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Abstract11

GNSS-R measurements of the ocean surface are sensitive to roughness scales ranging from12

a few cms to several kms. Inside a hurricane the surface roughness changes drastically13

due to varying sea age and fetch length conditions and complex wave-wave interactions14

caused by its cyclonic rotation and translational motion. As a result, the relationship15

between the surface roughness at different scale sizes becomes azimuthally dependent,16

as does the relationship between scattering cross section and wind speed as represented17

by a Geophysical Model Function (GMF). In this work, the impact of this azimuthal vari-18

ation on the scattering cross-section is assessed. An empirical GMF is constructed us-19

ing measurements by the NASA CYclone Global Navigation Satellite System (CYGNSS)20

matched to HWRF reanalysis surface winds for 19 hurricanes in 2017 and 2018. The anal-21

ysis reveals a 2-8 % variation in scattering cross-section due to azimuthal location and22

the magnitude of the azimuthal dependence is found to grow with wind speed.23

Plain Language Summary24

GNSS-Reflectometry (GNSS-R) is a technique of studying reflected GPS signals25

to extract useful information about the surface. CYGNSS is the first of its kind GNSS-26

R constellation mission selected by NASAs earth venture program. The goal of the mis-27

sion is to understand inner core processes in hurricanes by making accurate surface wind28

speed measurements there. Wind speed at the surface is determined using a GMF that29

maps the reflection measurement to a wind speed. Due to the complex nature of sea state30

and wave interactions inside a hurricane, measured scattering cross-section depends on31

the azimuthal location of the measurement inside the hurricane system. A modified GMF32

is proposed here that accounts for the azimuthal dependence. The model is developed33

by matching up CYGNSS measurements to hurricane winds estimated by the NOAA HWRF34

model for 19 hurricanes during 2017 and 2018. The new GMF accounts for a 2-8 % vari-35

ation in the measurements due to azimuthal location which increases with wind speed.36

1 Introduction37

The measurement of hurricane wind fields has a long history, ranging from airborne38

measurements (Jones et al., 1981; Wright et al., 2001; Uhlhorn et al., 2007) to space borne39

observations made by microwave radiometers and radars (Ebuchi et al., 2002; Figa-Saldaña40

et al., 2002; Gaiser et al., 2004). The key challenges for mapping the complex hurricane41

wind fields are the need for adequate spatial and temporal sampling of such fast evolv-42

ing phenomena and the ability to penetrate through strong rain bands to measure the43

surface winds. Global Navigation Satellite System Reflectometry (GNSS-R) is a relatively44

new field of remote sensing that uses the existing GNSS signals to study the surface. It45

greatly improves the sampling and revisit capability by utilizing the existing GPS trans-46

mitter constellation and its L-band measurements are less affected by the heavy precip-47

itation in the rain bands.48

A GNSS-R system is a bistatic radar in a specular forward scattering geometry.49

A number of airborne (Garrison et al., 1998; Katzberg et al., 2001; Garrison et al., 2002)50

and spaceborne GNSS-R systems (Gleason, 2013; Foti et al., 2015; Soisuvarn et al., 2016)51

have verified the ability of this configuration to successfully retrieve ocean surface winds52

from space. A GNSS-R radar measures the scattering cross-section of the surface around53

the region of specular reflection. The reflected GPS signal observed by a GNSS-R receiver54

is mapped into delay-doppler space for different time delays and doppler shifts observed.55

This forms the Delay-Doppler Map (DDM) of the surface (Gleason et al., 2009).56

It is important to note that the scattering cross section measured by a GNSS-R57

receiver is directly related to the surface roughness rather than the surface wind itself.58

GNSS-R forward scatter is quasi specular incoherent scatter in most conditions. Thus59

an appropriate Mean Squared Slope (MSS) of the surface as sensed by GNSS-R mea-60
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surements is an integration of the wave spectrum over a range of wavelengths ranging61

from several meters up to a few tens of cms. The surface MSS is inversely related to the62

measured normalised bistatic radar cross section (σ0). The Geophysical Model Function63

