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Abstract 
The C2Metadata (“Continuous Capture of Metadata for Statistical Data”) Project automates one of 

the most burdensome aspects of documenting the provenance of research data: describing data 

transformations performed by statistical software.  Researchers in many fields use statistical 

software (SPSS, Stata, SAS, R, Python) for data transformation and data management as well as 

analysis.  The C2Metadata Project creates a metadata workflow paralleling the data management 

process by deriving provenance information from scripts used to manage and transform data.  

C2Metadata differs from most previous data provenance initiatives by documenting 

transformations at the variable level rather than describing a sequence of opaque programs.  

Scripts used with statistical software are translated into an independent Structured Data 

Transformation Language (SDTL), which serves as an intermediate language for describing data 

transformations.   SDTL can be used to add variable-level provenance to data catalogs and 

codebooks and to create “variable lineages” for auditing software operations.   Better data 

documentation makes research more transparent and expands the discovery and re-use of research 

data.   
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Introduction 
The C2Metadata (“Continuous Capture of Metadata for Statistical Data”) Project automates one of 

the most burdensome aspects of documenting research data: describing data transformations 

performed by statistical software.  Researchers in many fields use statistical software (SPSS, Stata, 

SAS, R, Python) for data transformation and data management as well as analysis (IBM Corp., 2019; 

Python Software Foundation, 2019; R Core Team, 2013; SAS Institute, 2015; StataCorp., 2020). 

These software applications have limited metadata capabilities, and they do not support the 

detailed metadata standards used by data repositories, such as Data Documentation Initiative (DDI) 

and Ecological Markup Language (EML).  Consequently, valuable information about the data is lost.  

The C2Metadata Project translates scripts used by statistical software into an independent 

Structured Data Transformation Language (SDTL), which serves as an intermediate language for 

describing data transformations.    SDTL can be used to:  

● Update existing metadata files (e.g. DDI, EML, JSON-LD), so that both the original data 

description and changes to the data are preserved; 

● Describe variable transformations in natural language for data users who are unfamiliar 

with the specific software used in variable transformations; 

● Create “variable lineages” that describe the transformations performed on each variable for 

use in auditing scripts. 

C2Metadata differs from most previous approaches to data provenance by focusing on documenting 

transformations at the variable level.  Most provenance initiatives record the name and identifier of 

the process (e.g. web service, program, or script) that changed the data, but each process is treated 

as a black box with little detail about what it does.  C2Metadata goes inside the black box and 

describes each step in the process for every variable that changes.   

The C2Metadata Project has developed an automated workflow that 

1. Extracts data transformation information from scripts for the leading statistical software 

packages; 

2. Expresses data transformations in a new Structured Data Transformation Language (SDTL) 

that is independent of the source languages; and 

3. Incorporates SDTL and human-readable derivatives of SDTL into existing metadata 

standards (e.g. DDI, EML). 

The Problem 
All branches of science have been affected by growing demands for transparency, reproducibility, 

and data sharing (Freese & Peterson, 2017; King, 2011; Miguel et al., 2014; New York Times 

Editors, 2013; Powers & Hampton, 2019).  These principles have been institutionalized by journals 

and funding agencies, which require authors to share both data and code used in their analyses 

(Adelson et al., 2019; American Economic Association, 2013; American Political Science Association 

Committee on Professional Ethics Rights and Freedoms, 2012; Coalition on Publishing Data in the 

Earth and Space Sciences (COPDESS), 2015; Holdren, 2013; Nosek et al., 2015; Political Science 

