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1. Introduction  

Automated vehicles can significantly change the future of ground mobility by reducing crashes, 
congestion, and fuel consumption. In addition, business model and cost/availability of mobility-on-
demand service may also change when automated vehicles become available. Mobility may be more 
accessible to the elderly and physically challenged population [1]. However, due to the cost differential, 
it is likely automated vehicles will take a while to reach high market penetration [2]. In the next few 
decades, these robotic vehicles will operate in an environment interacting with many human-driven 
vehicles.  According to reports from the California Department of Motor Vehicles (DMV) regarding 
autonomous vehicle on-road testing, most accidents involving automated vehicles are caused by the 
surrounding human drivers [3].  After examining the crash rate of Waymo and Cruise Automation test 
fleets released by the California DMV, we hypothesize that these automated vehicles may be partially 
responsible for these crashes, even when the crashes are largely the responsibility of the other (human-
driven) vehicle.  The crash report of the Waymo fleet, for example, shows that they were crashed into 
by other vehicles much more often in 2015-2016 (13), compared with the crash rate of 2017 (3) [4], while 
the mileage is 636k miles in 2016 and 352k miles in 2017 in California. Assuming the behavior of the 
surrounding vehicles stay the same, we believe the reduction in crash rate is due to change of behavior 
of automated vehicle. We hypothesize that it is not only important these vehicles do not crash into other 
vehicles, it is also important that they “merge into the local driving culture”, and do not behave too 
differently from other (human-driven) vehicles, e.g., inappropriate driving speed, 
acceleration/deceleration, time headway, gap acceptance during lane-change or left turn, etc.   In other 
words, the robot vehicles must learn the “etiquette” of the local driving culture.  In this paper, we report 
key parameters of human driving behaviors in three scenarios: free-flow driving, car-following, and lane-
change/cut-in. 

 
The robotic control of vehicle speed under free flow and car-following scenarios, e.g., applying to 
Adaptive Cruise Control (ACC), has been studied extensively. Based on the longitudinal dynamics of the 
vehicle, sliding mode control [6], optimal dynamic back-stepping control [7] and adaptive control [8] 
have been used to design ACC. Also, car-following range or time headway policy and the influence on 
traffic were studied for homogeneous platoons [9][10] and mixed traffic [11].  It was found that proper 
headway policy can guarantee the string stability of platoons. Connected vehicle technologies such as 
Dedicated Short Range Communications (DSRC) [12] can be used to provide non-line-of-sight 
information such as platoon leader’s acceleration, which enables Cooperative Adaptive Cruise control 
(CACC) [13]. With the knowledge of the motions of other vehicles, the CACC can stabilize a platoon which 
was string unstable [14]. However, a substantial portion of the work in the literature do not take human 
behaviors into consideration [15].  Related advanced driver assistance system (ADAS) work allow the 
driver to set the desired reference following distance and time headway [16] but the feedback control 
behavior may not be “human-like”. 
 
The lane-change behavior has also been studied extensively. Hatipoglu et al. [17] designed an automated 



 

 

lane changing controller with a two-layer hierarchical architecture. Ammoun et al. [18] planned the 
desired lane changing trajectory with speed or acceleration constraints. In [19], Lee et al. proposed an 
integrated lane-change driver model to control lane changing and lane following maneuvers. In [20], 
lane-changes on curved roads were studied. In [21], lane-change control under variable speed limits was 
shown to reduce travel time under various traffic density. However, in the literature whether these 
controlled lane-change behaviors are compatible with human driving behavior were again largely not 
studied.  
 
The behavior of human drivers has been collected in large-scale naturalistic field-operational-tests (N-
FOTs). Driver characteristics such as time headway, range and range rate were  
studied [22], [23] and the behaviors were used to identify driver types [24]. Most of the studies in car-
following focused on characterizing the control reference point of the human drivers, i.e. the desired car 
following distance and range rate, or capturing the influence on platoon dynamics [25]. Adaptation of 
car-following behavior under in-vehicle aid functions is also studied, indicating ADAS can change drivers’ 
behavior significantly [26]. For human lane-change behavior, models usually are based on characteristics 
such as the range and gap at the initialization of a lane-change [19]. Those models can be used to guide 
the design of autonomous vehicles. Moreover, in [27][28], the lateral acceleration during lane-changes 
is captured. The information can guide the design of the lower-level controllers to ensure ride comfort. 
Finally, in [29], the duration of the lane-change is analyzed. In this paper, we focus on the distribution of 
the initial range, initial Time to Collision (TTC), the maximum yaw rate of lane-change vehicle, and 
duration of lane-changes.  
 
