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A classic hypothesis posits that lineages exhibiting long-term stasis are broadly adapted generalists that remain well-adapted

despite environmental change. However, lacking constraints that steepen adaptive peaks and stabilize the optimum, generalists’

phenotypes might drift around a broad adaptive plateau. We propose that stasis would be likely for morphological specialists that

behave as ecological generalists much of the time because specialists’ functional constraints stabilize the optimum, but those with

a broad niche, such as generalists, can persist despite environmental change. Tree squirrels (Callosciurinae and Sciurini) exemplify

ecologically versatile specialists, being extreme in adaptations for forceful biting that expand rather than limit niche breadth. Here,

we examine the structure of disparity and the evolutionary dynamics of their trophic morphology (mandible size and shape) to

determine if they exhibit stasis. In both lineages, a few dietary specialists disproportionately account for disparity; excluding them,

we find compelling evidence for stasis of jaw shape but not size. The primary optima of these lineages diverge little, if at all over

approximately 30 million years. Once their trophic apparatus was assembled, their morphological specialization steepened the

slopes of their adaptive peak and constrained the position of the optima without limiting niche breadth.
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Long-term morphological stasis is commonly viewed as para-

doxical, contradicting what we regularly observe over short time

scales and therefore expect over long ones: organisms adapt to

their changing environments. It is therefore paradoxical when

environments change, even dramatically, but organisms do not

(Wake et al. 1983). Stabilizing selection may seem to be an ob-

vious cause of stasis, but that process does not explain the most

perplexing feature of stasis: persistent constraints on the positions

of adaptive peaks (Hansen and Houle 2004; Estes and Arnold

2007). Perhaps the constraints are not on the positions of adap-

tive peaks but rather are intrinsic to the organism; genetic con-

straints may even be a universal feature of complex phenotypes

when more than one trait is under selection and traits are genet-

ically correlated (Blows and Hoffmann 2005; Walsh and Blows

2009; Hine et al. 2014). Nevertheless, recent studies argue that

intrinsic constraints do not explain stasis; standing genetic and

mutational variation (Houle et al. 2017) and evolvability (Bol-

stad et al. 2014) cannot account for evolutionary rates as low as

observed. Moreover, intrinsic constraints would only make sta-

sis even more paradoxical because extinction is the likely fate of

populations that cannot adapt to their environments. Nonetheless,

some lineages singled out as static persist for millions of years,

diversifying and colonizing novel environments and occasionally

giving rise to strikingly divergent forms (Wake et al. 1983; Emry

and Thorington 1984; Meyer 1984).

Stasis has been attributed to multiple causes including

stable, persistent environments, generalist ecological strategies,

evolutionarily limiting biotic interactions, and low diversification

rates, as well as functional constraints that steepen the slopes of

adaptive peaks and stabilize the adaptive landscape. Intuitively,

stasis might seem most likely in constant environments, such

as slowly shifting, long enduring forest belts, especially in the

nearly permanent climatic zones of the subtropics and tropics

(Simpson 1953, p. 334). Stasis could, however, also occur in

changing environments owing to ecological conditions that favor

persistence within the ancestral adaptive zone, especially broad

niches of generalists (Simpson 1944, 1953). Biotic interactions

could also explain stasis, either by affording a shelter from

competition or predation by spatial segregation (Darwin 1859;

Lindholm 2014), or by persistent competition that locks species
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into their ecological roles (Boucot 1983, 1990; Morris et al.

1995; Kozak et al. 2005). The same ecological conditions have

been invoked to explain exceptionally low rates of speciation

and/or extinction, and stasis has been argued to be a corollary of

those low rates: generalists are expected to have lower rates of

extinction (Sheldon 1996) or speciation (Eldredge and Cracraft

1980), although specialists, too, could resist extinction if their

favored resource persists (Vrba 1987).

What none of these hypotheses adequately explain is pre-

cisely what a hypothesis of stasis must explain: constancy of

the optimum. In particular, although generalists are often singled

out as most likely to be static, because they remain well-adapted

within their broad adaptive zone, they need not be constrained to

a narrow phenotypic range on that broad adaptive plateau. Yet,

without such constraints, their phenotypes might drift across that

plateau without being repeatedly pulled back to the ancestral opti-

mum. Perhaps generalists might be constrained to an intermediate

phenotype, between specialists’ extremes, by a balance among

conflicting functional demands; but, in that case, the problem is

to explain why one particular balance-point persists as environ-

ments change. In the absence of functional constraints, an opti-

mum that persists for millions of years remains difficult to ex-

plain. One form of constraints that would be independent of the

external environment could account for that stability: internal sta-

bilizing selection that maintains the coherence and functionality

of a system of interdependent parts (Wagner and Schwenk 2000;

Schwenk and Wagner 2001). But those constraints, such as in-

trinsic genetic constraints, may be universal and stasis clearly is

not.

Another form of constraint, which is neither universal nor

characteristic of generalists, is a set of consistent functional de-

mands that limits the array of well-adapted forms such that even

modest deviations from the optimum substantially reduce per-

formance and thereby restricts divergence once the optimum is

reached (Collar et al. 2009; de Alencar et al. 2017). Such strong

functional constraints that steepen the slope of adaptive peaks

seem difficult to reconcile with the expectation that generalists

are more likely to be static than specialists because they imply

specialization. Yet, one class that could be considered ecologi-

cal generalists might be subject to strong functional constraints:

functionally versatile specialists, which have morphologies spe-

cialized for a particular function, but behave as ecological gen-

eralists much of the time (Liem 1984, 1990). That contrast be-

tween morphological specialization and ecological breadth seems

as paradoxical as stasis itself because broadening the range of

usable resources is expected to prevent specializing on individ-

ual ones (Liem 1980). Despite that expectation, some morpho-

logical specializations do expand niche breadth, as demonstrated

by smasher mantis shrimp that are specialized to consume hard

prey but still feed on soft prey (deVries et al. 2016). Specializa-

tions that expand niche breadth increase the range of available

resources, resulting in an ecologically broad adaptive zone but

steeply sloped adaptive peaks. Functionally versatile specialists,

whose specializations expand niche breadth, can remain well-

adapted despite environmental change, at an optimum stabilized

by functional constraints.

Our primary objective is to determine whether functionally

versatile specialists with broad dietary niches have a static trophic

morphology. Tree squirrels provide a useful model system in that

they are morphologically specialized, being extreme among ro-

dents in their adaptations for forceful biting/gnawing (Druzin-

sky 2010; Cox et al. 2012; Ercoli et al. 2019), but despite that

specialization, they are not restricted to hard foods—their spe-

cialization enables them to eat hard foods without compromising

their ability to consume soft foods. Most tree squirrels eat not

only hard nuts and hard-shelled fruits but also small seeds, pulpy

fruits, nectar, insects, and other soft foods (Moller 1983; Emmons

and Feer 1997; Roth and Mercer 2008; Thorington et al. 2012).

This could explain the famously conservative trophic morphol-

ogy of tree squirrels. One lineage (Sciurus) has even been singled

out as an extreme case of stasis, a “living fossil” because of the

similarity between living Sciurus and the late Eocene Douglass-

ciurus jeffersoni in mandibular and ankle morphology (Emry and

Thorington 1984). Additionally, some genera of a distantly re-

lated lineage (Callosciurinae) are also considered exceptionally

conservative, being similar to Sciurus in both ecology and trophic

morphology, if not in ankle morphology (Emry and Thorington

1982; Emry and Thorington 1984). Another lineage, flying squir-

rels (Pteromyini), have never been regarded as either conservative

or functionally versatile, and they are not hard-nut specialists, but

their adaptations for gliding (and nocturnality) are so distinctive

and divergent from primitive squirrels that they would not be con-

sidered living fossils even if they were, in fact, static once those

adaptations arose.

