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Summary

Large-scale association analyses based on observational health care databases such
as electronic health records have been a topic of increasing interest in the scientific
community. However, challenges due to non-probability sampling and phenotype
misclassification associated with the use of these data sources are often ignored in
standard analyses. The extent of the bias introduced by ignoring these factors is not
well-characterized. In this paper, we develop an analytic framework for characteriz-
ing the bias expected in disease-gene association studies based on electronic health
records when disease status misclassification and the sampling mechanism are ig-
nored. Through a sensitivity analysis approach, this framework can be used to obtain
plausible values for parameters of interest given summary results from standard anal-
ysis. We develop an online tool for performing this sensitivity analysis. Simulations
demonstrate promising properties of the proposed method. We apply our approach
to study bias in disease-gene association studies using electronic health record data
from the Michigan Genomics Initiative, a longitudinal biorepository effort within
The University Michigan health system.

KEYWORDS:
Keywords: electronic health records, GWAS, non-probability sampling, outcome misclassification, Phe-
WAS

1 INTRODUCTION

Genome-wide genotype data linked with electronic health records (EHR) are becoming increasingly available through biorepos-
itory efforts at academic medical centers, health care organizations, and population-based biobanks.1 A common use of these
linked data is to explore the association between a phenotype, D, with a risk factor of interest, G, after adjusting for potential
confounders, Z. Analysis using a regression model for D|G,Z may be repeated for millions of risk factors or genetic variants
with a given D of interest (as in genome-wide association studies, or GWAS) or for thousands of phenotypes derived from
the content of the EHR with a given variant G of interest (as in phenome-wide association studies, or PheWAS). Association
analyses embedded within large observational databases have gained popularity in recent years, and the use of and interest in
such analyses continues to increase.1,2,3 However, unlike curated and well-designed population-based studies, large observa-
tional databases are often not originally intended for research purposes, and additional thought is needed to understand potential
sources of bias and conduct principled inference. In this paper, we focus on the particular association setting with D being a
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2 Beesley ET AL

single EHR-derived phenotype and G being a single genetic marker or a polygenic risk score, but the methods and conceptual
framework developed in this paper can be applied quite broadly to general estimation problems using observational databases.
This framework is scalable and can be applied to explore the phoneme by genome landscape, where the basic unit of analysis is
still of the form of D|G,Z.
One potential source of bias in EHR-based studies is misclassification of derived disease status variables. Large-scale ag-

nostic studies using EHR often define patient disease status (phenotypes) based on international classification of disease (ICD)
codes or aggregates thereof called “PheWAS codes" or “phecodes" to define phenotypes in an automated and reproducible way.4
In practice, EHR-derived phenotype definitions are used to represent the underlying ‘true’ disease status. However, these ICD-
based phenotype classifications can be erroneous in capturing the ‘true’ disease status for a variety of reasons. For example,
psychiatric diseases can be difficult to diagnose, and diagnosis can often be subjective.5 ICD code-based diagnoses may be an
incomplete representation of a patient’s health status, which may also be recorded in doctor’s notes and elsewhere in the EHR.
In response to this problem, there exists an extensive literature on using other structured and unstructured content of the EHR to
define phenotypes more accurately.6,7,8,9,10 Additionally, human validation can be used to evaluate phenotyping algorithms.11
These existing phenotyping approaches can be effective in reducingmisclassification given the information available in the EHR,
but even the most sophisticated phenotyping algorithms cannot capture diagnoses that were never recorded in any form in the
EHR. Secondary conditions may not always be entered into the EHR, and symptoms occurring between visits may not always
be reported. The EHR cannot adequately capture diseases that a patient had prior to entry into the EHR (outside the observation
window). Unlike classical misclassification settings, the chance of correctly capturing a disease is inherently dependent on the
length of stay in the EHR or the observation/encounter process for a given patient. We often have a systematic source of misclas-
sification (that we will call “observation window bias") due to a lack of comprehensiveness of the EHR in capturing diagnoses
or medical care obtained from outside sources (e.g. at another health care center). Together, these various factors can lead to a
potentially large degree of misclassification, particularly due to underreporting of disease.
Several authors have proposed statistical methods for addressing misclassification of binary phenotypes in EHR-based studies.

The extent of misclassification can be described using quantities such as sensitivity and specificity, but these quantities can vary
from population to population and from phenotype to phenotype.12 Huang et al. (2018) proposes a likelihood-based approach
that integrates over unknown sensitivity and specificity values but requires some limited prior information about the sensitivity
and specificity.13 Wang et al. (2017) proposes an approach for incorporating both human-validated labels and error-prone phe-
notypes into the estimation, but this approach will not account for observation window bias.14 Duffy et al. (2004) and Sinnott et
al. (2014) expand on results in the measurement error literature to relate parameters in the model for the true outcome with the
model for the misclassified outcome, but the former focuses on outcome misclassification with binary risk factors, and the latter
focuses on the setting in which the probability of having observed disease is explicitly modeled using a variety of information
in the EHR.15,16 Additionally, all of these methods do not directly address the sampling mechanism.
In addition to bias due to phenotype misclassification, the mechanism by which units in the population are included in the

EHR dataset can sometimes result in biased inference when not handled appropriately. Complex sampling designs in an epi-
demiologic study can be addressed using survey design techniques if the sampling strategy is known. However, the probability
mechanism for inclusion of a person into a biorepository is not a priori fixed or defined. For convenience, we will use terms such
as “sampling" and "selection mechanism" to describe this patient inclusion process, but it should be understood that this process
is complicated and not well-characterized. Interactions with the health care system are generated by the patient, and it can be
difficult to understand the mechanism driving sampling as well as self-selection for donating biosamples, which may be related
to a broad spectrum of patient factors including overall health and demographic characteristics. Several authors recommend ad-
justing for factors such as number of health care visits or referral patterns to better account for the sampling mechanism.17,18
Moreover, there is a belief in the literature that gene-related association study results may be less susceptible to bias resulting
from patient selection.19 This belief stems from the assumption that an individual genetic locus is not usually appreciably re-
lated to selection. However, it has been shown that bias due to genotype relationships with selection can still arise in certain
settings.20 Additionally, a popular topic in genetics-related research right now is the use of polygenic risk scores, which combine
information from many genetic loci to quantify a patient’s overall inherited genetic risk for developing a particular disease.21,22
While it may be reasonable to assume that a specific genetic locus may have little association with selection, this assumption
becomes more tenuous for an aggregate polygenic risk score with stronger association with the underlying disease and other
factors related to selection.
As we will demonstrate, patient sampling can create substantial bias in estimating genetic associations using EHR data in the
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presence of disease status misclassification. Existing statistical methods for dealing with phenotype misclassification do not di-
rectly take into account the mechanism by which patients are sampled and vice versa. Additionally, standard association studies
often do not account for either source of potential bias. It is important to understand the implication of these sampling and ob-
servation processes on results from standard association analyses.
In this paper, we develop an analytic framework incorporating both disease misclassification and the patient selection mech-

anism. We use this framework to characterize the amount of bias expected in EHR-based association study results when
misclassification and the sampling mechanism are ignored (as is the common strategy). We focus on the particular setting in
which phenotypes are underreported (naturally occurring for EHR data due to limited observation window), but we also pro-
vide an extension allowing for bi-directional misclassification. The analytical expressions enhance our understanding of study
design and phenotype characteristics this bias may depend on. Through a sensitivity analysis approach, this framework can also
be used to obtain plausible values for parameters of interest given summary results from simpler analysis. Simulations demon-
strate promising properties of the proposed approach in capturing the true bias, and we provide an interactive online tool for
performing these sensitivity analyses.
We then apply our proposed methods to data from The Michigan Genomics Initiative (MGI), a longitudinal biorepository ef-

fort within the University of Michigan health system with linked genotype and EHR information for over 40,000 patients. The
patients were recruited in the Anesthesiology clinic while waiting for a surgery/diagnostic procedure. Using these data, we are
often interested in studying the association between disease and genetic factors, adjusting for demographics and other patient
characteristics. However, our EHR-derived disease status may have substantial misclassification relative to patients’ true disease
status. Additionally, we are often interested in making statements about external target populations such as the US population,
and the MGI patient pool may be poorly representative of this target population. When ignored, these factors can create a large
degree of bias in our association analyses of interest. We apply our proposed approach to explore the potential degree of bias in
two example genetic association studies in MGI, which can serve as a tutorial for how the proposed methods can inform bias
exploration after standard association analysis.