Considering both human driver behaviors already analyzed in the literature, as well as information we 
can extract from the data collected, we defined the key human driver behaviors to be analyzed, which 
are summarized in TABLE  I.  
 

TABLE  I KEY BEHAVIOR VARIABLES USEFUL FOR THE DESIGN OF AUTOMATED VEHICLES  

Control Action Limits Longitudinal Acceleration 
Yaw rate During Lane-Changes 

Free Flow Behavior Free Flow Speed 

Car-Following 
Behavior 

Distance to the Lead Vehicle 
• Mean and Minimum Time Headway 
• Minimum Time-to-collision (TTC) 

Dynamic Response to the Lead Vehicle 

Lane- 
Change Behavior 

Condition to Initialize Lane-Change 
• Time Headway  
• Time-to-collision (TTC) 

Duration of lane-changes 
 



 

 

The main contribution of this work is to learn key control parameters of automated vehicle from human drivers, 
including: 1)control action limit of automated vehicles for longitudinal control and lane-change; 2)human driver 
dynamic response and control reference for free flow driving and car-following, which can be used for developing 
automated vehicle controllers that achieve human-like actions; 3)decision parameter and performance constraint 
for lane-change.  The rest of this paper is organized as follows: Section 2 presents the naturalistic driving database 
used and the query criteria. Section 3 presents the results for three key scenarios: free-flow, car-following, and 
lane-changes. Conclusions and future work are given in Section 4. 

 

2. Data Description 
2.1  Naturalistic Driving Database 
 The data used is from the Safety Pilot Model Deployment (SPMD) project lead by the University of Michigan 
Transportation Research Institute (UMTRI). SPMD data is collected from 2,800 passenger cars, trucks and buses 
equipped with DSRC devices to enable Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
communications and GPS to track vehicle motions. On the infrastructure side, there were 25 roadside equipment 
(RSE), 21 at signalized intersections, the remainder at curves and freeway locations. The experiment has been 
running since August 2012 and has collected more than 5.6 TB of recorded Basic Safety Messages (BSM) including 
motion (speed, acceleration) and location (longitude, latitude) for all vehicles, Mobileye® and vehicle actuation 
(brake applied, traction control, etc.) information for some vehicles [30]. A sample of logged BSM locations for 
one day is shown in Fig. 1  

 
Fig. 1 Recorded vehicle location from Basic Safety Message (BSM) on May 1st, 2013 from the Safety Pilot Model 

Deployment (SPMD) databasev[5] 
 
There are four types of vehicle equipment configurations, referred as Integrated Safety Device (ISD), Aftermarket 



 

 

Safety Device (ASD), Retrofit Safety Device (RSD), and Vehicle Awareness Device (VAD) based on their ability to 
transmitting or receiving BSM, weight class, and equipment of cameras. All configurations can transmit BSM and 
VAD cannot receive BSM from other vehicles. The configurations are summarized in TABLE II. Among the 300 ASD 
vehicles, 98 were equipped with a Mobileye® camera, which records forward object, range, and lane tracking 
information.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2  Sampled Dataset 

2.2.1 Car-Following 
The key variables for the car-following scenario include the range between the host vehicle and the leading vehicle 
𝑅𝑅𝐿𝐿, range rate 𝑅𝑅�̇�𝐿, speeds of the host vehicle 𝑣𝑣 and the leading vehicle 𝑣𝑣𝐿𝐿, longitudinal accelerations of the host 
vehicle 𝑎𝑎 and the leading vehicle 𝑎𝑎𝐿𝐿, lane positions of the host vehicle 𝑌𝑌 and the leading vehicle 𝑌𝑌𝐿𝐿. We use data 
from 98 sedans equipped with Mobileye® which provides a) relative position to the leading vehicle (range) and b) 
lane tracking measures compared with the lane delineation both from the painted boundary lines and the road 
edge. The range measurements error is up to 10% at 90m and 5% at 45m [31]. To ensure consistency of the 
dataset, we apply the following query criteria: 

− 𝑅𝑅𝐿𝐿(𝑡𝑡) ∈ [0.1 m, 90 m]  
− Latitude between 41.0o and 44.5o 
− Longitude between -88.2o and -82.0o 
− No cut-in vehicles between the two vehicles  
− No lane-change by either vehicle 
− Duration longer than 50s,  R ̇∈[-10m/s,10m/s], vehicle speed larger than 10 m/s 

 
With the defined criteria, 161,009 car-following events were identified: 85,656 on local roads and 75,353 on 
highways. The sampled car-following events are shown in Fig. 2. 
 

