we will develop statistical methodology to perform parameter estimation and
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characterize uncertainty under the proposed conceptual model. As part of the current work, we have developed an online
tool called SAMBA-EHR available at http://shiny.sph.umich.edu/SAMBA-EHR/. This will allow the proposed methods
to be easily implemented in practice as a part of routine sensitivity explorations for association studies using EHR-derived
outcomes.
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