2 MODEL STRUCTURE

Let the binary variable D represent a person’s true disease status. Suppose we are interested in the relationship between D
and an individual’s inherited genetic information, G, adjusting for additional person-level information, Z. We will call this
relationship the disease mechanism as seen in Figure 1. In genetic association studies, G may represent a single SNP (single
nucleotide polymorphism) or a polygenic risk score.21 In principle, however,G can be any risk factor of interest.Z often contains
information such as age, gender, and several principal components derived from the patient’s genome-wide data. Principal
components are often included as adjustment factors as a way to adjust for patients’ genetic ancestry. In practice, we may have
many diseases or genotypes of interest in an association study, but for now we will consider the simple setting with a specific
(D,G) pair.
In studying the D∕G association using a large health care system-based database, we may have the goal of making inference

regarding the D∕G association in some pre-defined target population. For example, we may want to generalize results to the
US adult population during the time period covered by our data. Let S indicate whether a particular person in the population is
selected into our dataset (for example, by going to a particular hospital and consenting to share a biosample for research), where
the probability of a person in the population being included in the current dataset may depend on the underlying disease status,
D, along with additional covariates, W , and perhaps even G. We may often expect the sampled and non-sampled subjects to
have different rates of the disease, and other factors such as patient age, residence, access to care and general health status may
also impact whether subjects are sampled into the study dataset or not. We will call this the sampling mechanism.
Instances of the disease are recorded in hospital or administrative records. We might expect factorsX such as the patient age,

the length of follow-up, and the number of hospital visits to impact whether we actually observe/record the disease of interest
for person with the disease. Whether we incorrectly record a person as having the disease might be related to patient factors Y
(e.g. age). Define the observed disease status as D∗. D∗ is a potentially misclassified version of D. We will call the mechanism
generating D∗ the observation mechanism.
The diagram in Figure 1 shows the conceptual model structure, expressed as follows:

This article is protected by copyright. All rights reserved.



4 Beesley ET AL

Conceptual Model (1)
Disease Mechanism ∶ logit(P (D = 1|Z,G; �)) = �0 + �GG + �ZZ

Sampling Mechanism ∶ P (S = 1|D,W ,G,Z;�)
Observation Mechanisms ∶ P (D∗ = 1|D = 1, S = 1, X,G,Z; �) (Sensitivity)

P (D∗ = 1|D = 0, S = 1, Y , G,Z; �) (1 − Specif icity)

This framework allows for misclassification of the true disease status in either direction (patients with the disease may be
missed and patients may be listed as diseased who aren’t). Moving forward, however, we will restrict our focus to the particular
setting where disease status misclassification comes through underreporting. In other words,we will assume perfect specificity
with P (D∗ = 1|D = 0, S = 1, Y , G,Z; �) = 0 for all patients. This assumption may be reasonable for some EHR-derived
phenotypes, particularly cancer, where we expect the rate of overdiagnosis of disease to be generally low. We consider the more
general setting with imperfect specificity in detail in Supplementary Section S3.
Crucially, X and W may not always be fully known or measured for a given data analysis. For example, proximity to the

hospital may likely drive whether a patient is included in a given EHR, but patients’ home addresses may not be available for
privacy reasons. Standard association analyses typically do not adjust for factors that may influence selection of participants into
EHR. In our subsequent analysis, we will leverage the model structure in (1) along with assumptions aboutX andW to explore
bias without requiring X andW to be measured or known. In particular, we assume that the following hold:

Assumption 1: S ⟂ G|D,W ,Z and D∗ ⟂ G|D,S = 1, X,Z
Assumption 2: X ⟂ W |D,G,Z, S = 1
Assumption 3: X ⟂ G|D,Z, S = 1
Assumption 4:W ⟂ G|D,Z

where W and X correspond to the (theoretical) predictors driving sampling and sensitivity that are not included in Z, the set
of adjustment factors in the disease model.
The first assumption implies that G is not an independent predictor of S or D∗. This seems reasonable, especially when

G represents a single SNP. This is an important assumption, and our proposed methods may often under-estimate the bias of
standard analysis when this first assumption is violated. The second assumption states that the factors related to sampling and
related to sensitivity that are not adjusted for in the disease model are independent given D, G, and Z in the sampled subjects.
Importantly, this independence assumption conditions onD,G, andZ, andZ often includes common information such as patient
age, gender, and the first few genetic principal components. Conditionally, we may expect this assumption to be reasonable for
many EHR settings. The third assumption implies that G is unassociated with the factors related to misclassification given D
and Z on the sampled subjects. X is expected to contain information relating to a patient’s observation process (e.g. length of
follow-up), and this will generally not be driven by a patient’s genetic information given Z and D. These first three conditional
independence assumptions, therefore, may often be reasonable in typical EHR data analysis settings.
We view the fourth assumption as the strongest, since it implies that G is independent of factors related to sampling not

included in the disease model given D and Z. Suppose, however, that sampling is related to a secondary disease, D′. This
may often be the case for EHR data. If D′ is independent of G, then this dependence will not create a problem, and the fourth
assumption will be satisfied. However, ifD′ is independently related toG (givenZ andD), the fourth assumption is violated. An
example of this would be the setting of pleiotropy, where a particular SNP may be related to multiple phenotypes, which could
each contribute to the sampling mechanism. This setting has been explored extensively in the literature on secondary analyses
of case-control sampled data.23,24 Importantly, the fourth assumption will be trivially satisfied if we includeD′ and other factors
related to sampling and G as adjustment factors in the simple analysis model. Therefore, the proposed methods can be applied
to characterize bias of standard analysis even in the setting with sampling related to secondary diseases if we adjust for these
secondary diseases in the simple analysis model. We discuss this issue in more detail in Supplementary Section S5.
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3 APPROXIMATING BIAS RESULTING FROM STANDARD ANALYSIS

3.1 Approximating the Bias
Suppose that G, Z, X, and W are observed if and only if S = 1. We further require that assumptions 1-4 hold. In standard
analyses, we often fit a simple logistic regression for D∗

|G,Z, S = 1 (analysis model) with the goal of making inference about
� from the (assumed) true model summarized as follows:

Analysis Model ∶ logit(P (D∗ = 1|Z,G, S = 1)) = �(simple)0 + �(simple)G G + �(simple)Z Z (2)
True Model ∶ logit(P (D = 1|Z,G)) = �0 + �GG + �ZZ

In general, �G and �(simple)G may be unequal. As shown in the Supplementary Section S2, we can relate the analysis model to
the conceptual model in (1) as follows:

P (D∗ = 1|G,Z, S = 1; �(simple)) =
P (D = 1|G,Z; �)c1(Z; �)r(Z;�)

P (D = 1|G,Z; �)[1 − c1(Z; �)]r(Z;�) + P (D = 0|G,Z; �)
Interestingly, the impact of selection and misclassification on the relationship between the target and analysis models boils down
to contributions of two functions of Z as follows:

c1(Z; �) = ∫ f (D∗ = 1|D = 1, X,Z, S = 1; �)f (X|D = 1, Z, S = 1)dX = Sensitivity

r(Z;�) =
∫ P (S = 1|D = 1,W ,Z;�)f (W |D = 1, Z)dW
∫ P (S = 1|D = 0,W ,Z;�)f (W |D = 0, Z)dW