Journal Editors, 2015). As sharing research data has become an obligation, standards are emerging 

to make data FAIR: findable, accessible, interoperable, and reusable (Wilkinson et al., 2016).   
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Realizing the promise of research transparency and the FAIR principles requires provenance 

metadata i.e., documentation of the origins, contents, and meaning of data.  For example, the ethical 

guidelines of the American Political Science Association obligate researchers to support “evidence-

based knowledge claims through data access, production transparency, and analytic transparency 

so that their work can be tested or replicated” (American Political Science Association Committee 

on Professional Ethics Rights and Freedoms, 2012, p. 8).  “Production transparency” means that 

researchers cannot simply share the data used in a publication without describing how it was 

created and managed.  According to Lupia and Elman: “In order to achieve production transparency, 

researchers should provide comprehensive documentation and descriptive metadata detailing their 

project’s empirical base, the context of data collection, and the procedures and protocols they used 

to access, select, collect generate, and capture data” (Lupia & Elman, 2014, p. 32).  Viewed in terms 

of the FAIR model, data cannot be findable, interoperable, or re-usable unless they are well 

described in machine-actionable metadata.   

In practice, most datasets are poorly documented, and the cost of creating detailed metadata is 

often prohibitive.  Even though most data are “born digital,” metadata are usually an afterthought.  

Data repositories generally receive data after a project has ended, and they often receive 

documentation in a PDF file that cannot be converted to a machine actionable format.  

Consequently, they can only re-create a small portion of the information that would be useful to 

researchers trying to re-use the data.  In the social sciences, questionnaires frequently include 

thousands of questions, and recreating this information in a metadata file may involve weeks of 

work.   

Data repositories have created detailed metadata standards that are capable of providing all the 

information that researchers need for findability and interoperability.  In the social sciences, the 

Data Documentation Initiative (DDI) (Vardigan, Heus, & Thomas, 2008) offers a rich model for 

describing data down to the variable level.    Social science data repositories, like the Inter-

university Consortium for Political and Social Research (ICPSR) and the UK Data Service, provide 

variable-level data discovery services built on DDI metadata.  Similarly, the DataONE catalog has 

advanced search capabilities built on Ecological Markup Language (EML) (E.H. Fegraus, 2005) and 

other metadata formats.  

Data producers should be able to automate the creation of machine actionable metadata.   Whether 

the data represent a questionnaire, a laboratory instrument, or an environmental sensor, a 

description of the data collection process could be transmitted with the data.  For example, widely 

used social surveys, such as the American National Election Study and the General Social Survey, 

are collected by computer assisted interview (CAI) software.  Even if a human interviewer asks the 

questions by telephone or in person, the survey is entirely digitized and never exists on paper.  This 

means that all of the information in the CAI software can be transferred directly into a standard 

metadata format.   

Why don’t data producers capture metadata directly from the instruments that create the data?  

One of the main reasons is that they modify the data as soon as they receive it.   Data elements that 

were included for administrative purposes are deleted.  Some variables are combined into indexes.  

Variables like income and age are often converted into categories to make respondents less 

identifiable.  These changes are usually performed with statistical software packages that have no 

way of recording changes performed on individual variables.  Manually editing an existing metadata 



4 

file to reflect changes performed by statistical software is much too time consuming.  So, data 

producers are more likely to describe these changes in text documents or spreadsheets. 

The C2Metadata Project was designed to create an automated workflow for metadata that parallels 

the workflow that transforms the data.  We extract provenance information from the script that 

transformed the data, and we use that information to update an existing metadata file.  Since 

C2Metadata software operates on exactly the same scripts that change the data, data producers do 

not need to change their workflows or practices.   

The ALPHA Network (ALPHA Network, 2020) is one of the first organizations to recognize the 

potential of the C2Metadata approach (Kanjala, 2019).  A consortium of ten African research 

institutions, the ALPHA Network assembles and curates data from research sites in six countries for 

studies of HIV and AIDS.  Since contributors collect data in different ways, the ALPHA Network has 

invested heavily in data harmonization procedures.  SDTL will provide detailed documentation of 

each step in the data harmonization workflow, which may involve several data management tools 

and statistical packages.  Variable lineages translated into natural language will increase the 

transparency of complex data preparation scripts. 

