
AUTOMATING THE CAPTURE OF
DATA TRANSFORMATION
METADATA FROM STATISTICAL
ANALYSIS SOFTWARE

George Alter1, Darrell Donakowski1, Jack Gager2, Pascal Heus2, Carson Hunter2, Sanda

Ionescu1, Jeremy Iverson3, H V Jagadish1, Carl Lagoze1, Jared Lyle1, Alexander Mueller1,

Sigbjørn Revheim4, Matthew A. Richardson1, Ørnulf Risnes4, Karunakara Seelam1, Dan Smith3,

Tom Smith5, Jie Song1, Yashas Jaydeep Vaidya1, Ole Voldsater4

Abstract
The C2Metadata (“Continuous Capture of Metadata for Statistical Data”) Project automates one of

the most burdensome aspects of documenting the provenance of research data: describing data

transformations performed by statistical software. Researchers in many fields use statistical

software (SPSS, Stata, SAS, R, Python) for data transformation and data management as well as

analysis. The C2Metadata Project creates a metadata workflow paralleling the data management

process by deriving provenance information from scripts used to manage and transform data.

C2Metadata differs from most previous data provenance initiatives by documenting

transformations at the variable level rather than describing a sequence of opaque programs.

Scripts used with statistical software are translated into an independent Structured Data

Transformation Language (SDTL), which serves as an intermediate language for describing data

transformations. SDTL can be used to add variable-level provenance to data catalogs and

codebooks and to create “variable lineages” for auditing software operations. Better data

documentation makes research more transparent and expands the discovery and re-use of research

data.

Acknowledgment
The Continuous Capture of Metadata for Statistical Data Project is funded by National Science

Foundation grant ACI-1640575.

1 University of Michigan
2 Metadata Technologies North America
3 Algenta Technologies
4 Norwegian Centre for Research Data
5 NORC

1

Table of Contents
Introduction 2

The Problem 2

C2Metadata Workflow 4

Why a Structured Data Transformation Language? 6

Translating SDTL into Natural Language 10

Embedding Variable Derivations in Metadata 10

Adding Variables to the PROV Model 11

Documentation, Execution, Translation 11

Limitations 12

Discussion 13

References 15

2

Introduction
The C2Metadata (“Continuous Capture of Metadata for Statistical Data”) Project automates one of

the most burdensome aspects of documenting research data: describing data transformations

performed by statistical software. Researchers in many fields use statistical software (SPSS, Stata,

SAS, R, Python) for data transformation and data management as well as analysis (IBM Corp., 2019;

Python Software Foundation, 2019; R Core Team, 2013; SAS Institute, 2015; StataCorp., 2020).

These software applications have limited metadata capabilities, and they do not support the

detailed metadata standards used by data repositories, such as Data Documentation Initiative (DDI)

and Ecological Markup Language (EML). Consequently, valuable information about the data is lost.

The C2Metadata Project translates scripts used by statistical software into an independent

Structured Data Transformation Language (SDTL), which serves as an intermediate language for

describing data transformations. SDTL can be used to:

● Update existing metadata files (e.g. DDI, EML, JSON-LD), so that both the original data

description and changes to the data are preserved;

● Describe variable transformations in natural language for data users who are unfamiliar

with the specific software used in variable transformations;

● Create “variable lineages” that describe the transformations performed on each variable for

use in auditing scripts.

C2Metadata differs from most previous approaches to data provenance by focusing on documenting

transformations at the variable level. Most provenance initiatives record the name and identifier of

the process (e.g. web service, program, or script) that changed the data, but each process is treated

as a black box with little detail about what it does. C2Metadata goes inside the black box and

describes each step in the process for every variable that changes.

The C2Metadata Project has developed an automated workflow that

1. Extracts data transformation information from scripts for the leading statistical software

packages;

2. Expresses data transformations in a new Structured Data Transformation Language (SDTL)

that is independent of the source languages; and

3. Incorporates SDTL and human-readable derivatives of SDTL into existing metadata

standards (e.g. DDI, EML).