(GMF) maps this σ0 to the ocean surface wind speed empirically to retrieve the near sur-64

face wind speed from the measurements. In a hurricane environment, with complex tem-65

poral and spatial distribution of wind and wave fields, it is a challenging task to accu-66

rately retrieve wind speed from GNSS-R measurements. The scattering cross-section de-67

pends on surface roughness scales spanning a wide range from small capillary waves to68

long gravity waves. In fully developed seas, with essentially infinite sea age and fetch length,69

the relative magnitude of the surface roughness at different scale sizes reaches an equi-70

librium state due to energy cascade and dissipation mechanisms. Inside a hurricane, how-71

ever, the sea age and fetch length conditions can vary significantly with azimuthal lo-72

cation due to its rotational and translational motion. This can perturb the balance be-73

tween the roughness at different scales and alter the measured scattering cross section.74

Despite its complex nature, several simulations (Moon et al., 2003; Fan et al., 2009; Young,75

2017), directional buoy measurements (Young, 2006) and airborne missions (Walsh et76

al., 1985; Wright et al., 2001; Uhlhorn et al., 2007) have, over the years, helped develop77

directional wave spectra for hurricanes. The directional wave spectra acquired from sev-78

eral hurricane reconnaissance missions suggest that local wind and wave directions vary79

sinusoidally with the azimuth angle referenced to the hurricane heading and have a weak80

radial dependence (Hwang et al., 2017). These results suggest that remote sensing tech-81

niques such as GNSS-R, which depend on surface wave scattering, should consider az-82

imuthal wind-wave response functions for accurate modeling and subsequent wind re-83

trieval.84

A GNSS-R Geophysical Model Function describes the relationship between mea-85

sured scattering cross section and the 10m reference wind speed. Previous empirical GMFs86

for hurricane winds have been developed without allowing for possible dependence on87

azimuthal location within the storm (Clarizia et al., 2014; Ruf & Balasubramaniam, 2018).88

As a result, actual azimuthal dependencies are essentially averaged out and wind speed89

retrieval errors will be correlated with azimuth location. An improved, azimuthally de-90

pendent, empirical GMF is developed here to better account for the azimuthal variation91

of the wind and wave directions. A large dataset of observations from the CYGNSS mis-92

sion is used. CYGNSS is a NASA mission that was launched in Dec 2016. It has 8 mi-93

cro satellites equally spaced around a 520 km circular orbit inclined at 35 degrees. Each94

satellite carries a GNSS-R radar receivers tuned to measure GPS L1 signals at 1.575 GHz,95

thereby enabling it to make measurements through heavy precipitation regions with a96

mean revisit time of 7 hrs. The DDM measurements are made at a rate of 1 Hz and have97

continued uninterrupted since March 2017.98

In this work, the impact of azimuthal variation on the measured scattering cross-99

section is assessed using CYGNSS data over 19 major hurricanes across different basins100

during 2017 and 2018. For this analysis, HWRF reanalysis hurricane winds are used as101

a reference. The remainder of this paper is structured as follows. Section 2 gives a de-102

scription of the datasets used and the observations from the CYGNSS-HWRF matchup103

analysis. Section 3 describes the empirical GMF developed as a function of azimuth an-104

gle; Section 4 assesses the performance of the proposed model and Section 5 provides the105

conclusions of the study.106

2 Theory and Observations107

For this analysis, the v2.1 release of CYGNSS Level 1 σ0 measurements over 19 ma-108

jor hurricanes from 2017 and 2018 are used (PO.DAAC, 2018). The data are matched109

to Hurricane Weather Research and Forecasting (HWRF) reanalysis winds of the inner110

nest grid spacing of 2 km. The HWRF winds are re-sampled to CYGNSS resolution and111

are empirically paired to CYGNSS σ0 observations with a maximum temporal separa-112

tion of 60 minutes and a maximum spatial separation of 0.25 deg lat and lon. The matchups113
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West Pacific East Pacific Atlantic Indian

Jebi Aletta Florence Mekunu
Jelawat Otis Harvey Titli

Mangkhut Willa Irma
Maria Jose
Trami Maria
Walaka Michael
Yutu Oscar

Table 1. Hurricanes from different basins in the CYGNSS-HWRF matchup dataset.