C2Metadata Workflow 
An example of an automated metadata workflow based on C2Metadata tools is illustrated in Figure 

1.  We assume that the user provides two files: a command script in a supported language (SPSS, 

Stata, SAS, R, Python) and a structured metadata file in a supported metadata standard or format 

(DDI, EML) describing the data taken as input to  the script.  The first step is performed by a Parser, 

which translates the command script into an SDTL script.  The SDTL script is sent to an Updater, 

which also reads the user’s metadata file.  The Updater also communicates with the Pseudocode 

Translator, an application that creates a natural language version of the SDTL script.  The output of 

the Updater is a revised metadata file that now includes the SDTL and natural language descriptions 

of all variables modified by the command script.  The updated metadata file may be used in a 

number of different ways.  When a data repository receives the updated data file, the updated 

metadata will be added to its online data catalog.   The data repository may also use a Codebook 

Formatter to create a static (e.g. pdf) or interactive codebook (e.g. html) for users to download.  

Each variable in the catalog or codebook will include a derivation section that describes the origin 

of the variable and all of the transformations applied to it.       
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Figure 1 C2Metadata Workflow 

Figure 1 includes one Parser and one Updater, but there are actually several versions of each.  Each 

statistical package has its own language that must be parsed and translated into SDTL by a specially 

designed Parser.  Similarly, every metadata standard requires a separate Updater.  Since the 

Parsers and Updaters are separate modules, we can handle any combination of the supported 

statistical languages and metadata standards.   

Figure 2 provides more detail on the operation of the Updater.  The first stage in the Updater is an 

XML Reader that interprets and organizes the information provided in the original structured 

metadata file.  The Dataset Updater creates a new version of the metadata that adds information 

from the SDTL file and the Pseudocode Translator.  The XML updater creates the Updated 
structured metadata file by combining the original metadata with the updated metadata.  This 

means that the final product includes descriptions of both pre- and post-transformation versions of 

the data file.  We include the pre-transformation version so that users can hyperlink from the data 

derivation of a variable to examine pre-transformation descriptions of the variables that it came 

from. 
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Figure 2 Workflow of the Updater 

Figures 1 and 2 also include two files, the Function Library and the Pseudocode Library, which are 

parts of the SDTL standard.  The Function Library is a crosswalk between the syntax for functions 

(e.g. sine, mean, maximum) in SDTL and in the statistical packages supported by C2Metadata.  

Although there are thousands of functions, they can all be described by a common template, which 

simplifies the code in Parsers and Updaters.  Similarly, the Pseudocode Library describes how to 

translate an SDTL command into natural language.  The Pseudocode Library provides human-

readable text to be inserted before and after variable names, numbers, and other expressions in 

SDTL commands.  The result is a “pseudocode” version of the command that is comprehensible to a 

person unfamiliar with either the original statistical language or SDTL.  Since both the Function 

Library and the Pseudocode Library are structured data files, they can be modified and expanded as 

SDTL is updated without changing any application code.  The latest versions of the Function Library 

and Pseudocode Library are in JSON files accessed directly from Gitlab by C2Metadata software 

modules.   

C2Metadata applications are available under an open source license from the project Gitlab 

repository C2Metadata Project (2020a). 

Why a Structured Data Transformation Language? 
SDTL was created to solve two problems.  First, each of the five widely used statistical software 

packages has its own language, and our planned metadata workflow required a common 

intermediate language that would work for all of them.  In preparation for our NSF proposal we 

examined download records at the Inter-university Consortium for Political and Social Research 
(ICPSR), the largest social science data repository in the U.S.  ICPSR offers data for download in the 

formats of the four most common statistical packages, and researchers are divided among them.  

SPSS and Stata each account for about 25% of data downloads, and another quarter was divided 

between SAS and R.  Researchers who did not select one of the leading four statistical packages 

downloaded data in ASCII files and sometimes in Excel.  Thus, a solution that only worked for one of 

these four packages would reach at most a quarter of the research community.  There was a clear 
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need for a common language that could express the commands found in all of the statistical 

packages. 