The Problem
All branches of science have been affected by growing demands for transparency, reproducibility,

and data sharing (Freese & Peterson, 2017; King, 2011; Miguel et al., 2014; New York Times

Editors, 2013; Powers & Hampton, 2019). These principles have been institutionalized by journals

and funding agencies, which require authors to share both data and code used in their analyses

(Adelson et al., 2019; American Economic Association, 2013; American Political Science Association

Committee on Professional Ethics Rights and Freedoms, 2012; Coalition on Publishing Data in the

Earth and Space Sciences (COPDESS), 2015; Holdren, 2013; Nosek et al., 2015; Political Science

Journal Editors, 2015). As sharing research data has become an obligation, standards are emerging

to make data FAIR: findable, accessible, interoperable, and reusable (Wilkinson et al., 2016).

3

Realizing the promise of research transparency and the FAIR principles requires provenance

metadata i.e., documentation of the origins, contents, and meaning of data. For example, the ethical

guidelines of the American Political Science Association obligate researchers to support “evidence-

based knowledge claims through data access, production transparency, and analytic transparency

so that their work can be tested or replicated” (American Political Science Association Committee

on Professional Ethics Rights and Freedoms, 2012, p. 8). “Production transparency” means that

researchers cannot simply share the data used in a publication without describing how it was

created and managed. According to Lupia and Elman: “In order to achieve production transparency,

researchers should provide comprehensive documentation and descriptive metadata detailing their

project’s empirical base, the context of data collection, and the procedures and protocols they used

to access, select, collect generate, and capture data” (Lupia & Elman, 2014, p. 32). Viewed in terms

of the FAIR model, data cannot be findable, interoperable, or re-usable unless they are well

described in machine-actionable metadata.

In practice, most datasets are poorly documented, and the cost of creating detailed metadata is

often prohibitive. Even though most data are “born digital,” metadata are usually an afterthought.

Data repositories generally receive data after a project has ended, and they often receive

documentation in a PDF file that cannot be converted to a machine actionable format.

Consequently, they can only re-create a small portion of the information that would be useful to

researchers trying to re-use the data. In the social sciences, questionnaires frequently include

thousands of questions, and recreating this information in a metadata file may involve weeks of

work.

Data repositories have created detailed metadata standards that are capable of providing all the

information that researchers need for findability and interoperability. In the social sciences, the

Data Documentation Initiative (DDI) (Vardigan, Heus, & Thomas, 2008) offers a rich model for

describing data down to the variable level. Social science data repositories, like the Inter-

university Consortium for Political and Social Research (ICPSR) and the UK Data Service, provide

variable-level data discovery services built on DDI metadata. Similarly, the DataONE catalog has

advanced search capabilities built on Ecological Markup Language (EML) (E.H. Fegraus, 2005) and

other metadata formats.

Data producers should be able to automate the creation of machine actionable metadata. Whether

the data represent a questionnaire, a laboratory instrument, or an environmental sensor, a

description of the data collection process could be transmitted with the data. For example, widely

used social surveys, such as the American National Election Study and the General Social Survey,

are collected by computer assisted interview (CAI) software. Even if a human interviewer asks the

questions by telephone or in person, the survey is entirely digitized and never exists on paper. This

means that all of the information in the CAI software can be transferred directly into a standard

metadata format.

Why don’t data producers capture metadata directly from the instruments that create the data?

One of the main reasons is that they modify the data as soon as they receive it. Data elements that

were included for administrative purposes are deleted. Some variables are combined into indexes.

Variables like income and age are often converted into categories to make respondents less

identifiable. These changes are usually performed with statistical software packages that have no

way of recording changes performed on individual variables. Manually editing an existing metadata

4

file to reflect changes performed by statistical software is much too time consuming. So, data

producers are more likely to describe these changes in text documents or spreadsheets.

The C2Metadata Project was designed to create an automated workflow for metadata that parallels

the workflow that transforms the data. We extract provenance information from the script that

transformed the data, and we use that information to update an existing metadata file. Since

C2Metadata software operates on exactly the same scripts that change the data, data producers do

not need to change their workflows or practices.

The ALPHA Network (ALPHA Network, 2020) is one of the first organizations to recognize the

potential of the C2Metadata approach (Kanjala, 2019). A consortium of ten African research

institutions, the ALPHA Network assembles and curates data from research sites in six countries for

studies of HIV and AIDS. Since contributors collect data in different ways, the ALPHA Network has

invested heavily in data harmonization procedures. SDTL will provide detailed documentation of

each step in the data harmonization workflow, which may involve several data management tools

and statistical packages. Variable lineages translated into natural language will increase the

transparency of complex data preparation scripts.