= Sampling Ratio

We can viewD∗ as a noisy diagnostic for the true value ofD with potentially imperfect sensitivity, where c1(Z; �) represents
the sensitivity ofD∗ forD in the sampled patients, averaged over the distribution ofX. We consider the more general setting with
imperfect specificity in Supplementary Section S3.1. r(Z;�) represents the ratio of sampling probabilities comparing subjects
with D = 1 and D = 0, where each probability is averaged over the distribution of W . These expressions may both depend
on Z. However, c1(Z; �) and r(Z;�) depend on distinct parameters, so they can vary independently conditional on Z. These
functions theoretically depend on various covariate distributions, but we will not need to specify these distributions in practice.
We assume that covariates Z are centered so that they have mean zero and that the data are modeled as in (1). Let c̄1 and r̄

be c1(Z; �) and r(Z;�) evaluated at Z̄ = 0. In Supplementary Section S2.1, we use first order Taylor series approximation to
obtain expressions for the intercept and coefficient for G in the analysis model as functions of parameters in the true model. We
consider two different cases with two types of genetic variables G.
Case 1: G is a SNP Suppose that G represents a single genetic locus or SNP, coded 0/1/2 to represent the patient’s number
of copies of the minor allele at a bi-allelic locus. Let MAF denote known minor allele frequency in the population, which
we assume is at least 0.05 (common variant). We can express the analysis model parameters as a function of the true model
parameters as follows:

�(simple)0 ≈�0 + log(c̄1) + log(r̄) − log
(

e�0+2�GMAF [1 − c̄1]r̄ + 1
)

+ 2�GMAF
[

e�0+2�GMAF (1 − c̄1)r̄
e�0+2�GMAF (1 − c̄1)r̄ + 1

]

�(simple)G ≈
[

1
e�0+2�GMAF (1 − c̄1)r̄ + 1

]

�G (3)

Here, we approximate the sample MAF with the population MAF as discussed in Supplementary Section S3.1.
Case 2: G is a Polygenic Risk Score Suppose instead that G is a continuous predictor such as a polygenic risk score (as dis-
cussed in Dudbridge et al. (2013)) and suppose G has been centered to have mean zero.25 In this setting, we can express the
analysis model parameters as follows:

�(simple)0 ≈�0 + log(c̄1) + log(r̄) − log
(

e�0[1 − c̄1]r̄ + 1
)

�(simple)G ≈
[

1
e�0(1 − c̄1)r̄ + 1

]

�G (4)

This article is protected by copyright. All rights reserved.



6 Beesley ET AL

Simulations exploring the correspondence between the approximations in (3) and (4) and standard estimated parameters can be
found in Figure S2. These simulations indicate an excellent ability of these expressions to capture bias in simulated data.

3.2 Understanding the Structure of the Bias
We can use expressions (3) and (4) to develop some intuition for settings in which we expect greater or less relative bias when
performing the “simple" routine analysis. Table S1 describes the general impact of the various model parameters on the bias of
�(simple)G , the log-odds ratio parameter associated with G in the simple analysis model. As expected under assumptions 1-4, there
is no bias in estimating �(simple)G when we have perfect sensitivity. This may not be the case if one or more of these assumptions
are violated. Suppose instead that c̄1 < 1. In this case, we expect bias in �(simple)G , and the absolute bias will depend on the
sensitivity, the disease sampling ratio r̄, the population prevalence of the disease, the magnitude of �G, and (in case 1) theMAF
of the genetic locus of interest.
Suppose we assume that the sampling ratio is 1 or 5, so diseased and non-diseased people are sampled at a 5:1 or 1:1 ratio

on average respectively. Figure 2 shows the value for �(simple)G we may obtain if we fit a model for D∗
|G,Z using the sampled

data with a minor allele frequency of 0.2 and true �G either 0.5 or 0.1. As the sensitivity decreases, the “simple" estimate of �G
becomes increasingly biased (relative and absolute bias) toward the null. The level of bias depends strongly on the population
prevalence of the disease. For less common diseases (e.g. less than 10% of the population), we may expect to observe relatively
low relative bias in estimating �G even with low sensitivity for observingD in the sampled patients. Additionally, we expect the
absolute bias to be generally small when we have lower true values for �G. For moderate to large values of �G, misclassification
and sampling can have a substantial impact on the absolute bias for �(simple)G . This provides some support to the notion that absolute
bias in GWAS studies (where the �G values are expected to be generally small) may be less of a concern, particularly when
we are studying a less common disease. However, if we are studying a disease that has higher population prevalence or larger
values for �G (for example, a highly penetrant SNP), we may be more concerned about the potential for absolute bias induced
by ignoring disease misclassification and/or sampling. As shown in Table S2, the bias has a more complicated relationship with
disease prevalence and sensitivity in the presence of disease overreporting. We created an online RShiny tool called SAMBA-
EHR (SamplingAndMisclassification BiasAnalysis for EHR-based association studies) for exploring the impact of the various
parameters on the bias for both the intercept and association parameters, available at http://shiny.sph.umich.edu/SAMBA-EHR/.

3.3 Sensitivity analysis of potential bias in genetic association estimates
An alternative use of (3) and (4) is in a sensitivity analysis in a reverse direction, where we can obtain reasonable values of �G
across plausible values of r̄ and c̄1 based on the parameter estimates from the “simple" standard analysis. Suppose we have an
estimate for �(simple)G and that G is a single genetic locus. This estimate can be based on direct data analysis or can be obtained
from published summary statistics. Using information from the population to obtain reasonable values for �0, we can explore
plausible values for �G by solving (3) for �G. In practice, �0 itself may not be known. In this setting, we propose performing the
sensitivity analysis for a plausible window of �0 using a rough estimate for the population prevalence, P (D = 1), or treating �0
as an input value. Alternatively, suppose that �(simple)0 is also available. In this case, we can obtain �G by solving

�(simple)G ≈
c̄1 − e�

(simple)
0 (1 − c̄1)

c̄1 − e�
(simple)
0 (1 − c̄1)

[

1 − e2�GMAF
]

�G (5)

for �G. In this case, predicted �G will be a function of c̄1 and �(simple) but not r̄. Similar expressions for predicting �G whenG is a
PRS can be found in Supplementary Section S2.2, and the setting with imperfect specificity is considered in Supplementary
Section S3.2. In some settings, these expressions may have no solution for given values of r̄ and c̄1. When this happens, it usually
corresponds to a setting that is highly incompatible with the observed data.

4 SIMULATIONS EVALUATING PROPOSED SENSITIVITY ANALYSIS

In this section, we present results from a simulation study evaluating the relationship between true �G and values predicted using
the sensitivity analysis approach proposed in Section 3.3. Since the method used to derive the predicted �G depends on Taylor
series approximations and relies on Assumptions 1-4 in Section 2 holding, we are particularly interested in evaluating settings
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in which our sensitivity analysis approach does and does not do a good job of predicting �G.
The simulation study is broken up into two parts. In part 1, we consider a simple setting where G is a genotype on a single

marker with MAF = 0.2 and whereZ,W andX are empty. We simulate 100 datasets with 5000 patients each following (1) and
under different population disease rates (1, 5, and 10%). We then impose sub-sampling and disease status misclassification with
different values of c̄1 and r̄. In order to evaluate the role of relationships between G, Z, X, and W in our sensitivity analysis
predictions, we perform a second set of simulations. In simulation part 2, we consider a more complicated simulation scenario
in which G is a PRS and has different relationships with non-empty Z,W , and X = (X1, X2). In each setting, we again simu-
late 100 datasets with 5000 patients each, all with an average sensitivity of roughly 0.4 and a population disease rate of roughly
5%. We consider 8 different relationships. In the first setting, G and Z are related but independent ofW and X. In settings 2-
4, Z is associated with X. In settings 5-6, Z is associated withW . In settings 1-6, key assumptions 1-4 are satisfied. Settings
7 and 8 consider violations of assumptions 3 and 4 respectively. True disease status was generated assuming a 5% population
disease rate, and misclassification and sub-sampling were imposed given c̄ ≈ 0.4 and r̄ between 1 and 2. Additional details are
available in Supplementary Section S6. For each simulated dataset, we estimate �(simple) by fitting a logistic regression model
for the misclassified outcome D∗ given G and possibly Z on the sampled patients.
Part 1a: predicting �G with available �(simple)0 : First, we suppose that both �(simple)0 and �(simple)G are available for each simulated

dataset. We then apply methods in (5) to obtain a predicted value of �G assuming a working value for c̄. Figure 3 shows predic-
tions for �G across 100 simulated datasets, where each subplot corresponds to different true values for c̄1 and �0. In each subplot,
the boxplot corresponding to the true sensitivity is bolded. In all settings considered, the median predicted �G is near the true
value of 0.5 when c̄1 is correctly specified. The sensitivity of predicted �G to values of c̄1 strongly depends on the population
disease rate. For prevalence < 1%, only very low sensitivities far from the true c̄1 produced predicted �G far from the true value
of 0.5. Additionally, assuming sensitivities of 1 did not result in much bias in estimated �G on average (<0.05). In contrast, pre-
dicted sensitivities strongly varied across assumed c̄1 when the population disease rate was larger. Also, assuming sensitivities
of 1 produced strong bias up to roughly 0.2 for true c̄1 = 0.4.
Part 1b: predicting �G with available �0: Suppose instead that �

(simple)
0 is not known and instead we have some sense of �0. In

practice, we can treat �0 as an input value informed by some known population disease rate. Figures S3-S6 show predictions
for �G obtained by inverting (3) with respect to �G. These predictions depend on assumed values for c̄1 along with r̄. These sim-
ulations again demonstrate an ability of our sensitivity analysis approach to recover the true �G on average when evaluated at
the true values for r̄ and c̄1.
Part 2: predicting �G with available �(simple)0 : In this section, we obtain predictions for �G for each simulated data using (Sup-

pEq. 2.7). Figure 4 presents boxplots of the predicted �G across 500 simulated datasets in each simulation setting and across
different assumed values for c̄1. We focus our attention on the boxplot of predicted �G values corresponding to the true c̄1 (de-
noted in bold) in each setting. We assume Z is not a direct driver of sampling or misclassification for all simulations except
setting 6. Median predicted values of �G are 0.47, 0.47, 0.44, 0.47, 0.50, 0.49, 0.63, and 0.36 for the 8 simulation settings. In
settings 7 and 8 where assumptions 1-4 are violated, the predicted �G values clearly miss the mark, with median biases of 26%
and 28% relative to the truth. We are more concerned with relationships between Z and W and/or X, which are not directly
addressed by assumptions 1-4. When Z is related toW (even strongly) or a direct driver of selection, the proposed methods do
a good job of recovering �G in these simulations (settings 5 and 6). A more challenging setting occurs when Z is related to X.
In setting 3, we see median biases of 11% relative to the truth, and this bias tends to increase as the association between Z and
X gets stronger. When G and Z are independent, however, the relationship between Z and misclassification does not adversely
impact the performance of our proposed methods (e.g. setting 4). These results demonstrate that, unsurprisingly, our proposed
methods perform poorly when assumptions 3 and 4 are violated. Additionally, we can have some residual bias whenZ is at least
moderately related to misclassification in the setting where Z and G are related. Although not seen in our simulations, there
may still be a potential for residual bias when Z is related to both selection and G.

5 BIAS EXPLORATION IN THE MICHIGAN GENOMICS INITIATIVE

The Michigan Genomics Initiative (MGI) is a longitudinal biorepository effort linked to EHR within the University of Michigan
health system, referred to asMichiganMedicine. The present analysis contains over 40,000 unrelated patients of recent European
ancestry with matched genotype and phenotype information. Using these data, we are often interested in studying the association
between disease and genetic factorsG, adjusting for demographic factors such as age and gender alongwith principal components
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of the genotype data as a whole. Together, these factors compose Z.
Suppose we define our hypothetical “target population" as the general US population. Figure 5 provides a rough visualization

of the sampling/selection stages a patient goes through to be included inMGI.We assume that there is some unknownmechanism
associated with each of these selection stages, which together form the composite “sampling mechanism" in Eq. 1. Overall,
patients in MGI tend to be sicker and have a greater number of diagnoses than the general Michigan population and even the
Michigan Medicine population.1 Patient selection may likely be related to disease status, creating a large potential for bias due
to patient selection in association models. EHR-derived disease status may also be misclassified, resulting in information bias.
Previous analyses have explored associations between single geneticmarkers and polygenic risk scores with cancer phenotypes

for patients in MGI using simple analysis methods involving fitting a model for D∗
|G,Z, S = 1.1,21 These analyses ignore

the potential bias induced by the sampling and phenotype misclassification mechanisms. We are interested in evaluating the
potential impact of the sampling and misclassification mechanisms on inference. Below, we perform the proposed sensitivity
analyses to study to robustness of SNP-phenotype and PRS-phenotype associations in MGI for different assumed sampling and
phenotype misclassification mechanisms. Since we are interested in cancer phenotypes, which may only rarely be incorrectly
diagnosed, we assume perfect specificity for these analyses.
For our proposed sensitivity analysis approach,X andW do not need to be specified explicitly; rather, we consider effects of

misclassification and patient selection integrated over predictor components inX andW . Still, our analytic derivations hinge on
our ability to satisfy assumptions 1-4, so hypothetical consideration of X andW is necessary. First, we clarify our notation. In
our analyses, we will consider six cancer phenotypes for breast, prostate, bladder, and colorectal cancers along with melanoma
and non-Hodgkins lymphoma. In each exploration, EHR-derived phenotypes are denoted byD∗, and we letD represent the true
disease status. G either represents a single SNP or a polygenic risk score, and our analyses adjusted for patient age, gender, and
the principal components of the genotype data (Z). For these data, we believe X primarily consists of factors related to each
patient’s observation process such as the number of doctor’s visits and the length of the observation window. Other factors such
as age and gender may also be related to misclassification. It is difficult to assess factors related to patient selection, but we
expect patient selection into MGI to be broadly related to the patient’s overall health status and demographic factors. We explore
differences between MGI patients and Michigan Medicine and the US adult population in Table S4. We believe assumptions
1-3 are reasonably well satisfied for these analyses, and assumption 4 is reasonable when G represents a single genetic locus.
When G represents a PRS, the independence between G and other diseases included inW may hold conditional on true disease
status and demographic variables in Z.

5.1 Association analysis with Polygenic Risk Scores
Previous work in Fritsche et al. (2018) explored associations between polygenic risk scores (PRS) and their corresponding EHR-
derived phenotypes D∗ in MGI for several cancer phenotypes.21 They fit the following analysis model: logit(P (D∗

|G,Z, S =
1)) = �(simple)0 + �(simple)G PRS + �(simple)Z Z where Z contained age, gender (when relevant), 4 principal components of the geno-
type data, and genotype batch information. D∗ indicators were defined as 1 if the patient ever had a given disease diagnosis
record in the EHR via ICD codes. We are interested in exploring the robustness of these published summary results to different
sampling and misclassification mechanisms for six different cancer diagnoses. We treat the published PRS association summary
statistics as our �(simple)G values, and we use the corresponding Michigan prevalence rates reported in Beesley et al. (2018) to ap-
proximate �0 for each of the six cancers of interest.1 These published PRS summary statistics and prevalences values are listed
in Table S3. We use the upper and lower confidence interval limits for �(simple)G to create an interval for �G.
Figure 6 shows the predicted interval for �G assuming different sampling ratios and sensitivities for each of the six selected

cancers, where the vertical bars correspond to transformations of the 95% confidence intervals for standard analysis under dif-
ferent assumed values for r̄ and c̄1. Estimates for cancer of the bladder, non-Hodgkins lymphoma, and colorectal cancer are all
very robust to different values for the sampling ratio and sensitivity, where the predicted PRS log-odds ratios were never beyond
the 95% confidence intervals for the standard analysis. There are two primary reasons for this phenomenon. Firstly, the popula-
tion prevalences of these three cancers are all low (less than 5%). As shown previously, we expect to see less relative bias in this
setting. Secondly, the estimated association between the PRS and the disease is small in all of these cases (log-odds ratio values
less than 0.35). While the relative bias will not appreciably change as �G changes, the absolute bias will be small for small �G.
For evaluated settings in these three cancers, absolute bias was always less than 0.10. In contrast, breast and prostate cancer have
high prevalences (>10%), and the corresponding PRS associations are strong (log-odds ratios of 0.83 and 1.19 respectively).
For these two PRS associations, our results suggest we may have appreciable relative bias if the sampling ratio is moderate to
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large and the disease outcome is at least moderately misclassified. In an extreme setting where the sensitivity is very low (e.g.
0.1) and the sampling fraction is fairly high (e.g. 10), we see predicted �G nearly doubles the observed �(simple)G for both breast
and prostate cancers. Notably, this corresponds to absolute biases of up to 1.35 on the log-odds ratio scale. In reality, we do not
know the sampling ratio, and we explore plausible values for the sampling ratio for these cancers in MGI in Figure S10.
In all cases inFigure 6, the confidence interval for the PRS-phenotype association is far from zero, and adjustment for misclas-

sification and sampling under our model would move estimated �G even farther from zero. Therefore, our general conclusions
of a moderate or strong association between the PRS and the phenotype of interest remain robust across scenarios. However, we
expect decreases in power for a test for �(simple)G being nonzero when we have bias toward the null. We will evaluate properties
of resulting tests and decision rules in future work exploring corrected estimation and inference techniques for �G.