Second, this common language should be in a form that is easy for computers to process.  Extracting 

meaning from a language is a complicated process, and a program customized to each language is 

required to process scripts into a form that a computer can use.  We reduce the costs of sharing and 

re-using scripts in the common language by making SDTL computer-friendly.  We developed SDTL 

in JSON (JavaScript Object Notation), but JSON can be easily translated into other formats used for 
transmitting complex information among software applications.   

SDTL is “structured,” because it follows a schema with defined tags and delimiters.  For example, 

consider this SPSS command:   

COMPUTE age_years=age_months/12. 

 

This command will create a new variable named “age_years” by dividing the value of variable 

“age_months” by 12.  The SDTL version of this commands is in Figure 3. 

SDTL is obviously much more verbose than the SPSS language, but it is also more precise.  How do 

we know that “age_years” and “age_months” refer to variables?  Like a spoken language, the SPSS 

language has syntax rules that allow a person to assign meanings to text like “age_years” based on 

their order and position in a command.  Computers can make these inferences too, but extracting 

meaning from text is a complicated problem.  In SDTL the “$type” tells a computer program that 

“age_years” and “age_months” are variable names ("VariableSymbolExpression") that refer to 

columns in the dataset.  SDTL relies much more on explicit tagging and less on syntax rules than the 

languages that it describes. 
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Figure 3. Sample SDTL JSON 

The SPSS COMPUTE command also uses a number of symbols that play a critical role in the 

meaning of the command: space, “=”, “/”, and “.”, but these symbols have other meanings in 

different contexts.  In the COMPUTE command “/” means division, but in the following SPSS 

RECODE command “/” is a separator between two variables that appear in one RECODE command. 

RECODE age_years (0 THRU 14.999=1) (15 THRU 64.999=2) (65 THRU HI=3)  

      / income (0 THRU 19999=1) (20000 THRU 99999=2) (100000 THRU HI=3) 

The structured nature of SDTL removes ambiguities that would otherwise be resolved by a long list 

of syntax rules.  For example, consider this SPSS command 

COMPUTE y = 1 + x/5 

Which operation should be performed first, addition or division?  Will the result be [(1 + x)/5] or [1 

+ (x/5)]?  SPSS follows a common convention that division is performed before addition unless a 

different order of operations is specified by brackets in the formula.  In SDTL the order of 

operations is never ambiguous.  As the reader may have noticed in the previous example, arithmetic 

operations are implemented in SDTL as functions.  The expression “x/5” is treated as “division(x, 

5)” in SDTL.   The basic arithmetic functions in SDTL have two parameters, but each parameter can 

be a function.  This means that SDTL represents “1 + x/5” as “addition(1, division(x,5))”.  Since the 

division is nested within the addition, it must be performed first.    
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SDTL is also designed to handle several features of statistical software languages that are 

uncommon in most programming languages.  First, some commands in these languages operate on 

the entire dataset but others operate sequentially on each row.  For example, these commands in 

the Stata language appear to be identical: 

if varX>5 replace varY=3   /*** Version1  ****/ 

replace varY=3 if varX>5   /*** Version 2 *****/ 

Both commands change the value of varY to 3 if the condition varX>5 is true, but the order of “if” 

and “replace” affects how Stata evaluates the condition and modifies the data.   The Stata “if” 

command evaluates the condition only once, using the value of varX on the first row in the dataset, 

and then applies the command to all rows in the dataset.  When “if” follows a Stata command, it is 

evaluated separately on each row, and the command is executed only on rows where it is true. 

These outcomes are illustrated in Figures 4 and 5.  In SDTL the “DoIf” command is evaluated once 

for the entire dataset, and the “IfRows” command is evaluated separately on each row. 