C2Metadata Workflow
An example of an automated metadata workflow based on C2Metadata tools is illustrated in Figure

1. We assume that the user provides two files: a command script in a supported language (SPSS,

Stata, SAS, R, Python) and a structured metadata file in a supported metadata standard or format

(DDI, EML) describing the data taken as input to the script. The first step is performed by a Parser,

which translates the command script into an SDTL script. The SDTL script is sent to an Updater,

which also reads the user’s metadata file. The Updater also communicates with the Pseudocode

Translator, an application that creates a natural language version of the SDTL script. The output of

the Updater is a revised metadata file that now includes the SDTL and natural language descriptions

of all variables modified by the command script. The updated metadata file may be used in a

number of different ways. When a data repository receives the updated data file, the updated

metadata will be added to its online data catalog. The data repository may also use a Codebook

Formatter to create a static (e.g. pdf) or interactive codebook (e.g. html) for users to download.

Each variable in the catalog or codebook will include a derivation section that describes the origin

of the variable and all of the transformations applied to it.

5

Figure 1 C2Metadata Workflow

Figure 1 includes one Parser and one Updater, but there are actually several versions of each. Each

statistical package has its own language that must be parsed and translated into SDTL by a specially

designed Parser. Similarly, every metadata standard requires a separate Updater. Since the

Parsers and Updaters are separate modules, we can handle any combination of the supported

statistical languages and metadata standards.

Figure 2 provides more detail on the operation of the Updater. The first stage in the Updater is an

XML Reader that interprets and organizes the information provided in the original structured

metadata file. The Dataset Updater creates a new version of the metadata that adds information

from the SDTL file and the Pseudocode Translator. The XML updater creates the Updated
structured metadata file by combining the original metadata with the updated metadata. This

means that the final product includes descriptions of both pre- and post-transformation versions of

the data file. We include the pre-transformation version so that users can hyperlink from the data

derivation of a variable to examine pre-transformation descriptions of the variables that it came

from.

6

Figure 2 Workflow of the Updater

Figures 1 and 2 also include two files, the Function Library and the Pseudocode Library, which are

parts of the SDTL standard. The Function Library is a crosswalk between the syntax for functions

(e.g. sine, mean, maximum) in SDTL and in the statistical packages supported by C2Metadata.

Although there are thousands of functions, they can all be described by a common template, which

simplifies the code in Parsers and Updaters. Similarly, the Pseudocode Library describes how to

translate an SDTL command into natural language. The Pseudocode Library provides human-

readable text to be inserted before and after variable names, numbers, and other expressions in

SDTL commands. The result is a “pseudocode” version of the command that is comprehensible to a

person unfamiliar with either the original statistical language or SDTL. Since both the Function

Library and the Pseudocode Library are structured data files, they can be modified and expanded as

SDTL is updated without changing any application code. The latest versions of the Function Library

and Pseudocode Library are in JSON files accessed directly from Gitlab by C2Metadata software

modules.

C2Metadata applications are available under an open source license from the project Gitlab

repository C2Metadata Project (2020a).

Why a Structured Data Transformation Language?
SDTL was created to solve two problems. First, each of the five widely used statistical software

packages has its own language, and our planned metadata workflow required a common

intermediate language that would work for all of them. In preparation for our NSF proposal we

examined download records at the Inter-university Consortium for Political and Social Research
(ICPSR), the largest social science data repository in the U.S. ICPSR offers data for download in the

formats of the four most common statistical packages, and researchers are divided among them.

SPSS and Stata each account for about 25% of data downloads, and another quarter was divided

between SAS and R. Researchers who did not select one of the leading four statistical packages

downloaded data in ASCII files and sometimes in Excel. Thus, a solution that only worked for one of

these four packages would reach at most a quarter of the research community. There was a clear

7

need for a common language that could express the commands found in all of the statistical

packages.