Documenting stasis of complex traits, such as trophic

morphology, is not straightforward because stasis is difficult to

document convincingly even for simple (one-dimensional) traits.

One complication is that lineages evolving at exceptionally low

rates occasionally give rise to divergent, often specialized forms

(Simpson 1944, 1953), which potentially mask stasis of what

Simpson termed the “core lineage.” Another is that two models

can account for very low evolutionary rates, exceptionally low

(Brownian) rates, and a stable adaptive peak, and the more

complex model (a stable adaptive peak) might be favored only

because conventional criteria for model selection are biased in

favor of complex models (e.g., Boettiger et al. 2012; Ho and Ane

2014; Cooper et al. 2016). Likelihood-based methods perform

especially poorly when modeling high-dimensional data (Adams

and Collyer 2018) but complex morphologies are always high

dimensional. Furthermore, no multivariate method can fit a
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model containing a mixture of modes, such as a core lineage

evolving at a low Brownian rate, but with occasional divergences

to other adaptive peaks. Also, even the best-fitting candidate

models might fit poorly, yielding unconvincing evidence for

stasis. Finally, a complication more specific to our analysis is

that a “late burst” of divergence could mimic stasis, yielding a

covariance matrix identical to that of a single stationary peak

(Uyeda et al. 2015). Diversification rates of Sciurus appear to

have increased on colonization of the Neotropics (Pečnerová and

Martínková 2012; Pečnerová et al. 2015; Zelditch et al. 2015);

if that is paralleled by accelerating rates of divergence, it could

provide misleading evidence of stasis.

We first reexamine that late burst of diversification, adding

recently sequenced Neotropical species and their mandibular

morphologies to those previously analyzed (Zelditch et al. 2015;

Zelditch et al. 2017). We then examine the structure of dispar-

ity in all three lineages to determine if a few distinctive species

contribute disproportionately to disparity, as expected if the core

lineage is static except for a few extreme phenotypes. We then fit

a series of models, first to isolate the potentially static core lin-

eages, and then to determine if those are static rather than evolv-

ing at low (Brownian) rates. Finally, we ask whether the core lin-

eages have diverged from each other (and from the late Eocene

D. jeffersoni). Given the methodological challenge of modeling

complex morphologies using likelihood-based methods, we also

estimate model misspecification rates.

Materials and Methods
PHYLOGENY RECONSTRUCTION

A time-calibrated molecular phylogeny was generated for the

available tree squirrels. Most of our data came from the previous

analysis of diversification rates in Sciuridae (Zelditch et al. 2015)

based on five mitochondrial genes (16S, 12S, COII, COIII, and

Cyt-b) and three nuclear genes (C-myc, IRBP, and RAG1). We

added newly deposited genes of eight species of Neotropical

Sciurini (Pečnerová et al. 2015) and eight species of Callosci-

urinae (Hawkins et al. 2016), including Sciurus colliaei, Sciurus

deppei, Sciurus flammifer, Sciurus gilvigularis, Sciurus igniven-

tris, Sciurus oculatus, Sciurus pyrrhinus, Sciurus spadecius,

Dremomys everetti, Callosciurus adamsi, Callosciurus inorna-

tus, Callosciurus notatus, Callosciurus orestes, Callosciurus

phayrei, Sundasciurus altitudinus, and Sundasciurus tahan (see

Table S1 for detailed information).

New sequences were aligned with Zelditch et al. (2015) data

using CLUSTAL W (Thompson et al. 1994) implemented in Ge-

nious version 11.1.5 (https://www.geneious.com) and corrected

by eye. Molecular substitution models of all genes were selected

using PartitionFinder (Lanfear et al. 2012) based on Bayesian in-

formation criterion. The SYM + I + G model was selected for

Cyt-b, IRBP, and 16S; the GTR + I + G model was selected for

other genes.

The phylogeny was reconstructed using BEAST version

1.8.0 (Drummond and Rambaut 2007) on the Cipres Science

Gateway (http://www.phylo.org). A relaxed molecular clock with

an uncorrelated lognormal distribution was used for each gene

partition. A Yule process was used for the speciation model. Two

calibration points were used following Mercer and Roth (2003):

Sciuridae 36 million years ago (Ma) and Sciurus 9.8 Ma. Log-

normal priors with mean = 1 and SD = 1 were applied to both

calibration points. The third calibration point used in the previous

study of Sciuridae was not applied here, because it was based on

the age of Atlantoxerus getulus, a ground squirrel that is not used

in this study.

Three independent Markov chain Monte Carlo (MCMC)

analyses were run for 100 million iterations each, and sampled

every 10,000 iterations. MCMC performance was examined us-

ing Tracer version 1.5 (http://beast.bio.ed.ac.uk/Trace) to ensure

convergence and reliable effective sampling sizes (>200). Pos-

terior trees from the three runs were combined after burn-in

(20% for run1 and 10% for run2, 3) and resampled (i.e., thin-

ning) to 13,000 trees in Log-Combiner (http://beast.bio.ed.ac.uk/

LogCombiner). A maximum credibility consensus tree was gen-

erated in TreeAnnotater (http://beast.bio.ed.ac.uk/TreeAnnotator)

and was used for all further analyses.

DIVERSIFICATION RATES

Dynamics of speciation rate changes implied by the topogra-

phy of the consensus tree were modeled using Reversible jump

MCMC, using BAMM 2.5.0 (Rabosky 2014). All commonly rec-

ognized extant species were included in this analysis; previous

taxonomic and biogeographical studies were used to assign those

species that could not be included in the phylogenetic analysis to

the smallest possible clade (Supporting Information). Two sets

of four chains were run for 107 generations and sampled ev-

ery 104 generations. Functions in the R (R_Development_Core

2019) package coda (Plummer et al. 2006) were used to test for

MCMC convergence and effective sample size >200. Functions

in BAMMtools (version 2.1.6; Rabosky 2014) were used to con-

firm that rate shifts were found on the same branches of the tree

as in Zelditch et al. (2015) and had comparable marginal shift

probabilities (previously called branch-specific Bayes Factors).

MORPHOLOGICAL DATA

The morphological analyses are based on measurements of lower

jaws from 822 adults representing 102 of the 148 recognized

living species, photographed in lateral view, and one published

image of the late Eocene Douglassciurus jeffersoni, from the

Chadronian White River Formation in the Flagstaff Rim area,

Natrona County, Wyoming (USNM 214936; Emry and Korth
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Figure 1. Landmarks (in black) and semilandmarks (in gray) on

themandible of a representative tree squirrel Callosciurus notatus.

1996, p. 778). We used the dataset of Zelditch et al. (2015)

(http://datadryad.org/) consisting of 14 landmarks plus 84 semi-

landmarks included to capture the complex curvature of the jaw

(Fig. 1), supplemented by measurements of 15 additional species,

including eight Neotropical Sciurini, six Callosciurinae, and one

Pteromyini. Our morphological sample of Sciurini is nearly com-

plete (Table 1), but our sample of Callosciurinae is less so and

our sample of Pteromyini is sparse (for the full list of species

in all analyses, see Table S1; sample sizes for all species are in

Table S2).

Landmarks were superimposed by Generalized Procrustes

analysis (GPA); semilandmarks were slid to minimize bending

energy (Green 1996; Bookstein 1997; Zelditch et al. 2012). Size

was measured as (ln-transformed) centroid size (LCS), which is

highly correlated with body size (Zelditch et al. 2015). Follow-

ing superimposition, the mean shape and mean size were com-

puted for each species. GPA was done in geomorph, version 3.1.1

(Adams et al. 2019).