5.2 Genetic association analysis using individual markers
We perform a breast cancer GWAS using a cohort of over 40,000 unrelated patients in MGI of recent European descent. We
fit the following logistic mixed model using the method in Zhou et al. (2018)26: logit(P (D∗

|G,Z, S = 1, !)) = �(simple)0 +
�(simple)G SNP + �(simple)Z Z + ! where Z contained age, 4 principal components of the genotype data, and genotype batch infor-
mation. Here, ! is a random effect term accounting for potential residual sample relatedness. Although not strictly the analysis
model in 3.1, we will treat the resulting �(simple)G as if it were from a standard logistic regression. This analysis was performed on
a 10:1 matched subset of patients based on age and the first four principal components of the genome-wide data. The breast can-
cer phenotype D∗ indicated whether the patient ever had a ICD-based breast cancer diagnosis recorded at Michigan Medicine,
defined using phecodes based on ICD codes using the R package PheWAS.4
We first compare GWAS results in MGI (�(simple)G ) with 563 reported associations from the NHGRI-EBI GWAS catalog (�G),

which combines results from meta-analysis of the largest and highest quality studies (https://www.ebi.ac.uk/gwas/). We treat
NHGRI-EBI GWAS catalog as a comparative gold standard. As shown in Figure S7, the association results using MGI data
are generally similar to GWAS catalog results, but there are some specific SNPs for which the results differ. Overall, MGI re-
sults appear attenuated relative to the GWAS catalog results, with Lin’s concordance correlation coefficient of 0.59 (95% CI:
0.52, 0.63). We focus on 6 individual loci for which the GWAS catalog estimate (�G) differs appreciably from the MGI estimate
(�(simple)G ). For this exploration, we fix �0 = logit(0.124), using the US female population lifetime rate of breast cancer.1
In Figure S8, we explore plausible values of �G in MGI across different potential sampling ratios and sensitivities. We obtain

rough intervals for �G for fixed values of r̄ and c̄1 by transforming the upper and lower 95% confidence interval limits of the
standard MGI GWAS estimate for each locus. In Supplementary Section S8, we describe one approach for getting a sense of
plausible values for the sampling ratio. As either the sensitivity or sampling ratio goes to 1, the interval shown in the figure gets
closer to the 95% confidence interval for the corresponding GWAS estimate in MGI. We note that, in principle, we expect some
bias in �(simple)G when we have imperfect sensitivity, but we see very little absolute bias (e.g. < 0.03) when r̄ is small (e.g. < 2).
This is primarily due to the small estimates for �(simple)G . Bias in �(simple)G is expected to be proportional to the true value of �G, and
for small �G, we may not see much absolute bias (e.g. < 0.02) even for very low sensitivity when the sampling ratio is near 1.
As the sampling ratio increases, however, the relative and absolute biases increase, and the predicted �G becomes more extreme.
For example, r̄ = 20 and c̄1 = 0.1 results in a predicted �G of 0.66 from a standard analysis value of 0.13 (95% CI: 0.07, 0.20).
For the sake of comparison, we present an example for which the association in MGI and the GWAS catalog are nearly identical
in the Figure S9. These results suggest that even GWAS results can potentially be impacted by sampling and misclassification.

6 DISCUSSION

The proposed conceptual and sensitivity analysis framework allows us to explore the amount of bias we might expect in large
association study results when we ignore issues of disease status misclassification and sampling related to disease and patient
characteristics, as is often done in association studies using EHR-derived outcomes. Previous literature generally suggests that
we may usually expect little bias in genotype-phenotype associations, and our statistical results lend credence to this belief when
the disease of interest has low prevalence, say less than 10%, and sampling does not depend on the underlying disease status.
When the disease of interest has higher prevalence in the population or the phenotype misclassification rates are higher, how-
ever, the sampling mechanism can have a substantial impact in biasing association results. Without any misclassification of the
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outcome, we do not expect much bias in log-odds ratio association parameters unless sampling is associated with both the un-
derlying disease status and the covariate of interest given the adjustment factors. This is a property of the logistic regression
modeling assumptions as has been explored in detail in the literature on secondary analysis of case-control sampled data and in
Supplementary Section S5, and modeling disease using different link functions may produce slightly different results.23,24
We consider settings in which misclassification has perfect or imperfect specificity. Assuming perfect specificity (no over-

reporting of disease), we observe a higher potential for bias toward the null in the simple analysis for diseases with higher
population disease prevalence. This assumption may be reasonable for many EHR-derived phenotypes, where the large part of
misclassification is expected to be a result of underreporting of disease. In the setting of imperfect specificity, which may oc-
casionally arise for diseases that are difficult to diagnose such as psychiatric disorders, we may have bias either toward or away
from the null, and the general relationship between disease prevalence and bias is much less clear. The current exploration fo-
cuses on bias in effect estimates, but we may also be interested in p-values and hypothesis testing. We expect effect estimates
biased toward the null to result in a loss of statistical power. We will explore the issues of Type I error and power in detail in a
follow-up paper focused on estimation under the proposed model.
One advantage of the proposed modeling framework is that it does not require parametric modeling assumptions to be made

for the sampling mechanism or the observation mechanisms (related to sensitivity and specificity). Additionally, we do not re-
quire factors driving misclassification and patient selection to be entirely understood or even observed. Instead, our results are
guided by independence assumptions made on the relationships between drivers of these various mechanisms, and our pro-
posed analysis approach involves terms integrating over these unknown factors driving selection and misclassification. A strong
assumption made in the course of this paper is that the predictors related to sampling that are not included in the simple anal-
ysis model are independent of the genetic information of interest, conditional on the true disease status and adjustment factors
Z. Since Z often contains age, gender, and several principal components of the genotype information, this may often be a rea-
sonable assumption for EHR data. A challenging setting, however, is one in which sampling is related to a secondary disease
D′ that is independently related to G even adjusting for D and Z (perhaps due to pleiotropy). Our results can only be applied
in this setting when simple analysis adjusts for any secondary diseases that are independently related to G. Secondary diseases
independent of G, however, do not need to be adjusted for.
When our model assumptions are satisfied, the proposed methods can often recover the true relationship between genetic fac-

tors G and disease status D for known sensitivity and sampling mechanisms. One setting in which the proposed methods may
struggle is when genetic factors G and adjustment factors Z are associated and Z is associated with factors driving phenotype
misclassification, X. In this case, the first order Taylor series approximations used to derive the bias expressions may be inad-
equate, resulting in residual bias in the predicted parameter of interest. For example, suppose that body mass index (BMI) is
included as an adjustment factor in Z and is also at least moderately related to whether the disease is observed. If BMI is also
related to the genetic factor G, the proposed methods can run into trouble. However, the relationship between Z and X only
causes complications when G and Z are associated. When Z contains age, gender, and the principal components of the geno-
type data, it may be reasonable to assume that G is independent or only very weakly related to Z, particularly when analysis
focuses on patients of recent European descent as in the MGI example. For many EHR-based data analyses, therefore, we do
not expect this potential for residual bias to be of much concern. In the course of our statistical development, we also assume
that Z is mean-centered, but we could equivalently assume Z is median-centered for highly skewed data. A challenging setting
occurs when Z is highly variable. In this case, we hypothesize that the the first order Taylor series approximations used in our
statistical development may be insufficient, and additional orders of approximation may be needed.
In this paper, we focus on exploring the potential impact of selection and information biases on a single genotype-phenotype