Second, this common language should be in a form that is easy for computers to process. Extracting

meaning from a language is a complicated process, and a program customized to each language is

required to process scripts into a form that a computer can use. We reduce the costs of sharing and

re-using scripts in the common language by making SDTL computer-friendly. We developed SDTL

in JSON (JavaScript Object Notation), but JSON can be easily translated into other formats used for
transmitting complex information among software applications.

SDTL is “structured,” because it follows a schema with defined tags and delimiters. For example,

consider this SPSS command:

COMPUTE age_years=age_months/12.

This command will create a new variable named “age_years” by dividing the value of variable

“age_months” by 12. The SDTL version of this commands is in Figure 3.

SDTL is obviously much more verbose than the SPSS language, but it is also more precise. How do

we know that “age_years” and “age_months” refer to variables? Like a spoken language, the SPSS

language has syntax rules that allow a person to assign meanings to text like “age_years” based on

their order and position in a command. Computers can make these inferences too, but extracting

meaning from text is a complicated problem. In SDTL the “$type” tells a computer program that

“age_years” and “age_months” are variable names ("VariableSymbolExpression") that refer to

columns in the dataset. SDTL relies much more on explicit tagging and less on syntax rules than the

languages that it describes.

8

Figure 3. Sample SDTL JSON

The SPSS COMPUTE command also uses a number of symbols that play a critical role in the

meaning of the command: space, “=”, “/”, and “.”, but these symbols have other meanings in

different contexts. In the COMPUTE command “/” means division, but in the following SPSS

RECODE command “/” is a separator between two variables that appear in one RECODE command.

RECODE age_years (0 THRU 14.999=1) (15 THRU 64.999=2) (65 THRU HI=3)

 / income (0 THRU 19999=1) (20000 THRU 99999=2) (100000 THRU HI=3)

The structured nature of SDTL removes ambiguities that would otherwise be resolved by a long list

of syntax rules. For example, consider this SPSS command

COMPUTE y = 1 + x/5

Which operation should be performed first, addition or division? Will the result be [(1 + x)/5] or [1

+ (x/5)]? SPSS follows a common convention that division is performed before addition unless a

different order of operations is specified by brackets in the formula. In SDTL the order of

operations is never ambiguous. As the reader may have noticed in the previous example, arithmetic

operations are implemented in SDTL as functions. The expression “x/5” is treated as “division(x,

5)” in SDTL. The basic arithmetic functions in SDTL have two parameters, but each parameter can

be a function. This means that SDTL represents “1 + x/5” as “addition(1, division(x,5))”. Since the

division is nested within the addition, it must be performed first.

9

SDTL is also designed to handle several features of statistical software languages that are

uncommon in most programming languages. First, some commands in these languages operate on

the entire dataset but others operate sequentially on each row. For example, these commands in

the Stata language appear to be identical:

if varX>5 replace varY=3 /*** Version1 ****/

replace varY=3 if varX>5 /*** Version 2 *****/

Both commands change the value of varY to 3 if the condition varX>5 is true, but the order of “if”

and “replace” affects how Stata evaluates the condition and modifies the data. The Stata “if”

command evaluates the condition only once, using the value of varX on the first row in the dataset,

and then applies the command to all rows in the dataset. When “if” follows a Stata command, it is

evaluated separately on each row, and the command is executed only on rows where it is true.

These outcomes are illustrated in Figures 4 and 5. In SDTL the “DoIf” command is evaluated once

for the entire dataset, and the “IfRows” command is evaluated separately on each row.

Figure 4. Outcome of Stata “if varX>5 replace varY=3”

Figure 5. Outcome of Stata “replace varY=3 if varX>5”

Second, statistical software has special features for managing categorical variables. For example,

the following SPSS RECODE command changes the values of variable age_years into three

categories:

RECODE age_years (0 THRU 14.999=1) (15 THRU 64.999=2) (65 THRU HI=3) .

VALUE LABELS age_years 1 "Child" 2 "Adult" 3 "Senior".

After recoding age_years remains a numeric variable, but it now has only values 1, 2, and 3. The

VALUE LABELS command instructs SPSS to display labels "Child", "Adult", and "Senior" in place of

the numeric values when age_years is used as the dimension in a cross-tabulation table.

10

For a more extended description of SDTL see Alter et al. (2020) and C2Metadata Project (2020b).