TABLE  II SPMD DSRC DEVICE SUMMARY 

Device  Rx Weight Class Quantity Camera 
ISD  Y Light 67 Y 
VAD  N Light, 

Medium, 
Heavy Duty, 

Transit 

2,450 N 

ASD  Y Light 202 N 
 Y Light 98 Y 

RSD  Y Heavy Duty, 
Transit 

19 Y 

 



 

 

 
Fig. 1 Sampled car-following data location 

 
2.2.2 Free-flow behavior 

A Gaussian Mixture Model (GMM) based clustering algorithm is used to identify the free-flow condition 
from the data. The query criteria used for the trips are as follows: 
− Trip duration longer than 10 minutes 
− Trip length longer than 300 meters 
− Trips inside the Ann Arbor area: latitude between 42.18o and 42.34o, and longitude between -
83.85o and -83.55o 
The results include 321,945 trips, which cover 3.7 million kilometers and more than 93,926 hours from 
2,468 drivers. To match the trips to links (road sections), an algorithm developed by [32] is applied. The 
data covers 9,745 of the 11,506 road links in the Ann Arbor area.  
 

2.2.3 Lane change 
 

The lateral position of the lane change vehicle reported from the Mobileye® camera is used to identify 
lane-change events.  As shown in Figure 3, the key lane-change variables include the initial range to the 
leading vehicle 𝑅𝑅𝐿𝐿0, initial time-to-collision 𝑇𝑇𝑇𝑇𝑇𝑇0, initial vehicle speed of the host vehicle 𝑣𝑣0, the 
maximum yaw rate 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 during a lane-change, and the duration of lane-change 𝑇𝑇. The query criteria 
used for the lane-change scenario are as follows: 

− Host vehicle is not changing lane 
− Leading vehicle’s lateral distance distance 𝑑𝑑𝑙𝑙𝑚𝑚𝑙𝑙 to the host vehicle change from 𝑑𝑑𝑙𝑙𝑚𝑚𝑙𝑙(𝑡𝑡1) > 3𝑚𝑚 to 
𝑑𝑑𝑙𝑙𝑚𝑚𝑙𝑙(𝑡𝑡2) < 0.3𝑚𝑚 

 



 

 

 
Fig. 3 Key variables extracted during a lane-change (cut-in) case 

 
In total, 422,249 cut-in cases were obtained. In 179,401 (42.5%) cases, the leading vehicle change lane 
from left to right, and in 242,848 (57.5%) of the cases, the leading vehicle change lane from right to left.  
332,283 (78.7%) cases happen on local roads, and 89,966 (21.3%) cases happen on highways. 
 

3. Results and Discussion 
3.1 Control actions 

3.1.1 Longitudinal Acceleration and Deceleration 
Longitudinal acceleration and deceleration characterize how decisive a vehicle is, and is an important 
behavior we study.  On local roads, the distribution has a longer tail compared with that on highways. 
The probability density function (PDF) longitudinal acceleration distribution of a selected driver is shown 
in Fig. 4. The distribution is asymmetric due to the difference in the powertrain acceleration and 
deceleration capabilities as well as driver’s performance difference in acceleration and braking events. 
In the following, we refer to deceleration as acceleration with brake applied, and acceleration as 
acceleration with throttle applied.   
 