ANALYZING THE STRUCTURE OF DISPARITY

Shape disparity is measured by the average squared Procrustes

distance of each species’ shape to the mean shape for its clade,

equivalent to the sum of variances over all superimposed coordi-

nates except that the denominator is N – 1 (Zelditch et al. 2003;

Zelditch et al. 2012). Size disparity is measured by the variance

of LCS. To determine whether higher disparity is due to most

species being far from the mean or to a few highly divergent

species, we examine partial disparities, which are the squared

deviations of each subgroup (here, each species) from the mean

of the group, weighted by the sample size of the subgroup rela-

tive to the total group sample size minus one (Foote 1993). Be-

cause partial disparities are additive, it is possible to measure

the contribution that each species makes to the disparity of its

lineage.

ANALYZING DYNAMICS OF PHENOTYPIC EVOLUTION

To analyze the dynamics of phenotypic evolution, we first used

the sole method properly implemented for high-dimensional data,

a comparison of Brownian rates of shape and size (Adams 2014).

These comparisons use the ratio of the maximum to minimum

rate as the test statistic; significance testing was done by phylo-

genetic simulation using compare.evol.rates in geomorph.

We also used maximum likelihood to evaluate a series of

models (see MODELS, below), as implemented in the R pack-

age mvMORPH (Clavel et al. 2015). Models fit to shape require

reducing the dimensionality of the data because the number of pa-

rameters for complex (multivariate) models can exceed the num-

ber of species. We used the first six principal components (PCs),

which explain 90.9%, 88%, and 85.6%, of the variance of Cal-

losciurinae, Pteromyini, and Sciurini, respectively. Subsequent

PCs explain so little variation that to reach 99% would take 17

PCs for Callosciurinae and Pteromyini and 16 for Sciurini.

We assessed relative support by the Akaike information cri-

terion (AICc) adjusted for small sample size. All models for

Table 1. Species richness of each lineage (total in lineage, cf. Thorington et al. 2012), the number of species included in themorphological

data (total in sample), the number of species in the phylogenetic analysis (total in tree), and the disparity of shape and size (ln CS) for

the entire sample (disparity of sample) and for the species in the tree (disparity of species in tree).

Total Disparity of sample Total Disparity of species in tree

Lineage Sample Shape Size Tree Shape Size

Lineage N Disparity N Disparity
Callosciurinae 67 44 0.00391 0.08003 42 0.00383 0.07659
Pteromyini 44 22 0.00338 0.12359 22 0.00338 0.12359
Sciurini 37 36 0.00172 0.04983 27 0.00180 0.051045
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shape were fit with and without constraints; in the case of the

Ornstein-Uhlenbeck (OU) models, the PCs are constrained to

be adaptively independent (using the decomp = “diagonal” con-

straint) and in the case of the BM (Brownian Motion) models,

the evolutionary rate matrix is a diagonal matrix. The constrained

models have the advantage that the optimizer usually converged,

whereas it rarely did for the unconstrained models. However, the

evolutionary rate matrix is not constrained when fitting OU mod-

els and in that sense, the unconstrained BM models are most com-

parable to the OU models. mvMORPH does not report values for

α and σ2 for multidimensional data, instead providing values for

each individual dimension, but the values for multidimensional

data can be calculated from the sum of the diagonals of the σ2

and stationary variance (vy) matrices because vy = σ2/2α. We

can thus calculate the value for α, interpretable as the strength

of the pull to the optimum, and σ2, interpretable as the stochas-

tic component of the evolutionary process due to random genetic

drift or the effects of factors not in the model.

Because information-theoretic criteria often favor over-

parameterized models over simpler ones, we also assessed

support by parametric bootstrapping (Boettiger et al. 2012),

simulating data under each model (using the maximum likeli-

hood (ML) parameters estimated by mvMORPH), then fitting

each model to every simulated dataset, using the difference in

log likelihoods (δ) as the test statistic: δ = −2(Log L0 − Log

L1) where L0 and L1 are the likelihoods of the data simulated

under the simpler and the more complex model, respectively. To

determine whether the simpler model is better than the complex

model, we test the hypothesis that the data came from that

simpler model by comparing the difference in log likelihoods

(δ) for the original data to the distribution under the simpler

model (L0). The proportion of the simulated values under the

simpler model that are larger than that observed δ provides an

approximation to the P-value for the test, the probability that a

difference at least as large would be seen under model L0.

These methods of model selection identify the relatively

best-supported of the candidate models but do not assess how

well the models fit the data. To assess model adequacy, we used

posterior predictive simulation to compare the observed estimate

of disparity and those obtained by simulating the data under the

models. Because all models of evolutionary dynamics predict dis-

parity, the ability of models to predict observed disparity accu-

rately is evidence of model adequacy. Of special relevance for

this analysis is the adequacy of BM as a model for the evolution

of shape, given that this is the sole model properly implemented

for shape data (Adams and Collyer 2018). Even if it is not the

best-supported of the candidate models, BM may be adequate if

it predicts disparity nearly as well as the best-supported complex

model. Additionally, for the selected models, we compared the

estimates of the parameter values (σ2 and α) obtained from the

data to those obtained by simulating the data under the selected

model, then fitted to that model.

ESTIMATING MODEL MISSPECIFICATION RATES

To determine whether likelihood-based methods yield exception-

ally high model misspecification rates given the characteristics

of these shape data, reduced in dimensionality, we used the same

simulations as those used for parametric bootstrapping to esti-

mate misspecification rates for our data. More specifically, we fit

the data to a series of candidate models, used the parameters of

those models to simulate 1000 datasets, and then fit each model

to each simulated data set (see Supporting Materials, R.script,

for details on simulations). The models were first evaluated by

selecting the one with the lowest AICc, and then by excluding

the equivocal cases, in which the best-supported model differed

in AICc by four or fewer units. We restricted these analyses to a

subset of models, BM1, OU1, and a sample of the multi-peak OU

models.

MODELS

We fit the three simple models commonly analyzed in studies

of phenotypic evolution to shape, constant-rate Brownian mo-

tion (BM1), a single stationary peak (OU1), and an Early Burst

(EB). We then fit models based on dietary ecology, to the extent

that it is known for these groups (for more information on di-

etary ecology and its relationship to mandibular size and shape

in Sciuridae, see Zelditch et al. 2017). Because dietary ecology is

not well-understood for the Asian Callosciurinae and Pteromyini,

and because theory-based models may fail to find the best model,

we also used a heuristic (lasso-based) search for shifts in adap-

tive optima, implemented in the R package l1ou (Khabbazian

et al. 2016). To reduce the risk of selecting an over-parameterized

model, we compared the fit of the best-supported model to sim-

pler alternatives nested within it. In addition to the multiple-peak

OU models, we fit the corresponding multi-rate BM models.

We fit two a priori models to Callosciurinae, one derived

from a description of the callosciurine ecomorphs found in

many Southeast Asian communities (Ellerman 1949; Musser

et al. 2010). This was generalized to species other than the ones

explicitly named (Fig. 2, Ecomorph). The Ecomorph model

differs from all others in that most of the ground-foraging species

occupy a single adaptive peak distinct from the others. There

are two versions of this model, which differ in one expectation,

that Glyphotes simus occupies a unique peak. The most complex

model fit to Callosciurinae is the one obtained by the heuristic

search (Fig. 2, l1OU: OU7). The simpler models nested within

it include (1) two two-peak models, each positing a single

peak for all species except those in one specialized diet class,

either the bark-gouging miniatures (OU2.Mini) or the special-

ized insectivore, Rhinosciurus laticaudatus (OU2.Rhino); (2)
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Figure 2. Adaptive regime models for tree squirrel jaw shape.
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a three-peak model containing both those distinct peaks; (3) a

four-peak model that adds a peak for G. simus separate from the

other bark-gougers’ optimum; (4) a five-peak model that adds

a distinct optimum for Sundasciurus hippurus, which previous

analysis found to converge on New World miniatures rather than

on more closely related bark-gouging miniatures (Zelditch et al.