Translating SDTL into Natural Language
In addition to translating five statistical languages into SDTL, the C2Metadata Project has a simple

way of translating SDTL into a more human-friendly form. We have created a set of templates for

each SDTL command with text surrounding each of its properties. For example, the template for

the SDTL Compute command is

Set {variable} to {expression}.

in which {variable} and {expression} are properties of the command. Each of these properties can

be resolved into text, such as a variable name or a number. Using the example in Figure 3,

{variable} resolves to “age_years” and {expression} resolves to “age_months/12”. The result is

Set age_years to (age_months/12).

Note that {variable} resolves to “age_years” in one step, but the {expression} property is more

complicated, as often happens in SDTL. In this case, the expression is a function with two

parameters. The Function Library gives this template for division

(EXP1/EXP2),

and we find that EXP1 resolves to a variable named “age_months” and EXP2 resolves to the numeric

constant “12”. Since SDTL types are often nested several levels deep, resolving SDTL into natural

language is a recursive process. The Pseudocode Translator application uses templates like these

to convert SDTL into something approximating English.

Templates for SDTL commands are collected in a Pseudocode Library, which is a file in JSON format.

(Pseudocode is a term used for the translation of a computer program into language that is easier

for humans to decipher.) The Pseudocode Library can be revised and extended without changing

any code in the Pseudocode Translator, and versions of the Pseudocode Library can be created for

other languages or special purposes.

Embedding Variable Derivations in Metadata
The full benefits of variable-level provenance are realized when SDTL descriptions of data

transformations are combined with other metadata. SDTL commands describe processes and their

inputs. The C2Metadata model assumes that the data were described in a metadata file before the

data transformation script was executed. C2Metadata Updater applications (see Figures 1 and 2)

update the pre-transformation metadata file by embedding SDTL into the description of each

transformed variable to make an updated metadata file. Since the updated metadata file includes

the original metadata file in its entirety, data catalogs and codebooks can show the state of the

dataset before transformations were applied. In addition, the Updater assigns each of the SDTL

commands to each of the variables that it modifies. Since some SDTL commands use variable lists

and variable ranges to modify many variables at the same time, identifying which variables are

affected is not always obvious.

11

The C2Metadata Project uses elements from DDI Codebook version 2.5 to attach data

transformation descriptions to individual variables (DDI Alliance, 2014). A variable can be

described by the “derivation” element in the DDI Codebook schema, which has two content

elements “drvcmd” (derivation command) and “drvdesc” (derivation description). A derived

variable can be described with multiple “drvcmd” elements, which allows us to include both the

SDTL and the source language versions of every command that modified the variable. The

“drvdesc” element is used for the natural language (pseudocode) version of each command.

Commands that operate on the entire dataset, like AppendDatasets and MergeDatasets, are

described with a “fileDerivation”, which we have proposed for inclusion in the next version DDI

Codebook.

DDI enhanced with SDTL provides a way to describe data transformations involving temporary

variables and variables that change later in a command script. Every variable in a DDI metadata file

receives an ID that is independent of the variable name. We can document the intermediate states

of a variable by generating a new ID and variable description every time it changes. Derived

variables can be linked to the relevant state of antecedent variables through their IDs even if the

antecedent variable will be changed in later program steps. The DDI metadata file can also track

temporary variables, i.e. variables that are created and deleted without ever being saved to a file. A

DDI variable description is usually associated with a file, but a variable description without a file

reference is either a temporary variable or a variable that will be transformed before being saved to

a file.

Adding Variables to the PROV Model
The C2Metadata approach to documenting histories of datasets and variables is compatible with the

PROV model of provenance. The PROV model is a family of standards for describing data

provenance recommended by the World Wide Web Consortium (Groth & Moreau, 2013). The

original PROV model did not describe variables within datasets or commands within programs, but

several extensions of PROV offer more granular approaches to data and data processing (Cuevas-

Vicenttín et al., 2015; End to End Provenance Project, 2019; Garijo & Gil, 2013). The extended

PROV model can be queried to find relationships between variables and data transformation

commands. For example, we can ask which derived variables were affected by a specific antecedent

variable or command in a script. Or, we can ask which antecedent variables affected a specific

derived variable. Since SDTL is machine actionable, it facilitates reconstructing relationships

between variables and program steps for representation in a PROV-compatible ontology.6