 
Fig. 2 Longitudinal Acceleration Distribution for a Single Driver During Car-Following for Highway and 
Local Driving 



 

 

 
Fig. 3 Extreme acceleration distribution for all drivers 

 
For each driver, we define deceleration stronger than 2.5% percentile as extreme deceleration and 
acceleration stronger than 97.5% percentile as extreme acceleration. The extreme acceleration 𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚,𝑚𝑚 
and deceleration 𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚,𝑑𝑑 of all drivers are shown in Fig. 5 and Fig. 6, respectively. The distributions are 
fitted with a Generalized Extreme Value (GEV) distribution model which is a common choice to model 
the maxima of finite sequences of random variables [33]. Since extreme deceleration is defined as 
minimal acceleration instead of the maxima, we fit negation of extreme deceleration. The parameters 
of the GEV distribution include shape parameter k, scale parameter σ and location parameter μ, the 
probability function is shown below 
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Fig. 4 Extreme deceleration distribution for all drivers 
 

The parameters are summarized in TABLE III.  Human drivers have higher acceleration levels on local 
roads than on highways, with average acceleration limit 0.72 m/s2 for highway and 1.19 m/s2 for local 
roads. The mean deceleration limit for highway and local car-following are close, with -2.81 m/s2 for 
highway and -2.64 m/s2 for local roads. However, the tail for highway deceleration is longer than local 
driving. 
 

TABLE  III  ACCELERATION AND DECELERATION LIMIT GEV DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL CAR-FOLLOWING 

Scenario 𝑘𝑘 𝜎𝜎 𝜇𝜇 

Highway 
𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚,𝑚𝑚 0.3711 0.1628 0.5314 
−𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚,𝑑𝑑 0.1669 0.4722 2.4461 

Local 
𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚,𝑚𝑚 0.1426 0.1930 1.0457 
−𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚,𝑑𝑑 0.1649 0.3289 2.3865 

 
3.1.2 Maximum Yaw rate During Lane-Changes 

To prevent a robotic vehicle executing a lane-change too aggressively, it is important to learn human lane-change 
maximum yaw rate 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚. In this section, the distributions of  𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 of local roads and highway are analyzed. The 
yaw rate of lane-change vehicle is estimated with Kalman Filter using the time series of lateral velocity of the lane-
change vehicles. Assuming the initial lateral acceleration of each lane-change event is zero, we calculate the lateral 
acceleration time series with discrete Kalman Filter following [34] and [35]. The lateral dyanmics is approximated 
as  
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where 𝑣𝑣𝑦𝑦 is the lateral velocity and the 𝑎𝑎𝑦𝑦 is the lateral acceleration. Denote the state as 𝑥𝑥, covatiacne of state as 
𝑃𝑃, system dyanimcs matrix as 𝐴𝐴 and observation matrix as 𝑇𝑇, the state  can be predicted from the dynamics model 
and covariance can be predicted from Gaussian approximaion of dynamics and observation noise   
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are estimated state and state covatiance at time 𝑘𝑘. Given new obserrvation at time 𝑘𝑘 + 1, the estimated state 
and covariance can be updated as  
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After calculating the lateral acceleration time series, we derive the yaw rate by  
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where 𝑣𝑣𝑚𝑚 is the longitudial speed and 𝑟𝑟 is the yaw rate. Maximum yaw rate of all events are fitted with GEV 
distirbution, the results are shown in Fig. 7 and the model parameters are summerized in TABLE IV. As shown in 
Fig. 7, the average maximum yaw rate of the local lane-change (1.4 deg/s) is much higher than the highway lane-
change (0.6 deg/s) and the local lane-change  maximum yaw rate has a longer tail.  
 

 
Fig. 5 Lane-Change Maximum Yaw Rate Distribution 

 
TABLE  IV   MAXIMUM YAW RATE GEV DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE-CHANGE 

Scenario 𝑘𝑘 𝜎𝜎 𝜇𝜇 
Highway 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚  -0.0083 0.2325 0.5900 

Local 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚  0.1525 0.7381 1.3953 
 
3.2 Free flow behaviors 
The free flow driving behavior was studied extensively in the literature [36].  Measurement data from roadside 
sensors show that the traffic flow demonstrates a multimodal behavior, which was commonly described by a 
three-phase traffic theory: free flow, synchronized flow, and wide-moving jam. The latter two phases are 
associated with congested traffic. Based on this theory, we use the Gaussian Mixture Model (GMM) [37] following 
previous work in link travel time estimation [38] with 3 components to identify the free flow and congested 
behaviors. 
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where 𝜋𝜋𝑘𝑘 is weighting parameters, and 𝑓𝑓𝑘𝑘(𝑥𝑥|𝜃𝜃𝑘𝑘) is the multivariate normal probability density function of each 



 

 

component, 𝜃𝜃𝑘𝑘 is the collection of model parameter of each component, which includes mean and covariance 
matrix.  The model assumes that the congestion status can be viewed as a discrete random variable, and the 
vehicle speed is a random variable conditional on the congestion status. Samples of local and highway speed 
models for one road section are shown in Fig. 8 and Fig. 9.   