2017); and (5) a six-peak model, adding a distinct optimum

shared by Prosciurillus and Funambulus, which feed primarily

on soft foods (e.g., fruit, flowers, buds, nectar, caterpillars, and

colonial insects; Thorington et al. 2012). The model obtained

by the heuristic search, a seven-peak model (OU7.l1OU), adds

a distinct peak for Menetes berdmorei. The two six-peak models

(OU6.1 and OU6.2) both simplify the seven-peak models; one

includes M. berdmorei within the core lineage (OU6.1) and the

other places it on the same peak as R. laticaudatus (OU6.2).

Two models were fit to the Pteromyini. One was an ecologi-

cal model that posits the giant folivores occupy a distinct adaptive

peak (Fig. 2, OU2), as suggested by their specialized digestive

anatomy (Muul and Lim 1978). The other model was obtained

from the heuristic search (Fig. 2, OU5.l1OU).

We fit two models based on dietary ecology to Sciurini, a

four-peak model with most species on one peak and separate

peaks for the bark-gouging miniatures, the hard endocarp spe-

cialist (Rheithrosciurus macrotis), and the small conifer-seed and

fungi-eating Tamiasciurus (Fig. 2, OU4), and a three-peak model

that lacks the peak unique to Tamiasciurus. A more complex

model was obtained by the heuristic search (Fig. 2, OU7.l1OU).

In addition, we fit a model that proposes shifts in evolutionary

mode on entry into the Neotropics: a late burst of divergence at

5 Ma.

The same models were fit to size, except an additional size

model for Callosciurinae was derived by classifying species as

“miniature,” “small,” “intermediate,” or “giant,” and an addi-

tional model for Sciurini was derived by placing Tamiasciurus

with the miniatures (OU3.MiniTam) rather than with Sciurus.

After excluding species occupying peaks of specialists (or

those with extreme shapes), we assessed support for a model of

stasis for the core lineages of Sciurini and Callosciurinae, then

combined the two lineages (recalculating the PCs and reducing

the data to seven PCs) to determine whether both lineages occupy

the same peak or each lineage occupies a unique peak.

Results
PHYLOGENETIC RECONSTRUCTION AND

DIVERSIFICATION RATES

The topology and divergence timing of our phylogeny (Support-

ing Information and Fig. 1) largely agree with those of Zelditch

et al. (2015). The addition of new species in Sciurus, Dremomys,

Callosciurus, and Sundasciurus did not affect the main topology,

with Sciurini and Pteromyini as sister groups, and together form-

ing a clade with Callosciurinae. Divergence timing of our ma-

jor clades is generally 2–3 million years younger than was re-

ported in Zelditch et al. (2015), but the 95% confidence intervals

are mostly overlapping. The differences between trees mainly

concern weakly supported relationships. Notably several genera

that were nested within Sundasciurus no longer hold that posi-

tion. Nannosciurus melanotis is now placed as a sister lineage to

Dremomys and Tamiops, although the node support value is still

low (Posterior probability [PP] = 0.32). Menetes and Rhinosci-

urus are now placed as a sister group to Callosciurus (PP =
0.47). The Sulawesi genera Prosciurillus and Rubrisciurus are

also moved out of Sundasciurus, now being the next branch af-

ter Exilisciurus (PP = 1). Most newly added species fall within

their respective clades, except for Dremomys everetti, which is

grouped with Sundasciurus, as found by Hawkins et al. (2016).

Overall, relationships within Sciurinae are much better resolved

with strong support compared to Callosciurinae, where the phy-

logenetic positions of some genera are still unstable.

The model of speciation rates that best fits the consensus

tree has a relatively stable rate through most of the evolutionary

history of tree squirrels, and two rate increases in the last 5–10

Ma (Fig. 3). The more strongly supported increase is in the New

World branch of Sciurini. It is not clear whether this increase pre-

cedes the divergence of western North American Sciurus from the

rest of the lineage; however, the highest speciation rates are in-

ferred for a narrow window of time after that divergence when the

main Neotropical lineages appeared (∼4–6 Ma). The much less

strongly supported increase is in a Sundasciurus lineage (Sun-

dasciurus steerii and relatives) that diversified on Palawan and

adjacent islands very recently (<2 Ma).

THE STRUCTURE OF DISPARITY

Shape
In the plane depicting the main dimensions of shape disparity

(Fig. 4), the range of Callosciurinae is by far the largest owing

to the extreme morphology of the specialized insectivore, R.

laticaudatus. Over all dimensions, disparities of Callosciurinae

and Pteromyini are nearly equal and about twice that of Sciurini

(Table 1, “Disparity of Sample”). The distribution of distances

to the mean (Fig. 5A) and the proportional contribution of each

species to the total of its group (Fig. 5B) are highly skewed.

A few outliers make large contributions to disparity of Cal-

losciurinae: the specialized insectivore contributes 22% and the

bark-gouging miniatures contribute another 15.6%, increasing

to 44% with G. simus included. Those five species account

for 11.4% of diversity but nearly half the disparity. The most

distinctive shapes in Callosciurinae are both more extreme and

more numerous than those of the other lineages. There are no ex-

treme morphologies in Pteromyini, which has the highest median
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Figure 3. Consensus tree with inferred rate shifts (color bar) and marginal shift probabilities.

disparity. In Sciurini, the hard-endocarp specialist (R. macrotis)

is the sole outlier, contributing 13% of the total disparity of that

lineage. The four miniatures account for another 20% of that

total. Thus, in Sciurini, five dietary specialists contribute 14% of

the diversity but 33% of the disparity.

Size
Disparity of size for Callosciurinae is intermediate between that

of Sciurini and Pteromyini (Table 1). The distribution of distances

to the mean (Fig. 5C) and the proportional contribution of each

species to the disparity of its group (Fig. 5D) are skewed, but

there are fewer outliers in size than in shape. Even so, miniatures

contribute disproportionately to size disparity of Callosciurinae

(22.6%) and one large-bodied species (Rubrisciurus rubriventer)

contributes as much as some miniatures (3.3%). There are no

outliers in Pteromyini, and, with one exception (Petaurillus kin-

lochii), no species contributes even as much as 3% to the total. In

Sciurini, size disparity, such as shape disparity, is due primarily
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Figure 4. The principal components of shape disparity of the three tree squirrel clades.

to the distinctive giant, hard-endocarp specialist (R. macrotis) and

the miniatures, which are less extreme than miniature callosci-

urines and jointly contribute only 11.1% to sciurine size disparity.

EVOLUTIONARY DYNAMICS

Comparing Brownian evolutionary rates
Based on the ratios of rates for the one evolutionary model prop-

erly implemented for shape, Brownian rates for shape and size do

not differ significantly among lineages (P = 0.302 and 0.262 for

shape and size, respectively).

Evolutionary dynamics for shape
Models that constrain dimensions to be adaptively independent

(in the case of the OU models), or to evolve independently (in

the case of the BM models), rarely lose information relative to

the unconstrained models (Table S3). The notable exception is the

EB model; the unconstrained EB model invariably improves upon

the constrained one. Both constrained and unconstrained versions

of the models fit to Callosciurinae yield the same conclusions:

the three simple models all fit poorly, as do all Brownian models,

and the seven-peak l1ou model is unnecessarily complex, fitting

no better than the simpler six-peak variants of it, all of which im-

prove substantially on the Ecomorph model (Table 2). In striking

contrast, the best-supported models for Pteromyini are Brownian,

either the four-rate BM model (if the rate matrix is constrained

to be diagonal) or the constant rate BM model (if that matrix is

unconstrained), although the constrained four-rate model is the

best-supported. For Sciurini, the most complex model OU7.1lOU

does not improve upon the simpler a priori ecological OU3

model, which is clearly the best-fitting unconstrained model.