Documentation, Execution, Translation
The goal of the C2Metadata Project has always been automated production of human readable

documentation, but we are aware that more ambitious goals are possible. One of our early

decisions was that SDTL would not be a machine executable language. Languages for machines

must be precise and completely specified. Documentation can be valuable even when it is

6 The C2Metadata Project is grateful to the Whole Tale Project (https://wholetale.org/) for their work on
integrating SDTL into the ProvONE model, especially Thomas Thelen, Matt Jones, Bertram Ludaescher, Tim
McPhillips, and Craig Willis.

https://wholetale.org/

12

incomplete and sometimes imprecise. Humans are accustomed to making decisions under

uncertainty and using other knowledge to resolve ambiguities. SDTL has been designed to

describe data transformations, but it is not intended to guide the execution of data transformations.

During the course of the project we discovered that a third goal is possible – translation from one

statistical language to another. Organizations often rely on large bodies of code in languages that

have become difficult to maintain. Data management scripts in statistical analysis software may

use features that are removed in later releases, and younger analysts may be unfamiliar with
packages and languages that were prevalent a decade earlier. Under these circumstances, an

application that can translate one statistical language into another could be very useful, even if the

translation is less than complete. Although it is not part of the current project, we have come to

believe that SDTL can be used as an intermediate step in translating between statistical languages.

Limitations
The scope of the C2Metadata Project was limited in several ways to keep the project manageable

with limited funding and time. We were aware from the start that we could not capture every data

transformation feature available in large and complex languages like SAS and R. Our goal has

always been to capture 80% to 90% of the commands that researchers use for data management.

Moreover, the goal of the project has been automated production of documentation for humans not

machines. We did not design SDTL as a language for directing computers to perform data

transformations.

A basic limitation of tools developed on the C2Metadata Project is that they operate only on

metadata files and do not access any data directly. We rely on a description of the data prior to

transformation in a metadata file with a standard format. This decision simplified the creation of

Parsers, because they do not need to read and analyze data files, but it did prevent us from

implementing some features.

● Metadata files often include descriptive statistics of variables, such as averages and

frequency distributions, which are greatly appreciated by researchers. Since the current

tools do not access the data, we cannot compute descriptive statistics for variables that have

changed.

● Data transformation commands that depend upon the content of the data are not currently

implemented. We have specified a ReshapeWide command in SDTL, but it cannot be

supported in a metadata-only system. Reshaping data from a “long” to a “wide” format

involves changing the unit of observation to a higher level, such as from individuals to

households or counties to states. The new data has one row for every case at the group

level (household, state) and separate columns for the attributes of every individual within a

group. Suppose that data from a census are arranged with one row per person, and we

want to reorganize the data to one row per household. The variables for each person in

the household will become columns in the new data file, i.e. the age of the first person in the

household will be in column Age1, the age of the second person in Age2, and so on. The
number of columns for each variable (age, sex, occupation,…) depends upon the number of

people in the largest household. Since we cannot know the size of the largest household

without accessing the data, reshaping from long to wide is not possible using only metadata.

13

R and Python languages are much more open than earlier statistical packages, and the communities

supporting each of these languages have contributed thousands of libraries that add new

operations and analyses. To limit the scope of our project, we have focused on the “base” and most

popular data transformation libraries in each language. The SDTL parser for R is implementing the

tidyverse library (Wickham et al., 2019), and the Python parser works with the Pandas library (The

pandas development team, 2020).

Since the C2Metadata Project is designed to describe datasets, we do not describe the outcomes of
analysis commands. The original text of an analysis command may be included in an SDTL script

with the Analysis command, but we do not describe tables, graphs or other analytical results.

However, analytical commands may also create new data. For example, regression models typically

generate predicted values and residuals, which can be saved as new variables or separate datasets.

We expect that support for data created by statistical procedures will be added to SDTL in the

future.

Discussion
The C2Metadata Project has demonstrated that it is possible to automate the capture of variable-

level provenance metadata. Automation reduces the cost and increases the quality of

documentation showing how users of statistical software transformed and manage their data. We

have produced a set of applications that convert scripts from five statistical languages into a

common intermediate language (SDTL), which is then embeded into two widely used metadata

standards. By creating human-readable histories of variables, we provide metadata that is much

more detailed and informative than a long list of commands in an unfamiliar language.