 

 

Figure 4.  Outcome of Stata “if varX>5 replace varY=3” 

 

Figure 5. Outcome of Stata “replace varY=3 if varX>5” 

Second, statistical software has special features for managing categorical variables.  For example, 

the following SPSS RECODE command changes the values of variable age_years into three 

categories: 

RECODE age_years (0 THRU 14.999=1) (15 THRU 64.999=2) (65 THRU HI=3) . 

VALUE LABELS  age_years 1 "Child"  2 "Adult"  3 "Senior". 

After recoding age_years remains a numeric variable, but it now has only values 1, 2, and 3.  The 

VALUE LABELS command instructs SPSS to display labels "Child", "Adult", and "Senior" in place of 

the numeric values when age_years is used as the dimension in a cross-tabulation table. 
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For a more extended description of SDTL see Alter et al. (2020) and C2Metadata Project (2020b). 

Translating SDTL into Natural Language 
In addition to translating five statistical languages into SDTL, the C2Metadata Project has a simple 

way of translating SDTL into a more human-friendly form.  We have created a set of templates for 

each SDTL command with text surrounding each of its properties.  For example, the template for 

the SDTL Compute command is    

Set {variable} to {expression}. 

in which {variable} and {expression} are properties of the command.  Each of these properties can 

be resolved into text, such as a variable name or a number.  Using the example in Figure 3, 

{variable} resolves to “age_years” and {expression} resolves to “age_months/12”.  The result is  

Set age_years to (age_months/12). 

Note that {variable} resolves to “age_years” in one step, but the {expression} property is more 

complicated, as often happens in SDTL.  In this case, the expression is a function with two 

parameters.  The Function Library gives this template for division  

(EXP1/EXP2), 

and we find that EXP1 resolves to a variable named “age_months” and EXP2 resolves to the numeric 

constant “12”.  Since SDTL types are often nested several levels deep, resolving SDTL into natural 

language is a recursive process.  The Pseudocode Translator application uses templates like these 

to convert SDTL into something approximating English. 

Templates for SDTL commands are collected in a Pseudocode Library, which is a file in JSON format.  

(Pseudocode is a term used for the translation of a computer program into language that is easier 

for humans to decipher.)  The Pseudocode Library can be revised and extended without changing 

any code in the Pseudocode Translator, and versions of the Pseudocode Library can be created for 

other languages or special purposes.   

Embedding Variable Derivations in Metadata 
The full benefits of variable-level provenance are realized when SDTL descriptions of data 

transformations are combined with other metadata.   SDTL commands describe processes and their 

inputs.  The C2Metadata model assumes that the data were described in a metadata file before the 

data transformation script was executed.  C2Metadata Updater applications (see Figures 1 and 2) 

update the pre-transformation metadata file by embedding SDTL into the description of each 

transformed variable to make an updated metadata file.  Since the updated metadata file includes 

the original metadata file in its entirety, data catalogs and codebooks can show the state of the 

dataset before transformations were applied.  In addition, the Updater assigns each of the SDTL 

commands to each of the variables that it modifies.  Since some SDTL commands use variable lists 

and variable ranges to modify many variables at the same time, identifying which variables are 

affected is not always obvious.     
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The C2Metadata Project uses elements from DDI Codebook version 2.5 to attach data 

transformation descriptions to individual variables (DDI Alliance, 2014).  A variable can be 

described by the “derivation” element in the DDI Codebook schema, which has two content 

elements “drvcmd” (derivation command) and “drvdesc” (derivation description).  A derived 

variable can be described with multiple “drvcmd” elements, which allows us to include both the 

SDTL and the source language versions of every command that modified the variable.  The 

“drvdesc” element is used for the natural language (pseudocode) version of each command.  

Commands that operate on the entire dataset, like AppendDatasets and MergeDatasets, are 

described with a “fileDerivation”, which we have proposed for inclusion in the next version DDI 

Codebook.     