are then translated into a storm-centric-direction of motion based coordinate system for114

the purpose of understanding the azimuthal variation of measurements relative to the115

storm heading. The Weather Research and Forecast (WRF) system for hurricane pre-116

diction (HWRF) is an operational model developed by the National Centers for Envi-117

ronmental Prediction (NCEP). HWRF provides 3 domains (one parent and 2 nested)118

and is based on the initial position of the storm and on the National Hurricane Center119

(NHC) forecast of the 72 hour storm position. The 2 nested domains move along the storm120

with a coverage of 24 deg x 24 deg and 7 deg x 7 deg for the middle and the inner nest121

respectively (Tallapragada et al., 2014). For our purposes, we use the inner nest grid-122

ding that offers the finest resolution of about 0.015 deg (approx. 2kms). The CYGNSS123

level 1 σ0 are also filtered by several quality measures for this analysis. Only observa-124

tions with high antenna gain (> 5dB) and the overall quality flag set to best quality are125

used. This has allowed a total dataset consisting of ∼ 187, 000 observations in hurricanes126

by CYGNSS. Table.1 lists the different hurricanes contained in this dataset.127

The CYGNSS wind retrieval algorithm uses the two measured observables namely,128

the normalized bistatic radar scattering cross section (σ0) and the slope of the leading129

edge of the radar return pulse scattered by the ocean surface (LES) (Clarizia & Ruf, 2016).130

With these observables, GMFs are empirically derived by pairing near co-incident inde-131

pendent estimates of 10 meter referenced ocean surface wind. For a fully developed sea132

(FDS), which constitutes the majority of the measurements, the observables are matched133

to the ground truth reference which is the combination of European Centre for Medium-134

Range Weather Forecasts (ECMWF) and Global Data Assimilation System (GDAS) re-135

analysis wind speed products. This results in a FDS GMF. For young sea conditions with136

limited fetch (YSLF), as observed in hurricanes, a YSLF GMF is generated using matchups137

with near co-incident NOAA P-3 hurricane hunter passes over the major Atlantic storms138

in 2017 (Ruf & Balasubramaniam, 2018). Examples of the FDS and YSLF GMFs are139

shown in Fig.1 for observations at incidence angles of 10, 30 and 50 deg. Above wind speeds140

of ∼ 15m/s, the two GMFs diverge due to the underdeveloped state of seas near trop-141

ical cyclones, which tends to lower the roughness and increase the scattering cross sec-142

tion. One important feature to note is the difference in the slope of the two GMFs at143

higher wind speeds. The YSLF GMF at high wind speeds has a higher value and a shal-144

lower slope (lower |dσ0/du10|) for all incidence angles. In general, the high wind slope145

of the GMF can be used as a proxy for sea state development, with lower magnitudes146

being associated with younger seas.147

Fig.2 shows the distribution of winds in different quadrants of a hurricane using148

the CYGNSS-HWRF matchup dataset. The wind distribution inside the hurricane strongly149

varies in the azimuthal sense. In theory, the first quadrant is the generation region (shown150

in Fig.3 (a)) and has the maximum energy. Also, quadrant 1 has the largest wind speeds151

relative to the surface because the winds generated by the storm in this region are added152

to the storm motion. The wind generates a spectrum of waves with different group ve-153
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Figure 1. CYGNSS GMF for FDS winds shown by dotted lines and YSLF winds shown with

solid lines. Incidence angles of 10, 30 and 50 deg are shown.

locities. Waves that have their group velocity equal to the velocity of the forward mo-154

tion of the storm remain in the intense wind region and receive maximum energy from155

the wind. Waves with group velocity greater than storm forward motion velocity will out-156

run the storm and propagate ahead as swell waves and those with a lower group veloc-157

ity than the storm will be outrun by the storm and will be left behind (Young, 1999).158

The swell radiating out ahead of the storm will often interact with the local calm sea in159

phase quadrature, resulting in a confused sea condition. This is generally observed ahead160

of the storm and to the rear of the storm, resulting in a younger sea in each of those re-161

gions. The adequacy of a single slope for the GMF is assessed by determining the slope

Figure 2. Distribution of winds in different quadrants in a storm relative to its heading.