Parametric bootstrapping largely supports the conclusions

drawn for Callosciurinae and Sciurini, the two candidate static

lineages. For Callosciurinae, the exception is that parametric

bootstrapping favors OU7 rather than OU6; however, the distribu-

tions of δ for those models overlap (Fig. 6). The results are more

equivocal for Sciurini because the three-peak model is strongly

favored over only one of the two-peak models (OU2.Mini). Even

so, only 7.5% of the values for δ under the simpler OU2.Rheithro
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Figure 5. The distribution of distances to the means (for size and shape) and the proportional contribution that each species makes to

the disparity of its lineage. (A) Distribution of Procrustes distances from each species to themean shape. (B) Proportional contribution that

each species makes to the total shape disparity. (C) Distribution of deviations from each species to the mean size (LCS). (D) Proportional

contribution that each species makes to the total size disparity.

model exceed the observed δ (corresponding to a P-value of

0.075). Posterior predictive simulations find that a single rate

Brownian motion model substantially overestimates shape dis-

parity, predicting values up to twice the observed (Table 3). In

contrast, all OU models predict disparities closer to the observed

value, although only in two cases does the observed value lie

within the confidence interval of the simulated values (OU3 fit

to both lineages). The parameter estimates for the selected OU

models (Table 4) indicate a moderate to strong pull to the opti-

mum in both Callosciurinae and Sciurini, although the estimates

from the data are outside the confidence intervals of the simu-

lated values. The parameter estimates for the four-rate Brownian

model fit to Pteromyini are much further from the observed

values, sometimes an order of magnitude lower (Table S4).
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Figure 6. The distribution of δ under the simple and complex models for shape in the two lineages that are candidates for stasis. Shape

data are simulated using the maximum likelihood estimate (MLE) parameters for the simpler model (M0), then fit to both that model and

the more complex model (M1), and then simulated using the MLE parameters for the more complex model and fit to both the simpler

and that more complex model. The distribution of δ (2 (log L0 − log L1)) from the simulations is compared to the δ obtained from the data

(vertical line).
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Table 2. Relative support for models fit to mandibular shape. Ex-

cept for BM1 (uncon), the models incorporate the constraint de-

comp = “diagonal.” Shown are the a priorimodels, the model dis-

covered by l1ou and simplified versions of that l1OUmodel within

�AICc < 50 of the best constrained model and the corresponding

BM models.

Callosciurinae

Model Pars logLik AICc �AICc

BM1 (uncon) 27 668.64 −1276.53 173.40
BM1 12 654.76 −1284.22 165.71
OU1 33 687.29 −1298.29 151.65
EB 28 654.76 −1246.24 203.69
OU2.R 39 702.04 −1311.35 136.75
OU3.mR 45 727.594 −1345.09 103.01
OU5.Ecomorph3 63 791.65 −1414.40 35.54
OU5.mRGS 57 787.903 −1427.72 22.21
OU6.1 63 808.50 −1448.10 1.84
OU6.2 63 809.41 −1449.93 0.00
OU7.11ou 69 819.44 −1447.80 2.14
BM2.R 18 663.66 −1288.39 159.71
BM3.mR 24 669.31 −1285.34 162.76
BM5.Ecomorph3 42 715.40 −1329.52 120.41
BM5.mRGS 36 713.03 −1341.67 108.26
BM6.1 42 718.06 −1334.83 113.27
BM6.2 42 712.86 −1324.44 123.66
BM7.11ou 48 714.24 −1309.30 140.64

Pteromyini

Model pars logLik AICc �AICc

BM1 (uncon) 27 336.86 −605.18 47.53
BM1 12 323.16 −619.71 5.72
OU1 33 350.62 −612.34 44.37
EB 28 323.16 −574.56 82.14
OU2.foli 39 356.89 −601.86 54.85
OU4 51 391.58 −614.85 38.02
OU5.l1ou 57 398.21 −593.073 59.80
BM2.foli 18 333.74 −625.427 31.28
BM4 30 365.56 −652.71 0.00
BMM5.l1ou 36 367.57 −635.10 17.78

Sciurini

Model pars logLik AICc �AICc

BM1 (uncon) 27 446.28 −827.27 65.49
BM1 12 429.15 −832.21 60.54
OU1 33 461.58 −839.63 53.13
EB 28 429.15 −790.09 102.66
OU2.Reithro 39 485.56 −867.55 25.20
OU2.Mini 39 481.12 −858.67 34.09

Continued

Table 2. Continued.

Sciurini

Model pars logLik AICc �AICc

OU3 45 509.01 −892.32 0.43
OU4.Tam 51 510.55 −870.88 21.87
OU6.l1ou 69 567.88 −892.76 0.00
ER 33 456.89 −830.26 62.5
BM2.Rheithro 18 435.907 −831.03 61.73
BM2.Mini 18 433.30 −825.81 66.94
BM3 24 442.67 −828.58 64.18
BM4.Tam 30 445.08 −815.96 76.80
BM6.l1ou 48 496.27 −854.91 37.85

Evolutionary dynamics for size
For Callosciurinae, one model, derived by classifying species by

size, fits far better than the others, including the models that fit

shape well (Table 5). For Pteromyini, the best-fitting model is

the two-rate Brownian model, with a dramatic reduction in the

rate of size evolution of giant folivores; nonfolivores evolve at

16 times the rate of folivores. This model only slightly improves

upon BM1 (�AICc = 4.29) but the parametric bootstrap (Fig. 7)

shows that they are distinguishable. Also, the observed value for

size disparity (0.124) is relatively far outside the confidence in-

terval for the data simulated under BM1 (0.111–0.118) but within

the confidence interval for the data simulated under BM2 (0.119–

0.127). For Sciurini, four models fit equally well: two models

with three peaks (one with separate peaks for giant R. macro-

tis, the miniatures, and Sciurus plus the smaller Tamiasciurus

(OU3) and one that differs in placing Tamiasciurus on the same

peak as miniatures (OU3.TamMini). The four-peak model has a

peak unique to Tamiasciurus. The most complex model is the

OU7.l1ou model (for shape). As evident from the distribution of

δ (Fig. 7), the OU3 and OU4 models substantially overlap. The

observed value of size disparity, 0.051, lies within the confidence

intervals for data simulated under OU3 (0.049–0.051) and OU4

(0.050–0.051), indicating that either is adequate. The intermedi-

ate size of Tamiasciurus is not sufficiently different from either

the larger Sciurus or the smaller miniatures to warrant a peak

unique to it, but the results are ambiguous regarding the posi-

tion of Tamiasciurus in a three-peak model. The estimates of the

two Brownian rates from the data for Pteromyini, σ2
1 = 0.168

and σ2
2 = 0.0104, are close to the means obtained from the sim-

ulations: σ2
1 = 0.162 (CI: 0.158–0.165) and σ2

2 = 0.010 (CI:

0.0095–0.0104) even if slightly outside the confidence interval in

the case of σ2
1. The values of α estimated from the data are high,

and in the case of Callosciurinae, α lies within the confidence in-

terval of the simulated values, although the value for Sciurini is

again outside the confidence interval (Table 6).
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Table 3. Posterior predictive simulations of disparity. The observed values are obtained from the variance of the six principal components

used in modeling the dynamics of shape. The values for the models are the mean and 95% confidence intervals (CI) of the 1000 samples

simulated under each model. All values are multiplied by 102.

Callosciurinae Disparity Sciurini Disparity
Observed 0.348 Observed 0.150
Model Simulated CI Model Simulated CI

BM1 0.496 0.489–0.502 BM1 0.320 0.316–0.338
OU1 0.373 0.369–0.377 OU1 0.158 0.156–0.160
OU2.R 0.382 0. 378–0.386 OU2.Rheithro 0.160 0.159–0.161
OU3.mR 0.349 0.346–0.351 OU2.Mini 0.147 0.149–0.151
OU6.1 0.332 0.333–0.334 OU3 0.156 0.155–0.158
OU7.11ou 0.344 0.342–0.346 BM3 0.290 0.285–0.295
OU.Ecomorph3 0.333 0.331–0.335

Table 4. Estimates of the parameters of the selected OU models, σ2 and α for shape. Given are the values obtained from the data and

the mean or median (indicated by ∗) and confidence intervals obtained from simulations on a tree scaled to unit height.