association, but we are often interested in studying many genotype-phenotype associations. A natural question is the extent at
which this bias impacts comparison across naíve parameter estimates in a large association study. In the case of GWAS, we per-
form association tests across many genotypes for a single phenotype. Here, the sampling ratio, sensitivity, and specificity are
primarily properties of the particular disease we are interested in, and we do not expect these values to change much across the
various association tests. In contrast, association tests in a PheWAS consider many different disease phenotypes. In this setting,
we expect the sensitivity, specificity, and sampling ratios to differ across phenotypes, and accounting for differential bias toward
the null across the various association tests may be of particular importance. There may be an opportunity to incorporate addi-
tional information such as the genetic architecture and disease heritability into the assessment of comparative bias.
The proposed analytic framework can be useful for guiding analyses exploring sensitivity to violations of the common im-

plicit assumptions of no outcome misclassification and ignorable sampling in EHR-based association studies using summary
results. Individual-level data are not required for our method to be applied. Our proposed approach is not intended for parameter
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estimation or to correct for bias; rather, it is meant to be used as a tool for evaluating model robustness to these various biases.
In future work, we will develop statistical methodology to perform parameter estimation and characterize uncertainty under the
proposed conceptual model. As part of the current work, we have developed an online tool called SAMBA-EHR (SamplingAnd
MisclassificationBiasAnalysis for EHR-based association studies) available at http://shiny.sph.umich.edu/SAMBA-EHR/. This
will allow the proposed methods to be easily implemented in practice as a part of routine sensitivity explorations for association
studies using EHR-derived outcomes.

7 ACKNOWLEDGMENTS

The authors would like to thank Chad Brummet, Goncalo Abecasis, and Sachin Kheterpal along with the large group of collab-
orators at Michigan Genomics Initiative and also the MGI participants for generously donating their biosamples for research.
This work was supported by NSF grant DMS1712933, The University of Michigan Comprehensive Cancer Center core grant
supplement 5P30-CA-046592, and The University of Michigan precision health award U063790. The authors acknowledge the
University of Michigan Medical School Central Biorepository for providing biospecimen storage, management, and distribution
services in support of the research reported in this publication. Dr. Lauren J. Beesley wrote the manuscript and developed the
methodology and the online SAMBA-EHR application.Dr. Lars G. Fritsche helped edit the paper and facilitated data acquisition
and interpretation.Dr. BhramarMukherjeewrote themanuscript and provided key guidance on themethodology andmanuscript.
Conflict of Interest: None declared.Data Availability: TheMichigan Genomics Initiative data used in this paper may be available
for research purposes after IRB approval. More information available at https://precisionhealth.umich.edu/michigangenomics/.

References

1. Beesley LJ, Salvatore M, Fritsche LG, et al. The Emerging Landscape of Epidemiological Research Based on Biobanks
Linked to Electronic Health Records. Preprints.org 2018: 1–35.

2. Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover
gene-disease associations. Bioinformatics 2010; 26(9): 1205–1210.

3. Wolford BN,Willer CJ, Surakka I. Electronic health records: The next wave of complex disease genetics.HumanMolecular
Genetics 2018; 27(R1): R14–R21.

4. Carroll RJ, Bastarache L, Denny JC. R PheWAS: Data analysis and plotting tools for phenome-wide association studies in
the R environment. Bioinformatics 2014; 30(16): 2375–2376.

5. Castro VM, Minnier J, Murphy SN, et al. Validation of electronic health record phenotyping of bipolar disorder cases and
controls. American Journal of Psychiatry 2015; 172(4): 363–372.

6. Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome–phenome relationship using phenome-wide
association studies. Nature Reviews Genetics 2016; 17(3): 129–145.

7. Liao KP, Cai T, Savova GK, et al. Development of phenotype algorithms using electronic medical records and incorporating
natural language processing. BMJ 2015; 350: 1–5.

8. Castro V, Shen Y, Yu S, et al. Identification of subjects with polycystic ovary syndrome using electronic health records.
Reproductive Biology and Endocrinology 2015; 13(116): 1–8.

9. Yu C, Guo Y, Bian Z, et al. Association of low-activity ALDH2 and alcohol consumption with risk of esophageal cancer
in Chinese adults: A population-based cohort study. International Journal of Cancer 2018: 1–28.

10. Kermany DS, Goldbaum M, Cai W, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep
Learning. Cell 2018; 172(5): 1122–1131.

11. Liao KP, Sparks JA, Hejblum BP, et al. Phenome-Wide Association Study of Autoantibodies to Citrullinated and
Noncitrullinated Epitopes in Rheumatoid Arthritis. Arthritis and Rheumatology 2017; 69(4): 742–749.

This article is protected by copyright. All rights reserved.

http://shiny.sph.umich.edu/SAMBA-EHR/
https://precisionhealth.umich.edu/michigangenomics/


12 Beesley ET AL

12. Hubbard RA, Benjamin-Johnson R, Onega T, Smith-Bindman R, ZhuW, Fenton JJ. Classification accuracy of claims-based
methods for identifying providers failing to meet performance targets. Statistics in Medicine 2015; 34(1): 93–105.

13. Huang J, Duan R, Hubbard RA, et al. PIE: A prior knowledge guided integrated likelihood estimation method for bias reduc-
tion in association studies using electronic health records data. Journal of the American Medical Informatics Association
2018; 25(3): 345–352.

14. Wang L, Damrauer SM, Zhang H, et al. Phenotype validation in electronic health records based genetic association studies.
Genet Epidemiol. 2017; 41(8): 790–800.

15. Duffy SW, Warwick J, Williams AR, et al. A simple model for potential use with a misclassified binary outcome in
epidemiology. Journal of Epidemiology and Community Health 2004; 58(8): 712–717.

16. Sinnott JA, Dai W, Liao KP, et al. Improving the power of genetic association tests with imperfect phenotype derived from
electronic medical records. Human Genetics 2014; 133(11): 1369–1382.

17. Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias due to the number of health
encounters in an electronic health record. American Journal of Epidemiology 2016; 184(11): 847–855.

18. Phelan M, Bhavsar N, Goldstein BA. Illustrating Informed Presence Bias in Electronic Health Records Data: How Patient
Interactions with a Health System Can Impact Inference. eGEMs (Generating Evidence & Methods to improve patient
outcomes) 2017; 5(1): 22.

19. Smith GD, Ebrahim S. ’Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental
determinants of disease?. International Journal of Epidemiology 2003; 32(1): 1–22.

20. Avery CL,MondaKL, North KE. Genetic association studies and the effect of misclassification and selection bias in putative
confounders. BMC Proceedings 2009; 3(Suppl 7): S48.

21. Fritsche LG, Gruber SB, Wu Z, et al. Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study:
Results from The Michigan Genomics Initiative. The American Journal of Human Genetics 2018; 102(6): 1–14.

22. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet 2018; 19:
581–590.

23. Jiang Y, Scott AJ, Wild CJ. Secondary analysis of case-control data. Statistics in Medicine 2006; 25(8): 1323–1339.

24. Tchetgen Tchetgen EJ. A general regression framework for a secondary outcome in case – control studies. Biostatistics
2014; 15(1): 117–128.

25. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet 2013; 9(3): 1003348.