We believe that several innovations in our approach are worth noting. First among these is the

creation of a Structured Data Transformation Language (SDTL) to serve as a standard way of

representing data transformation commands. Since researchers are currently split among at least

five statistical software packages, we created a new language that would work with all of them.

SDTL is not intended to replace existing statistical languages, rather it is a lingua franca for

applications like data catalogs, codebooks, and other data discovery and documentation tools.

SDTL is expressed in a structured format (JSON) that is easily read by computer programs, and it is

compatible with existing metadata standards.

Second, although SDTL has a small vocabulary, the SDTL Function Library makes it flexible and

expandable. Functions are a familiar device in programming languages, and statistical packages

rely heavily on functions for many operations, like generating random numbers and computing

quantiles of probability distributions. SDTL extends this approach by using functions to describe

arithmetic operations, logical conditions, and variables formed by aggregating over rows. The SDTL

Function Library maps functions in other languages into their SDTL equivalents. Since all functions

follow the same basic syntax, applications that parse other languages can translate functions into

SDTL with a minimum of programming code. The Function Library can be expanded without any

changes in applications that rely on it.

Third, we have also shown that translating SDTL into a human readable form is also a simple and

extendable process. The Pseudocode Library is set of fill-in-the-blank templates for SDTL

commands. Even complicated SDTL commands can be unfolded into properties that consist of pre-

defined text, variable names, and numbers.

14

Finally, SDTL may serve as an intermediary in translations between statistical languages. Since the

source languages have many idiosyncratic features, comprehensive translations are probably not

attainable. However, translations covering 80 to 90 percent of a script will be extremely useful for

many purposes. For example, many organizations have legacy scripts in statistical languages that

their staff no longer understand. Incomplete translations accompanied by human-readable

versions of the original scripts can be very helpful in redesigning out of date workflows.

15

References
Adelson, J. L., Barton, E., Bradshaw, C., Bryant, B., Bryant, D., Cook, B. G., . . . Dymond, S. (2019). A

Roadmap for Transparent Research in Special Education and Related Disciplines.
ALPHA Network. (2020). ALPHA Network. Retrieved from http://alpha.lshtm.ac.uk/
Alter, G., Donakowski, D., Gager, J., Heus, P., Hunter, C., Ionescu, S., . . . Voldsater, O. (2020).

Provenance Metadata for Statistical Data: An Introduction to Structured Data Transformation
Language (SDTL). ICPSR. University of Michigan. Ann Arbor MI. Retrieved from
http://hdl.handle.net/2027.42/156015

American Economic Association. (2013). American Economic Review: Data Availability Policy.
Retrieved from http://www.aeaweb.org/aer/data.php

American Political Science Association Committee on Professional Ethics Rights and Freedoms.
(2012). A Guide to Professional Ethics in Political Science. In. Retrieved from
http://www.apsanet.org/media/PDFs/ethicsguideweb.pdf

C2Metadata Project. (2020a). Gitlab Repository: c2metadata. Retrieved from
https://gitlab.com/c2metadata

C2Metadata Project. (2020b). Structured Data Transformation Language. Retrieved from
http://c2metadata.gitlab.io/sdtl-docs/

Coalition on Publishing Data in the Earth and Space Sciences (COPDESS). (2015). Statement of
Commitment from Earth and Space Science Publishers and Data Facilities Retrieved from
http://www.copdess.org/statement-of-commitment/

Cuevas-Vicenttín, V., Ludäscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., & Leinfelder, B.
(2015). Provone: A prov extension data model for scientific workflow provenance. In:
DataOne Project, Tech. Rep., Mar. 2014.[Online]. Available: http ….

E.H. Fegraus, S. A., M.B. Jones, M. Schildhauer. (2005). Maximizing the value of ecological data with
structured metadata: an introduction to ecological metadata language (EML) and principles
for metadata creation. Bulletin of the Ecological Society of America, 86, 158–168.

End to End Provenance Project. (2019). Extended Prov JSON. Retrieved from
https://github.com/End-to-end-provenance/ExtendedProvJson

Freese, J., & Peterson, D. (2017). Replication in Social Science. In K. S. Cook & D. S. Massey (Eds.),
Annual Review of Sociology, Vol 43 (Vol. 43, pp. 147-165).