Data Simulations

σ2 α Mean σ2 CI Mean α CI

Callosciurinae 0.011 5.08 0.010 0.00976–0.0097 5.26 5.14–5.38
Sciurini 0.021 11.08 0.025 0.0237–0.0257 14.26∗ 13.88–14.76

ARE THE CORE LINEAGES STATIC?

Shape
When extreme morphologies are excluded, a constrained single

peak (OU1) model fits shape substantially better than other mod-

els, including a constrained single rate Brownian (BM1) model

(Table 7). Parametric bootstrapping again supports those conclu-

sions for both core callosciurines and core sciurines (Fig. 8).

None of the values for δ under the simulated simple uncon-

strained BM1 model equal or exceed the observed value. Esti-

mates of disparity from the simulations show that BM1 grossly

overestimates disparity for Sciurini (0.00311), yielding a mean

nearly three times the observed value (0.00311 vs. 0.00108).

In contrast, simulations under OU1 underestimate the observed

value (0.00099 vs. 0.00108), which is only slightly outside the

confidence interval (0.00098–0.00100). Similarly, BM1 grossly

overestimates disparity of core callosciurines, yielding a mean

over the simulations of more than twice the observed value

(0.00247 vs. 0.00107), whereas the mean of the simulations under

OU1 is very close to the observed value (0.00109 vs. 0.00107),

which is just slightly outside the confidence interval (0.00108–

0.00110). The parameter values estimated from the data on a tree

scaled to unit height for both the core callosciurines (σ2 = 0.006,

α = 5.6) and sciurines (σ2 = 0.016, α = 7.4) also clearly support

an OU model over BM, although they are outside the confidence

intervals estimated from the simulated data (for the core callosci-

urines, σ2 = 0.00948–0.00967 and α = 4.66–4.68; for the core

sciurines, σ2 = 0.0106–0.011 and α = 5.68–5.69).

Size
Size exhibits more complex dynamics. The single-rate Brownian

model fits as well as a single peak model (�AIC = 2.44 in favor

of BM1), and, under the single peak model, α = 3.2 × 10–9 on a

tree scaled to unit height. For the core sciurines, the best-fitting

model (found by l1ou) is neither a single peak nor a single rate

model but rather it has two peak shifts, one at the common an-

cestor of S. gilvigularis and Sciurus aestuans, another along the

branch to Sciurus ignitus. However, the estimate for α for that

model also indicates a very weak pull to the optimum, α = 1.31

and the phylogenetic half-life, t1/2 = 7.8 Ma, greater than half the

age of the crown group. Moreover, the range of jaw size also is

wide in the core lineages (60.84–111.66 mm and 84.67–141.34

mm in core callosciurines and sciurines, respectively).

ONE OR TWO PRIMARY OPTIMA FOR SHAPE FOR

CORE LINEAGE OF TREE SQUIRRELS?

The hypotheses of one and two primary shape optima receive

nearly equal support (Table 8). The parametric bootstrap clearly

favors the simpler model (Fig. 9), but that support for a single-

optimum is countered by evidence that the lineages do not over-

lap within the plane of the first two PCs (Fig. 10A) and only
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Figure 7. The distribution of δ under the simple and complex models for shape in the two lineages that are candidates for stasis. Shape

data are simulated using the maximum likelihood estimate (MLE) parameters for the simpler model (M0), then fit to both that model and

the more complex model (M1), and then simulated using the MLE parameters for the more complex model and fit to both the simpler

and that more complex model. The distribution of δ (2 (log L0 − log L1)) from the simulations is compared to the δ obtained from the data

(vertical line).

Figure 8. The distribution of δ under the simple and complex models for low evolutionary rates, a single rate Brownian motion (BM1)

and a single stationary peak (OU1), for shape in the core lineages of callosciurines and sciurines after excluding the few divergent species.

slightly on the phylogenetic PCs (extracted given a tree rescaled

by the estimated value for α on the one-peak tree) (Fig. 10B).

Under both models, the observed disparity of the two core lin-

eages (0.00173) is very close to, but slightly outside the confi-

dence interval for the data simulated under both a single optimum

(0.00167–0.00170) and two optima (0.00175–0.0.00178). Under

the one peak model, α = 6.59; under the two-peak model, α =
15.78. These values also are outside the confidence intervals for

the mean of the simulated values, more so for the single peak

model (3.92–4.01) than the two peak model (14.49–15.13). The

two models, however, differ little in their estimates of the dura-

tion of stasis in that the time it would take to move halfway from
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Table 5. Relative support for models fit to mandibular size.

Shown are the a priori models, the model discovered by 1lou and

simplified versions of that model that are within �AICc < 50 of the

best model.

Callosciurinae

Model pars logLik AICc �AICc

BM1 2 0.72 2.87 52.63
OU1 3 1.32 4.00 53.75
EB 3 0.72 5.20 54.95
OU5.Ecomorph3 8 23.62 −26.87 22.88
OU7.l1ou 9 23.48 −23.33 26.42
OU6.1 8 23.48 −26.59 23.16
OU6.2 8 23.35 −26.34 23.41
OU.Size.Class 6 32.08 −49.75 0.00
BM5.Ecomorph3 6 13.38 −26.87 40.29
BM7.l1ou 7 12.20 −7.11 42.64
BM6.1 7 12.20 −7.11 42.64
BM6.2 7 12.63 −7.96 41.79
BM.Size.Class 5 13.86 −16.07 33.69
Pteromyini
BM1 2 −2.43 9.50 4.26
OU1 3 −2.12 11.56 6.33
EB 3 −2.43 12.20 6.96
OU2.foli 4 −0.21 10.77 5.54
OU4 6 −0.72 14.51 9.27
OU5.l1ou 8 4.90 17.27 12.03
BM2.foli. 3 1.05 5.24 0.00
BM5.l1ou 7 0.19 21.63 16.39
BM4 5 −0.38 14.51 9.27
BM5.l1ou 7 0.19 21.63 16.39
Sciurini
Model pars LogLik AICc �AIC
BM1 2 −0.32 5.13 22.75
OU1 3 3.12 0.81 18.43
EB 3 −0.32 7.68 25.30
OU2.Rheithro 4 6.34 −2.86 14.75
OU2. Mini 4 9.24 −8.66 8.96
OUM.3 5 13.67 −14.46 3.16
OU3.MiniTam 5 15.24 −17.62 0.00
OU4 6 15.28 −14.36 3.26
OU6.11ou 7 17.36 −14.83 2.79
BMEB 3 2.79 3.36 19.09
BM2.Rheithro 3 0.57 5.91 23.53
BM2.Mini 3 0.99 5.06 22.68
BM3 4 2.36 5.10 22.72
BM3.MiniTam 4 1.28 7.26 24.88
BM4.RMiniTam 5 2.76 7.34 24.95
BMM6.l1ou 6 19.97 −11.35 6.26

Figure 9. The distribution of δ under the simplermodel of a single

peak occupied by both lineages and the more complex model of

two peaks.

the ancestral state to the optimum t1/2 (Hansen 1997) is merely

1.2 Ma on a tree of ca 30 Ma.

The two models are so difficult to distinguish because, if

there are two optima, they are very close to each other (Procrustes

distance, Dp = 0.066). That distance, estimated from the values

for θ in the space of seven PCs, is very close to the distance be-

tween the lineage means within the shape space of full dimen-

sionality (Dp = 0.054). The slight difference between optimal

shapes for the two lineages (Fig. 10C) is in robustness of the hor-

izontal ramus and the robustness, orientation, and curvature of

the coronoid process. The core lineage(s) differ more strikingly

from D. jeffersoni, and in the same direction (Fig. 11A). Under

the hypothesis of a single optimum, Dp = 0.0976 between that

optimum and D. jeffersoni; under the hypothesis of two optima,

Dp = 0.112 and 0.102 between D. jeffersoni to the callosciurine

and sciurine optima, respectively. The shape features that most

distinguish the living species from D. jeffersoni are their lesser

robustness, especially of the angular process and distal diastema,

as well as a more subtle but functionally relevant displacement

of the masseteric fossa, positioned more anteriorly in the living

species (Fig 11B and 11C).