26. Zhou X, Douglas IJ, Shen R, Bate A. Signal Detection for Recently Approved Products: Adapting and Evaluating Self-
Controlled Case Series Method Using a US Claims and UK Electronic Medical Records Database.Drug Safety 2018; 41(5):
523–536. doi: 10.1007/s40264-017-0626-y

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1007/s40264-017-0626-y


Beesley ET AL 13

Figure 1 Diagram of the assumed data structure

Figure 2 Standard analysis log-odds ratio for G when we model D∗
|G,Z, S = 1*
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* This figure presents the analytical prediction for �(simple)G (y-axis) from (3) for a SNP with population MAF of 0.2 as a function of true sensitivity c̄ (x-axis). The analytical
expression is evaluated across multiple population disease rates, calculated as expit(�0). Figure panels correspond to different values for the true sampling ratio, r̄, and the
true association between G and D, denoted �G and plotted with the horizontal dotted line.
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Figure 3 Predicted �G for SNP across different assumed sensitivities using available �(simple)0 *
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* Each panel of this figure summarizes the predicted �G values for a SNP obtained using expression (5) across 100 different simulated datasets. Each boxplot corresponds
to the predicted �G values (y-axis) for a different working value of c̄1 (x-axis). Each panel in this figure corresponds to one of nine simulation settings corresponding to
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are empty.
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Figure 4 Predicted �G for PRS under more complicated covariate relationships
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Figure 5 Schematic representation of the sampling stages and phenotype ascertainment in MGI with respect to a US target
population*
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Figure 6 Sensitivity Analysis for PRS-phenotype associations for six different cancers*
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* This figure presents predicted confidence intervals for �G (y-axis) obtained by transforming the published standard PRS-disease odds ratio and upper/lower 95% interval
limits using �G ≈

[

1
e�0 (1−c̄1)r̄+1

]−1
�(simple)G . This expression is a function of c̄1 and r̄, and we plot the predicted intervals across different working values for c̄1 and r̄ along

the x-axis of each panel. Vertical bars correspond to the transformed interval for �G assuming the corresponding value for r̄ and c̄1. This transformation is a function of
�0, which was determined by transforming population disease rates as shown in Table S3. Each panel corresponds to the PRS-disease association for a different cancer of
interest as reported in Fritsche et al. (2018). Horizontal lines correspond to the standard point estimate and 95% confidence intervals.
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Response to the Reviewer 1 
 
SPECIFIC POINTS 
 

1. I think it would be easier to follow the derivations and assumptions if you 
expressed models (1) and later expressions in terms of factors Z, W, X and Y, 
where W, X and Y are not in Z; that is, they are what you now call W† etc. 

 
Response: We agree with the reviewer that the previous notation was hard to 
follow at times. In response, we have updated the notation as suggested by the 
reviewer. Please see new notation as described on page 4 of the manuscript.  
 

2. Section 4: I find the part 1 simulation scenario to be of little interest; I cannot think 
of settings where it would be an adequate framework. Part 2 is more reasonable, 
though still quite simple. In Figure 4, the true “average” sensitivities for each 
panel are, as I understand it, equal to 0.4, which is the bold value in each panel. 
This seems low; what is the motivation? It would also help if you gave this value 
explicitly in section 4. 
 
Response: The simulations in part 1, while simple, do demonstrate that the 
proposed sensitivity analysis approach performs well under these settings where 
assumptions under which we derive the results hold. Since this approach is 
based on Taylor series approximations, such good performance was not 
guaranteed, and we wanted to demonstrate the adequacy of the approximation in 
simple cases prior to moving on to more complicated situations in part 2. 
  
In reference to the choice of 0.4 as the sensitivity in Figure 4, we chose this 
lower value for two main reasons. First, the impact of ignoring sensitivity is larger 
for smaller sensitivities, and we felt that a lower sensitivity would demonstrate the 
properties of interest in Figure 4 better than a very high sensitivity. Secondly, 
while this sensitivity may seem low initially, we believe that this could actually be 
a plausible value in practice with EHR data. In this paper, we are considering D 
defined not based on the medical record itself but based on a patient’s true 
disease state up to the current time. Previous work has explored the rates of 
misclassification for particular ICD code-based phenotypes relative to information 
in the greater EHR (e.g. doctor’s notes, lab values, etc), but the actual level of 
misclassification relative to true disease state is comparatively unexplored. For 
patients with short follow-up in a given EHR (as is the case for many patients in 
MGI), it seems reasonable that the MGI-based phenotyping would miss a large 
number of diseases a patient truly has or had. Therefore, a sensitivity of 0.4 on 
average is within the realm of possibility for certain datasets such as MGI. 
  

We have added text in Section 4 to include this 0.4 sensitivity value 
explicitly. However, we have also repeated the simulations presented in Figure 4 
using a marginal sensitivity of roughly 0.7, resulting in Revision Figure 1 (see 
below). The results are very similar to those under marginal sensitivity of 0.4. 
This figure is included in the supplementary material.  
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Revision Figure 1: Predicted 𝜃𝜃𝐺𝐺 for PRS under more complicated covariate 
relationships for marginal sensitivity of 0.7 

 
 

3. (in reference to Section 5) (a) What exactly is Michigan Medicine? (b) I am 
nitpicking a bit, but I would not call what you use “mechanisms” (line 6 of 
paragraph 2); they are models but I don’t see any underlying mechanism 
motivating them. Similarly, I would not say Figure 5 shows mechanisms; it just 
shows the different “populations”. (c) As per point 1, it would be clearer if you first 
said what you include in Z and then discuss additional factors that might affect 
selection and misclassification. (d) In Figure 6 I am not sure where the vertical 
bars come from. Are you “inverting” the naive confidence intervals to give an 
interval for θG? This seems circular. (e) I wonder what your conceptual “target” 
population is. Is it the general Michigan population? It seems to me that the 
target population could be almost anything, with selection model parameters 
differing across target populations. This seems crucial in order to relate results to 
other published results but at the same time, we know that conceptual “true” θG 

values will vary across populations because of heterogeneity and other factors. 
 
Response: Thank you for these important comments. Please note our response 
to each part of your comment. 
 
(a) We have updated the text in Section 5 to clarify that “Michigan Medicine” 
refers to the University of Michigan health system. The text now reads: “The 
Michigan Genomics Initiative (MGI) is a longitudinal biorepository effort linked to 
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EHR within The University of Michigan health system, referred to as Michigan 
Medicine.” 
 
(b) We have updated the text to clarify what we mean by “mechanism” and how it 
relates to Figure 5. We included the following text: 
 
“Suppose we  define our hypothetical  ``target population" as the general US 
population. Figure 5 provides a rough visualization of sampling/selection stages 
a patient goes through to be included in MGI. We assume that there is some 
unknown mechanism associated with each of these selection stages, which 
together form the composite ``sampling mechanism" in Eq.1.” 
 
(c) We have updated the text as follows: 
 
“The Michigan Genomics Initiative (MGI) is a longitudinal biorepository effort 
linked to EHR within The University of Michigan health system, referred to as 
Michigan Medicine. The present analysis contains over 40,000 unrelated patients 
of recent European ancestry with matched genotype and phenotype information. 
Using these data, we are often interested in studying the association between 
disease and genetic factors G, adjusting for demographic factors such as age 
and gender along with principal components of the genotype data as a whole. 
Together, these factors compose Z.  

Suppose we  define our hypothetical  ``target population" as the general 
US population. Figure 5 provides a rough visualization of sampling/selection 
stages a patient goes through to be included in MGI. (continues...)” 

 
(d) We have clarified in the text related to Figure 6 where the vertical bars come 
from. They are obtained by applying our sensitivity analysis inversion formula to 
the MLE and  to the 95% confidence interval limits from the naive analysis. The 
updated text is included here: 
 
“Figure 6 shows the predicted interval for 𝜃𝜃𝐺𝐺  assuming different sampling ratios 
and sensitivities for each of the six selected cancers, where the vertical bars 
correspond to transformations of the 95% confidence intervals for standard 
analysis under different assumed values for r-bar and c1-bar” 
 
(e) We agree that the concept of target population is not specific. This was left 
intentionally vague for two reasons. Firstly, we wanted our method to be easily 
applicable to many different data analyses, which would have many different 
potential target populations. For example, it could be the adult population from 
the catchment area for the health system, the State of Michigan, the midwest 
region or United States. Generally, we view the target population as the 
population about which we want to make inferential statements based on our 
sample and our analysis. Secondly, even with a well-defined target population, 
the sampling ratio cannot be easily estimated. In the supplementary materials, 
we do provide a formula for obtaining a rough guess for the sampling ratio based 
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on the observed disease prevalence in the defined target population (SuppEq. 
8.11). In general, we view the sampling ratio as an unknown input parameter to 
be used to conceptualize how different the observed and target populations 
would need to be to get different levels of bias in our point estimates. Therefore, 
the target population is a hypothetical concept and the practical application of the 
proposed sensitivity analysis methods allow for the possibility of our “limited 
knowledge” regarding the specific characteristics of the target population and 
how it relates to the sample.  
 