162

separately in each quadrant of a storm, relative to the storm heading. The storm quad-163

rants are defined based on the Cartesian representation of quadrants with increasing az-164

imuth angle in the anti-clockwise direction (see Fig.3 (a)). An example track of CYGNSS165
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Figure 3. (a) Description of storm-centric-direction of motion based coordinate system used

in this paper. (b) Sample CYGNSS tracks overlaid on HWRF wind field. HWRF wind intensity

is shown by the colorbar on the left and the quadrant of the CYGNSS sample is shown by the

colorbar on the right.

overlaid on HWRF, partitioned by storm quadrant (color bar on the right) is shown in166

Fig.3 (b), the storm heading is represented by the black arrow at the storm center (iden-167

tified by the red circle).168

For the purpose of analysis, the range of HWRF wind speeds from 20 m/s to 70
m/s is divided into bins. The center of each wind speed bin is stepped in 1m/s incre-
ments from 20m/s to 70m/s. Within a bin, all corresponding CYGNSS scattering cross-
section measurements are averaged together. The wind speeds are binned in this way
to reduce biases in the estimation process due to variations in sample size at different
wind speeds. The width of each wind speed bin is chosen based on the RMS difference
plot shown in Fig.4 (a). RMS difference is evaluated by

RMSD(wi) = sqrt < (σ0i − σ̄0i)2 > (1)

Here σ0i is the set of radar cross-section measurements in the ith wind bin, wi and σ̄0i169

is the mean value of the cross-section in the given bin. The bin width is set as a vari-170

able parameter and the error for different wind speed ranges and bin widths are plot-171

ted in Fig.4 (a). The RMS difference is found to be roughly constant for bin widths up172

to +/− 5m/s thus for optimal performance, we choose a width of +/− 4m/s for the173

analysis throughout this paper. Fig.4 (b) shows the GMF for different storm quadrants.174

The slope is derived by linear regression over the binned radar cross-section, as described175

above. These GMFs at high winds can be seen to vary with quadrants. This is consis-176

tent with the azimuthal variation of the local wind wave directions in published direc-177

tional wavenumber spectrum datasets (B24, I09, I12 and I14) (Hwang et al., 2018). Quad-178

rant 3 has the highest GMF, indicating a relatively younger sea condition. Quadrant 2179

has the lowest GMF, indicating an extended fetch and duration, therefore a longer sea180

age.181

3 Harmonic Model Function182

An empirical GMF is developed here which includes first and second order harmonic
dependence on azimuthal location within the storm. This approach is based on the idea
that any azimuthally varying function can be modelled as a linear combination of sinu-
soids. This technique is commonly used to represent the azimuthal dependence of radar
and radiometer observations of ocean surface winds (Wentz & Smith, 1999; Meissner &
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Figure 4. (a) Choice of wind speed averaging bin width based on RMS error. (b) GMF for

different quadrants.

Wentz, 2002). The functional form of the model is given by

σ0 = f(w, φ) = a0(w) + b1(w)sin(φ) + b2(w)sin(2φ) (2)

where w is the wind speed, φ is the azimuth angle, and (a0, b1, b2) are model parame-183

ters that depend on wind speed. Note that the slope of the GMF above ∼ 20m/s is the184

same for different incidence angles. Apart from the wind speed dependence of σ0, it also185

has a dependence on incidence angle as shown in Fig.1. However, due to the limited size186

of the sample population, the dependence on incidence and azimuth angles cannot be187

separated. One way to address this issue is by maintaining a similar incidence angle dis-188

tribution at all azimuth angles. This will mitigate the effect and the three parameter har-189

monic model which results can be considered to represent the azimuthal dependence av-190

eraged across all incidence angles. It should be noted that the strength of the azimuthal191
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dependence may vary with incidence angle. Additionally, note that if b1 = b2 = 0, the192

new GMF essentially defaults to the earlier azimuth-free version.193

The σ0 observations are averaged over wind speed bins which are +/−4m/s wide194

and the parametric model described above is fit to the observations for wind speed >195