MODEL MISSPECIFICATION RATES

For each clade, data were simulated under each model (for that

clade) and fit to each model for that clade. Each column of

Table 9 contains the proportion of cases in which data simulated

under one model had the lowest AICc when fit to that (true)

model and every other one. Considering all cases, including
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Table 6. Estimates of the parameters of the selected OU models, σ2 and α, for size. Given are the values obtained from the data and the

mean or median (indicated by ∗) and confidence intervals obtained from simulations on a tree scaled to unit height.

Data Simulations

σ2 α Mean σ2 CI Mean α CI

Callosciurinae 0.418 15.78 0.398 0.368–0.428 16.71 15.49–17.93
Sciurini 0.407 10.39 0.220 0.202–0.247 7.45 6.75–8.15

Table 7. Relative support for the alternative models for excep-

tionally low evolutionary rates: BM1 and OU1 fit to the core cal-

losciurines and sciurines.

Core callosciurines

Model pars logLik AICc �AICc

BM1 (uncon) 27 549.76 −1036.30 53.58
BM1 12 543.49 −1061.24 28.64
OU1 33 585.04 −1089.88 0

Core sciurines

Model pars logLik AICc �AICc

BM1 (uncon) 27 395.34 −722.92 30.72
BM1 12 381.63 −736.77 16.87
OU1 33 420.61 −753.64 0

Table 8. Relative support for hypotheses of one or two primary

optima for shape.

Model pars logLik AICc �AICc

OU1 52 1346.21 −2573.62 5.16
OU2 60 1359.47 −2578.78 0

equivocal ones (when �AICc ≤ 4), model misspecification

rates are frequently higher than 5%; in two cases, they are close

to 30% (Table 9A). As expected, when the true model is not

preferred, it is usually a more complex model that is favored.

In the most extreme cases (in Sciurini), the OU3 model is

frequently preferred for data simulated under the OU2.Rheithro

model; however, for data simulated under the OU3 model, the

misspecification rate is also high but the simpler OU2.Mini

model is most often preferred over the more complex true model.

In the other case of misspecification rates approaching 30%, the

OU7 model in Callosciurinae, the simpler OU6 model is most

often incorrectly favored. Excluding equivocal cases in which

�AICc ≤ 4.0 (Table 9B), model misspecification rates are lower

but the same two models have very high misspecification rates

and the same incorrect models are favored in most cases: OU3

over OU2.Rheithro in Sciurini (30%) and OU6 over OU7 in

Callosciurinae (27%), consistent with parametric bootstrapping.

The competing models are very similar because the optima

are very close. The miniature sciurines are not as extreme as

miniature callosciurines (or as extreme as the hard-endocarp spe-

cialist) so two peaks in the OU3 model are close to each other.

Similarly, the only difference between the OU6 and OU7 models

for callosciurines is the position of one species, M. berdmorei.

Discussion
Persistence of an optimum over millions of years is challeng-

ing to document much less to explain, but our analysis provides

compelling evidence for long-term stasis of jaw shape in two lin-

eages of tree squirrels (Callosciurinae and Sciurini). Not only are

both lineages static but also their optima have diverged little, if at

all, over approximately 30 million years. In both static lineages,

approximately 15% of the species, typically dietary specialists,

have diverged from the phenotype characteristic of the morpho-

logically specialized dietary generalists. The dietary specialists

contribute disproportionately to the disparity of both groups, ac-

counting for nearly half of the disparity of Callosciurinae. In

contrast, the flying squirrels (Pteromyini) are not static and no

flying squirrel is strikingly divergent. The evidence for stasis of

the core lineages, excluding the divergent dietary specialists, lies

not only in the lower likelihood of the data under the alternative

model of a low Brownian rate (�AICc > 100) but also in that

model’s grossly inaccurate predictions of disparity. Although the

predicted disparities under that model are nearly three times the

observed values, the discrepancy of the estimates under a single-

peak OU model is less than 10% of the observed value. More

surprising, the observed value for the joint disparity of the two

lineages lies just slightly outside the confidence interval for data

simulated under a model of a single optimum. Considering that

all models of the evolutionary dynamics of phenotypes predict

the accumulation of disparity over time, a model that fails to pre-

dict disparity accurately cannot be considered adequate. Judged

by that criterion, our results strongly argue for stasis of one or

two slightly divergent optima for jaw shape.
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Table 9. Model misspecification rates. The models under which the data are simulated are in the first column; the models to which those

data are fit are in the rows. (A) The proportion of times that the data fit to a given model has a �AIC of zero; (B) the proportion of times

that the data fit to each model fit to a given model has a �AIC ≥ 4.0.

A
Callosciurinae

Simulated

Fit BM1 OU1 OU2 OU3 Eco OU6 OU7

BM1 0.84 0.00 0.00 0.00 0.00 0.00 0.00
OU1 0.00 0.94 0.01 0.05 0.00 0.00 0.00
OU2 0.00 0.05 0.93 0.00 0.00 0.00 0.00
OU3 0.00 0.00 0.00 0.95 0.01 0.00 0.00
Ecomorph 0.01 0.00 0.01 0.01 0.88 0.00 0.00
OU6 0.00 0.00 0.00 0.00 0.10 0.99 0.28
OU7 0.00 0.00 0.00 0.00 0.01 0.01 0.72

Sciurini
Simulated

Fit BM OU1 OU2.Rheithro OU2.Mini OU3

BM1 0.95 0.01 0.00 0.00 0.00
OU1 0.04 0.95 0.00 0.01 0.00
OU2.Rheithro 0.00 0.02 0.69 NA 0.05
OU2.Mini 0.01 0.02 NA 0.95 0.10
OU3 0.00 0.00 0.31 0.05 0.84

B
Callosciurinae

Simulated

Fit BM1 OU1 OU2 OU3 Eco OU6 OU7

BM1 1.00 0.00 0.00 0.00 0.00 0.00 0.00
OU1 0.00 1.00 0.02 0.03 0.00 0.00 0.00
OU2 0.00 0.00 0.98 0.00 0.00 0.00 0.00
OU3 0.00 0.00 0.00 0.96 0.01 0.00 0.00
eco 0.00 0.00 0.00 0.00 0.91 0.00 0.00
OU6 0.00 0.00 0.00 0.00 0.07 1.00 0.27
OU7 0.00 0.00 0.00 0.00 0.00 0.00 0.73

Sciurini

Simulated

Fit (Unequiv) BM OU1 OU2.Rheithro OU2.Mini OU3

BM1 0.96 0.01 0.00 0.00 0.00
OU1 0.03 0.98 0.01 0.00 0.00
OU2.Rheithro 0.00 0.01 0.70 NA 0.05
OU2.Mini 0.01 0.01 NA 0.98
OU3 0.00 0.00 0.30 0.02 0.95
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Figure 10. The distribution of jaw shapes of the two core lin-

eages within the plane of (A) the first two principal components

(PCs), and (B) the first two phylogenetic principal components

(pPCs) (extracted given a tree rescaled by the estimated value for

α on the one-peak tree) and (C) the difference between the mean

shapes of the two lineages.