 
Fig. 6 Speed histogram and GMM fitting for one local road section with a speed limit at 17.88 m/s (40 mph) 

 
Fig. 7 Speed histogram and GMM fitting for one highway road section with a speed limit 31.29 m/s (70 mph) 

 
We use the component with the highest mean value for each link to estimate the free flow behavior. The 
measured free-flow speed compared with the posted speed limits are shown in Fig. 10 and Fig. 11, where the 
observed free flow speed of the road links vs. speed limits shown in a box plot and posted speed limit shown in a 
solid line. As shown in the figures, the observed free-flow speed is significantly higher than the posted speed limits 
on the highways. According to the Highway Capacity Manual [39], the base free-flow speed is estimated to be 2.2 
m/s (5 mph) above the posted speed limit. However, as shown in Fig. 10, for highway links with lower speed limits, 
the HCM estimated base free-flow speeds are much lower than the measured values.  This could pose a dilemma 
for robot drivers—if the robots are programmed to follow the speed limit, they will drive much slower than human 
driven vehicles, especially on highways with slower posted speed limit (e.g., 45 mph).  For local roads, the mean 
free-flow speeds are very close to the posted speed limits, with a correlation coefficient of 0.99.   
 



 

 

 
Fig. 8 Free Flow Speed vs. Posted Speed Limit for Highways 

 
Fig. 9 Free Flow Speed vs. Posted Speed Limit for Local Roads 

 
3.3 Car-following behavior 

3.3.1 Distance to the Lead Vehicle 
The relative position from a host vehicle to the lead vehicle can be defined by the time headway, which 
is range divided by the speed of the host vehicle. The constant time headway policy is frequently used 
as a safe driving practice for human drivers and for Adaptive Cruise Control designs. Two key statistic 
parameters are the average time headway and minimum time headway. For human drivers, the 
lognormal function was found to fit their time headway distribution well [40]. The sample time headway 
distribution of a single driver for both highway and local car-following events are shown in Fig. 12. As 
shown in the histograms, the sampled driver tends to keep a longer time headway on local roads, and 
the variance is larger, compared with the behavior on highways.  



 

 

 
Fig. 10 Time Headway Distribution and Lognormal Model for Single Driver in Car-Following Scenario for Highway 

and Local Driving 
 
To model the time headway distribution for the entire driver population, the mean time headway for 
each driver is calculated and plotted in Fig. 13. The distribution is fitted using a lognormal distribution 
function, and the parameters are summarized in TABLE V. The mean car-following time headway for 
highway driving is 1.42 s. Our highway results agree with previous studies such as [41] which concluded 
that car-following time headway for highway is between 1.3 s and 1.6 s, which correspond to 25% and 
75% percentiles of our model. The 25% and 75% percentiles of local road sections are 1.77 s and 2.33 s. 
From the histograms, time headway for local roads is longer than that of highways, which has a median 
of 2.03 s and an average of 2.07 s.  

 
Fig. 11 Mean time headway distribution of all drivers for highway and local car-following events 

  
TABLE V MEAN CAR-FOLLOWING TIME HEADWAY LOGNORMAL DISTRIBUTION PARAMETERS AND PERCENTILE 

Scenario Mean 
[𝑠𝑠] 

Variance 
[𝑠𝑠2] 

Percentile [𝑠𝑠] 
25% 50% 75% 

Highway 1.42 0.08 1.21 1.39  1.60 
Local 2.07 0.18 1.77 2.03 2.33 

 
The minimum car-following distance is also calculated for all drivers. For each driver, the extreme time 



 

 

headway is defined as time headway shorter than 2.5% percentile of the distribution of that driver. The 
extreme time headway of all drivers are shown in Fig. 14. The random variables are characterized with 
GEV distributions, and the parameters are summarized in TABLE VI.  The extreme time headway on 
highways is 0.44 s, shorter than the 0.80 s for local roads. The standard deviation is 0.021 s on highways, 
lower than that that of the for local roads (0.071 s). 