DDI enhanced with SDTL provides a way to describe data transformations involving temporary 

variables and variables that change later in a command script.  Every variable in a DDI metadata file 

receives an ID that is independent of the variable name.   We can document the intermediate states 

of a variable by generating a new ID and variable description every time it changes.  Derived 

variables can be linked to the relevant state of antecedent variables through their IDs even if the 

antecedent variable will be changed in later program steps.  The DDI metadata file can also track 

temporary variables, i.e. variables that are created and deleted without ever being saved to a file.  A 

DDI variable description is usually associated with a file, but a variable description without a file 

reference is either a temporary variable or a variable that will be transformed before being saved to 

a file.   

Adding Variables to the PROV Model 
The C2Metadata approach to documenting histories of datasets and variables is compatible with the 

PROV model of provenance.  The PROV model is a family of standards for describing data 

provenance recommended by the World Wide Web Consortium (Groth & Moreau, 2013).  The 

original PROV model did not describe variables within datasets or commands within programs, but 

several extensions of PROV offer more granular approaches to data and data processing (Cuevas-

Vicenttín et al., 2015; End to End Provenance Project, 2019; Garijo & Gil, 2013).   The extended 

PROV model can be queried to find relationships between variables and data transformation 

commands.  For example, we can ask which derived variables were affected by a specific antecedent 

variable or command in a script.  Or, we can ask which antecedent variables affected a specific 

derived variable.  Since SDTL is machine actionable, it facilitates reconstructing relationships 

between variables and program steps for representation in a PROV-compatible ontology.6   

Documentation, Execution, Translation 
The goal of the C2Metadata Project has always been automated production of human readable 

documentation, but we are aware that more ambitious goals are possible.  One of our early 

decisions was that SDTL would not be a machine executable language.  Languages for machines 

must be precise and completely specified.  Documentation can be valuable even when it is 

                                                             
6 The C2Metadata Project is grateful to the Whole Tale Project (https://wholetale.org/) for their work on 
integrating SDTL into the ProvONE model, especially Thomas Thelen, Matt Jones, Bertram Ludaescher, Tim 
McPhillips, and Craig Willis. 

https://wholetale.org/


12 

incomplete and sometimes imprecise.  Humans are accustomed to making decisions under 

uncertainty and using other knowledge to resolve ambiguities.   SDTL has been designed to 

describe data transformations, but it is not intended to guide the execution of data transformations. 

During the course of the project we discovered that a third goal is possible – translation from one 

statistical language to another.  Organizations often rely on large bodies of code in languages that 

have become difficult to maintain.   Data management scripts in statistical analysis software may 

use features that are removed in later releases, and younger analysts may be unfamiliar with 
packages and languages that were prevalent a decade earlier.  Under these circumstances, an 

application that can translate one statistical language into another could be very useful, even if the 

translation is less than complete.  Although it is not part of the current project, we have come to 

believe that SDTL can be used as an intermediate step in translating between statistical languages.  

Limitations 
The scope of the C2Metadata Project was limited in several ways to keep the project manageable 

with limited funding and time.  We were aware from the start that we could not capture every data 

transformation feature available in large and complex languages like SAS and R.  Our goal has 

always been to capture 80% to 90% of the commands that researchers use for data management.  

Moreover, the goal of the project has been automated production of documentation for humans not 

machines.  We did not design SDTL as a language for directing computers to perform data 

transformations.   

A basic limitation of tools developed on the C2Metadata Project is that they operate only on 

metadata files and do not access any data directly.  We rely on a description of the data prior to 

transformation in a metadata file with a standard format.   This decision simplified the creation of 

Parsers, because they do not need to read and analyze data files, but it did prevent us from 

implementing some features.   

● Metadata files often include descriptive statistics of variables, such as averages and 

frequency distributions, which are greatly appreciated by researchers.  Since the current 

tools do not access the data, we cannot compute descriptive statistics for variables that have 

changed.   