15m/s by nonlinear least squares minimization. The three model parameters (a0, b1, b2)196

are shown vs. wind speed in Fig.5 (a-c). The estimated parameters are shown in blue197

and the black-dashed lines represent the 95% confidence intervals on these estimates. Ex-198

amples of the full GMF vs/ azimuth angle at 20, 40 and 60 m/s are shown in Fig.5 (d).199

Several important features of the GMF behavior can be observed. First, the magnitude200

of σ0 decreases with increasing wind speed, similar to the previous GMF behavior. Sec-201

ondly, the azimuthal dependence of the GMF increases with increasing wind speed. Thirdly,202

the maximum value of σ0 occurs in the third quadrant for each wind speed, consistent203

with the GMF magnitude noted in Fig.4 (b). The minimum lies in the second quadrant204

thus, has a higher sea age and fetch conditions.205

These effects are further illustrated in Fig.6, which plots the peak-to-peak azimuthal206

variation in σ0 vs. wind speed. The azimuthal variation rises steadily between ∼ 30 and207

55m/s. The drop-off in azimuthal variation above 55m/s may be a result of the small208

number of samples available and the lower sensitivity to changes in wind speed.209

4 Performance Assessment210

To assess the ability of the proposed model to capture the azimuthal variation in211

σ0, several statistical measures of performance are considered. The robustness of the model212

is evaluated by breaking the total dataset into 3 subsets using every third element. The213

model is then trained on one subset and the relative RMSE is evaluated on another dataset.214

This relative error formulation is given by215

RealtiveError(%) =

√
< (σ0 − σ̃0)2 >

< σ0 >
∗ 100 (3)

Here σ0 is the measurement sample at a given wind speed bin and σ̃0 is the model216

estimate of scattering cross-section for a given wind speed and azimuth information. Fig.7217

(a) shows the behavior of relative error vs. wind speed for the different combinations of218

training and testing subsets. The dashed line represents use of the total dataset and hence219

is a test of internal consistency in the generation of the GMF. The large relative error220

at the lower wind speeds (< 15m/s) is due to the fact that the model has been trained221

only for higher wind speeds.222

The relative error is consistent over the 3 different datasets (D1, D2 and D3) as223

well as over the total dataset thus indicating the robustness of the developed model. Also,224

for wind speeds > 60m/s the relative error becomes noisy and this is attributed to the225

sparse observations at such high winds. Next, the dataset is divided into 2 independent226

subsets (D1 and D2) with storms well mixed from different basins and years and the anal-227

ysis is repeated. The result is shown in Fig.7 (b). The relative error is consistent over228

a wide range of wind speeds from 20−60m/s re-attesting to the robustness of the model.229

The next performance metric is a statistical measure of the percentage of azimuthal
variation captured by the model over different wind speed ranges. The metric used for
this purpose is given by

1− var(σ̃0)

var(σ0)
∗ 100 =

{
1, if model captures azimuth information completely..

0, if model doesn not capture any azimuth information.
(4)

Here var(.) refers to the variance of the sample population, σ0 is the measurements230

and σ̃0 the model. The assumption behind this statistical metric is that the total vari-231

ance in the observations at a given wind speed is associated with multiple factors, one232
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Figure 5. (a)-(c) Model parameters for azimuth GMF. (d) Azimuthal model for scattering

cross-section shown for 3 different wind speeds.

of which is azimuthal variation. Since the model explicitly accounts for azimuthal vari-233

ation, any residual variance in the model should be due to other factors than azimuthal234

variation. If the metric is 1, it indicates that the model has captured all of the azimuth235

information and, if the metric is 0, no azimuth information is captured. Fig.8 shows the236

behavior of this metric tested for different wind speeds. The metric suggests that the model237

is consistent and is able to capture greater than 90 % of the azimuthal variation over a238

broad range of wind speeds between 20 and 60 m/s. Lower wind speeds are shown here239

for completeness and again, at higher winds the performance drops due to sparse obser-240

vations in the region.241
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Figure 6. Peak-to-Peak azimuthal variation of scattering cross-section for different wind

speeds.