 
Fig. 12 Extreme time headway distribution for all drivers 

 
TABLE  VI TIME HEADWAY LIMIT GEV DISTRIBUTION PARAMETER FOR HIGHWAY AND LOCAL CAR-FOLLOWING 

Scenario 𝑘𝑘 𝜎𝜎 𝜇𝜇 
Highway 𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑚𝑚  0.0415 0.1058 0.3720 

Local 𝑇𝑇ℎ𝑙𝑙𝑙𝑙𝑚𝑚  -0.0737 0.2267 0.6880 
 

 In addition to time headway, another variable commonly used to characterize driving is time to collision 
(TTC), which is defined as the ratio between range and the absolute value of range rate. Since the closing-
in process is of interest, we only analysis the cases when range rate is negative. The “starting-to-brake 
TTC” is the TCC when the human drivers started to apply the brake, for both highway and local car-
following events, are shown in Fig. 15.  The distributions are again characterized with a GEV distribution. 
The model parameters are obtained from maximum likelihood estimation and are summarized in TABLE  
VII. The results indicate that the starting-to-brake TTC for highway and local car-following cases are 
similar, with the average value at around 22 s, while the mode is at 12 seconds. 
 

 
Fig. 13 Starting-to-brake TTC of highway and local car-following events 



 

 

 
TABLE  VII START-TO-BRAKE TTC GEV DISTRIBUTION PARAMETER FOR HIGHWAY AND LOCAL CAR-FOLLOWING 

Scenario 𝑘𝑘 𝜎𝜎 𝜇𝜇 
Highway |𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙𝑚𝑚| 0.4006 7.1869 13.1760 

Local |𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙𝑚𝑚| 0.3989 7.6780 13.2650 
 
 

3.3.2 Dynamic Response to the Lead Vehicle 
The dynamic response of human drivers to the lead vehicle can be understood by the correlation between 
acceleration (the control action) to the range and range rate (the vehicle states), e.g., following the driver model 
proposed by [40]. In this model, both correlations are modeled as a function of range 𝑅𝑅𝐿𝐿. The acceleration can be 
expressed as  

𝑎𝑎𝑑𝑑 = 𝐾𝐾𝐷𝐷(𝑅𝑅𝐿𝐿)�̇�𝑅𝐿𝐿 + 𝐾𝐾𝑃𝑃(𝑅𝑅𝐿𝐿)(𝑅𝑅𝐿𝐿 − 𝑇𝑇ℎ𝑑𝑑 ⋅ 𝑣𝑣)                                 (2)  
 

where 𝐾𝐾𝐷𝐷 is the control gain for the range rate, and 𝐾𝐾𝑃𝑃 is the control gain for the range, 𝑇𝑇ℎ𝑑𝑑 is the desired time 
headway to the lead vehicle. The sample joint distributions for range, range rate and acceleration of a single driver 
are shown in Fig. 16 and Fig. 17. At longer range, the variance of acceleration decreases, indicating human drivers 
are less sensitive. The correlations are modeled as a 3rd order polynomials in range. The parameters are estimated 
using robust least square with a bisquare function as regularization weights. [42] With this algorithm, the 
parameter estimation is more robust against outliers. For each driver, the correlation polynomials are estimated, 
and then the results for all drivers are used to construct the model of correlation parameters. The joint distribution 
for the correlations and range are shown in Fig. 18. It can be seen that the drivers use higher feedback gains when 
they are closer to the lead vehicle. The GEV distribution is used to model the random variable to capture the 
asymmetricity [40].  

 
Fig. 14 Joint distribution of acceleration and range of a single driver highway car-following scenario 

 



 

 

 
Fig. 15 Joint distribution of acceleration and range rate of a single driver highway car-following scenario 

 
Fig. 16 Joint distribution of correlation and range for different scenarios: (a) 𝐾𝐾𝐷𝐷 for highway; (b) 𝐾𝐾𝑃𝑃 for highway; 

(c) 𝐾𝐾𝐷𝐷 for local; (d) 𝐾𝐾𝐷𝐷 for local 
 

With distribution parameters estimated for all car-following cases, the population mean of the correlation 
function and the percentiles are computed. The mean correlation and 25% and 75% percentiles at different car-
following ranges are shown in Fig. 19 and Fig. 20.  
 