Our conclusions presuppose that our results are not an arti-

fact of our methods. The most important methodological limita-

tion is that we had to reduce the dimensionality of the data and

the number of parameters of the models. We included as many di-

mensions as possible, given the diversity of each lineage, but that

falls short of including all the shape information and relies on

a subjective, arguably arbitrary criterion (Monteiro 2013). How-

ever, no objective criterion determines how many dimensions are

necessary for accurately modeling the evolution of shape. In-

stead, the most widely used criteria determine how many can

be individually interpreted as “meaningful” (e.g., Horn 1965). It

may seem more justifiable to reduce the number of model pa-

rameters, considering that no information was lost by constrain-

ing “traits” to be adaptively independent, but the traits in our

analysis are simply axes of the coordinate system. We do find

that model misspecification rates are often higher than 5%, up

to an alarmingly high 31%, but the models most difficult to dif-

ferentiate make very similar predictions. Although phylogenetic

comparative methods based on Brownian motion display accept-

able Type I error and statistical power (Adams and Collyer 2018),

their results are nonetheless misleading when the data do not fit

that model, predicting disparities up to three times higher than

observed and obscuring the processes causing lineages to differ

in disparity. Pteromyini differs from Callosciurinae and Sciurini

in evolutionary mode not rate, and Callosciurinae differs from

Sciurini in both the number of, and distance between, adaptive

peaks, which are often unique to a single dietary specialist.

Our results support a variant of the classic hypothesis that

generalists are most likely to be static because they remain

well-adapted to their environment (Simpson 1944, 1953). What

we add to that hypothesis is an explanation for the persistence of

the optimum. That explanation is needed because, if ecological

generalists are well-adapted to a broad spectrum of resources,

their optimum could shift according to the range of resources

locally available. According to our hypothesis, what limits those

shifts is functional constraints on the morphological specialists

whose specializations expand niche breadth. Departures from

the optimum that lessen their ability to exploit resources for

which they are morphologically specialized are not likely to be

tolerated, and they may be even less tolerable for ecologically

versatile specialists when those departures reduce niche breadth.

Morphological generalists might also occupy steep-sided peaks

if their optimum is determined by an invariant balance among

trade-offs, but in the absence of functional constraints, they are

more likely to drift around their broad adaptive plateau without

being repeatedly pulled back to the ancestral optimum. Other

lineages of rodents have also been singled out for their limited

morphological divergence accompanying speciation, such as

Rattus, Peromyscus, Microtus, and Oryzomyinae (Rowe et al.

2011) but analyses of phenotypic evolution of two of them,

EVOLUTION JULY 2020 1373



M. L. ZELDITCH ET AL.

Figure 11. The distribution of jaw shapes of the two core lineages plus late EoceneDouglassciurus jeffersoni (A); the differences between

(B) the optimal shape of the core lineage of Callosciurinae and D. jeffersoni and (C) the optimal shape of the core lineage of Sciurini and

D. jeffersoni.

Rattus (Rowe et al. 2011) and Oryzomyalia (Maestri et al. 2017),

show that neither is static. For Oryzomyalia, the model that best

fit cranial and mandibular shape is a two-rate Brownian model

(Maestri et al. 2017), supporting the expectation that, in the

absence of functional constraints, morphology may drift around

an adaptive plateau. Stochastic peak shifts are a more likely ex-

planation for drifting around an adaptive plateau than is random

genetic drift given the tremendous disparity that random genetic

drift can produce over macroevolutionary time scales. That

tremendous disparity is evident from Lynch’s (1990) conclusion

that size measurements of a disparate assemblage of North

American squirrels, ranging in body size from a small flying

squirrel, Glaucomys volans (57 g) to the giant Marmota monax

(2754 g), evolved at just 3% of the minimum neutral expectation.

Of the various hypotheses that ascribe stasis to ecological

factors, including environmental stability, biotic interactions, and

low speciation rates, none explains why trophic morphology of

Callosciurinae and Sciurini is static, unlike that of Pteromyini.

Both Callosciurinae and Pteromyini are largely co-distributed in

the squirrel-rich Paleotropical forests but Sciurini mainly inhab-

its squirrel-poor communities of Holarctic-Neotropical forests

(Fig. 12). Therefore, explanations that ascribe stasis to the slowly

shifting tropical forest belt (Simpson 1944, 1953) or to biotic

interactions, either spatial segregation of competitors (Darwin

1859; Lindholm 2014) or persistent competition locking species

into their ecological roles (Boucot 1983, 1990; Morris et al. 1995;

Kozak et al. 2005), would predict the same evolutionary mode for

both Paleotropical lineages and a different one for Sciurini.

Two other explanations are more difficult to rule out:

(1) internal stabilizing selection that maintains coherence and

functionality of an integrated system (Wagner and Schwenk

2000; Schwenk and Wagner 2001) and (2) intrinsic ge-

netic/developmental constraints. The first is a possibility

because the mandible is one component of a functionally in-

tegrated trophic apparatus that comprises muscles and teeth as

well as bones. The powerful bite of squirrels is partly due to

the arrangement of the jaw masseter muscles (sciuromorphy),

which is usually singled out as the main component of their

specialization (Thorington and Darrow 1996; Druzinsky 2010;

Cox et al. 2012). That arrangement arose by displacing the origin

of the lateral masseter forward and upward to the zygomatic

plate, altering the direction of the anterior lateral masseter and

strengthening the forward component of its contraction (Wood

1965). Sciuromorphy, however, is not enough to explain their

powerful bites because all squirrels are sciuromorphic but not

all have powerful bites; the hard-nut eating tree squirrel, Sciurus

niger, has an exceptionally powerful bite for its body size but the

insectivorous/small seed-eating ground squirrel Ictidomys tride-

cemlineatus does not (Freeman and Lemen 2008). The squirrels

that eat the hardest foods typically have a more anterior origin

of the anterior deep master, a deeper angular process (increasing

mechanical advantage of the superficial masseter), the most

robust incisors, and a deep mandibular corpus (Thorington and

Darrow 1996). Taken together, morphological specializations for

hard-nut feeding implicate adaptations of muscles, bone, and

teeth. Because Douglassciurus jeffersoni predates the origin of
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Figure 12. Geographic distribution of the diversity of tree squir-

rels of each lineage based on the International Union for Conser-

vation of Nature (2019) expert range maps at 10-km resolution.

sciuromorphy, it lacks the muscular adaptations that enhance

bite-force and that less efficient anatomy might have required

larger muscles generating larger forces, hence its more robust

jaw (especially the angular process). Once the muscular com-

ponent of the trophic apparatus evolved, a more slender skeletal

structure may have been feasible. Internal stabilizing selection

that maintains the functionality of the trophic apparatus may

have subsequently contributed to stasis. We cannot rule out the

possibility that intrinsic genetic/developmental constraints also

play a role in the stasis of tree squirrels; intrinsic constraints

can influence macroevolutionary patterns, including the amount,

range, and direction of disparity (e.g., Goswami and Polly 2010;

Haber 2016; Machado et al. 2018; Rossoni et al. 2019). Even if it

seems unlikely that such constraints can explain both stasis and

the diverse directions in which dietary specialists evolved, we

cannot rule out that possibility without measuring flexibility and

other variational properties.

The specializations of the trophic apparatus, once assem-

bled, enabled tree squirrels to consume the hard nuts present in

all environments inhabited by tree squirrels without limiting their

ability to consume softer foods. Their specializations thus expand

their niche-breadth as well as steepening their adaptive peak.

Morphologically specialized, ecological generalists may seem

paradoxical, even as paradoxical as stasis. Yet, even though spe-

cialized generalists seem paradoxical, their adaptive peaks may

be remarkably stable.
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