 

● Data transformation commands that depend upon the content of the data are not currently 

implemented.  We have specified a ReshapeWide command in SDTL, but it cannot be 

supported in a metadata-only system.  Reshaping data from a “long” to a “wide” format 

involves changing the unit of observation to a higher level, such as from individuals to 

households or counties to states.  The new data has one row for every case at the group 

level (household, state) and separate columns for the attributes of every individual within a 

group.  Suppose that data from a census are arranged with one row per person, and we 

want to reorganize the data to one row per household.    The variables for each person in 

the household will become columns in the new data file, i.e. the age of the first person in the 

household will be in column Age1, the age of the second person in Age2, and so on.  The 
number of columns for each variable (age, sex, occupation,…) depends upon the number of 

people in the largest household.   Since we cannot know the size of the largest household 

without accessing the data, reshaping from long to wide is not possible using only metadata. 



13 

R and Python languages are much more open than earlier statistical packages, and the communities 

supporting each of these languages have contributed thousands of libraries that add new 

operations and analyses.  To limit the scope of our project, we have focused on the “base” and most 

popular data transformation libraries in each language.  The SDTL parser for R is implementing the 

tidyverse library (Wickham et al., 2019), and the Python parser works with the Pandas library (The 

pandas development team, 2020).   

Since the C2Metadata Project is designed to describe datasets, we do not describe the outcomes of 
analysis commands.   The original text of an analysis command may be included in an SDTL script 

with the Analysis command, but we do not describe tables, graphs or other analytical results.  

However, analytical commands may also create new data.  For example, regression models typically 

generate predicted values and residuals, which can be saved as new variables or separate datasets.   

We expect that support for data created by statistical procedures will be added to SDTL in the 

future. 

Discussion 
The C2Metadata Project has demonstrated that it is possible to automate the capture of variable-

level provenance metadata.  Automation reduces the cost and increases the quality of 

documentation showing how users of statistical software transformed and manage their data.  We 

have produced a set of applications that convert scripts from five statistical languages into a 

common intermediate language (SDTL), which is then embeded into two widely used metadata 

standards.  By creating human-readable histories of variables, we provide metadata that is much 

more detailed and informative than a long list of commands in an unfamiliar language.   

We believe that several innovations in our approach are worth noting.  First among these is the 

creation of a Structured Data Transformation Language (SDTL) to serve as a standard way of 

representing data transformation commands.  Since researchers are currently split among at least 

five statistical software packages, we created a new language that would work with all of them.  

SDTL is not intended to replace existing statistical languages, rather it is a lingua franca for 

applications like data catalogs, codebooks, and other data discovery and documentation tools.  

SDTL is expressed in a structured format (JSON) that is easily read by computer programs, and it is 

compatible with existing metadata standards.   

Second, although SDTL has a small vocabulary, the SDTL Function Library makes it flexible and 

expandable.  Functions are a familiar device in programming languages, and statistical packages 

rely heavily on functions for many operations, like generating random numbers and computing 

quantiles of probability distributions.  SDTL extends this approach by using functions to describe 

arithmetic operations, logical conditions, and variables formed by aggregating over rows.  The SDTL 

Function Library maps functions in other languages into their SDTL equivalents.  Since all functions 

follow the same basic syntax, applications that parse other languages can translate functions into 

SDTL with a minimum of programming code.  The Function Library can be expanded without any 

changes in applications that rely on it. 

Third, we have also shown that translating SDTL into a human readable form is also a simple and 

extendable process.  The Pseudocode Library is set of fill-in-the-blank templates for SDTL 

commands.   Even complicated SDTL commands can be unfolded into properties that consist of pre-

defined text, variable names, and numbers.   
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Finally, SDTL may serve as an intermediary in translations between statistical languages.  Since the 

source languages have many idiosyncratic features, comprehensive translations are probably not 

attainable.  However, translations covering 80 to 90 percent of a script will be extremely useful for 

many purposes.  For example, many organizations have legacy scripts in statistical languages that 

their staff no longer understand.  Incomplete translations accompanied by human-readable 

versions of the original scripts can be very helpful in redesigning out of date workflows.     
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