 

 

 
Fig. 17 Mean correlation between acceleration and range rate at different ranges for highway and local car-

following scenarios 

 
Fig. 18 Mean correlation between acceleration and range error at different ranges for highway and local car-

following scenarios 
 

3.4 Lane-change behavior 
     3.4.1 Initial Longitudinal Distance of Lane-Change 
The initial following vehicle time headway of a lane-change maneuver is an important parameter to characterize 
cut-in behaviors. Human drivers examine the available adjacent gaps (represented by time headway) to decide 
whether to change lane [43]. Therefore, it is crucial to understand how human drivers accept the gap for lane-
changes.  
 
For the local data, it can be seen from Fig. 21 that the joint distribution of time headway reciprocal and range rate 
has one component and time headway is independent with range rate. Therefore, we use GEV to model time 
headway reciprocal with the hypothesis that the initial time headway corresponds to the minimal accepted gap 
for human driver cut-in and we use Normal distribution to model the range rate. The PDF then can be expressed 
as  

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2|𝑘𝑘1,𝜎𝜎1,𝜇𝜇1, 𝜇𝜇2,𝜎𝜎2) = 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥1|𝑘𝑘1,𝜎𝜎1,𝜇𝜇1)𝑓𝑓𝑁𝑁(𝑥𝑥2|𝜇𝜇2,𝜎𝜎2)
(3)  

 
where 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺 is the PDF of GEV distribution, 𝑓𝑓𝑁𝑁 is the PDF of Normal distribution, 𝑥𝑥1 is time headway reciprocal 
and 𝑥𝑥2 is range rate. The parameters are shown in TABLE VIII. 



 

 

Fig. 19 Joint Distribution of Time Headway Reciprocal and Range Rate of Local Lane-Change 
 

For the highway data, it can be seen from the joint histogram of time headway reciprocal and range rate in Fig. 
22 that the data follows a two-component distribution. This phenomenon may due to the purpose of lane-
changes on highway. Our hypothesis is that the right component is due to mandatory lane-change s such as 
merging into a platoon where the time headway of the following vehicle is relatively small to the cut-in vehicle. 
And the left component represents the normal discretionary lane-changes. Therefore, for the right component, 
we use multivariate Normal distribution to fit the data, and for the left component, we use the same model as 
local scenario. The probability density function then can be expressed as 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2|𝑘𝑘1,𝜎𝜎1,𝜇𝜇1, 𝜇𝜇2,𝜎𝜎2,𝜇𝜇3,𝜎𝜎3,𝜋𝜋) =
𝜋𝜋𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥1|𝑘𝑘1,𝜎𝜎1,𝜇𝜇1)𝑓𝑓𝑁𝑁(𝑥𝑥2|𝜇𝜇2,𝜎𝜎2) + (1 − 𝜋𝜋)𝑓𝑓𝑀𝑀𝑁𝑁(𝑥𝑥1,𝑥𝑥2|𝜇𝜇3,𝜎𝜎3)

                                                                                                          (4)
 

where 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺 is the PDF of GEV distribution, 𝑓𝑓𝑁𝑁 is the PDF of normal distribution, 𝑓𝑓𝑀𝑀𝑀𝑀 is the PDF of multivariate 
Normal distribution, 𝜋𝜋 is the mixture weight, 𝑥𝑥1 represents time headway reciprocal and 𝑥𝑥2 represents range 
rate. The parameters are shown in TABLE VIII. Verifying the lane-change classification hypothesis using camera 
videos recorded by Mobileye is left for future work. 

 
Fig. 20 Joint Distribution of Time Headway Reciprocal and Range Rate of Local Lane-Change 

 
Fig. 21 Joint Distribution of Time Headway Reciprocal and Range Rate of Highway Lane-Change 



 

 

TABLE  VIII   TIME HEADWAY RECIPROCAL VS. RANGE RATE JOINT DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE-
CHANGE  

Highway 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺  𝑘𝑘1  
0.3388 

𝜎𝜎1  
0.0731 

𝜇𝜇1  
0.4085 

𝜋𝜋 =0.78 

𝑓𝑓𝑁𝑁  𝜇𝜇2 
-0.5426 

𝜎𝜎2 
3.3230  

𝑓𝑓𝑀𝑀𝑁𝑁  𝜇𝜇3 
[1.68,2.23] 