Garijo, D., & Gil, Y. (2013, 17 September 2013). The P-PLAN Ontology. Retrieved from
https://www.opmw.org/model/p-plan/

Groth, P., & Moreau, L. (2013). PROV-OVERVIEW: An Overview of the PROV Family of Documents.
Retrieved from http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

Holdren, J. P. (2013). Increasing Access to the Results of Federally Funded Scientific Research.
Memorandum from the Office of Science and Technology Policy. February 22, 2013. Retrieved
from
http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo
_2013.pdf.

IBM Corp. (2019). IBM SPSS Statistics for windows, version 26.0. Armonk, NY: IBM Corp.
Kanjala, C. (2019). Provenance of ‘after the Fact’ Harmonised Community-Based Demographic and

HIV Surveillance Data from ALPHA Cohorts. (PhD), University of London, London.
King, G. (2011). Ensuring the Data-Rich Future of the Social Sciences. Science, 331(6018), 719-721.

doi:10.1126/science.1197872
Lupia, A., & Elman, C. (2014). Openness in Political Science: Data Access and Research

Transparency. PS: Political Science & Politics, 47(01), 19-42.
doi:doi:10.1017/S1049096513001716

http://alpha.lshtm.ac.uk/
http://hdl.handle.net/2027.42/156015
http://www.aeaweb.org/aer/data.php
http://www.apsanet.org/media/PDFs/ethicsguideweb.pdf
https://gitlab.com/c2metadata
http://c2metadata.gitlab.io/sdtl-docs/
http://www.copdess.org/statement-of-commitment/
https://github.com/End-to-end-provenance/ExtendedProvJson
https://www.opmw.org/model/p-plan/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf

16

Miguel, E., Camerer, C., Casey, K., Cohen, J., Esterling, K. M., Gerber, A., . . . Van der Laan, M. (2014).
Promoting Transparency in Social Science Research. Science, 343(6166), 30-31.
doi:10.1126/science.1245317

New York Times Editors. (2013, February 25, 2013). We Paid for the Research, So Let's See It. New
York Times, p. A24. Retrieved from http://www.nytimes.com/2013/02/26/opinion/we-
paid-for-the-scientific-research-so-lets-see-it.html?_r=0

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., . . . Yarkoni, T. (2015).
Promoting an open research culture: author guidelines for journals could help to promote
transparency, openness, and reproducibility. Science (New York, NY), 348(6242), 1422.

Political Science Journal Editors. (2015). Data Access and Research Transparency (DA-RT): A Joint
Statement by Political Science Journal Editors. Retrieved from
http://www.dartstatement.org

Powers, S. M., & Hampton, S. E. (2019). Open science, reproducibility, and transparency in ecology.
Ecological Applications, 29(1), e01822.

Python Software Foundation. (2019). Python Language Reference, version 3.8. Beaverton, OR.
Retrieved from https://www.python.org/

R Core Team. (2013). R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-
project.org/

SAS Institute. (2015). SAS®9.4 Product Documentation. Cary, NC: SAS Institute Inc. Retrieved from
http://support.sas.com/documentation/94/index.html

StataCorp. (2020). Stata Statistical Software: Release 16.1. College Station, TX: StataCorp LP.
The pandas development team. (2020). pandas-dev/pandas: Pandas: Zenodo. Retrieved from

https://doi.org/10.5281/zenodo.3509134
Vardigan, M., Heus, P., & Thomas, W. (2008). Data documentation initiative: Toward a standard for

the social sciences. International Journal of Digital Curation, 3(1).
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., . . . Hester, J. (2019).

Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.

http://www.nytimes.com/2013/02/26/opinion/we-paid-for-the-scientific-research-so-lets-see-it.html?_r=0
http://www.nytimes.com/2013/02/26/opinion/we-paid-for-the-scientific-research-so-lets-see-it.html?_r=0
http://www.dartstatement.org/
https://www.python.org/
http://www.r-project.org/
http://www.r-project.org/
http://support.sas.com/documentation/94/index.html
https://doi.org/10.5281/zenodo.3509134