4. (in reference to Table S3) (a) It would be good to give the θG values as well as the 
exp(θG) values shown here, since they are prominent in Figure 6. (b) What are the 
units for prevalence and disease rates? (c) I assume the same covariates Z were 
used in Beesley et al. (2018) as here. 

 
Response: (a) We have added a column to Table S3 with the corresponding 𝜃𝜃𝐺𝐺  
values as suggested.  
 
(b) We thank the reviewer for pointing out this omission. Both the prevalence and 
lifetime disease rates are expressed as percentages for MGI and the target US 
population. We have updated Table S3 and text accordingly. Below, we include 
the updated Table S3.  
 

 
 
(c) Beesley et al. (2018) provides the MGI prevalence and the lifetime disease 
rates, not the PRS associations. All PRS associations were originally reported in 
Fritsche et al. (2017). 
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Response to Associate Editor 
 
My main remaining concerns are clarity of some terminology, and accessibility, ie. Is the 
presentation going to be accessible to a potential user of the proposed approach and SHINY 
APP? The concept and operationalization of “target population” seems particularly challenging. 
 

1. I wonder whether the MGI study could be framed a bit more as a case study to help a 
potential user understand how to formulate their own application of the methods. At 
present, the reader may not begin to see this until the illustration and the discussion. My 
suggestion is to expand the last sentence in the introduction into a paragraph that lets the 
reader know that practical aspects will be addressed later – this could include brief 
background on the MGI setting, and highlight the motivation for the analysis that will be 
presented and discussed later -  particularly “robustness of …” (page 24, line45 / page 25, 
line 16) and considerations such as formulation of the target population.  

 
Response: We agree that better highlighting MGI as a case study may help the 
reader understand how to apply our methods. We have updated the introduction 
section to discuss MGI in more detail. This text has been pasted below:  
 
“We then apply our proposed methods to data from The Michigan Genomics 
Initiative (MGI), a longitudinal biorepository effort within The University of 
Michigan health system with linked genotype and EHR information for over 
40,000 patients. The patients were recruited in anesthesiology clinic while waiting 
for a surgery/diagnostic procedure. Using these data, we are often interested in 
studying the association between disease and genetic factors, adjusting for 
demographics and other patient characteristics. However, our EHR-derived 
disease status may have substantial misclassification relative to patients' true 
disease status. Additionally, we are often interested in making statements about 
external target populations such as the US population, and the MGI patient pool 
may be poorly representative of this target population. When ignored, these 
factors can create a large degree of bias in our association analyses of interest. 
We apply our proposed approach to explore the potential degree of bias in two 
example genetic association studies in MGI, which can serve as a tutorial for how 
the proposed methods can inform bias exploration after standard association 
analysis.” 
 
 

2. Keeping in mind that all SIM readers are not familiar with typical approaches to genetic 
analysis, comments on use of terminology: 

 
(a)     Practically “sampling mechanism” is “sample selection” since there is no explicit 
probability sampling – before the end of the intro, I suggest to state this for the reader,  
before adopting the “sampling” terminology in what follows in the model structure. 
 
Response: We agree with the associate editor that the term “sample selection” 
could be confusing in the case of non-probability sampling. We have added text 
to Section 2 to clarify what by “sample selection” and “sampling mechanism”, we 
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mean the theoretical unknown probability mechanism governing patient inclusion 
in the EHR and in turn analytic sample. The added text is included here:  
 
“In addition to bias due to phenotype misclassification, the mechanism by which 
units in the population are included in the EHR dataset can sometimes result in 
biased inference when not handled appropriately. Complex sampling designs in 
an epidemiologic study can be addressed using survey design techniques if the 
sampling strategy is known. However, the probability mechanism for inclusion of 
a person into a biorepository is not a priori fixed or defined. For convenience, we 
will use terms such as ``sampling" and "selection mechanism" to describe this 
patient inclusion process, but it should be understood that this process is 
complicated and not well-characterized. Interactions with the healthcare system 
are generated by the patient, and it can be difficult to understand the mechanism 
driving sampling as well as self-selection for donating biosamples, which may be 
related to a broad spectrum of patient factors including overall health and 
demographic characteristics (continues…)” 

 
(b)     Terminology of “sensitivity analysis” and “tuning parameter” may be potentially 
confusing to some readers. At least in this paper, “Sensitivity analysis” is actually 
“Prediction of bias in genetic association estimates” – so it would be more informative to 
title section 3.3 in this way. In many other contexts, “tuning parameter” refers to an 
optimization parameter based on data – I’m not sure what would be better here, 
descriptively it is an parameter for population disease prevalence 
 
Response: We agree that the “tuning parameter” terminology may be confusing. 
Although we do provide a strategy for estimating the sampling ratio in a rough 
sense, we still view these quantities as essentially unknown. We expect users to 
consider many plausible values for the sampling ratio and sensitivity based on 
their scientific problem. In this way, they are somehow informed by the data and 
the problem at hand, but in a loose way. However, to better communicate the 
role of these parameters, we now refer to them as “input values”, which we hope 
will clarify that these parameters are not part of an optimization. 
 

Additionally, we have updated the title of Section 3.3 to read “Sensitivity 
analysis of potential bias in genetic association estimates”, which we believe 
better reflects the uncertainty inherent in these data explorations. 
 
(c) In description of genetic association analysis, are “naïve”, “standard”, and “summary” 
intended to be interchangeable? Does it refer specifically to a case-control design or a 
cohort design (ie. How does observation period enter in)? It would be helpful to the reader 
to have one clear definition if possible. 
 
Response: In terms of “naive” and “standard” analysis, we are referring to 
estimation under the analysis model in (2). In this paper, we refer to existing 
summary statistics (e.g. point estimates and 95% confidence intervals) from 
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“naive” or “standard” model fits that one can obtain from previous literature. To 
help clear up this confusion, we have updated this manuscript to use the term 
“standard” throughout and avoid the term “naive.” We have clarified our use of 
“standard analysis” in our discussion of the “analysis model” in Section 3.1.  

 
In reference to the study design used for the naive analysis (case-control, 

cohort, etc.), we do not specify a particular design, because our statistical 
framework incorporates the sampling mechanism of the analytical data in the 
definition of the sampling ratio. Recall, the sampling ratio is the ratio of the 
average sampling probabilities in the diseased and non-diseased patients. This 
ratio will naturally be impacted by the design used for the naive analysis. Other 
factors such as observation period would also impact this term.  

 
Now, the sampling ratio itself is defined in terms of some “target 

population.” In this manuscript, the definition of “target population” is not specific. 
This was left intentionally vague for two reasons. First, we wanted our method to 
be easily applicable to many different data analyses, which would have many 
different potential target populations. For example, it could be the adult 
population from the catchment area for the health system, the State of Michigan, 
the midwest region or United States. Generally, we view the target population as 
the population about which we want to make inferential statements based on our 
sample and our analysis. Second, even with a well-defined target population, the 
sampling ratio cannot be easily estimated. In the supplementary materials, we do 
provide a formula for obtaining a rough guess for the sampling ratio based on the 
observed disease prevalence in the defined target population (SuppEq. 8.11). In 
general, we view the sampling ratio as an unknown input parameter to be used to 
conceptualize how different the observed and target populations would need to 
be to get different levels of bias in our point estimates. Therefore, the target 
population is a hypothetical concept and the practical application of the proposed 
sensitivity analysis methods allow for the possibility of our “limited knowledge” 
regarding the target population and how it relates to the sample.  
 
(d) There is potential for confusion between “target model” and “target population”, 
especially in formulation of the latter in the context of the MGI example. Figure 5 which 
has been added in this revision and referred to in section 5, is concise and does illustrate 
the nested nature of the various populations and sample selection, but doesn’t capture 
the relative population sizes (which are however evident in Table S4) or the selection on 
ethnicity. 
 
Response: We agree that these terms are confusing. We have updated the 
manuscript to refer to the “target” model as the “true” model. By “true” model, we 
mean the model that we want to fit, and there is also an underlying assumption 
that this is the data generating model.  

 
In response to the point about population sizes, we have added rough size 

numbers to Figure 5 accordingly. The updated Figure 5 is included here:  
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