| 1 | | |--|---| | 2 | @AGU PUBLICATIONS | | 3 | JGR-Space Physics | | 4 | Supporting Information for | | 5 | Imaging of Martian circulation patterns and atmospheric tides | | 6
7 | through MAVEN/IUVS nightglow observations | | 8
9
10 | N. M. Schneider ¹ , Z. Milby ¹ , S. K. Jain ¹ , F. González-Galindo ² , E. Royer ¹ , JC. Gérard ³ , A. Stiepen ³ , J. I. Deighan ¹ , A. I. F. Stewart ¹ , F. Forget ⁴ , F. Lefèvre ⁵ , S.W. Bougher ⁶ | | 11 | ¹ Laboratory for Atmospheric and Space Physics, Boulder, Colorado, United States | | 12 | ² Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain | | 13
14 | ³ Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Belgium | | 15 | ⁴ Laboratoire de Météorologie Dynamique (LMD), Paris, France | | 16
17 | ⁵ Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ
Université Paris-Saclay, Sorbonne Université, CNRS, Paris, France | | 18
19
20 | ⁶ Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, Michigan, United States | | 21
22 | Contents of this file | | 23 | Additional Supporting Information (Files uploaded separately) | | 24
25 | Captions for Movies S1 | | 26
27
28
29
30
31
32 | Movie S1. The view of nightglow variations over Mars nightside is shown for one Mars rotation. The bottom panel shows a nightside image of identical format to Figure 6a. The image was constructed from all equinox data with appropriate geometry from L_s =130-175 in MY33 and 0-60 in MY34. The anti-solar point lies at the disk center; the red line indicates the location of the prime meridian; the blue line indicates midnight, with the evening terminator to the left and morning to the right. At each location, we smoothed the data by averaging ± 1.5 hours around the instantaneous local time. The top panel shows the same information but mapped geographically. There is no dayside data, so a data gap moves around the map | - opposite the location of the nightside image below. Note three surges in brightness at the - equator in the evening sector at left, brightest halfway through the animation when location - $[0^{\circ},0^{\circ}]$ moves into the nightside. 37 2