𝜎𝜎3 

0.25 0.65
0.65 4.13

− 
 − 

  

Local 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺  𝑘𝑘1  
0.1589 

𝜎𝜎1  
0.1013 

𝜇𝜇1  
0.2344 

 𝑓𝑓𝑁𝑁  𝜇𝜇2 
0.3478 

𝜎𝜎2 
4.2381  

 

     3.4.2 Initial Time to Collision (TTC) of Lane-Change 
As in [44], the initial TTC reciprocal is analyzed. Positive TTC represents cases when the following vehicle is catching 
up to the leading lane-change vehicle. The higher initial TTC reciprocal, the riskier the lane-change is. We use 
double exponential distribution to capture both negative and positive TTC reciprocal following [44]. The PDF is 
defined as  

𝑓𝑓(𝑇𝑇𝑇𝑇𝑇𝑇) =
𝜆𝜆
2

exp(−𝜆𝜆|𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜇𝜇|)                                                    (12)  

 
where 𝜆𝜆 is shape parameter, and 𝜇𝜇 is mean value parameter. And for positive initial TTC reciprocal cases, the data 
is modeled using exponential distribution following [44], with the PDF defined as 
 

1( ) exp TTCf TTC
µ µ

 
= − 

 
 (5) 

 
where 𝜇𝜇 is the mean parameter. The model results are shown in Fig. 23 and Fig. 24, and the model parameters 
are shown in TABLE IX and TABLE X for initial TTC and positive initial TTC respectively.  

 
Fig. 22 Lane-Change Initial TTC Reciprocal Distribution 



 

 

 
Fig. 23 Positive Initial TTC Reciprocal Distribution 

TABLE  IX   INITIAL TTC RECIPROCAL DOUBLE EXPONENTIAL DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE-CHANGE 

Scenario 𝜆𝜆 𝜇𝜇 
Highway 𝑇𝑇𝑇𝑇𝑇𝑇0−1 16.5370 -0.0120 

Local 𝑇𝑇𝑇𝑇𝑇𝑇0−1 14.0112 -0.0185 
 
TABLE  X  POSITIVE INITIAL TTC RECIPROCAL EXPONENTIAL DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE-CHANGE 

Scenario 𝜇𝜇 
Highway +𝑇𝑇𝑇𝑇𝑇𝑇0−1 0.0376 

Local +𝑇𝑇𝑇𝑇𝑇𝑇0−1 0.0619 
Percentile 10% 30% 70% 90% 
Highway 1/219.7 1/68.0 1/22.5 1/12.1 

Local 1/148.5 1/45.0 1/13.4 1/6.95 

     

 3.4.3  Duration of Lane-Change 
The duration of lane-change is another important feature indicating how aggressive the lane-change is. The lane-
change duration 𝑇𝑇 is modeled with log normal distribution following [29], with the PDF defined as 

2

2

1 (ln )( ) exp
22
Tf T

T
µ

σσ π
 −

= − 
 

 (6) 

 
where 𝜇𝜇 is the mean of logarithmic values and σ is the standard deviation of logarithmic values. As shown in Fig. 
25, the mean duration of lane-change in highway (4.3s) is longer than the duration of lane-change in local road 
(2.0s). The distribution parameters and percentiles are shown in TABLE XI. 

 
TABLE  XI   DURATION GEV DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE-CHANGE 

Scenario  σ μ 
Highway T  0.6569 1.6842 

Local T  0.6910 1.0483 
Percentile 10% 30% 70% 90% 
Highway 2.2 3.6 8.1 13.1 

Local 1.2 1.8 4.0 7.8 

 



 

 

4. Conclusions and Future Work 
In this paper we present the key parameters of human driver behaviors in three driving scenarios: free-flow, car-
following and lane-change, obtained from a naturalistic driving database.  
 
Our results can be used to design control algorithm of automated vehicle so that it is compatible to local driving 
culture. The results can also be used to develop driving simulation software to simulate human-driven vehicles. 
Our next step includes developing automated vehicle based on the parameters and validate the functions in 
testing facilities such as Mcity [45]. Also, since data from SPMD is used for the analysis, using naturalistic database 
from other test sites would be helpful to analyze the extrapolability of our model.  
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