Finally, we evaluate the total error in the observed scattering cross-section due to
the azimuthal variation. The measure is defined by

Error(%) = abs

(
1− MSD(σ0, σ̃0)

var(σ0)

)
∗ 100 (5)

Here, MSD(.) is the mean squared difference between the observations and the model242

estimate for a given wind speed and var(.) is the total variance in the observation for243

a given wind speed. If the MSE between the observation and the model is the same as244

the variance in the observation, it suggests that no azimuthal error is observed and if the245

MSE is negligible compared to the total variance in the observation, then most of the246

error in the σ0 can be associated to azimuthal variation. Fig.9 shows the % error in the247

scattering cross-section caused by the azimuthal variation. The model suggests a 2-8 %248

error in the scattering cross section for the wind speed range 20-60 m/s. The error is close249

to 2% at 20 m/s and gradually increases to 8 % around 53 m/s, then begins to reduce250

above that. While the overall error due to azimuthal variation is negligible, understand-251

ing the effect of this variation gives important insight into the wave properties inside a252

hurricane and its impending impact on the scattering cross-section. The increase in az-253

imuthal variation with increase in wind speed also suggests that the GNSS-R scatter-254

ing cross-section could be sensitive to the directional properties of wind at higher wind255

speed ranges.256

5 Discussion and Conclusion257

The specular bistatic scattering cross section of the ocean surface in tropical cy-258

clones, as measured by GNSS-R radar receivers on the CYGNSS spacecraft, is found to259

depend on azimuthal location relative to the direction of storm motion. The dependence260

is caused by variations in the sea age and fetch length with storm quadrant, which af-261

fects the balance between surface roughness at short (capillary) and long (gravity) wave-262

lengths. The roughness spectrum, in turn, affects the scattering cross section. A mod-263

ified Geophysical Model Function (GMF) is developed using a second order harmonic264

expansion to represent the azimuthal dependence. The zeroth order term in the GMF265
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Figure 7. (a) RMSE for training and testing on 3 subsets (D1, D2 and D3). (b)RMSE for

training and testing of 2 independent datasets (D1 and D2).

is consistent with previous models which have not included an azimuthal dependence.266

The first and second order terms together explain between 2 and 8% of the total vari-267

ance in the scattering cross section, with higher explained variance being associated with268

higher wind speeds. The azimuthal corrections to the GMF are found to be significant269

above ∼ 20m/s. Above ∼ 60m/s, the results are inconclusive owing to the scarcity of270

samples.271

It is worthwhile to note that the current GMF used by the CYGNSS project does272

not include an azimuthal dependence in organized storms. Another difference from the273

GMF developed here is the source of reference winds. The v2.1 GMF was developed us-274

ing matchups with near-surface wind measurements made by the Stepped Frequency Mi-275

crowave Radiometer on NOAA hurricane hunter aircraft (Ruf & Balasubramaniam, 2018),276

whereas the GMF developed here uses matchups with HWRF model winds. Differences277

in overall magnitude between the two GMFs are likely a result of these differences.278
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Figure 8. Evaluation of azimuthal information captured by the model.

Figure 9. Error associated with scattering cross-section due to azimuthal variation.

The azimuthally dependent GMF has utility in two regards. It can serve as an in-279

dicator of sea state development in the inner core of tropical cyclones, for use in process280

studies into air-sea and wind-wave interactions. It could also be used to improve wind281

speed retrieval algorithms in tropical cyclones that are based on GNSS-R observations.282

Retrieval algorithms essentially invert the GMF to estimate wind speed given the scat-283

tering cross section, and a more physically representative forward GMF will allow for284

a more accurate inversion. This type of study can also be extended to other non-TC weather285

systems with younger seas or scenarios with limited fetch conditions, e.g, limited fetch286

on the lee side of major islands that may result in a different relationship between wind287

speed and MSS or σ0, and therefore require a modified GMF for accurate wind speed288

retrieval. The next steps in this work will be to implement the proposed azimuthal GMF289

for CYGNSS wind retrieval and evaluate its performance.290
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Figure 3 combined.
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